29.09.2015 Views

Effect of Chromoso ome Imbalance in Human

Effect of Chromoso i Hn uman. in Human. ome Imbalance - Medportal

Effect of Chromoso i Hn uman. in Human. ome Imbalance - Medportal

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Effect</strong> <strong>of</strong> <strong>Chromoso</strong><br />

<strong>ome</strong> <strong>Imbalance</strong><br />

<strong>in</strong> <strong>Human</strong>.<br />

Małgorzata J.M. Now<br />

waczyk<br />

Hamilton Health Sciences Corporation<br />

and McMaster Unive<br />

ersity, Hamilton, Canada


<strong>Chromoso</strong>mes<br />

• A storage form <strong>of</strong> DNA<br />

• Each consists <strong>of</strong> a s<strong>in</strong>gle, long molecule <strong>of</strong> DNA<br />

• Coiled and condensed<br />

d manyfold (several levels<br />

<strong>of</strong> pack<strong>in</strong>g)<br />

• Genes are arranges along the strand <strong>of</strong> DNA<br />

• Genes – books<br />

• <strong>Chromoso</strong>mes – bookcases<br />

• Gen<strong>ome</strong> – the library


Karyotype<br />

• Arrangement <strong>of</strong> chrom<br />

mos<strong>ome</strong>s <strong>in</strong> pairs.<br />

• Homo sapiens has 23<br />

pairs.<br />

• Two sex chromos<strong>ome</strong><br />

es: XX or XY.<br />

• In each pair there is a maternal and a paternal<br />

chromos<strong>ome</strong>.<br />

• Each abnormal karyotype may have a<br />

characteristics physical manifestation<br />

(phenotype)


Normal Female Karyotype 46,XX


Normal Male Karyotype 46,XY


<strong>Chromoso</strong>me Defe<br />

ects - Def<strong>in</strong>itions<br />

Autos<strong>ome</strong><br />

The non-sex chromos<strong>ome</strong>s,<br />

one <strong>of</strong> the 22 pairs<br />

Sex chromos<strong>ome</strong>s<br />

X or Y chromos<strong>ome</strong><br />

Structure <strong>of</strong> chromos<strong>ome</strong><br />

Metacentric, acrocentric, telocentric<br />

Centr<strong>ome</strong>re, tel<strong>ome</strong>re


Karyotype.<br />

Number – number <strong>of</strong> centr<strong>ome</strong>res: N = 46.<br />

Sex chromos<strong>ome</strong>s, XX or XY.<br />

Other :<br />

t(3;5)(q23.1;q15.2) ;q ) or<br />

rob(13;14)<br />

<strong>in</strong>v(2)(q22.1;p12.1)<br />

1)<br />

der(3)t(8;17)(p11.3;q21.1)mat<br />

del(18)(q2.1q2.23)pat1q2 23)pat<br />

der(3)t(3;5)(q23.1;q15.2)<br />

( )(q ;q )


<strong>Chromoso</strong>me Defe<br />

ects - Def<strong>in</strong>itions<br />

Balanced rearrangement<br />

A structural rearrangement<br />

that results<br />

<strong>in</strong> a normal complement<br />

<strong>of</strong><br />

chromosomal material<br />

Unbalanced rearrangement<br />

A structural rearrangement<br />

that results<br />

<strong>in</strong> additional or miss<strong>in</strong>g<br />

chromosomal material, can be<br />

stable – capable <strong>of</strong> passi<br />

<strong>in</strong>g through<br />

h<br />

meiosis unchanged, or unstable


<strong>Chromoso</strong>me Defe<br />

ects - Def<strong>in</strong>itions<br />

Balanced rearrangemen<br />

ts:<br />

Inversions<br />

Pericentric<br />

Paracentric<br />

Abnormal <strong>of</strong>fspr<strong>in</strong>g with<br />

Duplications or deletions


<strong>Chromoso</strong>me Defe<br />

ects - Def<strong>in</strong>itions<br />

Balanced rearrangements:<br />

Robertsonian translocation<br />

this type <strong>in</strong>volved two<br />

acrocentric chromos<strong>ome</strong>ss<br />

with the loss <strong>of</strong> the short<br />

arms<br />

the resultant normal karyotype<br />

has 45 chromos<strong>ome</strong>s<br />

there is risk <strong>of</strong> unbalanced<br />

<strong>of</strong>fspr<strong>in</strong>g


<strong>Chromoso</strong>me Defe<br />

ects - Def<strong>in</strong>itions<br />

Reciprocal translocationn<br />

results from breakage <strong>of</strong> nonhomologous<br />

chromos<strong>ome</strong> with reciprocal exchange <strong>of</strong> the<br />

broken-<strong>of</strong>f <strong>of</strong>f segments;<br />

usually there is no loss <strong>of</strong><br />

chromosomal material<br />

problems with meiosis and risk <strong>of</strong> unbalanced<br />

<strong>of</strong>fspr<strong>in</strong>g


Reciprocal translocation - balanced


<strong>Chromoso</strong>me Defe<br />

ects - Def<strong>in</strong>itions<br />

Reciprocal translocationn - meiosis


<strong>Chromoso</strong>me Defe<br />

ects - Def<strong>in</strong>itions<br />

Unbalanced rearrangements<br />

Deletions<br />

Duplications<br />

Marker and r<strong>in</strong>g chromo<br />

os<strong>ome</strong>s<br />

Isochromos<strong>ome</strong>s<br />

Dicentric chromos<strong>ome</strong>ss<br />

many <strong>of</strong> these are uns<br />

stable


Reciprocal<br />

translocation<br />

- unbalanced


<strong>Chromoso</strong>me Defec<br />

cts - Incidence<br />

In newborn surveys:<br />

Males 47,XXY<br />

47,XXY<br />

other Y,X<br />

total<br />

Females 45,X<br />

47,XXX<br />

other X<br />

total X<br />

1/1000<br />

1/1000<br />

1/1350<br />

1/360 male births<br />

1/4000<br />

1/900<br />

1/2700<br />

1/580 female births


<strong>Chromoso</strong>me Defec<br />

cts - Incidence<br />

In newborn surveys:<br />

Autosomal aneuploidies<br />

trisomy 21<br />

trisomy 18<br />

trisomy 13<br />

other aneuploidy<br />

total<br />

Structural abnormal<br />

1/830<br />

1/7500<br />

1/22,700<br />

1/34,000<br />

1/700


<strong>Chromoso</strong>me Defec<br />

cts - Incidence<br />

In newborn surveys:<br />

Structural abnormalities<br />

balanced rearrangements<br />

Robertsonian<br />

other<br />

unbalanced<br />

Robertsonian<br />

other<br />

Total<br />

1/1100<br />

1/885<br />

1/13,600<br />

1/1,800<br />

1/1800


<strong>Chromoso</strong>me Defec<br />

cts - Incidence<br />

In newborn surveys:<br />

Total chromosomal abnormalities <strong>in</strong> live births<br />

1/154<br />

Total chromosomal abno<br />

ormalities <strong>in</strong> spontaneous<br />

abortions<br />

40-50%


A baby:<br />

hypotonic, poor feed<strong>in</strong>g<br />

g, unusual-look<strong>in</strong>g<br />

for his ethnic background


Down syndr<strong>ome</strong>: Trisomy 21<br />

Cl<strong>in</strong>ical exam:<br />

hypotonia<br />

epicanthal folds,<br />

s<strong>in</strong>gle palmar creases<br />

nuchal fold thicken<strong>in</strong>g<br />

squa<br />

ared-<strong>of</strong>f ears<br />

flat occiput<br />

Brus<br />

schfield spots<br />

Other: pyloric stenosis, cardiac<br />

defects, dislocated hips<br />

Developmental delay


Down syndr<strong>ome</strong>: Trisomy 21


Down syndr<strong>ome</strong> - <strong>Chromoso</strong>mes<br />

Why test chromos<strong>ome</strong>s?<br />

trisomy 21 – 95%<br />

recurrence risk<br />

depends on maternal age<br />

Robertsonian translocation t( (13;21), t(14;21) – 4%<br />

10-15% if mother a carrier,


Recurrent Pregnanc<br />

cy Losses<br />

I<br />

II<br />

III


Autosomal Recip<br />

procal Translocations<br />

– Familial<br />

Draw a three-generation family tree<br />

Note pregnancy losse<br />

es, stillbirth, neonatal<br />

death, and family members with<br />

developmental dela<br />

ays or congenital<br />

anomalies<br />

Confirm that the cons<br />

sutand does not have<br />

health problems or learn<strong>in</strong>g disabilities


Autosomal Recip<br />

procal Translocations<br />

– Familial<br />

Rough risk assessment based on the family<br />

history and the sizes <strong>of</strong> the chromosomal<br />

framents <strong>in</strong>volved <strong>in</strong><br />

the rearrangement (any<br />

family ascerta<strong>in</strong>ed by the birth <strong>of</strong> a child with<br />

an unbalanced karyotype is at risk for further<br />

<strong>in</strong>cidence, <strong>in</strong> this situation the risk is <strong>of</strong>ten<br />

>1%).


Autosomal Recip<br />

procal Translocations<br />

– Familial<br />

Determ<strong>in</strong>e breakpo<strong>in</strong>ts – risk for viability are the<br />

highest when the breakpo<strong>in</strong>ts are the closest to<br />

tel<strong>ome</strong>res, i.e., with th<br />

he smallest segments.<br />

Determ<strong>in</strong>e whether the product with the smallest<br />

imbalance would be viable (databases, literature<br />

search, etc):<br />

monosomy less likely viable than trisomy<br />

monosomy for whole autos<strong>ome</strong> is not viable<br />

trisomy for only the smallest whole chromos<strong>ome</strong>s<br />

(21, 13, 18) is viable


Case.<br />

27 yo G2P1<br />

• Healthy, one child <strong>in</strong> previous relationship<br />

• Baby:<br />

holoprosencephaly<br />

bilateral cleft lip<br />

sacral agenesis<br />

ambiguous genitaliaa<br />

born at 37/40 and died at 20 m<strong>in</strong>utes <strong>of</strong> age<br />

•FHx:<br />

neonatal death <strong>of</strong> a similarly il l affected father’s sib<br />

work-up (30 years ago):<br />

buccal smear<br />

negative for sex chromat<strong>in</strong><br />

autopsy


Work-up.<br />

Cytogenetic analyses<br />

• Abnormal male karyotype:<br />

• Father:<br />

46,XY,der(7)t(2;7)(p2<br />

,de )(p 3.2;q36.1)<br />

trisomic for a small portion <strong>of</strong> distal 2q<br />

monosomic for a small portion <strong>of</strong> distal 7q<br />

• Mother: 46,XX<br />

46,XY,t(2;7)(p23.2;q36.1)<br />

• Paternal grandmother: 46,XX,t(2;7)(p23.2;q36.1)


Case – cont’d<br />

• Diagnosis known<br />

• Genetic counsell<strong>in</strong>g<br />

risk <strong>of</strong> recurrence<br />

identification <strong>of</strong> other family<br />

members at risk<br />

• Prenatal diagnosis available<br />

CVS or amniocen<br />

ntesis for cytogenetic analysis<br />

• Next pregnancy : CVS 11 weeks --<br />

balanced karyoty<br />

ype 46,XX,t(2;7)(p23.2;q36.1)<br />

2;q36 NOT at risk for anomalies, but reproductive risks<br />

• Healthy baby girl born atterm<br />

term


Trisomy 18


Trisomy 18<br />

Severe IUGR, postnatal t fa<br />

ailure to thrive<br />

Prom<strong>in</strong>ent occiput,<br />

small triangular face<br />

widely spaced nipples<br />

short sternum<br />

rocker bottom feet<br />

Prenatal – choroid plexus<br />

cysts<br />

95% spontaneous abortion<br />

80% are female<br />

Multiple <strong>in</strong>ternal malforma<br />

ations


Trisomy 13


Trisomy 13<br />

Normal <strong>in</strong>trauter<strong>in</strong>e t i growt<br />

th or IUGR<br />

Severe central nervous system malformations<br />

holoprosence<br />

phaly, arh<strong>in</strong>encephaly<br />

Cleft lip and palate<br />

Mirophthalmia, colobomas<br />

Polydactyly,<br />

Rocker bottom feet<br />

20% are a result <strong>of</strong> an unbalanced translocation<br />

Multiple <strong>in</strong>ternal malforma<br />

ations – cardiac, GU,


<strong>Chromoso</strong>mal Im<br />

mbalances –<br />

Aneuploidies.<br />

Deletion or duplications<br />

Miss<strong>in</strong>g or extra chro<br />

mosomal material<br />

Phenotypic effects depend on the type, location<br />

and size <strong>of</strong> imbalan<br />

nce.<br />

Duplications tolerated<br />

better than deletions –<br />

frequently normal phenotype.


<strong>Chromoso</strong>mal Im<br />

mbalances –<br />

“The <strong>Chromoso</strong>mal Phenotype”.<br />

Family history <strong>of</strong> mental<br />

retardation/developmental delay.<br />

Prenatal or postnatal growth retardation.<br />

microcephaly, short<br />

stature<br />

Dysmorphic features.<br />

Congenital malformations.


Contiguous Gene<br />

Syndr<strong>ome</strong>s:<br />

• disorders caused by a<br />

bnormal gene dosage<br />

(duplications, deletions) result<strong>in</strong>g from chromosomal<br />

abnormalities<br />

characteristic cl<strong>in</strong>ical phenotype<br />

Smith-Magenis s, Williams s, VCF<br />

• chromosomal abnorma<br />

ality may be visible ibl with rout<strong>in</strong>e<br />

cytogenetic methods<br />

• <strong>of</strong>ten require special te<br />

echniques (FISH)<br />

• caused by low copy DNA repeats that lead to<br />

rearrangements


Contiguous Gene<br />

Syndr<strong>ome</strong>s:<br />

Williams s.<br />

7q<br />

Miller-Dieker s.<br />

17p13.3<br />

blepharophimosis-ptosisvelocardi<strong>of</strong>acial/DiGeorgee<br />

s 22q11.2<br />

epicanthus <strong>in</strong>versus s.(BPES)<br />

3q22.3q23<br />

DMD/chronic granulomato<br />

ous d/glycerol gy k<strong>in</strong>ase def’y/RP<br />

Xp21<br />

Prader-Willi/Angelman s 15q<br />

Beckwith-Wiedemann s 11p15.5


Blepharophimosis-Ptosis-Epicanthus<br />

Inversus s.


Miller-Dieker syndr<strong>ome</strong>:


Smith-Magenis syndr<strong>ome</strong>:


Smith-Magenis s.<br />

• Smith et al., 1983<br />

Am J Med Genet 24:421-32<br />

• 9 unrelated patients<br />

with characteristic facial<br />

appearance, short<br />

f<strong>in</strong>gers, self-destructive<br />

behaviors, and developmental delay<br />

• growth deficiency and congenital anomalies<br />

• <strong>in</strong>terstitial deletion <strong>of</strong> 17p11.2-12


Duplication 17(p11.2p11.2) Potocki-<br />

Lupski Syndr<strong>ome</strong>.


A<br />

ngelman Syndr<strong>ome</strong><br />

Frequency ~1/15,000<br />

Severe mental handicap<br />

Ataxia<br />

Seizures<br />

Happy appearance<br />

Inap<br />

ppropriate outbursts <strong>of</strong> laughter


Impr<strong>in</strong>t<strong>in</strong>g Syndrom<br />

mes:<br />

• disorders caused by abs<br />

ence <strong>of</strong> genetic material from<br />

one <strong>of</strong> the parents <strong>in</strong> areas <strong>of</strong> the gen<strong>ome</strong> that require<br />

biparental contribution<br />

• may be caused by chromosomal (duplications,<br />

deletions) or molecular abnormalities (impr<strong>in</strong>t<strong>in</strong>g centre<br />

mutations)<br />

characteristic cl<strong>in</strong>ical phenotype<br />

Algelman s., Prade-W<br />

Willi s., Beckwith-Wiedemann s.<br />

• chromosomal abnormality may be visible with rout<strong>in</strong>e<br />

cytogenetic methods


Prader-Willi Syndr<strong>ome</strong><br />

Frequency ~1/15,000<br />

Hyperphagia and obesity<br />

beg<strong>in</strong>n<strong>in</strong>g <strong>in</strong> childhoodd<br />

FTT without special feed<strong>in</strong>g effort<br />

Small hands and feet<br />

Hypotonia <strong>in</strong> newborn period<br />

Almond shaped eyes<br />

Mild to modrate devlopmental<br />

delay


PWS and AS<br />

• Dist<strong>in</strong>ct from each other - not opposites<br />

• Involve impr<strong>in</strong>ted genes <strong>in</strong><br />

not the same genes - they<br />

the same chromosomal region but<br />

are not allelic<br />

• Caused by deficiencies <strong>in</strong> dist<strong>in</strong>ct genes which happen to be<br />

close to each other <strong>in</strong> a chromos<strong>ome</strong> region which tends to get<br />

deleted d as a chunk


Early Investigationss<br />

<strong>Chromoso</strong>me deletions <strong>in</strong> the region <strong>of</strong> 15q11-13 <strong>in</strong> a certa<strong>in</strong><br />

proportion <strong>of</strong> patients with either PWS or AS<br />

How can you have one s<strong>in</strong>gle chromos<strong>ome</strong> error giv<strong>in</strong>g you<br />

two dist<strong>in</strong>ct disorders?<br />

PWS - deletion was always on the paternally contributed copy<br />

<strong>of</strong> chromos<strong>ome</strong> 15<br />

Angelman - deletion always<br />

copy <strong>of</strong> chromos<strong>ome</strong> 15<br />

on the maternally contributed


Beckwith-Wiedemann Syndr<strong>ome</strong><br />

Frequency ~1/15,000<br />

Pre- and postnatal overgrowth<br />

Viscer<strong>ome</strong>galy<br />

Macroglossia<br />

Ear abnormalities<br />

Hemiyperplasia<br />

Increased risk <strong>of</strong> childhood<br />

tumours (7-21%)


Beckwith-Wiedemann Syndr<strong>ome</strong>


Beckwith-Wiedemann Syndr<strong>ome</strong>:<br />

Molecular Mechanisms<br />

An impr<strong>in</strong>ted cluster <strong>of</strong> gene<br />

es at 11p15.<br />

Two doma<strong>in</strong>s <strong>of</strong> impr<strong>in</strong>ted genes; two impr<strong>in</strong>t<strong>in</strong>g centers<br />

<strong>in</strong>clude; at least 12 impr<strong>in</strong>ted genes.<br />

Changes <strong>in</strong> the methylation<br />

<strong>of</strong> the genetic centers are<br />

epigenetic because they do<br />

not <strong>in</strong>volve a change <strong>in</strong> the<br />

nucleotide sequence.<br />

Parent <strong>of</strong> orig<strong>in</strong> changes ca<br />

an be brought about by<br />

microscopic chromosomal rearrangements.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!