22.08.2015 Views

Some Roles of Information Theory in Imaging Problems

pdf version of talk

pdf version of talk

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gJ. A. O’Sullivan. OSA Meet<strong>in</strong>g, 10/25/2000CollaboratorsFacultyStudents and Post-DocsDonald L. SnyderWilliam H. SmithDaniel R. FuhrmannJeffrey WilliamsonBruce Whit<strong>in</strong>gRichard E. BlahutMichael I. MillerJeffrey H. ShapiroMichael D. DeVoreNatalia A. SchmidMet<strong>in</strong> OzRyan MurphyJasenka BenacAdam CataldoSushil Anand2


<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gJ. A. O’Sullivan. OSA Meet<strong>in</strong>g, 10/25/2000Research ProgramsARO Center for Imag<strong>in</strong>g Science:JHU, MIT, Wash<strong>in</strong>gton U., Texas,…http://ciscis.jhu.edu/ONR MURI: Performance Analysis <strong>of</strong> MultipleSensor Systems <strong>in</strong> Automatic Target RecognitionKrim (NCSU), Miller (JHU),O’Sullivan (WU),Shapiro and Willsky(MIT)National Cancer Institute <strong>of</strong> NIHJ. Williamson (PI), D. L. Snyder, J. A. O’Sullivan, OBruce Whit<strong>in</strong>g3


<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gJ. A. O’Sullivan. OSA Meet<strong>in</strong>g, 10/25/2000Outl<strong>in</strong>e:• <strong>Information</strong> <strong>Theory</strong>• <strong>Problems</strong> <strong>of</strong> Interest- Detection- Estimation- Classification• Applications- ATR from SAR- Object-Constra<strong>in</strong>edComputerized Tomography- Hyperspectral Imag<strong>in</strong>g• Conclusions4


<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gJ. A. O’Sullivan. OSA Meet<strong>in</strong>g, 10/25/2000<strong>Some</strong> <strong>Roles</strong> <strong>of</strong> <strong>Information</strong> <strong>Theory</strong>In Imag<strong>in</strong>g <strong>Problems</strong><strong>Some</strong> Important Ideas:• <strong>Roles</strong> depend on problem studied• Key problems are <strong>in</strong> detection,estimation, and classification• <strong>Information</strong> is quantifiable• SNR as a measure has limitations• <strong>Information</strong> theory <strong>of</strong>ten providesperformance bounds5


<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gJ. A. O’Sullivan. OSA Meet<strong>in</strong>g, 10/25/2000How to Measure <strong>Information</strong>QUESTIONS:Can we measure the <strong>in</strong>formation <strong>in</strong> an image?Does one sensor provide more <strong>in</strong>formation than another?Does resolution measure <strong>in</strong>formation?Do more pixels <strong>in</strong> an image give more <strong>in</strong>formation?ANSWER:MAYBE<strong>Information</strong> for what?<strong>Information</strong> relative to what?Ill-def<strong>in</strong>ed questions clearly def<strong>in</strong>ed problem6


<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gJ. A. O’Sullivan. OSA Meet<strong>in</strong>g, 10/25/2000Measur<strong>in</strong>g <strong>Information</strong><strong>Information</strong> for what?• Detection• Estimation• Classification• Image formation<strong>Information</strong> relative to what?• Noise only• Clutter plus noise• Natural Scenery7


<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gJ. A. O’Sullivan. OSA Meet<strong>in</strong>g, 10/25/2000Measur<strong>in</strong>g <strong>Information</strong>: DetectionProblem Statement:H 1 : r(y) = s(y) + n(y), y ∈YH 0 : r(y) = n(y), y ∈YP(1) = pOptimal test statistic: l(r)Threshold: γExample: determ<strong>in</strong>istic signal plus WGN, N 0l(r) = 2 /N 0Performance: P FA (γ), P M (γ)Bounds:-lnP FA (γ) ≥ I 0 (γ) = sup[s γ – m 0 (s) ]-lnP M (γ) ≥ I 1 (γ) = I 0 (γ) - γRate functions, Chern<strong>of</strong>f Bound8


<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gJ. A. O’Sullivan. OSA Meet<strong>in</strong>g, 10/25/2000Measur<strong>in</strong>g <strong>Information</strong>: DetectionRate functions:Determ<strong>in</strong>istic signal plus WGNI(x) = (x-SNR)2 /(4 SNR)Poisson signal plus Poisson noiseI(x) = x ln [x / λ] – x + λComplex Gaussian Plus CWGNI(x) = x / λ - ln [x / λ] – 1I 1 (x)I 1 (x)I 0 (x)I 0 (x)9


<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gJ. A. O’Sullivan. OSA Meet<strong>in</strong>g, 10/25/2000Measur<strong>in</strong>g <strong>Information</strong>: EstimationFisher <strong>Information</strong>RegularizationObjective (Likelihood) function: ψ(r,c)Estimate: c i = argmax ψ(r i ,c)Discrepancy Measure: d(c 1 ,c 2 ) ≥ 0Problem is well-posed ifsup [ d(c 1 ,c 2 ) / d(r 1 ,r 2 ) ] < ∞Regularization –Sequence <strong>of</strong> sets C µ such that restrictionsc ∈C µ make problem well-posed10


<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gJ. A. O’Sullivan. OSA Meet<strong>in</strong>g, 10/25/2000Regularizationargmax ψ(r,c) + α φ(c)Interpretations:Penalty: penalize deviations from a nom<strong>in</strong>alφ(c) = d(c,c 0 )Prior likelihood:α φ(c) = ln p(c)Constra<strong>in</strong>ed estimation:φ(c) ≤γα = Lagrange multiplier11


<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gJ. A. O’Sullivan. OSA Meet<strong>in</strong>g, 10/25/2000Regularization and <strong>Information</strong> <strong>Theory</strong>Discrepancy measures motivated by <strong>in</strong>formation theorySquared Errord(p,q) = Σ i < p i – q i , p i – q i >Discrim<strong>in</strong>ation (or I-divergence)Id(p,q) = Σ i p i ln [ p i / q i ] - p i + q iItakura-Saito distanced(p,q) = Σ i p i / q i - ln [ p i / q i ] - 1Common decomposition for C µd(f S ,f i ) = d(f S ,φ i ) + d(φ i ,f i )φ i = argm<strong>in</strong> Cµ d(f S ,f)12


<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gJ. A. O’Sullivan. OSA Meet<strong>in</strong>g, 10/25/2000Regularization Geometry.f SFφ 2...φ 1F 1F 2f 2f 1.13


<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gJ. A. O’Sullivan. OSA Meet<strong>in</strong>g, 10/25/2000<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gBrown-MITMIT-Harvard MURID. Mumford, , U. Grenander, , S. Mitter, , S. Geman,D. McClure, R. BrockettRelated EffortsA. Yuille, , S.-C. ZhuComplexity RegularizationA. Barron, J. Rissanen, , B. Yu, P. Moul<strong>in</strong>OSA Annual Meet<strong>in</strong>g and Exhibit 2000M. Neifeld, , E. Clarkson, H. J. Caulfield,G. Barbastathis, , T. SchulzOSA <strong>Information</strong> Process<strong>in</strong>g DivisionQuantum <strong>Theory</strong>, Microscopy<strong>Information</strong> <strong>Theory</strong> and Physics Jaynes, …14


<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gJ. A. O’Sullivan. OSA Meet<strong>in</strong>g, 10/25/2000Complexity Regularizationargmax ψ(r,c) + α φ(c)Choose φ(c) as a measure <strong>of</strong> complexityComments:• Nonconvex optimization• Different measures <strong>of</strong> complexity exist• Universality versus problem-specific15


<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gJ. A. O’Sullivan. OSA Meet<strong>in</strong>g, 10/25/2000<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>g• Center for Imag<strong>in</strong>g Science established 1995• Brown MURI on Performance Metrics established 1997• Invited Paper 1998J. A. O’Sullivan, OR. E. Blahut, , and D. L. Snyder,“<strong>Information</strong>-Theoretic Image Formation,” IEEETransactions on <strong>Information</strong> <strong>Theory</strong>, , Oct. 1998.• IEEE 1998 <strong>Information</strong> <strong>Theory</strong> Workshop on Detection,Estimation, Classification, and Imag<strong>in</strong>g• IEEE Transactions on <strong>Information</strong> <strong>Theory</strong> SpecialIssue on <strong>Information</strong>-Theoretic Imag<strong>in</strong>g, Aug. 2000• Sessions at ISIT, ICIP, SPIE16


<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gJ. A. O’Sullivan. OSA Meet<strong>in</strong>g, 10/25/2000Scientific Framework forImag<strong>in</strong>g ScienceTarget Recognizer(Supercomputer)SceneUnderstand<strong>in</strong>gScene SynthesizerSourceChannelMultiple SensorsDecoderDatabaseXY = Y 1 , Y 2 , ... Y mX^E( X)p(X ) = e−E(X)ZE(Y | X)p(Y | X) = e−E(Y|X)Z(X)p(X|Y)= p(Y|X)p(X)p(Y)17


<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gJ. A. O’Sullivan. OSA Meet<strong>in</strong>g, 10/25/2000Sensor Fusion and <strong>Information</strong>Target Recognizer(Supercomputer)SceneUnderstand<strong>in</strong>gScene SynthesizerSourceChannelMultiple SensorsDecoderDatabaseXE( X)p(X ) = e−E(X)ZUncerta<strong>in</strong>ty <strong>of</strong> SourceEntropy H(X)Y= Y1,Y2E(Y | X)p(Y | X) =,...Yem−E(Y |X)Z(X)Uncerta<strong>in</strong>ty <strong>of</strong> Source GivenOutputEntropy H(X|Y)^XpY ( | X)p(X)p(X|Y)=pY ( )Mutual <strong>Information</strong>I(X;Y)=H(X) - H(X|Y)18


<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gJ. A. O’Sullivan. OSA Meet<strong>in</strong>g, 10/25/2000IEEE Transactions on <strong>Information</strong> <strong>Theory</strong>, , October 1998,Special Issue to commemorate the 50th anniversary <strong>of</strong>Claude E. Shannon'sA Mathematical <strong>Theory</strong> <strong>of</strong> CommunicationProblem Def<strong>in</strong>itionOptimality CriterionAlgorithm DevelopmentPerformance Quantification19


<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gJ. A. O’Sullivan. OSA Meet<strong>in</strong>g, 10/25/2000PhysicalPhenomenaPhysical ScenePhysical SensorsMathematicalAbstractionsScene ModelSensor Modelsc ∈C ⊂ L 2 σ ∈Ο ⊂ L 2ReproductionSpaceC ν ⊂ CCriteriaPerformancel( σ | c), σ − fcm<strong>in</strong> d σ ,c ( )( )( ) , I σ || fc ( )dc, ( c ˆν)= dc, ( c ˆ*)+ d c ˆ* , ˆ( c ν)20


<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gJ. A. O’Sullivan. OSA Meet<strong>in</strong>g, 10/25/2000Problem Def<strong>in</strong>itionPhysical Phenomena:Electromagnetic Waves,Physical ObjectsMathematical Abstraction: Function Spaces (L 2 ),Dynamical ModelsSensor Models:Projection Models,StatisticsReproduction Space:F<strong>in</strong>ite DimensionalApproximationOptimality CriterionDeterm<strong>in</strong>istic:Stochastic:Least Squares,M<strong>in</strong>imum Discrim<strong>in</strong>ationMaximum Likelihood,MAP, MMSE21


<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gJ. A. O’Sullivan. OSA Meet<strong>in</strong>g, 10/25/2000Algorithm DevelopmentIterative Algorithms:Random Search:Alternat<strong>in</strong>g M<strong>in</strong>imizationsExpectation-MaximizationSimulated Anneal<strong>in</strong>g,Diffusion, Jump-DiffusionPerformance QuantificationDiscrepancy Measures:Performance:Performance Bounds:Squared Error,Discrim<strong>in</strong>ationBias, Variance,Mean Discrim<strong>in</strong>ationCramer-RaoRao,Hilbert-Schmidt22


<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gJ. A. O’Sullivan. OSA Meet<strong>in</strong>g, 10/25/2000<strong>Information</strong> <strong>Theory</strong> and AlgorithmsLemma: Given p i ≥ 0, i = 1, 2, …, n, with at least onepositive,ln [ Σ i p i ] = - m<strong>in</strong> Σ i q i ln [q i / p i ] ,where the m<strong>in</strong>imum is over q i that sum to 1.cp(s|c)sp(r|s)rln [ p(r|c) ] = - m<strong>in</strong> Σ s p(s|r,c) ln [p(s|r,c) /{p(r|s)p(s|c)}]Alternat<strong>in</strong>g m<strong>in</strong>imization (EM):p(s|r,c) p(s|c)23


<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gJ. A. O’Sullivan. OSA Meet<strong>in</strong>g, 10/25/2000<strong>Information</strong> Theoretic Algorithms:Alternat<strong>in</strong>g M<strong>in</strong>imizationsPoisson data, m<strong>in</strong>imum discrim<strong>in</strong>ation,Lucy-RichardsonShepp, Vardi, Lee, Lucy, Richardson,Miller, Snyder, Schulz, O’SullivanProblem: Given r(y) and h(y|x), m<strong>in</strong>imize I(r||Hc).Comment:• Nonnegativity fundamentally accounted for• Use lemma from above p(x|y)m<strong>in</strong> c m<strong>in</strong> p Ι(pr||hc) =m<strong>in</strong> c m<strong>in</strong> p Σ y Σ x r(y)p(x|y) ln [r(y)p(x|y) / h(y|x)c(x)]- r(y)p(x|y) + h(y|x)c(x)24


<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gJ. A. O’Sullivan. OSA Meet<strong>in</strong>g, 10/25/2000Alternat<strong>in</strong>g M<strong>in</strong>imization AlgorithmsDr(y)÷BackProjectDivide byH 0 (x)c (k) (x)ForwardProject25


<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gJ. A. O’Sullivan. OSA Meet<strong>in</strong>g, 10/25/2000Target Classification ProblemTargetClassifierâ=T72Given a SAR image r,determ<strong>in</strong>e a correspond<strong>in</strong>gtarget class â∈ATarget Orientation Estimationa=T72OrientationEstimatorθ=135Given a SAR image r anda target class â∈A,estimate target orientationLikelihood Model Approach:p R|Θ,a (r|θ,a) - Conditional Data Modelp Θ,a (θ,a) - Prior on orientation (known or simply uniform)P(a) - Prior on target class (known or simply uniform)26


<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gJ. A. O’Sullivan. OSA Meet<strong>in</strong>g, 10/25/2000Tra<strong>in</strong><strong>in</strong>g and Test<strong>in</strong>g Problem:Function Estimation and ClassificationTra<strong>in</strong><strong>in</strong>g DataScene and SensorPhysicsFunctionEstimationRaw DataProcess<strong>in</strong>gImageL(r|a,θ)Inferenceâ=T72• Labeled tra<strong>in</strong><strong>in</strong>g data: target type and pose• Log-likelihood parameterized by a function:mean image, variance image, etc.27


<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gJ. A. O’Sullivan. OSA Meet<strong>in</strong>g, 10/25/2000Function Estimation and Classification• Functions are estimated from- sample data sets only- physical model datasets only (PRISM, XPATCH, etc.)- comb<strong>in</strong>ation <strong>of</strong> these• Tra<strong>in</strong><strong>in</strong>g sets are f<strong>in</strong>ite• Computational and likelihood models have a f<strong>in</strong>itenumber <strong>of</strong> parameters• Estimation error• Approximation error• <strong>Some</strong> regularization is needed28


<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gJ. A. O’Sullivan. OSA Meet<strong>in</strong>g, 10/25/2000Function EstimationLet S and T be two target types,f S and f T the correspond<strong>in</strong>g functionsf S : Θ × D R or R +Spatial doma<strong>in</strong> D:Surface <strong>of</strong> objectRectangular region <strong>in</strong> R 2Cont<strong>in</strong>uousPose space Θ:Typically SE(3)Simpler to consider SE(2), SO(2)Θ is cont<strong>in</strong>uousAssume a null function f 029


<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gJ. A. O’Sullivan. OSA Meet<strong>in</strong>g, 10/25/2000Function Estimation: SieveFunction space FFamily <strong>of</strong> subsets F µ , µ > 0- Maximum likelihood estimate <strong>of</strong> f exists for each µ > 0- ∪ µ > 0 F µ = FUlf GrenanderSpl<strong>in</strong>e sieves µ = 1/Q,where Q = number <strong>of</strong> coefficients.Nonnegative functions, nonnegative expansions.Pierre Moul<strong>in</strong>, et al.f(λ) ) = Σ k∈Λµa(k) ψ k (λ)) , a(k) >= 030


<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gJ. A. O’Sullivan. OSA Meet<strong>in</strong>g, 10/25/2000Sieve Geometry.f SFφ 2...φ 1F 1F 2f 2f 1.31


<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gJ. A. O’Sullivan. OSA Meet<strong>in</strong>g, 10/25/2000Discrepancy MeasuresEstimation:Relative entropy between parameterized distributionsd(f S ,φ µ ) approximation errorExpected relative entropy for estimated functionsE{d(φ µ , f µ )} estimation errorClassification:Probability <strong>of</strong> error, rate functionsDecompose <strong>in</strong>to approximation and estimation errorExam<strong>in</strong>e performance as a function <strong>of</strong> µ, optimize32


<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gJ. A. O’Sullivan. OSA Meet<strong>in</strong>g, 10/25/2000Motivation• Many reported approaches to ATR from SAR• Performance and database complexity are <strong>in</strong>terrelated• We seek to provide a framework for comparison that:- Allows direct comparison under identical conditions- Removes dependency on implementation details2S1T62 BTR 60D7 ZIL 131 ZSU 23/4Publicly available SAR data from the MSTAR program33


<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gJ. A. O’Sullivan. OSA Meet<strong>in</strong>g, 10/25/2000Approaches: Conditionally GaussianModel each pixel as complex Gaussian plus uncorrelated noise:ri( )1−∏Ki( θ , a)+ N0p rθ , a =eR Θ,A( ( ) + )i π Kiθ , a N02GLRT Classification and MAP Estimation:a ˆ Bayes ()= r argmaxmaxa k( )= argmaxˆ θ r,a HSp ˆ rθ ,a kp ˆ ( rθ k ,a)( )θ kJ. A. O’Sullivan Oand S. Jacobs, IEEE-AES 2000J. A. O’Sullivan, OM. D. DeVore, , V. Kedia, , and M. Miller, IEEE-AES to appear 200034


<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gApproachJ. A. O’Sullivan. OSA Meet<strong>in</strong>g, 10/25/2000• Select 240 comb<strong>in</strong>ations <strong>of</strong> implementation parameters• Execute algorithms at each parameterization• Scatter plot the performance-complexity pairs• Determ<strong>in</strong>e the best achievable performance at any complexityBMP2 Variance Image at 6 SizesZIL131 Variance Image at 6 SizesSix different image sizes from 128x128 to 48x4835


<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gJ. A. O’Sullivan. OSA Meet<strong>in</strong>g, 10/25/2000System Parameters and ComplexityApproximate α(θ,a) ) and σ 2 (θ,a)) as piecewise constant <strong>in</strong> θImplementations parameterized by:w - number <strong>of</strong> constant <strong>in</strong>tervals <strong>in</strong> θd - width <strong>of</strong> tra<strong>in</strong><strong>in</strong>g <strong>in</strong>tervals <strong>in</strong> θN 2 - number <strong>of</strong> pixels <strong>in</strong> an imageDatabase complexity ≡ log 10 (# float<strong>in</strong>g po<strong>in</strong>t values / target type)36


<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gJ. A. O’Sullivan. OSA Meet<strong>in</strong>g, 10/25/2000Performance and ComplexityForty comb<strong>in</strong>ations <strong>of</strong> angular resolution and tra<strong>in</strong><strong>in</strong>g <strong>in</strong>terval width.Variance image <strong>of</strong> aT62 tank1 W<strong>in</strong>dow tra<strong>in</strong>ed over 360°Variance images <strong>of</strong> a T72 tank72 W<strong>in</strong>dows tra<strong>in</strong>ed over 10°37


<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gJ. A. O’Sullivan. OSA Meet<strong>in</strong>g, 10/25/2000Problem Statement• Directly compare conditionally Gaussian, log-magnitude MSE,and quarter power MSE ATR Algorithms- identical tra<strong>in</strong><strong>in</strong>g and test<strong>in</strong>g data- identical spatial and orientation w<strong>in</strong>dows• Plot performance vs. complexity- probability <strong>of</strong> classification error- orientation estimation error- log-database size as complexity• Use 10 class MSTAR SAR imagesApproach• Select 240 comb<strong>in</strong>ations <strong>of</strong> implementation parameters• Execute algorithms at each parameterization• Scatter plot the performance-complexity pairs• Determ<strong>in</strong>e the best achievable performance at any complexity38


<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gJ. A. O’Sullivan. OSA Meet<strong>in</strong>g, 10/25/2000Approaches: Log-MagnitudeM<strong>in</strong>imize distance between r dB = 20 log |r| and dB templatesd 2( r dB,µ )2LM= r dB− µ LMMake decisions accord<strong>in</strong>g to:ˆ a LMˆ θ LM()= r argm<strong>in</strong>m<strong>in</strong>a( r a)= argm<strong>in</strong>( )( )kd 2 r dB,µ LMθ k, a( )( )θ kd 2 r dB,µ LMθ k,aAlternatively, use a form <strong>of</strong> normalization:d 2 r dB− r dB,µ LM( θ k,a)− µ LMθ k,a( )( )G. Owirka and L. Novak, SPIE 2230, 1994L. Novak, et al., IEEE-AES, Jan. 199939


<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gJ. A. O’Sullivan. OSA Meet<strong>in</strong>g, 10/25/2000Approaches: Quarter PowerM<strong>in</strong>imize distance between r QP = |r| 1/2 and quarter power templatesd 2Make decisions accord<strong>in</strong>g to:ˆa QPˆθ QP(2r QP,µ QP )= r QP− µ QP( )( )( r) = argm<strong>in</strong> m<strong>in</strong>d 2 r QP,µ QPθ k, aa k( r,a)= argm<strong>in</strong> d 2 r QP,µ QPθ k,aOr, normalized by vector magnitude:d 2⎜⎛⎝kr QP, µ QP θ k ,ar QPµ QPθ k,a( )( )( )( )⎞⎠S. W. Worrell, et al., SPIE 3070, 1997Discussions with M. Bryant <strong>of</strong> Wright Laboratory40


<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gJ. A. O’Sullivan. OSA Meet<strong>in</strong>g, 10/25/2000Conditionally Gaussian Results41


<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gJ. A. O’Sullivan. OSA Meet<strong>in</strong>g, 10/25/2000Performance-Complexity LegendForty comb<strong>in</strong>ations <strong>of</strong> number <strong>of</strong> piecewise constant<strong>in</strong>tervals and tra<strong>in</strong><strong>in</strong>g w<strong>in</strong>dow width42


<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gLog-Magnitude ResultsJ. A. O’Sullivan. OSA Meet<strong>in</strong>g, 10/25/2000Recognition without normalizationArithmetic mean normalized43


<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gQuarter Power ResultsJ. A. O’Sullivan. OSA Meet<strong>in</strong>g, 10/25/2000Recognition without normalizationRecognition with normalization44


<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gJ. A. O’Sullivan. OSA Meet<strong>in</strong>g, 10/25/2000Normalized Conditionally GaussianResults45


<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gJ. A. O’Sullivan. OSA Meet<strong>in</strong>g, 10/25/2000Side-byby-Side ResultsComparison <strong>in</strong> terms <strong>of</strong>:• Performance achievable at a given complexity• Complexity required to achieve a given performance46


<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gJ. A. O’Sullivan. OSA Meet<strong>in</strong>g, 10/25/2000Target ClassificationResults• Probability <strong>of</strong> correctclassification: 97.2%2S1 BMP 2 BRDM 2 BTR 60 BTR 70 D7 T62 T 72 ZIL131 ZSU 23 42S1 262 0 0 0 0 0 4 8 0 0 95.62%BMP 2 0 581 0 0 0 0 0 6 0 0 98.98%BRDM 2 5 3 227 1 0 14 3 5 4 1 86.31%BTR 60 1 0 0 193 0 0 0 0 0 1 98.97%BTR 70 4 5 0 0 184 0 0 3 0 0 93.88%D7 2 0 0 0 0 271 1 0 0 0 98.91%T 62 1 0 0 0 0 0 259 11 2 0 94.87%T 72 0 0 0 0 0 0 0 582 0 0 100%ZIL131 0 0 0 0 0 0 2 0 272 0 99.27%ZSU 234 0 0 0 0 0 2 0 1 0 271 98.91%47


<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gJ. A. O’Sullivan. OSA Meet<strong>in</strong>g, 10/25/2000Conclusions• General problem <strong>in</strong> tra<strong>in</strong><strong>in</strong>g/test<strong>in</strong>g posed asestimation/classification• Method <strong>of</strong> sieves (polynomial spl<strong>in</strong>es chosen)• Comprehensive performance-complexity study for- Ten class MSTAR problem- Conditionally Gaussian model- Log-magnitude MSE- Quarter power MSE• Provided a framework for direct comparison <strong>of</strong> alternativesand selection <strong>of</strong> implementation parameters• Analysis ongo<strong>in</strong>g48


MULTI-SPECTRAL ACTIVE-PASSIVESENSOR FUSION: FLIR/LADAR/HRRFLIR (30deg)ShapiroLADAR Range (30 deg)SPIE 98 ,99Advanced TechniquesHRR (30deg)


<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gJ. A. O’Sullivan. OSA Meet<strong>in</strong>g, 10/25/2000Mean Square Error Performance for LaserRadar, FLIR, High-Resolution RadarFLIR MSE BoundLADAR MSE BoundHRR MSE BoundSPIEAeroSense1999 Miller,O’Sullivan,Shapiro50


<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gJ. A. O’Sullivan. OSA Meet<strong>in</strong>g, 10/25/2000Multispectral Sensor Fusion for Ground BasedTargetOrientation Estimation: LADAR, FLIR, HRRFixed Error BoundLADAR/FLIRFixed Error BoundFLIR/HRRFixed Error BoundLADAR/HRRSPIEAeroSense1999Miller,O’Sullivan,ShapiroSullivan,Shapiro51


<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gJ. A. O’Sullivan. OSA Meet<strong>in</strong>g, 10/25/2000CT Imag<strong>in</strong>g <strong>in</strong> Presence <strong>of</strong> HighDensity AttenuatorsBrachytherapy applicatorsAfter-load<strong>in</strong>gcolpostatsfor radiation oncologyCervical cancer: 50% survival rateDose prediction importantObject-Constra<strong>in</strong>ed ComputedTomography (OCCT)52


<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gJ. A. O’Sullivan. OSA Meet<strong>in</strong>g, 10/25/2000Filtered Back ProjectionFBP: <strong>in</strong>verse Radon transformTruthFBP53


<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gJ. A. O’Sullivan. OSA Meet<strong>in</strong>g, 10/25/2000OCCT: Model and AlgorithmModel: m(y) = Σ h(y|x) [ c a (x:θ)+ c b (x) ]Known attenuation <strong>of</strong> applicator: c a (x:θ)Unknown pose: θUnknown body attenuation: c b (x)Known po<strong>in</strong>t-spread function: h(y|x)Source-detector pairs – yVoxels <strong>in</strong> image doma<strong>in</strong> – xCriterion: m<strong>in</strong>imize discrepancy betweenmeasurements and model(θ,c b ) =argm<strong>in</strong> =I(m||HcHc)54


<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gJ. A. O’Sullivan. OSA Meet<strong>in</strong>g, 10/25/2000OCCT: Algorithm55


<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gJ. A. O’Sullivan. OSA Meet<strong>in</strong>g, 10/25/2000Iterative Algorithm with KnownApplicator PoseTruthKnown Pose56


<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gJ. A. O’Sullivan. OSA Meet<strong>in</strong>g, 10/25/2000OCCT IterationsKnown PoseOCCT57


<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gTruthJ. A. O’Sullivan. OSA Meet<strong>in</strong>g, 10/25/2000KnownStandardFBPOCCT58


<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gMagnified views aroundbrachytherapy applicatorJ. A. O’Sullivan. OSA Meet<strong>in</strong>g, 10/25/2000FBPTruthOCCT59


<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gJ. A. O’Sullivan. OSA Meet<strong>in</strong>g, 10/25/2000Hyperspectral Imag<strong>in</strong>gWU Teamat Wash<strong>in</strong>gton UniversityDonald L. SnyderWilliam H. SmithDaniel R. FuhrmannJoseph A. O’SullivanOChrysanthe PrezaMet<strong>in</strong> OzCollaborationsArmy-TECBoe<strong>in</strong>gNASA-AmesAmesAir ForceMIT, CMUSnyderSmithFuhrmannWorkshop on Hyperspectral Imag<strong>in</strong>gMarch 9, 1999, at Boe<strong>in</strong>g <strong>in</strong> St. LouisO’Sullivan60


Digital Array Scann<strong>in</strong>g Interferometer (DASI)<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gJ. A. O’Sullivan. OSA Meet<strong>in</strong>g, 10/25/2000Digital Array Scann<strong>in</strong>g Interferometer (DASI)Snyder, WU Smith, WU61


<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gJ. A. O’Sullivan. OSA Meet<strong>in</strong>g, 10/25/2000Hyperspectral Imag<strong>in</strong>g Likelihood Models()= µ ( y)()= hy− ( x : λ)ideal data : r yµ y ∫∫ sx: ( λ)dxdλhy− ( x : λ)= h a( y − x −∆: λ)+ h ay − x +∆: λ∆ shear vector for Wollaston prismhy− x : λsx: λnonideal (more realistic) data :ry ()= Poisson [ µ ()+ y µ 0() y ]+ Gaussian ydata likelihood :⎧Y ∞1Er| ( scene)=−log⎨∑ ∑ny ()! µ ()+ y µ 0 () y⎩ y =1 ny ( )=1( ) 2( ) wavelength dependent amplitude PSF <strong>of</strong> DASI( ) scene <strong>in</strong>tensity for <strong>in</strong>coherent radiation at x, λ()[ ] ny[ ] e−[ ry ( )− ny ( )] 2 2σ 2( ) e − µ ( y)+µ 0 ( y)⎫⎬⎭62


<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gJ. A. O’Sullivan. OSA Meet<strong>in</strong>g, 10/25/2000Shr<strong>in</strong>k-Wrap Algorithm for EndmembersS = ΦAΦ = Endmembers, , K ColumnsA = Pixel Mixture ProportionsSVD, Then Simplex Volume M<strong>in</strong>imizationFuhrmann, , WU63


Alternat<strong>in</strong>g M<strong>in</strong>imization Algorithmsfor Hyperspectral Imag<strong>in</strong>gα 1CInitialEstimatedCoefficientsSnyder, WU O’Sullivan, WUα 2+PoissonProcessAlternat<strong>in</strong>gM<strong>in</strong>imizationAlgorithmEstimatedCoefficientsα 3S=ΦAGiven Φ and S, , estimate A.Uses I-Divergence IDiscrepancyMeasure.


<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gJ. A. O’Sullivan. OSA Meet<strong>in</strong>g, 10/25/2000<strong>Information</strong> Theoretic Imag<strong>in</strong>g:Application to Hyperspectral Imag<strong>in</strong>gProblem Def<strong>in</strong>itionOptimality CriterionAlgorithm DevelopmentPerformance Quantification• Likelihood Models for Sensors• Likelihood Models for Scenes• Spectrum Estimation andDecomposition• Performance Quantification• Applications to Available Sensors65


<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gJ. A. O’Sullivan. OSA Meet<strong>in</strong>g, 10/25/2000Hyperspectral Imag<strong>in</strong>gOngo<strong>in</strong>g Efforts• Scene Models Includ<strong>in</strong>g Spatial andWavelength Characteristics• Orientation Dependence <strong>of</strong> HyperspectralSignatures• Expanded Complementary Efforts• Atmospheric Propagation Models• Performance Bounds• Measures <strong>of</strong> Added <strong>Information</strong>66


<strong>Information</strong> <strong>Theory</strong> and Imag<strong>in</strong>gJ. A. O’Sullivan. OSA Meet<strong>in</strong>g, 10/25/2000Conclusions• <strong>Information</strong> Theoretic Imag<strong>in</strong>g• Radar Target RecognitionMSTAR DataTen Class ProblemPerformance Analysis• Hyperspectral Imag<strong>in</strong>gApply<strong>in</strong>g Formal MethodologyData CollectionsSensor Model<strong>in</strong>g, LikelihoodsBroad, Ongo<strong>in</strong>g Efforts67

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!