06.12.2012 Views

Process Analysis and Simulation for the Production of - MIEMA

Process Analysis and Simulation for the Production of - MIEMA

Process Analysis and Simulation for the Production of - MIEMA

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Meeting Malta<br />

Meeting with Malta University<br />

La Valletta, November 5 th , 2008<br />

PROCESS ANALYSIS AND<br />

SIMULATION FOR THE PRODUCTION<br />

OF BIOFUELS AND SYNFUELS<br />

Alberto Bertucco<br />

Dipartimento di Principi e Impianti<br />

di Ingegneria Chimica, Università di Padova<br />

5 November 2008 - slide 1


Meeting Malta<br />

Definition <strong>of</strong><br />

sustainable development<br />

Humanity has <strong>the</strong> ability<br />

to make development sustainable, i.e.<br />

to ensure that it meets <strong>the</strong> needs <strong>of</strong> <strong>the</strong> present<br />

without compromising <strong>the</strong> ability <strong>of</strong> future<br />

generations to meet <strong>the</strong>ir own needs<br />

(The (The Bruntl<strong>and</strong> Bruntl<strong>and</strong> Report, Report, 1987) 1987)<br />

5 November 2008 - slide 2


Meeting Malta<br />

Where will we find<br />

<strong>the</strong> energy we need?<br />

�� in nuclear reactions<br />

�� in solar radiation<br />

�� in energy savings<br />

�� in renewable sources<br />

5 November 2008 - slide 3


Meeting Malta<br />

Renewable Energy Sources ( (RES RES)<br />

�� WOOD<br />

�� VEGETAL/ANIMAL OILS<br />

�� STARCH/SUGAR<br />

�� WASTES<br />

�� HYDRAULIC POWER<br />

�� WIND POWER<br />

�� GEOTHERMAL POWER<br />

�� OCEANIC WAVES POWER<br />

biomasses<br />

NOTE: hydrogen is NOT an energy source source, , it can be<br />

a tool to store <strong>and</strong> transport energy<br />

5 November 2008 - slide 4


Meeting Malta<br />

RES: solar energy<br />

�� <strong>the</strong> so so-called called “<strong>the</strong>rmal solar”<br />

�� industrial photosyn<strong>the</strong>sis (biomasses)<br />

�� chemical photocatalysis<br />

�� photovoltaic<br />

NOTE: solar energy is a huge amount amount, , yet it is<br />

very diluited (1 kW/m2, at this latitude)<br />

5 November 2008 - slide 5


Meeting Malta<br />

A special problem:<br />

oil <strong>and</strong> transport fuels availability<br />

�� 60% <strong>of</strong> <strong>the</strong> oil produced is consumed as<br />

transportation fuel<br />

�� 98 % <strong>of</strong> transportation fuels is produced<br />

from oil (2% is Natural Gas)<br />

What shall we do without oil?<br />

What will come after oil?<br />

5 November 2008 - slide 6


Meeting Malta<br />

A crucial point: costs,<br />

i.e. economical sustainability<br />

�� The barrel price: what is ahead? (PLOT)<br />

�� Alternatives <strong>for</strong> <strong>the</strong> next 30 years<br />

– SNG, LNG<br />

– Syn<strong>the</strong>tic fuels (GTL, CTL, BTL)<br />

– biodiesel <strong>and</strong> bioethanol<br />

– Biogas, RDF (solido)<br />

– Reduction <strong>of</strong> fuel dem<strong>and</strong><br />

5 November 2008 - slide 7


The The oil price price<br />

spot oil price: historical trend vs. actual price<br />

120,000<br />

historical trend<br />

110,000<br />

actual price<br />

100,000<br />

90,000<br />

80,000<br />

70,000<br />

60,000<br />

50,000<br />

oil price ($/bbl)<br />

40,000<br />

30,000<br />

20,000<br />

10,000<br />

0,000<br />

14/1/09<br />

20/3/08<br />

25/5/07<br />

29/7/06<br />

2/10/05<br />

6/12/04<br />

10/2/04<br />

16/4/03<br />

20/6/02<br />

24/8/01<br />

28/10/00<br />

2/1/00<br />

8/3/99<br />

12/5/98<br />

16/7/97<br />

19/9/96<br />

24/11/95<br />

28/1/95<br />

3/4/94<br />

7/6/93<br />

11/8/92<br />

16/10/91<br />

20/12/90<br />

23/2/90<br />

29/4/89<br />

3/7/88<br />

7/9/87<br />

11/11/86<br />

15/1/86<br />

21/3/85<br />

25/5/84<br />

30/7/83<br />

3/10/82<br />

7/12/81<br />

10/2/81<br />

16/4/80<br />

21/6/79<br />

25/8/78<br />

29/10/77<br />

2/1/77<br />

data<br />

5 November 2008 - slide 8<br />

Meeting Malta


Meeting Malta<br />

<strong>Process</strong>es involved<br />

in alternative fuels production<br />

• Combustion<br />

• Gasification<br />

• Pyrolysis<br />

• Trans-esterification<br />

Trans esterification<br />

• Fermentation<br />

• Re<strong>for</strong>ming<br />

• …<br />

5 November 2008 - slide 9


Meeting Malta<br />

The map <strong>of</strong> bi<strong>of</strong>uels<br />

BIOMASSA<br />

RACCOLTA<br />

TRATTAMENTI<br />

TERMICI<br />

Syngas<br />

SEPARAZIONE E<br />

PRETRATTAMENTO<br />

Zuccheri semplici<br />

Polisaccaridi<br />

• amido<br />

• cellulosa<br />

• emicellulosa<br />

Lignina<br />

Lipidi<br />

Oli di pirolisi<br />

idrocarburi<br />

Alcoli<br />

• etanolo<br />

• butanolo<br />

Idrocarburi ciclici<br />

Acidi grassi e metilesteri<br />

Alcani lineari<br />

Miscele alcoliche, carburanti di sintesi (FT fuels)<br />

Metodi<br />

biochimici<br />

Metodi<br />

termochimici<br />

5 November 2008 - slide 10


Meeting Malta<br />

Bioethanol:<br />

first generation process fundamentals<br />

sugar*<br />

corn*<br />

Fermentation<br />

Raw flour<br />

Recycle <strong>of</strong> H 2O<br />

beer<br />

Distillazione<br />

Milling Dehydration<br />

distillation: stripping <strong>of</strong> alcohol,<br />

fractionation (3-5 columns, at<br />

different pressures)<br />

ethanol >99%<br />

solids<br />

+ H 2O<br />

etanolo >92%<br />

Evaporation<br />

Drying<br />

Animal food<br />

Steam consumption: 2.2-2.8 kg/L EtOH H 2O consumption : ~3 L/L EtOH<br />

5 November 2008 - slide 11


Meeting Malta<br />

The first plant in Italy<br />

(Triera S.p.A., Porto Marghera)<br />

Main features:<br />

maximum productivity: 100.000 t/y<br />

Raw material used: 350.000 t/y<br />

Agricultural l<strong>and</strong>: 30.000 ha<br />

Plant area: 6,5 ha<br />

Investment: 100 million €<br />

Crucial factors<br />

�� raw material available in <strong>the</strong> surroundings<br />

�� close to <strong>the</strong> market<br />

�� Efficient logistics<br />

�� Plant integration<br />

close to <strong>the</strong> market (Refineries (Refineries + + public public transpor transpor fleets) fleets)<br />

5 November 2008 - slide 12


Meeting Malta<br />

<strong>the</strong> “dry milling” process:<br />

Block Flow Diagram (BFD)<br />

steam<br />

water<br />

corn<br />

340 kt/y<br />

Liquefaction SSF<br />

Jet cooking<br />

Mashing<br />

Milling<br />

Distillation<br />

Dehydration<br />

stillage<br />

EtOH >92%<br />

EtOH >99%<br />

110.5 kt/y<br />

CO 2<br />

110 kt/y<br />

Centrifuge<br />

Evaporation<br />

Dry house<br />

DDGS<br />

99.5 kt/y<br />

5 November 2008 - slide 13


Meeting Malta<br />

Ethanol recovery:<br />

an example <strong>of</strong> technical features<br />

from<br />

fermentation<br />

decanter<br />

steam<br />

steam<br />

beer<br />

column<br />

+H2O →<br />

to recycle<br />

stripping<br />

column<br />

to dryhouse<br />

rectifying<br />

column<br />

to recycle<br />

to molecular sieves<br />

5 November 2008 - slide 14


Meeting Malta<br />

Energy duties <strong>of</strong> <strong>the</strong> process:<br />

technological alternatives<br />

� The process requires about 6.5 MWe <strong>of</strong><br />

electricity, 26.6 MW <strong>of</strong> steam, 11 MW <strong>of</strong><br />

<strong>the</strong>rmal power <strong>for</strong> DDGS drying<br />

� Three alternatives were studied, all based<br />

on combined heat <strong>and</strong> power production,<br />

CHP):<br />

Gas turbine<br />

Fuel oil engine<br />

DDGS burner<br />

� The three alternatives were compared to a<br />

base case where steam <strong>and</strong> electricity are<br />

supplied by an external source<br />

5 November 2008 - slide 15


Meeting Malta<br />

CHP: turbina a gas<br />

La stazione CHP a gas naturale è stata progettata per assicurare il<br />

completo fabbisogno di vapore. Il calcolo è stato eseguito sotto le<br />

seguenti ipotesi:<br />

P el (MW) 25.2<br />

η el (%) 34.6<br />

P term,in (MW) 72.8<br />

Consumo di gas (kg/h) 6604<br />

capitale investito (M€) 14.15<br />

L’eccesso di energia elettrica è venduto ed immesso nella rete.<br />

I fumi di combustione potrebbero essere sfruttati per essiccare il<br />

DDGS.<br />

5 November 2008 - slide 16


Meeting Malta<br />

CHP:<br />

motore ad olio combustibile<br />

Il generatore CHP ad olio vegetale è stato dimensionato per<br />

soddisfare la sola richiesta di energia elettrica.<br />

Si sono assunte le seguenti ipotesi:<br />

P el (MW) 7.9<br />

η el (%) 46.0<br />

P term,in (MW) 17.2<br />

oil consumption (kg/h) 1613<br />

capital investment (M€) 7.41<br />

Questo generatore produce soltanto 4 MW potenza termica. Il<br />

fabbisogno rimanente deve essere prodotto attraverso un bollitore a<br />

metano. In questo caso I fumi vengono utilizzati per l’essiccamento<br />

del DDGS.<br />

5 November 2008 - slide 17


Meeting Malta<br />

CHP: bruciatore di DDGS<br />

Si è tenuto conto della possibilità di sfruttare l’intera produzione di<br />

DDGS come combustibile per <strong>for</strong>nire sia il calore sia l’energia elettrica<br />

necessaria al processo (Morey et al., 2006), e si è eseguito il calcolo<br />

sulla base delle ipotesi seguenti:<br />

P el (MW) 20.2<br />

η el (%) 30<br />

P term,in (MW) 67.3<br />

capitale investito (M€) 20.25<br />

Il gr<strong>and</strong>e vantaggio di questa alternativa tecnica sta nella possibilità<br />

di ottenere Certificati Verdi (Green Credits, 125.28 €/MWh). Lo<br />

stesso discorso vale se si utilizza una centrale ad olio vegetale (ma<br />

questo da dove viene?).<br />

5 November 2008 - slide 18


Meeting Malta<br />

Bioethanol:<br />

Second generation processes<br />

� From lignocellulose: biological process<br />

– pretreatment <strong>for</strong> cellulose (glucose) <strong>and</strong> emicellulose (xilose)<br />

extraction<br />

– Fermentation <strong>of</strong> glucose e xilose to ethanol<br />

– Ethanol rectification<br />

– treatment/combustion <strong>of</strong> solids <strong>and</strong> black liquor (recovery <strong>of</strong><br />

energy)<br />

� From lignocellulose: <strong>the</strong>rmochemical process<br />

– biomass gasification to produce syngas (H 2 e CO)<br />

– Syngas fermentation to ethanol<br />

– Electricity production<br />

5 November 2008 - slide 19


Meeting Malta<br />

Second generation <strong>Process</strong>:<br />

<strong>the</strong> basic idea<br />

Biomass<br />

collection<br />

pre-processing<br />

pretreatment<br />

several tecnical solutions<br />

<strong>for</strong> each step<br />

many possible<br />

integrations among steps<br />

Distillation <strong>and</strong><br />

dehydration<br />

Separation <strong>of</strong> lignin + emicellulose<br />

energy<br />

hydrolysis<br />

production<br />

Enzymatic<br />

� Release <strong>of</strong> cellulose <strong>and</strong> hydrolysis e C5 sugars<br />

• acid or alkaline treatment<br />

• steam explosion (with acid or NH3) fermentation <strong>of</strong><br />

conditioningo<br />

sugars (C5 C6)<br />

5 November 2008 - slide 20


Meeting Malta<br />

Biodiesel: BFD<br />

5 November 2008 - slide 21


Meeting Malta<br />

<strong>Process</strong> analysis, simulation<br />

<strong>and</strong> optimization by PTA<br />

5 November 2008 - slide 22


Meeting Malta<br />

Conclusions<br />

� Chemical <strong>and</strong> process engineering techniques are<br />

well established to develop any bi<strong>of</strong>uel processes<br />

� Three steps involved: process analysis, simulation<br />

<strong>and</strong> optimization<br />

� Quantitative in<strong>for</strong>mations can be provided on <strong>the</strong><br />

process per<strong>for</strong>mances, including energy integration<br />

� These calculations are <strong>the</strong> basis <strong>for</strong>:<br />

– Economical-financial analysis <strong>of</strong> <strong>the</strong> process<br />

– Plant design <strong>and</strong> construction<br />

� Kinetic in<strong>for</strong>mations from biologists <strong>and</strong><br />

biotecnologists are essential <strong>for</strong> a reliable result<br />

5 November 2008 - slide 23


Alberto Alberto Bertucco<br />

Bertucco<br />

Pr<strong>of</strong>essore Ordinario<br />

Meeting Malta<br />

GReEn Development<br />

Group Group <strong>for</strong> Renewable Energy<br />

DIPIC – Università di Padova<br />

Chiara Chiara Chiara Piccolo<br />

Piccolo<br />

Dottor<strong>and</strong>a<br />

Fabrizio Fabrizio Bezzo<br />

Bezzo<br />

Ricercatore Universitario<br />

Giada Giada Franceschin<br />

Franceschin<br />

Dottor<strong>and</strong>a<br />

Maria Maria Maria Sudiro Sudiro<br />

Sudiro<br />

Dottor<strong>and</strong>a<br />

Andrea Andrea Zamboni<br />

Zamboni<br />

Dottor<strong>and</strong>o<br />

5 November 2008 - slide 24


Meeting Malta<br />

Thank You very much<br />

5 November 2008 - slide 25

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!