07.12.2012 Views

Asian Journal of Biochemical and Pharmaceutical ... - Ajbpr.com

Asian Journal of Biochemical and Pharmaceutical ... - Ajbpr.com

Asian Journal of Biochemical and Pharmaceutical ... - Ajbpr.com

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Asian</strong> <strong>Journal</strong> <strong>of</strong> <strong>Biochemical</strong> <strong>and</strong> <strong>Pharmaceutical</strong> Research Issue 2 (Vol. 1) 2011 ISSN: 2231-2560<br />

<strong>Asian</strong> <strong>Journal</strong> <strong>of</strong> <strong>Biochemical</strong> <strong>and</strong> <strong>Pharmaceutical</strong> Research<br />

Research Article<br />

Synthesis, Spectroscopic Characterization, DNA Cleavage And Antimicrobial Activity<br />

Of Binuclear Copper(II), Nickel(II) And Oxovanadium(Iv) Schiff Base Complexes<br />

N. Mahalakshmi <strong>and</strong> R.Rajavel*<br />

Department <strong>of</strong> Chemistry, Periyar University, Salem, Tamilnadu, India.<br />

Received: 3 May 2011; Revised: 23May 2011; Accepted: 28May. 2011<br />

Abstract: A new series <strong>of</strong> transition metal <strong>com</strong>plexes <strong>of</strong> Cu(II), Ni(II) <strong>and</strong> VO(II) have been synthesized from<br />

the Schiff base (L) derived from 2-carboxybenzaldehyde <strong>and</strong> 3,3’,4,4’-tetraminobiphenyl. Structural features<br />

were obtained from their elemental analyses, IR, magnetic susceptibility, molar conductance, UV–Vis <strong>and</strong> ESR<br />

spectral studies. The data show that these <strong>com</strong>plexes have <strong>com</strong>position <strong>of</strong> [M2(L)]X type. (Where M = (Cu(II),<br />

Ni(II), <strong>and</strong> VO(II) X=ClO4 - , SO4 2- L = binucleating tetradendate lig<strong>and</strong>). The UV–Vis, ESR, magnetic<br />

susceptibility <strong>and</strong> spectral data <strong>of</strong> the <strong>com</strong>plexes suggest a square–planar geometry around the central metal ion<br />

except VO(II) <strong>com</strong>plex which has square–pyramidal geometry. The redox behavior <strong>of</strong> copper, Nickel <strong>and</strong><br />

vanadyl <strong>com</strong>plexes was studied by cyclic voltammetry. The interaction study <strong>of</strong> the copper <strong>com</strong>plex with CT-<br />

DNA was carried out using cyclic voltammetry. The pUC18 DNA cleavage study was monitored by gel<br />

electrophoresis method. The results suggest that binuclear Cu(II), Ni(II) <strong>and</strong> VO(II) <strong>com</strong>plexes cleaves pUC18<br />

DNA in presence <strong>of</strong> the oxidant H2O2. The invitro antimicrobial activities <strong>of</strong> the synthesized <strong>com</strong>pounds have<br />

been tested against the gram negative <strong>and</strong> gram positive bacteria’s. The binuclear Schiff base <strong>com</strong>plexes were<br />

found to be higher antibacterial activity than the free lig<strong>and</strong>.<br />

Keywords: Schiff base, binuclear, pUC18 DNA cleavage, Antimicrobial, CT-DNA, 2-carboxybenzaldehyde.<br />

INTRODUCTION:<br />

Schiff bases <strong>and</strong> their metal <strong>com</strong>plexes play an important role in the development <strong>of</strong> coordination<br />

chemistry, resulting in an enormous number <strong>of</strong> publications, ranging from pure synthetic work to<br />

physicochemical [1] <strong>and</strong> biochemical relevant studies <strong>of</strong> metal <strong>com</strong>plexes <strong>and</strong> found wide range <strong>of</strong><br />

applications [2-6]. Mokhles M. Abd-Elzaher has been studied by spectroscopic characterization <strong>of</strong><br />

some tetradentate Schiff Bases <strong>and</strong> their <strong>com</strong>plexes with Nickel, Copper <strong>and</strong> Zinc [7]. Schiff bases<br />

derived from an amine <strong>and</strong> any aldehyde are a class <strong>of</strong> <strong>com</strong>pounds which co-ordinate to metal ions via<br />

the azomethine nitrogen [8]. Metal <strong>com</strong>plexes <strong>of</strong> Schiff bases derived from substituted<br />

salicylaldehydes <strong>and</strong> various amines have been widely investigated because <strong>of</strong> their wide applicability<br />

[9-12].Chelating lig<strong>and</strong>s containing O <strong>and</strong> N donor atoms show broad biological activity <strong>and</strong> are <strong>of</strong><br />

special interest because <strong>of</strong> the variety <strong>of</strong> ways in which they are bonded to metal ions [13]. It is well<br />

known that several Schiff base <strong>com</strong>plexes have anti-inflammatory, antipyretic, analgesic, anti-diabetic,<br />

anti-bacterial, anti-cancer <strong>and</strong> anti-HIV activity [14, 15]. The interaction <strong>of</strong> transition metal <strong>com</strong>plexes<br />

with DNA has been extensively studied in the development <strong>of</strong> new tools for nanotechnology [16, 17].<br />

In the present investigation we report here the synthesis, spectroscopic, redox, DNA cleavage studies,<br />

antimicrobial <strong>and</strong> DNA cleavage studies <strong>and</strong> analytical characterizations <strong>of</strong> new tetradentate N2O2<br />

525


<strong>Asian</strong> <strong>Journal</strong> <strong>of</strong> <strong>Biochemical</strong> <strong>and</strong> <strong>Pharmaceutical</strong> Research Issue 2 (Vol. 1) 2011<br />

donor type Schiff base <strong>and</strong> their metal <strong>com</strong>plexes. Our general strategy for preparing the desired<br />

lig<strong>and</strong> was based on the condensation <strong>of</strong> a suitable aldehyde precursor with aminobiphenyl. In this<br />

paper the synthesis <strong>of</strong> new tetradentate N2O2 donor type Schiff base <strong>and</strong> its metal <strong>com</strong>plexes (Cu(II),<br />

Ni(II) <strong>and</strong> VO(II)) derived by the condensation <strong>of</strong> 3,3’,4,4’-tetraminobiphenyl <strong>and</strong> 2carboxybenzaldehyde<br />

is described.<br />

EXPERIMENTAL:<br />

All the chemicals used were chemically pure <strong>and</strong> AR grade. Solvents were purified <strong>and</strong> dried<br />

according to st<strong>and</strong>ard procedures [18]. Metals were purchased from Merck. 3,3’,4,4’tetraminobiphenyl<br />

<strong>and</strong> 2- carboxybenzaldehyde were obtained from Aldrich. Other chemicals were<br />

also purchased from Merck <strong>and</strong> Aldrich.<br />

Synthesis: Caution! Perchlorate salts are potentially explosive <strong>and</strong> were h<strong>and</strong>led only in small<br />

quantities with care.<br />

Physical measurements<br />

The elemental analysis were carried out with a Carlo-Erba 1106-model 240 Perkin Elmer<br />

analyzer. The solution conductivity measurements were performed to establish the charge type <strong>of</strong> the<br />

<strong>com</strong>plexes. The <strong>com</strong>plexes were dissolved in MeCN/DMF/DMSO <strong>and</strong> molar conductivities <strong>of</strong> 10 -3 M<br />

<strong>of</strong> their solutions at 29 0 C were measured. Infrared spectra were recorded on the Perkin Elmer FT-IR-<br />

8300 model spectrometer using KBr disc <strong>and</strong> Nujol mull techniques in the range <strong>of</strong> 4000-400 cm -1 .<br />

Electronic absorption spectra in the UV-Visible range were recorded on Perkin Elmer Lambda -25<br />

between 200-800 nm by using DMF as the solvent Magnetic susceptibility data were collected on<br />

powdered sample <strong>of</strong> the <strong>com</strong>pounds at room temperature with PAR155 vibrating sample<br />

magnetometer. EPR spectra were recorded on a Varian JEOL-JES-TE100 ESR spectrophotometer at<br />

X-b<strong>and</strong> microwave frequencies for powdered samples at room temperature. Cyclic voltammetry<br />

studies were performed on a CHI760C electrochemical analyzer in single <strong>com</strong>partmental cells at 29 0 C<br />

with H2O/DMSO (95:5) solution using tetrabutylammonium perchlorate (TBAP) as a supporting<br />

electrolyte.<br />

Preparation <strong>of</strong> binucleating tetradentate Schiff base lig<strong>and</strong><br />

The binucleating tetradentate Schiff base was prepared by condensation <strong>of</strong> tetramine with<br />

appropriate aldehydes (Scheme 1). 3,3’,4,4’-tetraminobiphenyl (0.214 g; 1 mmol) in 20 ml <strong>of</strong><br />

methanol was stirred with 2 carboxybenzaldehyde (0.600 g; 4 mmol) in 20 ml <strong>of</strong> methanol for 4 h.The<br />

resulting yellow solid was separated <strong>and</strong> dried in vacuum. Yield: 80%.<br />

Synthesis <strong>of</strong> binuclear Schiff base <strong>com</strong>plexes<br />

[Cu2(L)]4ClO4 (1)<br />

[Ni2(L)]4ClO4 (2)<br />

[VO2(L)]2SO4 (3)<br />

526


<strong>Asian</strong> <strong>Journal</strong> <strong>of</strong> <strong>Biochemical</strong> <strong>and</strong> <strong>Pharmaceutical</strong> Research Issue 2 (Vol. 1) 2011<br />

Metal(II) perchlorates <strong>of</strong> [Cu(II), Ni(II)] <strong>and</strong> [VO(II)] sulphate (0.2 mmol) <strong>and</strong> the potential<br />

binucleating Schiff base lig<strong>and</strong> (0.1 mmol) were dissolved in DMF (20 ml) <strong>and</strong> the mixture was heated<br />

to reflux for 3 h <strong>and</strong> the reactions were monitored by TLC. After partial evaporation <strong>of</strong> the solvent,<br />

solid (65–75%) metal(II) Schiff base <strong>com</strong>plexes (Scheme 2) were separated <strong>and</strong> dried in vacuum. The<br />

analysis results are in good consistency with proposed formulas in Table 1.<br />

Cyclic voltammetry<br />

All voltammetric experiments were performed with a CHI760C electrochemical analyzer, in<br />

single <strong>com</strong>partmental cells using Tetrabutylammonium perchlorate as a supporting electrolyte. The<br />

redox behavior <strong>of</strong> the <strong>com</strong>plexes have been examined in absence <strong>and</strong> in presence <strong>of</strong> CT-DNA at a<br />

scan rate 0.2 Vs −1 in the potential range +1.2 to -2.0 V. A three-electrode configuration was used,<br />

<strong>com</strong>prised <strong>of</strong> a glassy carbon electrode as the working electrode, a Pt-wire as the auxiliary electrode,<br />

<strong>and</strong> an Ag/AgCl electrode as the reference electrode. The electrochemical data such as cathodic peak<br />

potential (Epc) <strong>and</strong> anodic peak potential (Epa) were measured.<br />

Gel Electrophoresis<br />

The cleavage <strong>of</strong> pUC18 DNA was determined by agarose gel electrophoresis [19]. The gel<br />

electrophoresis experiments were performed by incubation <strong>of</strong> the samples containing 40 μM pUC18<br />

DNA, 50 μM metal <strong>com</strong>plexes <strong>and</strong> 50 μM H2O2 in Tris-HCl buffer (pH 7.2) at 37 o C for 2 h. After<br />

incubation, the samples were electrophoresed for 2 h at 50 V on 1% agarose gel using Tris-acetic acid-<br />

EDTA buffer (pH 7.2). The gel was then stained using 1 μg cm -3 ethidium bromide (EB) <strong>and</strong><br />

photographed under ultraviolet light at 360nm. All the experiments were performed at room<br />

temperature.performed at room temperature unless otherwise mentioned.<br />

Antimicrobial activity<br />

The in vitro antibacterial activity <strong>of</strong> the lig<strong>and</strong> <strong>and</strong> the <strong>com</strong>plexes were tested against the<br />

bacteria’s Bacillus subtilis, Klebsiella pneumoniae, Escherichia coli <strong>and</strong> Staphylococcus aureus by<br />

well diffusion method using nutrient agar as the medium. Streptomycin was used as st<strong>and</strong>ard for<br />

bacteria. The stock solution (10 -2 mol L -1 ) was prepared by dissolving the <strong>com</strong>pound in DMF <strong>and</strong> the<br />

solution was serially diluted in order to find minimum inhibitory concentration (MIC) values. In a<br />

typical procedure, a well was made on the agar medium inoculated with microorganisms in a Petri<br />

plate. The well was filled with the test solution <strong>and</strong> the plate was incubated for 24 h for bacteria at 35<br />

o C. During the period, the test solution diffused <strong>and</strong> the growth <strong>of</strong> the inoculated microorganisms was<br />

affected. The inhibition zone was developed, at which the concentration was noted.<br />

RESULTS AND DISCUSSION<br />

The binuclear Schiff base lig<strong>and</strong> prepared <strong>and</strong> reacts with transition metals Cu(II), Ni(II), <strong>and</strong><br />

VO(II) . The Schiff base lig<strong>and</strong> has been synthesized from 2- carboxybenzaldehyde <strong>and</strong> 3,3’,4,4’tetraminobiphenyl<br />

(scheme 1) ( C44H30N4O8) in 2:1 mole ratio. The results <strong>of</strong> elemental analyses were<br />

in good agreement with those required by the proposed formulae given in Table 1. The data in<br />

527


<strong>Asian</strong> <strong>Journal</strong> <strong>of</strong> <strong>Biochemical</strong> <strong>and</strong> <strong>Pharmaceutical</strong> Research Issue 2 (Vol. 1) 2011<br />

consistent with the earlier reports support the proposed formulation <strong>of</strong> the binuclear <strong>com</strong>plexes<br />

(scheme 2). The higher conductance values (Table 2) <strong>of</strong> chelates support the electrolytic (1:2) nature<br />

<strong>of</strong> metal <strong>com</strong>plexes. The new binuclear <strong>com</strong>plexes are stable, hygroscopic with higher melting points,<br />

insoluble in water, soluble in acetonitrile, chlor<strong>of</strong>orm, DMF <strong>and</strong> DMSO.<br />

IR spectra<br />

The important IR absorption frequencies <strong>of</strong> the synthesized <strong>com</strong>plexes are shown in Table 3.<br />

The azomethine nitrogen υC=N stretching frequency <strong>of</strong> the free lig<strong>and</strong> appears around 1626 cm -1 , which<br />

is shifted to lower frequencies in the spectra <strong>of</strong> all the <strong>com</strong>plexes (1600-1610 cm -1 ). These b<strong>and</strong>s are<br />

shifted to lower wave numbers indicating the involvement <strong>of</strong> azomethine nitrogen in coordination to<br />

the metal ion [20]. The above i.r. data clearly indicate that the carbonyl groups <strong>of</strong> 2carboxybenzaldehyde<br />

have reacted with the amine groups <strong>of</strong> 3,3’,4,4’-tetraminobiphenyl through the<br />

condensation <strong>of</strong> the metal atoms. The lig<strong>and</strong> displays υC-O absorptions at 1310 cm -1 . On <strong>com</strong>plexation<br />

this b<strong>and</strong> is shifted to higher frequency in the range <strong>of</strong> 1350-1375 cm -1 for all the Schiff base<br />

<strong>com</strong>plexes which suggest that the carbonyl group is involved in coordination in the enol form through<br />

deprotonation [21, 22]. This is further supported by the disappearance <strong>of</strong> the υOH in the range <strong>of</strong> 3400-<br />

3440 cm -1 in all the <strong>com</strong>plexes. Accordingly, the lig<strong>and</strong> acts as a tetradendate chelating agent bonded<br />

to the metal ion via two –C-O groups & two –C=N azomethine nitrogen atoms <strong>of</strong> the Schiff base<br />

(scheme 2).Assignment <strong>of</strong> the proposed coordination sites is further supported by the appearance <strong>of</strong><br />

medium b<strong>and</strong>s at 480-510cm -1 <strong>and</strong> 430-470 cm -1 which could be attributed to M-O, M-N respectively<br />

[23]. In addition, the Oxovanadium <strong>com</strong>plexes shows a b<strong>and</strong> at 981 cm -1 attributed to V=O stretching<br />

frequency [24]. A further examination <strong>of</strong> Infrared spectra <strong>of</strong> <strong>com</strong>plexes shows the presence <strong>of</strong> a b<strong>and</strong><br />

in the 1060-1110 cm -1 region. The strong b<strong>and</strong> is ascribable to ClO4 - & SO4 2- ions [25].<br />

Electronic Epectra<br />

The UV-visible spectra are <strong>of</strong>ten very useful in the evaluation <strong>of</strong> results furnished by other<br />

methods <strong>of</strong> structural investigation. The electronic spectral measurements were used for assigning the<br />

stereochemistries <strong>of</strong> metal ions in the <strong>com</strong>plexes based on the positions <strong>and</strong> number <strong>of</strong> d-d transition<br />

peaks. The electronic absorption spectra <strong>of</strong> the Schiff base lig<strong>and</strong> <strong>and</strong> its <strong>com</strong>plexes were recorded in<br />

DMF solution in the range <strong>of</strong> 200 to 800 nm regions <strong>and</strong> the data are presented in Table 4. The<br />

absorption spectrum <strong>of</strong> free lig<strong>and</strong> consist <strong>of</strong> an intense b<strong>and</strong>s centered at 330 nm attributed to n- π*<br />

transitions <strong>of</strong> the azomethine group. Another intense b<strong>and</strong> in higher energy region <strong>of</strong> the spectra <strong>of</strong> the<br />

free lig<strong>and</strong> was related to π→π * transitions <strong>of</strong> benzene rings. These transitions are also found in the<br />

spectra <strong>of</strong> the <strong>com</strong>plexes, but they shifted towards lower frequencies, confirming the coordination <strong>of</strong><br />

the lig<strong>and</strong> to the metal ions. Further, the d-d transition <strong>of</strong> the <strong>com</strong>plex showed a broad b<strong>and</strong> centered at<br />

530 nm for Cu(II) <strong>com</strong>plex Fig. 1. This is due to 2 B1g → 2 A1g transition [26]. The spectra <strong>of</strong> Ni(II)<br />

<strong>com</strong>plex in the visible region at about 475 <strong>and</strong> 490 nm is assigned to 1 A1g → 1 A2g, 1 A1g → 1 B1g,<br />

transitions, suggesting an approximate square planar geometry <strong>of</strong> the lig<strong>and</strong> around the metal ions<br />

[27]. The intense charge transfer b<strong>and</strong> at 460-470 nm in Oxovanadium(IV) <strong>com</strong>plex assigned to 2 B2 →<br />

2 A1, 2 B2 → 2 E transitions. This is due to electron delocalization over whole molecule on <strong>com</strong>plexation.<br />

Based on these data, a square planar geometry has been assigned to the <strong>com</strong>plexes except VO(II)<br />

528


<strong>Asian</strong> <strong>Journal</strong> <strong>of</strong> <strong>Biochemical</strong> <strong>and</strong> <strong>Pharmaceutical</strong> Research Issue 2 (Vol. 1) 2011<br />

<strong>com</strong>plex which has square pyramidal geometry. These values are <strong>com</strong>parable with other reported<br />

<strong>com</strong>plexes [28].<br />

Magnetic Properties<br />

The magnetic moments <strong>of</strong> the solid state <strong>com</strong>plexes were measured at room temperature. The<br />

measured magnetic moments <strong>of</strong> mononuclear copper(II) <strong>com</strong>plex 1.68B.M. Magnetic susceptibility<br />

measurements shows that these <strong>com</strong>plexes are paramagnetic, which corresponds to the +2 oxidation<br />

state <strong>of</strong> copper(II) <strong>com</strong>plexes. The magnetic moment <strong>of</strong> binuclear Cu(II) <strong>com</strong>plex 1.59 B.M. It can be<br />

observed that the magnetic moment values <strong>of</strong> binuclear copper(II) <strong>com</strong>plexes are slightly lower than<br />

the mononuclear copper(II) <strong>com</strong>plexes. The strong antiferromagnetic coupling that was found for<br />

binuclear copper(II) <strong>com</strong>plexes were explained as the good super exchange properties [29]. Similarly,<br />

the magnetic moment <strong>of</strong> binuclear Ni(II) <strong>com</strong>plex has 2.54 B.M. indicating a geometry [30], <strong>and</strong> the<br />

magnetic moment <strong>of</strong> binuclear VO(II) <strong>com</strong>plex 4.40 B.M. indicating a square–pyramidal geometry<br />

[31].<br />

ESR spectra<br />

The ESR spectra <strong>of</strong> transition metal(II) <strong>com</strong>plexes provide information <strong>of</strong> importance in<br />

studying the metal ion environment. The X-b<strong>and</strong> ESR spectrum <strong>of</strong> the copper <strong>com</strong>plex was recorded<br />

on a powder solid at room temperature Fig. 2. It exhibits an axial signal which can be interpreted in<br />

terms <strong>of</strong> tetrahedral species with a strong signal in the low field region, corresponding to g = 2.06,<br />

<strong>and</strong> a weak signal in the high field region due to g || = 2.12. Splitting <strong>of</strong> the signal in the high field<br />

region may be due to a difference in surroundings between the two copper(II) centers suggesting a<br />

binuclear structure for this <strong>com</strong>plex [32]. As seen in Table 5, the presence <strong>of</strong> g || > g is evidence for<br />

square planar geometry around copper(II) atom [33]. The axial symmetry parameter (G) value <strong>of</strong><br />

Cu(II) <strong>com</strong>plex (less than 4) show that the exchange interaction is negligible. The Cu(II) <strong>com</strong>plex is<br />

dimer with the unpaired electron lies in the dx 2 - y 2 orbital. Its interesting to note that the g || > g ><br />

2.0023, indicating that the ground state <strong>of</strong> Cu(II) is predominantly dx 2 - y 2 . The observed values <strong>of</strong><br />

Vanadyl <strong>com</strong>plex g || = 2.04 > g = 1.98 indicates that the unpaired electron is present in the dxy<br />

orbital with square pyramidal geometry around the VO(II) chelates [34].<br />

Cyclic Voltammetry Studies<br />

Electroanalytical techniques are the most effective <strong>and</strong> versatile methods available for the<br />

mechanistic study <strong>of</strong> redox systems. The important parameters <strong>of</strong> a cyclic voltammogram are the<br />

magnitudes <strong>of</strong> the anodic peak potential (Epa) <strong>and</strong> cathodic peak potential (Epc). Cyclic voltammetry<br />

has been employed to study the interaction <strong>of</strong> <strong>com</strong>plex with CT-DNA. The cyclic voltammogram <strong>of</strong><br />

<strong>com</strong>plex 1 in the absence <strong>of</strong> CT-DNA shows in Fig. 3(a) reveals non-Nernstain but fairly<br />

reversible/quasi-reversible one electron redox process involving Cu(II)/Cu(I) couple. The cyclic<br />

voltammograms <strong>of</strong> <strong>com</strong>plexes were obtained in H2O/DMSO (95:5) solution, at scan rate 0.2 Vs<br />

529<br />

−1 over<br />

a potential range from +1.2 to -2.0 V. In the absence <strong>of</strong> CT-DNA, <strong>com</strong>plex 1 <strong>and</strong> other <strong>com</strong>plexes data<br />

are listed in Table 6. the anodic peak potential (Epa) <strong>of</strong> <strong>com</strong>plex 1 appeared at – 0.410 V <strong>and</strong> the<br />

cathodic (Epc) at –1.320 V. The cyclic voltammograms <strong>of</strong> <strong>com</strong>plex 1 reveals a one electron


<strong>Asian</strong> <strong>Journal</strong> <strong>of</strong> <strong>Biochemical</strong> <strong>and</strong> <strong>Pharmaceutical</strong> Research Issue 2 (Vol. 1) 2011<br />

quasireversible wave attributed to the redox couple Cu(II)/Cu(I) with the formal electrode potential,<br />

E O = -0.865 V, <strong>and</strong> ΔEp= - 0.910 V which is larger than the Nernstian value observed for the one<br />

electron transfer couple. On addition <strong>of</strong> CT-DNA, the <strong>com</strong>plex 1 Fig. (3b) shows a shift in Epc= (-<br />

1.100 V), Epa= (+0.212 V) <strong>and</strong> ΔEp= (0.888 V) values indicating strong binding <strong>of</strong> binuclear <strong>com</strong>plex<br />

with CT-DNA. The decrease in ratio <strong>of</strong> anodic to cathodic peak signify that adsorption <strong>of</strong> Cu(I) is<br />

enhanced in the presence <strong>of</strong> CT-DNA. Further, the shift in E 0 value <strong>and</strong> increase in peak heights<br />

potentials suggest that both Cu(II) <strong>and</strong> Cu(I) form <strong>of</strong> <strong>com</strong>plex 1 bind to CT-DNA [35].<br />

Cleavage <strong>of</strong> Plasmid pUC18 DNA<br />

DNA cleavage is controlled by relaxation <strong>of</strong> supercoiled circular conformation <strong>of</strong> pUC18 DNA<br />

to nicked circular conformation <strong>and</strong> linear conformation. When circular plasmid DNA is conducted by<br />

electrophoresis, the fastest migration will be observed for the supercoiled form (Form I). If one str<strong>and</strong><br />

is cleaved, the supercoils will relax to produce a slower-moving open circular form (Form II). If both<br />

str<strong>and</strong>s are cleaved, a linear form (Form III) will be generated that migrates in between. Figure 4<br />

illustrates the gel electrophoresis experiments showing the cleavage <strong>of</strong> plasmid pUC18 DNA induced<br />

by the three binuclear <strong>com</strong>plexes. The control experiments did not show any apparent cleavage <strong>of</strong><br />

DNA (lane 1 & 2). Copper binuclear <strong>com</strong>plex in the presence <strong>of</strong> H2O2 (lane 1) at higher concentration<br />

(50μM) shows more cleavage activity <strong>com</strong>pared to binuclear Nickel <strong>and</strong> Oxovanadium(IV)<br />

<strong>com</strong>plexes. The supercoiled plasmid DNA was <strong>com</strong>pletely degraded. This shows that a slight increase<br />

in the concentration over the optimal value led to extensive degradations, resulting in the<br />

disappearance <strong>of</strong> b<strong>and</strong>s on agarose gel [36]. Nickel binuclear <strong>com</strong>plex in the presence <strong>of</strong> H2O2<br />

resulting the conversion <strong>of</strong> supercoiled form (Form-I) into linear form (Form-III) (lane 4).<br />

Oxovanadium binuclear <strong>com</strong>plex in the presence <strong>of</strong> H2O2 (lane 5) at higher concentration (50μM)<br />

shows cleavage activity in which supercoiled DNA (Form-I) cleaved <strong>and</strong> supercoiled form converted<br />

to open circular form (Form-II). The results revealed that the Cu(II), Ni(II) <strong>com</strong>plexes have more<br />

cleavage than VO(II) <strong>com</strong>plex . Probably this may be due to the formation <strong>of</strong> redox couple <strong>of</strong> the<br />

metal ions <strong>and</strong> its behaviour. Further the presence <strong>of</strong> a smear in the gel diagram indicates the presence<br />

<strong>of</strong> radical cleavage [37].<br />

Antimicrobial activity<br />

The lig<strong>and</strong> <strong>and</strong> their <strong>com</strong>plexes have been tested for invitro growth inhibitory activity against<br />

gram-positive microbes Bacillus subtilis, staphylococcus aureus <strong>and</strong> gram-negative microbes<br />

Klebsiella pneumonia, Escherichia coli by using well-diffusion method. As the test solution<br />

concentration increases, the biological activity also increases. It is found that the activity increases<br />

upon co-ordination. The increased activity <strong>of</strong> the metal chelates can be explained on the basis <strong>of</strong><br />

chelation theory [38]. The orbital <strong>of</strong> each metal ion is made so as to overlap with the lig<strong>and</strong> orbital.<br />

Increased activity enhances the lipophilicity <strong>of</strong> <strong>com</strong>plexes due to delocalization <strong>of</strong> pi-electrons in the<br />

chelate ring [39]. In some cases increased lipophilicity leads to breakdown <strong>of</strong> the permeability barrier<br />

<strong>of</strong> the cell [40, 41]. The results revealed that the metal <strong>com</strong>plexes Cu(II), Ni(II) <strong>and</strong> VO(II) have<br />

higher antimicrobial activity than the lig<strong>and</strong> are shown in Figs. 7(a), 7(b) <strong>and</strong> 7(c) <strong>and</strong> Table 8.<br />

530


CONCLUSION:<br />

<strong>Asian</strong> <strong>Journal</strong> <strong>of</strong> <strong>Biochemical</strong> <strong>and</strong> <strong>Pharmaceutical</strong> Research Issue 2 (Vol. 1) 2011<br />

The N2O2 type Schiff base lig<strong>and</strong> is synthesized from 2-carboxybenzaldehyde <strong>and</strong> 3,3’,4,4’tetraminobiphenyl.<br />

It acts as a tetradentate lig<strong>and</strong> <strong>and</strong> forms stable <strong>com</strong>plexes with transition metal<br />

ions such as Copper(II), Nickel(II), <strong>and</strong> Oxovanadium(IV). The lig<strong>and</strong> <strong>and</strong> its <strong>com</strong>plexes are<br />

characterized using spectral <strong>and</strong> analytical data. The interaction <strong>of</strong> these <strong>com</strong>plexes with CT-DNA was<br />

investigated by gel electrophoresis. All the transition metal <strong>com</strong>plexes have higher activity than the<br />

control CT-DNA. The Cu(II), Ni(II) <strong>com</strong>plexes have more activity than VO(II) <strong>com</strong>plex <strong>and</strong> the<br />

control CT-DNA. . The metal <strong>com</strong>plexes have higher antimicrobial activity than the free lig<strong>and</strong>.<br />

Scheme 1 Structure <strong>of</strong> binucleating tetradendate Schiff base lig<strong>and</strong><br />

531


<strong>Asian</strong> <strong>Journal</strong> <strong>of</strong> <strong>Biochemical</strong> <strong>and</strong> <strong>Pharmaceutical</strong> Research Issue 2 (Vol. 1) 2011<br />

Where, M = Cu(II), Ni(II), X = 4ClO4 -<br />

Scheme 2 Structure <strong>of</strong> binuclear Cu(II), Ni(II), VO(II) Schiff base <strong>com</strong>plexes<br />

532


<strong>Asian</strong> <strong>Journal</strong> <strong>of</strong> <strong>Biochemical</strong> <strong>and</strong> <strong>Pharmaceutical</strong> Research Issue 2 (Vol. 1) 2011<br />

Table 1 Physical characterization, analytical data <strong>of</strong> the lig<strong>and</strong> <strong>and</strong> binuclear Schiff base<strong>com</strong>plexes<br />

Complexes<br />

( C44H30N4O8)<br />

(Lig<strong>and</strong> )<br />

[Cu2(L)]4ClO4<br />

M.<br />

point<br />

Color<br />

Yield<br />

( % )<br />

240 Yellow 90 -<br />

260<br />

[Ni2(L)]4ClO4 248<br />

Pale<br />

green<br />

Dark<br />

green<br />

80<br />

75<br />

[VO2 (L)]2SO4 279 Green 70<br />

533<br />

Found (Calculated) (%)<br />

M C N H<br />

10.14<br />

(10.45)<br />

9.43<br />

(9.47)<br />

12.54<br />

(12.59)<br />

71.15<br />

(71.56)<br />

41.83<br />

(41.90)<br />

42.17<br />

(42.24)<br />

49.62<br />

(49.66)<br />

7.54<br />

(7.68)<br />

4.43<br />

(4.46)<br />

4.47<br />

(4.52)<br />

5.26<br />

(5.29)<br />

4.04<br />

(4.06)<br />

2.06<br />

(2.25)<br />

2.08<br />

(2.10)<br />

2.44<br />

(2.47)


<strong>Asian</strong> <strong>Journal</strong> <strong>of</strong> <strong>Biochemical</strong> <strong>and</strong> <strong>Pharmaceutical</strong> Research Issue 2 (Vol. 1) 2011<br />

Table 2 Molar conductance data <strong>of</strong> the binuclear Schiff base the <strong>com</strong>plexes<br />

Complexes<br />

[Cu2(L)]4ClO4<br />

[Ni2(L)]4ClO4<br />

[VO2 (L)]2SO4<br />

Solvent Molar conductance<br />

MeCN<br />

DMF<br />

MeCN<br />

DMSO<br />

MeCN<br />

DMSO<br />

Λm (ohm -1 cm 2 mol -1 )<br />

534<br />

250<br />

210<br />

100<br />

135<br />

154<br />

142<br />

Types <strong>of</strong><br />

electrolyte<br />

1:2<br />

1:2<br />

1:2<br />

1:2<br />

1:2<br />

1:2


<strong>Asian</strong> <strong>Journal</strong> <strong>of</strong> <strong>Biochemical</strong> <strong>and</strong> <strong>Pharmaceutical</strong> Research Issue 2 (Vol. 1) 2011<br />

Table 3 Infrared spectral data for the lig<strong>and</strong> <strong>and</strong> binuclear Schiff base <strong>com</strong>plexes<br />

Complexes υ(-C-O)<br />

( C44H30N4O8)<br />

(Lig<strong>and</strong>)<br />

(cm -1 )<br />

υ(-C=N)<br />

(cm -1 )<br />

υ(-OH)<br />

(cm -1 )<br />

535<br />

υ(V=O)<br />

(cm -1 )<br />

υ(M-O)<br />

(cm -1 )<br />

υ(M-N)<br />

(cm -1 )<br />

1310 1626 3420 - - - -<br />

ClO4 -<br />

/SO4 2-<br />

(cm -1 )<br />

[Cu2(L)]4ClO4 1350 1600 3390 - 510 460 1080<br />

[Ni2(L)]4ClO4<br />

[VO2(L)]2SO4<br />

1362 1610 3430 - 495 470 1110<br />

1375 1602 3385 981 480 430 1060<br />

Table 4 Absorption spectral data <strong>of</strong> the lig<strong>and</strong> <strong>and</strong> binuclear Schiff base <strong>com</strong>plexes<br />

Complexes<br />

( C44H30N4O8)<br />

Lig<strong>and</strong><br />

[Cu2(L)]4ClO4<br />

d-d<br />

Absorption (�max)(nm)<br />

π�� *<br />

Benzene/ imino<br />

n�� *<br />

Azomethine<br />

L�MCT<br />

- 273,254 330 -<br />

550 279,245 334 430<br />

[Ni2(L)]4ClO4 490 270,250 332 375<br />

[VO2 (L)]2SO4 470 275,242 333 420


<strong>Asian</strong> <strong>Journal</strong> <strong>of</strong> <strong>Biochemical</strong> <strong>and</strong> <strong>Pharmaceutical</strong> Research Issue 2 (Vol. 1) 2011<br />

Table 5 ESR spectral data <strong>of</strong> the binuclear Schiff base <strong>com</strong>plexes<br />

Complexes g || g g iso G<br />

[Cu2(L)]4ClO4 2.12 2.06 2.07 2.03<br />

[VO2 (L)]2SO4<br />

2.04 1.98 2.02 -1.44<br />

Table 6 Cyclic voltammetric data <strong>of</strong> the binuclear Schiff base Complexes in DMSO solution.<br />

Complexes Couple Epc (V) Epa (V) ∆Ep(mv)<br />

[Cu2(L)]4ClO4 Cu(II)/ Cu(I) -0.563 -0.454 0.109<br />

[Ni2(L)]4ClO4 Ni(II)/Ni(I) 1.60 1.85 0.25<br />

[VO2 (L)]2SO4<br />

VO(IV)/ VO(III)<br />

VO(IV)/VO(V)<br />

536<br />

0.61<br />

-1.63<br />

0.75<br />

-0.52<br />

0.14<br />

1.11


<strong>Asian</strong> <strong>Journal</strong> <strong>of</strong> <strong>Biochemical</strong> <strong>and</strong> <strong>Pharmaceutical</strong> Research Issue 2 (Vol. 1) 2011<br />

Table 7 Antibacterial activity <strong>of</strong> the lig<strong>and</strong> <strong>and</strong> binuclear Schiff base <strong>com</strong>plexes<br />

Klebsiella pneumoniae<br />

(mm)<br />

Escherichia coli<br />

(mm)<br />

537<br />

Staphylococcus aureus<br />

(mm)<br />

Bacillus subtilis<br />

Complexes 25 50 75 100 25 50 75 100 25 50 75 100 25 50 75 100<br />

(mm)<br />

(μl) (μl) (μl) (μl)<br />

( C44H30N4O8) 10 12 12 14 11 12 14 14 11 13 14 16 11 13 15 18<br />

[Cu2(L)]4ClO4 11 13 14 17 12 13 15 16 12 14 15 16 10 14 17 19<br />

[Ni2(L)]4ClO4 12 15 17 18 13 14 15 18 13 15 16 19 12 15 17 20<br />

[VO2(L)]2SO4 13 14 16 19 14 15 17 19 14 15 17 19 11 13 16 18


<strong>Asian</strong> <strong>Journal</strong> <strong>of</strong> <strong>Biochemical</strong> <strong>and</strong> <strong>Pharmaceutical</strong> Research Issue 2 (Vol. 1) 2011<br />

Fig. 1 Absorption spectra <strong>of</strong> the binuclear Cu(II) Schiff base <strong>com</strong>plex [Cu2(L)]ClO4.<br />

Fig. 2 X-b<strong>and</strong> ESR spectra <strong>of</strong> binuclear Cu(II) Schiff base <strong>com</strong>plex [Cu2(L)]ClO4 at room temperature.<br />

Fig. 3 Cyclic voltammogram (scan rate 0.2 Vs−1, DMSO, 29 ◦ C) <strong>of</strong><br />

Fig. 3a Complex 1 alone<br />

Fig. 3b Complex 1 in presence <strong>of</strong> CT-DNA [Complex 1] 1 × 10 −3 M, [DNA] 6 × 10 −3 M.<br />

538


<strong>Asian</strong> <strong>Journal</strong> <strong>of</strong> <strong>Biochemical</strong> <strong>and</strong> <strong>Pharmaceutical</strong> Research Issue 2 (Vol. 1) 2011<br />

Fig 4. Changes in the agarose gel electrophoretic pattern <strong>of</strong> pUC18DNA induced by H2O2 <strong>and</strong> metal<br />

<strong>com</strong>plexes: Lane 1, DNA alone; Lane 2, DNA alone + H2O2; Lane 3, DNA + Cu binuclear <strong>com</strong>plex +<br />

H2O2; Lane 4, DNA + Ni binuclear <strong>com</strong>plex + H2O2; Lane5, DNA + VO binuclear <strong>com</strong>plex + H2O2.<br />

Fig. 5 Difference between the antimicrobial activity <strong>of</strong> binuclear lig<strong>and</strong> & metal <strong>com</strong>plexes<br />

Fig. 5a (1) lig<strong>and</strong> ( C44H30N4O8), (2) [Cu2(L)]4ClO4 , (3) [Ni2(L)]4ClO4, (4) [VO2(L)]2SO4<br />

539


<strong>Asian</strong> <strong>Journal</strong> <strong>of</strong> <strong>Biochemical</strong> <strong>and</strong> <strong>Pharmaceutical</strong> Research Issue 2 (Vol. 1) 2011<br />

Zone <strong>of</strong> inhibition (mm)<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Staphylococcus aureus<br />

1 2 3 4 5 6 7 8<br />

Complexes<br />

Fig. 5b Difference between the antimicrobial activity <strong>of</strong> binuclear lig<strong>and</strong> & metal <strong>com</strong>plexes (1) lig<strong>and</strong> (<br />

C44H30N4O8), (2) [Cu2(L)]4ClO4 , (3) [Ni2(L)]4ClO4, (4) [VO2 (L)]2SO4. [X axis –Zone <strong>of</strong> Inhibition (mm)]<br />

Fig. 5c Difference between the antimicrobial activity <strong>of</strong> binuclear lig<strong>and</strong> & metal <strong>com</strong>plexes (1) lig<strong>and</strong><br />

(C44H30N4O8), (2) [Cu2(L)]4ClO4 , (3) [Ni2(L)]4ClO4, (4) [VO2 (L)]2SO4. [X axis –Zone <strong>of</strong> Inhibition (mm)]<br />

540<br />

25 (μl)<br />

50 (μl)<br />

75 (μl)<br />

100 (μl)


<strong>Asian</strong> <strong>Journal</strong> <strong>of</strong> <strong>Biochemical</strong> <strong>and</strong> <strong>Pharmaceutical</strong> Research Issue 2 (Vol. 1) 2011<br />

Fig. 5d Difference between the antimicrobial activity <strong>of</strong> binuclear lig<strong>and</strong> & metal <strong>com</strong>plexes (1) lig<strong>and</strong><br />

(C44H30N4O8), (2) [Cu2(L)]4ClO4 , (3) [Ni2(L)]4ClO4, (4) [VO2 (L)]2SO4. [X axis –Zone <strong>of</strong> Inhibition<br />

REFERENCES:<br />

1. X. F. Luo, X. Hu, X. Y. Zhao, S. H. Goh <strong>and</strong> X. D. Li., Polymer., 2003, 44, 5285.<br />

2. L. Streyer, Biochemistry, Freeman, New York, 1995.<br />

3. V. Razakantoanina, N. K. P. Phung <strong>and</strong> G. Jaureguiberry., Parasitol. Res., 2000, 86, 665.<br />

4. Q. X. Li, H. A. Tang, Y. Z. Li, M. Wang, L. F. Wang <strong>and</strong> C. G. Xia., J. Inorg. Biochem.,<br />

2000, 78, 167.<br />

5. P. J. E. Quintana, A. De Peysder, S. Klatzke <strong>and</strong> H. J. Park., Toxicol. Lett., 2000, 85, 117.<br />

6. R. Baumgrass, M. Weivad <strong>and</strong> F. Erdmann., J. Biol. Chem., 2001, 276, 47914.<br />

7. R. Vafazadeh <strong>and</strong> M.Kashfi., Bull.Korean.Chem.Soc., 2007, 28, 1227.<br />

8. A. Anora <strong>and</strong> K. P. Sharma., Synth. React. Inorg. Met.-Org. Chem., 2000, 32, 913.<br />

9. E. Canpolat <strong>and</strong> M. Kaya., J. Coord. Chem., 2004, 57, 127.<br />

10. A. P. Mishra, M. Khare <strong>and</strong> S. K. Gautam., Synth. React. Inorg. Met.-Org. Chem.,<br />

2002, 32, 1485.<br />

11. Y. Fan <strong>and</strong> C. Bi, J. Li., Synth. React. Inorg. Met.-Org. Chem., 2003, 33, 137.<br />

541


<strong>Asian</strong> <strong>Journal</strong> <strong>of</strong> <strong>Biochemical</strong> <strong>and</strong> <strong>Pharmaceutical</strong> Research Issue 2 (Vol. 1) 2011<br />

12. E. Canpolat, M. kaya <strong>and</strong> A. Yazici., Spectrosc., Lett., 2005, 38, 35.<br />

13. R. C. Maurya, P. Patel <strong>and</strong> S. Rajput., Synth. React. Inorg. Met.-Org. Chem., 2003, 33, 817.<br />

14. A. P. Mishra <strong>and</strong> S. K. Gavtarm., J. Ind. Chem. Soc., 2004, 81, 324.<br />

15. N. A. Venkariya, M. D. Khunt <strong>and</strong> A.P. Parikh., Ind. J. Chem., 2003, 42B, 421.<br />

16. A. R. Banerjee, J. A. Jaeger <strong>and</strong> D. H. Turner., Biochemistry., 1993, 32, 153.<br />

17. N. Y. Sardesai, K. Zimmerman <strong>and</strong> J. K. Barton., J. Am. Chem. Soc., 1994, 116, 7502.<br />

18. A. I. Vogel, Text Book <strong>of</strong> Practical Organic Chemistry, 5th ed., Longman, London, 1989.<br />

19. N. Ramana, R. Jeyamurugana, A. Sakthivel, L. Mitub., Spectrochim. Acta PartA., 2010,<br />

75, 88.<br />

20. S. Pal <strong>and</strong> S. Pal., J Chem Soc Dalton Trans., 2002, 2102.<br />

21. E. Canpolat <strong>and</strong> M. Kaya., J.Coord.Chem., 2002, 55, 1419.<br />

22. E. Canpolat <strong>and</strong> M. Kaya., Polish .J. Chem., 2003, 77, 961.<br />

23. S. Yamada <strong>and</strong> A .Takeuchi., Coord Chem Rev.,1982, 43,187.<br />

24. B. Kaitner <strong>and</strong> G. Parlovic., Croatica Chemica Acta., 1999,72, 607.<br />

25. K. Nakamoto, Infrared <strong>and</strong> Raman spectra, <strong>of</strong> inorganic <strong>and</strong> coordination <strong>com</strong>pounds, III<br />

edition, John Wiley A(1978).<br />

26. L. N. Sharadha <strong>and</strong> M. C. Ganorkar., Indian J Chem., 1988, 27A, 617.<br />

27. A. B. P. Lever Crystal Field Spectra, Inorganic Electronic Specroscopy, first Ed.Elsevier.,<br />

Amsterdam 1968, 249.<br />

28. M. Sivasankaran Nair, G. Kalalakshmi <strong>and</strong> M. Sankaranarayana Pillai., J Indian Chem Soc.,<br />

1999, 76, 310.<br />

29. J. D. Ranford, J. J. Vittal <strong>and</strong> Y. M. Wang., Inorg. Chem., 1998, 37, 1226.<br />

30. R. K. Agarwal, D. Sharma, L. Shing <strong>and</strong> H. Agarwal., Bioinorg. Chem. Appl, 2006, doi. 10.<br />

1155/BCA/2006/29234.<br />

31. R. Aurkie, S. Banerjee, S. Sen, R. J. Butcher, G. M. Rosair <strong>and</strong> M. T. Garl<strong>and</strong>., Struct. Chem,<br />

542


<strong>Asian</strong> <strong>Journal</strong> <strong>of</strong> <strong>Biochemical</strong> <strong>and</strong> <strong>Pharmaceutical</strong> Research Issue 2 (Vol. 1) 2011<br />

2008, 19, 209.<br />

32. S. S. T<strong>and</strong>on, L. C. Laurence, K. Thompson, S. P. Connors <strong>and</strong> J. N. Bridson., Inorg Chim<br />

Acta., 1993, 213.<br />

33. Y. Dong, L. F. Lindoy, P. Turner <strong>and</strong> G. Wei., Dalton Trans., 2004, 8, 1264.<br />

34. L. Leelavathy, S. Anbu, M. K<strong>and</strong>aswamy, N. Karthikeyan <strong>and</strong> N. Mohan., Polyhedron., 2009,<br />

28, 903.<br />

35. Z. S. Yang, Y. L. Wang <strong>and</strong> G. C. Zhao., Anal Sci., 2004, 20, 1127.<br />

36. N. Raman, T. Baskaran <strong>and</strong> A. Selvan., J. Iran. Chem. Res., 2008, 1, 29.<br />

37. A. M. Thomas, A. D. Naik, M. Nethaji <strong>and</strong> A. R. Chakravarty., Indian J Chem., 2004, A43, 691.<br />

38. N. Raman, A. Kul<strong>and</strong>aisamy, A. Shanmugasundaram<strong>and</strong>, K. Jeyasubramanian., Trans.<br />

Met.Chem., 2001, 26, 131.<br />

39. R. S. Srivastava., Inorg. Chim. Acta., 1981, 56, 65.<br />

40. N. Gupta, R. Swaroop <strong>and</strong> R. V. Singh., Main Group Met. Chem., 1997, 14, 387.<br />

41. A. Cukurovali, I. Yilmaz, H. Ozmen <strong>and</strong> M. Ahmedzade., Trans. Met. Chem., 2002, 27, 171.<br />

*Correspondence Author: R.Rajavel, Department <strong>of</strong> Chemistry, Periyar University, Salem,<br />

Tamilnadu, India.<br />

543

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!