07.12.2012 Views

Ammonium transport in the colonic crypt cell line, T84: Role for ...

Ammonium transport in the colonic crypt cell line, T84: Role for ...

Ammonium transport in the colonic crypt cell line, T84: Role for ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Page 1 of 45<br />

Articles <strong>in</strong> PresS. Am J Physiol Gastro<strong>in</strong>test Liver Physiol (November 21, 2007). doi:10.1152/ajpgi.00251.2006<br />

<strong>Ammonium</strong> <strong>transport</strong> <strong>in</strong> <strong>the</strong> <strong>colonic</strong> <strong>crypt</strong> <strong>cell</strong> l<strong>in</strong>e, <strong>T84</strong>:<br />

<strong>Role</strong> <strong>for</strong> Rhesus Glycoprote<strong>in</strong>s and NKCC1.<br />

Roger T. Worrell 1,2,* , Lisa Merk 1 , and Jeffrey B. Mat<strong>the</strong>ws 3<br />

*To whom correspondence should be addressed.<br />

1 Department of Surgery<br />

2 Department of Molecular and Cellular Physiology<br />

University of C<strong>in</strong>c<strong>in</strong>nati<br />

C<strong>in</strong>c<strong>in</strong>nati, OH 45219<br />

3 Department of Surgery<br />

University of Chicago<br />

Chicago, IL 60637<br />

e-mail: Roger.Worrell@uc.edu<br />

-1-<br />

Copyright © 2007 by <strong>the</strong> American Physiological Society.


ABSTRACT<br />

Although <strong>colonic</strong> lumen NH4 + levels are high, 15-44 mM normal range <strong>in</strong> humans, relatively few<br />

studies have addressed <strong>the</strong> <strong>transport</strong> mechanisms <strong>for</strong> NH4 + . More extensive studies have elucidated <strong>the</strong><br />

<strong>transport</strong> of NH4 + <strong>in</strong> <strong>the</strong> kidney collect<strong>in</strong>g duct which <strong>in</strong>volves a number of <strong>transport</strong>er processes also<br />

present <strong>in</strong> <strong>the</strong> distal colon. Similar to NH4 + secretion <strong>in</strong> <strong>the</strong> renal collect<strong>in</strong>g duct, we show that <strong>the</strong> distal<br />

colon secretory model, <strong>T84</strong> <strong>cell</strong> l<strong>in</strong>e, has <strong>the</strong> capacity to secrete NH4 + and ma<strong>in</strong>ta<strong>in</strong> an apical to<br />

basolateral NH4 + gradient. NH4 + <strong>transport</strong> <strong>in</strong> <strong>the</strong> secretory direction was supported by basolateral NH4 +<br />

load<strong>in</strong>g on NKCC1, Na + /K + -ATPase, and <strong>the</strong> NH4 + <strong>transport</strong>er, RhBG. NH4 + was <strong>transport</strong>ed on<br />

NKCC1 <strong>in</strong> <strong>T84</strong> <strong>cell</strong>s nearly as well as K + as determ<strong>in</strong>ed by bumetanide-sensitive 86 Rb-uptake. 86 Rb-<br />

uptake and ouaba<strong>in</strong>-sensitive current measurement <strong>in</strong>dicated that NH4 + is <strong>transport</strong>ed by Na + /K + -ATPase<br />

<strong>in</strong> <strong>the</strong>se <strong>cell</strong>s to an equal extent as K + . <strong>T84</strong> <strong>cell</strong>s expressed mRNA <strong>for</strong> <strong>the</strong> basolateral NH4 + <strong>transport</strong>er<br />

RhBG and <strong>the</strong> apical NH4 + <strong>transport</strong>er RhCG. Net NH4 + <strong>transport</strong> <strong>in</strong> <strong>the</strong> secretory direction determ<strong>in</strong>ed<br />

by 14 C-methylammonium uptake and flux occurred <strong>in</strong> <strong>T84</strong> <strong>cell</strong>s suggest<strong>in</strong>g functional Rh G prote<strong>in</strong><br />

activity. The occurrence of NH4 + <strong>transport</strong> <strong>in</strong> <strong>the</strong> secretory direction with<strong>in</strong> a <strong>colonic</strong> <strong>crypt</strong> <strong>cell</strong> model<br />

likely serves to m<strong>in</strong>imize net absorption of NH4 + due to surface <strong>cell</strong> NH4 + absorption. These f<strong>in</strong>d<strong>in</strong>gs<br />

suggest that we reth<strong>in</strong>k <strong>the</strong> current limited understand<strong>in</strong>g of NH4 + handl<strong>in</strong>g by <strong>the</strong> distal colon as be<strong>in</strong>g<br />

due solely to passive absorption.<br />

-2-<br />

Page 2 of 45


Page 3 of 45<br />

INTRODUCTION<br />

The observation that portal ve<strong>in</strong> ammonium (NH3 + NH4 + ) concentration (~350 µM) is<br />

substantially higher than systemic levels (~45 µM) is prima facie evidence that NH4 + production and/or<br />

absorption occurs <strong>in</strong> <strong>the</strong> gastro<strong>in</strong>test<strong>in</strong>al tract (7),(41). In particular, <strong>the</strong> colon is an ammonium-rich<br />

organ due to bacterial fermentation of non-absorbed dietary nutrients <strong>in</strong> <strong>the</strong> lum<strong>in</strong>al compartment,<br />

lead<strong>in</strong>g to concentrations typically around 14-20 mM but as high as 100 mM (41). It is well accepted<br />

that <strong>the</strong> <strong>colonic</strong> mucosa absorbs ammonium, that is, that <strong>the</strong> direction of net <strong>colonic</strong> movement of<br />

NH3/NH4 + (Jnet, represent<strong>in</strong>g <strong>the</strong> difference between mucosal-to-serosal and serosal-to-mucosal fluxes,<br />

Jms-Jsm) is <strong>in</strong> <strong>the</strong> absorptive direction. However, <strong>the</strong> extent to which <strong>the</strong> <strong>colonic</strong> mucosa can generate a<br />

significant secretory flux of NH3/NH4 + (i.e., a non-zero Jsm) aga<strong>in</strong>st <strong>the</strong> larger absorptive vector Jms is<br />

unknown. Moreover, <strong>the</strong> possibility that transepi<strong>the</strong>lial secretion and absorption of NH3/NH4 + might<br />

occur <strong>in</strong> different <strong>cell</strong> types (as it does <strong>for</strong> Na + and Cl - ), has not been addressed previously. Yet it is<br />

<strong>in</strong>tuitively appeal<strong>in</strong>g to consider that a subset of <strong>colonic</strong> epi<strong>the</strong>lial <strong>cell</strong>s might actively extrude NH4 + so<br />

as to temper <strong>the</strong> o<strong>the</strong>rwise unopposed <strong>in</strong>terstitial accumulation of this toxic substance. Indeed, <strong>the</strong>re are<br />

a number of examples <strong>in</strong> nature where epi<strong>the</strong>lia faced with a high external NH4 + concentration are able<br />

to actively excrete NH4 + aga<strong>in</strong>st an uphill gradient (38), (40), (43), (47).<br />

While <strong>the</strong>re are some data that address absorptive NH3/NH4 + flux (Jms), <strong>the</strong> <strong>cell</strong> type and pathways<br />

rema<strong>in</strong> <strong>in</strong>completely def<strong>in</strong>ed. It is controversial whe<strong>the</strong>r absorption occurs by <strong>the</strong> primary movement of<br />

NH3 or NH4 + . Early studies supported a NH3 diffusion model, based on <strong>the</strong> pH sensitivity of ammonium<br />

movement (3), (4), (55) however, this does not appear to be <strong>the</strong> case <strong>for</strong> ammonium movement across<br />

mammalian ileum (28),(29). Recent studies <strong>in</strong>dicate that <strong>colonic</strong> <strong>crypt</strong>s, gastric glands, and renal <strong>cell</strong>s<br />

have a low apical NH3 permeability (2), (18),(42), (44). Entry of NH4 + <strong>in</strong> <strong>the</strong> absorptive direction has<br />

-3-


een postulated to occur via apical Ba ++ -sensitive K + channels <strong>in</strong> <strong>the</strong> surface epi<strong>the</strong>lium (10), (21) or<br />

perhaps via aquapor<strong>in</strong>-1 (33).<br />

In contrast, <strong>the</strong>re is almost no <strong>in</strong><strong>for</strong>mation concern<strong>in</strong>g NH4 + secretory flux (Jsm) <strong>in</strong> <strong>in</strong>test<strong>in</strong>e. NH4 +<br />

secretion <strong>in</strong> o<strong>the</strong>r epi<strong>the</strong>lia occurs via its <strong>transport</strong> on known K + <strong>transport</strong>ers, due to <strong>the</strong> similar hydrated<br />

radius of K + and NH4 + . In most models, <strong>the</strong> basolateral load<strong>in</strong>g step <strong>for</strong> NH4 + uses <strong>the</strong> K + site on<br />

Na + /K + -ATPase and/or <strong>the</strong> Na + -K + -2Cl - co<strong>transport</strong>er NKCC1. Apical ammonium exit pathways vary<br />

from system to system. Passive diffusion of NH3 + across <strong>the</strong> apical membrane <strong>in</strong> comb<strong>in</strong>ation with H +<br />

secretion by H + -ATPase results <strong>in</strong> an ‘ion trapp<strong>in</strong>g’ mechanism of secretion <strong>in</strong> fresh water fish gill (51)<br />

and possibly <strong>in</strong> mammalian <strong>in</strong>ner medullar collect<strong>in</strong>g duct (IMCD) (45). In contrast, <strong>in</strong> <strong>the</strong> case of salt<br />

water fish gill (51) and <strong>the</strong> desert locust, Schistocerca gregaria, rectum (43), apical secretion of NH4 +<br />

occurs by replac<strong>in</strong>g H + on an apical Na + /H + -exchanger (NHE). In <strong>the</strong> giant mudskipper,<br />

Periophalmodon schlosseri, gill both “ion trapp<strong>in</strong>g” and NHE are used to ma<strong>in</strong>ta<strong>in</strong> NH4 + gradients up to<br />

100 mM (37), (38). In <strong>the</strong> green crab, Carc<strong>in</strong>us maenas, NH4 + <strong>transport</strong> across <strong>the</strong> apical membrane<br />

occurs by first vesicular “ion trapp<strong>in</strong>g” of NH4 + and <strong>the</strong>n microtubule dependent vesicular release (47),<br />

(40). An alternative model <strong>for</strong> mammalian IMCD <strong>in</strong>volves NH4 + exit on <strong>the</strong> H + site of <strong>colonic</strong>-type<br />

H + /K + -ATPase, with K + recycl<strong>in</strong>g occurr<strong>in</strong>g on ROMK1 K + channel (30). A common feature of <strong>the</strong><br />

above systems is physiologic exposure to a significant [NH4 + ] (20 to 100 mM). Human <strong>colonic</strong> epi<strong>the</strong>lia<br />

exposure is with<strong>in</strong> this elevated range (41). Apical NHEs and <strong>colonic</strong>-type H + /K + -ATPase are present <strong>in</strong><br />

<strong>the</strong> apical membrane of <strong>colonic</strong> epi<strong>the</strong>lia (22). Likewise Na + /K + -ATPase and NKCC1 are present. Given<br />

a similar environment and that many of <strong>the</strong> same basolateral and apical membrane <strong>transport</strong> pathways<br />

are present <strong>in</strong> <strong>colonic</strong> <strong>cell</strong>s circumstantially suggests <strong>the</strong> colon may <strong>in</strong>deed actively secrete ammonia as<br />

do <strong>the</strong>se o<strong>the</strong>r tissues.<br />

-4-<br />

Page 4 of 45


Page 5 of 45<br />

Perhaps one of <strong>the</strong> most significant recent discoveries <strong>in</strong>volv<strong>in</strong>g NH3/NH4 + permeability is that<br />

certa<strong>in</strong> mammalian non-erythroid <strong>cell</strong>s express members of <strong>the</strong> SLC42 solute carrier family (14),<br />

(32),(48). The SLC42 family is comprised of <strong>the</strong> human Rhesus-associated glycoprote<strong>in</strong>s (RhG), which<br />

are homologous to <strong>the</strong> yeast Mep family of prote<strong>in</strong>s (15). These prote<strong>in</strong>s <strong>transport</strong> both ammonia as well<br />

as methylammonium. It is notable that <strong>the</strong> Mep <strong>transport</strong>ers can concentrate methylammonium by<br />

approximately 1000 fold (9),(39). Not surpris<strong>in</strong>gly, RhGs are found predom<strong>in</strong>ately <strong>in</strong> tissues that are<br />

exposed to elevated NH4 + levels such as liver, kidney and stomach (24),(27),(48),(49),(50). RhGs have<br />

been detected <strong>in</strong> <strong>the</strong> gut, <strong>in</strong>clud<strong>in</strong>g proximal colon (13). Interest<strong>in</strong>gly, two of <strong>the</strong> family members show<br />

polarized expression; RhBG is expressed <strong>in</strong> <strong>the</strong> basolateral membrane and RhCG is apically expressed<br />

(48). Thus each is poised to be a potential player <strong>in</strong> <strong>the</strong> vectorial <strong>transport</strong> of NH3/NH4 + (32). The actual<br />

mode of NH3/NH4 + <strong>transport</strong> by <strong>the</strong> SLC42 family is not clear. Transport has been shown to occur <strong>in</strong> an<br />

electrogenic manner (31), (34), as electroneutral <strong>transport</strong> by act<strong>in</strong>g as an NH4 + /H + exchanger (11), (12),<br />

(25), (26) and as an NH3 ‘gas channel’ (17),(20), (23). Part of <strong>the</strong> confusion may derive from <strong>the</strong> results<br />

show<strong>in</strong>g that <strong>the</strong> aff<strong>in</strong>ity <strong>for</strong> NH4 + is affected by NH3 (1). Regardless, <strong>the</strong> functional significance of<br />

RhG prote<strong>in</strong>s <strong>in</strong> gut has not yet been elucidated.<br />

As a first step <strong>in</strong> understand<strong>in</strong>g <strong>the</strong> possible contribution of an NH3/NH4 + secretory vector (Jsm)<br />

to ammonium handl<strong>in</strong>g by <strong>the</strong> <strong>colonic</strong> mucosa, we used <strong>the</strong> <strong>colonic</strong> <strong>cell</strong> l<strong>in</strong>e <strong>T84</strong> as a model of <strong>crypt</strong><br />

enterocytes to def<strong>in</strong>e <strong>the</strong> relative contributions of NKCC1 and RhGs <strong>in</strong> basolateral uptake and<br />

transepi<strong>the</strong>lial movement of NH3/NH4 + . Our data suggest that <strong>colonic</strong> <strong>transport</strong> of ammonium <strong>in</strong>cludes<br />

a secretory vector that is non-zero and may significantly limit net mucosal absorption and, by extension,<br />

systemic accumulation.<br />

-5-


MATERIALS AND METHODS<br />

Cell culture:<br />

<strong>T84</strong> <strong>cell</strong>s (8) obta<strong>in</strong>ed from Jim McRoberts (UCLA) were grown to confluence at pH 7.4 <strong>in</strong> 162<br />

cm 2 flasks with DMEM-Hams’s: F-12, 1:1 mix supplemented with 6% fetal bov<strong>in</strong>e serum, 15 mM<br />

HEPES, 14 mM NaHCO3, 170 µM Penicill<strong>in</strong> G, and 69 µM Streptomyc<strong>in</strong> sulfate. Amphoteric<strong>in</strong> B was<br />

not <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> media to avoid potential complications due to its ionophoretic activity. Cells were<br />

ma<strong>in</strong>ta<strong>in</strong>ed <strong>in</strong> culture with weekly passage by tryps<strong>in</strong>ization <strong>in</strong> Ca ++ and Mg ++ free phosphate buffered<br />

sal<strong>in</strong>e at a split ratio of 1:2. Cells <strong>for</strong> experimentation were plated on un-coated 12 or 24 mm Costar<br />

Transwell (0.4 µm pore size) <strong>in</strong>serts at a seed<strong>in</strong>g density of 4-5 x 10 5 <strong>cell</strong>s/cm 2 and cultured 8-14 days<br />

with feed<strong>in</strong>g <strong>in</strong> <strong>the</strong> above media 3 times per week. Cell monolayers were determ<strong>in</strong>ed to be of acceptable<br />

use when <strong>the</strong> trans-epi<strong>the</strong>lial resistance reached >1200 cm 2 as measured by EVOM (see below). All<br />

experiments were per<strong>for</strong>med at 37 o C.<br />

Epi<strong>the</strong>lial monolayer <strong>in</strong>tegrity:<br />

The quality of high resistance monolayer <strong>for</strong>mation was monitored us<strong>in</strong>g an EVOM (World Precision<br />

Instruments) as described previously (52),(54). The <strong>T84</strong> <strong>cell</strong> l<strong>in</strong>e used <strong>in</strong> <strong>the</strong>se experiments typically had<br />

a transepi<strong>the</strong>lial resistance of > 2000 cm 2 . Both trans-epi<strong>the</strong>lial potential (mV) and trans-epi<strong>the</strong>lial<br />

resistance (K ) were measured with this <strong>in</strong>strument. Transepi<strong>the</strong>lial Current (ITR) was calculated by<br />

Ohm’s law and expressed as µ /cm 2 . EVOM measurements proved consistent and reliable <strong>for</strong> detect<strong>in</strong>g<br />

changes <strong>in</strong> trans-epi<strong>the</strong>lial voltage, resistance, and current (52),(53),(54). Moreover, measurements <strong>in</strong><br />

<strong>the</strong> open-circuit mode represent <strong>the</strong> normal condition (e.g., not short circuited) of native epi<strong>the</strong>lia.<br />

-6-<br />

Page 6 of 45


Page 7 of 45<br />

Real Time RT-PCR of RhBG and RhCG:<br />

Total RNA was extracted from <strong>T84</strong> <strong>cell</strong>s with TRIzol Reagent (Invitrogen) accord<strong>in</strong>g to <strong>the</strong><br />

manufacturer’s <strong>in</strong>structions. Reverse transcription was per<strong>for</strong>med us<strong>in</strong>g 50ug/ml oligo(dT) 20 primer<br />

us<strong>in</strong>g Superscript Reverse Transcriptase (Invitrogen) accord<strong>in</strong>g to <strong>the</strong> manufacturer’s <strong>in</strong>structions.<br />

Amplification reactions were per<strong>for</strong>med with 1 x SybrGreen PCR master mix (Applied Biosystems) or<br />

with a gene specific fluorescent labeled probe, gene specific primers and 200 ng sample cDNA <strong>in</strong> a 50<br />

ul f<strong>in</strong>al volume. Real-Time PCR was per<strong>for</strong>med on a DNA Eng<strong>in</strong>e Opticon 2 detector (DYAD).<br />

Thermal conditions (50 o C <strong>for</strong> 2 m<strong>in</strong>, 40 cycles of 95 o C <strong>for</strong> 15 sec, and 60 o C <strong>for</strong> 1 m<strong>in</strong>) were used <strong>for</strong> all<br />

primer sets. Emitted fluorescence was measured dur<strong>in</strong>g <strong>the</strong> anneal<strong>in</strong>g/extension phase; amplification<br />

plots were generated us<strong>in</strong>g <strong>the</strong> Opticon Monitor Analysis software. Standard curves were generated <strong>for</strong><br />

each primer set (Table 1) us<strong>in</strong>g a known concentration of plasmid DNA; <strong>the</strong> amount of mRNA was <strong>the</strong>n<br />

extrapolated and normalized to GAPDH <strong>for</strong> comparison.<br />

Plasmids were made by obta<strong>in</strong><strong>in</strong>g a portion of <strong>the</strong> gene by per<strong>for</strong>m<strong>in</strong>g PCR on cDNA from <strong>T84</strong><br />

<strong>cell</strong>s that were positive <strong>for</strong> <strong>the</strong> gene. The PCR product was <strong>the</strong>n cloned <strong>in</strong>to a TA clon<strong>in</strong>g vector. Real<br />

time PCR was per<strong>for</strong>med to confirm <strong>the</strong> plasmid conta<strong>in</strong>ed <strong>the</strong> <strong>in</strong>sert. A standard curve was <strong>the</strong>n<br />

generated from known concentrations of plasmid DNA <strong>for</strong> each primer set. Well behaved standard<br />

curves <strong>for</strong> each primer set were obta<strong>in</strong>ed, r 2 P 0.993.<br />

Table 1. Primer sets used <strong>for</strong> PCR.<br />

Plasmid Primers to create Plasmid (5’-3’) Primers <strong>for</strong> Real Time PCR (5’-3’)<br />

Human RhBG For – GACGGCCCTCAACACATACT For – GCCTGGAGAGTGTGTTTCCA<br />

Rev – AAAAGGAGCGTGTCCTCTCA Rev - GAGCTGATGCATGGCCTGTGA<br />

Human RhCG For – CACCCTCTTCCTGTGGATGT For – GCATTCCTGGCATCATAGGC<br />

Rev – GAACTTCTGCAGCCAGAACC Rev - CCATAGACTTCAAGGCTGGCG<br />

Human GAPDH For – GAAGGTGAAGGTCGGAGTC<br />

Rev –GAAGATGGTGATGGGATTTC<br />

Same<br />

-7-


14 C-methylammonium Uptake and Flux:<br />

<strong>T84</strong> <strong>cell</strong> monolayers were grown on 1 cm 2 transwell <strong>in</strong>serts. Uptake and Flux measurements<br />

were carried out <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g base solution (<strong>in</strong> mM): 135 NaCl, 3 KCl, 0.5 CaCl2, 2 MgCl2, 10 Na-<br />

HEPES at a pH of 7.4. Apical media volume was 0.5 ml and basolateral media volume 1 ml. For apical<br />

uptake and Jab MA studies, apical volume was reduced to 250 µl to conserve 14 C-MA tracer. Cells were<br />

<strong>in</strong>cubated <strong>in</strong> cold MA <strong>for</strong> 5-10 m<strong>in</strong> prior to uptake/flux <strong>in</strong>itiation. Use of tracers which are <strong>transport</strong>ed as<br />

well as diffusible through <strong>the</strong> <strong>cell</strong> membrane (exist <strong>in</strong> both charge and uncharged <strong>for</strong>m) present a unique<br />

situation to classical ion tracer experiments. It is noteworthy that <strong>the</strong> “steady-state condition” may not be<br />

obta<strong>in</strong>ed dur<strong>in</strong>g this <strong>in</strong>cubation time, thus uptake and flux measurements may represent an overestimate<br />

of “true” values. However, experiments shown are comparable to those published by Handlogten, et.al.<br />

(11, 12) and thus support <strong>the</strong> functional presence of RhGs <strong>in</strong> <strong>T84</strong> <strong>cell</strong>s. Long term measurements were<br />

carried out <strong>in</strong> culture media with <strong>cell</strong>s kept <strong>in</strong> <strong>the</strong> tissue culture <strong>in</strong>cubator between time po<strong>in</strong>ts. Under<br />

<strong>the</strong>se conditions “steady state” does exist. Short and long term fluxes are consistent thus support<strong>in</strong>g <strong>the</strong><br />

physiologic relevance of <strong>the</strong> methods used. For consistency with <strong>in</strong>itial studies and those <strong>in</strong>volv<strong>in</strong>g<br />

NKCC1 mediated NH4 + <strong>transport</strong>, study of ammonium <strong>transport</strong> by RhGs was done under conditions of<br />

active cAMP-dependent Cl - secretion (stimulated by basolateral 10 µM <strong>for</strong>skol<strong>in</strong>, 5 m<strong>in</strong>). As<br />

subsequently demonstrated by data <strong>in</strong> figure 8A & B, RhG function is not altered by <strong>for</strong>skol<strong>in</strong>. When<br />

bumetanide or ouaba<strong>in</strong> was used drugs were applied 5 m<strong>in</strong> prior to <strong>in</strong>itiation of uptake and flux.<br />

Apical-to-basolateral flux (Jab) and basolateral-to-apical flux (Jba) are used to <strong>in</strong>dicate absorptive<br />

(Jms) and secretory (Jsm) vector (direction) of flux as would occur <strong>in</strong> <strong>in</strong>tact colon. Jnet is used to <strong>in</strong>dicate<br />

<strong>the</strong> comb<strong>in</strong>ed effect of each vector, i.e., Jba – Jab (When plotted toge<strong>the</strong>r, Jab is assigned a negative<br />

-8-<br />

Page 8 of 45


Page 9 of 45<br />

value). 14 C-methylammonium (1 µCi/ml or 0.5 µCi/ml <strong>for</strong> <strong>the</strong> long term uptake and flux) was used.<br />

Radioactivity <strong>in</strong> an aliquot of <strong>in</strong>itial load<strong>in</strong>g media was determ<strong>in</strong>ed to establish specific activity <strong>for</strong> each<br />

experiment. At <strong>the</strong> end of <strong>the</strong> flux period (typically 2 m<strong>in</strong>) <strong>the</strong> entire volume of trans-media was<br />

collected and radioactivity determ<strong>in</strong>ed to calculate trans-epi<strong>the</strong>lial flux. Uptake was ended by<br />

sequentially dunk<strong>in</strong>g <strong>in</strong>serts <strong>in</strong>to 3 reservoirs of > 500 ml ice cold 0.1M MgCl2 , 10 mM Tris-Cl pH 7.4.<br />

Inserts were <strong>the</strong>n cut from <strong>the</strong> supports and placed <strong>in</strong> sc<strong>in</strong>tillation vials with sc<strong>in</strong>tillation cocktail to<br />

determ<strong>in</strong>e total <strong>cell</strong>ular radioactivity. For uptake calculations <strong>the</strong> radioactivity of <strong>the</strong> <strong>cell</strong>ular fraction<br />

and trans-media fraction were comb<strong>in</strong>ed. Previously we determ<strong>in</strong>ed correct<strong>in</strong>g <strong>for</strong> prote<strong>in</strong> content by<br />

prote<strong>in</strong> measurements on <strong>in</strong>dividual <strong>in</strong>serts did not lead to a significant decrease <strong>in</strong> variability and were<br />

thus omitted to simplify <strong>the</strong> assay (54), data is expressed per unit area of <strong>the</strong> epi<strong>the</strong>lial monolayer.<br />

<strong>Ammonium</strong> Assay<br />

<strong>Ammonium</strong> determ<strong>in</strong>ation was accomplished us<strong>in</strong>g a spectrophotometric ammonium assay kit<br />

(Megazyme, Co. Wicklow, Ireland) based on <strong>the</strong> enzymatic conversion of NADPH to NADP <strong>in</strong> <strong>the</strong><br />

presence of 2-oxoglutarate and glutamate dehydrogenase. The assay has a variability between duplicate<br />

measurements of 1-2 µM NH4 + (0.005-0.010 abs units) with a l<strong>in</strong>ear range of ~10 µM to 5.5 mM NH4 + .<br />

Media from experiments was sampled (0.1 mL) and immediately placed on ice, when necessary samples<br />

were frozen at -20 o C until <strong>the</strong> time of <strong>the</strong> assay. Unknown samples with anticipated [NH4 + ] > 5 mM<br />

were diluted accord<strong>in</strong>gly to achieve an assay [NH4 + ] approximat<strong>in</strong>g 2.5 mM. Data are presented ei<strong>the</strong>r<br />

as actual NH4 + movement (nmoles/m<strong>in</strong>/cm 2 ) or as accumulated NH4 + (mM) <strong>for</strong> longer term experiments.<br />

As <strong>for</strong> 14C-MA uptake and flux, drugs were applied 5 m<strong>in</strong> prior to <strong>in</strong>itiation of <strong>the</strong> flux (exposure to<br />

NH4 + ).<br />

-9-


Reagents: Forskol<strong>in</strong> was obta<strong>in</strong>ed from Calbiochem, FBS and PenStrep were from Gibco BRL, all<br />

o<strong>the</strong>r chemicals were of <strong>the</strong> highest grade obta<strong>in</strong>able from Sigma, InVitrogen, or Stratagene.<br />

Significance Tests: Data are presented as Mean ± SEM. Significance was estimated us<strong>in</strong>g <strong>the</strong> Student<br />

T-test and two-way ANOVA when <strong>in</strong>dicated, with a p value of less than 0.05 <strong>in</strong>dicat<strong>in</strong>g a significant<br />

difference.<br />

-10-<br />

Page 10 of 45


Page 11 of 45<br />

RESULTS<br />

<strong>T84</strong> <strong>cell</strong>s express ammonium <strong>transport</strong>ers RhBG and RhCG: The presence of ammonium <strong>transport</strong>ers,<br />

RhBG and RhCG, along <strong>the</strong> gastro<strong>in</strong>test<strong>in</strong>al tract have been shown by Handlogen, et.al. (13). Each<br />

iso<strong>for</strong>m was determ<strong>in</strong>ed to be present <strong>in</strong> mouse ileum and proximal colon. Although <strong>the</strong> authors<br />

concluded that expression was predom<strong>in</strong>antly <strong>in</strong> <strong>the</strong> surface epi<strong>the</strong>lium of proximal colon, <strong>the</strong>ir study<br />

did not <strong>in</strong>clude distal colon. Thus we sought to determ<strong>in</strong>e <strong>the</strong> presence of RhBG and RhCG mRNA <strong>in</strong> a<br />

human secretory <strong>cell</strong> l<strong>in</strong>e of <strong>colonic</strong> <strong>crypt</strong> orig<strong>in</strong> (<strong>T84</strong>). Us<strong>in</strong>g specific human primers, and Real-Time<br />

RT-PCR, mRNA <strong>for</strong> both RhBG and RhCG were readily detected <strong>in</strong> <strong>T84</strong> <strong>cell</strong>s, thus suggest<strong>in</strong>g <strong>the</strong><br />

expression of <strong>the</strong>se <strong>transport</strong>ers with<strong>in</strong> secretory <strong>cell</strong>s characteristic of <strong>colonic</strong> <strong>crypt</strong> <strong>cell</strong>s (Figure 1).<br />

Quantitative analysis of Real-Time RT-PCR showed approximately equal expression of RhBG and<br />

RhCG <strong>in</strong> <strong>T84</strong> <strong>cell</strong>s, ratio of RhBG/RhCG = 1.10±0.15 (N=8).<br />

RhBG (typically basolateral) and RhCG (typically apical) (48) are known to <strong>transport</strong><br />

methylammonium, thus <strong>the</strong>y can be functionally assayed us<strong>in</strong>g 14 C-methyl ammonium (MA) uptake and<br />

flux. Figure 2 supports <strong>the</strong> functional presence of each <strong>transport</strong>er <strong>in</strong> <strong>T84</strong> <strong>cell</strong>s. Apical side 14 C-MA<br />

uptake was significantly less than that of basolateral side uptake, 139±5 verses 390±16 pmoles/m<strong>in</strong>/cm 2<br />

MA respectively (Figure 2A). NH4 + competitively reduces <strong>the</strong> magnitude of RhG prote<strong>in</strong> mediated MA<br />

<strong>transport</strong> (11,12). Indeed, 14 C-MA uptake was found to be reduced <strong>in</strong> <strong>the</strong> presence of 10 mM NH4 + .<br />

Inclusion of 10 mM NH4 + reduced apical 14 C-MA uptake ~36% to 25±1 pmoles/m<strong>in</strong>/cm 2 MA.<br />

Basolateral 14 C-MA uptake was reduced ~44% to 217±16 pmoles/m<strong>in</strong>/cm 2 MA by 10 mM NH4 + . These<br />

data toge<strong>the</strong>r <strong>in</strong>dicate <strong>the</strong> functional presence of RhG prote<strong>in</strong>s at both <strong>the</strong> apical and basolateral<br />

membrane of polarized <strong>T84</strong> monolayers. In addition <strong>the</strong> data suggests that basolateral load<strong>in</strong>g of NH4 +<br />

exceeds apical load<strong>in</strong>g (presumably by RhBG and RhCG respectively, although this has not been<br />

-11-


directly determ<strong>in</strong>ed <strong>in</strong> <strong>T84</strong> <strong>cell</strong>s). Transepi<strong>the</strong>lial flux with symmetrical 1 mM cold MA reveals a net<br />

secretory direction of flux <strong>in</strong> <strong>T84</strong> <strong>cell</strong>s (Figure 2B). The apical-to-basolateral flux (Jab) of MA was -<br />

134±7 pmoles/m<strong>in</strong>/cm 2 MA whereas <strong>the</strong> basolateral-to-apical flux (Jba) was 241±7 pmoles/m<strong>in</strong>/cm 2 MA<br />

result<strong>in</strong>g <strong>in</strong> a calculated net flux (Jnet) of 106±14 pmoles/m<strong>in</strong>/cm 2 MA. Inclusion of 10 mM NH4 +<br />

reduced Jab by ~22% to -104±6 pmoles/m<strong>in</strong>/cm 2 MA, Jba by 31% to 167±6 pmoles/m<strong>in</strong>/cm 2 MA, and Jnet<br />

by ~41% to 63±12 pmoles/m<strong>in</strong>/cm 2 MA.<br />

To determ<strong>in</strong>e if net secretion occurs over a longer time period under culture conditions, long<br />

term flux experiments were carried out with <strong>T84</strong> <strong>cell</strong> monolayers over a 60 m<strong>in</strong> period <strong>in</strong> complete<br />

culture media. Results are qualitatively similar to short term (2 m<strong>in</strong> flux period). Calculated rates<br />

(Figure 2C) were 257±11 pmoles/m<strong>in</strong>/cm 2 MA <strong>for</strong> basolateral and 107±5 pmoles/m<strong>in</strong>/cm 2 MA <strong>for</strong><br />

apical uptake. Jba was 113±8 and Jab -44±3 pmoles/m<strong>in</strong>/cm 2 MA result<strong>in</strong>g <strong>in</strong> a secretory direction flux<br />

(Jnet) of 69±7 pmoles/m<strong>in</strong>/cm 2 (Figure 2D). The lower values <strong>for</strong> long term flux rates may be due to <strong>the</strong><br />

different bath<strong>in</strong>g conditions (culture media verses m<strong>in</strong>imal media) or possibility could represent <strong>the</strong><br />

effect of closer to “steady state” <strong>in</strong>tra<strong>cell</strong>ular [MA] <strong>in</strong> <strong>the</strong> long term experiments. None<strong>the</strong>less,<br />

qualitatively <strong>the</strong> data <strong>in</strong> whole support an appreciable secretory direction flux due to RhG activity.<br />

Specificity of 14 C-MA as a tracer <strong>for</strong> RhG mediated uptake and flux. 14 C-MA is known to be<br />

<strong>transport</strong>ed by <strong>the</strong> RhGs. However, it is uncerta<strong>in</strong> <strong>the</strong> degree to which MA may also be <strong>transport</strong>ed by<br />

NKCC1 (as def<strong>in</strong>ed by bumetanide-sensitivity). We <strong>the</strong>re<strong>for</strong>e exam<strong>in</strong>ed <strong>the</strong> effect of bumetanide on 14 C-<br />

MA uptake and flux. Figure 3A shows <strong>the</strong> dose response relation <strong>for</strong> basolateral MA uptake (5 m<strong>in</strong>) <strong>in</strong><br />

<strong>T84</strong> <strong>cell</strong> monolayers <strong>in</strong> <strong>the</strong> absence and presence of 100 µM bumetanide. Bumetanide produced a small<br />

decrease <strong>in</strong> MA uptake which was apparent at greater concentrations of cold MA. We also observed<br />

-12-<br />

Page 12 of 45


Page 13 of 45<br />

(consistent with results of Handlogten, et.al., (12)) that as [MA] <strong>in</strong>creases <strong>the</strong>re develops <strong>in</strong> parallel a<br />

non-saturable component of MA uptake, represent<strong>in</strong>g l<strong>in</strong>ear diffusive entry, particularly at<br />

concentrations above approximately 5 mM MA. To determ<strong>in</strong>e <strong>the</strong> time course of MA uptake and flux as<br />

well as <strong>the</strong> sampl<strong>in</strong>g rate at which RhG activity could be more accurately accessed, 3 mM [MA] was<br />

used. This concentration was chosen to provide an extra “safety” marg<strong>in</strong> <strong>in</strong> sampl<strong>in</strong>g times. The time<br />

course of MA uptake (Figure 3B) and trans<strong>cell</strong>ular flux (Figure 3C) <strong>in</strong>dicate little effect of bumetanide<br />

on MA uptake or flux at time po<strong>in</strong>ts less than ~3 m<strong>in</strong>. However at longer time po<strong>in</strong>ts (> 5m<strong>in</strong>) a more<br />

significant bumetanide-sensitive component <strong>for</strong> MA uptake is revealed. S<strong>in</strong>ce <strong>the</strong>se data were obta<strong>in</strong>ed<br />

at 3 mM MA, use of 1 mM MA <strong>in</strong> comb<strong>in</strong>ation with a 2 m<strong>in</strong> sample period is more than adequate to<br />

access ‘specific’ RhG function. Transepi<strong>the</strong>lial flux of MA is less sensitive to bumetanide treatment,<br />

even at extended flux durations. There was no discernable K + competition (by Dixon plot with 1 and 3<br />

mM MA and 0-10 mM K + ) <strong>for</strong> <strong>the</strong> total (Figure 3D) as well as bumetanide-sensitive (Figure 3E)<br />

component of MA uptake as would be expected if MA were carried on <strong>the</strong> K + site of NKCC1 or <strong>the</strong><br />

pump , suggest<strong>in</strong>g that this small effect of bumetanide on MA uptake is <strong>in</strong>direct. The greater impact of<br />

bumetanide at longer time periods and a slightly greater effect on uptake verses transepi<strong>the</strong>lial flux are<br />

supportive of an <strong>in</strong>direct effect as well.<br />

Increas<strong>in</strong>g extra<strong>cell</strong>ular pH has been shown to <strong>in</strong>crease MA uptake <strong>in</strong> mIMCD-3 <strong>cell</strong>s (12).<br />

Figure 4A demonstrates a similar <strong>in</strong>crease <strong>in</strong> MA uptake with <strong>in</strong>creased basolateral extra<strong>cell</strong>ular pH and<br />

a decrease with basolateral extra<strong>cell</strong>ular acidification. Total MA uptake <strong>in</strong>creased by ~3 fold from<br />

1349±49 pmoles/m<strong>in</strong>/cm 2 to 4379±242 pmoles/m<strong>in</strong>/cm 2 on <strong>in</strong>creas<strong>in</strong>g pHo to 9.0, whereas MA uptake<br />

decreased by ~77% to 315±16 pmoles/m<strong>in</strong>/cm 2 at pHo 5.5. Trans<strong>cell</strong>ular flux of MA (Figure 4B) <strong>in</strong> <strong>the</strong><br />

secretory direction also <strong>in</strong>creased with an <strong>in</strong>crease <strong>in</strong> basolateral pHo. A pHo <strong>in</strong>crease from 7.4 to 9.0<br />

-13-


<strong>in</strong>creased secretory direction MA flux ~3.6 fold from 148±3 to 534±24 pmoles/m<strong>in</strong>/cm 2 . Acidify<strong>in</strong>g pHo<br />

to 5.5 produced an ~54% decrease <strong>in</strong> MA uptake (68±11 pmoles/m<strong>in</strong>/cm 2 ). Change <strong>in</strong> basolateral<br />

extra<strong>cell</strong>ular pH did not produce any significant <strong>in</strong>crease <strong>in</strong> a bumetanide-sensitive component of MA<br />

uptake, which fur<strong>the</strong>r supports lack of MA <strong>transport</strong> on NKCC1 and Na + /K + -ATPase.<br />

Change <strong>in</strong> apical extra<strong>cell</strong>ular pH had a similar effect on apical MA uptake and absorptive<br />

direction flux (Figure 4C). Total apical MA uptake <strong>in</strong>creased by ~4 fold from 211±9 pmoles/m<strong>in</strong>/cm 2 to<br />

890±26 pmoles/m<strong>in</strong>/cm 2 on <strong>in</strong>creas<strong>in</strong>g apical pHo to 9.0, whereas MA uptake decreased by ~23% to<br />

162±6 pmoles/m<strong>in</strong>/cm 2 at pHo 5.5. Trans<strong>cell</strong>ular flux of MA <strong>in</strong> <strong>the</strong> absorptive direction also <strong>in</strong>creased<br />

with an <strong>in</strong>crease <strong>in</strong> apical pHo. An apical pHo <strong>in</strong>crease from 7.4 to 9.0 <strong>in</strong>creased MA Jab ~8 fold from<br />

54±3 to 437±15 pmoles/m<strong>in</strong>/cm 2 . Acidify<strong>in</strong>g pHo to 5.5 produced an ~54% decrease <strong>in</strong> MA uptake<br />

(25±2 pmoles/m<strong>in</strong>/cm 2 ). These data comb<strong>in</strong>ed demonstrate that apical media (lum<strong>in</strong>al) alkalization has a<br />

more significant effect on MA absorption than does basolateral alkalization on MA secretion (~8 fold<br />

verses ~3.6 fold <strong>in</strong>crease).<br />

It has been established that NH4 + will compete with MA uptake on Rh G prote<strong>in</strong>s (11), (12).<br />

Thus, we used a transepi<strong>the</strong>lial NH4 + gradient to ascerta<strong>in</strong> <strong>the</strong> degree to which basolateral MA (and thus<br />

NH4 + ) load<strong>in</strong>g and secretory direction NH4 + <strong>transport</strong> could occur. The rationale is that apical solution<br />

NH4 + might retard <strong>the</strong> exit of MA across <strong>the</strong> apical membrane (presumably RhCG) or if apical NH4 +<br />

were to enter and rema<strong>in</strong> <strong>in</strong> <strong>the</strong> <strong>cell</strong> at significant levels a trans effect on basolateral <strong>transport</strong><br />

(presumably RhBG) might be revealed. In this case 14 C-MA is be<strong>in</strong>g used as a tracer <strong>for</strong> NH4 + <strong>transport</strong><br />

to determ<strong>in</strong>e if NH4 + secretion can occur aga<strong>in</strong>st a substantial gradient. A caveat is that MA will only<br />

sample a subset of <strong>the</strong> available secretory mechanisms s<strong>in</strong>ce it is not <strong>transport</strong>ed by NKCC1 or to our<br />

-14-<br />

Page 14 of 45


Page 15 of 45<br />

knowledge by o<strong>the</strong>r known K + /NH4 + <strong>transport</strong>ers. Initial experiments with 1 mM MA and 2 m<strong>in</strong> uptake<br />

showed an ~50% decrease <strong>in</strong> basolateral MA uptake from 1514±41 to 773±29 pmoles/m<strong>in</strong>/cm 2 with <strong>the</strong><br />

<strong>in</strong>clusion of 20 mM basolateral NH4 + (thus confirm<strong>in</strong>g effective NH4 + competition) whereas <strong>in</strong>clusion of<br />

20 mM NH4 + on <strong>the</strong> apical side produced no significant decrease <strong>in</strong> basolateral MA uptake (1578±33<br />

pmoles/m<strong>in</strong>/cm 2 ). Figure 5 shows that apical NH4 + concentrations as high as 100 mM have no effect on<br />

ei<strong>the</strong>r basolateral MA load<strong>in</strong>g or on <strong>the</strong> secretory direction flux of MA. These data <strong>in</strong>directly <strong>in</strong>dicate<br />

that NH4 + <strong>transport</strong> <strong>in</strong> <strong>the</strong> secretory direction driven by basolateral RhG (presumably RhBG) can occur<br />

aga<strong>in</strong>st a significant NH4 + gradient, one with<strong>in</strong> <strong>the</strong> physiological range of lum<strong>in</strong>al [NH4 + ].<br />

Transepi<strong>the</strong>lial <strong>transport</strong> of NH4 + <strong>in</strong> <strong>T84</strong> <strong>cell</strong>s. Although 14 C-MA uptake and flux is a useful tool<br />

to <strong>in</strong>vestigate <strong>the</strong> contribution of <strong>the</strong> Rh G prote<strong>in</strong>s to secretory direction movement of NH4 + , it does<br />

not allow one to determ<strong>in</strong>e <strong>the</strong> contribution of Na + /K + -ATPase or NKCC1 to NH4 + secretion.<br />

Un<strong>for</strong>tunately, <strong>the</strong>re is no convenient radioisotope to directly measure NH4 + <strong>transport</strong>. We have<br />

previously shown that NH4 + competes with K + on Na + /K + -ATPase as well as NKCC1 <strong>in</strong> <strong>T84</strong> <strong>cell</strong>s and<br />

that both <strong>transport</strong>ers will <strong>transport</strong> (load) NH4 + <strong>in</strong>to <strong>T84</strong> <strong>cell</strong>s (54) and thus may contribute to NH4 +<br />

secretion.<br />

Initial studies were designed to determ<strong>in</strong>e <strong>the</strong> relative magnitude of NH4 + flux <strong>in</strong> <strong>T84</strong> <strong>cell</strong><br />

monolayers under asymmetric conditions and were per<strong>for</strong>med <strong>in</strong> <strong>the</strong> presence of <strong>for</strong>skol<strong>in</strong> to maximize<br />

NKCC1 activity. Unidirectional flux of NH4 + was determ<strong>in</strong>ed by <strong>the</strong> <strong>in</strong>clusion of 10 mM NH4 + on one<br />

side of <strong>the</strong> <strong>cell</strong> monolayer and sampl<strong>in</strong>g <strong>the</strong> trans-side media. NH4 + flux <strong>in</strong> <strong>the</strong> secretory direction (Jba)<br />

exceeded flux <strong>in</strong> <strong>the</strong> absorptive direction (Jab) (Figure 6) result<strong>in</strong>g <strong>in</strong> a calculated secretory direction <strong>for</strong><br />

<strong>the</strong> net movement of NH4 + . Flux rates were -6.7±1.9 <strong>for</strong> Jab, 38.3±8.1 <strong>for</strong> Jba and 30.8±7.8<br />

-15-


nmoles/m<strong>in</strong>/cm 2 NH4 + <strong>for</strong> <strong>the</strong> calculated net flux. These data add fur<strong>the</strong>r support to <strong>the</strong> MA uptake and<br />

flux experiments <strong>in</strong>dicat<strong>in</strong>g that <strong>T84</strong> <strong>cell</strong>s are capable of net NH4 + secretion.<br />

In order to determ<strong>in</strong>e if transepi<strong>the</strong>lial potential (apical negative due to Cl - secretion with<br />

<strong>for</strong>skol<strong>in</strong> stimulation) affected NH4 + secretion flux studies were per<strong>for</strong>med <strong>in</strong> an Uss<strong>in</strong>g chamber system<br />

(4 ml symmetrical volume) ei<strong>the</strong>r under open-circuit or short-circuit (VTE = 0 mV) conditions.<br />

Asymmetric 0:10 mM NH4 + gradients were established and 0.1 ml trans-side bath<strong>in</strong>g media sampled at<br />

10 m<strong>in</strong> <strong>in</strong>tervals <strong>for</strong> 60 m<strong>in</strong>. Calculated secretory rate <strong>for</strong> <strong>the</strong> <strong>in</strong>itial 10 m<strong>in</strong> period was not significantly<br />

different between open-circuit and short-circuit mode (29±6 and 24±2 nmoles/m<strong>in</strong>/cm 2 respectively).<br />

Similarly secretory rate did not differ over <strong>the</strong> full 60 m<strong>in</strong> period between open-circuit and short-circuit<br />

modes (30±3 and 26±2 nmoles/m<strong>in</strong>/cm 2 respectively). These data <strong>in</strong>dicate that transepi<strong>the</strong>lial NH4 +<br />

movement is electroneutral (supportive of electroneutral movement on RhG’s as well as NKCC1). With<br />

current techniques it is difficult to dist<strong>in</strong>guish between para<strong>cell</strong>ular NH4 + movement and <strong>cell</strong>ular<br />

membrane NH3 movement, although <strong>the</strong> Isc experiments suggest little contribution of para<strong>cell</strong>ular NH4 +<br />

movement to <strong>the</strong> overall transepi<strong>the</strong>lial flux.<br />

To determ<strong>in</strong>e <strong>the</strong> degree to which NKCC1 and Na + /K + -ATPase contribute to <strong>the</strong> secretory<br />

direction flux, <strong>cell</strong>s were treated with basolateral bumetanide or ouaba<strong>in</strong> <strong>for</strong> 5 m<strong>in</strong> prior to <strong>the</strong> flux<br />

period. Both bumetanide and ouaba<strong>in</strong> decreased Jba NH4 + flux (Figure 7A). Bumetanide decreased <strong>the</strong><br />

unidirectional secretory direction NH4 + flux by ~44% from 73±10 to 40±5 nmoles/m<strong>in</strong>/cm 2 while pump<br />

<strong>in</strong>hibition reduced NH4 + <strong>transport</strong> by ~33% to 48±6 nmoles/m<strong>in</strong>/cm 2 suggest<strong>in</strong>g that NKCC1 and to<br />

some extent pump activity contribute to <strong>the</strong> secretory flux of NH4 + . In a separate experiment <strong>the</strong> effect<br />

of basolateral bumetanide on <strong>the</strong> unidirectional absorptive flux of NH4 + was assessed. Whereas<br />

-16-<br />

Page 16 of 45


Page 17 of 45<br />

<strong>in</strong>hibition of NKCC1 caused a decrease <strong>in</strong> secretory direction NH4 + flux, absorptive NH4 + flux was<br />

enhanced by NKCC1 <strong>in</strong>hibition. Jab <strong>for</strong> NH4 + was <strong>in</strong>creased ~2 fold from -1.6±0.2 <strong>in</strong> control to -3.2±0.5<br />

nmoles/m<strong>in</strong>/cm 2 <strong>in</strong> bumetanide treated <strong>cell</strong>s. These data suggest that NKCC1 may play a key role <strong>in</strong><br />

scaveng<strong>in</strong>g NH4 + travers<strong>in</strong>g <strong>the</strong> <strong>cell</strong> from <strong>the</strong> lumen thus limit<strong>in</strong>g NH4 + absorption. To fur<strong>the</strong>r lend<br />

support <strong>for</strong> NKCC1 limit<strong>in</strong>g NH4 + absorption, an additional experiment was designed under gradient<br />

conditions with NH4 + <strong>in</strong>itially present on both sides of <strong>the</strong> monolayer (Figure 7B.) Depicted is <strong>the</strong><br />

change <strong>in</strong> basolateral media NH4 + concentration <strong>in</strong> <strong>cell</strong>s exposed to 10 mM apical NH4 + and 3 mM<br />

basolateral NH4 + <strong>in</strong> <strong>the</strong> absence and presence of basolateral bumetanide. Under control conditions <strong>the</strong>re<br />

was no significant <strong>in</strong>crease <strong>in</strong> basolateral NH4 + (which would represent net absorption) or ra<strong>the</strong>r <strong>the</strong><br />

monolayer is capable of prevent<strong>in</strong>g diffusive NH3 entry at <strong>the</strong> apical membrane from be<strong>in</strong>g delivered to<br />

<strong>the</strong> basolateral medium. However <strong>in</strong> <strong>the</strong> presence of basolateral bumetanide, basolateral NH4 + levels<br />

<strong>in</strong>crease by 0.42±0.02 mM (14%) <strong>in</strong> 10 m<strong>in</strong>s and by 0.55±0.04 mM (18%) by 20 m<strong>in</strong>. The dim<strong>in</strong>ished<br />

<strong>in</strong>crease <strong>in</strong> basolateral NH4 + with time suggest <strong>the</strong> possibility that o<strong>the</strong>r mechanisms of limit<strong>in</strong>g<br />

absorptive NH4 + flux are act<strong>in</strong>g <strong>in</strong> a compensatory manner.<br />

cAMP-stimulates ammonium but not MA <strong>transport</strong>. Because cAMP activates transepi<strong>the</strong>lial Cl -<br />

secretion and NKCC1 <strong>in</strong> <strong>T84</strong> <strong>cell</strong>s, we exam<strong>in</strong>ed <strong>the</strong> effect of <strong>for</strong>skol<strong>in</strong> on MA uptake and flux. Our<br />

previous studies demonstrated that basolateral ammonium dampens cAMP-mediated Cl - secretion <strong>in</strong><br />

<strong>T84</strong> <strong>cell</strong>s (16), (35),(54). S<strong>in</strong>ce little is known regard<strong>in</strong>g <strong>the</strong> regulation of Rh G ammonium <strong>transport</strong>,<br />

uptake and flux measurements were determ<strong>in</strong>ed <strong>in</strong> unstimulated <strong>T84</strong> <strong>cell</strong>s. As shown <strong>in</strong> Figure 8A &<br />

8B, <strong>for</strong>skol<strong>in</strong> stimulation did not significantly alter MA <strong>transport</strong>. Basolateral MA uptake was<br />

3394±255 pmoles/cm 2 /m<strong>in</strong> under control conditions and 3024±214 pmoles/cm 2 /m<strong>in</strong> <strong>in</strong> <strong>the</strong> presence of<br />

<strong>for</strong>skol<strong>in</strong>. Basolateral to apical flux was 312±89 pmoles/cm 2 /m<strong>in</strong> <strong>for</strong> control and 260±21<br />

-17-


pmoles/cm 2 /m<strong>in</strong> <strong>in</strong> <strong>the</strong> presence of <strong>for</strong>skol<strong>in</strong>. Apical MA uptake was 1535±109 pmoles/cm 2 /m<strong>in</strong> under<br />

control conditions and 1503±125 pmoles/cm 2 /m<strong>in</strong> with <strong>for</strong>skol<strong>in</strong>. Under control conditions apical to<br />

basolateral MA flux was 157±40 pmoles/cm 2 /m<strong>in</strong> and 187±8 pmoles/cm 2 /m<strong>in</strong> with <strong>for</strong>skol<strong>in</strong>. In contrast<br />

to <strong>the</strong> lack of effect of cAMP stimulation on MA <strong>transport</strong>, secretory direction NH4 + flux was <strong>in</strong>creased<br />

~24% <strong>in</strong> <strong>the</strong> presence of <strong>for</strong>skol<strong>in</strong> (Figure 8C). Basolateral to apical NH4 + flux was 17±1<br />

nmoles/m<strong>in</strong>/cm 2 under control conditions and <strong>in</strong>creased to 21±2 nmoles/m<strong>in</strong>/cm 2 with <strong>for</strong>skol<strong>in</strong>.<br />

cAMP-stimulation of NH4 + movement <strong>in</strong> <strong>the</strong> secretory direction is consistent our previous data (54) and<br />

supportive of NKCC1 participation <strong>in</strong> basolateral NH4 + load<strong>in</strong>g (see below). Consistent with NKCC1<br />

activity limit<strong>in</strong>g <strong>the</strong> transepi<strong>the</strong>lial absorptive vector, <strong>for</strong>skol<strong>in</strong> stimulation results <strong>in</strong> decreased NH4 + Jab<br />

flux (Figure 8D). Jab <strong>for</strong> NH4 + was 5.8±0.5 nmoles/m<strong>in</strong>/cm 2 under control condition and decreased ~<br />

44% to 3.3±0.8 nmoles/m<strong>in</strong>/cm 2 with <strong>for</strong>skol<strong>in</strong> stimulation. As with o<strong>the</strong>r classic secretory or<br />

absorptive processes <strong>the</strong> magnitude variability <strong>in</strong> NH4 + flux across experiments may <strong>in</strong> part relate to<br />

variability <strong>in</strong> <strong>the</strong> magnitude of <strong>for</strong>skol<strong>in</strong> response <strong>in</strong> <strong>T84</strong> <strong>cell</strong>s between <strong>cell</strong> plat<strong>in</strong>gs and passages.<br />

However, despite <strong>the</strong> magnitude variability <strong>the</strong> relative effect is consistent across different groups.<br />

<strong>T84</strong> monolayers ma<strong>in</strong>ta<strong>in</strong> an applied ammonium gradient. The ability of <strong>T84</strong> <strong>cell</strong>s to ma<strong>in</strong>ta<strong>in</strong><br />

basolateral [NH4 + ] when exposed to a high apical to basolateral NH4 + gradient is shown <strong>in</strong> Figure 9.<br />

Cell monolayers were exposed to various <strong>in</strong>itial apical [NH4 + ] rang<strong>in</strong>g from 0 to 30 mM while<br />

basolateral [NH4 + ] was <strong>in</strong>itially 3.11±0.08 mM. Over a period of 30 m<strong>in</strong> <strong>cell</strong>s <strong>in</strong> <strong>the</strong> control group (no<br />

added NH4 + ) did not produce significant amounts of NH4 + . Dur<strong>in</strong>g <strong>the</strong> <strong>in</strong>itial 10 m<strong>in</strong>, basolateral media<br />

[NH4 + ] decreased <strong>in</strong> all groups. However at apical NH4 + concentrations <strong>in</strong> excess of 10 mM, basolateral<br />

NH4 + <strong>in</strong>creased by <strong>the</strong> 20 m<strong>in</strong> time po<strong>in</strong>t. Basolateral [NH4 + ] cont<strong>in</strong>ued to decrease when <strong>the</strong> <strong>in</strong>itial<br />

apical [NH4 + ] was at or below that of basolateral NH4 + and was relatively unchanged with an <strong>in</strong>itial 10<br />

-18-<br />

Page 18 of 45


Page 19 of 45<br />

mM apical to 3 mM basolateral gradient. Thus, despite <strong>in</strong>creased apical membrane permeability to NH3,<br />

<strong>T84</strong> <strong>cell</strong>s can ma<strong>in</strong>ta<strong>in</strong> at least a 10:3 NH4 + gradient, <strong>in</strong>dicat<strong>in</strong>g an ability to <strong>transport</strong> NH4 + <strong>in</strong> <strong>the</strong><br />

secretory direction to m<strong>in</strong>imize back diffusion of NH3.<br />

The passive diffusion of NH3 from <strong>the</strong> apical media <strong>in</strong>to and across <strong>T84</strong> <strong>cell</strong>s is supported by<br />

data obta<strong>in</strong>ed at differ<strong>in</strong>g apical pHo. Figure 10 shows <strong>the</strong> basolateral media NH4 + concentration <strong>in</strong><br />

<strong>cell</strong>s exposed to 10 mM apical NH4 + at apical media pH of 5.5, 7.4, and 9.0. Initial basolateral media<br />

[NH4 + ] was 2.88±0.02 mM. At an apical media pH of 5.5 and 7.4, basolateral [NH4 + ] decreased to<br />

2.69±0.03 and 2.78±0.01 mM <strong>in</strong> <strong>the</strong> first 10 m<strong>in</strong> <strong>the</strong>n rose to levels not significantly different than <strong>the</strong><br />

start<strong>in</strong>g values. However with an apical media pH of 9.0, at which more NH3 is present, basolateral<br />

[NH4 + ] <strong>in</strong>creased to 3.00±0.05 mM <strong>in</strong> 10 m<strong>in</strong> and to 3.45±0.09 by 20 m<strong>in</strong>.<br />

The ability of <strong>T84</strong> <strong>cell</strong>s to actively m<strong>in</strong>imize net NH4 + absorption when exposed to an apical to<br />

basolateral NH4 + gradient <strong>for</strong> an extended period was fur<strong>the</strong>r tested with <strong>cell</strong>s <strong>in</strong> culture medium. Cell<br />

monolayers were ma<strong>in</strong>ta<strong>in</strong>ed <strong>in</strong> complete culture medium on <strong>the</strong> basolateral side with a measured value<br />

of 4.06±0.03 mM NH4 + and serum free culture media conta<strong>in</strong><strong>in</strong>g 20 mM NH4 + at pH 6.0 on <strong>the</strong> apical<br />

side. Apical pH 6.0 was used <strong>in</strong>stead of pH 5.5 due to <strong>the</strong> buffer<strong>in</strong>g capacity of culture media. As shown<br />

<strong>in</strong> Figure 11, basolateral [NH4 + ] decreased to 2.51±0.03 mM by 10 m<strong>in</strong> with only a slight <strong>in</strong>crease<br />

(2.66±0.04 mM) at 60 m<strong>in</strong>.<br />

-19-


DISCUSSION<br />

Excess systemic NH4 + levels can lead to hyperammonemia associated encephalopathy which can be<br />

life threaten<strong>in</strong>g. Although, <strong>the</strong> kidney is responsible <strong>for</strong> carry<strong>in</strong>g out <strong>the</strong> bulk of body NH4 + homeostasis,<br />

<strong>the</strong> possibility exists that some level of body NH4 + control can be accomplished via changes <strong>in</strong> <strong>colonic</strong><br />

function. Our data demonstrate that 1) <strong>T84</strong> <strong>cell</strong>s express mRNA <strong>for</strong> two known NH4 + <strong>transport</strong>ers RhBG<br />

and RhCG and display <strong>transport</strong> characteristics consistent with functional RhG prote<strong>in</strong>s, 2)<br />

transepi<strong>the</strong>lial MA flux <strong>in</strong> <strong>T84</strong> <strong>cell</strong>s is greater <strong>in</strong> <strong>the</strong> secretory than absorptive direction, 3)<br />

transepi<strong>the</strong>lial <strong>transport</strong> of NH4 + <strong>in</strong> <strong>T84</strong> <strong>cell</strong>s is greater <strong>the</strong> secretory than absorptive direction and is<br />

sensitive to cAMP stimulation and to <strong>in</strong>hibitors of NKCC1 and Na + /K + -ATPase, and, 4) <strong>T84</strong> <strong>cell</strong>s, are<br />

able to ma<strong>in</strong>ta<strong>in</strong> an apical to basolateral NH4 + gradient despite hav<strong>in</strong>g a greater apical membrane NH3<br />

permeability than native <strong>colonic</strong> <strong>crypt</strong>s (2),(16),(18),(42),(44). Taken toge<strong>the</strong>r, <strong>the</strong>se data provide<br />

evidence that model <strong>colonic</strong> <strong>crypt</strong> epi<strong>the</strong>lia secrete NH4 + by a mechanism that <strong>in</strong>volves both K +<br />

<strong>transport</strong> and novel RhG prote<strong>in</strong> mediated pathways. The long stand<strong>in</strong>g premise, based on greater<br />

[NH4 + ] <strong>in</strong> portal ve<strong>in</strong> verses systemic circulation has been that NH4 + absorption occurs along <strong>the</strong> length<br />

of <strong>the</strong> <strong>in</strong>test<strong>in</strong>e. No consideration has been given <strong>for</strong> an oppos<strong>in</strong>g NH4 + secretory vector, which is<br />

surpris<strong>in</strong>g consider<strong>in</strong>g that secretory epi<strong>the</strong>lia <strong>in</strong> <strong>the</strong> <strong>in</strong>test<strong>in</strong>e share similar <strong>transport</strong> mechanisms with<br />

renal and gill epi<strong>the</strong>lium which do effect NH4 + secretion. If confirmed <strong>in</strong> natural tissue, <strong>the</strong>se f<strong>in</strong>d<strong>in</strong>gs<br />

<strong>in</strong>dicate that active secretion by <strong>colonic</strong> <strong>crypt</strong>s could oppose <strong>the</strong> larger absorptive NH4 + vector to limit<br />

net NH4 + delivery to <strong>the</strong> portal circulation.<br />

RhBG and RhCG iso<strong>for</strong>ms of <strong>the</strong> Rhesus glycoprote<strong>in</strong> family have been identified along <strong>the</strong> GI<br />

tract <strong>in</strong> mouse (13). Although limited RhBG and RhCG expression was observed <strong>in</strong> <strong>the</strong> upper portion of<br />

proximal colon <strong>crypt</strong>s compared to surface <strong>cell</strong>s <strong>in</strong> mouse tissue, both iso<strong>for</strong>ms are present <strong>in</strong> <strong>T84</strong> <strong>cell</strong>s<br />

-20-<br />

Page 20 of 45


Page 21 of 45<br />

(human), which o<strong>the</strong>rwise functionally resemble <strong>cell</strong>s of <strong>crypt</strong> orig<strong>in</strong>. Whe<strong>the</strong>r expression patterns of<br />

RhBG and RhCG differ along <strong>the</strong> length of <strong>the</strong> colon or along <strong>the</strong> entire <strong>crypt</strong> surface axis <strong>in</strong> mouse or<br />

human tissue rema<strong>in</strong>s to be determ<strong>in</strong>ed as does distribution among <strong>the</strong> various <strong>cell</strong> types present with<strong>in</strong><br />

<strong>the</strong> <strong>colonic</strong> <strong>crypt</strong>. MA uptake <strong>in</strong> to <strong>T84</strong> <strong>cell</strong>s was observed from <strong>the</strong> basolateral side thus suggest<strong>in</strong>g <strong>the</strong><br />

functional presence of RhBG. MA uptake was partially <strong>in</strong>hibited by <strong>the</strong> addition of basolateral NH4 + ,<br />

suggestive of RhBG function similar to reported results <strong>for</strong> RhBG <strong>in</strong> renal mIMCD-3 <strong>cell</strong>s (12). In<br />

mIMCD-3 <strong>cell</strong>s basolateral methyl ammonium <strong>transport</strong> exhibits both diffusive and carrier-mediated<br />

components with <strong>the</strong> diffusive component becom<strong>in</strong>g predom<strong>in</strong>ant at [MA] exceed<strong>in</strong>g 10 mM. The dose<br />

response relation <strong>for</strong> MA uptake observed <strong>in</strong> <strong>T84</strong> <strong>cell</strong>s shows similar properties with an almost l<strong>in</strong>ear<br />

relation between 5 and 15 mM MA. Handlogten, et.al. (12) reported that MA uptake via RhBG <strong>in</strong><br />

mIMCD-3 <strong>cell</strong>s is not affected by <strong>the</strong> NKCC1 <strong>in</strong>hibitor bumetanide. In <strong>the</strong>ir study, excess NH4 + was<br />

used to dist<strong>in</strong>guish between trasporter-mediated and diffusive entry of MA. S<strong>in</strong>ce <strong>T84</strong> <strong>cell</strong>s have<br />

abundant NKCC1 activity (which as discussed below is capable of NH4 + <strong>transport</strong>) such a maneuver<br />

becomes somewhat problematic, <strong>the</strong>re<strong>for</strong>e we operationally def<strong>in</strong>ed <strong>transport</strong>er-uptake by per<strong>for</strong>m<strong>in</strong>g<br />

assays at < 5 mM MA and < 3 m<strong>in</strong> uptake periods). Consistent with RhBG <strong>in</strong> mIMCD-3 <strong>cell</strong>s,<br />

<strong>transport</strong>er-mediated uptake of MA (e.g., at < 5mM MA & < 3 m<strong>in</strong> uptake periods) is <strong>in</strong>sensitive to<br />

bumetanide. With <strong>in</strong>creased concentration of MA as well as with <strong>in</strong>creased uptake times (at a greater<br />

fraction of diffusive MA entry) total MA uptake showed some sensitivity to bumetanide. This could be<br />

due to an <strong>in</strong>direct effect bumetanide itself on diffusive MA entry or alternatively an <strong>in</strong>direct effect of<br />

NKCC1 <strong>in</strong>hibition on diffusive MA entry. The later possibility is perhaps more likely given <strong>the</strong><br />

abundant capacity <strong>for</strong> NKCC1 activity <strong>in</strong> <strong>T84</strong> <strong>cell</strong>s. It should be noted however that bumetanide had<br />

little impact on <strong>the</strong> transepi<strong>the</strong>lial flux of MA, perhaps due to <strong>the</strong> apical exit of MA be<strong>in</strong>g rate limit<strong>in</strong>g<br />

(suggested by less apical MA uptake verses basolateral MA uptake).<br />

-21-


Uptake of MA by ei<strong>the</strong>r RhBG or RhCG expressed <strong>in</strong> Xenopus oocytes has been shown to be<br />

stimulated by extra<strong>cell</strong>ular alkalosis (26), similarly RhCG activity <strong>in</strong> mIMCD-3 <strong>cell</strong>s is enhanced by<br />

extra<strong>cell</strong>ular alkal<strong>in</strong>ization (11). Both RhBG and RhCG have been identified <strong>in</strong> mouse <strong>in</strong>test<strong>in</strong>e,<br />

show<strong>in</strong>g basolateral and apical immunosta<strong>in</strong><strong>in</strong>g respectively (48). In mIMCD-3 <strong>cell</strong>s, functional<br />

dist<strong>in</strong>ction between RhBG and RhCG is primarily based on basal activity, pH sensitivity, and relative<br />

aff<strong>in</strong>ity (11). In <strong>T84</strong> <strong>cell</strong>s, both basolateral MA uptake (RhBG) and basolateral to apical flux of MA is<br />

enhanced by elevated basolateral pH and <strong>in</strong>hibited by basolateral solution acidification.<br />

MA uptake <strong>in</strong>to <strong>T84</strong> <strong>cell</strong>s was also observed from <strong>the</strong> apical side, thus support<strong>in</strong>g <strong>the</strong> functional<br />

presence of an RhG prote<strong>in</strong>, likely RhCG. Uptake was partially <strong>in</strong>hibited by <strong>the</strong> addition of apical<br />

NH4 + . Although conditions were not optimized <strong>for</strong> maximal competitive <strong>in</strong>hibition (s<strong>in</strong>ce apical NH4 +<br />

will change pHi (16, 54) <strong>the</strong> data are suggestive of RhG activity as reported results <strong>for</strong> RhCG <strong>in</strong> renal<br />

mIMCD-3 <strong>cell</strong>s (11). Apical MA uptake <strong>in</strong> <strong>T84</strong> <strong>cell</strong>s with changes <strong>in</strong> apical solution pH are consistent<br />

with published data <strong>for</strong> RhCG (11),(26) thus support<strong>in</strong>g <strong>the</strong> functional presence of apical RhCG <strong>in</strong> <strong>T84</strong><br />

<strong>cell</strong>s.<br />

The notion that NH4 + secretion can be driven by NKCC and Na + /K + -ATPase with an oppos<strong>in</strong>g<br />

apical exit pathway is supported by work <strong>in</strong> renal <strong>cell</strong>s (19), (46). In fact, K<strong>in</strong>ne, et.al. estimated that it<br />

is energetically possible <strong>for</strong> NKCC and Na + /K + -ATPase under physiologic conditions to generate a<br />

[NH4 + ]i/[NH4 + ]o ratio of approximately 2000! As previously reported, NH4 + can be effectively<br />

<strong>transport</strong>ed on <strong>the</strong> K + site of Na + /K + -ATPase and NKCC1 <strong>in</strong> <strong>T84</strong> <strong>cell</strong>s (54). S<strong>in</strong>ce similar load<strong>in</strong>g<br />

pathways are used by various NH4 + secretory epi<strong>the</strong>lia, it was logical to exam<strong>in</strong>e whe<strong>the</strong>r <strong>T84</strong><br />

monolayers demonstrate transepi<strong>the</strong>lial ammonium <strong>transport</strong>. Indeed, we demonstrated a role <strong>for</strong><br />

-22-<br />

Page 22 of 45


Page 23 of 45<br />

NKCC1 and perhaps Na + /K + -ATPase <strong>in</strong> transepi<strong>the</strong>lial secretory flux of NH4 + . Basolateral bumetanide<br />

as well as ouaba<strong>in</strong> significantly decreased <strong>the</strong> movement of basolateral NH4 + to <strong>the</strong> apical compartment.<br />

Although it is difficult to assess <strong>the</strong> degree to which ouaba<strong>in</strong> might <strong>in</strong>directly affect NKCC1 activity (by<br />

alter<strong>in</strong>g <strong>the</strong> Na + gradient), <strong>the</strong>se data support <strong>the</strong> <strong>in</strong>volvement of additional pathways <strong>for</strong> basolateral<br />

NH4 + load<strong>in</strong>g (such as RhBG) as described above s<strong>in</strong>ce bumetanide or ouaba<strong>in</strong> resulted <strong>in</strong> only an ~40%<br />

or ~33% reduction <strong>in</strong> NH4 + flux. In our study, bumetanide had little effect on transepi<strong>the</strong>lial MA<br />

<strong>transport</strong>. It should be noted as well that Handlogten, et.al. (12) showed m<strong>in</strong>imal MA uptake on Na + /K + -<br />

ATPase or NKCC1 <strong>in</strong> mIMCD-3 <strong>cell</strong>s. Our data support a role <strong>for</strong> NKCC1 <strong>in</strong> retard<strong>in</strong>g <strong>the</strong> movement of<br />

NH4 + from <strong>the</strong> apical compartment to <strong>the</strong> basolateral compartment, perhaps act<strong>in</strong>g as an NH3/NH4 +<br />

scavenger by rapidly <strong>in</strong>ternaliz<strong>in</strong>g NH4 + present <strong>in</strong> <strong>the</strong> basolateral vic<strong>in</strong>ity of <strong>the</strong> <strong>crypt</strong> compartment.<br />

<strong>Ammonium</strong> was <strong>transport</strong>ed by both Na + /K + -ATPase, NKCC1 (as has been described <strong>for</strong> o<strong>the</strong>r<br />

epi<strong>the</strong>lial <strong>transport</strong> models of ammonium secretion (30, 38, 40, 43, 45, 47) ) as well as RhBG and<br />

RhCG. Under asymmetric flux conditions at pH 7.4, both MA and NH4 + transepi<strong>the</strong>lial fluxes were<br />

greater <strong>in</strong> <strong>the</strong> secretory compared to absorptive direction. Whereas MA uptake and flux (RhBG/RhCG<br />

mediated) were unaffected by <strong>for</strong>skol<strong>in</strong>, NH4 + flux was stimulated by cAMP, presumably due to<br />

<strong>in</strong>creased NKCC1 activity. In vivo, lum<strong>in</strong>al pH is more acidic (~ pH 5.5 <strong>in</strong> humans); this would fur<strong>the</strong>r<br />

favor net secretion under physiological pH conditions because relative lum<strong>in</strong>al acidity favors lum<strong>in</strong>al<br />

NH4 + over NH3 and thus m<strong>in</strong>imizes passive back-diffusion of NH3 through <strong>the</strong> apical membrane. The<br />

redundancy <strong>in</strong> mechanisms <strong>for</strong> basolateral ammonium load<strong>in</strong>g <strong>in</strong> both kidney and <strong>in</strong>test<strong>in</strong>e suggests <strong>the</strong><br />

importance of ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g ammonium secretory capacity. Indeed, predicted distal tubular acidosis or<br />

hyperammonemia was absent <strong>in</strong> Rhbg KO mice (5),(6).<br />

-23-


An important caveat to our study is <strong>the</strong> observation that native <strong>colonic</strong> <strong>crypt</strong> <strong>cell</strong>s of certa<strong>in</strong><br />

mammals appear to exhibit low apical permeability to ammonia (NH3) (2),(18), (42), (44). In contrast,<br />

<strong>the</strong> apical membrane of <strong>T84</strong> <strong>cell</strong>s has a more readily apparent NH3 permeability (16). It should be noted<br />

that <strong>the</strong> higher apical NH3 permeability <strong>in</strong> <strong>T84</strong> <strong>cell</strong>s would impair <strong>the</strong>ir ability to secrete NH4 + aga<strong>in</strong>st a<br />

concentration gradient and thus might underestimate <strong>the</strong> ability of <strong>in</strong>tact <strong>crypt</strong>s to secrete NH4 + or<br />

ma<strong>in</strong>ta<strong>in</strong> a large lum<strong>in</strong>al to serosal NH4 + gradient. Moreover, it is unknown whe<strong>the</strong>r cultured <strong>crypt</strong><br />

epi<strong>the</strong>lial l<strong>in</strong>es differ <strong>in</strong> general from native <strong>crypt</strong>s with respect to apical ammonium permeability;<br />

certa<strong>in</strong>ly, <strong>the</strong>re may be considerable species, segmental, or <strong>cell</strong>ular heterogeneity.<br />

Several models <strong>for</strong> NH4 + secretion <strong>in</strong> o<strong>the</strong>r tissues (see <strong>in</strong>troduction) <strong>in</strong>clude “ion trapp<strong>in</strong>g” of NH4 +<br />

at <strong>the</strong> lum<strong>in</strong>al surface. In particular, <strong>colonic</strong> H + -K + -ATPase along with an apical K + channel have been<br />

shown to be important participants <strong>for</strong> mammalian IMCD (30). Although, it is well established that<br />

native <strong>colonic</strong> mucosa conta<strong>in</strong>s both c-H + /K + -ATPase and a ROMK1 like apical K + channel (22), both<br />

appear to be absent from <strong>the</strong> <strong>T84</strong> <strong>cell</strong> l<strong>in</strong>e (36). The lack of <strong>the</strong>se two apical <strong>transport</strong>ers (cH + /K + -<br />

ATPase and K + channel) <strong>in</strong> <strong>T84</strong> <strong>cell</strong>s thus also limit <strong>the</strong>ir ability to secrete NH4 + aga<strong>in</strong>st a concentration<br />

gradient or ma<strong>in</strong>ta<strong>in</strong> a large lum<strong>in</strong>al to serosal NH4 + gradient.<br />

Due to <strong>the</strong> nature of <strong>the</strong> ammonium assay (signal to noise) and <strong>the</strong> NH3 permeability of <strong>T84</strong> apical<br />

membrane, it is difficult to measure NH4 + <strong>transport</strong> aga<strong>in</strong>st a sizeable apical [NH4 + ]. An alternative<br />

approach would be <strong>the</strong> use of <strong>the</strong> stable non-radioactive isotope of N ( 15 N) <strong>in</strong> tracer fluxes, although it is<br />

questionable whe<strong>the</strong>r this approach would enhance accuracy of transepi<strong>the</strong>lial flux assays. As an <strong>in</strong>direct<br />

alternative, we determ<strong>in</strong>ed secretory MA flux aga<strong>in</strong>st an apical-to-basolateral NH4 + gradient (Figure 5).<br />

The rationale is that NH4 + is <strong>transport</strong>ed by RhBG and RhCG to a greater extent than is MA, thus NH4 +<br />

-24-<br />

Page 24 of 45


Page 25 of 45<br />

acts competitively aga<strong>in</strong>st MA <strong>transport</strong> on RhGs (Figure 2 and (12)). We found that 20 mM cis NH4 +<br />

<strong>in</strong>hibits uptake of MA by about half. Thus, it is reasonable that trans NH4 + , if “sensed” by <strong>the</strong> secretory<br />

mach<strong>in</strong>ery, should also <strong>in</strong>hibit <strong>the</strong> transepi<strong>the</strong>lial flux of MA. However, secretory direction MA flux was<br />

not significantly altered by <strong>the</strong> trans addition of up to 100 mM NH4 + . This observation suggests that<br />

NH4 + secretion (<strong>in</strong> this case estimated by 14 C-MA tracer) can occur aga<strong>in</strong>st a physiologically relevant<br />

apical-to-basolateral NH4 + gradient. These results underestimate <strong>the</strong> secretory capacity s<strong>in</strong>ce MA is not<br />

<strong>transport</strong>ed by NKCC1 or Na + /K + -ATPase whereas NH4 + would be loaded <strong>in</strong>to <strong>the</strong> <strong>cell</strong> by <strong>the</strong>se<br />

<strong>transport</strong>ers. <strong>T84</strong> <strong>cell</strong>s were also capable of ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g an apical-to-basolateral NH4 + gradient (Figures<br />

9 and 11). The <strong>in</strong>itial loss of basolateral compartment NH4 + may represent a comb<strong>in</strong>ation of <strong>cell</strong>ular<br />

NH4 + sequester<strong>in</strong>g and/or metabolism, however this does not negate <strong>the</strong> fact that <strong>T84</strong> <strong>cell</strong>s can ma<strong>in</strong>ta<strong>in</strong><br />

an appreciable apical-to-basolateral gradient.<br />

Taken toge<strong>the</strong>r, our data suggest that ammonium <strong>transport</strong> <strong>in</strong> <strong>the</strong> secretory direction can occur <strong>in</strong><br />

<strong>T84</strong> model <strong>crypt</strong> epi<strong>the</strong>lia and that Rh G prote<strong>in</strong>s, NKCC1, and to some extent Na + /K + -ATPase<br />

participate <strong>in</strong> basolateral load<strong>in</strong>g of NH4 + <strong>in</strong>to <strong>the</strong> <strong>cell</strong>. We speculate that a secretory mechanism may be<br />

present <strong>in</strong> natural <strong>colonic</strong> mucosa <strong>in</strong> order to counter ammonium absorptive pathways and thus limit <strong>the</strong><br />

amount of NH4 + reach<strong>in</strong>g <strong>the</strong> portal circulation. Fur<strong>the</strong>r elucidation of <strong>the</strong> mechanisms <strong>in</strong>volved <strong>in</strong><br />

<strong>colonic</strong> NH4 + <strong>transport</strong> and regulation may be useful <strong>in</strong> develop<strong>in</strong>g new targets <strong>for</strong> more effective<br />

<strong>the</strong>rapeutic treatment of hyperammonemia.<br />

-25-


Acknowledgments<br />

We thank Corryn A. Morris <strong>for</strong> her adm<strong>in</strong>istrative assistance on this project. This work was<br />

supported by NIDDK DK051630 to JBM and by <strong>the</strong> Epi<strong>the</strong>lial Pathobiology Group.<br />

-26-<br />

Page 26 of 45


Page 27 of 45<br />

REFERENCES<br />

1. Bakouh N, Benjelloun F, Hul<strong>in</strong> P, Brouillard F, Edelman A, Cherif-Zahar B, and Planelles<br />

G. NH3 is <strong>in</strong>volved <strong>in</strong> <strong>the</strong> NH4+ <strong>transport</strong> <strong>in</strong>duced by <strong>the</strong> functional expression of <strong>the</strong> human Rh C<br />

glycoprote<strong>in</strong>. J Biol Chem 279: 15975-15983, 2004.<br />

2. Boron WF, Waisbren SJ, Modl<strong>in</strong> IM, and Geibel JP. Unique permeability barrier of <strong>the</strong><br />

apical surface of parietal and chief <strong>cell</strong>s <strong>in</strong> isolated perfused gastric glands. J Exp Biol 196: 347-360,<br />

1994.<br />

3. Bown RL, Sladen GE, Clark ML, and Dawson AM. The production and <strong>transport</strong> of ammonia<br />

<strong>in</strong> <strong>the</strong> human colon. Gut 12: 863, 1971.<br />

4. Castell DO and Moore EW. Ammonia absorption from <strong>the</strong> human colon. The role of nonionic<br />

diffusion. Gastroenterology 60: 33-42, 1971.<br />

5. Chambrey R, Goossens D, Bourgeois S, Picard N, Bloch-Faure M, Leviel F, Geoffroy V,<br />

Cambillau M, Col<strong>in</strong> Y, Paillard M, Houillier P, Cartron JP, and Eladari D. Genetic ablation of<br />

Rhbg <strong>in</strong> <strong>the</strong> mouse does not impair renal ammonium excretion. Am J Physiol Renal Physiol 289: F1281-<br />

1290, 2005.<br />

6. Chambrey R, Goossens D, Quent<strong>in</strong> F, and Eladari D. Rh glycoprote<strong>in</strong>s <strong>in</strong> epi<strong>the</strong>lial <strong>cell</strong>s:<br />

lessons from rat and mice studies. Transfus Cl<strong>in</strong> Biol 13: 154-158, 2006.<br />

7. Clemmesen JO, Kondrup J, and Ott P. Splanchnic and leg exchange of am<strong>in</strong>o acids and<br />

ammonia <strong>in</strong> acute liver failure. Gastroenterology 118: 1131-1139, 2000.<br />

8. Dharmsathaphorn K, McRoberts JA, Mandel KG, Tisdale LD, and Masui H. A human<br />

<strong>colonic</strong> tumor <strong>cell</strong> l<strong>in</strong>e that ma<strong>in</strong>ta<strong>in</strong>s vectorial electrolyte <strong>transport</strong>. Am J Physiol 246: G204-208, 1984.<br />

9. Dubois E and Grenson M. Methylam<strong>in</strong>e/ammonia uptake systems <strong>in</strong> saocharomyces cerevisiae:<br />

multiplicity and regulation. Mol Gen Genet 175: 67-76, 1979.<br />

10. Hall MC, Koch MO, and McDougal WS. Mechanism of ammonium <strong>transport</strong> by <strong>in</strong>test<strong>in</strong>al<br />

segments follow<strong>in</strong>g ur<strong>in</strong>ary diversion: evidence <strong>for</strong> ionized NH4+ <strong>transport</strong> via K(+)-pathways. J Urol<br />

148: 453-457, 1992.<br />

11. Handlogten ME, Hong SP, Westhoff CM, and We<strong>in</strong>er ID. Apical ammonia <strong>transport</strong> by <strong>the</strong><br />

mouse <strong>in</strong>ner medullary collect<strong>in</strong>g duct <strong>cell</strong> (mIMCD-3). Am J Physiol Renal Physiol 289: F347-358,<br />

2005.<br />

12. Handlogten ME, Hong SP, Westhoff CM, and We<strong>in</strong>er ID. Basolateral ammonium <strong>transport</strong><br />

by <strong>the</strong> mouse <strong>in</strong>ner medullary collect<strong>in</strong>g duct <strong>cell</strong> (mIMCD-3). Am J Physiol Renal Physiol 287: F628-<br />

638, 2004.<br />

13. Handlogten ME, Hong SP, Zhang L, Vander AW, Ste<strong>in</strong>baum ML, Campbell-Thompson M,<br />

and We<strong>in</strong>er ID. Expression of <strong>the</strong> ammonia <strong>transport</strong>er prote<strong>in</strong>s Rh B glycoprote<strong>in</strong> and Rh C<br />

glycoprote<strong>in</strong> <strong>in</strong> <strong>the</strong> <strong>in</strong>test<strong>in</strong>al tract. Am J Physiol Gastro<strong>in</strong>test Liver Physiol 288: G1036-1047, 2005.<br />

14. Hediger MA, Romero MF, Peng JB, Rolfs A, Takanaga H, and Bru<strong>for</strong>d EA. The ABCs of<br />

solute carriers: physiological, pathological and <strong>the</strong>rapeutic implications of human membrane <strong>transport</strong><br />

prote<strong>in</strong>sIntroduction. Pflugers Arch 447: 465-468, 2004.<br />

15. Heitman J and Agre P. A new face of <strong>the</strong> Rhesus antigen. Nat Genet 26: 258-259, 2000.<br />

16. Hrnjez BJ, Song JC, Prasad M, Mayol JM, and Mat<strong>the</strong>ws JB. Ammonia blockade of<br />

<strong>in</strong>test<strong>in</strong>al epi<strong>the</strong>lial K+ conductance. Am J Physiol 277: G521-532, 1999.<br />

17. Khademi S, O'Connell J, 3rd, Remis J, Robles-Colmenares Y, Miercke LJ, and Stroud<br />

RM. Mechanism of ammonia <strong>transport</strong> by Amt/MEP/Rh: structure of AmtB at 1.35 A. Science 305:<br />

1587-1594, 2004.<br />

-27-


18. Kikeri D, Sun A, Zeidel ML, and Hebert SC. Cell membranes impermeable to NH3. Nature<br />

339: 478-480, 1989.<br />

19. K<strong>in</strong>ne R, K<strong>in</strong>ne-Saffran E, Schutz H, and Scholermann B. <strong>Ammonium</strong> <strong>transport</strong> <strong>in</strong><br />

medullary thick ascend<strong>in</strong>g limb of rabbit kidney: <strong>in</strong>volvement of <strong>the</strong> Na+,K+,Cl(-)-co<strong>transport</strong>er. J<br />

Membr Biol 94: 279-284, 1986.<br />

20. Knepper MA and Agre P. Structural biology. The atomic architecture of a gas channel. Science<br />

305: 1573-1574, 2004.<br />

21. Koch MO and Hall MC. Mechanism of ammonium <strong>transport</strong>: <strong>in</strong>hibition by potassium and<br />

barium. J Urol 148: 1285-1287, 1992.<br />

22. Kunzelmann K and Mall M. Electrolyte <strong>transport</strong> <strong>in</strong> <strong>the</strong> mammalian colon: mechanisms and<br />

implications <strong>for</strong> disease. Physiol Rev 82: 245-289, 2002.<br />

23. Kustu S and Inwood W. Biological gas channels <strong>for</strong> NH3 and CO2: evidence that Rh (Rhesus)<br />

prote<strong>in</strong>s are CO2 channels. Transfus Cl<strong>in</strong> Biol 13: 103-110, 2006.<br />

24. Liu Z, Peng J, Mo R, Hui C, and Huang CH. Rh type B glycoprote<strong>in</strong> is a new member of <strong>the</strong><br />

Rh superfamily and a putative ammonia <strong>transport</strong>er <strong>in</strong> mammals. J Biol Chem 276: 1424-1433, 2001.<br />

25. Ludewig U. Electroneutral ammonium <strong>transport</strong> by basolateral rhesus B glycoprote<strong>in</strong>. J Physiol<br />

559: 751-759, 2004.<br />

26. Mak DO, Dang B, We<strong>in</strong>er ID, Foskett JK, and Westhoff CM. Characterization of ammonia<br />

<strong>transport</strong> by <strong>the</strong> kidney Rh glycoprote<strong>in</strong>s RhBG and RhCG. Am J Physiol Renal Physiol 290: F297-305,<br />

2006.<br />

27. Mar<strong>in</strong>i AM, Matassi G, Raynal V, Andre B, Cartron JP, and Cherif-Zahar B. The human<br />

Rhesus-associated RhAG prote<strong>in</strong> and a kidney homologue promote ammonium <strong>transport</strong> <strong>in</strong> yeast. Nat<br />

Genet 26: 341-344, 2000.<br />

28. Mossberg SM. Ammonia absorption <strong>in</strong> hamster ileum: effect of pH and total CO2 on <strong>transport</strong><br />

<strong>in</strong> everted sacs. Am J Physiol 213: 1327-1330, 1967.<br />

29. Mossberg SM and Ross G. Ammonia movement <strong>in</strong> <strong>the</strong> small <strong>in</strong>test<strong>in</strong>e: preferential <strong>transport</strong> by<br />

<strong>the</strong> ileum. J Cl<strong>in</strong> Invest 46: 490-498, 1967.<br />

30. Nakamura S, Amlal H, Galla JH, and Soleimani M. NH4+ secretion <strong>in</strong> <strong>in</strong>ner medullary<br />

collect<strong>in</strong>g duct <strong>in</strong> potassium deprivation: role of <strong>colonic</strong> H+-K+-ATPase. Kidney Int 56: 2160-2167,<br />

1999.<br />

31. Nakhoul NL, Dejong H, Abdulnour-Nakhoul SM, Boulpaep EL, Her<strong>in</strong>g-Smith K, and<br />

Hamm LL. Characteristics of renal Rhbg as an NH4(+) <strong>transport</strong>er. Am J Physiol Renal Physiol 288:<br />

F170-181, 2005.<br />

32. Nakhoul NL and Hamm LL. Non-erythroid Rh glycoprote<strong>in</strong>s: a putative new family of<br />

mammalian ammonium <strong>transport</strong>ers. Pflugers Arch 447: 807-812, 2004.<br />

33. Nakhoul NL, Her<strong>in</strong>g-Smith KS, Abdulnour-Nakhoul SM, and Hamm LL. Transport of<br />

NH(3)/NH <strong>in</strong> oocytes express<strong>in</strong>g aquapor<strong>in</strong>-1. Am J Physiol Renal Physiol 281: F255-263, 2001.<br />

34. Nakhoul NL, Schmidt E, Abdulnour-Nakhoul SM, and Hamm LL. Electrogenic ammonium<br />

<strong>transport</strong> by renal Rhbg. Transfus Cl<strong>in</strong> Biol 13: 147-153, 2006.<br />

35. Prasad M, Smith JA, Resnick A, Awtrey CS, Hrnjez BJ, and Mat<strong>the</strong>ws JB. Ammonia<br />

<strong>in</strong>hibits cAMP-regulated <strong>in</strong>test<strong>in</strong>al Cl- <strong>transport</strong>. Asymmetric effects of apical and basolateral exposure<br />

and implications <strong>for</strong> epi<strong>the</strong>lial barrier function. J Cl<strong>in</strong> Invest 96: 2142-2151, 1995.<br />

36. Ramirez MA, Toriano R, Parisi M, and Malnic G. Control of <strong>cell</strong> pH <strong>in</strong> <strong>the</strong> <strong>T84</strong> colon <strong>cell</strong><br />

l<strong>in</strong>e. J Membr Biol 177: 149-157, 2000.<br />

37. Randall DJ and Tsui TK. Ammonia toxicity <strong>in</strong> fish. Mar Pollut Bull 45: 17-23, 2002.<br />

-28-<br />

Page 28 of 45


Page 29 of 45<br />

38. Randall DJ, Wilson JM, Peng KW, Kok TW, Kuah SS, Chew SF, Lam TJ, and Ip YK. The<br />

mudskipper, Periophthalmodon schlosseri, actively <strong>transport</strong>s NH4+ aga<strong>in</strong>st a concentration gradient.<br />

Am J Physiol 277: R1562-1567, 1999.<br />

39. Roon RJ, Even HL, Dunlop P, and Larimore FL. Methylam<strong>in</strong>e and ammonia <strong>transport</strong> <strong>in</strong><br />

Saccharomyces cerevisiae. J Bacteriol 122: 502-509, 1975.<br />

40. Santer R. Waste Disposal, Crab Style. J Exp Biol 205: i, 2002.<br />

41. Silen W, Harper HA, Mawdsley DL, and Weirich WL. Effect of antibacterial agents on<br />

ammonia production with<strong>in</strong> <strong>the</strong> <strong>in</strong>test<strong>in</strong>e. Proc Soc Exp Biol Med 88: 138-140, 1955.<br />

42. S<strong>in</strong>gh SK, B<strong>in</strong>der HJ, Geibel JP, and Boron WF. An apical permeability barrier to<br />

NH3/NH4+ <strong>in</strong> isolated, perfused <strong>colonic</strong> <strong>crypt</strong>s. Proc Natl Acad Sci U S A 92: 11573-11577, 1995.<br />

43. Thomson RB, Thomson JM, and Phillips JE. NH4+ <strong>transport</strong> <strong>in</strong> acid-secret<strong>in</strong>g <strong>in</strong>sect<br />

epi<strong>the</strong>lium. Am J Physiol 254: R348-356, 1988.<br />

44. Waisbren SJ, Geibel JP, Modl<strong>in</strong> IM, and Boron WF. Unusual permeability properties of<br />

gastric gland <strong>cell</strong>s. Nature 368: 332-335, 1994.<br />

45. Wall SM. Mechanisms of NH4+ and NH3 <strong>transport</strong> dur<strong>in</strong>g hypokalemia. . Acta Physiol Scand<br />

179: 325-330, 2003.<br />

46. Wall SM, Tr<strong>in</strong>h HN, and Woodward KE. Heterogeneity of NH+4 <strong>transport</strong> <strong>in</strong> mouse <strong>in</strong>ner<br />

medullary collect<strong>in</strong>g duct <strong>cell</strong>s. Am J Physiol 269: F536-544, 1995.<br />

47. Weihrauch D, Ziegler A, Siebers D, and Towle DW. Active ammonia excretion across <strong>the</strong><br />

gills of <strong>the</strong> green shore crab Carc<strong>in</strong>us maenas: participation of Na(+)/K(+)-ATPase, V-type H(+)-<br />

ATPase and functional microtubules. J Exp Biol 205: 2765-2775, 2002.<br />

48. We<strong>in</strong>er ID. Expression of <strong>the</strong> non-erythroid Rh glycoprote<strong>in</strong>s <strong>in</strong> mammalian tissues. Transfus<br />

Cl<strong>in</strong> Biol 13: 159-163, 2006.<br />

49. We<strong>in</strong>er ID, Miller RT, and Verlander JW. Localization of <strong>the</strong> ammonium <strong>transport</strong>ers, Rh B<br />

glycoprote<strong>in</strong> and Rh C glycoprote<strong>in</strong>, <strong>in</strong> <strong>the</strong> mouse liver. Gastroenterology 124: 1432-1440, 2003.<br />

50. We<strong>in</strong>er ID and Verlander JW. Renal and hepatic expression of <strong>the</strong> ammonium <strong>transport</strong>er<br />

prote<strong>in</strong>s, Rh B Glycoprote<strong>in</strong> and Rh C Glycoprote<strong>in</strong>. Acta Physiol Scand 179: 331-338, 2003.<br />

51. Wilkie MP. Ammonia excretion and urea handl<strong>in</strong>g by fish gills: present understand<strong>in</strong>g and<br />

future research challenges. J Exp Zool 293: 284-301, 2002.<br />

52. Worrell RT, Bao HF, Denson DD, and Eaton DC. Contrast<strong>in</strong>g effects of cPLA2 on epi<strong>the</strong>lial<br />

Na+ <strong>transport</strong>. Am J Physiol Cell Physiol 281: C147-156, 2001.<br />

53. Worrell RT, Best A, Craw<strong>for</strong>d OR, Xu J, Soleimani M, and Mat<strong>the</strong>ws JB. Apical<br />

ammonium <strong>in</strong>hibition of cAMP-stimulated secretion <strong>in</strong> <strong>T84</strong> <strong>cell</strong>s is bicarbonate dependent. Am J Physiol<br />

Gastro<strong>in</strong>test Liver Physiol 289: G768-778, 2005.<br />

54. Worrell RT, Oghene J, and Mat<strong>the</strong>ws JB. <strong>Ammonium</strong> effects on <strong>colonic</strong> Cl- secretion:<br />

anomalous mole fraction behavior. Am J Physiol Gastro<strong>in</strong>test Liver Physiol 286: G14-22, 2004.<br />

55. Wrong O. Nitrogen metabolism <strong>in</strong> <strong>the</strong> gut. Am J Cl<strong>in</strong> Nutr 31: 1587-1593, 1978.<br />

-29-


Figure Legends:<br />

Figure 1. mRNA <strong>for</strong> <strong>the</strong> ammonium <strong>transport</strong><strong>in</strong>g Rh Glycoprote<strong>in</strong>s is present <strong>in</strong> <strong>T84</strong> <strong>cell</strong>s. The end<br />

products at PCR cycle completion of representative Real Time RT-PCR reactions (2 <strong>for</strong> each RhBG and<br />

RhCG) are shown by PAGE gel electrophoresis. Quantitative analysis of Real-time RT-PCR reactions<br />

yielded a ratio of RhBG/RhCG of 1.10±0.15 (N=8). Products of <strong>the</strong> predicted size (~70 bp) are<br />

<strong>in</strong>dicated by <strong>the</strong> arrows. Control RCR reactions did not reveal any product (not shown).<br />

Figure 2. Functional determ<strong>in</strong>ation of Rh Glycoprote<strong>in</strong> activity <strong>in</strong> <strong>T84</strong> <strong>cell</strong>s. In addition to NH4 + ,<br />

methylammonium (MA) is <strong>transport</strong>ed by <strong>the</strong> Rh Glycoprote<strong>in</strong>s, thus <strong>the</strong>ir activity can be assessed by<br />

[ 14 C]-MA uptake and flux. A) Uptake of [ 14 C]-MA when applied to <strong>the</strong> apical or basolateral side of <strong>T84</strong><br />

<strong>cell</strong> monolayers. The magnitude of uptake is significantly greater when applied basolaterally. MA<br />

uptake from ei<strong>the</strong>r side is attenuated by <strong>the</strong> addition of NH4 + charateristic of Rh G activity. B)<br />

Transepi<strong>the</strong>lial flux of MA <strong>in</strong> <strong>T84</strong> <strong>cell</strong>s. Tracer [ 14 C]-MA was added to ei<strong>the</strong>r <strong>the</strong> apical or basolateral<br />

side to determ<strong>in</strong>e unidirectional flux <strong>in</strong> ei<strong>the</strong>r direction. The comb<strong>in</strong>ed results demonstrate net secretion<br />

of MA. Transepi<strong>the</strong>lial MA flux was attenuated by <strong>the</strong> addition of NH4 + characteristic of Rh G activity.<br />

In A and B Symmetrical 1 mM ‘cold’ MA was used with 1 µCi/ml 14 C-MA applied to ei<strong>the</strong>r <strong>the</strong> apical<br />

or <strong>the</strong> basolateral side. Uptake and flux period was 2 m<strong>in</strong>. C) Long term MA Uptake over a 60 m<strong>in</strong><br />

period obta<strong>in</strong>ed <strong>in</strong> <strong>cell</strong>s ba<strong>the</strong>d <strong>in</strong> culture media and kept <strong>in</strong> tissue culture <strong>in</strong>cubator. D) Long term MA<br />

flux over a 60 m<strong>in</strong> period <strong>for</strong> <strong>cell</strong>s ba<strong>the</strong>d <strong>in</strong> culture media and kept <strong>in</strong> tissue culture <strong>in</strong>cubator. The<br />

comb<strong>in</strong>ed results are qualitatively similar to those <strong>in</strong> panel A & B. In C and D Symmetrical 1 mM ‘cold’<br />

MA was used with 0.5 µCi/ml 14 C-MA applied to ei<strong>the</strong>r <strong>the</strong> apical or <strong>the</strong> basolateral side. N=6 <strong>for</strong> all<br />

groups. * P < 0.05.<br />

-30-<br />

Page 30 of 45


Page 31 of 45<br />

Figure 3. Methylammonium (MA) uptake and flux <strong>in</strong> <strong>T84</strong> <strong>cell</strong>s. A) Dose response <strong>for</strong> MA uptake <strong>in</strong><br />

<strong>the</strong> absence and presence of basolateral 100 µM bumetanide. Total (Y), Bumetanide-<strong>in</strong>sensitive (Z),<br />

and bumetanide-sensitive ([) uptakes are shown. Uptake period was 2 m<strong>in</strong>. Uptake represents comb<strong>in</strong>ed<br />

uptake due to RhBG <strong>transport</strong>er activity and l<strong>in</strong>er diffusive uptake (> 5 mM MA). B) Time course of<br />

MA uptake with 3 mM symmetrical cold MA. Total (Y), Bumetanide-<strong>in</strong>sensitive (Z), and bumetanide-<br />

sensitive ([) uptakes are shown. A significant bumetanide-sensitive component of MA uptake is<br />

observed only at uptake times exceed<strong>in</strong>g 3-4 m<strong>in</strong>. C) Time course of completed transepi<strong>the</strong>lial MA flux<br />

<strong>in</strong> <strong>the</strong> secretory direction. Total (Y), Bumetanide-<strong>in</strong>sensitive (Z), and bumetanide-sensitive ([) fluxes<br />

are shown. 3 mM symmetrical MA was used. A slight bumetanide-sensitive component of MA flux is<br />

observed only at time po<strong>in</strong>ts exceed<strong>in</strong>g 5 m<strong>in</strong>. N=4 <strong>for</strong> each data po<strong>in</strong>t. * P


presence of apical NH4 + . Apical NH4 + at concentrations up to 100 mM does not <strong>in</strong>hibit basolateral<br />

uptake of MA or secretory direction flux of MA, suggest<strong>in</strong>g that NH4 + uptake and <strong>transport</strong> via RhBG<br />

can occur aga<strong>in</strong>st a physiologically relevant NH4 + gradient. Uptake and flux time was 2 m<strong>in</strong>, with 1 mM<br />

symmetrical MA. Apical media pH was 5.5 and basolateral pH 7.4. Initial condition was 0 mM<br />

basolateral NH4 + . N=4 <strong>for</strong> each data po<strong>in</strong>t, * <strong>in</strong>dicates significant difference from <strong>the</strong> zero time po<strong>in</strong>t.<br />

Figure 6. Net NH4 + flux <strong>in</strong> <strong>the</strong> secretory direction occurs <strong>in</strong> <strong>T84</strong> <strong>cell</strong>s. Unidirectional NH4 + fluxes <strong>in</strong><br />

<strong>for</strong>skol<strong>in</strong>-stimulated <strong>T84</strong> <strong>cell</strong>s under asymmetric NH4 + conditions. 10 mM NH4 + with 0 mM K + was<br />

added to one side of <strong>the</strong> epi<strong>the</strong>lium and <strong>the</strong> o<strong>the</strong>r side sampled at 5 m<strong>in</strong> <strong>for</strong> NH4 + determ<strong>in</strong>ation. The<br />

comb<strong>in</strong>ed results demonstrate a calculated net secretion (Jnet) of NH4 + . N=4 <strong>for</strong> each group.<br />

Figure 7. Effect of basolateral bumetanide on NH4 + flux. A) Secretory direction flux (Jba) <strong>in</strong> <strong>the</strong><br />

presence of 100 µM basolateral bumetanide or 100 µM basolateral ouaba<strong>in</strong>. A 5 m<strong>in</strong> sample period was<br />

used. B) Change <strong>in</strong> basolateral [NH4 + ] observed with an applied apical to basolateral NH4 + gradient of<br />

10 mM apical to 3 mM basolateral. Data is shown <strong>for</strong> control (Y) and with 100 µM basolateral<br />

bumetanide (Z). Inhibition of NKCC1 leads to a significant <strong>in</strong>crease <strong>in</strong> basolateral [NH4 + ] suggest<strong>in</strong>g<br />

NKCC1 plays a key role <strong>in</strong> limit<strong>in</strong>g an absorptive direction flux of NH4 + . Cells were pretreated with<br />

basolateral drug <strong>for</strong> 5 m<strong>in</strong> prior to <strong>in</strong>itiat<strong>in</strong>g <strong>the</strong> NH4 + flux. N=4 <strong>for</strong> each group. * P < 0.05 verses<br />

control.<br />

Figure 8. cAMP effect on MA and NH4 + <strong>transport</strong>. A) Basolateral MA uptake and Jba flux <strong>in</strong> <strong>the</strong><br />

absence or presence of 10 µM foskol<strong>in</strong>. B) Apical MA uptake and Jab flux <strong>in</strong> <strong>the</strong> absence or presence of<br />

10 µM <strong>for</strong>skol<strong>in</strong>. For A and B symmetrical 1 mM MA and a 2 m<strong>in</strong> sample time were used.C) Jba flux of<br />

-32-<br />

Page 32 of 45


Page 33 of 45<br />

NH4 + <strong>in</strong> <strong>the</strong> absence or presence of 10 µM <strong>for</strong>skol<strong>in</strong>. Initial condition was 0 mM apical and 10 mM<br />

basolateral NH4 + . D) Jab flux of NH4 + <strong>in</strong> <strong>the</strong> absence or presence of 10 µM <strong>for</strong>skol<strong>in</strong>. Initial condition<br />

was 10 mM apical and 0 mM basolateral NH4 + . For C and D a 5 m<strong>in</strong> sample time was used. N=6 <strong>for</strong><br />

each bar. NS – no statistical significance and *- P < 0.05 <strong>for</strong> control verses <strong>for</strong>skol<strong>in</strong> treated groups.<br />

Figure 9. Basolateral [NH4 + ] over time <strong>in</strong> <strong>the</strong> presence of vary<strong>in</strong>g apical to basolateral gradients of<br />

NH4 + . Initial gradients were (Apical:Basolateral): Y- 0:0, Z- 0:3, [ – 3:3, \ - 10:3, ]- 20:3, and ^ -<br />

30:3 mM NH4 + . Apical and basolateral pH was 7.4. N=4 <strong>for</strong> each data po<strong>in</strong>t.<br />

Figure 10. Effect of apical pH on basolateral [NH4 + ] with an <strong>in</strong>itial apical to basolateral 10:3 mM NH4 +<br />

gradient. <strong>T84</strong> <strong>cell</strong>s can ma<strong>in</strong>ta<strong>in</strong> a 10:3 NH4 + gradient at neutral (Y) and acidic (Z) apical pH but can<br />

not overcome passive NH3 back flux at alkal<strong>in</strong>e ([) apical pH. Basolateral ph was 7.4. N=4 <strong>for</strong> each data<br />

po<strong>in</strong>t. * <strong>in</strong>dicates significant difference from <strong>the</strong> respective time 0 po<strong>in</strong>t.<br />

Figure 11. <strong>T84</strong> <strong>cell</strong>s are able to ma<strong>in</strong>ta<strong>in</strong> an apical to basolateral NH4 + gradient of 20:~2.5 mM <strong>for</strong> at<br />

least 60 m<strong>in</strong>. Cells were kept <strong>in</strong> complete culture media at pH 7.2 on <strong>the</strong> basolateral side and serum free<br />

culture media at pH 6.0 on <strong>the</strong> apical side (conditions which are more representative of <strong>in</strong> vivo<br />

conditions). N=4 <strong>for</strong> each po<strong>in</strong>t, error bars are with<strong>in</strong> <strong>the</strong> symbols.<br />

-33-


marker<br />

200 bp<br />

100 bp<br />

RhBG RhCG<br />

Figure 1<br />

Page 34 of 45


Page 35 of 45<br />

A. B.<br />

C.<br />

MA uptake<br />

(pmoles/m<strong>in</strong>/cm 2 )<br />

MA uptake<br />

(pmoles/m<strong>in</strong>/cm 2 )<br />

400 +<br />

No NH4 300<br />

200<br />

100<br />

0<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

+<br />

10 mM NH4 from apical from basolateral<br />

from<br />

apical<br />

from<br />

basolateral<br />

MA flux<br />

(pmoles/m<strong>in</strong>/cm 2 )<br />

D.<br />

MA flux<br />

(pmoles/m<strong>in</strong>/cm 2 )<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

-50<br />

125<br />

100<br />

75<br />

50<br />

25<br />

0<br />

-25<br />

-50<br />

+<br />

No NH4 +<br />

10 mM NH4 J ab<br />

J ab<br />

J ba<br />

J ba<br />

Figure 2<br />

J net<br />

J net<br />

secretion<br />

absorption<br />

secretion<br />

absorption


Basolateral MA uptake<br />

(pmoles/cm 2 )<br />

20000<br />

15000<br />

10000<br />

5000<br />

0<br />

total<br />

bumet-<strong>in</strong>sensitive<br />

bumet-sensitive<br />

A.<br />

Basolateral MA uptake<br />

(pmoles/m<strong>in</strong>/cm 2 )<br />

m<strong>in</strong><br />

6000<br />

4000<br />

2000<br />

0<br />

Total<br />

0 2 4 6 8 10<br />

Bumet-<strong>in</strong>sensitive<br />

Bumet-sensitive<br />

0 2 4 6 8 10 12 14<br />

MA (mM)<br />

B. C.<br />

*<br />

*<br />

Basolateral MA<br />

(pmoles/cm 2 )<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

total<br />

bumet-<strong>in</strong>sensitive<br />

bumet-sensitive<br />

m<strong>in</strong><br />

Figure 3<br />

* *<br />

0 2 4 6 8 10<br />

Page 36 of 45


Page 37 of 45<br />

Total MA Uptake<br />

1 / (nM/cm 2 /m<strong>in</strong>)<br />

D. E.<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

-4 -2 0 2 4 6 8 10<br />

K + mM<br />

bumetanide-sensitive<br />

MA Uptake<br />

1 / (nM/cm 2 /m<strong>in</strong>)<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

K + mM<br />

Figure 3<br />

(cont.)<br />

-4 -2 0 2 4 6 8 10


A. B.<br />

Basolateral MA uptake<br />

(pmoles/m<strong>in</strong>/cm 2 )<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

Total<br />

Bumetanide-<strong>in</strong>sensitive<br />

6 7 8 9<br />

basolateral pH<br />

C.<br />

MA (pmoles/m<strong>in</strong>/cm 2 )<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

Apical Uptake<br />

J ab<br />

apical pH<br />

MA Jba (pmoles/m<strong>in</strong>/cm 2 )<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

Total<br />

Bumetanide-<strong>in</strong>sensitive<br />

6 7 8 9<br />

6 7 8 9<br />

basolateral pH<br />

Figure 4<br />

Page 38 of 45


Page 39 of 45<br />

MA (pmoles/m<strong>in</strong>/cm 2 )<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

*<br />

*<br />

Basolateral uptake<br />

J ba<br />

0 20 40 60 80 100<br />

+<br />

Apical NH4 (mM)<br />

Figure 5


+<br />

NH flux 4<br />

(nmoles/m<strong>in</strong>/cm 2 )<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

-20<br />

J ab<br />

J ba<br />

J net<br />

Figure 6<br />

Secretion<br />

Absorption<br />

Page 40 of 45


Page 41 of 45<br />

+ Jba<br />

NH 4<br />

A. B.<br />

(nmoles/m<strong>in</strong>/cm 2 )<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Control<br />

+ bumetanide<br />

+ ouaba<strong>in</strong><br />

+<br />

Basolateral NH4 ( mM)<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

Control<br />

w/ bumet<br />

m<strong>in</strong><br />

Figure 7<br />

0 5 10 15 20


A.<br />

MA (pmoles/m<strong>in</strong>/cm 2 )<br />

C.<br />

+ Jba<br />

NH 4<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

(nmoles/m<strong>in</strong>/cm 2 )<br />

20<br />

15<br />

10<br />

5<br />

0<br />

NS<br />

Basolateral<br />

Uptake<br />

No FSK<br />

10 µM FSK<br />

NS<br />

J ba<br />

*<br />

Control 10 µM FSK<br />

+ Jab<br />

B.<br />

D.<br />

NH 4<br />

MA (pmoles/m<strong>in</strong>/cm 2 )<br />

(nmoles/m<strong>in</strong>/cm 2 )<br />

6<br />

4<br />

2<br />

0<br />

1500<br />

1000<br />

500<br />

0<br />

NS<br />

Apical<br />

Uptake<br />

Figure 8<br />

No FSK<br />

10 µM FSK<br />

NS<br />

J ab<br />

*<br />

Control 10 µM FSK<br />

Page 42 of 45


Page 43 of 45<br />

+<br />

Basolateral [NH4 ]<br />

(mM)<br />

3.5<br />

3.0<br />

2.5<br />

2.0<br />

0.0<br />

0 5 10 15 20 25 30<br />

m<strong>in</strong><br />

Figure 9<br />

A,B<br />

0,0<br />

0,3<br />

3,3<br />

10,3<br />

20,3<br />

30,3


+<br />

Basal NH4 (mM)<br />

3.6<br />

3.4<br />

3.2<br />

3.0<br />

2.8<br />

2.6<br />

Apical pH 5.5<br />

Apical pH 7.4<br />

Apical pH 9.0<br />

*<br />

0 5 10 15 20<br />

m<strong>in</strong><br />

Figure 10<br />

*<br />

Page 44 of 45


Page 45 of 45<br />

+<br />

Basolateral NH4 (mM)<br />

4.5<br />

4.0<br />

3.5<br />

3.0<br />

2.5<br />

2.0<br />

0 10 20 30 40 50 60<br />

Time (m<strong>in</strong>)<br />

Figure 11

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!