22.09.2015 Views

6 IENVE_Elect and Magn__Electromagnetic Induction_ 2014 vrs02a

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Elect</strong>ricity <strong>and</strong> <strong>Magn</strong>etism<br />

<strong>Elect</strong>romagnetic <strong>Induction</strong><br />

Lectures by<br />

Jarmo Lilja<br />

Tampere University of Applied<br />

Sciences<br />

<strong>2014</strong>


<strong>Elect</strong>romagnetic <strong>Induction</strong><br />

• Basic concepts<br />

<br />

<br />

<br />

Power sources <strong>and</strong> emf<br />

Faraday’s <strong>and</strong> Lenz’s Laws<br />

<strong>Magn</strong>etic flux<br />

21-Feb-14 TAMK University of Applied Sciences 2


<strong>Elect</strong>romagnetic <strong>Induction</strong><br />

• Introduction<br />

<strong>Magn</strong>etically induced currents<br />

N<br />

B<br />

N<br />

B<br />

S<br />

<strong>Magn</strong>tic field B<br />

increases<br />

S<br />

<strong>Magn</strong>etic field B<br />

degreases<br />

21-Feb-14 TAMK University of Applied Sciences 3


<strong>Elect</strong>romagnetic <strong>Induction</strong><br />

Applications<br />

• AC generator for emf production<br />

• Mechanical energy transformation to electrical energy<br />

T<br />

Period<br />

A<br />

w<br />

ˆE<br />

Voltage amplitude<br />

N<br />

S<br />

ˆE<br />

V<br />

Rotation of coil<br />

Production of emf<br />

21-Feb-14 TAMK University of Applied Sciences 4


<strong>Elect</strong>romagnetic <strong>Induction</strong><br />

• Metal detectors<br />

induced currents<br />

21-Feb-14 TAMK University of Applied Sciences 5


<strong>Elect</strong>romagnetic <strong>Induction</strong><br />

• Wind turbine<br />

21-Feb-14 TAMK University of Applied Sciences 6


<strong>Elect</strong>romagnetic <strong>Induction</strong><br />

• Basics<br />

<br />

<br />

<br />

Emf = voltage which maintains<br />

the electrical current of circuit<br />

<strong>Elect</strong>rical power supplies could be<br />

for example<br />

batteries,accumulators<br />

But how it is possible to convert<br />

mechanical energy into electrical<br />

energy?<br />

Rotating steam turbine<br />

• Faraday’s <strong>and</strong> Lenz’s law<br />

<br />

<br />

Experiment in figures below<br />

• The bar magnet is moved<br />

towards to coil or away from it<br />

<strong>Elect</strong>rical current is induced into<br />

coil<br />

• The direction of I depends on<br />

wether the flux density B is<br />

increasing or degreasing with<br />

time<br />

Generator<br />

N<br />

B<br />

N<br />

B<br />

emf<br />

<br />

<br />

<strong>Magn</strong>etically induced currents<br />

Principles developed 150 years ago<br />

• FARADAY’S LAW<br />

S<br />

<strong>Magn</strong>etic<br />

flux density<br />

B increases<br />

S<br />

<strong>Magn</strong>etic<br />

flux<br />

density B<br />

degreases<br />

21.2.<strong>2014</strong> Jarmo Lilja TAMK Fysiikan laitos 7


<strong>Elect</strong>romagnetic <strong>Induction</strong><br />

<br />

<br />

New quantity is needed:<br />

magnetic flux F<br />

<strong>Magn</strong>etic flux F is defined as<br />

F<br />

B<br />

=<br />

B d A ,<br />

A<br />

_<br />

_<br />

<br />

• where B = magnetic flux<br />

density<br />

• d  = surface area vector on<br />

surface of conductor loop<br />

See figure where magnetic flux<br />

lines are intersects the surface<br />

• The orientation of surface<br />

respect to magnetic flux density<br />

is indicated by the surface<br />

vector d (pependicular to the<br />

surface) .<br />

21.2.<strong>2014</strong> Jarmo Lilja TAMK Fysiikan laitos 8


•<br />

<strong>Elect</strong>romagnetic <strong>Induction</strong><br />

Properties of magnetic<br />

flux F :<br />

• Proportional to number of<br />

intersected flux lines in<br />

surface A<br />

• The unit is weber = 1T .<br />

m 2 =V . s.<br />

The connection between<br />

time varying flux F <strong>and</strong><br />

induced emf E is<br />

Faraday’s law<br />

E<br />

=<br />

<br />

dF<br />

dt<br />

B<br />

• i.e the induced emf of the<br />

conductor loop is a time<br />

derivative of magnetic flux<br />

• If flux F is not changing<br />

• then E = 0.<br />

• Lenz’s law<br />

• The direction of induced<br />

current<br />

• It is trying to<br />

resist the change<br />

of magnetic flux<br />

density<br />

The new magnetic field<br />

of induced current will<br />

resist the external<br />

magnetic field to<br />

increase or weaken<br />

• Based on the equation the<br />

esential question is<br />

• what are the different<br />

ways to change magnetic<br />

flux with time<br />

21.2.<strong>2014</strong> Jarmo Lilja TAMK Fysiikan laitos 9


<strong>Elect</strong>romagnetic <strong>Induction</strong><br />

Let us look at the flux<br />

quantity<br />

Scalar product for vectors<br />

could be written as<br />

• where q = angle between<br />

B <strong>and</strong> dA<br />

<br />

<strong>Magn</strong>etic flux F will change<br />

with time if if any of the<br />

quantities B , dA or q will<br />

change with time<br />

_ _<br />

B = B (t),<br />

F B<br />

= B d A ,<br />

dA = dA(t) or<br />

• q = q(t)<br />

A<br />

<br />

B . dA = B . dA cos q,<br />

dF<br />

E = N<br />

dt<br />

Time<br />

dependent<br />

flux<br />

A coil with N turns<br />

• the Faraday’s induction law could<br />

be written as<br />

B<br />

F(t)<br />

21.2.<strong>2014</strong> Jarmo Lilja TAMK Fysiikan laitos 10


<strong>Elect</strong>romagnetic <strong>Induction</strong><br />

Esim.<br />

<br />

A coil has 500 turns <strong>and</strong> its<br />

crossection is 20 cm 2 . The coil<br />

is moved into magnetic field,<br />

where the flux density is 0,30 T<br />

in time period 0,02 s. Calculate<br />

the induced emf of the coil. The<br />

surface of coil is all the time<br />

perpendicular to magnetic field<br />

Solution.<br />

N = 500; A = 20 . 10 -4 m 2<br />

∆t = 0,020 s ; E = ?<br />

• Let us calculate the change<br />

of flux dF<br />

• The change is caused by<br />

the change of magnetic flux<br />

density dB<br />

F = B<br />

A = B<br />

A<br />

B<br />

=<br />

=<br />

A B<br />

20 10<br />

= 610<br />

4<br />

4<br />

Vs<br />

0,30<br />

21.2.<strong>2014</strong> Jarmo Lilja TAMK Fysiikan laitos<br />

m<br />

2<br />

T<br />

E<br />

• Induced emf is<br />

=<br />

=<br />

=<br />

A<br />

d F<br />

N<br />

d t<br />

- 500<br />

-15V<br />

V<br />

B 1 = 0<br />

B<br />

F<br />

N<br />

t<br />

-4<br />

610<br />

Vs<br />

0,020s<br />

change<br />

ΔB=B 2 -B 1<br />

A<br />

B<br />

B 2 = 0,3 T<br />

11


<strong>Elect</strong>romagnetic <strong>Induction</strong><br />

• Rotating conductor loop. AC<br />

generator<br />

<br />

<br />

<br />

<br />

<br />

Let us consider a simple<br />

conductor loop adjusted in<br />

a uniform magnetic field<br />

The loop has central axis<br />

as shown in figure<br />

Suppose that the loop is<br />

rotating with a angular<br />

velocity w<br />

Angular velosity w = Dq/Dt<br />

<strong>and</strong> hence Dq =w Dt<br />

• Suppose that t = 0,<br />

when q =0<br />

• Then at time t= t it<br />

is q = wt<br />

What is the voltage V<br />

across the end of the<br />

loop? Now V = emf !<br />

Based on Faraday’s<br />

induction law<br />

•<br />

N<br />

E =<br />

E =<br />

=<br />

A<br />

w<br />

S<br />

V<br />

dΦB<br />

- N<br />

dt<br />

d( BA cos t)<br />

-<br />

dt<br />

BAd(<br />

cos t)<br />

-<br />

dt<br />

<strong>and</strong> then<br />

E = BA<br />

sint<br />

21.2.<strong>2014</strong> Jarmo Lilja TAMK Fysiikan laitos 12


<strong>Elect</strong>romagnetic <strong>Induction</strong><br />

If the coil has N turns we<br />

can get an important<br />

equation<br />

<br />

Example. Draw the emf E(t)<br />

with given quantities shown in<br />

the table below<br />

E<br />

=<br />

NBA sin<br />

t<br />

Substituting w = 2 p f, an<br />

hence<br />

T<br />

Time<br />

period<br />

Amplitude<br />

E<br />

= NB A<br />

sin(2<br />

f t)<br />

ˆE<br />

We can get sine function<br />

• sinusoidal alternating<br />

voltage<br />

• The maximum voltage or<br />

amplitude of voltage is<br />

ˆE<br />

E ˆ<br />

=<br />

N B A<br />

• Frequency f = 1/T where T<br />

= period<br />

21.2.<strong>2014</strong> Jarmo Lilja TAMK Fysiikan laitos 13


<strong>Elect</strong>romagnetic <strong>Induction</strong><br />

• Inductance<br />

Let us take a look at a<br />

circuit where<br />

• emf E<br />

• resistance R<br />

• Coil (with inductance L) ja<br />

• switch K<br />

When the switch is closed<br />

• Increasing current I will produce<br />

into the coil<br />

• Increasing magnetic flux<br />

• Variable flux will produce<br />

• voltage<br />

• Direction of voltage (polarity))<br />

• tries to prevent the change<br />

of current<br />

• Phenomenon: self inductance<br />

I<br />

No inductance<br />

E<br />

R<br />

With inductance<br />

21.2.<strong>2014</strong> Jarmo Lilja TAMK Fysiikan laitos 14<br />

t


<strong>Elect</strong>romagnetic <strong>Induction</strong><br />

Self inductance<br />

• The coil has N turns<br />

• It has the same magnetic<br />

flux F in every loops<br />

• Based on Faraday’s law<br />

induced voltage into coil is<br />

E =<br />

dF<br />

N<br />

dt<br />

• This could be written (N=<br />

constant)<br />

E<br />

=<br />

d(N F)<br />

<br />

dt<br />

• The magnetic flux density B<br />

<strong>and</strong> also magnetic flux F is<br />

directly proportional to<br />

electric current I <strong>and</strong> hence<br />

N F<br />

where L is selfinductance<br />

or shortly inductance<br />

• unit [L] = H = henry<br />

• Induced emf is now E<br />

• And also<br />

=<br />

LΙ<br />

d( NF<br />

)<br />

E = <br />

dt<br />

d( LI )<br />

= <br />

dt<br />

E<br />

=<br />

dI<br />

L<br />

dt<br />

The polarity (”sign”) of<br />

the voltage is such that it<br />

will resist of the change<br />

of current<br />

21.2.<strong>2014</strong> Jarmo Lilja TAMK Fysiikan laitos 15


<strong>Elect</strong>romagnetic <strong>Induction</strong><br />

Mutual inductance<br />

• Two coils near by each other<br />

• Let us denote<br />

• 1-coil:<br />

In the figure there is<br />

increasing current I 1<br />

N 1<br />

N 2<br />

• Alternating current I 1<br />

• Number of turns N 1<br />

• Number of turns N 2<br />

• <strong>Magn</strong>etic flux F 2<br />

• Alternating current in coil 1 will<br />

induce in coil 1 a voltage E 2 into<br />

the coil 2<br />

dI<br />

E M 1<br />

2<br />

= <br />

dt<br />

where M = mutual<br />

inductance<br />

• [M] = H = henry<br />

F 1<br />

I 1<br />

E 2<br />

E 1<br />

• 2-coil:<br />

• <strong>Magn</strong>etic flux F 1<br />

• Alternating current I 2<br />

21.2.<strong>2014</strong> Jarmo Lilja TAMK Fysiikan laitos 16


<strong>Elect</strong>romagnetic <strong>Induction</strong><br />

• Coil 2 will induce into coil<br />

a voltage E 1 , respectively<br />

dI<br />

E M 2<br />

1<br />

= <br />

dt<br />

•<br />

•N 1<br />

•N 2<br />

•F<br />

2<br />

•I 2<br />

•E 1<br />

•E 2<br />

21.2.<strong>2014</strong> Jarmo Lilja TAMK Fysiikan laitos 17


<strong>Elect</strong>romagnetic <strong>Induction</strong><br />

<br />

Exersice. Derive the inductance<br />

of ring solenoid<br />

• Inside<br />

B = <br />

=<br />

<br />

• <strong>Magn</strong>etic flux<br />

F<br />

H<br />

N I<br />

<br />

• Definition of inductance<br />

o<br />

o<br />

= B A<br />

=<br />

L <br />

<br />

o<br />

N I<br />

A<br />

<br />

N F<br />

I<br />

• Substituting F into L we get<br />

inductance of ring solenoid<br />

21.2.<strong>2014</strong> Jarmo Lilja TAMK Fysiikan laitos 18<br />

<br />

L = <br />

D<br />

A<br />

2<br />

N A<br />

<br />

Example. The average diameter<br />

of ring solenoid is 5,0 cm, <strong>and</strong> the<br />

the area of crossection is 4,9<br />

cm 2 , number of turns is 1500 <strong>and</strong><br />

it has an air core<br />

(a) Calculate the inductance of<br />

the ring solenoid<br />

(b) What is the self induced<br />

voltage of the ring solenoid when<br />

the electrical current is<br />

degreasing at the rate of 0,50<br />

kA/s?<br />

o<br />

N


<strong>Elect</strong>romagnetic <strong>Induction</strong><br />

• Applications<br />

<br />

Metal detectors<br />

• Induced current into metal=<br />

eddy currents<br />

<strong>Induction</strong> melting<br />

• Eddy currents will<br />

increase the temperarure<br />

into the melting point<br />

Current signal I o is<br />

flowing in detector coil<br />

producing a magnetic<br />

field B o<br />

The magnetic field of<br />

coil Bo will induse eddy<br />

current into the metal .<br />

The eddy current will<br />

produce an opposite<br />

magnetic field B <strong>and</strong><br />

this field will induse<br />

electrical current I´<br />

into the coil <strong>and</strong> it has<br />

opposite directon than<br />

the original signal<br />

current I o which could<br />

be detected.<br />

<strong>Magn</strong>etic dampers<br />

• Used in measuring devices<br />

• Based on eddy currents<br />

21.2.<strong>2014</strong> Jarmo Lilja TAMK Fysiikan laitos 19


<strong>Elect</strong>romagnetic <strong>Induction</strong><br />

• Applications<br />

Transformers<br />

• Preventing the heating effect by eddy currents the iron core has<br />

a laminated structure<br />

21-Feb-14 TAMK University of Applied Sciences 20

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!