16.09.2015 Views

Water Movement in Soil

Wastewater Movement in Soils - Consortium of Institutes for ...

Wastewater Movement in Soils - Consortium of Institutes for ...

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Water</strong> <strong>Movement</strong> <strong>in</strong><br />

<strong>Soil</strong><br />

James L. Anderson, PhD<br />

David Gustafson<br />

Aziz Amoozegar, PhD<br />

David L<strong>in</strong>dbo, PhD<br />

Model Decentralized Wastewater<br />

Practitioner Curriculum


NDWRCDP Disclaimer<br />

This work was supported by the National Decentralized<br />

<strong>Water</strong> Resources Capacity Development Project<br />

(NDWRCDP) with fund<strong>in</strong>g provided by the U.S.<br />

Environmental Protection Agency through a Cooperative<br />

Agreement (EPA No. CR827881-01<br />

01-0) 0) with Wash<strong>in</strong>gton<br />

University <strong>in</strong> St. Louis. These materials have not been<br />

reviewed by the U.S. Environmental Protection Agency.<br />

These materials have been reviewed by representatives of<br />

the NDWRCDP. The contents<br />

of these materials do not necessarily reflect the views and<br />

policies of the NDWRCDP, Wash<strong>in</strong>gton University, or the<br />

U.S. Environmental Protection Agency, nor does the<br />

mention of trade names or commercial products constitute<br />

their endorsement or recommendation for use.


CIDWT/University Disclaimer<br />

These materials are the collective effort of <strong>in</strong>dividuals from<br />

academic, regulatory, and private sectors of the<br />

onsite/decentralized wastewater <strong>in</strong>dustry. These materials have<br />

been peer-reviewed reviewed and represent the current state of<br />

knowledge/science <strong>in</strong> this field. They were developed through a<br />

series of writ<strong>in</strong>g and review meet<strong>in</strong>gs with the goal of<br />

formulat<strong>in</strong>g a consensus on the materials presented. These<br />

materials do not necessarily reflect the views and policies of<br />

North Carol<strong>in</strong>a State University, and/or the Consortium of<br />

Institutes for Decentralized Wastewater Treatment (CIDWT).<br />

The mention of trade names or commercial products does not<br />

constitute an endorsement or recommendation for use from<br />

these <strong>in</strong>dividuals or entities, nor does it constitute criticism for<br />

similar ones not mentioned.


Citation<br />

Gustafson, D., J. Anderson, A. Amoozegar, and<br />

D.L. L<strong>in</strong>dbo. 2005. <strong>Water</strong> <strong>Movement</strong> <strong>in</strong> <strong>Soil</strong>–<br />

Power Po<strong>in</strong>t Presentation. <strong>in</strong> (D.L. L<strong>in</strong>dbo and<br />

N. E. Deal eds.) Model Decentralized<br />

Wastewater Practitioner Curriculum. National<br />

Decentralized <strong>Water</strong> Resources Capacity<br />

Development Project. North Carol<strong>in</strong>a State<br />

University, Raleigh, NC.


<strong>Water</strong> movement<br />

‣ Why is this important?<br />

‣ How Systems work<br />

‣ Flow patterns<br />

Unsaturated<br />

• Biomat<br />

• Unsaturated<br />

Saturated<br />

• Darcy’s Law<br />

• Saturated<br />

‣ Flow direction<br />

• Lateral movement<br />

• Vertical movement<br />

‣ <strong>Soil</strong> impacts


Why is it important?<br />

‣ Keys to where it goes<br />

‣ Keys to how it moves<br />

• Unsaturated<br />

• Saturated<br />

‣ Identifies potential problems


Hydrologic Cycle<br />

Precipitation<br />

ET<br />

Saturated flow<br />

Restrictive layer<br />

Unsaturated flow<br />

Well<br />

Regional water table


Hydrology Components<br />

‣ Precipitation<br />

‣ Evapotranspiration<br />

‣ Infiltration<br />

• Surface flow (run-off)<br />

• Subsurface flow<br />

• lateral flow, <strong>in</strong>terflow, shallow groundwater flow<br />

• Vertical seepage<br />

Vertical seepage<br />

• deep percolation, groundwater recharge<br />

‣ Unsaturated Zones"<br />

• Capillary fr<strong>in</strong>ge<br />

‣ <strong>Water</strong> table<br />

• Saturated


RAINFALL<br />

(48-54 Inches/Year)<br />

POTENTIAL ET<br />

(36-40 Inches/Year)<br />

CROPLAND<br />

FORESTLAND<br />

INFILTRATION<br />

SURFACE<br />

RUNOFF<br />

SURFACE<br />

WATER<br />

WATER TABLE<br />

GROUND WATER FLOW<br />

AQUIFER RECHARGE<br />

(1/2 TO 2 Inch/Year)<br />

CONFINED LAYER AQUTARD<br />

CONFINED AQUIFER


Recharge area<br />

Discharge<br />

area<br />

<strong>Water</strong> table<br />

GROUND WATER<br />

SYSTEM<br />

Decades<br />

Centuries<br />

Years<br />

Days<br />

Flow l<strong>in</strong>es<br />

Millennia<br />

Direction and rate of ground-water movement.


Precipitation<br />

Septic System<br />

Well<br />

Infiltration<br />

Evapotranspiration<br />

Wastewater<br />

Input<br />

Runoff<br />

Ground <strong>Water</strong><br />

Mound<strong>in</strong>g<br />

Deep<br />

Percolation<br />

Lateral Flow<br />

Slowly Permeable layer<br />

<strong>Water</strong> Table<br />

Stream<br />

Vadose Zone<br />

Ground <strong>Water</strong><br />

Slow Mov<strong>in</strong>g<br />

Impermeable Layer


Precipitation<br />

Septic System<br />

Well<br />

Infiltration<br />

Evapotranspiration<br />

Wastewater<br />

Input<br />

Ground <strong>Water</strong><br />

Mound<strong>in</strong>g<br />

Lateral Flow<br />

Slowly Permeable layer<br />

Deep<br />

Percolation<br />

Vadose Zone<br />

Runoff<br />

Stream<br />

<strong>Water</strong> Table<br />

Ground <strong>Water</strong><br />

Slow Mov<strong>in</strong>g<br />

Impermeable Layer


<strong>Water</strong> thru the<br />

<strong>Soil</strong> Treatment Area<br />

‣ What is water<br />

‣ What is sewage<br />

‣ Onsite systems<br />

• System geometry<br />

‣ Flow patterns<br />

‣ Idealized system


<strong>Water</strong>- What is it ?<br />

‣ <strong>Water</strong> is a di-polar, “charged” molecule<br />

‣ The charges create bonds<br />

‣ These bonds create adhesive and<br />

cohesive forces among molecules and<br />

surround<strong>in</strong>gs<br />

Hydrogen atom<br />

Oxygen atom<br />

105 o +<br />

-


-<br />

+<br />

H-bond<br />

+ -<br />

+<br />

-<br />

BONDS<br />

AND WATER DIPOLES


Sewage<br />

‣ What is it?<br />

• <strong>Water</strong><br />

• Bacteria food<br />

• BOD<br />

• Nutrients<br />

TSS<br />

• Solids<br />

• TSS<br />

• Pathogens<br />

• Solutes<br />

• Others<br />

‣ How much is<br />

Produced?<br />

• 120-150 150 gpd<br />

per bedroom*<br />

• 50-75 gpd<br />

per person<br />

‣ Where is it Produced?<br />

• Bathroom [60%]<br />

• Toilet 40%<br />

• Bath<strong>in</strong>g 20%<br />

• Kitchen [20%]<br />

• Laundry [20%]


Flow to the System<br />

‣ Amounts<br />

• Daily<br />

• Design<br />

• Monthly<br />

• Average<br />

• 60-70% of Design<br />

• Annually<br />

• 50-60% of Design<br />

‣ Variation <strong>in</strong> flow<br />

• Daily totals<br />

• Comes <strong>in</strong> SHOTS<br />

‣ Waste strength<br />

• Biomat development


System def<strong>in</strong>ition<br />

Use<br />

Pretreatment<br />

F<strong>in</strong>al treatment & dispersal<br />

<strong>Soil</strong> treatment area [SAT]


System geometry<br />

Infiltrative surface<br />

Infiltrative surface


‣ Influences:<br />

‣ Longer area<br />

• Smaller<br />

load<strong>in</strong>g<br />

‣ Shorter length<br />

System Geometry<br />

• Greater<br />

down slope impact<br />

Long<br />

Short


Dra<strong>in</strong>age<br />

Contour L<strong>in</strong>es<br />

Dra<strong>in</strong>field<br />

Direction of Ground water Flow


Dra<strong>in</strong>age<br />

Contour L<strong>in</strong>es<br />

Dra<strong>in</strong>field<br />

Direction of Ground water Flow


Dra<strong>in</strong>age<br />

Contour L<strong>in</strong>es<br />

DRAINFIELD<br />

Direction of Ground water Flow


Dra<strong>in</strong>age<br />

Dra<strong>in</strong>field<br />

Direction of Ground water Flow


Flow pattern <strong>in</strong> sub-surface<br />

surface<br />

trench<br />

Unsaturated flow<br />

Saturated Conditions<br />

Unsaturated flow<br />

Mounded Groundwater<br />

Saturated flow


Unsaturated vs. Saturated<br />

Unsaturated<br />

‣ Pores: Air available<br />

‣ Slower:<br />

Next to particles<br />

‣ Aerobic<br />

flow<br />

Saturated<br />

‣ Pores: Volume filled<br />

with water<br />

‣ Faster:<br />

In large pores<br />

‣ Non aerobic


Saturated Conditions<br />

Pores are<br />

filled with<br />

water


Unsaturated Conditions<br />

Pores are filled<br />

with air & water<br />

along the soil<br />

particles


HYDROLOGY OF A SEPTIC SYSTEM<br />

Infiltration from<br />

Trenches<br />

Vertical <strong>Movement</strong><br />

through the<br />

Unsaturated Zone<br />

Lateral <strong>Movement</strong><br />

<strong>in</strong> the Saturated Zone<br />

Least Permeable<br />

Ground <strong>Water</strong> Mound<strong>in</strong>g and<br />

Formation of a Saturated Zone<br />

Slowly Permeable Layer


Flow pattern <strong>in</strong> sub-surface<br />

surface<br />

trench<br />

Least Permeable<br />

Ground <strong>Water</strong> Mound<strong>in</strong>g and<br />

Formation of a Saturated Zone<br />

Slowly Permeable Layer


<strong>Soil</strong> terms<br />

‣ <strong>Soil</strong> Horizon<br />

‣ <strong>Soil</strong> Profile<br />

‣ Texture<br />

‣ Structure<br />

‣ Consistence<br />

• M<strong>in</strong>eralogy<br />

‣ Pore size<br />

‣ <strong>Soil</strong> color<br />

Topsoil<br />

Subsoil<br />

Parent Material


10/2/2003 <strong>Soil</strong> and Site. L<strong>in</strong>dbo et al. DRAFT 5


What is unsaturated flow<br />

• Matric potential<br />

• Tension<br />

• Suckicity factor<br />

• Capillary attraction<br />

• Adhesion<br />

• Cohesion<br />

• How does this happen<br />

• Vertical movement<br />

• Lateral movement


‣ Tension<br />

• Suction<br />

• High-to<br />

to-low<br />

Potential<br />

‣ Impacts<br />

Matric potential


Pore size & unsaturated flow<br />

‣ Large pores<br />

water will<br />

moved<br />

predom<strong>in</strong>antly<br />

by gravity<br />

‣ Small pores<br />

water will move<br />

<strong>in</strong> all directions<br />

better & further<br />

Large Pores<br />

Small Pores


Capillary Attraction<br />

‣ Adhesion – attraction between dissimilar<br />

materials<br />

‣ Cohesion –attraction between similar<br />

materials


Capillary Fr<strong>in</strong>ge<br />

‣ Unsaturated zone above the water table<br />

‣ <strong>Water</strong> held <strong>in</strong> this zone by tension (matric<br />

potential, adhesive and cohesive forces)<br />

‣ This zone is generally not important to us,<br />

and is difficult to measure


How does unsaturated flow <strong>in</strong><br />

the soil treatment area happen?<br />

‣ Unsaturated flow is the key<br />

‣ Biomat formation<br />

• BOD<br />

• Oxygen relationship<br />

• TSS<br />

‣ Pressure distribution


Flow pattern <strong>in</strong> a gravity<br />

trench<br />

‣ Biomat Growth (t = 0 = start )


Flow pattern <strong>in</strong> a gravity<br />

trench<br />

‣ Biomat Growth (t = growth)


Flow pattern <strong>in</strong> a gravity<br />

trench<br />

‣ Biomat Growth (t=mature)


Flow pattern with<br />

Pressure Distribution


Pressure distribution


Biomat & sidewalls<br />

‣ Biomat develops along the bottom and then around the<br />

trench<br />

‣ Pond<strong>in</strong>g levels use sidewalls<br />

‣ Excessive pond<strong>in</strong>g depths may create saturated flow<br />

‣ Narrower allows more surface area<br />

‣ Narrower allows better O2 transfer


<strong>Soil</strong> treatment area siz<strong>in</strong>g<br />

‣ Sewage effluent characteristics<br />

‣ <strong>Soil</strong> properties<br />

• Texture<br />

• Structure<br />

• Consistence/ M<strong>in</strong>eralogy<br />

‣ The biomat<br />

‣ Hydraulic conductivity?


Long Term Acceptance Rate<br />

LTAR<br />

‣ The biomat controls the ability of the soil to<br />

accept effluent: this is the LTAR<br />

‣ Generally State codes dictate LTARs<br />

‣ CONFUSION<br />

• On the relationship of LTAR & Ksat<br />

• Hold on we will get there<br />

• on the relationships between texture/structure<br />

Constance and the Perc rate


LTAR<br />

‣ Texture/ Structure<br />

‣ Other tests-<br />

Saturated conductivity<br />

Percolation rates<br />

<strong>Soil</strong> Characteristics and <strong>Soil</strong> Siz<strong>in</strong>g Factor<br />

(> 3' separation)<br />

Percolation Rate <strong>Soil</strong> Siz<strong>in</strong>g Factor<br />

m<strong>in</strong>utes per <strong>in</strong>ch <strong>Soil</strong> Texture square feet/ gallon<br />

(mpi) per day(sqft/ gpd)<br />

faster than 0.1* Coarse sand 0.83<br />

0.1 to 5 Medium sand 0.83<br />

Loamy sand<br />

0.1 to 5** F<strong>in</strong>e sand 1.67<br />

6 to 15 Sand y loam 1.27<br />

16 to 30 Loam 1.67<br />

31 to 45 Silt loam 2.00<br />

Silt<br />

46 to 60 Clay loam 2.20<br />

Sandy clay<br />

Silty clay<br />

over 61 to 120*** Clay<br />

Sandy clay<br />

4.20<br />

Silty clay<br />

slower than 120****<br />

*Use systems for rapidly permeable soils:<br />

pressure distribution or serial distribution with<br />

no trench >25% of the total system.<br />

**<strong>Soil</strong> hav<strong>in</strong>g 50% or more f<strong>in</strong>e sand plus very f<strong>in</strong>e sand.<br />

***A m ou n d m u st be u sed .<br />

****An oth er or p erform an ce system m u st be u sed


Influenc<strong>in</strong>g the Biomat<br />

Good<br />

‣ Design<br />

‣ Load<strong>in</strong>g<br />

• Hydraulic<br />

• Organic<br />

‣ Rest<strong>in</strong>g<br />

‣ Depth of cover<br />

• Oxygen availability<br />

Bad<br />

‣ Peroxide<br />

‣ Acid


Saturated soils conta<strong>in</strong> free<br />

Free water is not under a suction, and<br />

water<br />

flows <strong>in</strong> response to gravity.


What is Saturation<br />

‣ A horizon is saturated when the soil water<br />

pressure is zero or positive<br />

‣ This water has a pressure greater than<br />

atmospheric pressure, and pushes air out<br />

of holes <strong>in</strong> the ground<br />

In layman's terms<br />

‣ <strong>Water</strong> flows from the soil <strong>in</strong>to a hole


Auger hole <strong>in</strong> soil is filled<br />

with air just after digg<strong>in</strong>g<br />

<strong>Water</strong> table<br />

Air


Auger hole <strong>in</strong> soil is filled<br />

with air just after digg<strong>in</strong>g<br />

<strong>Water</strong> table<br />

Air<br />

14 psi


<strong>Water</strong> below water table has pressure greater<br />

that air pressure<br />

<strong>Water</strong> table<br />

Air<br />

<strong>Water</strong> pushes air out of hole


Eventually hole fills with water to the level of<br />

the water table where<br />

water pressure=air pressure<br />

Unsaturated soil<br />

(water pressure<br />

< air pressure)<br />

Air<br />

Saturated soil<br />

(water pressure<br />

>air pressure)


F<strong>in</strong>d<strong>in</strong>g saturation <strong>in</strong><br />

soils<br />

Identify<strong>in</strong>g saturation by look<strong>in</strong>g for free<br />

water is easy to do <strong>in</strong> the field with<br />

pits or auger holes.


Saturated flow<br />

Onsite System<br />

• Gravity<br />

• Slope<br />

• Hydraulic gradient<br />

• Restrictions<br />

• <strong>Soil</strong><br />

Percolation<br />

Evaporation<br />

Well<br />

Groundwater<br />

Gradient


Darcy’s law<br />

Flow (Q)/At = Ksat x dH/dL<br />

‣ Saturated Flow<br />

‣ Ksat<br />

‣ Slope<br />

‣ Applications


Some approximate values of<br />

Saturated Hydraulic Conductivity & comments<br />

Ksat Ksat Comments<br />

(cm/s)<br />

(<strong>in</strong>/h)<br />

1 x 10 -2<br />

5 x 10 -3<br />

5 x 10 -4<br />

5 x 10 -5<br />


Calculat<strong>in</strong>g Ksat<br />

‣ In lab process<br />

‣ Double r<strong>in</strong>g <strong>in</strong>filtrometer<br />

‣ Amoozemeter read<strong>in</strong>g<br />

‣ Perc tests?<br />

Double r<strong>in</strong>g <strong>in</strong>filtrometer


Elevation 102<br />

40’ apart<br />

Elevation 98<br />

Sand Ksat = 10 <strong>in</strong>/hr<br />

Q (1 sqft) = Slope x Ksat x Area<br />

= (102’- 98’)/ 40’ x 10 <strong>in</strong>/hr x 1 sqft<br />

= 4’/40’ x 10 <strong>in</strong>/hr x 1sqft x ft/12”<br />

= .083 cuft/hr x 7.5 gal/cuft x 24 hr/day<br />

= 15 gpd per sqft


Calculation of Q<br />

‣ A = 1 ft 2<br />

‣ Ksat = 10 <strong>in</strong>/hr<br />

‣ Convert Ksat to ft/hr<br />

‣ 10 <strong>in</strong>/hr X 1ft/12<strong>in</strong><br />

‣ = 0.83 ft/hr<br />

‣ Gradient = dH/dL<br />

dL<br />

‣ = (102’-98’)/40’ = 4’/40’<br />

‣ = 0.1


Calculation of Q<br />

‣ Q = K x dH/dL<br />

dL x A<br />

‣ = 0.83 ft/hr x 0.1 x 1 ft 2<br />

‣ Q = 0.083 ft 3 /hr<br />

‣ Calculate GPD<br />

‣ 7.5 gal/ft 3 x 0.083 ft 3 /hr x 24 hr/d<br />

‣ 7.5 gal/ft<br />

3 x 0.083 ft 3 /hr<br />

x 24 hr/d<br />

‣ Q = 15 gal/day


Lateral movement<br />

L<strong>in</strong>ear Load<strong>in</strong>g Rate<br />

‣ Overall system issue<br />

‣ Controlled by “smallest w<strong>in</strong>dow”<br />

‣ Related to:<br />

• Over all length<br />

• Over all [Compound<strong>in</strong>g] flow


Slope Considerations<br />

1<br />

2 Horizontal Flow 3


Bouma Study<br />

‣ Biomat = LTAR<br />

‣ BUT Be Careful<br />

‣ Relationship to biomat {crust<strong>in</strong>g} rates<br />

‣ Limits are different for sand:clay


Where the two flows meet<br />

‣ Trenches<br />

• Biomat: : Flow control<br />

‣ Unsaturated zone<br />

• Separation<br />

• Treatment<br />

‣ Mound<strong>in</strong>g<br />

• Rais<strong>in</strong>g of saturated levels<br />

‣ Ground water<br />

• Saturated flow


Putt<strong>in</strong>g it together<br />

Backfilled<br />

<strong>Soil</strong><br />

<strong>Soil</strong> Surface<br />

Gravel<br />

Air Space<br />

Distribution<br />

Pipe<br />

Wastewater<br />

Saturated<br />

Zone<br />

<strong>Water</strong> Flow<br />

Path<br />

Unsaturated Zone<br />

NOT TO SCALE<br />

<strong>Water</strong> Table or an Impermeable layer


Groundwater Mound<strong>in</strong>g<br />

‣ What is it<br />

• The rais<strong>in</strong>g of the saturated zone above a<br />

restriction or watertable<br />

‣ Calculation?<br />

• Simple (Darcy’s law)<br />

• Complex (e.g., Modflow)<br />

‣ Tough to apply<br />

‣ The closer you are to the water the more<br />

important mound<strong>in</strong>g becomes


Summary of Influences on<br />

System performance<br />

‣ Saturated conditions<br />

• Lack of treatment<br />

• Preferential flow<br />

‣ Too high a LLR<br />

• Down slope surfac<strong>in</strong>g [blow out]<br />

‣ Excessive biomat growth<br />

• Organic load<strong>in</strong>g<br />

‣ Construction soil damage


Conclusions<br />

‣ Flow above/through the Biomat is<br />

saturated<br />

‣ Flow <strong>in</strong>to the soil from the biomat is<br />

unsaturated<br />

‣ Biomat reduces/controls the flow from a<br />

system<br />

‣ Flow is generally vertical<br />

‣ More research is necessary


Hydrologic cycle<br />

Precipitation<br />

Septic System<br />

Well<br />

Infiltration<br />

Evapotranspiration<br />

Wastewater<br />

Input<br />

Ground <strong>Water</strong><br />

Mound<strong>in</strong>g<br />

Deep<br />

Percolation<br />

Lateral Flow<br />

Runoff<br />

Slowly Permeable layer<br />

Vadose Zone<br />

Stream<br />

<strong>Water</strong> Table<br />

Slow Mov<strong>in</strong>g<br />

Ground <strong>Water</strong><br />

Impermeable Layer


Homework<br />

‣ Questions<br />

‣ Trench example<br />

• Calculate downward movement<br />

• Lateral movement<br />

• Biomat impacts<br />

‣ Darcy’s Law

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!