26.09.2015 Views

Characterization techniques for high brightness laser diodes

Characterization techniques for high brightness laser ... - Bright-eu.org

Characterization techniques for high brightness laser ... - Bright-eu.org

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Characterization</strong> <strong>techniques</strong> <strong>for</strong><br />

<strong>high</strong> <strong>brightness</strong> <strong>laser</strong> <strong>diodes</strong><br />

Ignacio Esquivias, José Manuel García Tijero,<br />

Helena Odriozola, Luis Borruel<br />

E.T.S.I.Telecomunicación, Univ. Politécnica de Madrid, Spain<br />

IN COLLABORATION WITH<br />

Nicolas Michel, Alcatel-Thales III-V Lab<br />

Bernd Sumpf, Ferdinand-Braun-Institut für Höchstfrequenztechnik<br />

Acknowledgements<br />

Julia Arias (Universidad Miguel Hernández, Elche, Spain )<br />

Universidad Politécnica Madrid<br />

1<br />

“<strong>Characterization</strong> <strong>techniques</strong>...<br />

Scope and Goals of the tutorial<br />

1. Review of basic measurement <strong>techniques</strong><br />

2. Extraction of device and material parameters<br />

3. Analysis of validity of extracted parameters<br />

4. Analysis of physical origin of main parameters<br />

Universidad Politécnica Madrid<br />

2<br />

“<strong>Characterization</strong> <strong>techniques</strong>...


Outline<br />

Power-Current-Voltage measurements<br />

‣ CW and pulsed measurement set-ups<br />

‣ Parameter extraction<br />

‣ Cavity length dependence<br />

‣ Temperature dependence<br />

Spectral measurements<br />

Thermal resistance measurements<br />

Beam measurements<br />

Universidad Politécnica Madrid<br />

3<br />

“<strong>Characterization</strong> <strong>techniques</strong>...<br />

Power-Current-Voltage<br />

OPTICAL POWER (W)<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

BA Laser<br />

920 nm<br />

2 mm x 100 µm<br />

0.0<br />

0.0<br />

0 1 2 3 4 5 6<br />

CURRENT (A)<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

VOLTAGE (V)<br />

Parameters<br />

‣ Threshold current I th<br />

‣ Slope efficiency η slope<br />

‣ Series resistance R s<br />

‣ Diode voltage V 0<br />

‣ Wall-plug efficiency<br />

Universidad Politécnica Madrid<br />

4<br />

“<strong>Characterization</strong> <strong>techniques</strong>...


LASER DIODE: simplified equations (I)<br />

x<br />

z<br />

y<br />

active<br />

region<br />

metal<br />

contact<br />

p- material<br />

n- material<br />

L<br />

W<br />

Threshold condition: gain = losses<br />

gth = Γ gmat<br />

(n<br />

th<br />

) = αin<br />

+ α<br />

m<br />

= αin<br />

+<br />

1<br />

L<br />

Ln<br />

1<br />

( )<br />

R<br />

Universidad Politécnica Madrid<br />

5<br />

“<strong>Characterization</strong> <strong>techniques</strong>...<br />

η<br />

out<br />

I =V<br />

th<br />

th<br />

act<br />

act<br />

LASER DIODE: simplified equations (II)<br />

P = η ( I − I ) ; I ><br />

slope<br />

q<br />

R( n th<br />

)<br />

2<br />

I = V q ( A n + B n + C n<br />

slope<br />

= η<br />

in<br />

hν<br />

⎡ α<br />

m<br />

q<br />

⎢<br />

⎣α<br />

m<br />

+ αin<br />

th<br />

th<br />

⎤<br />

⎥<br />

⎦<br />

Main assumptions:<br />

th<br />

I<br />

th<br />

3<br />

th<br />

)<br />

carrierdensity<br />

n th<br />

output<br />

0 0<br />

I th<br />

power<br />

• Homogeneity of carriers and photons<br />

• Isothermal conditions<br />

• No gain saturation<br />

⇒ Perfect carrier clamping at threshold<br />

I<br />

Universidad Politécnica Madrid<br />

6<br />

“<strong>Characterization</strong> <strong>techniques</strong>...


CW P-I-V: Experimental set-up<br />

Current<br />

Source /<br />

Voltage meter<br />

LD<br />

Laser Holder<br />

Photodiode + Current meter<br />

(or Power meter)<br />

Integrating sphere<br />

Universidad Politécnica Madrid<br />

7<br />

“<strong>Characterization</strong> <strong>techniques</strong>...<br />

CW P-I-V: Power measurements<br />

LD<br />

Large Area<br />

Photodetector<br />

LD<br />

Small Area<br />

Photodiode<br />

Heat-sink<br />

I PD<br />

Heat-sink<br />

I PD<br />

Direct coupling<br />

Lens coupling<br />

LD<br />

Small Area Photodiode<br />

Heat-sink<br />

I PD<br />

Integrating Sphere<br />

Universidad Politécnica Madrid<br />

8<br />

“<strong>Characterization</strong> <strong>techniques</strong>...


PHOTODIODES<br />

Photodetector Types<br />

THERMAL<br />

(thermopiles, pyroelectric, bolometers)<br />

• High responsivity and low noise<br />

• Fast response<br />

• Wavelength dependent<br />

• Low saturation power: use<br />

attenuators or integrating sphere<br />

• Flat wavelength response (almost)<br />

• High saturation power<br />

• Poor sensitivity<br />

• Slow response<br />

Universidad Politécnica Madrid<br />

9<br />

“<strong>Characterization</strong> <strong>techniques</strong>...<br />

PULSED P-I-V: example experimental set-up<br />

Why Pulsed P-I-V?<br />

AVOID SELF-HEATING<br />

CH1<br />

Current Probe<br />

50 Ω<br />

R S<br />

bias T<br />

CH2<br />

50 Ω<br />

Pulsed Current<br />

Source<br />

LD<br />

PD<br />

V CC<br />

OSCILLOSCOPE<br />

Universidad Politécnica Madrid<br />

10<br />

“<strong>Characterization</strong> <strong>techniques</strong>...


PULSED P-I-V: Current Wave<strong>for</strong>m<br />

Matching Impedance<br />

50 Ω Line Low ImpedanceLine<br />

Resistor R S<br />

Pulsed Voltage<br />

Source<br />

50 Ω<br />

50 Ω<br />

{<br />

LD<br />

Pulsed Current<br />

Source<br />

LD<br />

i(t)<br />

PULSED VOLTAGE<br />

DRIVE<br />

PULSED CURRENT<br />

DRIVE<br />

R S<br />

= 40 Ω R S<br />

= 50 Ω R S<br />

= 100 Ω<br />

Universidad Politécnica Madrid<br />

11<br />

“<strong>Characterization</strong> <strong>techniques</strong>...<br />

PULSED P-I-V: Power measurement<br />

Power<br />

0<br />

0<br />

Time<br />

P peak<br />

< P ><br />

Integrating P(t):<br />

P peak = T/τ<br />

Current<br />

Averaging within a<br />

window<br />

• Digital Oscilloscope<br />

• Box car integrator<br />

Power<br />

Window<br />

Universidad Politécnica Madrid<br />

12<br />

“<strong>Characterization</strong> <strong>techniques</strong>...


PULSED P-I-V: Measurement conditions<br />

⎧ ⎛ t<br />

⎨1<br />

− exp<br />

⎜ −<br />

⎩ ⎝ τ<br />

th<br />

⎞<br />

⎟<br />

⎠⎭ ⎬⎫<br />

P dis<br />

T QW<br />

R th C th<br />

T HS<br />

τ th = R th C th ∼ 1-10µs<br />

Measurement conditions to avoid self-heating:<br />

• Pulse width τ ON > τ th<br />

• Duty cycle τ ON / T ∼ 0.01- 1%<br />

Universidad Politécnica Madrid<br />

13<br />

“<strong>Characterization</strong> <strong>techniques</strong>...<br />

Threshold Current and Slope Efficiency<br />

Optical Power (W)<br />

dP/dI and d 2 P/dI 2 (a.u.)<br />

5.E-02<br />

5.E-02<br />

4.E-02<br />

4.E-02<br />

3.E-02<br />

3.E-02<br />

2.E-02<br />

2.E-02<br />

1.E-02<br />

5.E-03<br />

0.E+00<br />

0.E+00<br />

0.1 0.15 0.2 0.25 0.3 0.35 0.4<br />

Current (A)<br />

d 2 P/dI 2<br />

50%<br />

I th<br />

dP/dI<br />

0.1 0.15 0.2 0.25<br />

Current (A)<br />

0.3 0.35 0.4<br />

0<br />

⎧≈<br />

0<br />

P = ⎨<br />

⎩η<br />

slope<br />

( I − I<br />

( I < I<br />

( I > I<br />

Parameter extraction<br />

• Linear fit I > I th<br />

• Double Slope Fit<br />

• First derivative (50% max.)<br />

• Second derivative (max.)<br />

th<br />

DIFFERENCES NOT<br />

IMPORTANT<br />

)<br />

th<br />

th<br />

)<br />

)<br />

Universidad Politécnica Madrid<br />

14<br />

“<strong>Characterization</strong> <strong>techniques</strong>...


Series Resistance (I)<br />

VOLTAGE (W)<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

BA Laser<br />

920 nm<br />

2 mm x 100 µm<br />

R s<br />

= 66 mΩ<br />

V 0<br />

= 1.55 V<br />

EXPERIMENTAL<br />

LINEAR FIT<br />

LINEAR FIT (I > I th )<br />

V = V 0<br />

+ I ⋅<br />

R S<br />

ALTERNATIVE OPTION:<br />

IdV/dI vs I linear fit<br />

0.0<br />

0 1 2 3 4 5 6<br />

CURRENT (A)<br />

CW: V 0<br />

DECREASES WITH CURRENT!!!<br />

(INTERNAL TEMPERATURE)<br />

Universidad Politécnica Madrid<br />

15<br />

“<strong>Characterization</strong> <strong>techniques</strong>...<br />

Series Resistance (II)<br />

IdV/dI (V)<br />

0.40<br />

0.35<br />

0.30<br />

0.25<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

R S<br />

= 0.95 Ω<br />

m = 1.6<br />

R S<br />

= 0.97 Ω<br />

R S<br />

= 0.94 Ω<br />

0.00<br />

0.00 0.05 0.10 0.15 0.20 0.25 0.30<br />

I th<br />

CURRENT (A)<br />

BA Laser<br />

808 nm<br />

300 x 100 µm 2<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

VOLTAGE (V)<br />

V<br />

=<br />

DERIVATIVE FIT<br />

mkT<br />

q<br />

⎛<br />

Ln<br />

⎜<br />

⎝<br />

I<br />

I<br />

0<br />

⎞<br />

⎟ + I ⋅<br />

⎠<br />

R S<br />

dV mkT<br />

I = + I ⋅ R ; I <<br />

dI q<br />

dV<br />

I = I ⋅ R ; I ><br />

dI<br />

S<br />

I th<br />

S<br />

I th<br />

Universidad Politécnica Madrid<br />

16<br />

“<strong>Characterization</strong> <strong>techniques</strong>...


Wall Plug Efficiency<br />

OPTICAL POWER (W)<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

0 1 2 3 4 5 6<br />

CURRENT (A)<br />

BA Laser<br />

920 nm<br />

2 mm x 100 µm<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

WALL PLUG EFF. (%)<br />

WPE =<br />

P<br />

IV<br />

η<br />

WPE =<br />

out<br />

ext<br />

⋅ E<br />

ph<br />

/ q ⋅( 1−<br />

I / Ith<br />

)<br />

( V + I ⋅ R )<br />

MAIN LOSSES<br />

• η ext < 1<br />

• V 0 > E ph /q<br />

• Series resistance<br />

• Threshold current<br />

0<br />

S<br />

Universidad Politécnica Madrid<br />

17<br />

“<strong>Characterization</strong> <strong>techniques</strong>...<br />

Cavity length dependence of Jth (I)<br />

J<br />

th<br />

=<br />

Ith<br />

L • W<br />

Threshold Current Density (A/cm 2 )<br />

500<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

EXPERIMENTAL<br />

0 5 10 15 20 BA 25 <strong>laser</strong>s 30 35 40<br />

Inverse Cavity Lenght 808 (cm nm<br />

-1 )<br />

How to define W?<br />

• BA: W ∼ Stripe Width<br />

• BA: W ∼ Stripe Width + 10 µm?<br />

• RW: W ∼ Ridge Width + 10 µm?<br />

(large error, non-unifomity)<br />

• Tapered <strong>laser</strong>:<br />

1<br />

< W > = ∫ + ?<br />

L L<br />

{ W ( z)<br />

10 µ m }<br />

dz<br />

Universidad Politécnica Madrid<br />

18<br />

“<strong>Characterization</strong> <strong>techniques</strong>...


Threshold Current Density (A/cm 2 )<br />

300<br />

150<br />

Cavity length dependence of J th (II)<br />

Plot in Log. scale<br />

450 EXPERIMENTAL<br />

LOG. FIT<br />

CHARACTERIZATION OF EPI-LAYER<br />

• Measure I th <strong>for</strong> different L<br />

• Plot J th vs 1/L<br />

J o = 148 A/cm 2<br />

Γ·G o = 82 cm -1<br />

0 5 10 15 20 25 30 35 40<br />

Inverse Cavity Lenght (cm -1 )<br />

g mat<br />

( n)<br />

= G<br />

⎛ 1 ⎞<br />

Ln ⎜ ⎟<br />

1 R<br />

Ln( J th<br />

) = Ln( J ) +<br />

⎝ ⎠<br />

0<br />

L Γ G<br />

J<br />

0<br />

=<br />

J<br />

th<br />

( L = ∞)<br />

0<br />

=<br />

n<br />

Ln(<br />

n<br />

J<br />

trans<br />

0<br />

)<br />

0<br />

αin<br />

+<br />

Γ G<br />

0<br />

Universidad Politécnica Madrid<br />

19<br />

“<strong>Characterization</strong> <strong>techniques</strong>...<br />

Cavity length dependence of Jth (III)<br />

Threshold Current Density (A/cm 2 )<br />

500<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

EXPERIMENTAL<br />

LINEAR FIT<br />

Plot in Lin. scale<br />

g mat<br />

J o = 116 A/cm 2<br />

0 5 10 15 20 25 30 35 40<br />

Inverse Cavity Lenght (cm -1 )<br />

J<br />

0<br />

J<br />

th<br />

= J<br />

= J<br />

( L = ∞)<br />

dg<br />

( n)<br />

= ⋅(<br />

n − n0<br />

)<br />

dn<br />

o<br />

⎛ 1 ⎞<br />

Ln ⎜ ⎟<br />

1 R qdact<br />

+<br />

⎝ ⎠<br />

L Γ dg / dn τ<br />

= J<br />

trans<br />

n<br />

αin<br />

+<br />

Γ dg / dn<br />

qd<br />

τ<br />

act<br />

n<br />

Universidad Politécnica Madrid<br />

20<br />

“<strong>Characterization</strong> <strong>techniques</strong>...


Cavity length dependence of Jth (IV)<br />

Linear or log plot?<br />

Threshold Current Density (A/cm 2 )<br />

500<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

EXPERIMENTAL<br />

LINEAR FIT<br />

LOG. FIT<br />

0 5 10 15 20 25 30 35 40<br />

Inverse Cavity Lenght (cm -1 )<br />

Lin: J o = 116 A/cm 2<br />

Log: J o = 148 A/cm 2<br />

•LOG. scale fit: SQW, low Γ<br />

•LIN. scale fit: MQW, <strong>high</strong> Γ<br />

DO NOT EXTRACT<br />

CONCLUSIONS FROM J 0<br />

,<br />

JUST COMPARE EPI-<br />

MATERIALS<br />

Universidad Politécnica Madrid<br />

21<br />

“<strong>Characterization</strong> <strong>techniques</strong>...<br />

Cavity length dependence of slope efficiency (I)<br />

• Measure Slope Efficiency <strong>for</strong> different L<br />

• Plot η<br />

-1<br />

ext vs L<br />

• Extract Internal Efficiency η in and Internal Losses α in from<br />

linear fit<br />

Inverse External Efficiency<br />

2.4<br />

2.2<br />

2.0<br />

1.8<br />

1.6<br />

η in<br />

= 0.95<br />

α in<br />

= 5.1 cm -1<br />

1.4<br />

EXPERIMENTAL<br />

1.2<br />

LINEAR FIT<br />

1.0<br />

0.00 0.05 0.10 0.15 0.20 0.25<br />

Cavity Length (cm)<br />

η<br />

η<br />

( η + η )<br />

ext<br />

=<br />

slope1<br />

slope2<br />

−1<br />

−1<br />

ext = ηin<br />

⎢<br />

⎡ α + in<br />

L<br />

1<br />

⎣ Ln<br />

q<br />

⋅<br />

hυ<br />

⎤<br />

( 1/ R) ⎥ ⎦<br />

Universidad Politécnica Madrid<br />

22<br />

“<strong>Characterization</strong> <strong>techniques</strong>...


Cavity length dependence of slope efficiency (II)<br />

Internal Efficiency and Internal Losses<br />

1 ) Extremely dependent on number of devices and device lengths<br />

Inverse External Efficiency<br />

31 devices<br />

Removing 2 devices<br />

2.4<br />

2.2 η in<br />

= 0.95<br />

2.4<br />

2.2 η in<br />

= 0.92<br />

2.0 α in<br />

= 5.1 cm 2.0 α in<br />

= 4.4 cm -1<br />

1.8<br />

1.8<br />

1.6<br />

1.6<br />

1.4<br />

1.4<br />

EXPERIMENTAL<br />

EXPERIMENTAL<br />

1.2<br />

1.2<br />

LINEAR FIT<br />

LINEAR FIT<br />

1.0<br />

0.00 0.05 0.10 0.15 0.20 0.25<br />

1.0<br />

0.00 0.05 0.10 0.15 0.20 0.25<br />

Cavity Length (cm)<br />

Cavity Length (cm)<br />

Inverse External Efficiency<br />

Universidad Politécnica Madrid<br />

23<br />

“<strong>Characterization</strong> <strong>techniques</strong>...<br />

Cavity length dependence of slope efficiency (III)<br />

η<br />

−1<br />

ext<br />

[ η ( n )]<br />

−1<br />

=<br />

in th<br />

Internal Efficiency and Internal Losses<br />

2 ) Based on many simple assumptions<br />

⎢<br />

⎡ α + in<br />

1<br />

⎣ Ln<br />

( nth<br />

) L<br />

( ) ⎥ ⎤<br />

1/ R ⎦<br />

α<br />

in<br />

= α + α = α + σ<br />

scat<br />

fc<br />

scat<br />

fc<br />

n<br />

th<br />

η in and α in depend on carrier density and there<strong>for</strong>e on L<br />

L ↓ ⇒n th ↑⇒ α fc ↑<br />

L ↓ ⇒n th ↑⇒ η in ↓<br />

3) In CW, additional temperature effects<br />

DO NOT TRUST α in and η in !!!! , just indicative<br />

Universidad Politécnica Madrid<br />

24<br />

“<strong>Characterization</strong> <strong>techniques</strong>...


Temperature dependence: T 0 and T 1<br />

Optical Power (W)<br />

0.10<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0.00<br />

15 ºC<br />

25 ºC<br />

35 ºC<br />

45 ºC<br />

55 ºC<br />

65 ºC<br />

75 ºC<br />

0 0.2 0.4<br />

Current (A)<br />

I<br />

EMPIRICAL<br />

EXPRESSIONS<br />

th<br />

⎛ T<br />

0<br />

exp T<br />

⎞<br />

( T ) = I<br />

⎜<br />

⎟ th<br />

⎝ 0 ⎠<br />

⎛ T −<br />

( T ) = η<br />

⎜<br />

⎟ slope0<br />

exp<br />

⎝ T ⎠<br />

η<br />

slope<br />

1<br />

⎞<br />

Universidad Politécnica Madrid<br />

25<br />

“<strong>Characterization</strong> <strong>techniques</strong>...<br />

Temperature dependence: T0<br />

140<br />

BA <strong>laser</strong><br />

915 nm<br />

To (K)<br />

130<br />

120<br />

110<br />

100<br />

90<br />

80<br />

BA <strong>laser</strong>s<br />

808 nm<br />

0 0.05 0.1 0.15 0.2 0.25<br />

CAVITY LENGTH (cm)<br />

DEPENDENCE ON<br />

TEMPERATURE<br />

RANGE<br />

LARGE DISPERSION<br />

Universidad Politécnica Madrid<br />

26<br />

“<strong>Characterization</strong> <strong>techniques</strong>...


T 0 : Physical origin<br />

MAIN EFFECTS:<br />

T ↑⇒n th ↑ (gain dependence on T)<br />

n th ↑⇒R (n th ) ↑ (increased recombination)<br />

Typical: Auger recomb. ⇒ T o ↓<br />

g<br />

th<br />

( T ) Γ gmat[n<br />

th<br />

= ( T )] = α ( T ) + α<br />

in<br />

m<br />

I<br />

2<br />

3<br />

( T ) = V q [ A ( T ) n ( T ) + B( T ) n ( T ) C( T ) n ( T ) ]<br />

th act<br />

th<br />

th<br />

+<br />

th<br />

ATENTION :<br />

Poor quality <strong>laser</strong>: <strong>high</strong> threshold (SRH recomb. or<br />

leakage current), but <strong>high</strong> T o<br />

Universidad Politécnica Madrid<br />

27<br />

“<strong>Characterization</strong> <strong>techniques</strong>...<br />

T 1 : Physical origin<br />

η<br />

slope<br />

( T )<br />

= η ( T)<br />

in<br />

hν<br />

⎡<br />

q<br />

⎢<br />

⎣αm<br />

α ⎤<br />

m<br />

+ α ( T )<br />

⎥<br />

in ⎦<br />

ηext (W/A)<br />

0.55<br />

0.53<br />

0.51<br />

0.49<br />

0.47<br />

0.45<br />

BA <strong>laser</strong>s<br />

808 nm<br />

e3<br />

10 20 30 40 50 60 70 80<br />

T (C)<br />

MAIN EFFECTS:<br />

T ↑⇒η in ↓ (Increased<br />

leakage)<br />

T ↑⇒α in ↑ (Increased freecarrier<br />

absorption)<br />

Universidad Politécnica Madrid<br />

28<br />

“<strong>Characterization</strong> <strong>techniques</strong>...


SPECTRAL MEASUREMENTS<br />

EMISSION SPECTRA OF FP LASERS<br />

Gain<br />

cavity losses<br />

longitudinal<br />

modes<br />

carrier<br />

density<br />

0<br />

Wavelength (µm)<br />

lasing mode<br />

30-40 nm<br />

2 kL = 2mπ<br />

δλ ≈<br />

2<br />

λ<br />

2Ln eff<br />

λ∼1 µm,<br />

L = 1 mm,<br />

δλ∼ 0.3 nm<br />

• Poor modal discrimination<br />

• Many modes excited<br />

Universidad Politécnica Madrid<br />

29<br />

“<strong>Characterization</strong> <strong>techniques</strong>...<br />

SPECTRAL PARAMETERS<br />

LOG. PLOT<br />

LINEAR PLOT<br />

OPTICAL POWER (dBm)<br />

0<br />

-20<br />

-40<br />

-60<br />

1270 1280 1290 1300 1310 1320<br />

OPTICAL POWER (a.u.)<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

1290 1300<br />

WAVELENGHT (nm)<br />

WAVELENGTH (nm)<br />

Peak Wavelength: λ p<br />

Spectral width: σ λ<br />

FWHM of spectral envelope<br />

Universidad Politécnica Madrid<br />

30<br />

“<strong>Characterization</strong> <strong>techniques</strong>...


SPECTRA OF HIGH POWER LASERS<br />

Intensity (au)<br />

Intensity (au)<br />

I = 70 mA<br />

70 mA<br />

Intensity (au)<br />

964 965 966 967 968 969 970<br />

967.0 967.5 968.0<br />

Wavelength (nm)<br />

Wavelength (nm)<br />

I = 200 mA<br />

I = mA<br />

200 mA 400 mA<br />

Intensity (au)<br />

I = 100 100 mA<br />

• Changes in spectra<br />

with current (lateral<br />

modes)<br />

• Dependence of<br />

spectra on lateral<br />

position<br />

• Typical spectral<br />

width: 1 - 3 nm<br />

965.5 966.0 966.5 967.0<br />

Wavelength (nm)<br />

968 970 972<br />

Wavelength (nm)<br />

Index Guided Tapered Laser<br />

975 nm nm<br />

Universidad Politécnica Madrid<br />

31<br />

“<strong>Characterization</strong> <strong>techniques</strong>...<br />

INSTRUMENTATION FOR SPECTRAL MEASUREMENTS<br />

Microscope Objective<br />

LD<br />

slit<br />

Grating<br />

Monochromator<br />

PD<br />

Grating<br />

Monochromator:<br />

• Difficult coupling<br />

• Very <strong>high</strong> spectral resolution<br />

(i.e. 0.75 m; 1200 lines/mm ⇒<br />

0.03 nm @ 800 nm)<br />

LD<br />

Heat-sink<br />

Integrating<br />

Sphere<br />

Optical Spectrum<br />

Analyzer<br />

• FO input<br />

• Very good dynamic range<br />

• Typical resolution: 0.1-0.5 nm<br />

Optical Fiber<br />

Optical Spectrum<br />

Analizer<br />

Universidad Politécnica Madrid<br />

32<br />

“<strong>Characterization</strong> <strong>techniques</strong>...


DEPENDENCE OF LASING PEAK ON TEMPERATURE<br />

Peak Wavelength (nm)<br />

825<br />

820<br />

815<br />

810<br />

805<br />

800<br />

795<br />

L = 0.3 mm<br />

L = 0.6 mm<br />

L = 2.1 mm<br />

0.29 nm/K<br />

0.26 nm/K<br />

0.29 nm/K<br />

0 20 40 60 80<br />

Temperature (ºC)<br />

Pulsed Measurements<br />

BA <strong>laser</strong>s<br />

808 nm<br />

• Red shift: band gap vs T<br />

• Blue shift: band filling<br />

Typical: ~ 0.3 nm/K<br />

Universidad Politécnica Madrid<br />

33<br />

“<strong>Characterization</strong> <strong>techniques</strong>...<br />

DEPENDENCE OF LASING PEAK ON CURRENT<br />

40 mA<br />

35 mA<br />

30 mA<br />

25 mA<br />

PULSED:<br />

• Negligible dependence<br />

CW:<br />

• Temperature dependence (red<br />

shift)<br />

I ↑⇒T ↑⇒E g ↓⇒λ p ↑↑<br />

• Mode hopping<br />

20 mA<br />

16 mA<br />

I = 14 mA<br />

Universidad Politécnica Madrid<br />

34<br />

“<strong>Characterization</strong> <strong>techniques</strong>...


MEASUREMENT OF THERMAL RESISTANCE<br />

Heat-sink<br />

T QW<br />

R<br />

th<br />

=<br />

∆T<br />

P<br />

dis<br />

=<br />

I CW<br />

( )<br />

T<br />

− T<br />

QW HS<br />

( VI − Pout<br />

)<br />

T HS<br />

MEASUREMENT PROCEDURE<br />

1. Measure λ p vs T HS in pulsed conditions at fixed I<br />

2. Measure P-I-V and λ p vs I (CW)<br />

3. Calculate T QW from λ p (CW)<br />

4. Calculate R th from T QW and P-I-V<br />

Universidad Politécnica Madrid<br />

35<br />

“<strong>Characterization</strong> <strong>techniques</strong>...<br />

Electro-optical characterisation - Scheme<br />

Temperature<br />

Controller<br />

15°C ≤ T ≤ 75°C<br />

Accuracy ∆T < ± 0.5 K<br />

Test<br />

Chamber<br />

With<br />

Minibar<br />

Calibrated<br />

Integrating<br />

Sphere<br />

Fibre<br />

Current Controller<br />

Profile – LDC 3065<br />

I < 65 A<br />

Accuracy ∆I < ± 1 mA<br />

Det.<br />

Power<br />

Meter<br />

Spectrum<br />

Analyser<br />

∆λ ≤ 0.1 nm<br />

Data Acquisition – Desktop - PC<br />

Universidad Politécnica Madrid<br />

36<br />

“<strong>Characterization</strong> <strong>techniques</strong>...


Outline<br />

Power-Current-Voltage measurements<br />

Spectral measurements<br />

Thermal resistance measurements<br />

Beam measurements<br />

‣ Beam propagation and beam parameters<br />

‣ Far-field measurements<br />

‣ Near field measurements<br />

‣ M 2 measurements<br />

Universidad Politécnica Madrid<br />

37<br />

“<strong>Characterization</strong> <strong>techniques</strong>...<br />

Beam Propagation<br />

IDEAL GAUSSIAN BEAM<br />

Waist d 0 =2 W 0<br />

W(z)<br />

θ = 2θ hw<br />

z<br />

W(z) =<br />

W<br />

0<br />

⎛ λ(z − z0)<br />

1<br />

2<br />

π(W<br />

0<br />

) ⎟ ⎞<br />

+<br />

⎜<br />

⎝ ⎠<br />

2<br />

beam spot size<br />

z →<br />

∞<br />

W(z) ⋅ W<br />

0 ≅<br />

λz<br />

π<br />

θ hw<br />

⋅<br />

W<br />

0<br />

=<br />

λ<br />

π<br />

θ ⋅<br />

d<br />

0<br />

=<br />

4λ<br />

π<br />

DIFRACTION LIMIT<br />

Universidad Politécnica Madrid<br />

38<br />

“<strong>Characterization</strong> <strong>techniques</strong>...


Beam Propagation<br />

ARBITRARY BEAM<br />

How to define the width ?<br />

How to characterize the propagation ?<br />

Universidad Politécnica Madrid<br />

39<br />

“<strong>Characterization</strong> <strong>techniques</strong>...<br />

Beam Propagation<br />

ARBITRARY BEAM<br />

Waist d 0 =2 w 0<br />

W(z)<br />

θ = 2θ hw<br />

z<br />

W<br />

x<br />

(z) =<br />

W<br />

0x<br />

2<br />

⎛ M<br />

xλ(z<br />

− z<br />

1+<br />

⎜<br />

⎝ π(W0x<br />

)<br />

0x<br />

2<br />

)<br />

⎟ ⎞<br />

⎠<br />

2<br />

ONLY VALID IF W x (z) AND<br />

W y (z) ARE DEFINED AS<br />

SECOND MOMENT<br />

WIDTHS<br />

W (z) =<br />

y<br />

W<br />

0y<br />

2<br />

⎛ M<br />

yλ(z<br />

− z<br />

1+<br />

⎜<br />

⎝ π(W0y)<br />

0y<br />

2<br />

) ⎞<br />

⎟<br />

⎠<br />

2<br />

W x<br />

≡ 2⋅σ x<br />

dσ x<br />

= 4⋅σ x<br />

W y<br />

d y<br />

≡ 2⋅σ<br />

y<br />

σ<br />

= 4⋅σ<br />

y<br />

Universidad Politécnica Madrid<br />

40<br />

“<strong>Characterization</strong> <strong>techniques</strong>...


Beam Propagation<br />

then, in both x and y directions<br />

z →<br />

∞<br />

W(z) ⋅ W<br />

0 ≅<br />

M<br />

2<br />

λz<br />

π<br />

π ⋅ W (z) ⋅ W<br />

λ ⋅ z<br />

2<br />

0<br />

M ≡<br />

M 2 : - BEAM PROPAGATION FACTOR (Prof. Siegman)<br />

- BEAM PROPAGATION RATIO (ISO 11146:2005)<br />

- TIMES-DIFRACTION-LIMIT-FACTOR (ISO 11146:1999)<br />

BUT NOT: BEAM QUALITY FACTOR (Prof. Siegman)<br />

θ hw<br />

W<br />

0<br />

=<br />

M<br />

2<br />

λ<br />

π<br />

θ<br />

d<br />

σ 0<br />

=<br />

M<br />

2<br />

4λ<br />

π<br />

Universidad Politécnica Madrid<br />

41<br />

“<strong>Characterization</strong> <strong>techniques</strong>...<br />

Second Moment beam width<br />

• Intensity distribution:<br />

E ( x,<br />

y,<br />

z)<br />

• Beam width:<br />

d<br />

σx<br />

( z)<br />

= 4⋅σ<br />

( z)<br />

x<br />

• First Moment; i.e. Mean Value<br />

x =<br />

∫∫x<br />

⋅<br />

∫∫<br />

E ( x,<br />

y,<br />

z)<br />

dx dy<br />

E ( x,<br />

y,<br />

z)<br />

dx dy<br />

• Second Moments; i.e. Standard Deviation σ x<br />

σ<br />

2<br />

x<br />

( z)<br />

=<br />

∫∫<br />

( x − x)<br />

∫∫<br />

2<br />

⋅E<br />

( x,<br />

y,<br />

z)<br />

dx dy<br />

E ( x,<br />

y,<br />

z)<br />

dx dy<br />

Universidad Politécnica Madrid<br />

42<br />

“<strong>Characterization</strong> <strong>techniques</strong>...


Why M 2 ?<br />

d ⋅θ<br />

Beam Product Parameter BPP = =<br />

4<br />

σ 0 2<br />

M<br />

Invariant in geometrical optics<br />

λ<br />

π<br />

Brightness<br />

B =<br />

P[W]<br />

A [cm²] × Ω[srad]<br />

P<br />

= λ<br />

2 2<br />

⋅M<br />

⋅M<br />

B<br />

2<br />

x y<br />

Power and M 2 define the<br />

Brightness of a source<br />

Universidad Politécnica Madrid<br />

43<br />

“<strong>Characterization</strong> <strong>techniques</strong>...<br />

• Gaussian beam:<br />

M 2 (1/e 2 )<br />

d 2<br />

(z) = d ( z)<br />

4 ( z)<br />

1/e σx<br />

= ⋅σ<br />

x<br />

with d the full width at 1/e 2<br />

1/e<br />

2<br />

• Arbitrary beam: we could define M 2 (1/e 2 )<br />

2<br />

M (1/ e ) = θ 2 d 2<br />

2 π<br />

1/ e<br />

01/ e<br />

BUT THEN THE PROPAGATION DO NOT FOLLOW THE HYPERBOLIC LAW<br />

4λ<br />

d<br />

1/e<br />

2<br />

2<br />

(z)<br />

≠<br />

d<br />

01/e<br />

2<br />

2<br />

2<br />

⎛ M 2λ(z<br />

− z<br />

1/e<br />

1+<br />

⎜<br />

π(d 2<br />

⎝ / 2)<br />

01/e<br />

0<br />

2<br />

) ⎞<br />

⎟<br />

⎠<br />

2<br />

Universidad Politécnica Madrid<br />

44<br />

“<strong>Characterization</strong> <strong>techniques</strong>...


Spatial emission of <strong>laser</strong> <strong>diodes</strong><br />

Fast axis (y)<br />

Near Field<br />

Laser diode<br />

W x<br />

θ y<br />

Optical cavity<br />

θ x<br />

Slow axis<br />

Far-field<br />

• Fast axis (y): z oy = facet; M 2 y∼ 1; θ y<br />

• Slow axis (x): z ox ; M 2 x; w 0x (θ x )<br />

Universidad Politécnica Madrid<br />

45<br />

“<strong>Characterization</strong> <strong>techniques</strong>...<br />

LD<br />

Divergent beam<br />

FF measurements<br />

θ<br />

Rotating<br />

Photodiode<br />

z<br />

a<br />

n<br />

g<br />

l<br />

e<br />

0.0<br />

-20<br />

-10<br />

0<br />

10 θ1/e²<br />

Power<br />

0.2 0.4 0.6 0.8 1.0<br />

θ 1/2<br />

θ<br />

20<br />

ALTERNATIVES<br />

• Rotating LD<br />

• Using lenses and<br />

measuring beam profile<br />

Universidad Politécnica Madrid<br />

46<br />

“<strong>Characterization</strong> <strong>techniques</strong>...


Example of fast axis FF<br />

I (u.a.)<br />

1,0<br />

0,5<br />

• Depend on vertical<br />

waveguide structure<br />

• Fourier trans<strong>for</strong>m of<br />

transverse mode profile<br />

0,0<br />

-60 -30 0 30 60<br />

Angle (°)<br />

Universidad Politécnica Madrid<br />

47<br />

“<strong>Characterization</strong> <strong>techniques</strong>...<br />

Microscope Objective<br />

NF measurements<br />

z<br />

Laser diode<br />

CCD camera<br />

Beam analysis<br />

software<br />

ALTERNATIVES<br />

• Moving slit<br />

• Moving pin-hole<br />

• Near field Scanning<br />

(Fiber tip)<br />

Universidad Politécnica Madrid<br />

48<br />

“<strong>Characterization</strong> <strong>techniques</strong>...


Example of slow axis FF and NF<br />

BA; 1 W<br />

RW; 0.3 W<br />

Tapered <strong>laser</strong>; 0.6 W<br />

1,0<br />

1,0<br />

1,0<br />

0,8<br />

0,8<br />

0,8<br />

FF<br />

I (u.a.)<br />

0,6<br />

0,4<br />

0,2<br />

//<br />

I (u.a.)<br />

0,6<br />

0,4<br />

0,2<br />

//<br />

Intensité (u.a.)<br />

0,6<br />

0,4<br />

0,2<br />

0,0<br />

-15 -10 -5 0 5 10 15<br />

1,0<br />

0,8<br />

Angle (°)<br />

0,0<br />

-25 -20 -15 -10 -5 0 5 10 15 20 25<br />

1,0<br />

//<br />

angle (°)<br />

0,0<br />

-10 -5 0 5 10<br />

Angle (°)<br />

1,0<br />

0,8<br />

NF<br />

I (u.a.)<br />

0,6<br />

0,4<br />

//<br />

I (u.a.)<br />

0,5<br />

Intensité (u.a.)<br />

0,6<br />

0,4<br />

0,2<br />

0,2<br />

0,0<br />

0 40 80 120 160 200 240<br />

x(µm)<br />

0,0<br />

28 32 36 40 44<br />

x (µm)<br />

0,0<br />

50 75 100 125 150 175 200<br />

x (µm)<br />

Universidad Politécnica Madrid<br />

49<br />

“<strong>Characterization</strong> <strong>techniques</strong>...<br />

M 2 Measurements: ISO11146:2005<br />

• The test is based on the measurement of the cross-sectional<br />

power density distribution at a number of axial locations along<br />

the beam propagation axis<br />

• The second moment beam widths d σx<br />

(z) and d σy<br />

(z) are<br />

determined<br />

2<br />

• Hyperbolic fit of d σ (z) to: d (z) = a + bz + cz<br />

σ<br />

d σ<br />

(z)<br />

− b<br />

z 0<br />

=<br />

a<br />

beam waist location<br />

z 0<br />

z<br />

d<br />

1<br />

2 c<br />

σ 0<br />

= 4<br />

ac − b<br />

2<br />

beam width at waist<br />

d σ0<br />

M<br />

2<br />

π<br />

=<br />

8 λ<br />

4ac − b<br />

2<br />

Universidad Politécnica Madrid<br />

50<br />

“<strong>Characterization</strong> <strong>techniques</strong>...


• Laser <strong>diodes</strong>: additional lens<br />

M 2 Measurements: ISO11146:2005<br />

w' 2<br />

• At least 10 different z positions shall be taken (half of them<br />

beyond two Rayleigh lengths)<br />

• Background correction procedures shall be applied to<br />

determine the beam widths<br />

• Alternative methods <strong>for</strong> beam width measurements (ISO11146-<br />

3: 2004):<br />

‣ Variable aperture method<br />

‣ Moving knife method<br />

‣ Moving slit method<br />

Universidad Politécnica Madrid<br />

51<br />

“<strong>Characterization</strong> <strong>techniques</strong>...<br />

Measurement principles – Knife edge<br />

• Knife edge moved through the beam profile<br />

Analysis:<br />

• e.g. beam dimensions from 16 % and 84 % of the<br />

intensity integrals<br />

σ Gauß<br />

knife edge<br />

detector<br />

1.0<br />

0.8<br />

84.1 %<br />

intensity / a.u.<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

15.9 %<br />

e -2(x/σ Gauß )2<br />

13.5 %<br />

edge translation -3 -2 -1 0 1 2 3<br />

position x / σ Gauß<br />

Universidad Politécnica Madrid<br />

52<br />

“<strong>Characterization</strong> <strong>techniques</strong>...


Measurement principles – Moving slit<br />

• Moving slit moved through the beam profile<br />

Analysis:<br />

• e.g. beam dimensions from 13.5 % of the intensity profiles<br />

slit detector<br />

Moving slit:<br />

slit translation<br />

Universidad Politécnica Madrid<br />

53<br />

“<strong>Characterization</strong> <strong>techniques</strong>...<br />

Method of the moving slit – FBH – set-up<br />

f1<br />

Near field wLaser<br />

= dmess<br />

f2<br />

L1 L2 Slit<br />

LD<br />

f 1<br />

f 1 +f 2 f 2<br />

PD<br />

resolution:<br />

∆w = 2 µm<br />

uncertainty:<br />

ca. 6 %<br />

Far field<br />

L1<br />

Θ<br />

Laser<br />

=<br />

f<br />

f<br />

2<br />

1<br />

d<br />

⋅<br />

f<br />

mess<br />

3<br />

Slit<br />

resolution:<br />

LD<br />

f 1 f 1 +f 2 f 3<br />

PD<br />

∆θ = 0.08 °<br />

uncertainty:<br />

ca. 9%<br />

Universidad Politécnica Madrid<br />

54<br />

“<strong>Characterization</strong> <strong>techniques</strong>...


Method of the moving slit – FBH – set-up<br />

Set-up<br />

x-y-ztranslation<br />

stage<br />

∆ = 0.3µm<br />

LD<br />

Slit 20 µm<br />

PD<br />

Step width<br />

3 µm – 90 µm<br />

300 points<br />

I(t) ≤ 50 A<br />

t Pulse<br />

= 1 ms<br />

L1<br />

Near field:<br />

L2<br />

f<br />

f<br />

1 =<br />

2<br />

41<br />

Boxcar<br />

Integrator<br />

Far field:<br />

f<br />

f<br />

2 =<br />

1<br />

0.024<br />

PC<br />

Universidad Politécnica Madrid<br />

55<br />

“<strong>Characterization</strong> <strong>techniques</strong>...<br />

Typical beam profiles (FBH)<br />

near field (facet) beam waist far field<br />

intensity / a.u.<br />

intensity / a.u.<br />

intensity / a.u.<br />

-200 -100 0 100 200<br />

position x / µm<br />

-30 -20 -10 0 10 20 30<br />

position x / µm<br />

-20 -10 0 10 20<br />

angle θ / °<br />

Tapered <strong>laser</strong> λ = 808 nm,<br />

widths<br />

beam waist / µm<br />

far field / °<br />

M 2<br />

L = 2.75 mm,<br />

1/e 2 5.9<br />

13.6<br />

1.3<br />

L RW = 1000 µm, R f = 0.1%,<br />

T = 25°C, P = 2 W 2. mom.<br />

26.5<br />

16.3<br />

7.3<br />

Universidad Politécnica Madrid<br />

56<br />

“<strong>Characterization</strong> <strong>techniques</strong>...


Example of measurement of astigmatism<br />

Fast axis (⊥)<br />

Half-width at 1/e 2 (µm)<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Slow<br />

0<br />

axis (//)<br />

-500 -250 0 250 500<br />

Position of the lens (µm)<br />

Position of the lens<br />

<strong>for</strong> waist at 1/e 2<br />

in the slow axis:<br />

x 0<br />

//<br />

in the fast axis:<br />

x 0<br />

⊥<br />

Astigmatim =<br />

x 0<br />

// - x 0<br />

⊥<br />

Waist in the<br />

slow axis<br />

Waist in the<br />

fast axis<br />

Universidad Politécnica Madrid<br />

57<br />

“<strong>Characterization</strong> <strong>techniques</strong>...<br />

Some Reference Material<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Professor Anthony E. Siegman Web Pages<br />

http://www.stan<strong>for</strong>d.edu/%7Esiegman/<br />

• Laser beam quality tutorial<br />

• An annotated bibliography of references on the definition and<br />

measurement of "<strong>laser</strong> beam quality" and the "M-squared" parameter.<br />

MELLES GRIOT, tecnical documents (http://www.mellesgriot.com/)<br />

LABSPHERE.Technical Document Library.<br />

(http://www.labsphere.com/tecdocs.aspx)<br />

NEWPORT (http://www.newport.com/)Application Notes, Technical Notes<br />

ILX Lightwave.Application Notes, Technical Notes, And White Papers.<br />

http://www.ilxlightwave.com/navpgs/app-tech-notes-white-papers.html<br />

International Engeeniering Consortium. Tutorials.<br />

http://www.iec.org/online/tutorials/<br />

AVTECH Application Notes (Pulsed measurements).<br />

http://www.avtechpulse.com/appnote/<br />

Encyclopedia of Laser Physics and Technology (VIRTUAL LIBRARY).<br />

http://www.rp-photonics.com/encyclopedia.html<br />

Universidad Politécnica Madrid<br />

58<br />

“<strong>Characterization</strong> <strong>techniques</strong>...

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!