07.12.2012 Views

Fe-Zn-S system and the sphalerite geobarometer

Fe-Zn-S system and the sphalerite geobarometer

Fe-Zn-S system and the sphalerite geobarometer

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Geo<strong>the</strong>rmometry/Barometry<br />

Exsolution, Equilibration <strong>and</strong><br />

Stable Isotopes<br />

Stable Isotopes<br />

� Same # protons, different # neutrons<br />

� Different isotopes of <strong>the</strong> same element will<br />

behave differently due to this mass<br />

difference<br />

� In Economic Geology we use <strong>the</strong>se<br />

differences for <strong>the</strong>rmometry, tracking<br />

extent of equilibrium, water/rock<br />

interactions, sources of fluids <strong>and</strong> ore<br />

components<br />

Temperatures/Pressures<br />

� Fluid Inclusions<br />

� Stable isotopes<br />

� Sulfide <strong>the</strong>rmometry/barometry<br />

� Inversions - Polymorphs<br />

� Exsolution relationships<br />

Important Systems<br />

O 16 99.756 O 17 0.039 O 18 0.205<br />

H 1 99.985 H 2 =D 0.015 H 3<br />

12.26 yr<br />

half life<br />

C12 98.89 C13 1.11 C14 5700 yr<br />

half life<br />

S 32 95.02 S 33 0.75 S 34 4.21 S 36 0.02<br />

1


How do we get <strong>the</strong>m out?<br />

� Carbonates: phosphoric acid -> CO 2<br />

� Silicates: reaction w/ BrF 5, F 2, ClF 3 -> O<br />

� O + hot graphite -> CO 2<br />

� Sulfides: heat w/ oxidant e.g. CuO<br />

� S + O -> SO 2<br />

� Or S + F source -> SF 6<br />

� OH or H 2O: reaction w/ hot U or <strong>Zn</strong> -> H 2<br />

� Now: Direct laser fluorination<br />

Ratios: Del/Delta Terminology<br />

� δO 18 , δD, δC 13 , δS 34<br />

� δ = (R sample/R std -1) * 1000<br />

� where<br />

� R sample = (O 18 sample /O16 sample )<br />

� Ex: a δ of +10 => sample 1% heavier than<br />

<strong>the</strong> st<strong>and</strong>ard<br />

St<strong>and</strong>ards<br />

� Very difficult to measure absolute<br />

amounts so always use st<strong>and</strong>ards<br />

allowing ratio measurements<br />

� O & H: referred to SMOW<br />

� Soft rockers may refer O to PDB<br />

� C: belemnite from <strong>the</strong> Pee Dee Fm: PDB<br />

� S: Canyon Diablo meteorite troilite: CDT<br />

Fractionation Factors<br />

� See reading for relationship of <strong>the</strong> delta<br />

notation to more rigorous derivation of <strong>the</strong><br />

fractionation factor between 2 minerals or<br />

phases yielding diagrams with axis of:<br />

� 10 3 lnα A-B<br />

� 10 3 lnα A-B ~ δ A - δ B = Δ AB<br />

2


See Figures for:<br />

� Equipment schematic<br />

� Natural Ranges<br />

� Causes?<br />

� Gas/Liquid, Liquid/Solid, Solid/Solid<br />

� Problems:<br />

� Calibrations, Analytical uncertainty,<br />

Retrogression, Non-contemporaneous phases,<br />

Scale of equilibrium, possible effects of salinity,<br />

pH, ƒ(CO 2 ), …<br />

Traditional Extraction Line<br />

Schematic Mass Spec. Natural Ranges on Earth<br />

3


Fractionations Among Sulfides Sulfide Thermometry<br />

Sulfide/Fluid Speciation<br />

Fractionations<br />

Seawater<br />

Sulfate vs<br />

Time<br />

4


Sediment Hosted Orogenic Au<br />

Progressive Oxygen Isotope<br />

Fractionation<br />

Progressive Oxygen & Hydrogen<br />

Isotope Fractionation D/O 18 - Water Reservoirs<br />

5


D/O 18 - Geo<strong>the</strong>rmal Fluids Oxygen Isotope Thermometry<br />

<strong>Fe</strong>-<strong>Zn</strong>-S <strong>system</strong> <strong>and</strong> <strong>the</strong><br />

<strong>sphalerite</strong> <strong>geobarometer</strong>!<br />

� Iron content of <strong>sphalerite</strong> depends on aS 2 <strong>and</strong><br />

pressure!<br />

� Phase equilibria studies have revealed that <strong>the</strong> iron content of<br />

<strong>sphalerite</strong> equilibrated with pyrite <strong>and</strong> pyrrhotite, although<br />

temperature independent between about 300° <strong>and</strong> 550°C, is<br />

pressure dependent. !<br />

� This relationship has been defined (Scott <strong>and</strong> Barnes, 1971;<br />

Scott 1973) <strong>and</strong> thus allows <strong>the</strong> <strong>sphalerite</strong> composition in this<br />

assemblage to serve as a <strong>geobarometer</strong>. The equation below<br />

relates iron content (as <strong>Fe</strong>S) to <strong>the</strong> pressure of equilibration<br />

(Hutchison <strong>and</strong> Scott 1980): !<br />

� P bar =42.30-32.10 log mole% <strong>Fe</strong>S. !<br />

6


Sphalerite<br />

<strong>geobarometer</strong><br />

Plot of <strong>the</strong> <strong>Fe</strong>S content<br />

of <strong>sphalerite</strong> coexisting<br />

with pyrite <strong>and</strong><br />

hexagonal pyrrhotite at<br />

0, 2.5, 5, 7.5, <strong>and</strong> 10<br />

kbars at temperatures<br />

from 300° to 700°C.<br />

Sphalerite with “chalcopyrite disease”:<br />

Exsolution? Diffusion? Replacement?!<br />

<strong>Fe</strong>S content of <strong>sphalerite</strong> in equilibrium with<br />

pyrite <strong>and</strong> pyrrhotite as a function of P at 300°C!<br />

Geo<strong>the</strong>rmometers<br />

� Geo<strong>the</strong>rmometers are of two types<br />

� 1. Sliding scale<br />

� 2. Fixed point<br />

� Sliding scale geo<strong>the</strong>rmometers are based on <strong>the</strong> temperature<br />

dependence of <strong>the</strong> composition of a mineral or pair of minerals<br />

when <strong>the</strong>y are part of a specified assemblage.<br />

� Arsenopyrite geo<strong>the</strong>rmometer:<br />

� when equilibrated with pyrite, pyrrhotite, loellingite as shown in<br />

next figure<br />

7


<strong>Fe</strong>-As-S <strong>system</strong> <strong>and</strong> <strong>the</strong> arsenopyrite<br />

geo<strong>the</strong>rmometer!<br />

� Barton <strong>and</strong> Skinner (1979) <strong>and</strong> Vaughan<br />

<strong>and</strong> Craig (1978) have prepared extensive<br />

lists of reaction points that serve as<br />

potentially useful fixed point<br />

geo<strong>the</strong>rmometers. Fig. 4 shows <strong>the</strong><br />

invariant points of S-Sb, S-Se, <strong>and</strong> S-Sn<br />

<strong>system</strong>s that are of possible interest to <strong>the</strong><br />

geo<strong>the</strong>rmometry of an ore deposit.<br />

� Fixed point geo<strong>the</strong>rmometers are minerals or<br />

mineral assemblages that undergo a reaction<br />

(e.g. melting, inversion, reaction to form a<br />

different assemblage) at a defined temperature.<br />

For example, crystals of stibnite must have<br />

formed below its melting point (556°C) <strong>and</strong> <strong>the</strong><br />

mineral pair pyrite+arsenopyrite must have<br />

formed below 491°C. The fixed points thus do not<br />

sharply define <strong>the</strong> temperature of equilibrium but<br />

ra<strong>the</strong>r set upper <strong>and</strong> lower limits.<br />

8

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!