06.12.2012 Views

Intrapopulation Variation in the Standard ... - Roberto Nespolo

Intrapopulation Variation in the Standard ... - Roberto Nespolo

Intrapopulation Variation in the Standard ... - Roberto Nespolo

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Intrapopulation</strong> <strong>Variation</strong> <strong>in</strong> <strong>the</strong> <strong>Standard</strong> Metabolism of a Terrestrial<br />

Mollusc: Repeatability of <strong>the</strong> CO2 Production <strong>in</strong> <strong>the</strong><br />

Land Snail Helix aspersa<br />

Paul<strong>in</strong>a Artacho*<br />

<strong>Roberto</strong> F. <strong>Nespolo</strong><br />

Instituto de Ecología y Evolución, Universidad Austral<br />

de Chile, Casilla 567, Valdivia, Chile<br />

Accepted 5/20/2008; Electronically Published 1/30/2009<br />

ABSTRACT<br />

Dur<strong>in</strong>g <strong>the</strong> past 2 decades, <strong>in</strong>terest <strong>in</strong> <strong>in</strong>ter<strong>in</strong>dividual variation<br />

<strong>in</strong> performance traits has <strong>in</strong>creased considerably among physiological<br />

ecologists. A great deal of this <strong>in</strong>terest has focused on<br />

repeatability studies of physiological traits. One of <strong>the</strong> most<br />

important physiological traits <strong>in</strong> animals is whole-animal metabolism<br />

because it reflects several aspects of an organism’s<br />

energy budget. However, <strong>in</strong> order to respond to natural selection<br />

(ultimately), this variable should be consistent over most<br />

of an <strong>in</strong>dividual’s life history. We studied energy metabolism<br />

(CO2 production, ˙Vco2) <strong>in</strong> two of <strong>the</strong> sou<strong>the</strong>rnmost populations<br />

of Helix aspersa land snails, a cosmopolitan species that<br />

colonized most of <strong>the</strong> human-<strong>in</strong>habited world. Our results<br />

show that H. aspersa exhibits a relatively lower than expected<br />

˙Vco2 compared with that described <strong>in</strong> <strong>the</strong> few o<strong>the</strong>r published<br />

studies on this species and that <strong>the</strong>re is no significant difference<br />

between populations (Valdivia ˙Vco2 p 0.21 � 0.01 mL CO2 h�1 ; Concepción mL CO2 h�1 ˙Vco2 p 0.20 � 0.01<br />

; mean body<br />

mass p 4.2 g). Repeatability of ˙Vco2 <strong>in</strong> land snails was significant<br />

and was not statistically different <strong>in</strong> both populations<br />

(Valdivia: t p 0.42; Concepción: t p 0.31).<br />

These results sug-<br />

gest that energy metabolism is repeatable and can eventually<br />

respond to selection <strong>in</strong> land snails. We argue that land snails<br />

are good, though underutilized, models for evolutionary physiology<br />

studies.<br />

Introduction<br />

In <strong>the</strong> past 2 decades, <strong>in</strong>terest <strong>in</strong> <strong>in</strong>ter<strong>in</strong>dividual variation <strong>in</strong><br />

performance-related traits has <strong>in</strong>creased greatly (e.g., Hayes et<br />

al. 1992; Konarzewski and Diamond 1995; Chappell et al. 1996,<br />

* Correspond<strong>in</strong>g author; e-mail: paul<strong>in</strong>aartacho@gmail.com.<br />

Physiological and Biochemical Zoology 82(2):181–189. 2009. � 2009 by The<br />

University of Chicago. All rights reserved. 1522-2152/2009/8202-8006$15.00<br />

DOI: 10.1086/590222<br />

181<br />

1999; Koteja 1996; Hayes and Jenk<strong>in</strong>s 1997; Dohm et al. 2001;<br />

<strong>Nespolo</strong> et al. 2003). This <strong>in</strong>terest is due to <strong>the</strong> follow<strong>in</strong>g two<br />

factors: (1) <strong>in</strong>ter<strong>in</strong>dividual variation represents <strong>the</strong> raw material<br />

with which natural selection can act and (2) <strong>in</strong>ter<strong>in</strong>dividual<br />

variation represents <strong>the</strong> first—and certa<strong>in</strong>ly <strong>the</strong> most straightforward—step<br />

toward address<strong>in</strong>g <strong>the</strong> potential for response to<br />

selection <strong>in</strong> a trait. In evolutionary terms, it is of special importance<br />

to dist<strong>in</strong>guish between <strong>in</strong>ter<strong>in</strong>dividual variation and<br />

<strong>in</strong>tra<strong>in</strong>dividual variation. This dist<strong>in</strong>ction is summarized by<br />

repeatability, that is, <strong>the</strong> consistent variation <strong>in</strong> a trait across<br />

at least some part of <strong>the</strong> <strong>in</strong>dividual’s life (Hayes and Jenk<strong>in</strong>s<br />

1997). Although it is well known that repeatability is not <strong>the</strong><br />

sole condition for a trait to evolve by natural selection (because<br />

it is not <strong>in</strong>formative of any aspect of <strong>the</strong> relationship of <strong>the</strong><br />

trait with fitness), if a trait is not repeatable, it is unlikely that<br />

it will change <strong>in</strong> response to selection (Hayes and Jenk<strong>in</strong>s 1997).<br />

One of <strong>the</strong> most common measures of repeatability is <strong>the</strong><br />

2 2 2 2<br />

<strong>in</strong>traclass correlation coefficient, t p j A/(jA�j e) , where jA<br />

is<br />

2<br />

<strong>the</strong> between-<strong>in</strong>dividual component of variance and je is <strong>the</strong><br />

residual variance component when multiple measurements are<br />

performed <strong>in</strong> a sample of <strong>in</strong>dividuals (Falconer and Mackay<br />

1996). This permits <strong>the</strong> separation of two important sources<br />

of variation. The first is with<strong>in</strong>-<strong>in</strong>dividual variance, which reflects<br />

<strong>the</strong> effects of temporary differences between successive<br />

tests and is sensitive to <strong>the</strong> precision of <strong>the</strong> measurement. The<br />

second is between-<strong>in</strong>dividual variance, which is <strong>the</strong> result of<br />

<strong>the</strong> external environment that permanently affect <strong>in</strong>dividuals<br />

plus genetic differences (Falconer and Mackay 1996). Thus,<br />

greater between- than with<strong>in</strong>-<strong>in</strong>dividual variation <strong>in</strong>dicates that<br />

<strong>the</strong> trait is consistent with<strong>in</strong> <strong>in</strong>dividuals, and <strong>in</strong> turn, it would<br />

be able to respond to selection.<br />

In general, morphological attributes such as body mass are<br />

highly consistent over time (Falconer and MacKay 1996) because<br />

<strong>the</strong>y usually exhibit low residual variance. On <strong>the</strong> o<strong>the</strong>r<br />

hand, physiological and behavioral traits show considerable variation<br />

both between <strong>in</strong>dividuals (e.g., Bech et al. 1999; Rogowitz<br />

and Chappell 2000; Angilletta 2001; L<strong>in</strong>dström and Klaassen<br />

2003; Lardies et al. 2004; Terblanche et al. 2004) and with<strong>in</strong><br />

<strong>in</strong>dividuals (L<strong>in</strong>dström and Rosen 2002; L<strong>in</strong>dström and Klaassen<br />

2003; Marais and Chown 2003). Among physiological traits,<br />

metabolic variables derived from respirometric records have<br />

been copiously analyzed, <strong>in</strong>dicat<strong>in</strong>g, for <strong>in</strong>stance, significant<br />

repeatability <strong>in</strong> <strong>the</strong> basal metabolic rate of endo<strong>the</strong>rms (Bech<br />

et al. 1999; Horak et al. 2002; Tieleman et al. 2003; Ksiazek et<br />

al. 2004; Labocha et al. 2004; Rønn<strong>in</strong>g et al. 2005; Sadowska<br />

et al. 2005) and <strong>in</strong> <strong>the</strong> standard metabolic rate (SMR) <strong>in</strong> ecto<strong>the</strong>rmic<br />

vertebrates (Garland and Bennett 1990; McCarthy


182 P. Artacho and R. F. <strong>Nespolo</strong><br />

2000; Virani and Rees 2000). However, <strong>the</strong> repeatability of metabolism<br />

<strong>in</strong> <strong>in</strong>vertebrates is less well known, and most of this<br />

work has focused on <strong>in</strong>sects (Chappell and Rogowitz 2000;<br />

Marais and Chown 2003; <strong>Nespolo</strong> et al. 2003; Terblanche et al.<br />

2004; <strong>Nespolo</strong> and Franco 2007).<br />

Some of <strong>the</strong> most environmentally constra<strong>in</strong>ed terrestrial<br />

<strong>in</strong>vertebrates are pulmonate snails. Terrestrial snails lose water<br />

easily (e.g., Dallas et al. 1991; Arad et al. 1998), so <strong>the</strong>ir activity<br />

periods, and <strong>the</strong>refore <strong>the</strong>ir capacity for reproduction and dispersal,<br />

are restricted by environmental factors such as temperature,<br />

humidity, and water availability (Guppy and Wi<strong>the</strong>rs<br />

1999; Arad et al. 2001; Cook 2001; Storey 2002). Moreover,<br />

terrestrial snails have high costs of transport, and this fur<strong>the</strong>r<br />

restricts <strong>the</strong>ir dispersal ability (Denny 1980; Davies et al. 1990;<br />

Kideys and Hartnoll 1991). Despite <strong>the</strong>se characteristics, and<br />

because of <strong>the</strong>ir association with humans, land snails have colonized<br />

a wide range of environments, from arid to semiarid<br />

regions and tropical areas (e.g., Arad et al. 1992; Zot<strong>in</strong> and<br />

Ozernyuk 2002; Giokas et al. 2005), show<strong>in</strong>g morphological,<br />

behavioral, and physiological adaptations to a range of environmental<br />

conditions (e.g., epiphragm formation, site selection,<br />

and estivation; Wi<strong>the</strong>rs et al. 1997; Giokas et al. 2005; Michaelidis<br />

et al. 2007). Given that <strong>the</strong>se mechanisms entail energetic<br />

costs, it is reasonable to expect that <strong>the</strong>y will <strong>in</strong>fluence<br />

<strong>the</strong> overall energy budget (and probably also fitness); however,<br />

very few studies have addressed <strong>the</strong> potential association <strong>in</strong><br />

<strong>the</strong>se (e.g., Herreid 1977; Ste<strong>in</strong>berger et al. 1982; Prior 1985;<br />

Barnhart and McMahon 1987; Marshall and McQuaid 1991;<br />

Zot<strong>in</strong> and Ozernyuk 2002).<br />

Among terrestrial gastropods, Helix aspersa (Gastropoda,<br />

Pulmonata) is one of <strong>the</strong> most successful species based on its<br />

wide distribution range. Native to North Africa, s<strong>in</strong>ce <strong>the</strong> Holocene,<br />

it has colonized a large range of human-perturbed environments<br />

across northwest Europe (agricultural and suburban<br />

areas and domestic gardens) and has been dispersed ma<strong>in</strong>ly<br />

by human movements (Guiller et al. 2001). Later, with <strong>the</strong><br />

development of human transportation, this land snail was <strong>in</strong>troduced<br />

<strong>in</strong> <strong>the</strong> majority of <strong>the</strong> temperate, Mediterranean, and<br />

subtropical areas such as <strong>the</strong> Atlantic Islands, South Africa,<br />

Haiti, New Zealand, Australia, Mexico, Chile, and Argent<strong>in</strong>a.<br />

In many places (e.g., Australia and California), this species has<br />

achieved pest status. A handful of physiological studies have<br />

Figure 1. Records of CO2 production <strong>in</strong> Helix aspersa. A, Five representative cont<strong>in</strong>uous records. The first and seventh records represent<br />

<strong>the</strong> basel<strong>in</strong>es. B, One like-discont<strong>in</strong>uous ˙Vco2 record (see “Results”). The first and third records correspond to <strong>the</strong> basel<strong>in</strong>es. All records were<br />

carried out at 20�C. Dur<strong>in</strong>g <strong>the</strong> measurements, <strong>the</strong> <strong>in</strong>dividuals rema<strong>in</strong>ed without movement, accord<strong>in</strong>g visual <strong>in</strong>spection.<br />

˙Vco 2


Repeatability of <strong>Standard</strong> Metabolism <strong>in</strong> <strong>the</strong> Land Snail 183<br />

Table 1: Means (�SE) and regression statistics between metabolic variables and M b<br />

Variable (mL h�1 ˙Vco2 ) Mb (g) Slope Intercept r2 N<br />

Concepción:<br />

˙Vco2aver ˙Vco2m<strong>in</strong> ˙Vco2max Valdivia:<br />

˙Vco2aver ˙Vco2m<strong>in</strong> ˙Vco2max .21 � .01<br />

.08 � .01<br />

.33 � .01<br />

.20 � .01<br />

.10 � .01<br />

.31 � .02<br />

4.10 � .12<br />

4.10 � .12<br />

4.10 � .12<br />

4.24 � .15<br />

4.24 � .15<br />

4.24 � .15<br />

.08 � .03*<br />

.06 � .03*<br />

.09 � .05 (NS)<br />

.06 � .05 (NS)<br />

.03 � .04 (NS)<br />

.1 � .06 (NS)<br />

.04 � .02 (NS)<br />

�.004 � .02 (NS)<br />

.07 � .03 (NS)<br />

.06 � .03 (NS)<br />

.02 � .02 (NS)<br />

.05 � .04 (NS)<br />

.14*<br />

.10*<br />

.08 (NS)<br />

.05 (NS)<br />

.02 (NS)<br />

.09 (NS)<br />

44<br />

44<br />

44<br />

33<br />

33<br />

33<br />

Note. L<strong>in</strong>ear regression statistics were performed with <strong>the</strong> log 10-transformed variables. NS p not significant.<br />

* .<br />

P ! 0.05<br />

been performed on H. aspersa, ma<strong>in</strong>ly <strong>in</strong> metabolic pathways<br />

related to hibernation (Brook and Storey 1997) and estivation<br />

(Giokas et al. 2005; Michaelidis et al. 2007). However, to our<br />

knowledge, <strong>the</strong>re are no studies deal<strong>in</strong>g with <strong>the</strong> evolutionary<br />

significance of <strong>the</strong>se mechanisms or o<strong>the</strong>rs related to <strong>the</strong> physiology<br />

of this species.<br />

In this study, we estimated <strong>the</strong> repeatability of SMR, <strong>the</strong><br />

obligatory energetic cost of ma<strong>in</strong>tenance <strong>in</strong> ecto<strong>the</strong>rms, <strong>in</strong> two<br />

populations of H. aspersa. SMR has generally attracted <strong>the</strong> attention<br />

of physiological ecologists because it has an impact on<br />

<strong>the</strong> amount of energy available for activity and production<br />

(Steyermark 2002) and could contribute to <strong>the</strong> variation <strong>in</strong><br />

o<strong>the</strong>r life-history traits across a range of environments (Niewiarowski<br />

and Waldschmidt 1992; Chown and Gaston 1999;<br />

Angilletta 2001). Although <strong>the</strong>re is evidence of an association<br />

between energy metabolism and fitness <strong>in</strong> some vertebrates<br />

(Hayes and O’Connor 1999; Jackson et al. 2001) and <strong>in</strong>sects<br />

(Crnokrak and Roff 2002), <strong>the</strong> demonstration of significant<br />

repeatability is a prelim<strong>in</strong>ary step <strong>in</strong> <strong>the</strong> analysis of selective<br />

significance. Despite <strong>the</strong> relative abundance of repeatability<br />

studies <strong>in</strong> metabolic rate, we are not aware of any study <strong>in</strong><br />

taxonomic groups o<strong>the</strong>r than vertebrates and <strong>in</strong>sects (<strong>Nespolo</strong><br />

and Franco 2007).<br />

Material and Methods<br />

Animals and Sampl<strong>in</strong>g<br />

Forty-five juvenile Helix aspersa were collected under plants<br />

and rocks <strong>in</strong> public parks <strong>in</strong> Concepción (36�47�S, 72�38�W)<br />

and Valdivia (39�49�S, 73�15�W). These animals were of approximately<br />

<strong>the</strong> same body mass ( ¯x � SD; Valdivia: 4.24 �<br />

0.85 g; Concepción: 4.10 � 0.84 g) and were housed <strong>in</strong> plastic<br />

cages filled with 10 cm humid soil. Snails were fed with corn<br />

flour and ma<strong>in</strong>ta<strong>in</strong>ed at 20�C with a 12L : 12D photoperiod for<br />

1 mo before measurement. Relative humidity was ma<strong>in</strong>ta<strong>in</strong>ed<br />

at high levels by spr<strong>in</strong>kl<strong>in</strong>g <strong>the</strong> <strong>in</strong>terior of <strong>the</strong> boxes with water<br />

every day.<br />

Respirometry<br />

CO2 production was evaluated by open-flow respirometry us<strong>in</strong>g<br />

a LiCor 6262 CO2 analyzer (LI-COR Bioscience, L<strong>in</strong>coln, NE),<br />

capable of resolv<strong>in</strong>g differences of 1 ppm CO 2 <strong>in</strong> air, connected<br />

to a computerized data-acquisition system (Expe Data software,<br />

Sable Systems) similar to that used by Lighton and Turner<br />

(2004). The analyzer was calibrated periodically aga<strong>in</strong>st two<br />

k<strong>in</strong>ds of gas (CO 2-free air and a commercial mix of 291 ppm<br />

of CO 2). A Sable System eight-channel multiplexer was used<br />

for perform<strong>in</strong>g <strong>the</strong> measurements, us<strong>in</strong>g five chambers with<br />

<strong>in</strong>dividual snails and three chambers for basel<strong>in</strong>e measurements<br />

(before and after all records), which allowed us to correct for<br />

possible drift (although it was almost nonexistent between basel<strong>in</strong>es<br />

and calibrations). The arrangement of <strong>the</strong> respirometry<br />

system was as follows: air at 120 mL m<strong>in</strong> �1 was pumped sequentially<br />

through a Drierite–soda lime–Drierite column, a<br />

flow meter that ma<strong>in</strong>ta<strong>in</strong>ed flow rate with<strong>in</strong> �1% of <strong>the</strong> desired<br />

rate, and a transparent respirometry chamber with a volume<br />

of 60 mL. CO 2-free air flowed through all chambers while one<br />

of <strong>the</strong>m was measured. Animal activity was visually monitored<br />

for <strong>in</strong>tervals of ca. 10 m<strong>in</strong>, and measurements lasted 30 m<strong>in</strong>.<br />

Activity was uncommon, and data for active animals were discarded.<br />

In order to achieve a postabsortive state, metabolic rate<br />

was measured <strong>in</strong> <strong>in</strong>dividuals deprived of food for 18 h (Lighton<br />

1989; Bradley et al. 2003). We believe this time was enough to<br />

atta<strong>in</strong> a postabsortive state based on prelim<strong>in</strong>ary measurements<br />

of mean retention time <strong>in</strong> this species (P. Artacho et al., unpublished<br />

manuscript). All metabolic trials were performed<br />

dur<strong>in</strong>g <strong>the</strong> day, when land snails are <strong>in</strong>active, which corresponds<br />

to <strong>the</strong> rest phase <strong>in</strong> this species (personal observation). Metabolic<br />

records were automatically transformed by a macro program<br />

recorded <strong>in</strong> <strong>the</strong> Expe Data software (Sable Systems) <strong>in</strong><br />

order to transform <strong>the</strong> measure from parts per million to milliliters<br />

CO 2 per hour, tak<strong>in</strong>g <strong>in</strong>to account <strong>the</strong> flow rate. The<br />

respirometry equation used was<br />

˙Vco pstp # (FeCO � FiCO )<br />

2 2 2<br />

FR<br />

# ,<br />

1 � FeCO 2 # [1 � (1/RQ)]<br />

where FeCO 2 is <strong>the</strong> excurrent fractional concentration of CO 2,<br />

FiCO 2 is <strong>the</strong> <strong>in</strong>put fractional concentration of CO 2,FRis<strong>the</strong><br />

flow rate (mL m<strong>in</strong> �1 ), STP is <strong>the</strong> correction factor for standard<br />

conditions of temperature and pressure (which for mass flow-


184 P. Artacho and R. F. <strong>Nespolo</strong><br />

Figure 2. Regressions between metabolic variables and body mass <strong>in</strong> <strong>in</strong>dividuals of Helix aspersa from Concepción.<br />

meters is equal to 1), and RQ (respiratory quotient) is <strong>the</strong><br />

respiratory <strong>in</strong>terchange ratio, which was assumed to be equal<br />

to 0.85.<br />

Also, we elim<strong>in</strong>ated <strong>the</strong> first 10 m<strong>in</strong> of <strong>the</strong> records (600<br />

samples). From each <strong>in</strong>dividual record, we extracted three variables:<br />

complete average of each transformed record ( ˙Vco2aver), <strong>the</strong> average of <strong>the</strong> 1-m<strong>in</strong> steady state of m<strong>in</strong>imum ˙Vco2 production<br />

( ˙Vco2m<strong>in</strong>), and <strong>the</strong> average of <strong>the</strong> 1-m steady state of<br />

maximum Vco ˙ production ( ˙<br />

2 Vco2max).<br />

Precise measurements of repeatability can be accomplished<br />

with two repetitions (<strong>Nespolo</strong> and Franco 2007), although three<br />

or more are recommended for m<strong>in</strong>imiz<strong>in</strong>g residual variance.<br />

Because of logistical reasons, <strong>in</strong>dividuals from Concepciónwere<br />

measured only twice. Individuals from Valdivia, however, were<br />

measured three times. In both cases, <strong>the</strong> experiment was performed<br />

dur<strong>in</strong>g a 1-mo period.<br />

Statistics<br />

All statistics analyses were performed with Statistica 6.1<br />

(StatSoft 2004). Common l<strong>in</strong>ear regressions were used for exam<strong>in</strong><strong>in</strong>g<br />

<strong>the</strong> relationship between body mass (M b) and <strong>the</strong> three<br />

metabolic variables. Repeatability was evaluated by <strong>the</strong> <strong>in</strong>traclass<br />

correlation coefficient (t; Berteaux et al. 1996; Falconer<br />

and Mackay 1996) by calculat<strong>in</strong>g <strong>the</strong> between- and with<strong>in</strong><strong>in</strong>dividual<br />

variance component from one-way ANCOVA (M b<br />

as covariable). Then, t p between-<strong>in</strong>dividual variance com-<br />

ponent/(between-<strong>in</strong>dividual variance component � with<strong>in</strong><strong>in</strong>dividual<br />

variance component). We checked normality and<br />

homoscedasticity by Lilliefors and Levene tests, respectively, and<br />

we log 10 transformed <strong>the</strong> variables whenever necessary.<br />

Results<br />

The pattern of ˙Vco2 production of Helix aspersa was clearly<br />

cont<strong>in</strong>uous <strong>in</strong> 85% of <strong>the</strong> records (Fig. 1A). There were some<br />

records exhibit<strong>in</strong>g patterns of ˙Vco2 that seemed discont<strong>in</strong>uous<br />

(Fig. 1B). However, after analyz<strong>in</strong>g <strong>the</strong>m, we found that <strong>the</strong>se<br />

records were of a nonperiodic nature and without <strong>the</strong> typical<br />

pattern of zero gas exchange (Marais et al. 2005). Accord<strong>in</strong>g<br />

to visual <strong>in</strong>spections, activity was unusual dur<strong>in</strong>g respirometry<br />

records. L<strong>in</strong>ear regressions between metabolic variables and<br />

body mass showed that only Vco ˙ and ˙<br />

2 Vco2<br />

were signif-<br />

aver m<strong>in</strong><br />

icant <strong>in</strong> <strong>the</strong> population from Concepción (Table 1; Figs. 2, 3).<br />

A nested ANCOVA (us<strong>in</strong>g body mass as covariable) <strong>in</strong>dicated<br />

nonsignificant differences <strong>in</strong> ˙Vco2aver (between populations:<br />

F1, 3 p 1.3, P p 0.3;<br />

between measurements, with<strong>in</strong> populations:<br />

F , ), ˙<br />

3, 186 p 0.2 P p 0.9 Vco2m<strong>in</strong><br />

(between populations:<br />

F1, 3 p 3.4, P p 0.07;<br />

between measurements, with<strong>in</strong> populations:<br />

F , ), and ˙<br />

3, 186 p 0.42 P p 0.74 Vco2max<br />

(between populations:<br />

F1, 3 p 1.3, P p 0.26;<br />

between measurements, with<strong>in</strong> populations:<br />

F , ). Repeatabilities of ˙<br />

3, 186 p 0.28 P p 0.84 Vco2aver,<br />

Vco ˙ , and Vco ˙ (Table 2) were significant and remarkably<br />

2m<strong>in</strong> 2max


Repeatability of <strong>Standard</strong> Metabolism <strong>in</strong> <strong>the</strong> Land Snail 185<br />

Figure 3. Regressions between metabolic variables and body mass <strong>in</strong> <strong>in</strong>dividuals of Helix aspersa from Valdivia.<br />

consistent across metabolic variables and locality, averag<strong>in</strong>g<br />

0.33 � 0.06 (grand mean � SD).<br />

Discussion<br />

If we assume a respiratory quotient of 0.84 (Addo-Bediako et<br />

al. 2002), <strong>the</strong> values of SMR of Helix aspersa from Chilean<br />

populations obta<strong>in</strong>ed <strong>in</strong> this study are at least 50% lower than<br />

measurements of <strong>the</strong> same species from Australia and Europe<br />

(Vorhaben et al. 1984; Pedler et al. 1996). However, comparisons<br />

with o<strong>the</strong>r studies <strong>in</strong> <strong>the</strong> same species and <strong>in</strong> o<strong>the</strong>r species<br />

are complicated by <strong>the</strong> fact that most authors used different<br />

methodological approaches (e.g., type of respirometry system,<br />

measurement temperature, metabolism with respect to dry or<br />

wet weight, with or without shell; Vladimirova 2001). Perhaps<br />

this is one of <strong>the</strong> reasons why few generalizations have been<br />

established <strong>in</strong> <strong>the</strong> bioenergetic and ecophysiological patterns of<br />

terrestrial molluscs (with <strong>the</strong> probable exception of estivation<br />

and hibernation; see Vladimirova 2001). Surpris<strong>in</strong>gly, this fact<br />

contrasts with <strong>the</strong> enormous quantity of <strong>in</strong>formation that exists<br />

<strong>in</strong> o<strong>the</strong>r taxa (e.g., <strong>in</strong>sects [Addo-Bediako et al. 2002; Chown<br />

et al. 2007] and vertebrates [White and Seymour 2003;<br />

McKechnie and Wolf 2004; Nagy 2005]). Most studies <strong>in</strong> <strong>the</strong><br />

energy metabolism of land snails have been performed with<br />

stop-flow respirometry comb<strong>in</strong>ed with <strong>the</strong> manometric method<br />

(e.g., Vorhaben et al. 1984; Barnhart and McMahon 1987; Pedler<br />

et al. 1996; Michaelidis 2002; Zot<strong>in</strong> and Ozernyuk 2002).<br />

This procedure has several disadvantages because gas production/consumption<br />

is averaged over relatively long periods without<br />

tak<strong>in</strong>g <strong>in</strong>to account movements, stress, and/or general discomfort<br />

of <strong>the</strong> animal <strong>in</strong>side <strong>the</strong> chamber (Lighton 1991;<br />

Lighton and Fielden 1995). Open-flow respirometry, on <strong>the</strong><br />

o<strong>the</strong>r hand, permits near real-time measurement of metabolic<br />

rate and <strong>the</strong>refore facilitates identification and exclusion of periods<br />

<strong>in</strong>clud<strong>in</strong>g activity. Indeed, stop-flow respirometry has<br />

been shown to overestimate metabolic rate compared with<br />

open-flow respirometry (Lighton 1991; Lighton and Fielden<br />

1995; Addo-Bediako et al. 2002). Even with this difference <strong>in</strong><br />

technique, our results (∼259 mL O 2 h �1 ) appear lower than<br />

predicted by body mass <strong>in</strong> snails (400 mL O 2 h �1 ; Guppy and<br />

Wi<strong>the</strong>rs 1999). Compared with results from <strong>in</strong>dividuals from<br />

Australia and Europe, our results suggest that SMR is lower<br />

than expected, which would be <strong>in</strong>terpreted as a response of<br />

<strong>the</strong>se sou<strong>the</strong>rn populations to <strong>the</strong> low temperatures <strong>the</strong>y experience<br />

(see also Clarke 1993; Partridge and French 1996).<br />

However, a compilation of SMRs of three families of Gastropoda<br />

<strong>in</strong>dicated no relationship between <strong>the</strong> metabolic rate and<br />

<strong>the</strong> latitude or climatic zone of <strong>the</strong> gastropod habitat (Vladimirova<br />

2001).<br />

To <strong>the</strong> best of our knowledge, this is <strong>the</strong> first report of<br />

repeatability of metabolic rate <strong>in</strong> a land snail and <strong>the</strong> first study<br />

of repeatability <strong>in</strong> any aspect of mollusc physiology (<strong>Nespolo</strong><br />

and Franco 2007). The fact that we selected <strong>in</strong>dividuals of


186 P. Artacho and R. F. <strong>Nespolo</strong><br />

Table 2: Repeatability as <strong>in</strong>traclass correlation coefficient (t) obta<strong>in</strong>ed from<br />

variance components <strong>in</strong> a one-way ANCOVA us<strong>in</strong>g log 10 M b as covariable<br />

Variable<br />

Variance Component (Statistics <strong>in</strong> Paren<strong>the</strong>ses)<br />

Between Individuals<br />

With<strong>in</strong> Individuals<br />

(pResiduals)<br />

Concepción:<br />

Log ˙<br />

10 Vco2aver<br />

Log ˙<br />

10 Vco2m<strong>in</strong><br />

Log ˙<br />

10 Vco2max<br />

Valdivia:<br />

Log ˙<br />

10 Vco2aver<br />

Log ˙<br />

10 Vco2m<strong>in</strong><br />

Log ˙<br />

10 Vco2max<br />

.0002 ( F43, 43 p 2.41, P p .002)<br />

.0001 ( F43, 43 p 1.83, P p .03)<br />

.0003 ( F43, 43 p 1.72, P p .04)<br />

.0003 ( F32, 32 p 2.34, P p .002)<br />

.0002 ( F32, 32 p 1.95, P p .01)<br />

.0006 ( F32, 32 p 2.25, P p .003)<br />

.0002<br />

.0003<br />

.0008<br />

.0007<br />

.0003<br />

.0013<br />

.42<br />

.38<br />

.30<br />

.31<br />

.25<br />

.30<br />

Note. Significant components <strong>in</strong> bold.<br />

approximately <strong>the</strong> same body mass reduced probable residual<br />

variation, which would be <strong>the</strong> explanation of <strong>the</strong> reduced scal<strong>in</strong>g<br />

that we found <strong>in</strong> metabolism. However, <strong>the</strong> results were<br />

unchanged regardless of whe<strong>the</strong>r we <strong>in</strong>cluded M b as a covariate.<br />

This fact, toge<strong>the</strong>r with <strong>the</strong> fact that repeatabilities were highly<br />

consistent <strong>in</strong> <strong>the</strong> two studied populations, suggests that our<br />

estimation was robust. Our repeatability estimations <strong>in</strong> SMR<br />

were similar to what is known <strong>in</strong> o<strong>the</strong>r ecto<strong>the</strong>rms (e.g., Chappell<br />

and Rogowitz 2000; McCarthy 2000; Virani and Rees 2000;<br />

Marais and Chown 2003; <strong>Nespolo</strong> et al. 2003), with some exceptions<br />

when less than 2-wk periods were assayed, <strong>in</strong> which<br />

higher estimations were obta<strong>in</strong>ed (Garland and Bennett 1990;<br />

Chappell and Rogowitz 2000; Terblanche et al. 2004). However,<br />

<strong>in</strong> general, <strong>the</strong>re is no evidence of an effect of time between<br />

measurements on <strong>the</strong> magnitude of repeatability (<strong>Nespolo</strong> and<br />

Franco 2007).<br />

Repeatability studies have ga<strong>in</strong>ed considerable <strong>in</strong>terest<br />

among evolutionary physiologists because <strong>the</strong>y might give <strong>in</strong>sight<br />

<strong>in</strong>to <strong>the</strong> identification of traits that can ultimately respond<br />

to natural selection (Arnold et al. 1995; Hayes and Jenk<strong>in</strong>s 1997;<br />

Hoffman 2000). Although <strong>the</strong> measurement of repeatability is<br />

not necessarily a prelim<strong>in</strong>ary step before <strong>the</strong> analysis of selective<br />

significance of a trait, it is generally regarded as <strong>the</strong> upper limit<br />

of heritability (Falconer and Mackay 1996), although this assumption<br />

rema<strong>in</strong>s to be tested (Hayes and Jenk<strong>in</strong>s 1997; Dohm<br />

2002; Konarzewski et al. 2005). Never<strong>the</strong>less, this <strong>in</strong>terpretation<br />

of repeatability rema<strong>in</strong>s useful because estimates of heritability<br />

often cannot be obta<strong>in</strong>ed for natural populations (Dohm 2002).<br />

In any event, we believe repeatability is a valuable tool for <strong>the</strong><br />

determ<strong>in</strong>ation of environmental variance of a trait (Brown and<br />

Sh<strong>in</strong>e 2007). The fact that SMR <strong>in</strong> a land snail is repeatable is<br />

evidence that this trait could respond to natural selection; however,<br />

it is clear that o<strong>the</strong>r conditions must be fulfilled (heritability<br />

of <strong>the</strong> trait and consistent relationship between this trait<br />

and fitness; Endler 1986). High repeatability, accord<strong>in</strong>g to Falconer<br />

and Mackay (1996), <strong>in</strong>volves <strong>the</strong> potential existence of<br />

genetic variation <strong>in</strong> this trait. Hence, <strong>the</strong> existence of genetic<br />

variation on which natural selection can act would permit adaptive<br />

responses <strong>in</strong> novel environments (Lee 2002). Clearly, a<br />

s<strong>in</strong>gle study of significant repeatability is not enough evidence<br />

to support <strong>the</strong>se assertions, and major <strong>in</strong>sight <strong>in</strong>to this hypo<strong>the</strong>sis<br />

is necessary for understand<strong>in</strong>g <strong>the</strong> ecological success<br />

of this widely distributed land snail. Several authors have <strong>in</strong>dicated<br />

that <strong>the</strong> def<strong>in</strong>itive step to address <strong>the</strong> causal explanations<br />

of <strong>the</strong> evolutionary potential of a species is phenotypic<br />

selection studies comb<strong>in</strong>ed with quantitative genetics tools<br />

(Roff 1997; K<strong>in</strong>gsolver et al. 2001; Chown et al. 2006). However,<br />

<strong>the</strong>se k<strong>in</strong>ds of studies are of very restricted application to wild<br />

populations because few species can be both easily tracked <strong>in</strong><br />

<strong>the</strong> field and bred <strong>in</strong> <strong>the</strong> lab. Helix aspersa, on <strong>the</strong> o<strong>the</strong>r hand,<br />

can be easily bred <strong>in</strong> <strong>the</strong> lab and has been successfully tracked<br />

<strong>in</strong> <strong>the</strong> field (Dupont-Nivet et al. 1997, 1998, 2001). As such,<br />

it represents an excellent and probably underutilized model<br />

species <strong>in</strong> evolutionary physiology.<br />

Acknowledgments<br />

F<strong>in</strong>ancial support was provided by a CONICYT doctoral <strong>the</strong>sis<br />

fellowship (AT-24060181) to P.A. R.F.N. thanks Proyecto Anillos<br />

de Ciencia y Tecnología ACT-38.<br />

Literature Cited<br />

Addo-Bediako A., S.L. Chown, and K.J. Gaston. 2002. Metabolic<br />

cold adaptation: a large-scale perspective. Funct Ecol<br />

16:332–338.<br />

Angilletta M.J., Jr. 2001. <strong>Variation</strong> <strong>in</strong> metabolic rate between<br />

populations of a geographically widespread lizard. Physiol<br />

Biochem Zool 74:11–21.<br />

Arad Z., S. Goldenberg, and J. Heller. 1992. Intraspecific variation<br />

<strong>in</strong> resistance to desiccation and climatic gradients <strong>in</strong><br />

<strong>the</strong> distribution of <strong>the</strong> land snail Xeropicta vestalis. J Zool<br />

(Lond) 226:643–656.<br />

———. 1998. Short- and long-term resistance to desiccation<br />

<strong>in</strong> a m<strong>in</strong>ute litter-dwell<strong>in</strong>g land snail Lauria cyl<strong>in</strong>dracea (Pulmonata:<br />

Pupillidae). J Zool (Lond) 246:75–81.<br />

t


———. 2001. Desiccation and rehydration <strong>in</strong> land snails: a test<br />

for dist<strong>in</strong>ct set po<strong>in</strong>ts <strong>in</strong> Theba pisana. Isr J Zool 47:41–53.<br />

Arnold S.J., C.R. Peterson, and J. Gladstone. 1995. Behavioural<br />

variation <strong>in</strong> natural populations. VII. Maternal body temperature<br />

does not affect juvenile <strong>the</strong>rmoregulation <strong>in</strong> a garter<br />

snake. Anim Behav 50:623–633.<br />

Barnhart C. and B.R. McMahon. 1987. Discont<strong>in</strong>uous carbon<br />

dioxide release and metabolic depression <strong>in</strong> dormant land<br />

snails. J Exp Biol 128:123–138.<br />

Bech C., I. Langseth, and G.W. Gabrielsen. 1999. Repeatability<br />

of basal metabolism <strong>in</strong> breed<strong>in</strong>g female kittiwakes. Proc R<br />

Soc B 266:2161–2167.<br />

Berteaux D., D.W. Thomas, J.M. Bergeron, and H. Lapierre.<br />

1996. Repeatability of daily field metabolic rate <strong>in</strong> female<br />

meadow voles (Microtus pennsilvanicus). Funct Ecol 10:751–<br />

759.<br />

Bradley T.J., L. Brethorst, S. Rob<strong>in</strong>son, and S. Hetz. 2003.<br />

Changes <strong>in</strong> <strong>the</strong> rate of CO 2 release follow<strong>in</strong>g feed<strong>in</strong>g <strong>in</strong> <strong>the</strong><br />

<strong>in</strong>sect Rhodnius prolixus. Physiol Biochem Zool 76:302–309.<br />

Brook S.P. and K.B. Storey. 1997. Glycolytic controls <strong>in</strong> estivation<br />

and anoxia: a comparison of metabolic arrest <strong>in</strong> land<br />

and mar<strong>in</strong>e molluscs. Comp Biochem Physiol A 118:1103–<br />

1114.<br />

Brown G.P. and R. Sh<strong>in</strong>e. 2007. Repeatibility and heritability<br />

of reproductive traits <strong>in</strong> free-rang<strong>in</strong>g snakes. J Evol Biol 20:<br />

588–596.<br />

Chappell M.A., G.C. Bachman, and J.P. Odell. 1996. Repeatability<br />

of maximal aerobic performance <strong>in</strong> Beld<strong>in</strong>gs ground<br />

squirrels, Spermophilus beld<strong>in</strong>gi. Funct Ecol 9:498–504.<br />

Chappell M.A., C. Bech, and W.A. Buttemer. 1999. The relationship<br />

of central and peripheral organ masses to aerobic<br />

performance variation <strong>in</strong> house sparrows. J Exp Biol 202:<br />

2269–2279.<br />

Chappell M.A. and G.L. Rogowitz. 2000. Mass, temperature<br />

and metabolic effects on discont<strong>in</strong>uous gas exchange cycles<br />

<strong>in</strong> eucalyptus-bor<strong>in</strong>g beetles (Coleoptera: Creambycidae). J<br />

Exp Biol 203:3809–3820.<br />

Chown S.L. and K.J. Gaston. 1999. Explor<strong>in</strong>g l<strong>in</strong>ks between<br />

physiology and ecology at macro-scales: <strong>the</strong> role of respiratory<br />

metabolism <strong>in</strong> <strong>in</strong>sects. Biol Rev 74:87–120.<br />

Chown S.L., A.G. Gibbs, S.K. Hetz, C.J. Klok, J.R. Lighton, and<br />

E. Marais. 2006. Discont<strong>in</strong>uous gas exchange <strong>in</strong> <strong>in</strong>sects: a<br />

clarification of hypo<strong>the</strong>ses and approaches. Physiol Biochem<br />

Zool 79:333–343.<br />

Chown, S.L., E. Marais, J.S. Terblanche, C.J. Klok, J.R.B.<br />

Lighton, and T.M. Blackburn. 2007. Scal<strong>in</strong>g of <strong>in</strong>sect metabolic<br />

rate is <strong>in</strong>consistent with <strong>the</strong> nutrient supply network<br />

model. Funct Ecol 21:282–290.<br />

Clarke A. 1993. Seasonal acclimatization and latitud<strong>in</strong>al compensation<br />

<strong>in</strong> metabolism: do <strong>the</strong>y exist? Funct Ecol 7:139–<br />

149.<br />

Cook A. 2001. Behavioural ecology: on do<strong>in</strong>g <strong>the</strong> right th<strong>in</strong>g,<br />

<strong>in</strong> <strong>the</strong> right place at <strong>the</strong> right time. Pp. 447–487 <strong>in</strong> G.M.<br />

Barker, ed. The Biology of Terrestrial Molluscs. CABI,<br />

Oxford.<br />

Crnokrak P. and D.A Roff. 2002. Trade-offs to flight capability<br />

Repeatability of <strong>Standard</strong> Metabolism <strong>in</strong> <strong>the</strong> Land Snail 187<br />

<strong>in</strong> Gryllu firmus: <strong>the</strong> <strong>in</strong>fluence of whole-organism respiration<br />

rate on fitness. J Evol Biol 15:388–398.<br />

Dallas H.F., B.A. Curtis, and D. Ward. 1991. Water exchange,<br />

temperature tolerance, oxygen consumption and activity of<br />

<strong>the</strong> Namib desert snail, Trigonephrus sp. J Moll Stud 57:359–<br />

366.<br />

Davies M.S., S.J. Hawk<strong>in</strong>g, and H.D. Jones. 1990. Mucus production<br />

and physiological energetics <strong>in</strong> Patella vulgata, I.J<br />

Moll Stud 56:499.<br />

Denny M. 1980. Locomotion: <strong>the</strong> cost of gastropod crawl<strong>in</strong>g.<br />

Science 208:1288–1290.<br />

Dohm M.R. 2002. Repeatability estimates do not always set an<br />

upper limit to heritability. Funct Ecol 16:273–280.<br />

Dohm M.R., J.P. Hayes, and T. Garland Jr. 2001. The quantitative<br />

genetics of maximal and basal rates of oxygen consumption<br />

<strong>in</strong> mice. Genetics 159:267–277.<br />

Dupont-Nivet M., J. Mallard, J.C. Bonnet, and J.M. Blanc. 1997.<br />

Quantitative genetics of growth traits <strong>in</strong> <strong>the</strong> edible snail, Helix<br />

aspersa Müller. Genet Sel Evol 29:571–587.<br />

———. 1998. Quantitative genetics of reproductive traits <strong>in</strong><br />

<strong>the</strong> edible snail, Helix aspersa Müller. J Exp Zool 281:220–<br />

227.<br />

———. 2001. Evolution of genetic variability <strong>in</strong> a population<br />

of <strong>the</strong> edible snail, Helix aspersa Müller, undergo<strong>in</strong>g domestication<br />

and short-term selection. Heredity 87:129–135.<br />

Endler J. 1986. Natural Selection <strong>in</strong> <strong>the</strong> Wild. Pr<strong>in</strong>ceton University<br />

Press, Pr<strong>in</strong>ceton, NJ.<br />

Falconer D.S. and T.F.C. Mackay. 1996. Introduction to Quantitative<br />

Genetics. Longman, Ed<strong>in</strong>burgh.<br />

Garland T., Jr., and A.F. Bennett. 1990. Quantitative genetics<br />

of maximal oxygen consumption <strong>in</strong> a garter snake. Am J<br />

Physiol 259:R986–R992.<br />

Giokas S., P. Pafilis, and E. Valakos. 2005. Ecological and physiological<br />

adaptations of <strong>the</strong> land snail Alb<strong>in</strong>aria caerulea (Pulmonata:<br />

Clausiliidae). J Moll Stud 71:15–23.<br />

Guiller A., M. Coutellec-Vreto, L. Madec, and J. Deunff. 2001.<br />

Evolutionary history of <strong>the</strong> land snail Helix aspersa <strong>in</strong> <strong>the</strong><br />

western Mediterranean: prelim<strong>in</strong>ary results <strong>in</strong>ferred from<br />

mitochondrial DNA sequences. Mol Ecol 10:81–87.<br />

Guppy M. and P. Wi<strong>the</strong>rs. 1999. Metabolic depression <strong>in</strong> animals:<br />

physiological perspectives and biochemical generalizations.<br />

Biol Rev 74:1–40.<br />

Hayes J.P., T. Garland Jr., and M.R. Dohm. 1992. Individual<br />

variation <strong>in</strong> metabolism and reproduction of Mus: are energetics<br />

and life history l<strong>in</strong>ked? Funct Ecol 6:5–14.<br />

Hayes J.P. and S.H. Jenk<strong>in</strong>s. 1997. Individual variation <strong>in</strong> mammals.<br />

J Mammal 78:274–293.<br />

Hayes J.P. and C.S. O’Connor. 1999. Natural selection on <strong>the</strong>rmogenic<br />

capacity of high-altitude deer mice. Evolution 53:<br />

1280–1287.<br />

Herreid C.F. 1977. Metabolism of land snail (Otala lactea) dur<strong>in</strong>g<br />

dormancy, arousal and activity. Comp Biochem Physiol<br />

A 56:211–215.<br />

Hoffmann A.A. 2000. Laboratory and field heritability: some<br />

lessons from Drosophila. Pp. 200–218 <strong>in</strong> T.A. Mousseau, B.


188 P. Artacho and R. F. <strong>Nespolo</strong><br />

S<strong>in</strong>ervo, and J.A. Endler, eds. Adaptive Genetic <strong>Variation</strong> <strong>in</strong><br />

<strong>the</strong> Wild. Oxford University Press, New York.<br />

Horak P., L. Saks, I. Ots, and H. Kollist. 2002. Repeatability of<br />

condition <strong>in</strong>dices <strong>in</strong> captive greenf<strong>in</strong>ches (Carduelis chloris).<br />

Can J Zool 80:636–643.<br />

Jackson D.M., P. Trayhurn, and J.R. Speakman. 2001. Associations<br />

between energetics and over-w<strong>in</strong>ter survival <strong>in</strong> <strong>the</strong><br />

short-tailed field vole, Microtus agrestis. J Anim Ecol 70:633–<br />

640.<br />

Kideys A.E. and R.G. Hartnoll. 1991. Energetics of mucus production<br />

<strong>in</strong> <strong>the</strong> common whelk. J Exp Mar Biol Ecol 150:91.<br />

K<strong>in</strong>gsolver J., H. Hoekstra, J. Hoeskstra, D. Berrigan, S. Vignieri,<br />

C. Hill, A. Hoang, P. Gilbert, and P. Beerli. 2001. The<br />

strength of phenotypic selection <strong>in</strong> natural populations. Am<br />

Nat 157:245–261.<br />

Konarzewski M. and J. Diamond. 1995. Evolution of basal metabolic<br />

rate and organ masses <strong>in</strong> laboratory mice. Evolution<br />

49:1239–1248.<br />

Konarzewski M., A. Ksiazek, and I.B. Lapo. 2005. Artificial<br />

selection on metabolic rates and related traits <strong>in</strong> rodents.<br />

Integr Comp Biol 45:416–425.<br />

Koteja P. 1996. Measur<strong>in</strong>g energy metabolism with open-flow<br />

respirometric systems: which design to choose? Funct Ecol<br />

10:675–677.<br />

Ksiazek A., M. Konarzewski, and I.B. Lapo. 2004. Anatomic<br />

and energetic correlates of divergent selection for basal metabolic<br />

rate <strong>in</strong> laboratory mice. Physiol Biochem Zool 77:<br />

890–899.<br />

Labocha M.K., E.T. Sadowska, K. Baliga, and A.K. Semer. 2004.<br />

Individual variation and repeatability of basal metabolism <strong>in</strong><br />

<strong>the</strong> bank vole, Clethrionomys glareolus. ProcRSocB271:<br />

367–372.<br />

Lardies M.A., L.D. Bacigalupe, and F. Boz<strong>in</strong>ovic. 2004. Test<strong>in</strong>g<br />

<strong>the</strong> metabolic cold adaptation hypo<strong>the</strong>sis: an <strong>in</strong>traspecific<br />

latitud<strong>in</strong>al comparison <strong>in</strong> <strong>the</strong> common woodlouse. Evol Ecol<br />

Res 6:567–578.<br />

Lee C.E. 2002. Evolutionary genetics of <strong>in</strong>vasive species. Trends<br />

Ecol Evol 17:386–391.<br />

Lighton J.R.B. 1989. Individual and whole-colony respiration<br />

<strong>in</strong> an African formic<strong>in</strong>e ant. Funct Ecol 3:523–530.<br />

———. 1991. Measurements on <strong>in</strong>sects. Pp. 201–208 <strong>in</strong> P.A.<br />

Payne, ed. Concise Encyclopedia on Biological and Biomedical<br />

Measurement Systems. Pergamon, Oxford.<br />

Lighton J.R.B. and L.J. Fielden. 1995. Mass scal<strong>in</strong>g of standard<br />

metabolism <strong>in</strong> ticks: a valid case of low metabolic rates <strong>in</strong><br />

sit-and-wait strategists. Physiol Zool 68:43–62.<br />

Lighton J.R.B. and R.J. Turner. 2004. Thermolimit respirometry:<br />

an objective assessment of critical <strong>the</strong>rmal maxima <strong>in</strong><br />

two sympatric desert harvester ants, Pogonomyrmex rugosus<br />

and P. californicus. J Exp Biol 207:1903–1913.<br />

L<strong>in</strong>dström A˚ . and M. Klaassen. 2003. High basal metabolic rates<br />

of shorebirds while <strong>in</strong> <strong>the</strong> arctic: a circumpolar view. Condor<br />

105:420–427.<br />

L<strong>in</strong>dström A˚ . and M. Rosen. 2002. The cost of avian w<strong>in</strong>ter<br />

stores: <strong>in</strong>tra<strong>in</strong>dividual variation <strong>in</strong> basal metabolic rate of a<br />

w<strong>in</strong>ter<strong>in</strong>g passer<strong>in</strong>e, <strong>the</strong> greenf<strong>in</strong>ch Carduelis chloris. Avian<br />

Sci 2:139–143.<br />

Marais E. and S.L. Chown. 2003. Repeatability of standard metabolic<br />

rate and gas exchange characteristics <strong>in</strong> a highly variable<br />

cockroach, Perisphaeria sp. J Exp Biol 206:4565–4574.<br />

Marais E., C.J. Klok, J.S. Terblanche, and S.L. Chown. 2005.<br />

Insect gas exchange patterns: a phylogenetic perspective. J<br />

Exp Biol 208:4495–4507.<br />

Marshall D.J. and C.D. McQuaid. 1991. Metabolic-rate depression<br />

<strong>in</strong> a mar<strong>in</strong>e pulmonate snail: preadaptation for a<br />

terrestrial existence. Oecologia 88:274–276.<br />

McCarthy I.D. 2000. Temporal repeatability of relative standard<br />

metabolic rate <strong>in</strong> juvenile Atlantic salmon and its relation<br />

with life history variation. J Fish Biol 57:224–238.<br />

McKechnie A.E. and B.O. Wolf. 2004. The allometry of avian<br />

basal metabolic rate: good predictions need good data. Physiol<br />

Biochem Zool 77:502–521.<br />

Michaelidis B. 2002. Studies on <strong>the</strong> extra- and <strong>in</strong>tracellular acidbase<br />

status and its role on metabolic depression <strong>in</strong> <strong>the</strong> land<br />

snail Helix lucorum (L.) dur<strong>in</strong>g estivation. J Comp Physiol<br />

B 172:347–354.<br />

Michaelidis B., D. Vavoulidou, J. Rousou, and H.O. Portner.<br />

2007. The potential role of CO 2 <strong>in</strong> <strong>in</strong>itiation and ma<strong>in</strong>tenance<br />

of estivation <strong>in</strong> <strong>the</strong> land snail Helix lucorum. Physiol Biochem<br />

Zool 80:113–124.<br />

Nagy K.A. 2005. Review: field metabolic rate and body size. J<br />

Exp Biol 208:1621–1625.<br />

<strong>Nespolo</strong> R.F. and M. Franco. 2007. Whole-animal metabolic<br />

rate is a repeatable trait: a meta-analysis. J Exp Biol 210:<br />

2000–2005.<br />

<strong>Nespolo</strong> R.F., M.A. Lardies, and F. Boz<strong>in</strong>ovic. 2003. <strong>Intrapopulation</strong>al<br />

variation <strong>in</strong> <strong>the</strong> standard metabolic rate of <strong>in</strong>sects:<br />

repeatability, <strong>the</strong>rmal dependence and sensitivity (Q 10) of<br />

oxygen consumption <strong>in</strong> a cricket. J Exp Biol 206:4309–4315.<br />

Niewiarowski P. and S. Waldschmidt. 1992. <strong>Variation</strong> <strong>in</strong> metabolic<br />

rates of a lizard: use of SMR <strong>in</strong> ecological context.<br />

Funct Ecol 6:15–22.<br />

Partridge L. and V. French. 1996. Thermal evolution of ecto<strong>the</strong>rm<br />

body size: why get big <strong>in</strong> <strong>the</strong> cold? Pp. 265–292 <strong>in</strong><br />

I.A. Johnston and A.F. Bennett, eds. Animals and Temperature:<br />

Phenotypic and Evolutionary Adaptation. Cambridge<br />

University Press, Cambridge.<br />

Pedler S., C.J. Fuery, P.C. Whiters, J. Flanigan, and M. Guppy<br />

1996. Effectors of metabolic depression <strong>in</strong> an aestivat<strong>in</strong>g pulmonate<br />

snail (Helix aspersa): whole animal and <strong>in</strong> vitro tissue<br />

studies. J Comp Physiol B 166:375–381.<br />

Prior D.J. 1985. Water regulatory behaviour <strong>in</strong> terrestrial gastropods.<br />

Biol Rev Camb Philos Soc 60:403–424.<br />

Roff D.A. 1997. Evolutionary Quantitative Genetics. Chapman<br />

& Hall, Montreal.<br />

Rogowitz G.L. and M.A. Chappell. 2000. Energy metabolism<br />

of eucalyptus-bor<strong>in</strong>g beetles at rest and dur<strong>in</strong>g locomotion:<br />

gender makes a difference. J Exp Biol 203:1131–1139.<br />

Rønn<strong>in</strong>g B., B. Moe, and C. Bech. 2005. Long-term repeatability<br />

makes basal metabolic rate a likely heritable trait <strong>in</strong> <strong>the</strong> zebra<br />

f<strong>in</strong>ch Taeniopygia guttata. J Exp Biol 208:4663–4669.


Sadowska E.T., M.K. Labocha, K. Baliga, and A. Stanisz. 2005.<br />

Genetic correlations between basal and maximum metabolic<br />

rates <strong>in</strong> a wild rodent: consequences for evolution of endo<strong>the</strong>rmy.<br />

Evolution 59:672–681.<br />

StatSoft. 2004. STATISTICA (data analysis software system).<br />

Version 6.1. http://www.statsoft.com.<br />

Ste<strong>in</strong>berger Y., S. Grossman, and Z. Dub<strong>in</strong>sky. 1982. Some aspects<br />

of <strong>the</strong> ecology of <strong>the</strong> desert snail Sph<strong>in</strong>cterchila prophetarum<br />

<strong>in</strong> relation with <strong>the</strong> energy and water flow. Oecologia<br />

50:103–108.<br />

Steyermark A.C. 2002. A high standard metabolic rate constra<strong>in</strong>s<br />

juvenile growth. Zoology 105:147–151.<br />

Storey K.B. 2002. Life <strong>in</strong> <strong>the</strong> slow lane: molecular mechanisms<br />

of estivation. Comp Biochem Physiol A 134:733–754.<br />

Terblanche J.S., C.J. Klok, and S.L. Chown. 2004. Metabolic<br />

rate variation <strong>in</strong> Gloss<strong>in</strong>a pallidipes (Diptera: Gloss<strong>in</strong>idae):<br />

gender, age<strong>in</strong>g and repeatability. J Insect Physiol 50:419–428.<br />

Tieleman B.I., J.B. Williams, M.E. Buschur, and C.R. Brown.<br />

2003. Phenotypic variation of larks along an aridity gradient:<br />

are desert birds more flexible? Ecology 84:1800–1815.<br />

Repeatability of <strong>Standard</strong> Metabolism <strong>in</strong> <strong>the</strong> Land Snail 189<br />

Virani N.A. and B.B. Rees. 2000. Oxygen consumption, blood<br />

lactate and <strong>in</strong>ter-<strong>in</strong>dividual variation <strong>in</strong> <strong>the</strong> gulf killifish, Fundulus<br />

grandis, dur<strong>in</strong>g hypoxia and recovery. Comp Biochem<br />

Physiol A 126:397–405.<br />

Vladimirova I.G. 2001. <strong>Standard</strong> metabolic rate <strong>in</strong> Gastropoda<br />

class. Biol Bull 28:163–169.<br />

Vorhaben J.E., A.V. Klotz, and J.W. Campbell. 1984. Activity<br />

and oxidative metabolism of <strong>the</strong> land snail Helix aspersa.<br />

Physiol Zool 57:357–365.<br />

White C.R. and R.S. Seymour. 2003. Mammalian basal metabolic<br />

rate is proportional to body mass 2/3 . Proc Natl Acad<br />

Sci USA 100:4046–4049.<br />

Wi<strong>the</strong>rs P., S. Pedler, and M. Guppy. 1997. Physiological adjustments<br />

dur<strong>in</strong>g aestivation by <strong>the</strong> Australian land snail<br />

Rhagada tescorum (Mollusca: Pulmonata: Camaenidae). Aust<br />

J Zool 45:599–611.<br />

Zot<strong>in</strong> A.A. and N.D. Ozernyuk. 2002. Thermal compensation<br />

of respiration <strong>in</strong> pulmonate snails (Pulmonata) of Arion and<br />

Deroceras genera liv<strong>in</strong>g <strong>in</strong> polar and temperate climatic zone.<br />

Biol Bull 29:468–472.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!