30.08.2015 Views

Early Physics results from LHC

E - CTP

E - CTP

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Early</strong> <strong>Physics</strong> <strong>results</strong> <strong>from</strong> <strong>LHC</strong><br />

1<br />

Ludwik Dobrzynski - LLR Ecole Polytechnique - CNRS-IN2P3<br />

jeudi 25 novembre 2010


<strong>Early</strong> <strong>Physics</strong> <strong>results</strong> <strong>from</strong> <strong>LHC</strong><br />

<strong>Physics</strong> @ <strong>LHC</strong><br />

Some of the physicists’ jargon<br />

Evolution of the Cross-Sections<br />

<strong>LHC</strong> physics Objects<br />

W an Z study<br />

Top at the <strong>LHC</strong><br />

Multijet event in CMS in first run at 7 TeV<br />

Conclusion<br />

jeudi 25 novembre 2010<br />

1<br />

Ludwik Dobrzynski - LLR Ecole Polytechnique - CNRS-IN2P3


<strong>Physics</strong> @ <strong>LHC</strong><br />

The Standard Model has been deeply tested at HERA, LEP and Tevatron and with<br />

success! … but the essential physics motivations and questions remain. They<br />

concern :<br />

Electroweak Symmetry Breaking<br />

Hierarchy of Fundamental Interactions<br />

Unification and Extended Symmetries<br />

The absence of BSM discoveries up to now, induce that everything is possible<br />

and <strong>LHC</strong> must be ready for surprises<br />

During the last decades, the universe has become much complicated (dark Matter,<br />

dark energy, neutrino masses … !)<br />

2<br />

jeudi 25 novembre 2010


Objectifs for the <strong>LHC</strong> collaborations<br />

Find new particles/new symmetries/new forces?<br />

Origin of Mass - Higgs boson(s)<br />

Supersymmetric particles - a new zoology of particles, dark<br />

matter particle? …<br />

Extra space-time dimensions: gravitons, Z’ etc. ?<br />

The Unexpected !!<br />

Studies of CP Violation and Quark Gluon Plasma<br />

3<br />

jeudi 25 novembre 2010


Some of the physicists’ jargon<br />

3<br />

jeudi 25 novembre 2010


Some of the physicists’ jargon<br />

• Cross section (σ)<br />

– A measure of ‘frequency’ of the physical process<br />

– Units: barns (10 -28 cm 2 )<br />

• Typical values: femtobarns (fb), picobarns (pb)<br />

3<br />

jeudi 25 novembre 2010


Some of the physicists’ jargon<br />

• Cross section (σ)<br />

– A measure of ‘frequency’ of the physical process<br />

– Units: barns (10 -28 cm 2 )<br />

• Typical values: femtobarns (fb), picobarns (pb)<br />

• Luminosity (L)<br />

– Or instantenous luminosity<br />

– A measure of collisions ‘frequency’<br />

• Typical (at Tevatron/<strong>Early</strong> <strong>LHC</strong>): L = 10 32 cm -2 s -1 3<br />

jeudi 25 novembre 2010


Some of the physicists’ jargon<br />

• Cross section (σ)<br />

– A measure of ‘frequency’ of the physical process<br />

– Units: barns (10 -28 cm 2 )<br />

• Typical values: femtobarns (fb), picobarns (pb)<br />

• Luminosity (L)<br />

– Or instantenous luminosity<br />

– A measure of collisions ‘frequency’<br />

• Typical (at Tevatron/<strong>Early</strong> <strong>LHC</strong>): L = 10 32 cm -2 s -1<br />

• Integrated luminosity (L = ∫Ldt)<br />

– A measure of number of accumulated collisions after a certain time period<br />

– Units: (cross section) -1 …. E.g. 1 fb -1 = 1000 pb -1<br />

• Tipical (Tevatron/<strong>Early</strong> <strong>LHC</strong>): few fb -1 3<br />

jeudi 25 novembre 2010


Some of the physicists’ jargon<br />

• Cross section (σ)<br />

– A measure of ‘frequency’ of the physical process<br />

– Units: barns (10 -28 cm 2 )<br />

• Typical values: femtobarns (fb), picobarns (pb)<br />

• Luminosity (L)<br />

– Or instantenous luminosity<br />

– A measure of collisions ‘frequency’<br />

• Typical (at Tevatron/<strong>Early</strong> <strong>LHC</strong>): L = 10 32 cm -2 s -1<br />

• Integrated luminosity (L = ∫Ldt)<br />

– A measure of number of accumulated collisions after a certain time period<br />

– Units: (cross section) -1 …. E.g. 1 fb -1 = 1000 pb -1<br />

• Tipical (Tevatron/<strong>Early</strong> <strong>LHC</strong>): few fb -1<br />

• Number of events (N)<br />

– Number of (expected) events (N) after a certain time of running<br />

N = σ · L<br />

3<br />

jeudi 25 novembre 2010


Signal vs background(s)<br />

4<br />

jeudi 25 novembre 2010


Signal vs background(s)<br />

• Signal: an event coming <strong>from</strong> the physical process under study<br />

– Example: H ZZe + e - e + e - 4<br />

jeudi 25 novembre 2010


Signal vs background(s)<br />

• Signal: an event coming <strong>from</strong> the physical process under study<br />

– Example: H ZZe + e - e + e -<br />

• Background: any other event<br />

– ‘Dangerous’ background is any other process giving at least 4 electrons in the final state<br />

• But be careful: electrons seen by detector are reconstructed objects and in some cases<br />

when some other objects (f.g. jets) are miss-reconstructed as electrons<br />

– ‘Trivial’ backgrounds are all other backgrounds and are easily rejected by a simple<br />

requirement of having at least 4 electrons in the final state<br />

4<br />

jeudi 25 novembre 2010


Signal vs background(s)<br />

• Signal: an event coming <strong>from</strong> the physical process under study<br />

– Example: H ZZe + e - e + e -<br />

• Background: any other event<br />

– ‘Dangerous’ background is any other process giving at least 4 electrons in the final state<br />

• But be careful: electrons seen by detector are reconstructed objects and in some cases<br />

when some other objects (f.g. jets) are miss-reconstructed as electrons<br />

– ‘Trivial’ backgrounds are all other backgrounds and are easily rejected by a simple<br />

requirement of having at least 4 electrons in the final state<br />

Z<br />

e<br />

e<br />

q<br />

Z<br />

e<br />

e<br />

Z<br />

e<br />

e<br />

q<br />

Z<br />

e<br />

e<br />

4<br />

jeudi 25 novembre 2010


Signal vs background(s)<br />

• Signal: an event coming <strong>from</strong> the physical process under study<br />

– Example: H ZZe + e - e + e -<br />

• Background: any other event<br />

– ‘Dangerous’ background is any other process giving at least 4 electrons in the final state<br />

• But be careful: electrons seen by detector are reconstructed objects and in some cases<br />

when some other objects (f.g. jets) are miss-reconstructed as electrons<br />

– ‘Trivial’ backgrounds are all other backgrounds and are easily rejected by a simple<br />

requirement of having at least 4 electrons in the final state<br />

Z<br />

e<br />

e<br />

q<br />

Z<br />

e<br />

e<br />

Z<br />

e<br />

e<br />

q<br />

Z<br />

e<br />

e<br />

Signal: ppHZZ4e<br />

4<br />

jeudi 25 novembre 2010


Signal vs background(s)<br />

• Signal: an event coming <strong>from</strong> the physical process under study<br />

– Example: H ZZe + e - e + e -<br />

• Background: any other event<br />

– ‘Dangerous’ background is any other process giving at least 4 electrons in the final state<br />

• But be careful: electrons seen by detector are reconstructed objects and in some cases<br />

when some other objects (f.g. jets) are miss-reconstructed as electrons<br />

– ‘Trivial’ backgrounds are all other backgrounds and are easily rejected by a simple<br />

requirement of having at least 4 electrons in the final state<br />

Z<br />

e<br />

e<br />

q<br />

Z<br />

e<br />

e<br />

Z<br />

e<br />

e<br />

q<br />

Z<br />

e<br />

e<br />

Signal: ppHZZ4e<br />

‘Dangerous’ background: ppZZ4e<br />

4<br />

jeudi 25 novembre 2010


Measurements vs predictions<br />

5<br />

jeudi 25 novembre 2010


Measurements vs predictions<br />

Predictions/Simulation<br />

5<br />

jeudi 25 novembre 2010


Measurements vs predictions<br />

Predictions/Simulation<br />

Measurements<br />

5<br />

jeudi 25 novembre 2010


Measurements vs predictions<br />

Predictions/Simulation<br />

Measurements<br />

Event Generation<br />

Tools: MC generators (PYTHIA, ...)<br />

Output: final state particles<br />

5<br />

jeudi 25 novembre 2010


Measurements vs predictions<br />

Predictions/Simulation<br />

Event Generation<br />

Tools: MC generators (PYTHIA, ...)<br />

Output: final state particles<br />

Measurements<br />

Collisions<br />

Tools: Accelerator (<strong>LHC</strong>, Tevatron ...)<br />

Output: final state particles<br />

5<br />

jeudi 25 novembre 2010


Measurements vs predictions<br />

Predictions/Simulation<br />

Event Generation<br />

Tools: MC generators (PYTHIA, ...)<br />

Output: final state particles<br />

Measurements<br />

Collisions<br />

Tools: Accelerator (<strong>LHC</strong>, Tevatron ...)<br />

Output: final state particles<br />

Detector simulation<br />

Tools: MC simulators (GEANT)<br />

Output: simulated detector response<br />

5<br />

jeudi 25 novembre 2010


Measurements vs predictions<br />

Predictions/Simulation<br />

Event Generation<br />

Tools: MC generators (PYTHIA, ...)<br />

Output: final state particles<br />

Measurements<br />

Collisions<br />

Tools: Accelerator (<strong>LHC</strong>, Tevatron ...)<br />

Output: final state particles<br />

Detector simulation<br />

Tools: MC simulators (GEANT)<br />

Output: simulated detector response<br />

Data acquisition<br />

Tools: Detectors (CMS, ATLAS,...)<br />

Output: detector response<br />

5<br />

jeudi 25 novembre 2010


Measurements vs predictions<br />

Predictions/Simulation<br />

Event Generation<br />

Tools: MC generators (PYTHIA, ...)<br />

Output: final state particles<br />

Measurements<br />

Collisions<br />

Tools: Accelerator (<strong>LHC</strong>, Tevatron ...)<br />

Output: final state particles<br />

Detector simulation<br />

Tools: MC simulators (GEANT)<br />

Output: simulated detector response<br />

Data acquisition<br />

Tools: Detectors (CMS, ATLAS,...)<br />

Output: detector response<br />

Event reconstruction<br />

Tools: Detectors’ software packages (custom made; MC used in algorithms)<br />

Output: reconstructed physical objects (electrons, muons, jets ...)<br />

5<br />

jeudi 25 novembre 2010


Measurements vs predictions<br />

Predictions/Simulation<br />

Event Generation<br />

Tools: MC generators (PYTHIA, ...)<br />

Output: final state particles<br />

Measurements<br />

Collisions<br />

Tools: Accelerator (<strong>LHC</strong>, Tevatron ...)<br />

Output: final state particles<br />

Detector simulation<br />

Tools: MC simulators (GEANT)<br />

Output: simulated detector response<br />

Data acquisition<br />

Tools: Detectors (CMS, ATLAS,...)<br />

Output: detector response<br />

Event reconstruction<br />

Tools: Detectors’ software packages (custom made; MC used in algorithms)<br />

Output: reconstructed physical objects (electrons, muons, jets ...)<br />

Data analysis<br />

Tools: Statistics (ROOT, ...; MC used in algorithms; f.g. Toy MC)<br />

Output: new knowledge (parameter/interval estimates, hypothesis tests, article, talks ...)<br />

5<br />

jeudi 25 novembre 2010


Simulation example<br />

6<br />

jeudi 25 novembre 2010


Transverse slice through CMS detector<br />

21<br />

I.<br />

P<br />

jeudi 25 novembre 2010


jeudi 25 novembre 2010<br />

Detector commissioning


Detector commissioning<br />

Understanding the detectors is a MAJOR task.<br />

➡<strong>LHC</strong> was eagerly awaited by a large community, theorists…<br />

➡Pressure for early <strong>results</strong> exist<br />

➡Strong internal competition is there<br />

But must not compromise quality!<br />

jeudi 25 novembre 2010


Detector commissioning<br />

Understanding the detectors is a MAJOR task.<br />

➡<strong>LHC</strong> was eagerly awaited by a large community, theorists…<br />

➡Pressure for early <strong>results</strong> exist<br />

➡Strong internal competition is there<br />

But must not compromise quality!<br />

Blind analyses: desirable, practical?<br />

Look at 10 7 bins, see three 5σ peaks even if no new physics!<br />

jeudi 25 novembre 2010


Major Commissioning Challenges<br />

10 9 10 5 102<br />

form the base for the “commissioning of physics tools”<br />

like b tagging, electrons/photons, muon, jets, missing E<br />

18<br />

T …<br />

jeudi 25 novembre 2010


The ATLAS/CMS detectors at <strong>LHC</strong><br />

σ/p T = 4.5-7 % (1 TeV µ), if comb. with TK<br />

116<br />

gaus<br />

σ/E = 2.8 %/√E ⊕ 0.3 % (barrel)<br />

jeudi 25 novembre 2010


The ATLAS/CMS detectors at <strong>LHC</strong><br />

σ/p T = 4.5-7 % (1 TeV µ), if comb. with TK<br />

116<br />

gaus<br />

σ/E = 5.3 %/√E +0.36 % (endcap)<br />

jeudi 25 novembre 2010


The ATLAS/CMS detectors at <strong>LHC</strong><br />

116<br />

gaus<br />

σ/E = 5.3 %/√E +0.36 % (endcap)<br />

jeudi 25 novembre 2010


The ATLAS/CMS detectors at <strong>LHC</strong><br />

σ/p T = 4.5-7 % (1 TeV µ), if comb. with TK<br />

116<br />

gaus<br />

σ/E = 5.3 %/√E +0.36 % (endcap)<br />

jeudi 25 novembre 2010


The ATLAS/CMS detectors at <strong>LHC</strong><br />

σ/p T = 4.5-7 % (1 TeV µ), if comb. with TK<br />

116<br />

gaus<br />

σ/E = = 5.3 2.8 %/√E +0.36 ⊕ % (barrel) (endcap)<br />

jeudi 25 novembre 2010


Evolution of the Cross-Sections<br />

Increase in luminosity<br />

and consequent increase<br />

in <strong>LHC</strong> physics reach<br />

during the running in<br />

2010/2011 at 7 TeV<br />

center of mass energy<br />

Initial running,<br />

hadronic<br />

resonances<br />

W, Z<br />

In April 2010, first<br />

W,Z events<br />

In July 2010,<br />

first tt events<br />

tt<br />

Higgs<br />

Expected level at<br />

end of 2011….<br />

12<br />

<strong>LHC</strong> running in<br />

2010/2011 at 7 TeV<br />

center of mass energy<br />

jeudi 25 novembre 2010


Evolution of the Cross-Sections<br />

Increase in luminosity<br />

and consequent increase<br />

in <strong>LHC</strong> physics reach<br />

during the running in<br />

2010/2011 at 7 TeV<br />

center of mass energy<br />

The first goal of <strong>LHC</strong><br />

is to “rediscover the<br />

Standard Model”.<br />

Initial running,<br />

hadronic<br />

resonances<br />

W, Z<br />

In April 2010, first<br />

W,Z events<br />

In July 2010,<br />

first tt events<br />

tt<br />

Higgs<br />

Expected level at<br />

end of 2011….<br />

12<br />

<strong>LHC</strong> running in<br />

2010/2011 at 7 TeV<br />

center of mass energy<br />

jeudi 25 novembre 2010


<strong>LHC</strong> physics Objects<br />

13<br />

jeudi 25 novembre 2010


<strong>Physics</strong> Objects<br />

The CMS detectors are performing very well<br />

Commissioning of <strong>Physics</strong> Objects is continusely progressing<br />

– Charged track reconstruction, electrons, photons, muons and taus<br />

– Jets & MET<br />

• Refine noise filters, cleaning algo’s<br />

• Optimization of jet algorithms for resolution, scale, lepton and γ fakes, etc.<br />

– Commission higher level algo’s<br />

• B tagging<br />

• Particle Flow<br />

Also calibrate with known objects<br />

– Study candles for leptons and photons<br />

• π 0 ,η,..ϒ,ψ,… initially to understand the detector, tracking, object id’s<br />

• Extend to W, Z →leptons<br />

14<br />

jeudi 25 novembre 2010


Particle ID<br />

Φ Κ + Κ − using dE/dX<br />

K 0 s, Λ, φ …<br />

Validate Tracking<br />

Reconstruction<br />

Secondary Vertex Finding<br />

Magnetic Field<br />

Material<br />

Momentum scale<br />

Validation of MC<br />

15<br />

CMS DP 2010-001<br />

jeudi 25 novembre 2010


ECAL energy scale<br />

in the barrel the scale is now set by the π 0 calibration<br />

16<br />

EB ~ 1% ….. EE ~ 3%<br />

jeudi 25 novembre 2010


EM Shower Energy Scale …<br />

Results <strong>from</strong> first 1 million π 0 γγ<br />

E T (cluster)>0.4 GeV,<br />

p T (γγ)>0.9 GeV<br />

± 2%<br />

ϕ<br />

17<br />

η<br />

Uniformity of EM calorimeter response:<br />

<strong>from</strong> π 0 EM energy scale known to better than 2%<br />

over full η range, uniformity in ϕ


Missing transverse energy<br />

in the calorimeters<br />

Sensitive to calorimeter performance<br />

(noise, coherent noise, dead cells,<br />

mis-calibrations, cracks, etc.), and<br />

cosmics and beam-related backgrounds<br />

Calibrated E miss T <strong>from</strong><br />

minimum-bias events<br />

Measured over ~ full calorimeter coverage<br />

(360 0 in φ, |η| < 4.5, ~ 200k cells)<br />

E T<br />

miss spectrum <strong>from</strong> SUSY searches:<br />

events with ≥ 3 high-p T jets, p T (j1) > 70<br />

GeV<br />

Calibrated<br />

SUSYx10<br />

(m~400 GeV)<br />

jeudi 25 novembre 2010


Progress in MET<br />

Excellent resolution and small non-gaussian tails.<br />

Understanding all sources of erratic noise is very important<br />

for cleaning the distributions. MET ready for physics.<br />

19<br />

jeudi 25 novembre 2010


M,'%&,H,D05.-3.<br />

#$%&'()%*'+,(-+).*/%).,-%,*0),12)&-.3/4)256 /7,*0),8*'%&'2&,9/&)+,'*,.,:,;,/?)27$+,*//+.,*/,3/%.*2'-%,@AB &-.*2-C$*-/%.,-%.-&),D2/*/%,E>F#G<br />

H, ++ -.,B/+&ID+'*)&,D2/3)..,*/,3'+-C2'*),*0),&)*)3*/2,*/,*0),$+*-('*),D2)3-.-/%<br />

J(/%B,,C'3KB2/$%&.,*/,.)'230).,7/2,L)?,>05.-3.,<br />

20<br />

!"<br />

jeudi 25 novembre 2010


#$ %!" &%'()*%&%+,(<br />

-'.+$(%/%0,.1+($2$#$ %<br />

3 4$ 5%6$7$!8$9%:;$


W transverse mass<br />

• e or µ with p T >20 GeV, E T<br />

miss<br />

>25GeV<br />

• MC normalised to data<br />

• 119k electron and 135k muon candidates<br />

22<br />

jeudi 25 novembre 2010


#$ %%!" &%'()*%&%+,(<br />

-'.+$(%/%0,.1+($2$#$ %%<br />

!$1331(.,%4(.5+$%/%0,*1+(<br />

6 7$ 8$!9$:%;!?@A<br />

!"#$%!&%/%0,*1+$.B%+,.C.0',.1+$0*.,%*.'<br />

DD$>$-$E% F % 4 G$>$HHD$:%;<br />

I00%3,'+0%$J$%CC.0.%+0K$2$L$M9N<br />

6J3%0,%B$OPQ$L$H99$<br />

-'.+$R'0S5*1)+B2$TUV$W%,(<br />

\\]^$ E_P#$ //G$L$9?"D$+R 3%*$C'&./K$<br />

C1*$DD$>$-E//G$8$HHD$:%;<br />

-'.+$(%/%0,.1+($2$#$ <br />

!$1331(.,%4(.5+$#$%&'<br />

3 7 8$!9$:%;!?@<br />

=3 7 EXV4-OG=$>$HY$:%;<br />

$'()*+"#Z$=# 4# [,J =>H$0&<br />

DD$>$-$E F 4 G$>$HHD$:%;<br />

I00%3,'+0%$J$%CC.0.%+0K2$L$MYN<br />

6J3%0,%B$OPQ$8$H99$<br />

-'.+$R'0S5*1)+B($2$,,


Z mass peaks<br />

• Invariant mass of Z candidates with first pass processing<br />

• MC normalised to data<br />

• 9k electron and 14k muon pair events<br />

24<br />

jeudi 25 novembre 2010


W and Z transverse momentum<br />

• Distributions of p T<br />

W<br />

and p T<br />

Z<br />

25<br />

jeudi 25 novembre 2010


Missing transverse energy<br />

• E T<br />

miss<br />

distribution for events with e or µ with p T >20 GeV<br />

26<br />

jeudi 25 novembre 2010


First W → eν events in CMS, April 2010<br />

W + _ → e + _ + ν e<br />

q<br />

W + _<br />

e + _<br />

q _<br />

27<br />

ν e<br />

jeudi 25 novembre 2010


First W → µν events in CMS, April 2010<br />

W + _ → µ + _ + ν µ<br />

28<br />

jeudi 25 novembre 2010


First Z → e + e - event in CMS, April 2010<br />

q<br />

Z<br />

e + _ e + _<br />

q _<br />

29<br />

jeudi 25 novembre 2010


Z → µ + µ − event in CMS<br />

q<br />

Z<br />

µ + _ µ + _<br />

q _<br />

30<br />

jeudi 25 novembre 2010


W and Z<br />

W → µν<br />

W → eν<br />

← W (35pb -1 )<br />

Z→ ττ<br />

Z→ ττ<br />

↓<br />

Z →µµ<br />

Z →ee<br />

← Z (35 pb -1 )<br />

31<br />

jeudi 25 novembre 2010


Electroweak: Z & W cross sections<br />

Z and W cross sections and ratios<br />

32<br />

jeudi 25 novembre 2010


W + and W - and theory<br />

Clearly Lumi the area<br />

with largest potential<br />

of improvement<br />

Lumi<br />

error<br />

33<br />

jeudi 25 novembre 2010


W and Z cross section with e and µ<br />

W<br />

W +<br />

Z<br />

W -<br />

• Dominant lumi uncertainty (11%) should be reduced by a factor 2 soon.<br />

• Measurement of the W→lν and Z/γ* →ll production cross sections in p-p collisions<br />

• at sqrt(s) = 7 TeV with the ATLAS detector, Submitted to JHEP (11 Oct 2010)<br />

34<br />

jeudi 25 novembre 2010


Z→ee invariant mass<br />

• Calibrate EM scale with constrained fit to the Z lineshape in 28 calorimeter regions.<br />

Typical corrections 2%, consistent with precision of cryostat temperature<br />

measurement in test beam.<br />

• This calibration is being applied in the reprocessing.<br />

Fit to a Breit-Wigner<br />

convolved with<br />

crystal ball function.<br />

Stat errors only.<br />

35<br />

jeudi 25 novembre 2010


Study of the top quark:<br />

one of the main goals of the <strong>LHC</strong><br />

time<br />

top<br />

At nominal energy and luminosity <strong>LHC</strong> will<br />

produce about 1 top-antitop pair second!<br />

36<br />

anti-top<br />

jeudi 25 novembre 2010


<strong>LHC</strong> is a tt factory<br />

Total production cross section<br />

(90%)<br />

+<br />

(10%)<br />

tt production cross section at <strong>LHC</strong>:<br />

~833 pb<br />

tt production cross-section<br />

at Tevatron:<br />

6.7 pb<br />

34<br />

jeudi 25 novembre 2010


<strong>LHC</strong> is a tt factory<br />

Total production cross section<br />

(90%)<br />

+<br />

(10%)<br />

tt production cross section at <strong>LHC</strong>:<br />

~833 pb<br />

tt production cross-section<br />

at Tevatron:<br />

6.7 pb<br />

2 tt events per second !<br />

> 8 millions tt events expected per year<br />

34<br />

jeudi 25 novembre 2010


Lepton+Jets loose selection<br />

• Triggers: µ+X (p T > 9 GeV/c) or e/γ+X (E T<br />

> 15 GeV)<br />

– Ask for exactly 1 prompt, isolated electron<br />

(muon) of good quality<br />

Detected energy around the lepton<br />

Rel.isol. =<br />

€<br />

track<br />

∑ p T<br />

+<br />

ECAL<br />

p T<br />

R 30 GeV/c<br />

≥ 4 jets is typical for ttbar<br />

38<br />

jeudi 25 novembre 2010


Lepton+Jets loose selection<br />

• Triggers: µ+X (p T > 9 GeV/c) or e/γ+X (E T<br />

> 15 GeV)<br />

– Ask for exactly 1 prompt, isolated electron<br />

(muon) of good quality<br />

Rel.isol. =<br />

€<br />

Detected energy around the lepton<br />

track<br />

∑ p T<br />

+<br />

ECAL<br />

p T<br />

R 30 GeV/c<br />

≥ 4 jets is typical for ttbar<br />

p<br />

jet<br />

38<br />

jeudi 25 novembre 2010


Lepton + jets top selection, September 2010<br />

Using the full statistics currently validated (0.84pb -1 ) and requiring at least 1 jet b-<br />

tagged (secondary vertex tagger with ≥2 tracks; high efficiency with ~1% fake rate)<br />

e/µ + jets final states<br />

L=0.84pb -1<br />

tt → bWbW → blvbqq<br />

For N(jets) ≥3 we count 30<br />

signal candidates over a<br />

predicted background of 5.3<br />

39<br />

t-tbar events are observed in CMS at<br />

a rate consistent with NLO cross<br />

section<br />

jeudi 25 novembre 2010


e+Jets candidate event on July 18<br />

Event passes all cuts:<br />

1 high-momentum electron<br />

significant MET ≈ 44 GeV<br />

4 high-p T jets,<br />

two of which with good/clear b-tags<br />

(with reconstructed 2 nd ary vertices)<br />

m T (W) ≈ 77 GeV/c 2<br />

Mass of 2 untagged jets ≈ 102 GeV/c 2<br />

m(jjj) ≈ 208, 232 GeV/c 2<br />

(for the two 3-jet combinations)<br />

40<br />

jeudi 25 novembre 2010


µ+Jets candidate event on July 14<br />

Event passes all cuts<br />

of full selection<br />

1 high-momentum muon<br />

significant MET > 100<br />

m T (W) = 104 GeV/c 2<br />

4 high-p T jets,<br />

one of which with good b-tag<br />

µ<br />

reconst. top mass around 210 GeV/<br />

c 2<br />

masses of 2 untagged jets (3 possible<br />

comb.): 104, 105, 151 GeV/c 2<br />

41<br />

µ<br />

jeudi 25 novembre 2010


eμ candidate<br />

DL2<br />

p T (tracks) > 1 GeV<br />

jeudi 25 novembre 2010<br />

p T (μ)= 48 GeV p T (e)=23 GeV<br />

E T<br />

miss=77 GeV, H T =196 GeV<br />

p T (b-tagged jet) = 57 GeV<br />

Secondary vertex:<br />

-- distance <strong>from</strong> primary: 3.8 mm<br />

-- 3 tracks p T > 1 GeV<br />

43


Dileptonic channels: ee, µµ, eµ + X<br />

• Triggers: µ+X (p T > 9 GeV/c) or e/γ+X (E T >15<br />

GeV)<br />

• 2 isolated, prompt, oppositely charged leptons<br />

(l = e,µ) of good quality<br />

p T (l) > 20 GeV/c<br />

|η µ | < 2.5 , |η e | < 2.4<br />

Relative isolation 30 (20) GeV (in eµ+X)<br />

• Z-boson veto:<br />

ν<br />

76 < M ee,µµ < 106 GeV/c 2<br />

• Count additional jets:<br />

anti-k T jets, R = 0.5<br />

using calorimeter⊕tracking info<br />

|η| < 2.4, p T > 30 GeV/c<br />

l -<br />

b-jet<br />

€<br />

b-jet<br />

W -<br />

b<br />

t<br />

t<br />

b<br />

W +<br />

ν<br />

l +<br />

p<br />

≥ 2 jets typical for ttbar<br />

€<br />

43<br />

jeudi 25 novembre 2010


The “golden” µµ+jets candidate July 18<br />

44<br />

jeudi 25 novembre 2010


µµ +Jets Candidate Event<br />

Event passes all cuts of full selectio<br />

2 muons with opposite charge<br />

2 jets, both w/ good/clear b-tags<br />

(and secondary vertices!)<br />

significant MET (>50 GeV)<br />

2 nd ary- vertex<br />

6σ ellipse<br />

m(µµ) = 26 GeV/c 2<br />

y [cm]<br />

Preliminarily reconstr. mass is in the<br />

range 160–220 GeV/c 2 (consistent with<br />

m top )<br />

x [cm]<br />

45<br />

jeudi 25 novembre 2010


µµ +Jets Candidate … cont’d<br />

Multiple primary vertices → multiple<br />

pp collisions (“pile-up”). Jets &<br />

muons originate <strong>from</strong> same vertex.<br />

y [cm]<br />

0.84 pb -1 of data.<br />

46<br />

z [cm]<br />

Very clean candidate sitting in a region where we expect very<br />

little background! The event appeared in the fist 0.25 pb -1 of<br />

data analyzed for ICHEP (together with other 8 candidates<br />

lepton+jets+b-tag). Here we present updated <strong>results</strong> relative to<br />

jeudi 25 novembre 2010


Di-lepton + jets top selection, ~1pb-1, Sept. 2010<br />

• Full selection applied: Z-bosonVeto, |M(ll)-M(Z)| >15 GeV<br />

• MET > 30 (20) GeV in ee,µµ, (eµ); N(jets) ≥ 2<br />

ee/eµ/µµ<br />

L=0.84pb -1<br />

ee/eµ/µµ<br />

L=0.84pb -1<br />

4 ttbar candidates (1eµ, 1ee, 2µµ) over a negligible background.<br />

Top signal at <strong>LHC</strong> established.<br />

47<br />

jeudi 25 novembre 2010


µµ +Jets Candidate … cont’d<br />

Multiple primary vertices →<br />

multiple pp collisions (“pile-up”)<br />

Jets & muons originate <strong>from</strong><br />

same primary vertex<br />

y [cm]<br />

Very clean candidate sitting in a<br />

region where we expect very<br />

little background!<br />

z [cm]<br />

48<br />

jeudi 25 novembre 2010


!"#$%&'()*+,-',.'/<br />

-./&0&,#12$#&03405670!$89%)3:;'000<br />

1,0'$#$"')1?@*+&#,0<br />

!$89%)3:;',0$)&0#$9&;04)320A3;#&0<br />

6$)=3B0A6CDEF0$;'0GEHIJD<br />

K&#,0$)&0!"#$%%&'0!L0#/&0MNO0<br />

$=%3)1#/2P<br />

&*+&#,<br />

*+&#,<br />

49<br />

jeudi 25 novembre 2010


Measurement of top cross section<br />

• Complete set of ingredients to investigate production of ttbar, which is the<br />

next step in verifying the SM at the <strong>LHC</strong>:<br />

• e, µ, E T<br />

miss<br />

, jets, b-tag<br />

• Assume all tops decay to Wb: event topology<br />

then depends on the two W decays.<br />

• Of interest:<br />

• lepton (e or µ),<br />

E T<br />

miss<br />

, jjbb (37.9%)<br />

• dilepton (ee, µµ or eµ),<br />

E T<br />

miss<br />

, bb (6.46%)<br />

• Data-driven methods to control QCD and W+jets backgrounds<br />

• Counting experiment, with simultaneous likelihood fit to all channels to<br />

derive the combined cross section.<br />

50<br />

jeudi 25 novembre 2010


• Combining all channels,<br />

Top production cross section<br />

• Significance of ~4.8σ w.r.t. background only hypothesis.<br />

51<br />

jeudi 25 novembre 2010


Top<br />

Full selection applied: Z-Veto, |M(ll)-M(Z)|>15 GeV<br />

MET >30 (20) GeV in ee,µµ, (eµ); N(jets)≥2<br />

σ(pp → t t) ¯ = 194 ± 72(stat.) ± 24(syst.) ± 21(lumi.) pb<br />

L=3.1pb -1<br />

ee/eµ/µµ<br />

52<br />

Accepted by PL-B arXiv:1010.5994<br />

jeudi 25 novembre 2010


Conclusions<br />

• The full ATLAS & CMS Detector were operational for 1 st <strong>LHC</strong> beams in 2008. Cosmic Data taking<br />

campaigns in 2008 and 2009 was used for commissioning.<br />

• Data taking with <strong>LHC</strong> Pilot runs in December 2009 was a great success Performances corresponds<br />

to expectations. Analyses were performed within hours, O(day)’s !<br />

• The experiments have been running in a “minimum bias” mode with <strong>LHC</strong> collisions at √s = 7 TeV<br />

for ~ one month … First EWK Boson candidates were observed … Beam squeezing brought a L<br />

increase in May !<br />

• Di-boson observation and first significant constraints (or hints) on the SM Higgs boson are<br />

expectedend of 2011<br />

• The experiment has a some discovery reach beyond the SM already in 2010-2011 (e.g. scalar sector<br />

at high tan β, sparticles, TeV Resonances ....)<br />

Finally…<br />

if you want to learn more about the possible physics with <strong>LHC</strong><br />

look between others to Beate Heinemanne lectures<br />

53<br />

http://www-atlas.lbl.gov/~heinemann/homepage/publictalk.html<br />

jeudi 25 novembre 2010


• m µµ 94 GeV, E T<br />

miss<br />

= 161 GeV<br />

Candidate for ZZ→µµνν<br />

54<br />

jeudi 25 novembre 2010


First CMS ZZ4µ Event<br />

Only tracks with pT>1 GeV are displayed<br />

jeudi 25 novembre 2010


First CMS ZZ4µ Event<br />

56<br />

jeudi 25 novembre 2010


Heavy Ions: e + e - Z candidate<br />

M e+e- =96 GeV<br />

( E e not corrected for underlying event)<br />

From Tizianoʼs talk<br />

57<br />

jeudi 25 novembre 2010


Backup<br />

58<br />

jeudi 25 novembre 2010


Multijet event in CMS in first run at 7 TeV<br />

59<br />

jeudi 25 novembre 2010


Jets<br />

• Measurement of inclusive jet and dijet cross sections in proton-proton<br />

• collisions at 7 TeV centre-of-mass energy with the ATLAS detector<br />

• Accepted by EPJC arXiv:1009.5908<br />

60<br />

jeudi 25 novembre 2010


Dijet mass & angular distributions: 3pb -1<br />

0.50 < m(q*) < 1.53 TeV @ 95% CL<br />

Quark contact interactions with<br />

scale Λ < 3.4 TeV @ 95% CL<br />

• Search for New Particles in Two-Jet Final States in 7 TeV Proton-Proton Collisions with the ATLAS Detector at<br />

the <strong>LHC</strong>, Phys. Rev. Lett. 105, 161801 with 315 nb -1<br />

• Search for Quark Contact Interactions in Dijet Angular Distributions in in 7 TeV Proton-Proton<br />

Collisions with the ATLAS Detector at the <strong>LHC</strong>, Accepted by PLB<br />

61<br />

jeudi 25 novembre 2010


Inclusive jets<br />

• Combine a range<br />

• of triggers to cover<br />

• the full p T spectrum<br />

• In all cases, jets<br />

• corrected to<br />

• hadronic scale<br />

• (JES uncertainty 7%)<br />

• Jet p T >60GeV<br />

• Highest p T jet 1.3 TeV<br />

• Shape comparison with MC PYTHIA (LO + parton shower)<br />

62<br />

jeudi 25 novembre 2010


Highest pT jet event<br />

p T jet1=1.3 TeV (also<br />

p T jet2=1.2 TeV, m jj =2.6 TeV)<br />

63<br />

jeudi 25 novembre 2010


Dijets and multi jets<br />

• Leading jet p T >60 GeV,<br />

• Subleading p T >30 GeV<br />

• Highest dijet mass 3.7 TeV<br />

Count jets with p T >60 GeV<br />

One event with 8 jets<br />

64<br />

jeudi 25 novembre 2010


Highest mass di-jet<br />

p T jet1=670 GeV,<br />

p T jet2=610 GeV, m jj =3.7 TeV<br />

65<br />

jeudi 25 novembre 2010


8-jet event<br />

8 jets with p T >60 GeV<br />

66<br />

jeudi 25 novembre 2010


Jet measurement<br />

! Jets are the experimental signature of<br />

quarks and gluons, observed as highly<br />

collimated sprays of particles.<br />

! A jet algorithm is a set of mathematical<br />

rules that reconstruct unambiguously the<br />

properties of a jet.<br />

- Fixed cone algorithms.<br />

- Successive recombination algorithms.<br />

! Different inputs to the jet algorithm<br />

lead to different types of jets:<br />

- Calorimeter energy depositions.<br />

- Tracks.<br />

- Particle or energy flow objects.<br />

- Simulated particles.<br />

1<br />

Jet 1 Jet 2<br />

0<br />

-1<br />

!<br />

E T<br />

CMS<br />

Calorimeter<br />

Simulation<br />

"<br />

67<br />

oriond/QCD, 18 March 2009<br />

jeudi 25 novembre 2010<br />

K. Kousouris<br />

4


Possible early discovery:<br />

anomalies in high E T QCD jets, di-jet masses<br />

• 1 fb -1 : jets up to 3-3.5 TeV, di-jet masses up to 6 TeV: new territory!<br />

• Sensitive to substructure, contact interactions, high mass resonances<br />

10 8<br />

CMS<br />

jeudi 25 novembre 2010


Possible early discovery:<br />

anomalies in high E T QCD jets, di-jet masses<br />

• 1 fb -1 : jets up to 3-3.5 TeV, di-jet masses up to 6 TeV: new territory!<br />

• Sensitive to substructure, contact interactions, high mass resonances<br />

Jet cross section<br />

Tevatron<br />

10 8<br />

<strong>LHC</strong><br />

CMS<br />

E T (TeV)<br />

jeudi 25 novembre 2010


Possible early discovery:<br />

anomalies in high E T QCD jets, di-jet masses<br />

• 1 fb -1 : jets up to 3-3.5 TeV, di-jet masses up to 6 TeV: new territory!<br />

• Sensitive to substructure, contact interactions, high mass resonances<br />

Jet cross section<br />

Tevatron<br />

10 8<br />

<strong>LHC</strong><br />

CMS<br />

E T (TeV)<br />

jeudi 25 novembre 2010


Possible early discovery:<br />

anomalies in high E T QCD jets, di-jet masses<br />

• 1 fb -1 : jets up to 3-3.5 TeV, di-jet masses up to 6 TeV: new territory!<br />

• Sensitive to substructure, contact interactions, high mass resonances<br />

Jet cross section<br />

Tevatron<br />

10 8<br />

<strong>LHC</strong><br />

CMS<br />

E T (TeV)<br />

Challenges<br />

•Jet energy scale,<br />

•Parton density function (PDF)<br />

•underlying event, trigger,<br />

•scale variation, hadronization<br />

jeudi 25 novembre 2010


Jets and Missing E T<br />

The highest mass dijet event in the first 120nb -1 of data<br />

69<br />

jeudi 25 novembre 2010


Inclusive jet cross section<br />

Inclusive jet p T spectra have ben produced for all three jet approaches used in CMS.<br />

All <strong>results</strong> are in good agreement with NLO theory.<br />

With the new Particle Flow approach the distributions can be extended to a low p T value<br />

of 18 GeV.<br />

70<br />

jeudi 25 novembre 2010


Jets<br />

Event with 6 jets with<br />

p T in the range 30-70 GeV<br />

Uncalibrated<br />

energies<br />

17<br />

jeudi 25 novembre 2010


Jets<br />

Event with 6 jets with<br />

p T in the range 30-70 GeV<br />

Uncalibrated<br />

energies<br />

Leading jet p T > 80 GeV<br />

Other jets p T > 40 GeV<br />

17<br />

jeudi 25 novembre 2010


Observed event with hardest jet<br />

p T (jet) > 1.1 TeV<br />

Leading jet p T > 80 GeV<br />

Second leading p T > 40 GeV<br />

p T (j 1 )= 1120 GeV<br />

p T (j 2 )= 480 GeV<br />

p T (j 3 )= 155 GeV<br />

p T (j 4 )= 95 GeV<br />

Event display shows<br />

uncalibrated energies<br />

22<br />

jeudi 25 novembre 2010


Observed event with hardest jet<br />

p T (jet) > 1.1 TeV<br />

Leading jet p T > 80 GeV<br />

Second leading p T > 40 GeV<br />

p T (j 1 )= 1120 GeV<br />

p T (j 2 )= 480 GeV<br />

p T (j 3 )= 155 GeV<br />

p T (j 4 )= 95 GeV<br />

Event display shows<br />

uncalibrated energies<br />

22<br />

jeudi 25 novembre 2010


p T (j 1 )=420 GeV<br />

p T (j 2 )=320 GeV<br />

Event display shows<br />

uncalibrated energies<br />

1<br />

jeudi 25 novembre 2010


Highest-mass di-jet<br />

event observed so far:<br />

M jj = 2.55 TeV<br />

p T (j 1 )=420 GeV<br />

p T (j 2 )=320 GeV<br />

Event display shows<br />

uncalibrated energies<br />

1<br />

jeudi 25 novembre 2010


!"" #$%$&'()'*+',-(./0&$()'<br />

>-K$@L7;;MCNOP7<br />

1 234/$-3%3)&'()',56"78'9'7:;'


Beginning to explore new territory<br />

Search for narrow resonances in di-jet final states<br />

We have measured, in 0.84pb -1 of data, the dijet mass differential cross section for<br />

|η 1 ,η 2 | < 2.5 and |Δη 2 | < 1.3. The distribution is sensitive to the coupling of any new<br />

massive object to quarks and gluons.<br />

L= 0.84pb -1<br />

95% CL mass limits for String resonances > 2.1TeV; Excited quarks >1.14TeV;<br />

Axigluons/Colorons >1.06TeV; E 6 Diquarks > 0.58 TeV.<br />

75<br />

jeudi 25 novembre 2010


Inclusive jet cross-section<br />

p T<br />

j > 60 GeV, |y j |< 2.8<br />

Measured jets corrected to<br />

particle-level using partonshower<br />

MC (Pythia, Herwig):<br />

justified by detailed comparison<br />

studies and good agreement with<br />

data<br />

NLOJET++<br />

Results compared to NLO QCD<br />

prediction after corrections for<br />

hadronization and underlying event<br />

Theoretical uncertainty: ~20%<br />

(up to 40% at large |y j |)<br />

<strong>from</strong> variation of PDF, α s , scale (μ R , μ F )<br />

Experimental uncertainty: ~30-40%<br />

dominated by Jet E-scale<br />

(known to ~7%)<br />

Luminosity (11%) not included<br />

jeudi 25 novembre 2010<br />

Good agreement data-NLO QCD over 5 orders of magnitude<br />

24


Single lepton channel<br />

• 1 e or µ with p T >20 GeV, E<br />

miss T >20 GeV, E<br />

miss T +m T (W)>60 GeV<br />

• N jets with p T >25 GeV, with no b-tag requirement or at least one b-tag<br />

• Signal defined to have 4 or more jets, and at least 1 b-tag<br />

77<br />

jeudi 25 novembre 2010


Cross check of 3-jet mass<br />

• Invariant mass of the highest p T 3-jet combination<br />

• for tagged 3 and 4 jet events used in cross-check<br />

• analyses. Agrees with top hypothesis.<br />

78<br />

jeudi 25 novembre 2010


Dilepton analysis<br />

• ee, (µµ): require E T<br />

miss<br />

>40 (30) GeV, veto m Z region.<br />

• eµ: scalar sum of transverse energy H T >150 GeV<br />

79<br />

jeudi 25 novembre 2010


Dilepton events<br />

• Count events with two or more jets: 2 ee, 3 µµ, 4 eµ<br />

• b-tag is not used in the analysis, but is a cross-check<br />

80<br />

jeudi 25 novembre 2010

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!