05.12.2012 Views

Research Article Complex Dynamics in a Nonlinear Cobweb Model ...

Research Article Complex Dynamics in a Nonlinear Cobweb Model ...

Research Article Complex Dynamics in a Nonlinear Cobweb Model ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

H<strong>in</strong>dawi Publish<strong>in</strong>g Corporation<br />

Discrete <strong>Dynamics</strong> <strong>in</strong> Nature and Society<br />

Volume 2007, <strong>Article</strong> ID 29207, 14 pages<br />

doi:10.1155/2007/29207<br />

<strong>Research</strong> <strong>Article</strong><br />

<strong>Complex</strong> <strong>Dynamics</strong> <strong>in</strong> a Nonl<strong>in</strong>ear <strong>Cobweb</strong> <strong>Model</strong> for<br />

Real Estate Market<br />

Junhai Ma and L<strong>in</strong>gl<strong>in</strong>g Mu<br />

Received 10 October 2006; Revised 1 April 2007; Accepted 2 July 2007<br />

We establish a nonl<strong>in</strong>ear real estate model based on cobweb theory, where the demand<br />

function and supply function are quadratic. The stability conditions of the equilibrium<br />

are discussed. We demonstrate that as some parameters varied, the stability of Nash equilibrium<br />

is lost through period-doubl<strong>in</strong>g bifurcation. The chaotic features are justified<br />

numerically via comput<strong>in</strong>g maximal Lyapunov exponents and sensitive dependence on<br />

<strong>in</strong>itial conditions. The delayed feedback control (DFC) method is applied to control the<br />

chaos of system.<br />

Copyright © 2007 J. Ma and L. Mu. This is an open access article distributed under the<br />

Creative Commons Attribution License, which permits unrestricted use, distribution,<br />

and reproduction <strong>in</strong> any medium, provided the orig<strong>in</strong>al work is properly cited.<br />

1. Introduction<br />

<strong>Cobweb</strong> models describe the price dynamics <strong>in</strong> a market of a nonstorable good that takes<br />

onetimeunittoproduce[1]. In economic model<strong>in</strong>g, many examples of cobweb chaos<br />

have been demonstrated. Some of the most famous examples <strong>in</strong>clude [2–9]. Hommes [5]<br />

applies the concept of adaptive expectations <strong>in</strong> a cobweb model with a s<strong>in</strong>gle producer<br />

to <strong>in</strong>vestigate the occurrence of strange and chaotic behavior. F<strong>in</strong>kenstädt [3] applied<br />

l<strong>in</strong>ear supply and nonl<strong>in</strong>ear demand functions. Hommes [4] and Jensen and Urban [6]<br />

used l<strong>in</strong>ear demand functions with nonl<strong>in</strong>ear supply equations. These f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong>dicate<br />

that the nonl<strong>in</strong>ear cobweb model may expla<strong>in</strong> various irregular fluctuations observed <strong>in</strong><br />

real economic data. In this study, we go one step further to study the cobweb model with<br />

nonl<strong>in</strong>ear demand and supply function. A possible source of such an evolutionary market<br />

dynamics is an <strong>in</strong>teraction between government and real estate developer.<br />

Traditional cobweb models usually describe a dynamic price adjustment <strong>in</strong> agricultural<br />

markets with a supply response lag [2]. Consider, for <strong>in</strong>stance, the supply of hous<strong>in</strong>g.<br />

The time of hous<strong>in</strong>g construction guarantees a f<strong>in</strong>ite lag between the time the production


2 Discrete <strong>Dynamics</strong> <strong>in</strong> Nature and Society<br />

decision is made and the time the hous<strong>in</strong>g is ready for sale. The real estate developer’s decision<br />

about how many houses should be built and sale is usually based on current and<br />

past experience. This pr<strong>in</strong>ciple is the same as that of agricultural product. So it is feasible<br />

to <strong>in</strong>troduce cobweb model <strong>in</strong>to real estate market.<br />

The present paper attempts to establish a nonl<strong>in</strong>ear model for the real estate market,<br />

and <strong>in</strong>troduce adjustment parameters of hous<strong>in</strong>g price and land price <strong>in</strong>to the model,<br />

which can denote the game behavior of players. The system stability with the variation<br />

of parameters is analyzed. Numerical simulations verify the complexity of system evolvement.<br />

F<strong>in</strong>ally, time-delayed feedback control method is used to keep the system from<br />

chaos and bifurcation.<br />

2. Nonl<strong>in</strong>ear models for real estate market<br />

In this paper we assume that all real estate developers <strong>in</strong> the market are belong to one benefit<br />

group and have a common benefit target. Usually the price p is characterized by the<br />

nonl<strong>in</strong>ear <strong>in</strong>verse demand function of p = a − b � Q,wherea and b are positive constants,<br />

a is the maximum price <strong>in</strong> the market, and Q is the total quantity <strong>in</strong> the market. This k<strong>in</strong>d<br />

of form has been used <strong>in</strong> other oligopoly models and <strong>in</strong> the experimental economics deal<strong>in</strong>g<br />

with learn<strong>in</strong>g and expectations formation (see, e.g., [10–12]). The transformation of<br />

this formula is as follows:<br />

D1(t) = b0 − b1 p1(t)+b2 p1 2 (t), D2(t) = c0 − c1 p2(t)+c2 p2 2 (t), (2.1)<br />

where b0, b1, b2, c0, c1, c2 are positive constants, p1(t) is the land price at time period t,<br />

p2(t) is the hous<strong>in</strong>g price at time period t, D1(t) is the land demand at time period t,<br />

and D2(t) is the hous<strong>in</strong>g demand at time period t. Due to the law of demand that the<br />

slope of demand curve is negative, the prices p1(t) andp2(t) must, respectively, satisfy<br />

the <strong>in</strong>equalies: 2b2 p1(t) − b1 < 0and2c2p2(t) − c1 < 0; 4b2b0 − b 2 1 > 0, 4c2c0 − c 2 1 > 0must<br />

hold, thus the signs of demand equations <strong>in</strong> formula (2.1) are positive.<br />

In this case, the land market and hous<strong>in</strong>g market are <strong>in</strong>terrelated. Though the hous<strong>in</strong>g<br />

market does not directly affect land market, the land price impacts the hous<strong>in</strong>g supply<br />

which decreases with <strong>in</strong>creas<strong>in</strong>g land price. This rule is the same as that of hog and corn<br />

as stated by Waugh [13]. Real estate companies adjust the hous<strong>in</strong>g supply accord<strong>in</strong>g to<br />

the relative policies and the situation of hous<strong>in</strong>g price and land price. The formula of<br />

supply can be supposed as follows:<br />

S1(t) = e0 + e1 p1(t)+e2p1 2 (t), S2(t) = d0 + d1 p2(t)+d2 p2 2 (t) − d3 p1(t), (2.2)<br />

where d0, d1, d2, d3, e0, e1, e2 are positive constants, S1(t)isthelandsupplyattimeperiod<br />

t,andS2(t) is the hous<strong>in</strong>g supply at time period t. Because 2e2p1(t)+e1 >0and2d2 p2(t)+<br />

d1 > 0, so we can affirm that the slope of supply curve is positive, and it is <strong>in</strong> accordance<br />

with the law of supply. Providers beg<strong>in</strong> to supply the products only when<br />

p1(t) > −e1 + � e1 2 − 4e2e0<br />

, p2(t) ><br />

2e2<br />

−d1<br />

�<br />

+<br />

2d2<br />

d1 2 − 4d2d0<br />

. (2.3)


Def<strong>in</strong>e<br />

J. Ma and L. Mu 3<br />

Z(p) = D(p) − S(p). (2.4)<br />

Z(p) is excess demand function descend<strong>in</strong>g with price, which denotes the gap between<br />

demand and supply. When the price is low, excess demand exists and when the price is<br />

high, excess supply exists, thus p∗ that satisfies the equation Z(p ∗ ) = 0 is called equilibrium<br />

po<strong>in</strong>t.<br />

Substitut<strong>in</strong>g (2.1)and(2.2)<strong>in</strong>to(2.4), we obta<strong>in</strong><br />

Z � p1(t) � = b0 − e0 − � �<br />

e1 + b1 p1(t)+ � �<br />

b2 − e2 p1 2 (t)<br />

Z � p2(t) � = c0 − d0 − � �<br />

d1 + c1 p2(t)+ � �<br />

c2 − d2 p2 2 t = 0,1,2,.... (2.5)<br />

(t)+d3 p1(t),<br />

S<strong>in</strong>ce Z(p) follows the law of demand, the follow<strong>in</strong>g conditions must hold:<br />

b2 − e2 > 0,<br />

c2 − d2 > 0,<br />

2 � �<br />

c2 − d2 p2(t) − � �<br />

d1 + c1 < 0,<br />

2 � �<br />

b2 − e2 p1(t) − � �<br />

e1 + b1 < 0.<br />

(2.6)<br />

α1 is the adjustment parameter of land price, which denotes the adjustment degree of<br />

benchmark land price controlled by government through the land supply plan. α2 is the<br />

adjustment parameter of hous<strong>in</strong>g price, the dynamic model of land price and hous<strong>in</strong>g<br />

price can be established as follows:<br />

p1(t) = p1(t − 1) + α1Z � p1(t − 1) � ,<br />

p2(t) = p2(t − 1) + α2Z � p2(t − 1) � ,<br />

t = 0,1,2,..., (2.7)<br />

where α1 and α2 are positive parameters.<br />

It is clear that the excess functions of land and hous<strong>in</strong>g with adjustment parameters<br />

are two-dimensional nonl<strong>in</strong>ear map, which can be regarded as a discrete dynamic system.<br />

3. Stability analysis<br />

3.1. Bifurcation and chaos. Expansion formula of (2.7)is:<br />

�<br />

p1(t)= p1(t − 1) + α1 b0 − e0 − � �<br />

e1 + b1 p1(t − 1) + � �<br />

b2 − e2 p1 2 (t − 1) � ,<br />

�<br />

p2(t)=p2(t−1)+α2 c0−d0− � �<br />

d1+c1 p2(t−1)+ � �<br />

c2−d2 p2 2 (t−1)+d3p1(t−1) � ,<br />

Let<br />

� �<br />

α1 e2 − b2<br />

u = �<br />

�e1 �2 � �� �<br />

1+α1 + b1 − 4 e0 − b0 e2 − b2<br />

,<br />

U = 1 1<br />

−<br />

2 2 ·<br />

� �<br />

1 − α1 e1 + b1<br />

�<br />

�e1 �2 � �� � , x(t) = up1(t)+U.<br />

1+α1 + b1 − 4 e2 − b2 e0 − b0<br />

t =0,1,2,....<br />

(3.1)<br />

(3.2)


4 Discrete <strong>Dynamics</strong> <strong>in</strong> Nature and Society<br />

Thetransformofthefirstequation<strong>in</strong>formula(3.1) is:<br />

x(t) = λx(t − 1) � 1 − x(t − 1) � , (3.3)<br />

�<br />

where λ = 1+α1 (e1 + b1) 2 − 4(e2 − b2)(e0 − b0). The stability of x(t) variesalongwith<br />

variety of λ accord<strong>in</strong>g to Logistic rule.<br />

If α1 < 0, then λ


Lemma 3.1. The equilibrium<br />

E1<br />

� b1+e1+<br />

��b1+e1 � � �� �<br />

2−4 e2−b2 e0−b0<br />

2 � � ,<br />

b2−e2<br />

d1+c1+<br />

J. Ma and L. Mu 5<br />

��d1+c1 � � ��<br />

2−4 c2 − d2 c0 − d0 + d3 p1<br />

2 � �<br />

c2 − d2<br />

� �<br />

(3.6)<br />

is an unstable equilibrium po<strong>in</strong>t.<br />

Proof. In order to prove this result, we f<strong>in</strong>d the eigenvalues of the Jacobian matrix J. In<br />

fact at E1, the Jacobian matrix becomes a triangular matrix:<br />

�<br />

J � E1<br />

⎡<br />

⎢<br />

= ⎣ 1+α1<br />

��b1+e1 �2−4� �� �<br />

e2−b2 e0−b0<br />

�1/2<br />

α2d3<br />

��d1+c1 �2−4� 1+α2<br />

c2−d2<br />

whose eigenvalues are given by the diagonal entries. They are:<br />

�� �2 � �� ��1/2, λ1 = 1+α1 b1 + e1 − 4 e2 − b2 e0 − b0<br />

�� �2 � �� ��1/2. λ2 = 1+α2 d1 + c1 − 4 c2 − d2 c0 − d0 + d3 p1<br />

0<br />

�� c0−d0+d3 p1<br />

⎤<br />

�� ⎥<br />

⎦<br />

1/2<br />

(3.7)<br />

(3.8)<br />

It is clear that when condition (3.5) holds,then|λ1| > 1and|λ2| > 1. Then E1 is an unstable<br />

equilibrium po<strong>in</strong>t of the system (3.1). This completes the proof of the proposition.<br />

The stability of other po<strong>in</strong>ts can also be judged by the above method. �<br />

3.3. The stable region of equilibrium po<strong>in</strong>t. In this subsection, we analyze the asymptotic<br />

stability of the equilibrium po<strong>in</strong>t for the two-dimensional map (3.1). We determ<strong>in</strong>e<br />

the region of stability <strong>in</strong> the plane of the parameters (α1,α2). The Jacobian matrix at<br />

E ∗ (p1 ∗ (t), p2 ∗ (t)) takes the form<br />

� � � � �<br />

1 − α1 e1 + b1 +2α1 b2 − e2 p1<br />

J =<br />

∗ (t) 0<br />

� � � �<br />

α2d3<br />

1 − α2 d1 + c1 +2α2 c2 − d2 p2 ∗ �<br />

.<br />

(t)<br />

(3.9)<br />

The characteristic equation of the matrix (3.9)hastheform<br />

F(λ) = λ 2 − Tr λ +Det= 0, (3.10)<br />

where “Tr” is the trace and “Det” is the determ<strong>in</strong>ant of the Jacobian matrix (3.9) which<br />

are given by<br />

� � � �<br />

Tr = 2 − α1 e1 + b1 +2α1 b2 − e2 p1 ∗ � � � �<br />

(t) − α2 d1 + c1 +2α2 c2 − d2 p2 ∗ (t),<br />

� � � �<br />

Det = 1 − α1 e1 + b1 +2α1 b2 − e2 p1 ∗ � � � �<br />

(t) − α2 d1 + c1 +2α2 c2 − d2 p2 ∗ (t)<br />

+ � � � � �<br />

α1 e1 + b1 − 2α1 b2 − e2 p1 ∗ (t) �� � � � �<br />

α2 d1 + c1 − 2α2 c2 − d2 p2 ∗ (t) � .<br />

(3.11)


6 Discrete <strong>Dynamics</strong> <strong>in</strong> Nature and Society<br />

S<strong>in</strong>ce<br />

(Tr) 2 −4Det= � � � � � � �<br />

α2 d1+c1 −α1 e1 + b1 +2α1 b2 − e2 p1 ∗ � �<br />

(t) − 2α2 c2 − d2 p2 ∗ (t) �2 > 0,<br />

(3.12)<br />

we deduce that the eigenvalues of equilibrium are real. The local stability of equilibrium<br />

po<strong>in</strong>t is given by Jury’s conditions [14, 15] which are as follows.<br />

(a) 1 − Tr + Det > 0.<br />

Lemma 3.2. The condition (a) is always satisfied.<br />

Proof. Because 1 − Tr + Det = [α1(e1 + b1) − 2α1(b2 − e2)p1 ∗ (t)][α2(d1 + c1) − 2α2(c2 −<br />

d2)p2 ∗ (t)], moreover, the last two conditions <strong>in</strong> (2.6) arehold,α1and α2 are positive<br />

parameters, so the sign of “1 − Tr+Det” is positive and the lemma is proven.<br />

(b) 1 + Tr+Det > 0,<br />

� � � �<br />

1+Tr+Det= 4 − 2α1 e1 + b1 +4α1 b2 − e2 p1 ∗ � � � �<br />

(t) − 2α2 d1 + c1 +4α2 c2 − d2 p2 ∗ (t)<br />

+ � � � � �<br />

α1 e1 + b1 − 2α1 b2 − e2 p1 ∗ (t) �� � � � �<br />

α2 d1 + c1 − 2α2 c2 − d2 p2 ∗ (t) � .<br />

(3.13)<br />

(c) Det−1 < 0,<br />

� � � �<br />

Det−1 =−α1 e1 + b1 +2α1 b2 − e2 p1 ∗ � � � �<br />

(t) − α2 d1 + c1 +2α2 c2 − d2 p2 ∗ (t)<br />

+ � � � � �<br />

α1 e1 + b1 − 2α1 b2 − e2 p1 ∗ (t) �� � � � �<br />

α2 d1 + c1 − 2α2 c2 − d2 p2 ∗ (t) � .<br />

(3.14)<br />

The conditions (b) and (c) def<strong>in</strong>e a bounded region of stability <strong>in</strong> the parameters space<br />

(α1,α2). Then the second and third conditions are the conditions for the local stability of<br />

equilibrium po<strong>in</strong>t which becomes<br />

� � � �<br />

1+Tr+Det= 4−2α1 e1 + b1 +4α1 b2 − e2 p1 ∗ � � � �<br />

(t) − 2α2 d1 + c1 +4α2 c2 − d2 p2 ∗ (t)<br />

+ � � � � �<br />

α1 e1 + b1 − 2α1 b2 − e2 p1 ∗ (t) �� � � � �<br />

α2 d1 + c1 − 2α2 c2 − d2 p2 ∗ (t) � >0,<br />

�<br />

Det−1 =−α1 e1 + b1<br />

� � �<br />

+2α1 b2 − e2 p1 ∗ � � � �<br />

(t) − α2 d1 + c1 +2α2 c2 − d2 p2 ∗ (t)<br />

+ � � � � �<br />

α1 e1 + b1 − 2α1 b2 − e2 p1 ∗ (t) �� � � � �<br />

α2 d1 + c1 − 2α2 c2 − d2 p2 ∗ (t) �


α2<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

4. Numerical simulations<br />

1<br />

0<br />

0 0.4 0.8 1.2 1.6<br />

Figure 3.1. Stability region of Nash equilibrium.<br />

0<br />

0 0.2 0.4 0.6 0.8<br />

α1<br />

Figure 4.1. The graph of map fα1,α2.<br />

J. Ma and L. Mu 7<br />

In order to study the complex dynamics of system (3.1), it is convenient to take the parameters<br />

values as follows:<br />

b0 = 1.2, b1 = 2, b2 = 1.6, c0 = 4, c1 = 1.6, c2 = 0.04, d0 = 0,<br />

d1 = 3, d2 = 0.02, d3 = 0.4, e0 = 0.5, e1 = 0.3, e2 = 0.2.<br />

(4.1)<br />

Figure 3.1 shows the region of stability of Nash equilibrium. Equation (3.15) def<strong>in</strong>es<br />

the region of stability <strong>in</strong> the plane of (α1,α2). Figure 4.1 shows the map of fα1,α2. xcoord<strong>in</strong>ate<br />

is p1 and y-coord<strong>in</strong>ate is fα1,α2(p1). <strong>Dynamics</strong> of land price <strong>in</strong> the cobweb<br />

model is given by system p1(t) = fα1,α2(p1(t − 1)) with two model parameters. A graphical<br />

analysis <strong>in</strong> Figure 4.1 shows that the map fα1,α2 is nonmonotonic with one critical


8 Discrete <strong>Dynamics</strong> <strong>in</strong> Nature and Society<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.45<br />

0<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

2<br />

p2<br />

p1<br />

0.5 1 1.5 2 2.5<br />

Lyp<br />

0 0.5 1 1.5 2 2.5<br />

Figure 4.2. Bifurcation diagram for α2 = 0.4.<br />

p2<br />

p1<br />

0.5 1 1.5 2 2.5<br />

Lyp<br />

0 0.5 1 1.5 2 2.5<br />

Figure 4.3. Bifurcation diagram for α2 = 0.2.<br />

po<strong>in</strong>t, where the graph has a (local) m<strong>in</strong>imum, and that <strong>in</strong>itial state p1(0) = 1 does not<br />

converge to a low periodic orbit. S<strong>in</strong>ce the graphical analysis <strong>in</strong> this case does not converge,<br />

it suggests that the dynamical behavior is chaotic.<br />

Figures 4.2 and 4.3 show the bifurcation diagrams with respect to the parameter α1<br />

and for α2 = 0.2 and 0.4. In both figures, the Nash equilibrium E ∗ = (0.4,0.9) is locally<br />

stable for small values of the parameter α1. Ifα1 <strong>in</strong>creases, the Nash equilibrium po<strong>in</strong>t<br />

α2<br />

α2<br />

α1<br />

α1


p2<br />

p2<br />

0.925<br />

0.92<br />

0.915<br />

0.91<br />

0.905<br />

0.93<br />

0.92<br />

0.91<br />

0.9<br />

0.25 0.5 0.75 1<br />

Figure 4.4. Strange attractor for α2 = 0.07.<br />

p1<br />

0.3 0.6 0.9<br />

Figure 4.5. Strange attractor for α2 = 0.1.<br />

p1<br />

J. Ma and L. Mu 9<br />

becomes unstable, and one observes complex dynamic behavior occurs such as cycles of<br />

higher order and chaos. Also the maximal Lyapunov exponent is plotted <strong>in</strong> Figures 4.2<br />

and 4.3.<br />

Figures 4.4, 4.5, 4.6, and4.7 show the graph of strange attractors for the different<br />

values of α2.Theparameterα2 takes the values 0.07, 0.1, 0.2, and 0.3, which exhibit fractal<br />

structure <strong>in</strong> both cases.<br />

We compute the difference of two orbits with <strong>in</strong>itial po<strong>in</strong>ts [p1(0), p2(0)] and [p1(0) +<br />

0.0001, p2(0)], as well as [p1(0), p2(0)] and [p1(0), p2(0) + 0.0001], to demonstrate the<br />

sensitivity to <strong>in</strong>itial conditions of the system (3.1). The parameters take the values (α1,α2)<br />

= (2.3,0.6) and [p1(0), p2(0)] = (1,2). The results are shown <strong>in</strong> Figures 4.8 and 4.9,where<br />

Δp1(t) = p1(t) − p ′ 1(t) andp ′ 1(t) isthevalueoflandpriceattimeperiodt with <strong>in</strong>itial


10 Discrete <strong>Dynamics</strong> <strong>in</strong> Nature and Society<br />

p2<br />

p2<br />

0.944<br />

0.928<br />

0.912<br />

0.896<br />

1<br />

0.96<br />

0.92<br />

0.88<br />

0.25 0.5 0.75 1<br />

Figure 4.6. Strange attractor for α2 = 0.2.<br />

p1<br />

0.25 0.5 0.75 1<br />

Figure 4.7. Strange attractor for α2 = 0.3.<br />

value of p1(0) + 0.0001; Δp2(t) = p2(t) − p ′ 2(t), and p ′ 2(t) is the value of hous<strong>in</strong>g price at<br />

time period t with <strong>in</strong>itial value of p2(0) + 0.0001. In both figures, <strong>in</strong>itial condition of one<br />

coord<strong>in</strong>ate differs by 0.0001, the other coord<strong>in</strong>ate keeps equal. At the beg<strong>in</strong>n<strong>in</strong>g, the difference<br />

is <strong>in</strong>dist<strong>in</strong>guishable but after a number of iterations the difference between them<br />

builds up rapidly. From Figures 4.8 and 4.9, we show that the time series of the system<br />

(3.1) is sensitive dependence on <strong>in</strong>itial conditions, that is, complex dynamics behaviors<br />

occur <strong>in</strong> this model.<br />

p1


Δp1<br />

Δp2<br />

5. Chaos control<br />

0.8<br />

0.4<br />

0<br />

0.4<br />

0.8<br />

200<br />

100<br />

0<br />

100<br />

200<br />

0 20 40 60 80 100<br />

t<br />

Figure 4.8. Sensitivity to <strong>in</strong>itial conditions of p1.<br />

0 20 40 60 80 100<br />

t<br />

Figure 4.9. Sensitivity to <strong>in</strong>itial conditions of p2.<br />

J. Ma and L. Mu 11<br />

Delay feedback control (DFC) method was brought forward by Pyragas [16]. The method<br />

allows a non<strong>in</strong>vasive stabilization of unstable periodic orbits (UPOs) of dynamical systems<br />

[17]. It feeds back part of system output signals as exterior <strong>in</strong>put to the system<br />

after a time delay. u(•) is control signal ga<strong>in</strong>ed by self-feedback coupl<strong>in</strong>g between output<br />

and <strong>in</strong>put signals <strong>in</strong> chaotic system. x(t) = f (x(t − 1)) + u(t) istheformofDFC,where<br />

u(t) = k(x(t) − x(t − τ)), t>τ, τ is time delay, k is controll<strong>in</strong>g factor. Though delay feedback<br />

control is only carried out on one variable, it enables other variables <strong>in</strong> the system<br />

to achieve stability simultaneously. Our goal is to control the system <strong>in</strong> such way. The


12 Discrete <strong>Dynamics</strong> <strong>in</strong> Nature and Society<br />

p1<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

2<br />

1.5<br />

1<br />

0.5<br />

0 0.1 0.2 0.3 0.4 0.5<br />

k<br />

Figure 4.10. Relation graph of p1 and k.<br />

0<br />

0 20 40 60 80 100<br />

t<br />

Figure 4.11. Time series of p1 and p2 with k = 0.4.<br />

system with controll<strong>in</strong>g factor is shown as follows:<br />

p1(t) = p1(t − 1) + α1Z � p1(t − 1) � − k � p1(t) − p1(t − τ) � ,<br />

p2(t) = p2(t − 1) + α2Z � p2(t − 1) � ,<br />

p2<br />

p1<br />

t = 0,1,2,.... (5.1)<br />

From Figure 3.1, we know that chaos exists <strong>in</strong> system (3.1) whenα2 = 0.4, α1 = 2.3.<br />

Choos<strong>in</strong>g τ = 1, first <strong>in</strong>spect the relation of k and system stability. The Jacobian matrix of


system (5.1)is<br />

�� � � � �<br />

1 − α1 e1 + b1 + k +2α1 b2 − e2 p1(t)<br />

J =<br />

�� (1 + k) 0<br />

� �<br />

α2d3<br />

1−α2 d1+c1 +2α2<br />

J. Ma and L. Mu 13<br />

� c2−d2<br />

�<br />

� .<br />

p2(t)<br />

(5.2)<br />

Substitut<strong>in</strong>g equilibrium po<strong>in</strong>t (0.4, 0.9) <strong>in</strong>to (5.2), we obta<strong>in</strong> eigenvalues λ1 =−0.83,<br />

λ2 = (k − 1.7)/(1 + k). So when k>0.35, absolute values of both eigenvalues are less than<br />

1, which means that the system is stable.<br />

As shown <strong>in</strong> Figure 4.10 land price is controlled from chaotic state to stable state when<br />

k is greater than 0.35, so we select k = 0.4. Hous<strong>in</strong>g price and land price are also controlled<br />

to equilibrium po<strong>in</strong>t (0.4, 0.9) as shown <strong>in</strong> Figure 4.11.<br />

6. Conclusion<br />

A nonl<strong>in</strong>ear model for real estate market has been presented based on the cobweb theory.<br />

It is a simple dynamic model with nonl<strong>in</strong>ear demand and supply function. From numerical<br />

simulations, we deduce that the land supply system has the remarkable <strong>in</strong>fluence on<br />

real estate market. Therefore, policy makers who <strong>in</strong>tervene <strong>in</strong> one market should recognize<br />

that what they do may also <strong>in</strong>fluence other relative markets. We showed that the<br />

fast adjustment cause a market structure to behave chaotically. Therefore, the dynamics<br />

of market is changed when players apply different adjustment speed. Attempts are also<br />

made to stabilize the chaotic system with the delay feedback method. Comb<strong>in</strong><strong>in</strong>g with<br />

this method, the land price and hous<strong>in</strong>g price evolve from chaotic to stable.<br />

Acknowledgments<br />

The authors are grateful to Professor Chen Yu-shu (Academician of Ch<strong>in</strong>ese Academy of<br />

Eng<strong>in</strong>eer<strong>in</strong>g) and Mrs. Liang Jiao-jie for their helpful comments. The authors thank three<br />

anonymous referees for their valuable suggestions and remarks. Any errors or shortcom<strong>in</strong>gs<br />

are our own.<br />

References<br />

[1] W. A. Brock and C. H. Hommes, “A rational route to randomness,” Econometrica, vol. 65, no. 5,<br />

pp. 1059–1095, 1997.<br />

[2] C. Chiarella, “The cobweb model, its <strong>in</strong>stability and the onset of chaos,” Economic <strong>Model</strong><strong>in</strong>g,<br />

vol. 5, no. 4, pp. 377–384, 1988.<br />

[3] B. F<strong>in</strong>kenstädt, Nonl<strong>in</strong>ear <strong>Dynamics</strong> <strong>in</strong> Economics: A Theoretical and Statistical Approach to Agricultural<br />

Markets, Lecture Notes <strong>in</strong> Economics and Mathematical Systems no. 426, Spr<strong>in</strong>ger,<br />

Berl<strong>in</strong>, Germany, 1995.<br />

[4] C. H. Hommes, “Adaptive learn<strong>in</strong>g and roads to chaos: the case of the cobweb,” Economics Letters,<br />

vol. 36, no. 2, pp. 127–132, 1991.<br />

[5] C. H. Hommes, “<strong>Dynamics</strong> of the cobweb model with adaptive expectations and nonl<strong>in</strong>ear supply<br />

and demand,” Journal of Economic Behavior & Organization, vol. 24, no. 3, pp. 315–335,<br />

1994.<br />

[6] R. V. Jensen and R. Urban, “Chaotic price behavior <strong>in</strong> a nonl<strong>in</strong>ear cobweb model,” Economics<br />

Letters, vol. 15, no. 3-4, pp. 235–240, 1984.


14 Discrete <strong>Dynamics</strong> <strong>in</strong> Nature and Society<br />

[7] A. Matsumoto, “Ergodic cobweb chaos,” Discrete <strong>Dynamics</strong> <strong>in</strong> Nature and Society, vol. 1, no. 2,<br />

pp. 135–146, 1997.<br />

[8] A. Matsumoto, “Preferable disequilibrium <strong>in</strong> a nonl<strong>in</strong>ear cobweb economy,” Annals of Operations<br />

<strong>Research</strong>, vol. 89, pp. 101–123, 1999.<br />

[9] H. E. Nusse and C. H. Hommes, “Resolution of chaos with application to a modified Samuelson<br />

model,” Journal of Economic <strong>Dynamics</strong> & Control, vol. 14, no. 1, pp. 1–19, 1990.<br />

[10] H. N. Agiza, A. S. Hegazi, and A. A. Elsadany, “<strong>Complex</strong> dynamics and synchronization of a<br />

duopoly game with bounded rationality,” Mathematics and Computers <strong>in</strong> Simulation, vol. 58,<br />

no. 2, pp. 133–146, 2002.<br />

[11] A. K. Naimzada and L. Sbragia, “Oligopoly games with nonl<strong>in</strong>ear demand and cost functions:<br />

two boundedly rational adjustment processes,” Chaos, Solitons & Fractals, vol.29,no.3,pp.<br />

707–722, 2006.<br />

[12] T. Offerman, J. Potters, and J. Sonnemans, “Imitation and belief learn<strong>in</strong>g <strong>in</strong> an oligopoly experiment,”<br />

Review of Economic Studies, vol. 69, no. 4, pp. 973–997, 2002.<br />

[13] F. V. Waugh, “<strong>Cobweb</strong> models,” Journal of Farm Economics, vol. 46, no. 4, pp. 732–750, 1964.<br />

[14] T. Puu, Attractors, Bifurcations, and Chaos: Nonl<strong>in</strong>ear Phenomena <strong>in</strong> Economics, Spr<strong>in</strong>ger, Berl<strong>in</strong>,<br />

Germany, 2000.<br />

[15] X. Li, G. Chen, Z. Chen, and Z. Yuan, “Chaotify<strong>in</strong>g l<strong>in</strong>ear Elman networks,” IEEE Transactions<br />

on Neural Networks, vol. 13, no. 5, pp. 1193–1199, 2002.<br />

[16] K. Pyragas, “Cont<strong>in</strong>uous control of chaos by self-controll<strong>in</strong>g feedback,” Physics Letters A,<br />

vol. 170, no. 6, pp. 421–428, 1992.<br />

[17] V. Pyragas and K. Pyragas, “Delayed feedback control of the Lorenz system: an analytical treatment<br />

at a subcritical Hopf bifurcation,” Physical Review E, vol. 73, no. 3, <strong>Article</strong> ID 036215, 10<br />

pages, 2006.<br />

Junhai Ma: School of Management, Tianj<strong>in</strong> University, Tianj<strong>in</strong> 300072, Ch<strong>in</strong>a<br />

Email address: mjhtju@yahoo.com.cn<br />

L<strong>in</strong>gl<strong>in</strong>g Mu: School of Management, Tianj<strong>in</strong> University, Tianj<strong>in</strong> 300072, Ch<strong>in</strong>a<br />

Email address: l<strong>in</strong>gmu1020@163.com


Mathematical Problems <strong>in</strong> Eng<strong>in</strong>eer<strong>in</strong>g<br />

Special Issue on<br />

<strong>Model</strong><strong>in</strong>g Experimental Nonl<strong>in</strong>ear <strong>Dynamics</strong> and<br />

Chaotic Scenarios<br />

Call for Papers<br />

Th<strong>in</strong>k<strong>in</strong>g about nonl<strong>in</strong>earity <strong>in</strong> eng<strong>in</strong>eer<strong>in</strong>g areas, up to the<br />

70s, was focused on <strong>in</strong>tentionally built nonl<strong>in</strong>ear parts <strong>in</strong><br />

order to improve the operational characteristics of a device<br />

or system. Key<strong>in</strong>g, saturation, hysteretic phenomena, and<br />

dead zones were added to exist<strong>in</strong>g devices <strong>in</strong>creas<strong>in</strong>g their<br />

behavior diversity and precision. In this context, an <strong>in</strong>tr<strong>in</strong>sic<br />

nonl<strong>in</strong>earity was treated just as a l<strong>in</strong>ear approximation,<br />

around equilibrium po<strong>in</strong>ts.<br />

Inspired on the rediscover<strong>in</strong>g of the richness of nonl<strong>in</strong>ear<br />

and chaotic phenomena, eng<strong>in</strong>eers started us<strong>in</strong>g analytical<br />

tools from “Qualitative Theory of Differential Equations,”<br />

allow<strong>in</strong>g more precise analysis and synthesis, <strong>in</strong> order to<br />

produce new vital products and services. Bifurcation theory,<br />

dynamical systems and chaos started to be part of the<br />

mandatory set of tools for design eng<strong>in</strong>eers.<br />

This proposed special edition of the Mathematical Problems<br />

<strong>in</strong> Eng<strong>in</strong>eer<strong>in</strong>g aims to provide a picture of the importance<br />

of the bifurcation theory, relat<strong>in</strong>g it with nonl<strong>in</strong>ear<br />

and chaotic dynamics for natural and eng<strong>in</strong>eered systems.<br />

Ideas of how this dynamics can be captured through precisely<br />

tailored real and numerical experiments and understand<strong>in</strong>g<br />

by the comb<strong>in</strong>ation of specific tools that associate dynamical<br />

system theory and geometric tools <strong>in</strong> a very clever, sophisticated,<br />

and at the same time simple and unique analytical<br />

environment are the subject of this issue, allow<strong>in</strong>g new<br />

methods to design high-precision devices and equipment.<br />

Authors should follow the Mathematical Problems <strong>in</strong><br />

Eng<strong>in</strong>eer<strong>in</strong>g manuscript format described at http://www<br />

.h<strong>in</strong>dawi.com/journals/mpe/. Prospective authors should<br />

submit an electronic copy of their complete manuscript<br />

through the journal Manuscript Track<strong>in</strong>g System at http://<br />

mts.h<strong>in</strong>dawi.com/ accord<strong>in</strong>g to the follow<strong>in</strong>g timetable:<br />

Manuscript Due December 1, 2008<br />

First Round of Reviews March 1, 2009<br />

Publication Date June 1, 2009<br />

H<strong>in</strong>dawi Publish<strong>in</strong>g Corporation<br />

http://www.h<strong>in</strong>dawi.com<br />

Guest Editors<br />

José Roberto Castilho Piqueira, Telecommunication and<br />

Control Eng<strong>in</strong>eer<strong>in</strong>g Department, Polytechnic School, The<br />

University of São Paulo, 05508-970 São Paulo, Brazil;<br />

piqueira@lac.usp.br<br />

Elbert E. Neher Macau, Laboratório Associado de<br />

Matemática Aplicada e Computação (LAC), Instituto<br />

Nacional de Pesquisas Espaciais (INPE), São Josè dos<br />

Campos, 12227-010 São Paulo, Brazil ; elbert@lac.<strong>in</strong>pe.br<br />

Celso Grebogi, Center for Applied <strong>Dynamics</strong> <strong>Research</strong>,<br />

K<strong>in</strong>g’s College, University of Aberdeen, Aberdeen AB24<br />

3UE, UK; grebogi@abdn.ac.uk

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!