07.12.2012 Views

Trace Elements in Sediments of the Lower Eastern Coast of the Firth ...

Trace Elements in Sediments of the Lower Eastern Coast of the Firth ...

Trace Elements in Sediments of the Lower Eastern Coast of the Firth ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Environment Waikato Technical Report 2007/08<br />

<strong>Trace</strong> <strong>Elements</strong> <strong>in</strong><br />

<strong>Sediments</strong> <strong>of</strong> <strong>the</strong> <strong>Lower</strong><br />

<strong>Eastern</strong> <strong>Coast</strong> <strong>of</strong> <strong>the</strong><br />

<strong>Firth</strong> <strong>of</strong> Thames<br />

www.ew.govt.nz<br />

ISSN 1172-4005 (Pr<strong>in</strong>t)<br />

ISSN 1172-9284 (Onl<strong>in</strong>e)


Prepared by:<br />

Nick Kim, based on a report from URS New Zealand Ltd.<br />

For:<br />

Environment Waikato<br />

PO Box 4010<br />

HAMILTON EAST<br />

May 2007<br />

Document #: 1120743


Peer reviewed by:<br />

Mat<strong>the</strong>w Taylor Date May 2007<br />

Approved for release by:<br />

Peter S<strong>in</strong>gleton Date June 2007<br />

Disclaimer<br />

This technical report has been prepared for <strong>the</strong> use <strong>of</strong> Waikato Regional Council as a reference<br />

document and as such does not constitute Council’s policy.<br />

Council requests that if excerpts or <strong>in</strong>ferences are drawn from this document for fur<strong>the</strong>r use by<br />

<strong>in</strong>dividuals or organisations, due care should be taken to ensure that <strong>the</strong> appropriate context<br />

has been preserved, and is accurately reflected and referenced <strong>in</strong> any subsequent spoken or<br />

written communication.<br />

While Waikato Regional Council has exercised all reasonable skill and care <strong>in</strong> controll<strong>in</strong>g <strong>the</strong><br />

contents <strong>of</strong> this report, Council accepts no liability <strong>in</strong> contract, tort or o<strong>the</strong>rwise, for any loss,<br />

damage, <strong>in</strong>jury or expense (whe<strong>the</strong>r direct, <strong>in</strong>direct or consequential) aris<strong>in</strong>g out <strong>of</strong> <strong>the</strong> provision<br />

<strong>of</strong> this <strong>in</strong>formation or its use by you or any o<strong>the</strong>r party.<br />

Doc # 1120743


Doc # 1120743


Executive summary<br />

Background<br />

In 2004, Environment Waikato tested for trace elements <strong>in</strong> shallow sediments from five<br />

sites spread across <strong>the</strong> lower <strong>Firth</strong> <strong>of</strong> Thames. Results <strong>in</strong>dicated <strong>the</strong> presence <strong>of</strong><br />

moderately elevated mercury <strong>in</strong> sediments at three <strong>of</strong> <strong>the</strong> sampl<strong>in</strong>g locations and<br />

suggested a need for fur<strong>the</strong>r <strong>in</strong>vestigation. Environment Waikato <strong>the</strong>n commissioned<br />

URS New Zealand Ltd (URS) to undertake more extensive sediment sampl<strong>in</strong>g <strong>of</strong> <strong>the</strong><br />

eastern coast <strong>of</strong> <strong>the</strong> lower <strong>Firth</strong> <strong>of</strong> Thames and to produce a report on this. Dur<strong>in</strong>g June<br />

2005, URS collected 78 sediment samples from <strong>the</strong> follow<strong>in</strong>g 11 locations: Kuranui<br />

Bay, Piako River mouth, Tararu, Tapu, Te Mata, Te Puru, Thames mudflats, Thames<br />

urban area, Thornton Bay, Waihou River mouth, and Waiomu. All sediment samples<br />

were analysed for arsenic, cadmium, chromium, copper, lead, mercury, nickel and z<strong>in</strong>c.<br />

Samples collected from selected sites also underwent analysis for gra<strong>in</strong> size, lithium,<br />

iron and alum<strong>in</strong>ium, to aid <strong>in</strong> <strong>in</strong>terpret<strong>in</strong>g <strong>the</strong> results. Statistical tests were applied to<br />

ascerta<strong>in</strong> if <strong>the</strong>re were significant differences between sites. URS submitted <strong>the</strong>ir f<strong>in</strong>al<br />

report and assessment to Environment Waikato <strong>in</strong> 2006. This review has been adapted<br />

from <strong>the</strong> URS report and <strong>in</strong>corporates additional data and <strong>in</strong>formation which has come<br />

to light s<strong>in</strong>ce sampl<strong>in</strong>g was carried out.<br />

F<strong>in</strong>d<strong>in</strong>gs: relative enrichments<br />

Arsenic, cadmium, copper, mercury, lead and z<strong>in</strong>c are enriched <strong>in</strong> sediments <strong>of</strong> <strong>the</strong><br />

lower eastern coast <strong>of</strong> <strong>Firth</strong> <strong>of</strong> Thames, relative to concentrations present before<br />

Polynesian and European colonisation, and reference concentrations <strong>in</strong> sediments<br />

from Raglan Harbour. Concentrations <strong>of</strong> <strong>the</strong> o<strong>the</strong>r five elements measured <strong>in</strong> some or<br />

all samples (chromium, nickel, alum<strong>in</strong>ium, iron and lithium) are more typical <strong>of</strong> those<br />

observed <strong>in</strong> harbour sediments <strong>in</strong> o<strong>the</strong>r areas. Relative to its expected background<br />

concentration, <strong>the</strong> most highly enriched element is mercury. Mercury concentrations<br />

are on average about seven times higher <strong>in</strong> <strong>Firth</strong> <strong>of</strong> Thames sediments than those <strong>of</strong><br />

reference sites. In mass terms, <strong>the</strong> most highly enriched element is z<strong>in</strong>c. <strong>Firth</strong> <strong>of</strong><br />

Thames sediments conta<strong>in</strong> about 10 mg/kg more z<strong>in</strong>c than reference sites.<br />

F<strong>in</strong>d<strong>in</strong>gs: local and general sources<br />

Only one area (at two adjacent sampl<strong>in</strong>g locations) stands out as a hotspot <strong>of</strong> localised<br />

metal contam<strong>in</strong>ation, which looks likely to have been from an urban <strong>in</strong>dustrial source.<br />

This is <strong>the</strong> sediment <strong>in</strong> Kuranui Bay and south <strong>of</strong> this <strong>in</strong> <strong>the</strong> area <strong>of</strong> <strong>the</strong> Thames<br />

pipel<strong>in</strong>e. Results from depth pr<strong>of</strong>ile samples suggest that <strong>the</strong> worst contam<strong>in</strong>ation <strong>in</strong><br />

this area may have been historic. Subsequent <strong>in</strong>formation suggests an association with<br />

<strong>in</strong>dustrial fill or landfill as a part <strong>of</strong> historic land reclamation <strong>in</strong> <strong>the</strong> area - <strong>the</strong> Moanataiari<br />

reclamation. Risks associated with this contam<strong>in</strong>ation are to organisms liv<strong>in</strong>g <strong>in</strong> nearby<br />

mar<strong>in</strong>e sediments. There is currently little evidence <strong>of</strong> risk to people liv<strong>in</strong>g on <strong>the</strong><br />

reclamation.<br />

Apart from this area, <strong>the</strong> <strong>in</strong>fluence <strong>of</strong> local sources appears m<strong>in</strong>or. The results provide<br />

little evidence that former m<strong>in</strong><strong>in</strong>g sites along <strong>the</strong> lower eastern coast <strong>of</strong> <strong>the</strong> <strong>Firth</strong> <strong>of</strong><br />

Thames had, or cont<strong>in</strong>ue to have, a significant impact on <strong>the</strong> quality <strong>of</strong> <strong>the</strong>ir nearest<br />

coastal sediments, relative to <strong>the</strong> more general impact from o<strong>the</strong>r sources.<br />

Although <strong>the</strong>re is some evidence for <strong>the</strong> presence <strong>of</strong> <strong>the</strong> occasional gra<strong>in</strong> <strong>of</strong> a metalrich<br />

m<strong>in</strong>eral <strong>in</strong> sediments, more generally <strong>the</strong> data suggests that elevated arsenic,<br />

copper, lead, cadmium and z<strong>in</strong>c concentrations along <strong>the</strong> lower eastern coast <strong>of</strong> <strong>the</strong><br />

<strong>Firth</strong> <strong>of</strong> Thames are likely to be dom<strong>in</strong>ated by larger-scale sources, which have been<br />

capable <strong>of</strong> caus<strong>in</strong>g an impact over <strong>the</strong> area as a whole. The three most likely largescale<br />

sources are enhanced wea<strong>the</strong>r<strong>in</strong>g and erosion follow<strong>in</strong>g land clearance (arsenic<br />

Doc # 1120743 Page i


and copper), <strong>the</strong> impact <strong>of</strong> distant historic m<strong>in</strong><strong>in</strong>g operations which <strong>in</strong>volved disposal <strong>of</strong><br />

large volumes <strong>of</strong> tail<strong>in</strong>gs directly to <strong>the</strong> Oh<strong>in</strong>emuri River (z<strong>in</strong>c, cadmium, and lead) and<br />

agricultural <strong>in</strong>puts (z<strong>in</strong>c and cadmium). A fourth possible source identified <strong>in</strong> this work<br />

(for mercury) is dissolved organic matter enter<strong>in</strong>g <strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames from wetlands<br />

and peatlands <strong>of</strong> <strong>the</strong> Hauraki Pla<strong>in</strong>s. Fur<strong>the</strong>r work is needed to confirm this hypo<strong>the</strong>sis.<br />

F<strong>in</strong>d<strong>in</strong>gs: comparison to guidel<strong>in</strong>es<br />

Although concentrations <strong>of</strong> copper, cadmium, lead and z<strong>in</strong>c were higher than typical<br />

values for uncontam<strong>in</strong>ated sediments, <strong>the</strong>y are still well below <strong>the</strong> lowest sediment<br />

quality guidel<strong>in</strong>e values, and are believed to pose a low level <strong>of</strong> risk to health <strong>of</strong> aquatic<br />

ecosystems. The two elements that are nearest to or occasionally exceed guidel<strong>in</strong>e<br />

values for sediments are arsenic and mercury. Arsenic concentrations <strong>in</strong> coastal<br />

sediments at some locations <strong>in</strong> <strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames are at a po<strong>in</strong>t where <strong>the</strong>y may<br />

adversely affect some sediment-dwell<strong>in</strong>g organisms. <strong>Sediments</strong> <strong>in</strong> <strong>the</strong> area <strong>of</strong> <strong>the</strong><br />

Moanataiari reclamation are substantially enriched <strong>in</strong> mercury, and consistently exceed<br />

relevant sediment quality guidel<strong>in</strong>e values. In URS NZ Ltd’s sampl<strong>in</strong>g round, arsenic<br />

exceeded its ISQG-Low guidel<strong>in</strong>e (20 mg/kg) at eight out <strong>of</strong> n<strong>in</strong>e (89% <strong>of</strong>) sites.<br />

Mercury exceeded its ANZECC (2000) ISQG-Low guidel<strong>in</strong>e (0.15 mg/kg) at four out <strong>of</strong><br />

n<strong>in</strong>e (44% <strong>of</strong>) sites.<br />

F<strong>in</strong>d<strong>in</strong>gs: most likely sources where enriched<br />

Lead<br />

Results for lead are consistent with <strong>the</strong> existence <strong>of</strong> one significant diffuse source <strong>of</strong><br />

additional lead to <strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames, which is most likely to have been <strong>the</strong> <strong>in</strong>fluence<br />

<strong>of</strong> past m<strong>in</strong><strong>in</strong>g <strong>in</strong> <strong>the</strong> Oh<strong>in</strong>emuri catchment. The Waihou River is known to have<br />

received between 500-800 tonnes per annum <strong>of</strong> m<strong>in</strong>e tail<strong>in</strong>gs from <strong>the</strong> Oh<strong>in</strong>emuri River<br />

for over 50 years. This source is also likely to have contributed substantial z<strong>in</strong>c and<br />

cadmium (see below).<br />

Z<strong>in</strong>c and cadmium<br />

Results for z<strong>in</strong>c and cadmium are most consistent with <strong>the</strong> existence <strong>of</strong> two significant<br />

diffuse sources to <strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames: past m<strong>in</strong><strong>in</strong>g, and current agricultural treatments.<br />

The Oh<strong>in</strong>emuri m<strong>in</strong><strong>in</strong>g source (see lead above) may have been a significant source <strong>of</strong><br />

three metals: lead, z<strong>in</strong>c and cadmium. Agriculture may be associated with two metals:<br />

z<strong>in</strong>c and cadmium. The most likely agricultural source <strong>of</strong> z<strong>in</strong>c is z<strong>in</strong>c sulphate, which is<br />

used <strong>in</strong> large volumes as a remedy for facial eczema <strong>in</strong> stock. The most likely<br />

agricultural source <strong>of</strong> cadmium is phosphate fertilisers (primarily superphosphate), <strong>in</strong><br />

which cadmium is present as an impurity.<br />

Arsenic and copper<br />

Results for arsenic and copper are consistent with one primary diffuse source to <strong>the</strong><br />

<strong>Firth</strong> <strong>of</strong> Thames: wea<strong>the</strong>r<strong>in</strong>g <strong>of</strong> m<strong>in</strong>erals such as pyrite <strong>in</strong> coastal areas <strong>of</strong> <strong>the</strong><br />

Coromandel Pen<strong>in</strong>sula. It is likely that <strong>the</strong> rate and extent <strong>of</strong> wea<strong>the</strong>r<strong>in</strong>g and erosion,<br />

and <strong>in</strong>flux <strong>of</strong> arsenic and copper, was enhanced by historic land clearance activities<br />

around <strong>the</strong> coastal areas <strong>of</strong> <strong>the</strong> Coromandel Pen<strong>in</strong>sula, follow<strong>in</strong>g Polynesian and<br />

European settlement <strong>of</strong> <strong>the</strong> area.<br />

Mercury<br />

There is no positive evidence that past m<strong>in</strong><strong>in</strong>g, erosion <strong>of</strong> natural m<strong>in</strong>erals, or<br />

agricultural treatments have been significant sources <strong>of</strong> mercury to <strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames<br />

sediments. Ra<strong>the</strong>r, <strong>the</strong> results suggest a source <strong>of</strong> mercury which is delivered to <strong>the</strong><br />

<strong>Firth</strong> <strong>of</strong> Thames via <strong>the</strong> Piako River. Based on recent literature, it is thought that<br />

significant <strong>in</strong>puts <strong>of</strong> mercury may orig<strong>in</strong>ate from dra<strong>in</strong>age <strong>of</strong> <strong>the</strong> wetlands and<br />

Page ii Doc # 1120743


peatlands <strong>of</strong> <strong>the</strong> Hauraki Pla<strong>in</strong>s. This form <strong>of</strong> mercury is most likely to be associated<br />

with dissolved organic carbon <strong>in</strong> <strong>the</strong> dra<strong>in</strong>age waters. In addition, <strong>the</strong> base <strong>of</strong> <strong>the</strong><br />

Moanataiari reclamation <strong>in</strong> Thames appears to be a localised hotspot <strong>of</strong> mercury<br />

contam<strong>in</strong>ation to mar<strong>in</strong>e sediments.<br />

Recommendations<br />

The follow<strong>in</strong>g recommendations are made. (For fur<strong>the</strong>r details <strong>of</strong> each<br />

recommendation, and its rationale, see Section 4.2.)<br />

1. <strong>Sediments</strong> <strong>of</strong> <strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames be sampled once every five years, to allow early<br />

warn<strong>in</strong>g <strong>in</strong> <strong>the</strong> event that concentrations <strong>of</strong> one or more trace elements are<br />

gradually <strong>in</strong>creas<strong>in</strong>g.<br />

2. Fur<strong>the</strong>r work on mercury is commissioned, with a focus on:<br />

• Quantify<strong>in</strong>g <strong>the</strong> relative significance <strong>of</strong> wetlands and peat deposits <strong>in</strong> <strong>the</strong><br />

Hauraki Pla<strong>in</strong>s as sources <strong>of</strong> mercury to <strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames, relative to o<strong>the</strong>r<br />

sources.<br />

• Identify<strong>in</strong>g land management factors that would <strong>in</strong>crease or decrease mercury<br />

<strong>in</strong>puts to <strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames.<br />

• Identify<strong>in</strong>g <strong>the</strong> most significant risks associated with mercury which has entered<br />

<strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames sediment reservoir, focus<strong>in</strong>g on <strong>the</strong> significance <strong>of</strong> mercury<br />

to wildlife and human food sources, and <strong>the</strong> impact <strong>of</strong> mangrove colonisation on<br />

mercury chemistry.<br />

3. The feasibility <strong>of</strong> simple erosion control measures that might work to reduce <strong>the</strong> flux<br />

<strong>of</strong> arsenic enter<strong>in</strong>g <strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames be <strong>in</strong>vestigated.<br />

4. Contam<strong>in</strong>ated site <strong>in</strong>vestigations be carried out on sediments <strong>in</strong> <strong>the</strong> area <strong>of</strong> <strong>the</strong><br />

Moanataiari reclamation to determ<strong>in</strong>e hazards to <strong>the</strong> ecosystem, pathways, risks to<br />

<strong>the</strong> mar<strong>in</strong>e ecosystem, and management options.<br />

Doc # 1120743 Page iii


Note on terms<br />

Heavy metals / trace elements<br />

The focus <strong>of</strong> this report is on concentrations and sources <strong>of</strong> eight chemical elements:<br />

arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni),<br />

lead (Pb) and z<strong>in</strong>c (Zn). These elements are <strong>of</strong>ten referred to as ‘heavy metals.’<br />

However, this term is fall<strong>in</strong>g out <strong>of</strong> favour because it is an ambiguous one. A range <strong>of</strong><br />

different def<strong>in</strong>itions for ‘heavy metal’ exist <strong>in</strong> <strong>the</strong> scientific literature. In addition, arsenic<br />

is not regarded as a true metal, but a metalloid. The term ‘trace element’ is used <strong>in</strong> this<br />

report because it is not ambiguous, and accurately describes <strong>the</strong> group <strong>of</strong> eight<br />

elements that are <strong>the</strong> focus <strong>of</strong> this work. A ‘trace element’ is someth<strong>in</strong>g which is not<br />

one <strong>of</strong> <strong>the</strong> ten major elements. N<strong>in</strong>ety-n<strong>in</strong>e percent <strong>of</strong> <strong>the</strong> earth’s crust is composed <strong>of</strong><br />

<strong>the</strong> ten major elements: silicon, oxygen, alum<strong>in</strong>ium, iron, calcium, potassium, sodium,<br />

magnesium, titanium and phosphorus. All o<strong>the</strong>r elements are ‘trace elements’, and<br />

most are present at natural concentrations <strong>of</strong> well under 100 mg/kg (parts per million)<br />

<strong>in</strong> <strong>the</strong> earth’s crust. The term ‘metal’ is sometimes used <strong>in</strong> this report <strong>in</strong> discuss<strong>in</strong>g an<br />

element o<strong>the</strong>r than arsenic.<br />

Enrichment / contam<strong>in</strong>ation<br />

<strong>Trace</strong> elements occur naturally. When <strong>the</strong>ir concentrations are higher than expected,<br />

<strong>the</strong>y are usually referred to as be<strong>in</strong>g ‘enriched,’ or ‘elevated’ above <strong>the</strong>ir natural<br />

concentrations. The terms ‘contam<strong>in</strong>ated’ or ‘contam<strong>in</strong>ation’ are usually reserved for<br />

cases where a trace element’s concentrations have become sufficiently high to cause<br />

significant adverse effects on <strong>the</strong> environment. For convenience, this is usually<br />

assessed by reference to sediment quality guidel<strong>in</strong>es. Sites would normally be<br />

regarded as contam<strong>in</strong>ated when trace elements are present at concentrations that<br />

significantly exceed <strong>the</strong> ANZECC ISQG-High (see Section 2.5). These conventions are<br />

followed <strong>in</strong> this report.<br />

Page iv Doc # 1120743


Table <strong>of</strong> contents<br />

Executive summary i<br />

1 Introduction 1<br />

1.1 Potential sources <strong>of</strong> <strong>the</strong> elements 1<br />

1.1.1 Wea<strong>the</strong>r<strong>in</strong>g and erosion 1<br />

1.1.2 Past m<strong>in</strong><strong>in</strong>g 3<br />

1.1.3 Agricultural and horticultural <strong>in</strong>puts 4<br />

1.1.4 Urban <strong>in</strong>puts 5<br />

1.2 Previous data 5<br />

2 Study methodology 9<br />

2.1 Sampl<strong>in</strong>g objectives 9<br />

2.2 Sampl<strong>in</strong>g locations 9<br />

2.2.1 General 9<br />

2.2.2 History <strong>of</strong> <strong>the</strong> sample locations 15<br />

2.3 Sample types 16<br />

2.3.1 Manual grab samples 16<br />

2.3.2 Vertical pr<strong>of</strong>iles 16<br />

2.3.3 Grab sampl<strong>in</strong>g 17<br />

2.4 Analysis and analytical quality assurance 17<br />

2.5 Use <strong>of</strong> ANZECC sediment quality guidel<strong>in</strong>es 18<br />

3 Results and discussion 19<br />

3.1 Raw results and summary statistics 19<br />

3.2 Comparison with sediment quality guidel<strong>in</strong>es 20<br />

3.2.1 Comparison to <strong>the</strong> ISQG-Low 20<br />

3.2.2 Comparison to <strong>the</strong> ISQG-High 21<br />

3.2.3 Key f<strong>in</strong>d<strong>in</strong>gs 21<br />

3.3 Comparison between <strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames and o<strong>the</strong>r areas 22<br />

3.3.1 Comparison to coastal sediments <strong>in</strong> Raglan Harbour 22<br />

3.3.2 Comparison <strong>of</strong> this survey’s data with historical data 24<br />

3.3.3 Key f<strong>in</strong>d<strong>in</strong>gs 25<br />

3.4 Small scale variability 25<br />

3.4.1 Assessment 25<br />

3.4.2 Key f<strong>in</strong>d<strong>in</strong>g 26<br />

3.5 Comparisons between sites <strong>in</strong> <strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames 26<br />

3.5.1 Statistical analysis and data normalisation 26<br />

3.5.2 Local historical m<strong>in</strong><strong>in</strong>g sites versus control sites 27<br />

3.5.3 Seaward versus landward 30<br />

3.5.4 Urban areas versus control sites 30<br />

3.5.5 Agriculturally proximate versus control sites 34<br />

3.5.6 Key f<strong>in</strong>d<strong>in</strong>gs 35<br />

3.6 Correlations and spatial trends 36<br />

3.6.1 Approach and correlation matrix 36<br />

3.6.2 Z<strong>in</strong>c, cadmium, and lead 37<br />

3.6.3 Arsenic and copper 39<br />

3.6.4 Chromium and nickel 41<br />

3.6.5 Mercury 41<br />

3.6.6 Pr<strong>in</strong>cipal Components Analysis 44<br />

3.6.7 Key f<strong>in</strong>d<strong>in</strong>gs 45<br />

4 Summary and recommendations 47<br />

4.1 Summary 47<br />

4.1.1 Relative enrichments 47<br />

4.1.2 Comparison to guidel<strong>in</strong>es 47<br />

4.1.3 Local and general sources 47<br />

4.1.4 Probable dom<strong>in</strong>ant sources by element 48<br />

4.2 Recommendations 49<br />

Doc # 1120743 Page v


References 51<br />

Appendix 1. Fur<strong>the</strong>r details <strong>of</strong> each location from which sediment samples were<br />

collected by URS as part <strong>of</strong> this study. 53<br />

Appendix 2. Measured concentrations <strong>of</strong> eight trace elements <strong>in</strong> 78 sediment<br />

samples collected as part <strong>of</strong> this study. 56<br />

Appendix 3. Quality assurance and quality control results 59<br />

Appendix 4. Metal concentrations <strong>in</strong> sediments normalised aga<strong>in</strong>st various<br />

benchmark variables. 61<br />

Appendix 5. Statistical summary <strong>of</strong> results for eight trace elements <strong>in</strong> each <strong>of</strong><br />

<strong>the</strong> ten areas sampled. 65<br />

Appendix 6. Concentrations <strong>of</strong> 33 elements, total organic carbon and dry matter <strong>in</strong><br />

composite shallow (0-2 cm) sediment samples collected <strong>in</strong> October 2003 from five<br />

locations <strong>in</strong> <strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames and five locations <strong>in</strong> Raglan Harbour. 70<br />

Appendix 7. Results <strong>of</strong> Student’s t-tests between Thames and Kuranui Bay<br />

sites and three m<strong>in</strong><strong>in</strong>g reference sites (Te Puru, Thornton and Te Mata). 71<br />

Appendix 8. Map show<strong>in</strong>g <strong>the</strong> full extent <strong>of</strong> catchments feed<strong>in</strong>g <strong>the</strong> lower <strong>Firth</strong><br />

<strong>of</strong> Thames. 72<br />

List <strong>of</strong> figures<br />

Figure 2-1: Context <strong>of</strong> <strong>the</strong> study area, show<strong>in</strong>g catchment boundaries and o<strong>the</strong>r<br />

key features. 10<br />

Figure 2-2 Locations <strong>of</strong> sites where sediment was sampled <strong>in</strong> 2005 and old<br />

m<strong>in</strong><strong>in</strong>g sites. Exact coord<strong>in</strong>ates <strong>of</strong> <strong>the</strong> sediment sampl<strong>in</strong>g sites, and<br />

details about <strong>the</strong> numbers <strong>of</strong> samples collected, are provided <strong>in</strong> Table<br />

2-1. 14<br />

Figure 2-3 Diagram <strong>in</strong>dicat<strong>in</strong>g approach to collection <strong>of</strong> composite samples<br />

obta<strong>in</strong>ed from stream mouths. 16<br />

Figure 2-4 Diagram <strong>in</strong>dicat<strong>in</strong>g approach to collection <strong>of</strong> composite samples<br />

obta<strong>in</strong>ed from <strong>in</strong>tertidal zone with no significant <strong>in</strong>puts. 17<br />

Figure 3-1 Apparent enrichment <strong>of</strong> cadmium relative to <strong>the</strong> three m<strong>in</strong><strong>in</strong>g control<br />

sites mov<strong>in</strong>g from south to north. 29<br />

Figure 3-2 Aerial photograph <strong>of</strong> <strong>the</strong> Moanataiari reclamation dated 24 June<br />

2006. Imagery sourced from Terral<strong>in</strong>k International Ltd (TIL) 2006<br />

and is <strong>the</strong> property <strong>of</strong> TIL and <strong>the</strong> Waikato Regional Aerial<br />

Photography Service (WRAPS) 2006. Copyright Reserved. 32<br />

Figure 3-3 Relationship between z<strong>in</strong>c and cadmium concentrations (mg/kg) <strong>in</strong><br />

<strong>Firth</strong> <strong>of</strong> Thames sediment samples. (See Section 3.6.1 for <strong>in</strong>formation<br />

about data set coverage.) 38<br />

Figure 3-4 Relationship between concentrations <strong>of</strong> z<strong>in</strong>c <strong>in</strong> sediments and<br />

distance from <strong>the</strong> Waihou River mouth <strong>in</strong> kilometres. (See Section<br />

3.6.1 for <strong>in</strong>formation about data set coverage.) 38<br />

Figure 3-5 Relationship between arsenic and copper concentrations (mg/kg) <strong>in</strong><br />

<strong>Firth</strong> <strong>of</strong> Thames sediment samples. (See Section 3.6.1 for <strong>in</strong>formation<br />

about data set coverage.) 39<br />

Figure 3-6 Average concentrations <strong>of</strong> mercury mov<strong>in</strong>g from <strong>the</strong> Piako River<br />

mouth east and <strong>the</strong>n north, exclud<strong>in</strong>g <strong>the</strong> Thames pipel<strong>in</strong>e/Kuranui<br />

Bay anomaly. (O<strong>the</strong>r details are as for Table 3-15.) 42<br />

Figure 3-7 Relationship between concentrations <strong>of</strong> mercury and arsenic, and<br />

mercury and copper, <strong>in</strong> <strong>Firth</strong> <strong>of</strong> Thames sediments. Site coverage is<br />

as described <strong>in</strong> Table 3.15. 44<br />

Page vi Doc # 1120743


List <strong>of</strong> tables<br />

Table 1-1 Environmentally significant metals which occur at elevated<br />

concentrations <strong>in</strong> some New Zealand rocks (adapted from Metals <strong>in</strong><br />

New Zealand Environment, University <strong>of</strong> Otago). 2<br />

Table 1-2 Alteration, m<strong>in</strong>eralisation and old m<strong>in</strong>e work<strong>in</strong>gs <strong>in</strong> <strong>the</strong> Coromandel<br />

area (modified from Liv<strong>in</strong>gston 1987, <strong>in</strong>clud<strong>in</strong>g data from Jenk<strong>in</strong>s<br />

1991 and Moore et al. 1996). 4<br />

Table 1-3 Concentrations <strong>of</strong> selected elements <strong>in</strong> phosphate fertiliser, soils and<br />

rocks. 5<br />

Table 1-4 Contam<strong>in</strong>ants <strong>in</strong> New Zealand stormwater (from Taylor et al. 2005). 5<br />

Table 1-5 Sediment quality data (mg/kg) obta<strong>in</strong>ed by o<strong>the</strong>r authors prior to this<br />

study. (Refer to Table 1-1 for <strong>the</strong> element name associated with each<br />

chemical symbol.) 7<br />

Table 2-1 Details <strong>of</strong> sediment samples collected by URS New Zealand Ltd <strong>in</strong><br />

2005. 11<br />

Table 3-1 Summary <strong>of</strong> trace element concentrations at sampl<strong>in</strong>g sites and<br />

comparison to ANZECC (2000) sediment quality guidel<strong>in</strong>es (all values<br />

<strong>in</strong> mg/kg dry weight). Site locations are listed from south (Waihou and<br />

Piako River mouths) to north (Te Mata). Bold entries exceed<br />

ANZECC (2000) ISQG-Low values; <strong>the</strong> bold italic entry exceeds an<br />

ISQG-High value. Refer to Table 1-1 for <strong>the</strong> element name<br />

associated with each chemical symbol. 19<br />

Table 3-2 Summary results expressed as a fraction <strong>of</strong> <strong>the</strong> lowest ANZECC<br />

(2000) sediment quality guidel<strong>in</strong>e (<strong>the</strong> ISQG-Low). Refer to Table 1-1<br />

for <strong>the</strong> element name associated with each chemical symbol. 20<br />

Table 3-3 Summary results expressed as a fraction <strong>of</strong> <strong>the</strong> upper ANZECC<br />

(2000) sediment quality guidel<strong>in</strong>e (<strong>the</strong> ISQG-High). 21<br />

Table 3-4 Average concentrations <strong>of</strong> eleven elements <strong>in</strong> shallow surface (0-2<br />

cm) sediments collected from Raglan Harbour and <strong>the</strong> <strong>Firth</strong> <strong>of</strong><br />

Thames <strong>in</strong> earlier work, and comparison <strong>of</strong> averages between <strong>the</strong> two<br />

areas. 23<br />

Table 3-5 Small scale variability <strong>in</strong> chemical composition (mg/kg). (%RSD<br />

stands for per cent relative standard deviation, also known as <strong>the</strong><br />

Coefficient <strong>of</strong> Variation). 25<br />

Table 3-6 Results <strong>of</strong> Student’s t-tests between Tararu, Waiomu, and Tapu and<br />

pooled data from <strong>the</strong> three m<strong>in</strong><strong>in</strong>g control sites. Mean values are <strong>in</strong><br />

mg/kg (dry weight), and have not been normalised to any o<strong>the</strong>r<br />

variable. Ratios <strong>of</strong> means are unitless. 27<br />

Table 3-7 Apparent enrichment <strong>of</strong> cadmium and z<strong>in</strong>c <strong>in</strong> sediments relative to <strong>the</strong><br />

three m<strong>in</strong><strong>in</strong>g control sites mov<strong>in</strong>g from south to north. Numbers are<br />

enrichment ratios, represent<strong>in</strong>g <strong>the</strong> average concentration <strong>in</strong><br />

sediments at a given site divided by <strong>the</strong> pooled average for <strong>the</strong><br />

m<strong>in</strong><strong>in</strong>g control sites. 29<br />

Table 3-8 Results <strong>of</strong> Student’s t-tests between Thames and Kuranui Bay sites<br />

and o<strong>the</strong>r coastal sites. Mean values are <strong>in</strong> mg/kg (dry weight), and<br />

have not been normalised to any o<strong>the</strong>r variable. Ratios <strong>of</strong> means are<br />

unitless. 31<br />

Table 3-9 <strong>Trace</strong> element concentrations <strong>in</strong> shallow (0-2 cm) sediment samples<br />

from Kuranui Bay which are statistically higher than those at four<br />

o<strong>the</strong>r sites <strong>in</strong> <strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames at a 95% confidence level. 33<br />

Table 3-10 Concentrations <strong>of</strong> mercury <strong>in</strong> 0-14 cm sediment samples collected<br />

from <strong>the</strong> vic<strong>in</strong>ity <strong>of</strong> <strong>the</strong> Moanataiari reclamation, and comparison to<br />

ANZECC (2000) guidel<strong>in</strong>e values for sediment quality. Data source:<br />

K<strong>in</strong>gett Mitchell Ltd, 2004. 34<br />

Table 3-11 Results <strong>of</strong> Student’s t-tests between sites closest to agricultural<br />

sources and o<strong>the</strong>r areas. Mean values are <strong>in</strong> mg/kg (dry weight), and<br />

have not been normalised to any o<strong>the</strong>r variable. 35<br />

Doc # 1120743 Page vii


Table 3-12 Pearson’s correlation coefficients for relationships between element<br />

concentrations <strong>in</strong> sediments (N = 62 pairs). Yellow shaded boxes<br />

represent highly significant relationships with probability values <strong>of</strong><br />

p0.474) and pR>0.408). (See text for<br />

<strong>in</strong>formation about data set coverage.) 36<br />

Table 3-13 Pearson’s correlation coefficients between element concentrations at<br />

<strong>the</strong> coastal sites and distance from <strong>the</strong> Waihou River mouth (N = 49<br />

pairs). Yellow shaded boxes represent highly significant relationships<br />

with probability values <strong>of</strong> p0.527) and pR>0.456). (See text for <strong>in</strong>formation about data set coverage.) 37<br />

Table 3-14 Pearson’s correlation coefficients between element concentration and<br />

percentage <strong>of</strong> f<strong>in</strong>es <strong>in</strong> <strong>the</strong> sediment (N = 15 pairs). Yellow shaded<br />

boxes represent highly significant relationships with probability values<br />

<strong>of</strong> p0.760) and pR>0.641). 37<br />

Table 3-15 Average mercury concentrations <strong>in</strong> surface (0-10 cm or grab)<br />

sediment samples from all sites. Sites <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity <strong>of</strong> <strong>the</strong> Thames<br />

pipel<strong>in</strong>e and Kuranui Bay are separated out due to evidence <strong>of</strong> a<br />

localised source <strong>of</strong> mercury, cadmium and z<strong>in</strong>c <strong>in</strong> this area (Section<br />

3.5.4). One outlier <strong>of</strong> 1.52 mg/kg mercury for Thames mudflat sample<br />

SDB584 has been removed from <strong>the</strong> data set prior to calculat<strong>in</strong>g<br />

<strong>the</strong>se averages. 42<br />

Table 3-16 Results <strong>of</strong> Pr<strong>in</strong>cipal Components Analysis on <strong>the</strong> correlation matrix<br />

data set. Weight<strong>in</strong>gs less than -0.4 or greater than 0.4 are<br />

highlighted. 45<br />

Page viii Doc # 1120743


1 Introduction<br />

In 2004, Environment Waikato tested for trace elements <strong>in</strong> shallow sediments from five<br />

sites spread across <strong>the</strong> lower <strong>Firth</strong> <strong>of</strong> Thames. Results <strong>in</strong>dicated <strong>the</strong> presence <strong>of</strong><br />

moderately elevated mercury <strong>in</strong> sediments at three <strong>of</strong> <strong>the</strong> sampl<strong>in</strong>g locations, and<br />

suggested a need for fur<strong>the</strong>r <strong>in</strong>vestigation. URS New Zealand Ltd (URS) was<br />

commissioned by Environment Waikato to undertake more extensive sediment<br />

sampl<strong>in</strong>g <strong>of</strong> <strong>the</strong> eastern coast <strong>of</strong> <strong>the</strong> lower <strong>Firth</strong> <strong>of</strong> Thames. In <strong>the</strong> expanded<br />

programme, samples were collected from sites stretch<strong>in</strong>g from <strong>the</strong> Piako River mouth<br />

eastward and <strong>the</strong>n north, as far as Te Mata. The programme aimed partly to<br />

<strong>in</strong>vestigate whe<strong>the</strong>r elevated metal concentrations <strong>in</strong> surface sediments could be<br />

attributed to run-<strong>of</strong>f from natural sulphide m<strong>in</strong>eralisation, run-<strong>of</strong>f from former m<strong>in</strong><strong>in</strong>g<br />

operations/tail<strong>in</strong>gs dams, longer range transport <strong>of</strong> contam<strong>in</strong>ants from <strong>the</strong> Waihou<br />

River (primarily from agricultural run-<strong>of</strong>f or past m<strong>in</strong><strong>in</strong>g) or from urban sources (e.g.<br />

stormwater or sewer pipel<strong>in</strong>es from Thames). URS undertook <strong>the</strong> sampl<strong>in</strong>g between 22<br />

and 24 June 2005.<br />

Concentrations <strong>of</strong> eight elements were measured <strong>in</strong> samples collected by URS as part<br />

<strong>of</strong> this study: arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg),<br />

nickel (Ni), lead (Pb) and z<strong>in</strong>c (Zn).<br />

This report presents <strong>the</strong> methodology and results <strong>of</strong> <strong>the</strong> sampl<strong>in</strong>g and analysis<br />

programme undertaken by URS, and comb<strong>in</strong>es this with previous data and new<br />

<strong>in</strong>formation to give an overall assessment <strong>of</strong> (a) trace element enrichments <strong>in</strong><br />

sediments <strong>of</strong> <strong>the</strong> lower <strong>Firth</strong> <strong>of</strong> Thames, and (b) <strong>the</strong> most likely sources <strong>in</strong> cases where<br />

element concentrations are elevated.<br />

1.1 Potential sources <strong>of</strong> <strong>the</strong> elements<br />

At <strong>the</strong> outset <strong>of</strong> this work, it was recognised that trace element enrichment <strong>in</strong> <strong>Firth</strong> <strong>of</strong><br />

Thames sediment may come about through four ma<strong>in</strong> sources: <strong>the</strong> <strong>in</strong>fluence <strong>of</strong> natural<br />

m<strong>in</strong>eralisation, tail<strong>in</strong>gs from former m<strong>in</strong><strong>in</strong>g operations, agricultural activities, and urban<br />

<strong>in</strong>puts. These possible sources are discussed below. As an outcome <strong>of</strong> this work, a fifth<br />

possible source has been identified. This is discussed <strong>in</strong> Section 3.6.5.<br />

1.1.1 Wea<strong>the</strong>r<strong>in</strong>g and erosion<br />

• Natural wea<strong>the</strong>r<strong>in</strong>g and erosion. <strong>Trace</strong> elements occur naturally <strong>in</strong> rocks and<br />

m<strong>in</strong>erals <strong>in</strong> <strong>the</strong> earth’s crust and soils and sediments derived from <strong>the</strong>se. Key<br />

primary m<strong>in</strong>erals for 16 trace elements are shown <strong>in</strong> Table 1-1. The Coromandel<br />

range conta<strong>in</strong>s a significant natural abundance <strong>of</strong> volcanic hydro<strong>the</strong>rmal m<strong>in</strong>erals,<br />

<strong>in</strong>clud<strong>in</strong>g a number <strong>of</strong> notable ore deposits that have been m<strong>in</strong>ed commercially.<br />

Release <strong>of</strong> trace elements <strong>in</strong>to surface run-<strong>of</strong>f and streams which enter <strong>the</strong> <strong>Firth</strong> <strong>of</strong><br />

Thames can come about through natural wea<strong>the</strong>r<strong>in</strong>g and erosion processes.<br />

• Enhanced wea<strong>the</strong>r<strong>in</strong>g and erosion. Enhanced load<strong>in</strong>gs <strong>of</strong> trace elements are likely<br />

to have come about as a result <strong>of</strong> historic land clearance activities around <strong>the</strong><br />

coastal areas <strong>of</strong> <strong>the</strong> Coromandel Pen<strong>in</strong>sula, follow<strong>in</strong>g Polynesian and European<br />

settlement <strong>in</strong> <strong>the</strong> area. Grazed hill country yields two to five times more sediment<br />

than similar terra<strong>in</strong> under native bush (Ritchie, 2000), while production forestry<br />

practices at plant<strong>in</strong>g and harvest remove groundcover and expose topsoil to<br />

erosion by overland flow (Basher, 2003).<br />

Doc # 1120743 Page 1


Table 1-1 Environmentally significant metals which occur at elevated concentrations <strong>in</strong><br />

some New Zealand rocks (adapted from Metals <strong>in</strong> New Zealand Environment,<br />

University <strong>of</strong> Otago).<br />

Metal Pr<strong>in</strong>cipal primary<br />

m<strong>in</strong>erals<br />

Alum<strong>in</strong>ium, Al Most rock-form<strong>in</strong>g<br />

m<strong>in</strong>erals<br />

Geological sett<strong>in</strong>g Environmental<br />

mobility<br />

All sett<strong>in</strong>gs High at low pH<br />

(AMD)<br />

Antimony, Sb Stibnite, Sb2S3 Schist-hydro<strong>the</strong>rmal High<br />

Arsenic, As Arsenopyrite,<br />

FeAsS;<br />

pyrite, FeS2 (trace<br />

As); tetrahydrite<br />

o<strong>the</strong>r sulphide<br />

m<strong>in</strong>erals<br />

Cadmium, Cd Sphalerite ZnS<br />

(trace Cd)<br />

Chromium, Cr Chromite, FeCr2O4;<br />

Fe-Mg m<strong>in</strong>erals<br />

Copper, Cu Chalcopyrite,<br />

CuFeS2<br />

Iron, Fe Many rock-form<strong>in</strong>g<br />

m<strong>in</strong>erals<br />

Schist–hydro<strong>the</strong>rmal;<br />

volcanic-hydro<strong>the</strong>rmal;<br />

sulphurous coals;<br />

trace <strong>in</strong> most rocks<br />

Page 2 Doc # 1120743<br />

High<br />

Volcanic–hydro<strong>the</strong>rmal High at low pH<br />

(AMD)<br />

Gabbro; ultramafic rocks; trace <strong>in</strong><br />

most rocks<br />

O<strong>the</strong>r sulphide m<strong>in</strong>erals. Volcanic–<br />

hydro<strong>the</strong>rmal; schist (rare)<br />

Moderate at<br />

low pH (AMD)<br />

High at low pH<br />

(AMD)<br />

All sett<strong>in</strong>gs High at low pH<br />

(AMD)<br />

Lead, Pb Galena, PbS Volcanic-hydro<strong>the</strong>rmal High at low pH<br />

(AMD)<br />

Manganese,<br />

Mn<br />

Many rock-form<strong>in</strong>g<br />

m<strong>in</strong>erals (with Fe)<br />

Mercury, Hg C<strong>in</strong>nabar, HgS;<br />

some pyrite (trace<br />

Hg); some silver<br />

Molybdenum,<br />

Mo<br />

All sett<strong>in</strong>gs High at low pH<br />

(AMD)<br />

Volcanic-hydro<strong>the</strong>rmal Moderate-low,<br />

volatile<br />

Molybdenite, MoS2 Volcanic-hydro<strong>the</strong>rmal Low<br />

Nickel, Ni Many rock-form<strong>in</strong>g<br />

m<strong>in</strong>erals (with Fe,<br />

Mg)<br />

All sett<strong>in</strong>gs Moderate at<br />

low pH,<br />

especially coal<br />

AMD<br />

T<strong>in</strong>, Sn Cassiterite, SnO2 Volcanic-hydro<strong>the</strong>rmal Low<br />

Tungsten, W Scheelite, CaWO4 Schist-hydro<strong>the</strong>rmal Low<br />

Uranium, U Uran<strong>in</strong>ite, UO2 Rare, coaly sediments, Paparoa<br />

Range, Westland<br />

Z<strong>in</strong>c, Zn Sphalerite, ZnS Volcanic-hydro<strong>the</strong>rmal; trace <strong>in</strong> most<br />

rocks<br />

High at high pH<br />

High at low pH<br />

(AMD)<br />

Once released, trace elements can be transported <strong>in</strong> surface or ground waters for<br />

considerable distances from <strong>the</strong> m<strong>in</strong>e. Transportation is dependent on speciation, pH,<br />

redox conditions, precipitation <strong>of</strong> iron oxides, and <strong>the</strong> concentrations <strong>of</strong> suspended<br />

solids and dissolved organic matter with<strong>in</strong> <strong>the</strong> water column. <strong>Trace</strong> elements may<br />

precipitate out and accumulate <strong>in</strong>to sediments <strong>in</strong> areas where <strong>the</strong>re is a sudden<br />

change <strong>of</strong> redox conditions, sal<strong>in</strong>ity or pH. Such changes are encountered where fresh<br />

water mixes with seawater. In addition, trace elements associated with colloidal


material and suspended particulate matter may settle out as sediment as water<br />

velocities slow. Lakes and estuaries provide suitable conditions for sediment<br />

accumulation that may have elevated trace element concentrations.<br />

1.1.2 Past m<strong>in</strong><strong>in</strong>g<br />

The Coromandel Pen<strong>in</strong>sula was <strong>the</strong> site <strong>of</strong> <strong>the</strong> first discovery <strong>of</strong> gold <strong>in</strong> New Zealand,<br />

at Driv<strong>in</strong>g Creek <strong>in</strong> 1852. From 1894 to 1910, low-grade quartz-ve<strong>in</strong> deposits were<br />

actively worked us<strong>in</strong>g <strong>the</strong> cyanide extraction process. These m<strong>in</strong>es generated<br />

significant volumes <strong>of</strong> waste rock and m<strong>in</strong>e tail<strong>in</strong>gs (a term for f<strong>in</strong>ely-crushed m<strong>in</strong>e<br />

waste rock). The type <strong>of</strong> historical m<strong>in</strong><strong>in</strong>g practised <strong>in</strong> <strong>the</strong> Coromandel Pen<strong>in</strong>sula can<br />

cause trace element enrichment <strong>of</strong> waterways through two mechanisms: direct entry <strong>of</strong><br />

m<strong>in</strong>e tail<strong>in</strong>gs to surface water, and acid m<strong>in</strong>e dra<strong>in</strong>age:<br />

• In <strong>the</strong> past, large volumes <strong>of</strong> m<strong>in</strong>e tail<strong>in</strong>gs were disposed <strong>of</strong> directly to <strong>the</strong><br />

Oh<strong>in</strong>emuri River, which enters <strong>the</strong> Waihou River, which enters <strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames.<br />

Specifically, <strong>the</strong> Waihou River is known to have received between 500-800 tonnes<br />

per annum <strong>of</strong> tail<strong>in</strong>gs from <strong>the</strong> Oh<strong>in</strong>emuri River for over 50 years.<br />

• In acid m<strong>in</strong>e dra<strong>in</strong>age (or AMD), m<strong>in</strong>erals are released through <strong>the</strong> oxidation <strong>of</strong> <strong>the</strong><br />

sulphide m<strong>in</strong>erals, liberat<strong>in</strong>g trace elements, which are <strong>the</strong>n flushed out <strong>of</strong> <strong>the</strong> m<strong>in</strong>e<br />

work<strong>in</strong>gs or tail<strong>in</strong>gs dam by ra<strong>in</strong> or groundwater <strong>in</strong>to <strong>the</strong> local environment. AMD<br />

leachate is normally characterised by low pH, high concentrations <strong>of</strong> sulphate,<br />

ferrous iron (Fe 2+ aq) and trace elements (e.g. lead, copper, nickel, z<strong>in</strong>c, cadmium,<br />

mercury, arsenic, antimony, thallium).<br />

Table 1-2 lists <strong>the</strong> various streams with<strong>in</strong> <strong>the</strong> Coromandel Pen<strong>in</strong>sula where historical<br />

m<strong>in</strong><strong>in</strong>g has been undertaken with<strong>in</strong> <strong>the</strong> stream catchments.<br />

Historical m<strong>in</strong><strong>in</strong>g has had some severe localised environmental impacts, most notably<br />

<strong>the</strong> Tui M<strong>in</strong>e tail<strong>in</strong>gs dam (Tay, 1981). Acid m<strong>in</strong>e dra<strong>in</strong>age and <strong>the</strong> subsequent release<br />

<strong>of</strong> metals from base metal sulphides <strong>in</strong>to <strong>the</strong> aquatic environment is a significant longterm<br />

legacy from historical m<strong>in</strong><strong>in</strong>g at this site (Rumsby, 1996).<br />

M<strong>in</strong>es situated <strong>in</strong> ore bodies with base metal sulphide m<strong>in</strong>eralisation (such as Buffalo,<br />

Monowai and Cromstock with<strong>in</strong> <strong>the</strong> Waiomu Catchment) could potentially have an<br />

impact on <strong>the</strong> water and sediment quality <strong>of</strong> <strong>the</strong> local receiv<strong>in</strong>g environment and<br />

ultimately <strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames. Many <strong>of</strong> <strong>the</strong> m<strong>in</strong>es with ve<strong>in</strong> deposits conta<strong>in</strong><strong>in</strong>g<br />

significant base-metal sulphides (>3%) which are listed <strong>in</strong> Table 1-2 (e.g. Komata,<br />

Jubilee, Tui and Waiorongomai) are located on streams which form part <strong>of</strong> <strong>the</strong> Waihou<br />

River Catchment.<br />

There is a high correlation <strong>of</strong> arsenic with iron (R 2 =0.77 with n=34; p=0.001) <strong>in</strong> several<br />

former m<strong>in</strong>es <strong>in</strong> <strong>the</strong> Coromandel area (Holl<strong>in</strong>ger, 2002). Electron microprobe data<br />

suggest <strong>the</strong> two ma<strong>in</strong> arsenic conta<strong>in</strong><strong>in</strong>g sulphide m<strong>in</strong>erals are pyrite/marcasite which<br />

generally have an arsenic concentration <strong>of</strong> 0.1 to 1.6% and tetrahedrite (copper<br />

antimony sulphide, general formula Cu12Sb4S13) which can have an arsenic<br />

concentration <strong>of</strong> up to 20% (Holl<strong>in</strong>ger, 2002). Pyrite (iron sulphide, FeS2) is listed as<br />

be<strong>in</strong>g ubiquitous <strong>in</strong> <strong>the</strong> Hauraki Goldfield and, <strong>the</strong>refore, pyrite would be <strong>the</strong> most<br />

important source <strong>of</strong> arsenic as it occurs <strong>in</strong> both <strong>the</strong> host rock and ore bear<strong>in</strong>g rock<br />

(whereas tetrahedrite is only <strong>in</strong> <strong>the</strong> ore-bear<strong>in</strong>g rock). Therefore, historic m<strong>in</strong><strong>in</strong>g may be<br />

a source <strong>of</strong> several trace metals but especially arsenic.<br />

Doc # 1120743 Page 3


Table 1-2 Alteration, m<strong>in</strong>eralisation and old m<strong>in</strong>e work<strong>in</strong>gs <strong>in</strong> <strong>the</strong> Coromandel area<br />

(modified from Liv<strong>in</strong>gston 1987, <strong>in</strong>clud<strong>in</strong>g data from Jenk<strong>in</strong>s 1991 and Moore et al.<br />

1996).<br />

Stream Country Rock<br />

Alteration<br />

Waitawheta Ma<strong>in</strong>ly unaltered or<br />

weakly propylitised<br />

Waipupu Ma<strong>in</strong>ly unaltered or<br />

weakly propylitised<br />

Waitekauri Ma<strong>in</strong>ly Strongly<br />

clay-altered and<br />

silicified<br />

Komata Both propylitised<br />

and silicified rocks<br />

Mangakara Ma<strong>in</strong>ly strongly<br />

clay-altered and<br />

silicified<br />

Buffalo Ma<strong>in</strong>ly propylitised<br />

or clay-altered<br />

Mangatoetoe Ma<strong>in</strong>ly unaltered;<br />

strong local clay<br />

alteration<br />

Waiorongomai Ma<strong>in</strong>ly propylitised,<br />

m<strong>in</strong>or silication<br />

Jubilee Ma<strong>in</strong>ly clayaltered,<br />

m<strong>in</strong>or<br />

propylitisation<br />

M<strong>in</strong>eralisation M<strong>in</strong>e Work<strong>in</strong>gs Mullock Tips,<br />

Tail<strong>in</strong>gs<br />

Some ve<strong>in</strong>s with<br />

m<strong>in</strong>or base<br />

materials<br />

None known None known<br />

None known None known None known<br />

Several large<br />

ve<strong>in</strong>s, with trace<br />

base metals<br />

Several large<br />

ve<strong>in</strong>s, m<strong>in</strong>or base<br />

metals<br />

Numerous small,<br />

commonly pyritic<br />

ve<strong>in</strong>s<br />

M<strong>in</strong>or ve<strong>in</strong>s with<br />

m<strong>in</strong>or base metals<br />

Extensive (Golden<br />

Cross)<br />

Extensive<br />

(Komata, Te-aomarama)<br />

Extensive (Scotia,<br />

Maoriland)<br />

None known Extensive on<br />

Martha Hill<br />

Several large<br />

base-metal bear<strong>in</strong>g<br />

ve<strong>in</strong>s<br />

Large, locally<br />

base-metal bear<strong>in</strong>g<br />

ve<strong>in</strong><br />

Cromstock Propylitised Several ve<strong>in</strong>s with<br />

m<strong>in</strong>or base metals<br />

Waiomu Propylitised Several ve<strong>in</strong>s with<br />

m<strong>in</strong>or base metals<br />

Paroquet Ma<strong>in</strong>ly clay altered Base-metal<br />

bear<strong>in</strong>g ve<strong>in</strong><br />

Waitatia Propylitised, clayaltered<br />

and<br />

silicified<br />

Tui Propylitised, clayaltered<br />

and m<strong>in</strong>or<br />

silicified<br />

Many small ve<strong>in</strong>s,<br />

several larger<br />

ve<strong>in</strong>s<br />

Several large<br />

base-metal bear<strong>in</strong>g<br />

ve<strong>in</strong>s<br />

1.1.3 Agricultural and horticultural <strong>in</strong>puts<br />

Extensive m<strong>in</strong>e<br />

Work<strong>in</strong>gs<br />

Extensive m<strong>in</strong>e<br />

work<strong>in</strong>gs<br />

Some m<strong>in</strong>or<br />

work<strong>in</strong>gs<br />

Some m<strong>in</strong>e<br />

work<strong>in</strong>gs<br />

(Cromstock)<br />

Extensive m<strong>in</strong>e<br />

work<strong>in</strong>gs<br />

(Monowai)<br />

Extensive m<strong>in</strong>e<br />

work<strong>in</strong>gs<br />

(Waitatia)<br />

Extensive m<strong>in</strong>e<br />

work<strong>in</strong>gs (Tui)<br />

Present<br />

Extensive, conta<strong>in</strong><br />

m<strong>in</strong>or base metals<br />

Present<br />

Present<br />

Present<br />

Present, probably<br />

conta<strong>in</strong> m<strong>in</strong>or<br />

base metals<br />

Extensive, conta<strong>in</strong><br />

significant base<br />

metals<br />

Not known<br />

Present<br />

Present conta<strong>in</strong><br />

base metals<br />

Present<br />

Extensive, conta<strong>in</strong><br />

significant base<br />

metals<br />

Some agricultural activities <strong>in</strong>volve <strong>the</strong> application to land <strong>of</strong> some materials that<br />

conta<strong>in</strong> significant concentrations <strong>of</strong> one or more trace elements. There can be some<br />

loss <strong>of</strong> <strong>the</strong>se elements from farms to <strong>the</strong> wider environment, <strong>in</strong>clud<strong>in</strong>g freshwater and<br />

mar<strong>in</strong>e sediments. In pastoral areas, z<strong>in</strong>c sulphate is used extensively to protect<br />

aga<strong>in</strong>st <strong>the</strong> liver damage that causes facial eczema <strong>in</strong> both cattle and sheep. In<br />

addition, most superphosphate fertiliser conta<strong>in</strong>s significant amounts <strong>of</strong> several trace<br />

elements as impurities, most notably cadmium and fluor<strong>in</strong>e (Table 1-3). Copper and<br />

z<strong>in</strong>c are also applied to horticultural areas <strong>in</strong> fungicide formulations.<br />

Page 4 Doc # 1120743


Table 1-3 Concentrations <strong>of</strong> selected elements <strong>in</strong> phosphate fertiliser, soils and rocks.<br />

Element Average upper<br />

cont<strong>in</strong>ental<br />

crust 1<br />

Waikato soils<br />

(average) 2<br />

Phosphate rock<br />

(PR) (mg/kg P)<br />

S<strong>in</strong>gle<br />

superhosphate<br />

fertiliser (mg/kg<br />

P)<br />

Cadmium, Cd 0.15 0.70 1-90


• The Department <strong>of</strong> Conversation (1992) commissioned an <strong>in</strong>vestigation <strong>of</strong> <strong>the</strong><br />

effects <strong>of</strong> Polynesian and European land use on sedimentation on Coromandel<br />

estuaries <strong>in</strong> 1992. As part <strong>of</strong> that work, metal concentrations were measured <strong>in</strong> a<br />

number <strong>of</strong> cores.<br />

• Research has also been conducted by Webster (1995) on chemical processes<br />

affect<strong>in</strong>g trace metal transportation <strong>in</strong> <strong>the</strong> Waihou River and estuary.<br />

• More recently both <strong>the</strong> Auckland Regional Council and Environment Waikato have<br />

undertaken monitor<strong>in</strong>g at selected sites with<strong>in</strong> <strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames. One <strong>of</strong> <strong>the</strong><br />

ARC sites is at Waiheke Island (Te Matuku). 1 The previous Environment Waikato<br />

monitor<strong>in</strong>g sites around <strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames have <strong>in</strong>volved shallow (0-2 cm)<br />

sediment samples, because <strong>the</strong> primary survey purpose was ecological monitor<strong>in</strong>g,<br />

but have been <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> data analysis <strong>of</strong> this study (Section 3.3.1).<br />

• The National Water and Soil Conservation Authority (NWSCA) conducted a survey<br />

<strong>of</strong> stream sediment and water quality with<strong>in</strong> various streams on <strong>the</strong> Coromandel<br />

Pen<strong>in</strong>sula. The NWSCA also conducted biological monitor<strong>in</strong>g with<strong>in</strong> <strong>the</strong> streams<br />

and measured metal concentrations <strong>in</strong> shellfish and f<strong>in</strong>-fish. Unfortunately, <strong>the</strong><br />

results <strong>of</strong> <strong>the</strong> NWSCA study are not usable <strong>in</strong> this study as no mar<strong>in</strong>e sediment<br />

samples were collected <strong>in</strong> that work.<br />

A summary <strong>of</strong> trace element concentrations reported at specific sites by Liv<strong>in</strong>gston<br />

(1987), <strong>the</strong> Department <strong>of</strong> Conversation (1992), Webster (1995) and <strong>the</strong> Auckland<br />

Regional Council is presented <strong>in</strong> Table 1-5. Results <strong>of</strong> previous (2003) sampl<strong>in</strong>g<br />

carried out by Environment Waikato are presented as part <strong>of</strong> this report (see Section<br />

3.3.1 and Appendix 6).<br />

In addition to <strong>the</strong>se studies, Hume and Dahm (1991) <strong>of</strong> <strong>the</strong> Department <strong>of</strong> Scientific<br />

and Industrial Research (DSIR) used mar<strong>in</strong>e sediment cores to <strong>in</strong>vestigate <strong>the</strong> impact<br />

<strong>of</strong> Polynesian and European land use on sedimentation <strong>in</strong> Coromandel estuaries.<br />

Results revealed that trace element concentrations deposited <strong>in</strong> European times are<br />

elevated over pre-settlement background levels. Specific observations were as follows:<br />

• Concentrations <strong>of</strong> lead <strong>in</strong> pre-settlement sediments ranged from 8-18 mg/kg. In<br />

younger sediments lead ranged from 16-66 mg/kg, with typical values around 30<br />

mg/kg. Lead was typically enriched to between 1.5 to 2 times background levels,<br />

although lead enrichment <strong>of</strong> up 4-5 times was noted near <strong>the</strong> Waihou River Mouth.<br />

• Z<strong>in</strong>c concentrations were reported to range from 36-78 mg/kg <strong>in</strong> pre-settlement<br />

sediments to 174 mg/kg (typically 80-90 mg/kg) <strong>in</strong> younger sediments. Overall, z<strong>in</strong>c<br />

levels were elevated at approximately 1.5-2 times background levels (Hume and<br />

Dahm, 1991).<br />

• Background concentrations <strong>of</strong> copper ranged between 6-21 mg/kg, with post-<br />

European settlement concentrations rang<strong>in</strong>g between 13-26 mg/kg. Copper was<br />

elevated only <strong>in</strong> sediments post-dat<strong>in</strong>g European settlement, with enrichment<br />

factors <strong>of</strong> between 1.5-2 noted <strong>in</strong> <strong>the</strong> core samples.<br />

• Arsenic was slightly elevated <strong>in</strong> post-settlement sediments to approximately 1.2-2<br />

times background levels.<br />

1 Unfortunately <strong>the</strong> ARC analytical protocol (analysis <strong>of</strong> only <strong>the</strong> sub-63 µm fraction) makes it difficult to compare<br />

results. The o<strong>the</strong>r ARC monitor<strong>in</strong>g locations represent estuary environments which have been impacted by<br />

urbanisation.<br />

Page 6 Doc # 1120743


Table 1-5 Sediment quality data (mg/kg) obta<strong>in</strong>ed by o<strong>the</strong>r authors prior to this study.<br />

(Refer to Table 1-1 for <strong>the</strong> element name associated with each chemical symbol.)<br />

Location Date Ref. As Cd Cr Cu Hg Ni Pb Zn<br />

Waiomu Stream<br />

WC 1982 1 0.41


Location Date Ref. As Cd Cr Cu Hg Ni Pb Zn<br />

C4 (138-140 cm) 2 9.5 6.4 8.4 10.4 45.4<br />

Waihou River<br />

W11b (0-5 cm)1985 3 16.5 67.2 259<br />

W11b (5-10 cm) 3 25.6 100.6 200<br />

W11b (10-15 cm) 3 20 73 146<br />

W11b (15-20 cm) 3 8.2 24.6 64.3<br />

W13 (0-5 cm) 3 29.8 60.5 276<br />

W13 (5-10cm) 3 23.5 78 185<br />

W13 (10-15 cm) 3 17.8 75.4 179<br />

W13 (15-20 cm) 3 18.1 79.4 201<br />

W26 3 3.7 35.1 17.6 19.5 137<br />

Tararu Beach<br />

W27 1985 3 9.63 37.5 237 91.1 1478<br />

Te Matuku 4<br />

2001 3.0 1.9 38.5<br />

Sources: 1. Liv<strong>in</strong>gston (1987); 2. Department <strong>of</strong> Conservation (1992); 3. Webster (1995);<br />

4. Auckland Regional Council (2001).<br />

The authors concluded that <strong>the</strong> elevated metal concentrations are probably due to<br />

anthropogenic effects related to European land use. This may be due to greater<br />

contributions from wea<strong>the</strong>r<strong>in</strong>g <strong>of</strong> natural m<strong>in</strong>erals caused by <strong>in</strong>creased surface water<br />

run-<strong>of</strong>f follow<strong>in</strong>g land clearance, and more direct contributions from m<strong>in</strong><strong>in</strong>g operations.<br />

Arsenic, copper, lead and z<strong>in</strong>c are commonly associated with m<strong>in</strong>e waste run-<strong>of</strong>f, and<br />

large volumes <strong>of</strong> m<strong>in</strong>e tail<strong>in</strong>gs that were dumped <strong>in</strong>to <strong>the</strong> Oh<strong>in</strong>emuri River <strong>in</strong> early<br />

European times.<br />

Hume and Dahm’s (1991) estimates <strong>of</strong> relative enrichments <strong>of</strong> lead, z<strong>in</strong>c, copper and<br />

arsenic are <strong>in</strong> good agreement with those determ<strong>in</strong>ed by compar<strong>in</strong>g sediments’ quality<br />

<strong>in</strong> Raglan Harbour with that <strong>in</strong> <strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames, as part <strong>of</strong> this work. These<br />

estimates are presented <strong>in</strong> Section 3.3.1 <strong>of</strong> this report.<br />

Page 8 Doc # 1120743


2 Study methodology<br />

2.1 Sampl<strong>in</strong>g objectives<br />

As part <strong>of</strong> this work, URS was commissioned to undertake new sediment sampl<strong>in</strong>g <strong>of</strong><br />

<strong>the</strong> eastern coast <strong>of</strong> <strong>the</strong> lower <strong>Firth</strong> <strong>of</strong> Thames for <strong>the</strong> purposes <strong>of</strong> assess<strong>in</strong>g sediment<br />

quality and identify<strong>in</strong>g <strong>the</strong> potential sources <strong>of</strong> trace elements <strong>in</strong> <strong>the</strong>se sediments.<br />

Concentrations <strong>of</strong> eight elements were measured <strong>in</strong> all samples collected: arsenic (As),<br />

cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb) and<br />

z<strong>in</strong>c (Zn). A sampl<strong>in</strong>g programme was designed that would maximise <strong>the</strong> possibility <strong>of</strong><br />

be<strong>in</strong>g able to discrim<strong>in</strong>ate between a number <strong>of</strong> possible sources <strong>of</strong> an element <strong>in</strong><br />

sediments <strong>of</strong> <strong>the</strong> <strong>in</strong>tertidal zone. These sources <strong>in</strong>clude:<br />

• Run-<strong>of</strong>f from natural and enhanced wea<strong>the</strong>r<strong>in</strong>g and erosion <strong>of</strong> sulphide m<strong>in</strong>erals;<br />

• Run-<strong>of</strong>f or legacy <strong>of</strong> tail<strong>in</strong>gs <strong>in</strong>puts from former m<strong>in</strong><strong>in</strong>g sites;<br />

• Longer-range transport from agricultural, urban and m<strong>in</strong><strong>in</strong>g areas (for example,<br />

large river mouths);<br />

• Urban sources.<br />

Sampl<strong>in</strong>g also <strong>in</strong>cluded control sites that were not likely to have been significantly<br />

impacted by <strong>the</strong> above sources. Key features and catchments <strong>in</strong> <strong>the</strong> study area are<br />

shown <strong>in</strong> Figure 2-1.<br />

2.2 Sampl<strong>in</strong>g locations<br />

2.2.1 General<br />

Samples were collected from 11 locations on <strong>the</strong> eastern side <strong>of</strong> <strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames:<br />

<strong>the</strong> Waihou River mouth, <strong>the</strong> Piako River mouth, various areas around Thames, Opani<br />

mudflat, Tararu, Tapu, Te Puru, Thornton Bay, Waiomu, Te Mata, and Kuranui Bay<br />

(Table 2-1; Figure 2-2).<br />

Sampl<strong>in</strong>g by URS New Zealand Ltd was undertaken between 22 and 24 June 2005,<br />

with sample locations selected to characterise each <strong>of</strong> <strong>the</strong> potential sources identified.<br />

Targeted sampl<strong>in</strong>g <strong>of</strong> selected areas was undertaken, utilis<strong>in</strong>g a mix <strong>of</strong> composite<br />

sampl<strong>in</strong>g techniques <strong>in</strong> order to obta<strong>in</strong> representative samples and targeted depth<br />

sampl<strong>in</strong>g (Table 2-1). Sampl<strong>in</strong>g locations were recorded us<strong>in</strong>g a handheld Global<br />

Position<strong>in</strong>g System (GPS) unit.<br />

Doc # 1120743 Page 9


Figure 2-1: Context <strong>of</strong> <strong>the</strong> study area, show<strong>in</strong>g catchment boundaries and o<strong>the</strong>r key<br />

features.<br />

Samples collected by URS NZ Ltd (Table 2-1) were collected from <strong>the</strong> Piako<br />

River mouth to Te Mata. In previous work also reviewed <strong>in</strong> this report, shallow<br />

surface (0-2 cm) samples were collected from Miranda to Te Puru.<br />

Page 10 Doc # 1120743


Table 2-1 Details <strong>of</strong> sediment samples collected by URS New Zealand Ltd <strong>in</strong> 2005.<br />

Location Sample ID<br />

Waihou River mouth<br />

Piako River mouth<br />

Thames pipel<strong>in</strong>e<br />

area<br />

Thames mudflats<br />

Thames wharf &<br />

stormwater<br />

Thames deeper<br />

harbour<br />

Approximate GPS<br />

location (NZMS)<br />

Sample type<br />

SDB574 NZMS T12 361446 Composite made <strong>of</strong> five subsamples<br />

SDB575 NZMS T12 362455 Composite made <strong>of</strong> five subsamples<br />

SDB571 NZMS T12 321430 Composite made <strong>of</strong> five subsamples<br />

SDB578 NZMS T12 379441 Composite made <strong>of</strong> five subsamples<br />

SDB579 NZMS T12 321437 Composite made <strong>of</strong> five subsamples<br />

SDB564 NZMS T12 351489 Composite made <strong>of</strong> five subsamples<br />

SDB565 NZMS T12 351489 Composite made <strong>of</strong> five subsamples<br />

SDB566 NZMS T12 351489 Composite made <strong>of</strong> five subsamples<br />

SDB810,<br />

811<br />

NZMS T12 351489 Vertical pr<strong>of</strong>ile<br />

SDB580 Composite made <strong>of</strong> five subsamples<br />

SDB581 Composite made <strong>of</strong> five subsamples<br />

SDB582 Composite made <strong>of</strong> five subsamples<br />

SDB583<br />

SDB584<br />

See Figure 2-2<br />

Composite made <strong>of</strong> five subsamples<br />

Composite made <strong>of</strong> five subsamples<br />

SDB585 Composite made <strong>of</strong> five subsamples<br />

SDB573 Composite made <strong>of</strong> five subsamples<br />

SDB576<br />

Composite made <strong>of</strong> five subsamples<br />

SDB567 NZMS T12 362477 Composite made <strong>of</strong> five subsamples<br />

SDB602 Composite made <strong>of</strong> five subsamples<br />

SDB569 NZMS T12 330449 Composite made <strong>of</strong> five subsamples<br />

Sampl<strong>in</strong>g method and<br />

depths<br />

Mix <strong>of</strong> Eckman grab sampl<strong>in</strong>g<br />

and hand sampl<strong>in</strong>g (plastic<br />

trowel). Nom<strong>in</strong>al depth 10<br />

cm.<br />

Eckman grab sampl<strong>in</strong>g.<br />

Nom<strong>in</strong>al depth 10 cm.<br />

Hand sampl<strong>in</strong>g (plastic<br />

trowel): 0-10 cm<br />

Push corer: 0-2 cm and 2-10<br />

cm<br />

Hand sampl<strong>in</strong>g (plastic<br />

trowel): 0-10 cm<br />

Hand sampl<strong>in</strong>g (plastic<br />

trowel): 0-10 cm<br />

Hand sampl<strong>in</strong>g (plastic<br />

trowel): 0-10 cm<br />

Eckman grab sampl<strong>in</strong>g.<br />

Nom<strong>in</strong>al depth 10 cm.<br />

Number <strong>of</strong> samples<br />

analysed<br />

2 composites<br />

3 composites<br />

3 composites, plus:<br />

2 <strong>in</strong>dividual depth<br />

samples.<br />

8 composites: 2 <strong>of</strong><br />

<strong>the</strong>se (SDB573 and<br />

SDB576) analysed<br />

twice for QA/QC.<br />

2 composites<br />

1 composite<br />

Doc # 1120743 Page 11


Table 2-1 cont<strong>in</strong>ued...<br />

Location Sample ID<br />

Approximate GPS<br />

Location (NZMS)<br />

Opani mudflat SDB568 NZMS T12 334449 Composite made <strong>of</strong> five subsamples<br />

Tararu Stream<br />

Tapu Stream<br />

Te Puru<br />

Thornton Bay<br />

SDB595 Composite made <strong>of</strong> five subsamples<br />

SDB597 Composite made <strong>of</strong> five subsamples<br />

SDB598<br />

SDB599<br />

NZMS T11 341515<br />

Composite made <strong>of</strong> five subsamples<br />

Composite made <strong>of</strong> five subsamples<br />

SDB600 Composite made <strong>of</strong> five subsamples<br />

SDB601<br />

Composite made <strong>of</strong> five subsamples<br />

SDB796 Composite made <strong>of</strong> five subsamples<br />

SDB797 Composite made <strong>of</strong> five subsamples<br />

SDB798<br />

SDB799<br />

NZMS T11 328656<br />

Composite made <strong>of</strong> five subsamples<br />

Composite made <strong>of</strong> five subsamples<br />

SDB800 Composite made <strong>of</strong> five subsamples<br />

SDB801<br />

Composite made <strong>of</strong> five subsamples<br />

SDB603 Composite made <strong>of</strong> five subsamples<br />

SDB604 Composite made <strong>of</strong> five subsamples<br />

SDB606 Composite made <strong>of</strong> five subsamples<br />

SDB607 Composite made <strong>of</strong> five subsamples<br />

SDB608 NZMS T12 344590 Composite made <strong>of</strong> five subsamples<br />

SDB609 Composite made <strong>of</strong> five subsamples<br />

SDB816,<br />

817, 818<br />

and 819<br />

Sample type Sampl<strong>in</strong>g method and depths<br />

Vertical pr<strong>of</strong>ile<br />

SDB802 Composite made <strong>of</strong> five subsamples<br />

SDB803 Composite made <strong>of</strong> five subsamples<br />

SDB804<br />

SDB615<br />

NZMS T12 345563<br />

Composite made <strong>of</strong> five subsamples<br />

Composite made <strong>of</strong> five subsamples<br />

SDB616 Composite made <strong>of</strong> five subsamples<br />

SDB621<br />

Composite made <strong>of</strong> five subsamples<br />

Hand sampl<strong>in</strong>g (plastic<br />

trowel): 0-10 cm<br />

Hand sampl<strong>in</strong>g (plastic<br />

trowel): 0-10 cm<br />

Hand sampl<strong>in</strong>g (plastic<br />

trowel): 0-10 cm<br />

Hand sampl<strong>in</strong>g (plastic<br />

trowel): 0-10 cm<br />

Push corer: 0-2 cm, 2-10 cm,<br />

15-20 cm and 25-30 cm<br />

Hand sampl<strong>in</strong>g (plastic<br />

trowel): 0-10 cm<br />

Number <strong>of</strong> samples<br />

analysed<br />

1 composite<br />

6 composites. One<br />

analysed (SDB595)<br />

twice for QA/QC.<br />

6 composites<br />

6 composites, plus:<br />

4 <strong>in</strong>dividual depth<br />

samples.<br />

6 composites<br />

Page 12 Doc # 1120743


Table 2-1 cont<strong>in</strong>ued...<br />

Location Sample ID<br />

Approximate GPS<br />

Location (NZMS)<br />

Sample Type Sampl<strong>in</strong>g method and depths<br />

SDB611 Composite made <strong>of</strong> five subsamples<br />

SDB612 Composite made <strong>of</strong> five subsamples<br />

SDB613 Composite made <strong>of</strong> five subsamples Hand sampl<strong>in</strong>g (plastic<br />

SDB614 Composite made <strong>of</strong> five subsamples<br />

trowel): 0-10 cm<br />

Waiomu Stream SDB615 NZMS T11 342607 Composite made <strong>of</strong> five subsamples<br />

SDB594 Composite made <strong>of</strong> five subsamples<br />

SDB619A,<br />

619B, 619C,<br />

and 619D<br />

Vertical pr<strong>of</strong>ile<br />

Push corer: 0-2 cm, 2-10 cm,<br />

15-20 cm and 25-30 cm<br />

SDB790 Composite made <strong>of</strong> five subsamples<br />

SDB791 Composite made <strong>of</strong> five subsamples<br />

Te Mata<br />

SDB792<br />

SDB793<br />

NZMS T11 333672<br />

Composite made <strong>of</strong> five subsamples<br />

Composite made <strong>of</strong> five subsamples<br />

Hand sampl<strong>in</strong>g (plastic<br />

trowel): 0-10 cm<br />

SDB794 Composite made <strong>of</strong> five subsamples<br />

SDB795<br />

Composite made <strong>of</strong> five subsamples<br />

Kuranui Bay<br />

Various<br />

SDB558 Composite made <strong>of</strong> five subsamples<br />

SDB559 Composite made <strong>of</strong> five subsamples<br />

SDB560 Composite made <strong>of</strong> five subsamples<br />

SDB561 Composite made <strong>of</strong> five subsamples<br />

SDB562 NZMS T12 345505 Composite made <strong>of</strong> five subsamples<br />

SDB563 Composite made <strong>of</strong> five subsamples<br />

SDB591 Composite made <strong>of</strong> five subsamples<br />

SDB812,<br />

813, 814<br />

and 815<br />

Vertical pr<strong>of</strong>ile<br />

Composites made <strong>of</strong> five subsamples, and<br />

<strong>in</strong>dividual samples<br />

Hand sampl<strong>in</strong>g (plastic<br />

trowel): 0-10 cm<br />

Push corer: 0-2 cm, 2-10 cm,<br />

15-20 cm and 25-30 cm<br />

Number <strong>of</strong> samples<br />

analysed<br />

6 composites. One<br />

analysed (SDB594)<br />

twice for QA/QC,<br />

plus:<br />

4 <strong>in</strong>dividual depth<br />

samples.<br />

6 composites<br />

6 composites. One<br />

(SDB591) sampled<br />

and analysed twice<br />

for QA/QC, plus:<br />

4 <strong>in</strong>dividual depth<br />

samples.<br />

12 composite or<br />

<strong>in</strong>dividual samples<br />

analysed as part <strong>of</strong><br />

QA/QC<br />

Doc # 1120743 Page 13


Figure 2-2 Locations <strong>of</strong> sites where sediment was sampled <strong>in</strong> 2005 and old m<strong>in</strong><strong>in</strong>g<br />

sites. Exact coord<strong>in</strong>ates <strong>of</strong> <strong>the</strong> sediment sampl<strong>in</strong>g sites, and details about <strong>the</strong><br />

numbers <strong>of</strong> samples collected, are provided <strong>in</strong> Table 2-1.<br />

Page 14 Doc # 1120743


2.2.2 History <strong>of</strong> <strong>the</strong> sample locations<br />

There are at least four possible sources <strong>of</strong> historic trace element contam<strong>in</strong>ation <strong>in</strong> <strong>the</strong><br />

<strong>Firth</strong> <strong>of</strong> Thames: natural erosion, tail<strong>in</strong>gs and run-<strong>of</strong>f from m<strong>in</strong><strong>in</strong>g, agricultural sources,<br />

and urban <strong>in</strong>puts (Section 1.1).<br />

Thames Harbour receives <strong>in</strong>put from stormwater discharged from Thames and <strong>the</strong><br />

Piako, Waihou and Kauaeranga Rivers. The Waihou River is <strong>the</strong> largest river with<strong>in</strong> <strong>the</strong><br />

study area, and all four sources <strong>of</strong> contam<strong>in</strong>ation may have contributed to <strong>the</strong><br />

contam<strong>in</strong>ant load carried by this watercourse. Water and sediment sampl<strong>in</strong>g conducted<br />

<strong>in</strong> <strong>the</strong> catchment has previously <strong>in</strong>dicated significant trace element contam<strong>in</strong>ation<br />

(Liv<strong>in</strong>gston, 1987). M<strong>in</strong><strong>in</strong>g <strong>in</strong> <strong>the</strong> area has <strong>in</strong>volved significant work<strong>in</strong>gs at <strong>the</strong> follow<strong>in</strong>g<br />

locations:<br />

• Karangahake Gorge – sections <strong>of</strong> which were m<strong>in</strong>ed between 1882-1933.<br />

• Mt Te Aroha (Tui M<strong>in</strong>e) – a base metal m<strong>in</strong>e which operated between 1967 and<br />

1973 and is regarded as one <strong>of</strong> New Zealand’s most contam<strong>in</strong>ated sites.<br />

• Martha Hill m<strong>in</strong>e <strong>in</strong> Waihi – which is currently operational.<br />

Of <strong>the</strong>se, <strong>in</strong>puts from <strong>the</strong> first source were substantial (500-800 tonnes <strong>of</strong> m<strong>in</strong>e tail<strong>in</strong>gs<br />

per annum from <strong>the</strong> Oh<strong>in</strong>emuri River for over 50 years), impacts <strong>of</strong> Tui M<strong>in</strong>e were/are<br />

likely to be more localised, and present day m<strong>in</strong><strong>in</strong>g operations at Martha Hill are carried<br />

out under resource consent conditions designed to elim<strong>in</strong>ate any significant adverse<br />

effects. The Kauaeranga Valley was m<strong>in</strong>ed for c<strong>in</strong>nabar (mercuric sulphide, HgS)<br />

between 1899 to approximately 1906 (Watson, 1989) and <strong>the</strong> Kauaeranga River<br />

discharges <strong>in</strong>to Thames Harbour. In addition to historic and present day m<strong>in</strong><strong>in</strong>g <strong>in</strong> <strong>the</strong><br />

Waihou River catchment, <strong>the</strong>re are agricultural activities and urban <strong>in</strong>puts from Waihi,<br />

Paeroa and Te Ahora townships.<br />

In contrast, <strong>the</strong>re is no known m<strong>in</strong><strong>in</strong>g <strong>in</strong>fluence <strong>in</strong> <strong>the</strong> Piako River catchment area, but<br />

agricultural <strong>in</strong>puts are a potential source <strong>of</strong> trace elements <strong>in</strong> this area. A feature <strong>of</strong> this<br />

catchment is that it <strong>in</strong>cludes a substantial wetland, <strong>the</strong> Kapouatai peat bog.<br />

Historical m<strong>in</strong><strong>in</strong>g activities were undertaken at several locations with<strong>in</strong> <strong>the</strong> Tararu, Tapu<br />

and Waiomu stream catchments. The Waiomu stream catchment has received <strong>the</strong><br />

most study. A number <strong>of</strong> m<strong>in</strong>es operated with<strong>in</strong> this valley between 1890 and 1936<br />

(<strong>in</strong>clud<strong>in</strong>g Paroquet, Broken Hill, Monowai and Comstock M<strong>in</strong>es). Exploration <strong>in</strong> this<br />

area between 1971 and 1984 revealed <strong>the</strong> presence <strong>of</strong> unm<strong>in</strong>ed ore bodies with<strong>in</strong> this<br />

region (Moore et al. 1996). The ore deposit has been described as be<strong>in</strong>g an epi<strong>the</strong>rmal<br />

ve<strong>in</strong> deposit with significant base metal sulphides (>3%). These would have <strong>the</strong><br />

potential to elevate concentrations <strong>of</strong> elements <strong>in</strong> sediments if <strong>the</strong> ore body undergoes<br />

oxidation. In 1981, a prelim<strong>in</strong>ary survey <strong>of</strong> <strong>the</strong> Waiomu stream conducted by <strong>the</strong><br />

Department <strong>of</strong> Scientific and Industrial Research (DSIR), National Water and Soil<br />

Conservation Authority (NWASCA), <strong>the</strong> M<strong>in</strong>istry <strong>of</strong> Agriculture and Fisheries (MAF) and<br />

<strong>the</strong> Hauraki Regional Water Board (Liv<strong>in</strong>gston, 1987) detected elevated concentrations<br />

<strong>of</strong> various trace elements (<strong>in</strong> particular, arsenic, cadmium and z<strong>in</strong>c) <strong>in</strong> <strong>the</strong> water and<br />

sediment <strong>of</strong> <strong>the</strong> Comstock Stream (a tributary <strong>of</strong> <strong>the</strong> Waiomu Stream). Slightly elevated<br />

concentrations <strong>of</strong> copper, lead and z<strong>in</strong>c have been detected <strong>in</strong> several locations with<strong>in</strong><br />

<strong>the</strong> Waiomu Stream water, and elevated concentrations <strong>of</strong> lead and z<strong>in</strong>c have been<br />

detected <strong>in</strong> Waiomu Stream sediments (Liv<strong>in</strong>gston, 1987).<br />

Kuranui Bay, <strong>the</strong> nor<strong>the</strong>rn boundary <strong>of</strong> Thames township has been sampled <strong>in</strong> <strong>the</strong> past<br />

by Environment Waikato and elevated mercury and z<strong>in</strong>c concentrations were detected.<br />

Three control sites without any significant past m<strong>in</strong><strong>in</strong>g or agricultural activities with<strong>in</strong><br />

<strong>the</strong>ir catchments were also sampled. They were Te Puru, Thornton Bay and Te Mata.<br />

More specific details <strong>of</strong> each location from which sediment samples were collected <strong>in</strong><br />

2005 as part <strong>of</strong> this study are provided <strong>in</strong> Appendix 1.<br />

Doc # 1120743 Page 15


2.3 Sample types<br />

2.3.1 Manual grab samples<br />

Usually, six composite samples were tested from each <strong>of</strong> <strong>the</strong> locations sampled <strong>in</strong><br />

2005 (Table 2-1). Each composite sample was made up <strong>of</strong> five sub-samples.<br />

In several cases, samples were collected <strong>in</strong> <strong>the</strong> <strong>in</strong>tertidal area <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity <strong>of</strong> a stream<br />

mouth. Sampl<strong>in</strong>g around small stream mouths was undertaken by divid<strong>in</strong>g <strong>the</strong> area<br />

around <strong>the</strong> stream mouth <strong>in</strong>to six sections (refer to Figure 2-3).<br />

Figure 2-3 Diagram <strong>in</strong>dicat<strong>in</strong>g approach to collection <strong>of</strong> composite samples obta<strong>in</strong>ed<br />

from stream mouths.<br />

All <strong>of</strong> <strong>the</strong>se samples collected for use <strong>in</strong> sediment composites were collected from <strong>the</strong><br />

top 10 cm <strong>of</strong> sediments. Most epifaunal and <strong>in</strong>faunal organisms are found <strong>in</strong> <strong>the</strong> top 10<br />

cm <strong>of</strong> sediment. Some epibenthic species (e.g. shrimps, certa<strong>in</strong> amphipods) might be<br />

exposed only to surficial sediments (0-1 cm) while o<strong>the</strong>rs (e.g. bivalves and<br />

polychaetes) can be exposed to sediments that are several centimetres deep.<br />

A similar grid-type method was used at o<strong>the</strong>r sites (for example large river mouths and<br />

control sites with no stream outflows), as depicted <strong>in</strong> Figure 2-4.<br />

Samples were collected us<strong>in</strong>g a plastic hand trowel (trowel length 10 cm) and placed<br />

with<strong>in</strong> <strong>in</strong>dividual plastic sample conta<strong>in</strong>ers. O<strong>the</strong>r data recorded at each site <strong>in</strong>cluded<br />

site and sample identifier, site location (recorded by GPS wherever possible), and time<br />

and date <strong>of</strong> sample collection.<br />

The six composite samples for each location were prepared from <strong>the</strong> <strong>in</strong>dividual subsamples<br />

by <strong>the</strong> analytical laboratory (Hill Laboratories, Hamilton). Equipment was<br />

r<strong>in</strong>sed with site water between each sub-sample.<br />

2.3.2 Vertical pr<strong>of</strong>iles<br />

At four sites, vertical pr<strong>of</strong>ile samples were also collected us<strong>in</strong>g push-corers (see Table<br />

2-1). Samples from three <strong>of</strong> <strong>the</strong>se sites (Te Puru, Waiomu and Kuranui Bay) were<br />

divided <strong>in</strong>to four sub-samples for analysis, to <strong>the</strong> follow<strong>in</strong>g sediment depths: 0-2 cm, 2-<br />

10 cm, 15-20 cm and 25-30 cm. Samples from <strong>the</strong> fourth site (Thames stormwater<br />

pipel<strong>in</strong>e area) were divided <strong>in</strong>to two depths for analysis: 0-2 cm and 2-10 cm.<br />

Page 16 Doc # 1120743


Figure 2-4 Diagram <strong>in</strong>dicat<strong>in</strong>g approach to collection <strong>of</strong> composite samples obta<strong>in</strong>ed<br />

from <strong>in</strong>tertidal zone with no significant <strong>in</strong>puts.<br />

2.3.3 Grab sampl<strong>in</strong>g<br />

Grab samples were collected from areas covered by water by use <strong>of</strong> an Eckman grab<br />

sampler. Where water flow was too fast for <strong>the</strong> Eckman grab sampler to operate, at<br />

some locations near <strong>the</strong> Waihou River mouth, subsamples were hand-collected by<br />

URS staff. To ensure that grab samples were consistent and suitable for benthic<br />

sampl<strong>in</strong>g, <strong>the</strong> follow<strong>in</strong>g criteria were utilised before <strong>the</strong> sample was accepted:<br />

• Sediment had not extruded from <strong>the</strong> sampler.<br />

• Water was still present <strong>in</strong> <strong>the</strong> sampler (i.e. <strong>the</strong> grab rema<strong>in</strong>ed closed dur<strong>in</strong>g<br />

retrieval).<br />

• The sediment surface was relatively flat.<br />

• Appropriate sediment penetration had occurred (>10 cm <strong>in</strong> silty sediments).<br />

If a collected sample failed to meet any <strong>of</strong> <strong>the</strong>se conditions, <strong>the</strong> sample was discarded<br />

and ano<strong>the</strong>r sample collected at <strong>the</strong> site. The location <strong>of</strong> consecutive attempts was<br />

made as close to <strong>the</strong> orig<strong>in</strong>al attempt as possible and located <strong>in</strong> <strong>the</strong> upstream direction<br />

<strong>of</strong> any exist<strong>in</strong>g current. The rejected sample was discarded <strong>in</strong> a manner that would not<br />

have affected subsequent samples.<br />

2.4 Analysis and analytical quality assurance<br />

Seventy-seven sediment samples were analysed by Hill Laboratories, Hamilton. Cha<strong>in</strong><br />

<strong>of</strong> custody forms accompanied all samples submitted to <strong>the</strong> analytical laboratory. All<br />

analysis was undertaken on <strong>the</strong> sub-2 mm fraction <strong>of</strong> sediments. Total recoverable<br />

arsenic, cadmium, chromium, copper, mercury, nickel, lead, and z<strong>in</strong>c were analysed on<br />

all samples, with several samples be<strong>in</strong>g analysed <strong>in</strong> duplicate (Table 2-1).<br />

Gra<strong>in</strong> size, alum<strong>in</strong>ium, iron and lithium were measured <strong>in</strong> selected samples.<br />

Five quality assurance/quality control (QA/QC) samples were collected adjacent to<br />

grab samples to evaluate small-scale variations (nugget effects) and variability <strong>of</strong> both<br />

field and laboratory operations.<br />

In addition, five composited samples were re-composited by <strong>the</strong> laboratory to evaluate<br />

<strong>the</strong> variability <strong>in</strong> composit<strong>in</strong>g. A laboratory QA/QC check was also provided.<br />

Doc # 1120743 Page 17


2.5 Use <strong>of</strong> ANZECC sediment quality guidel<strong>in</strong>es<br />

To establish <strong>the</strong> degree <strong>of</strong> risk to sediment-dwell<strong>in</strong>g organisms, <strong>the</strong> results from this<br />

survey can be compared with Australian and New Zealand Environmental<br />

Conservation Council (ANZECC) <strong>in</strong>terim guidel<strong>in</strong>e values for sediment quality (ISQGs)<br />

for <strong>the</strong> protection <strong>of</strong> aquatic ecosystems. For each trace element, <strong>the</strong>re are two<br />

ANZECC (2000) guidel<strong>in</strong>es for sediment quality.<br />

• The lowest is <strong>the</strong> Interim Sediment Quality Guidel<strong>in</strong>e-Low (ISQG-Low) which<br />

represents a concentration below which adverse effects are unlikely.<br />

Concentrations <strong>of</strong> contam<strong>in</strong>ants below <strong>the</strong> ISQG-Low pose a low level <strong>of</strong> risk to<br />

aquatic organisms.<br />

• The higher is <strong>the</strong> ISQG-High, which is a median level at which adverse effects are<br />

expected <strong>in</strong> half <strong>of</strong> <strong>the</strong> exposed organisms. Contam<strong>in</strong>ant concentrations above <strong>the</strong><br />

ISQG-High are <strong>in</strong>terpreted as be<strong>in</strong>g reasonably likely to cause significant adverse<br />

effects on aquatic organisms.<br />

Concentrations between <strong>the</strong> ISQG-Low and ISQG-High are thought to pose a<br />

moderate level <strong>of</strong> risk to aquatic organisms. Concentrations <strong>of</strong> trace elements or o<strong>the</strong>r<br />

chemicals ei<strong>the</strong>r below or above <strong>the</strong> ANZECC (2000) trigger values should not be<br />

thought <strong>of</strong> as safe or unsafe, but ra<strong>the</strong>r pos<strong>in</strong>g a lower or higher level <strong>of</strong> risk. This is<br />

because site-specific factors such as <strong>the</strong> chemical form <strong>of</strong> compound or element,<br />

natural background concentration, <strong>the</strong> concentration <strong>of</strong> organic matter or reduced<br />

sulphide compounds can all modify <strong>the</strong> toxicity <strong>of</strong> a particular compound.<br />

Values below <strong>the</strong> ISQG-Low do not guarantee that <strong>the</strong> concentrations are safe ei<strong>the</strong>r<br />

because complex chemical mixtures <strong>of</strong> certa<strong>in</strong> compounds are more toxic than <strong>the</strong>ir<br />

<strong>in</strong>dividual chemical components and <strong>the</strong> ANZECC (2000) guidel<strong>in</strong>es are not designed<br />

to protect aga<strong>in</strong>st those mixtures. Also certa<strong>in</strong> compounds such as mercury have<br />

specific chemical forms (methylmercury, ethylmercury) which bioaccumulate <strong>in</strong><br />

organisms and biomagnify up <strong>the</strong> food-cha<strong>in</strong>. As bioaccumulation potential is sitespecific,<br />

more detailed studies are required to assess such risks. Therefore, <strong>the</strong><br />

guidel<strong>in</strong>es are designed to be trigger values to <strong>in</strong>dicate which sites may warrant closer<br />

<strong>in</strong>vestigation.<br />

It should also be noted that <strong>the</strong> ANZECC (2000) guidel<strong>in</strong>es are designed to protect<br />

aquatic ecosystem ra<strong>the</strong>r than to protect human health. Although ISQG-Low values are<br />

lower than equivalent soil quality guidel<strong>in</strong>es designed to protect human health, <strong>the</strong> aim<br />

<strong>of</strong> this study and <strong>the</strong> guidel<strong>in</strong>es used <strong>in</strong> this study is related to <strong>the</strong> protection <strong>of</strong> aquatic<br />

ecosystems. Therefore, no conclusion should be made on <strong>the</strong> potential human health<br />

risk.<br />

Page 18 Doc # 1120743


3 Results and discussion<br />

3.1 Raw results and summary statistics<br />

A complete list <strong>of</strong> <strong>the</strong> results for eight trace elements <strong>in</strong> all sediment samples is<br />

provided <strong>in</strong> Appendix 2. A summary <strong>of</strong> results obta<strong>in</strong>ed at each sampl<strong>in</strong>g site is<br />

presented <strong>in</strong> Table 3-1. A discussion <strong>of</strong> results from quality assurance and quality<br />

control samples is provided <strong>in</strong> Appendix 3. Normalised data is provided <strong>in</strong> Appendix 4,<br />

and a statistical summary <strong>of</strong> results for each sampled area <strong>in</strong> Appendix 5.<br />

Table 3-1 Summary <strong>of</strong> trace element concentrations at sampl<strong>in</strong>g sites and comparison<br />

to ANZECC (2000) sediment quality guidel<strong>in</strong>es (all values <strong>in</strong> mg/kg dry weight).<br />

Site locations are listed from south (Waihou and Piako River mouths) to north (Te<br />

Mata). Bold entries exceed ANZECC (2000) ISQG-Low values; <strong>the</strong> bold italic<br />

entry exceeds an ISQG-High value. Refer to Table 1-1 for <strong>the</strong> element name<br />

associated with each chemical symbol.<br />

As Cd Cr Cu Hg Ni Pb Zn<br />

ANZECC (2000) ISQG-Low 20 1.5 80 65 0.15 21 50 200<br />

Location<br />

Waihou River mouth (N=2)<br />

Piako River mouth (N=3)<br />

Opani mudflat (N=1)<br />

Thames wharf & stormwater (N=2)<br />

Thames mudflats & harbour (N=9)<br />

Thames pipel<strong>in</strong>e (N=5)<br />

Kuranui Bay (N=9)<br />

Tararu Stream (N=7)<br />

Thornton Bay (N=6)<br />

Te Puru (N=8)<br />

Waiomu Bay (N=8)<br />

Tapu (N=6)<br />

Te Mata (N=6)<br />

M<strong>in</strong>imum<br />

Maximum<br />

Average<br />

Standard deviation<br />

95% confidence error<br />

ISQG-High 70 10 370 270 1.0 52 220 410<br />

7.3 0.11 30.8 9.9 0.22 9.2 26.5 91.7<br />

9.2 0.23 24.3 10.4 0.32 8.5 29.5 104<br />

7.5 0.17 25.1 9.7 0.27 8.4 28.9 98.5<br />

14.6 0.11 24.8 12.0 0.28 8.2 27.8 90<br />

14.2 0.09 24.8 13.8 0.35 8.5 20.5 73.8<br />

106 0.40 24 16.9 0.47 8.7 35.6 149<br />

36.1 0.41 22.7 16.4 0.76 8.1 29.9 146<br />

24.5 0.17 16.3 23.0 0.18 6.0 25.6 99.1<br />

23.0 0.03 21.5 17.8 0.08 8.1 22.2 72.7<br />

24.3 0.05 21.7 21.5 0.09 7.8 20.4 72.2<br />

27.3 0.10 26 31.8 0.09 8.8 35.3 82.3<br />

21.2 0.02 19.6 14.0 0.12 8.3 8.15 54.4<br />

26.7 0.03 20.7 11.3 0.15 8.6 29.9 63.4<br />

7.3 0.02 16.3 9.7 0.08 6.0 8.15 54.4<br />

106 0.41 30.8 31.8 0.76 9.2 35.6 149<br />

26.3 0.15 23.2 16.0 0.26 8.3 26.2 92.0<br />

25.5 0.13 3.5 6.4 0.19 0.8 7.2 28.6<br />

16.0 0.08 2.2 4.0 0.12 0.5 4.6 18.0<br />

Doc # 1120743 Page 19


3.2 Comparison with sediment quality guidel<strong>in</strong>es<br />

3.2.1 Comparison to <strong>the</strong> ISQG-Low<br />

To ascerta<strong>in</strong> <strong>the</strong> potential ecological significance <strong>of</strong> <strong>the</strong> data collected from all <strong>the</strong> sites,<br />

<strong>the</strong> average concentrations for each trace element at each site were divided by<br />

sediment quality guidel<strong>in</strong>es, <strong>the</strong> ANZECC (2000) ISQG-Low and ISQG-High (for more<br />

about which refer to Section 2.5). Results <strong>of</strong> <strong>the</strong> comparison <strong>of</strong> average concentrations<br />

with <strong>the</strong> ISQG-Low are provided <strong>in</strong> Table 3-2.<br />

Table 3-2 Summary results expressed as a fraction <strong>of</strong> <strong>the</strong> lowest ANZECC (2000)<br />

sediment quality guidel<strong>in</strong>e (<strong>the</strong> ISQG-Low). Refer to Table 1-1 for <strong>the</strong><br />

element name associated with each chemical symbol.<br />

As Cd Cr Cu Hg Ni Pb Zn<br />

Waihou River mouth 0.37 0.07 0.39 0.15 1.47 0.44 0.53 0.46<br />

Piako River mouth 0.46 0.15 0.30 0.16 2.13 0.40 0.59 0.52<br />

Opani mudflat 0.38 0.11 0.31 0.15 1.80 0.40 0.58 0.49<br />

Thames wharf &<br />

stormwater 0.73 0.07 0.31 0.18 1.87 0.39 0.56 0.45<br />

Thames mudflats &<br />

harbour 0.71 0.06 0.31 0.21 2.33 0.40 0.41 0.37<br />

Thames pipel<strong>in</strong>e 5.30 0.27 0.30 0.26 3.13 0.41 0.71 0.75<br />

Kuranui Bay 1.81 0.27 0.28 0.25 5.07 0.39 0.60 0.73<br />

Tararu Stream 1.23 0.11 0.20 0.35 1.20 0.29 0.51 0.50<br />

Thornton Bay 1.15 0.02 0.27 0.27 0.53 0.39 0.44 0.36<br />

Te Puru 1.22 0.03 0.27 0.33 0.60 0.37 0.41 0.36<br />

Waiomu Bay 1.37 0.07 0.33 0.49 0.60 0.42 0.71 0.41<br />

Tapu 1.06 0.01 0.25 0.22 0.80 0.40 0.16 0.27<br />

Te Mata 1.34 0.02 0.26 0.17 1.00 0.41 0.60 0.32<br />

Average 1.32 0.10 0.29 0.25 1.73 0.39 0.52 0.46<br />

Two elements exceeded <strong>the</strong> lowest sediment quality guidel<strong>in</strong>e value (<strong>the</strong> ANZECC<br />

(2000) ISQG-Low) <strong>in</strong> surface sediments at some locations (Tables 3-1 and 3-2):<br />

• Average arsenic concentrations <strong>in</strong> sediments exceeded <strong>the</strong> ISQG-Low at eight<br />

(62%) <strong>of</strong> <strong>the</strong> thirteen sites. Arsenic averaged 1.32 times <strong>the</strong> ISQG-Low (20 mg/kg)<br />

and 38% <strong>of</strong> <strong>the</strong> ISQG-High (70 mg/kg).<br />

• Average mercury concentrations <strong>in</strong> sediments also exceeded <strong>the</strong> ISQG-Low at<br />

eight (62%) <strong>of</strong> <strong>the</strong> thirteen sites. Mercury averaged about 1.7 times <strong>the</strong> ISQG-Low<br />

(0.15 mg/kg) <strong>in</strong> surface samples (range 0.53 to 5.1 times). Mercury averaged about<br />

26% <strong>of</strong> <strong>the</strong> ISQG-High.<br />

These results put arsenic and mercury <strong>in</strong> <strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames sediments at a po<strong>in</strong>t<br />

where <strong>the</strong>y may be start<strong>in</strong>g to have adverse effects on some sediment-dwell<strong>in</strong>g<br />

organisms, at some locations (Section 2.5).<br />

Mercury exceeded guidel<strong>in</strong>es at <strong>the</strong> sou<strong>the</strong>rn sites and <strong>the</strong> four sites immediately north<br />

from Thames, but rema<strong>in</strong>ed below guidel<strong>in</strong>es at <strong>the</strong> five most nor<strong>the</strong>rn sites. The<br />

highest concentrations were found at Kuranui Bay, and <strong>the</strong> nearby pipel<strong>in</strong>e sampl<strong>in</strong>g<br />

site <strong>in</strong> nor<strong>the</strong>rn Thames. The Kuranui Bay site is also atypical <strong>of</strong> <strong>the</strong> o<strong>the</strong>r sites<br />

sampled to depth, <strong>in</strong> that concentrations at depth were significantly greater than those<br />

at <strong>the</strong> surface. After this localised hotspot is excluded, <strong>the</strong> highest mercury<br />

concentrations are associated with <strong>the</strong> Thames mudflats and <strong>the</strong> Piako River mouth<br />

(Tables 3-1 and 3-2). Bioaccumulation <strong>of</strong> <strong>the</strong> mercury up <strong>the</strong> food cha<strong>in</strong> is <strong>the</strong> ma<strong>in</strong> risk<br />

associated with elevated concentrations <strong>of</strong> mercury. The ANZECC (2000) guidel<strong>in</strong>e<br />

levels are not designed to protect aga<strong>in</strong>st this type <strong>of</strong> risk, <strong>the</strong>refore compliance or noncompliance<br />

with <strong>the</strong> ANZECC (2000) trigger levels does not provide any <strong>in</strong>formation<br />

Page 20 Doc # 1120743


about potential risks to wildlife, or people consum<strong>in</strong>g seafood. A discussion about<br />

potential sources <strong>of</strong> mercury appears <strong>in</strong> Section 3.6.5.<br />

3.2.2 Comparison to <strong>the</strong> ISQG-High<br />

Results <strong>of</strong> <strong>the</strong> comparison <strong>of</strong> average concentrations with <strong>the</strong> ISQG-High are provided<br />

<strong>in</strong> Table 3-3.<br />

Table 3-3 Summary results expressed as a fraction <strong>of</strong> <strong>the</strong> upper ANZECC (2000)<br />

sediment quality guidel<strong>in</strong>e (<strong>the</strong> ISQG-High).<br />

As Cd Cr Cu Hg Ni Pb Zn<br />

Waihou River mouth 0.10 0.01 0.08 0.04 0.22 0.18 0.12 0.22<br />

Piako River mouth 0.13 0.02 0.07 0.04 0.32 0.16 0.13 0.25<br />

Opani mudflat 0.11 0.02 0.07 0.04 0.27 0.16 0.13 0.24<br />

Thames wharf &<br />

stormwater 0.21 0.01 0.07 0.04 0.28 0.16 0.13 0.22<br />

Thames mudflats &<br />

harbour 0.20 0.01 0.07 0.05 0.35 0.16 0.09 0.18<br />

Thames pipel<strong>in</strong>e 1.51 0.04 0.06 0.06 0.47 0.17 0.16 0.36<br />

Kuranui Bay 0.52 0.04 0.06 0.06 0.76 0.16 0.14 0.36<br />

Tararu Stream 0.35 0.02 0.04 0.09 0.18 0.12 0.12 0.24<br />

Thornton Bay 0.33 0.00 0.06 0.07 0.08 0.16 0.10 0.18<br />

Te Puru 0.35 0.01 0.06 0.08 0.09 0.15 0.09 0.18<br />

Waiomu Bay 0.39 0.01 0.07 0.12 0.09 0.17 0.16 0.20<br />

Tapu 0.30 0.00 0.05 0.05 0.12 0.16 0.04 0.13<br />

Te Mata 0.38 0.00 0.06 0.04 0.15 0.17 0.14 0.15<br />

Average 0.38 0.01 0.06 0.06 0.26 0.16 0.12 0.22<br />

Only one site was found to exceed <strong>the</strong> ISQG-High, on average, and this was for only<br />

one element (Table 3-3). This was for arsenic <strong>in</strong> <strong>the</strong> sample collected from <strong>the</strong> vic<strong>in</strong>ity<br />

<strong>of</strong> <strong>the</strong> Thames pipel<strong>in</strong>e.<br />

• On closer exam<strong>in</strong>ation it is evident that <strong>the</strong> high result for arsenic <strong>in</strong> this sample<br />

(125 mg/kg) is <strong>the</strong> result <strong>of</strong> a s<strong>in</strong>gle result conta<strong>in</strong><strong>in</strong>g 433 mg/kg arsenic <strong>in</strong> one <strong>of</strong><br />

<strong>the</strong> sub-samples (Appendix 2). This result is considered to be a sampl<strong>in</strong>g outlier<br />

because <strong>the</strong> sample was collected with<strong>in</strong> an area <strong>of</strong> sediment conta<strong>in</strong><strong>in</strong>g an ironpan<br />

layer which is known to accumulate arsenic. Therefore, although <strong>the</strong> 433 mg/kg<br />

is likely to be close to <strong>the</strong> true concentration <strong>of</strong> arsenic <strong>in</strong> this sample (it is not likely<br />

to be an analytical outlier), <strong>the</strong> result does not adequately represent <strong>the</strong><br />

composition <strong>of</strong> <strong>the</strong> sediment <strong>in</strong> this location, but <strong>the</strong> arsenic concentration <strong>of</strong> an<br />

iron-pan sample, mak<strong>in</strong>g it a sampl<strong>in</strong>g outlier.<br />

When <strong>the</strong> Thames pipel<strong>in</strong>e outlier is removed, no site is found to exceed <strong>the</strong> ISQG-<br />

High, on average, for any element (Tables 3-1 and 3-3).<br />

3.2.3 Key f<strong>in</strong>d<strong>in</strong>gs<br />

• Arsenic and mercury concentrations <strong>in</strong> <strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames coastal sediments are<br />

not extremely high, but are at a po<strong>in</strong>t where <strong>the</strong>y may have adverse effects on<br />

some sediment-dwell<strong>in</strong>g organisms at some locations.<br />

• There is an apparent hotspot at Kuranui Bay and an adjacent site <strong>in</strong> nor<strong>the</strong>rn<br />

Thames. A fur<strong>the</strong>r assessment <strong>of</strong> this is provided <strong>in</strong> Section 3.5.4.<br />

• Mercury and arsenic do not behave like one ano<strong>the</strong>r. Exclud<strong>in</strong>g <strong>the</strong><br />

Kuranui/nor<strong>the</strong>rn Thames hotspot, <strong>the</strong> highest mercury concentrations are at <strong>the</strong><br />

sou<strong>the</strong>rn sites, where arsenic concentrations are lowest. By contrast, <strong>the</strong> highest<br />

arsenic concentrations are along <strong>the</strong> eastern coast.<br />

Doc # 1120743 Page 21


3.3 Comparison between <strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames and<br />

o<strong>the</strong>r areas<br />

3.3.1 Comparison to coastal sediments <strong>in</strong> Raglan Harbour<br />

<strong>Trace</strong> element concentrations <strong>in</strong> <strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames sediments can be compared with<br />

what would be expected <strong>in</strong> clean Waikato soils, crustal abundances, and data for<br />

Raglan Harbour. The most relevant comparison is between samples from a previous<br />

Environment Waikato study <strong>of</strong> sediments from <strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames and Raglan<br />

harbour. In that survey, sediment samples (0-2 cm) had been collected <strong>in</strong> October<br />

2003 as part <strong>of</strong> an ecological survey from five locations <strong>in</strong> Raglan Harbour (Ponganui<br />

Creek, Whatitir<strong>in</strong>ui Island, Te Puna Po<strong>in</strong>t, Okete Bay and Haroto Bay), and five<br />

locations <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn <strong>Firth</strong> <strong>of</strong> Thames (Kaiaua, Miranda, Thames, Kuranui Bay and<br />

Te Puru).<br />

At each <strong>of</strong> <strong>the</strong> ten locations, five 2 m x 2 m squares had been sampled, and each <strong>of</strong><br />

<strong>the</strong>se consisted <strong>of</strong> 12 sub-samples. Composites from each <strong>of</strong> <strong>the</strong> ten locations were<br />

analysed for 33 chemical elements, organic contam<strong>in</strong>ants, and a range <strong>of</strong> major<br />

variables. Full results are archived and summarised separately. 2 Results for <strong>the</strong> 33<br />

trace elements, total organic carbon (TOC) and percent dry matter at <strong>the</strong> ten locations<br />

are provided <strong>in</strong> Appendix 6 <strong>of</strong> this report. Average concentrations <strong>of</strong> selected elements<br />

are presented <strong>in</strong> Table 3-4. In this table, five elements are identified as crustal<br />

<strong>in</strong>dicators. This term is used to describe elements whose only significant source is<br />

likely to be <strong>the</strong> geological parent matrix <strong>of</strong> <strong>the</strong> sample. 3<br />

Comparison <strong>of</strong> <strong>the</strong> results for Raglan Harbour with those for <strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames and<br />

those for clean Waikato soils shows that:<br />

- Concentrations <strong>of</strong> all elements <strong>in</strong> <strong>the</strong> Raglan sediments with <strong>the</strong> possible exception<br />

<strong>of</strong> lithium 4 are (analytically) equivalent to or below those expected for clean Waikato<br />

soils. 5<br />

- Comparison <strong>of</strong> means and medians between <strong>the</strong> two harbours shows very similar<br />

concentrations <strong>of</strong> elements that could be taken as crustal markers: alum<strong>in</strong>ium, iron,<br />

lithium, chromium, and nickel.<br />

These two factors suggest that Raglan sediments (0-2 cm) can be used as a control<br />

site to represent clean <strong>Firth</strong> <strong>of</strong> Thames sediments. Average concentrations found <strong>in</strong> 0-2<br />

cm sediments from around each harbour, and relative enrichment ratios for <strong>the</strong> <strong>Firth</strong> <strong>of</strong><br />

Thames (0-2 cm) sediments are shown <strong>in</strong> Table 3-4.<br />

Relative to Raglan, <strong>the</strong> <strong>Firth</strong>’s sediments appear to be enriched <strong>in</strong> mercury, lead,<br />

cadmium, copper, z<strong>in</strong>c and arsenic (<strong>in</strong> this order). 6<br />

2<br />

Data set: Environment Waikato document 922343; summary <strong>of</strong> results as an Environmental Indicator:<br />

http://www.ew.govt.nz/enviro<strong>in</strong>fo/<strong>in</strong>dicators/coasts/waterquality/co12a/report.htm<br />

3<br />

The term ‘crustal’ reflects <strong>the</strong> fact that soils and sediments are produced through wea<strong>the</strong>r<strong>in</strong>g <strong>of</strong> <strong>the</strong> earth’s crust.<br />

4<br />

Higher concentrations <strong>of</strong> lithium might be expected <strong>in</strong> coastal sediments than terrestrial soils due to <strong>the</strong> presence <strong>of</strong><br />

elevated lithium <strong>in</strong> seawater.<br />

5<br />

Average background concentrations <strong>of</strong> <strong>the</strong>se elements <strong>in</strong> Waikato surface (0-10 cm) soils by pseudo-total strong<br />

acid extraction are currently estimated to be alum<strong>in</strong>ium: 36,000 mg/kg; arsenic: 8 mg/kg; cadmium: 0.2 mg/kg;<br />

chromium: 15 mg/kg; copper: 25 mg/kg; iron: 24,000 mg/kg; lithium: 8 mg/kg; mercury: 0.16 mg/kg; nickel: 7 mg/kg,<br />

lead: 15 mg/kg, z<strong>in</strong>c: 67 mg/kg (based on up to 50 soils sampled from a range <strong>of</strong> soil types; some sites omitted for<br />

arsenic, copper and lead to account for contam<strong>in</strong>ation from horticultural sprays; cadmium estimate based on<br />

reserves and forest areas with limited phosphate fertiliser use).<br />

6<br />

This f<strong>in</strong>d<strong>in</strong>g that <strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames sediments are likely to be enriched <strong>in</strong> mercury, lead, cadmium, copper, z<strong>in</strong>c<br />

and arsenic should not be taken to imply that concentrations <strong>of</strong> <strong>the</strong>se elements <strong>in</strong> <strong>Firth</strong> <strong>of</strong> Thames sediments are at<br />

unacceptably high levels for ecosystem health. Comparisons to ANZECC (2000) guidel<strong>in</strong>e values for <strong>the</strong> elements<br />

<strong>in</strong> sediments are provided <strong>in</strong> Section 3.2.<br />

Page 22 Doc # 1120743


Table 3-4 Average concentrations <strong>of</strong> eleven elements <strong>in</strong> shallow surface (0-2 cm)<br />

sediments collected from Raglan Harbour and <strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames <strong>in</strong> earlier<br />

work, and comparison <strong>of</strong> averages between <strong>the</strong> two areas.<br />

Element<br />

Average concentration <strong>in</strong> 0-2<br />

cm sediment samples<br />

Ratio <strong>of</strong> means<br />

(<strong>Firth</strong> <strong>of</strong> Thames /<br />

Raglan)<br />

Interpretation for <strong>Firth</strong><br />

<strong>of</strong> Thames<br />

<strong>Firth</strong> <strong>of</strong> Thames Raglan<br />

Alum<strong>in</strong>ium 9300 10300 0.9 crustal <strong>in</strong>dicator<br />

Iron 24700 23100 1.1 crustal <strong>in</strong>dicator<br />

Chromium 14.9 14.4 1.0 crustal <strong>in</strong>dicator<br />

Nickel 6.23 8.06 0.8 crustal <strong>in</strong>dicator<br />

Lithium 14.3 13.5 1.1 crustal <strong>in</strong>dicator<br />

Arsenic 12.7 8.34 1.5 potential contam<strong>in</strong>ant<br />

Cadmium 0.087 0.024 3.6 potential contam<strong>in</strong>ant<br />

Copper 12.5 6.76 1.9 potential contam<strong>in</strong>ant<br />

Mercury 0.289 0.026 11.1 potential contam<strong>in</strong>ant<br />

Lead 24.3 6.09 4.0 potential contam<strong>in</strong>ant<br />

Z<strong>in</strong>c 80.5 47.7 1.7 potential contam<strong>in</strong>ant<br />

Results from <strong>the</strong> earlier shallow (0-2 cm) sampl<strong>in</strong>g are <strong>in</strong> general keep<strong>in</strong>g with <strong>the</strong><br />

results from this survey (surface grab or 0-10 cm sampl<strong>in</strong>g), which <strong>in</strong>dicate vary<strong>in</strong>g<br />

degrees <strong>of</strong> enrichment <strong>in</strong> <strong>Firth</strong> <strong>of</strong> Thames sediments for <strong>the</strong> same six elements. As<br />

noted earlier (Section 3.2), <strong>in</strong> this work mercury and arsenic are <strong>the</strong> two elements most<br />

likely to exceed sediment quality guidel<strong>in</strong>es at some sites. Based on 0-2 cm sediments,<br />

average <strong>Firth</strong> sediments conta<strong>in</strong> about 4.4 mg/kg more arsenic and 0.26 mg/kg more<br />

mercury than <strong>the</strong> Raglan Harbour sediments that were sampled to <strong>the</strong> same depth<br />

(Table 3-4).<br />

In Section 3.5.4, evidence is presented that <strong>the</strong> Kuranui Bay site <strong>in</strong> <strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames<br />

is an area <strong>of</strong> specific localised contam<strong>in</strong>ation by some elements, above that occurr<strong>in</strong>g<br />

at o<strong>the</strong>r sites. A case might be made that this site should be excluded from <strong>the</strong><br />

comparison between <strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames and Raglan sediments, on <strong>the</strong> basis that it is<br />

a more localised hotspot. Removal <strong>of</strong> this site from <strong>the</strong> 0-2 cm sediment data set has<br />

no effect on which elements are identified as crustal <strong>in</strong>dicators, but does have an<br />

impact on <strong>the</strong> relative enrichments <strong>of</strong> mercury, cadmium and z<strong>in</strong>c <strong>in</strong> <strong>Firth</strong> <strong>of</strong> Thames<br />

sediments relative to those <strong>of</strong> Raglan. Mercury drops from an average enrichment<br />

factor <strong>of</strong> 11 to 7; cadmium drops from 4 to 1.5, and z<strong>in</strong>c drops from 1.7 to 1.2.<br />

Enrichment ratios for <strong>the</strong> o<strong>the</strong>r elements are not substantially altered.<br />

In absolute mass terms, <strong>the</strong> most enriched element is z<strong>in</strong>c. Includ<strong>in</strong>g <strong>the</strong> Kuranui Bay<br />

sample, <strong>the</strong> shallow <strong>Firth</strong> <strong>of</strong> Thames samples also conta<strong>in</strong> (on average) 33 mg/kg more<br />

z<strong>in</strong>c than Raglan sediments. Exclud<strong>in</strong>g it, <strong>the</strong> <strong>Firth</strong> sediments still conta<strong>in</strong> 9.2 mg/kg<br />

more z<strong>in</strong>c than those <strong>of</strong> Raglan Harbour.<br />

The relative enrichment results determ<strong>in</strong>ed <strong>in</strong> this work are <strong>in</strong> good agreement with<br />

previous estimates <strong>of</strong> <strong>the</strong> effect <strong>of</strong> Polynesian and European land use on lead, z<strong>in</strong>c,<br />

copper and arsenic concentrations <strong>in</strong> <strong>Firth</strong> <strong>of</strong> Thames sediments, which are reviewed <strong>in</strong><br />

Section 1.2. For example, based on sediment cores <strong>the</strong> DSIR estimated that arsenic<br />

was elevated 1.2–2 times <strong>in</strong> more recent sediments compared to old sediments <strong>in</strong> <strong>the</strong><br />

<strong>Firth</strong> <strong>of</strong> Thames samples (Hume and Dahm, 1991). This compares well with an<br />

average enrichment <strong>of</strong> 1.5 times compared with <strong>the</strong> uncontam<strong>in</strong>ated sediments <strong>of</strong><br />

Raglan Harbour (Table 3-4).<br />

Overall, comparison between harbours provides evidence that arsenic, cadmium,<br />

copper, mercury, lead and z<strong>in</strong>c are enriched <strong>in</strong> coastal sediments <strong>of</strong> <strong>the</strong> <strong>Firth</strong> <strong>of</strong><br />

Doc # 1120743 Page 23


Thames. This result is <strong>in</strong> agreement with earlier work carried out on four <strong>of</strong> <strong>the</strong>se<br />

elements by <strong>the</strong> DSIR (Section 1.2). The results for mercury and cadmium are new.<br />

• Relative to its expected background concentration, <strong>the</strong> most highly enriched <strong>of</strong> <strong>the</strong><br />

eight elements measured <strong>in</strong> this study is mercury. On average, mercury appears to<br />

be present <strong>in</strong> <strong>Firth</strong> <strong>of</strong> Thames shallow (0-2 cm) surface sediments at approximately<br />

7-11 times its usual concentration, with <strong>the</strong> difference depend<strong>in</strong>g on whe<strong>the</strong>r or not<br />

<strong>the</strong> hotspot associated with Kuranui Bay is excluded.<br />

• In absolute mass terms, <strong>the</strong> most highly enriched element is z<strong>in</strong>c. <strong>Firth</strong> <strong>of</strong> Thames<br />

sediments conta<strong>in</strong> between 9-33 mg/kg more z<strong>in</strong>c than would o<strong>the</strong>rwise be<br />

expected, with <strong>the</strong> difference depend<strong>in</strong>g on whe<strong>the</strong>r or not <strong>the</strong> sample from Kuranui<br />

Bay is excluded.<br />

3.3.2 Comparison <strong>of</strong> this survey’s data with historical data<br />

In samples collected <strong>in</strong> <strong>the</strong> URS survey (Table 3-1), lead concentrations ranged from<br />

8.1 mg/kg (Tapu) to 65.3 mg/kg (Waiomu Bay), with typical values be<strong>in</strong>g around 25<br />

mg/kg, and an overall average <strong>of</strong> 26 mg/kg. These values are higher than pre-<br />

European concentrations reported <strong>in</strong> <strong>the</strong> DSIR study, aga<strong>in</strong> <strong>in</strong>dicat<strong>in</strong>g some lead<br />

enrichment. The low concentrations <strong>of</strong> lead found <strong>in</strong> Tapu were <strong>in</strong> a similar<br />

concentration range as those found <strong>in</strong> pre-settlement times. Tapu had <strong>the</strong> lowest<br />

sediment concentrations <strong>of</strong> all metals except for arsenic and mercury (Table 3-1 and<br />

Appendix 2).<br />

Arsenic concentrations ranged from 8.7 mg/kg around <strong>the</strong> Thames wharf to 433 mg/kg<br />

near <strong>the</strong> stormwater pipe outfall, with <strong>the</strong> latter result assumed to be a nonrepresentative<br />

sampl<strong>in</strong>g outlier (Section 3.2.2). The typical arsenic concentration was<br />

around 23 mg/kg (overall average 26 mg/kg), which is elevated above natural<br />

concentrations (typically 6-8 mg/kg). Higher concentrations still were found at Kuranui<br />

Bay and near <strong>the</strong> Thames pipel<strong>in</strong>e.<br />

Cadmium concentrations were elevated around Kuranui Bay and <strong>the</strong> Thames pipel<strong>in</strong>e,<br />

but <strong>the</strong>y also appeared slightly enriched around <strong>the</strong> Piako River Mouth.<br />

Copper concentrations ranged between 7.6 mg/kg (Waihou River Mouth) to 41.6 mg/kg<br />

Waiomu Bay, with typical levels <strong>of</strong> around 16 mg/kg be<strong>in</strong>g found at most sites. For<br />

copper, many sites fell with<strong>in</strong> <strong>the</strong> background concentration range reported <strong>in</strong> <strong>the</strong> DSIR<br />

study. However both Waiomu Bay and Tararu Stream showed signs <strong>of</strong> enrichment <strong>of</strong><br />

copper compared with pre-settlement samples and o<strong>the</strong>r samples collected dur<strong>in</strong>g this<br />

study.<br />

Mercury concentrations varied over <strong>the</strong> study area from 0.05 mg/kg at Te Puru up to<br />

1.58 mg/kg with<strong>in</strong> Thames Harbour. Typically, mercury concentrations tended to be<br />

approximately 0.1 mg/kg at <strong>the</strong> nor<strong>the</strong>rn sites, but elevated concentrations were<br />

observed around <strong>the</strong> Thames Harbour, Waihou and Piako River mouths, Thames<br />

sewer outfall and Kuranui Bay. Mercury concentrations previously reported for<br />

sediments from Miranda and Kaiaua were approximately 0.05 mg/kg, which probably<br />

represents <strong>the</strong> pre-European background concentration.<br />

Z<strong>in</strong>c concentrations ranged from 51.5 mg/kg (at Tapu) to 206 mg/kg (Kuranui Bay),<br />

although typically <strong>the</strong> concentration <strong>of</strong> z<strong>in</strong>c with<strong>in</strong> <strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames is between 70-80<br />

mg/kg. These concentrations are similar to those found <strong>in</strong> <strong>the</strong> DSIR report, where <strong>the</strong><br />

additional z<strong>in</strong>c was attributed to widespread anthropogenic enrichment (Hume and<br />

Dahm, 1991). The z<strong>in</strong>c concentration at Miranda and Kaiaua was between 37-43<br />

mg/kg, which <strong>in</strong>dicate about 1.5-2 times enrichment <strong>of</strong> z<strong>in</strong>c <strong>in</strong> sediments at most sites.<br />

Nickel and chromium concentrations were very similar between sites. These elements<br />

are not significant contam<strong>in</strong>ants <strong>in</strong> acid m<strong>in</strong>e dra<strong>in</strong>age discharges from <strong>the</strong> Tui M<strong>in</strong>e<br />

Page 24 Doc # 1120743


Tail<strong>in</strong>gs (Rumsby, 1996) and are unlikely to be a significant component <strong>of</strong> discharges<br />

from historic m<strong>in</strong><strong>in</strong>g operations <strong>in</strong> this section <strong>of</strong> <strong>the</strong> Coromandel Pen<strong>in</strong>sula.<br />

3.3.3 Key f<strong>in</strong>d<strong>in</strong>gs<br />

Arsenic, cadmium, copper, mercury, lead and z<strong>in</strong>c are enriched <strong>in</strong> coastal sediments <strong>of</strong><br />

<strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames, relative to concentrations present before Polynesian and<br />

European colonisation, and relative to reference concentrations <strong>in</strong> sediments from<br />

Raglan Harbour.<br />

Relative to its expected background concentration, <strong>the</strong> most highly enriched element is<br />

mercury, which may be present at approximately seven times its usual concentration<br />

(exclud<strong>in</strong>g <strong>the</strong> anomaly at Kuranui Bay). In absolute mass terms, <strong>the</strong> most highly<br />

enriched element is z<strong>in</strong>c, with <strong>Firth</strong> <strong>of</strong> Thames sediments conta<strong>in</strong><strong>in</strong>g about 10 mg/kg<br />

more z<strong>in</strong>c than would o<strong>the</strong>rwise be expected.<br />

3.4 Small scale variability<br />

3.4.1 Assessment<br />

Five samples were collected with<strong>in</strong> a one metre radius <strong>of</strong> each o<strong>the</strong>r on <strong>the</strong> Thames<br />

Harbour mudflats, to evaluate small-scale variations present <strong>in</strong> <strong>the</strong> sediments. Results<br />

are provided <strong>in</strong> Table 3-5.<br />

Table 3-5 Small scale variability <strong>in</strong> chemical composition (mg/kg). (%RSD stands for<br />

per cent relative standard deviation, also known as <strong>the</strong> Coefficient <strong>of</strong> Variation).<br />

Sample No As Cd Cr Cu Hg Ni Pb Zn<br />

SDB576A 14.7 0.05 28 16.6 0.2 9 16 70.2<br />

SDB576B 16.3 0.04 21.7 14.6 0.17 7.2 12.5 52.5<br />

SDB576C 17.8 0.04 30.7 17 1.58 8.8 15.3 64.3<br />

SDB576D 15.8 0.04 24.4 16.1 0.2 8.5 13.2 55.8<br />

SDB576E 12.7 0.07 30.3 16 0.22 9.4 17.5 72.9<br />

Average 15.5 0.05 27.0 16.1 0.5 8.6 14.9 63.1<br />

Standard deviation 1.9 0.01 3.9 0.9 0.6 0.8 2.0 8.9<br />

Mean 15.5 0.05 27.0 16.1 0.5 8.6 14.9 63.1<br />

95% confidence error 2.4 0.02 4.8 1.1 0.77 1.0 2.5 11.0<br />

%RSD 12.3 20.8 14.4 5.6 127 9.3 13.4 14.1<br />

These results show reasonable variation <strong>in</strong> <strong>the</strong> per cent relative standard deviations<br />

(%RSDs) for both mercury (127%) and cadmium (20%).<br />

• In <strong>the</strong> case <strong>of</strong> cadmium, this is due to <strong>the</strong> fact that <strong>the</strong> measured concentrations are<br />

reasonably close to <strong>in</strong>strumental detection limits (0.01 mg/kg). Under <strong>the</strong>se<br />

conditions <strong>the</strong> signal-to-noise ratio is naturally higher and results <strong>in</strong> a high %RSD<br />

as a result <strong>of</strong> measurement uncerta<strong>in</strong>ty.<br />

• In <strong>the</strong> case <strong>of</strong> mercury, some variability may also be due to this cause, but <strong>in</strong><br />

addition, sample SDB576C has an abnormally high concentration relative to <strong>the</strong><br />

o<strong>the</strong>r samples. This is probably due to a gra<strong>in</strong> <strong>of</strong> c<strong>in</strong>nabar (HgS) or ano<strong>the</strong>r m<strong>in</strong>eral<br />

be<strong>in</strong>g present <strong>in</strong> <strong>the</strong> sub-sample that was tested (typically less than 0.5 grams <strong>of</strong><br />

<strong>the</strong> total), a well-known phenomenon known as a ‘nugget effect.’ If sample<br />

SDB576C was removed from <strong>the</strong> dataset <strong>the</strong> %RSD for mercury would be 10.4%.<br />

Doc # 1120743 Page 25


The variability <strong>in</strong> <strong>the</strong> chemical composition observed for <strong>the</strong> o<strong>the</strong>r metals was between<br />

5.6% for copper to 14.4% for chromium, which would be considered normal.<br />

Overall, <strong>the</strong> results <strong>in</strong>dicate that samples are reasonably likely to be representative <strong>of</strong><br />

each sampl<strong>in</strong>g location, but f<strong>in</strong>d<strong>in</strong>g an occasional high value caused by presence <strong>of</strong> a<br />

m<strong>in</strong>eral gra<strong>in</strong> (a nugget effect) would not be unusual. The results give tentative<br />

evidence for presence <strong>of</strong> gra<strong>in</strong>s <strong>of</strong> mercury-rich m<strong>in</strong>erals <strong>in</strong> sediments <strong>of</strong> some areas <strong>of</strong><br />

<strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames.<br />

3.4.2 Key f<strong>in</strong>d<strong>in</strong>g<br />

Samples appear to be representative <strong>of</strong> sampled areas. There is some tentative<br />

evidence for <strong>the</strong> presence <strong>of</strong> gra<strong>in</strong>s <strong>of</strong> mercury-rich m<strong>in</strong>erals (e.g. c<strong>in</strong>nabar, HgS) <strong>in</strong><br />

sediments <strong>of</strong> some areas <strong>of</strong> <strong>in</strong> <strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames.<br />

3.5 Comparisons between sites <strong>in</strong> <strong>the</strong> <strong>Firth</strong> <strong>of</strong><br />

Thames<br />

3.5.1 Statistical analysis and data normalisation<br />

Data collected at each site underwent statistical analysis to determ<strong>in</strong>e means,<br />

medians, standard deviations, confidence <strong>in</strong>tervals and normality. Student’s t-tests<br />

were used to compare sites with each o<strong>the</strong>r. A range <strong>of</strong> comparisons were made both<br />

with and without gra<strong>in</strong> size normalisation, and elemental normalisation.<br />

Gra<strong>in</strong> size-normalisation requires separation <strong>of</strong> <strong>the</strong> sediment <strong>in</strong>to two or more size<br />

fractions prior to analysis (de Groot et al., 1982; Salomons and Förstner, 1980).<br />

Separation techniques have long been used <strong>in</strong> geochemical exploration to enhance <strong>the</strong><br />

signal from ore deposits and are becom<strong>in</strong>g more widespread <strong>in</strong> environmental<br />

<strong>in</strong>vestigations. These techniques generally <strong>in</strong>volve <strong>the</strong> separation <strong>of</strong> fractions less than<br />

62.5 μm by siev<strong>in</strong>g and settl<strong>in</strong>g methods. Ackermann et al. (1980) and Louma (1990)<br />

reviewed several methods for separation <strong>of</strong> f<strong>in</strong>e sediment and recommended a 62.5<br />

μm cut<strong>of</strong>f size. Many studies have been carried out us<strong>in</strong>g this sediment fraction, and<br />

data are comparable if <strong>the</strong> extraction techniques and analytical methods are similar<br />

(e.g. Birch and Taylor 1999). Separation at 62.5 μm and 2 mm is common (Klamer,<br />

1990) and represents <strong>the</strong> gra<strong>in</strong> size and hydrodynamic divisions <strong>of</strong> mud, sand and<br />

gravel, respectively, but o<strong>the</strong>r mesh sizes are also used. NOAA (1988) simply divided<br />

total sediment concentrations by <strong>the</strong> proportion <strong>of</strong> <strong>the</strong> f<strong>in</strong>e (20% mud. In this study, post-analysis correction was<br />

conducted on <strong>the</strong>


3.5.2 Local historical m<strong>in</strong><strong>in</strong>g sites versus control sites<br />

Three sites selected on <strong>the</strong> basis <strong>of</strong> local m<strong>in</strong><strong>in</strong>g <strong>in</strong> <strong>the</strong>ir catchments were Tararu,<br />

Waiomu, and Tapu. The three control sites which are not known to have had local<br />

m<strong>in</strong><strong>in</strong>g <strong>in</strong> <strong>the</strong>ir catchments were Thornton Bay, Te Puru and Te Mata (Section 2.2.2).<br />

Data from <strong>the</strong> three control sites was consistent enough to be pooled <strong>in</strong> a s<strong>in</strong>gle control<br />

data set for use <strong>in</strong> student’s t-tests. Results for Tararu, Waiomu, and Tapu were<br />

compared with this pooled data from <strong>the</strong> control sites. Results are shown <strong>in</strong> Table 3-6.<br />

Table 3-6 Results <strong>of</strong> Student’s t-tests between Tararu, Waiomu, and Tapu and pooled<br />

data from <strong>the</strong> three m<strong>in</strong><strong>in</strong>g control sites. Mean values are <strong>in</strong> mg/kg (dry<br />

weight), and have not been normalised to any o<strong>the</strong>r variable. Ratios <strong>of</strong> means are<br />

unitless.<br />

Mean <strong>of</strong> control sites (Te<br />

Puru, Thornton and Te Mata)<br />

(N=20)<br />

As Cd Cr Cu Hg Ni Pb Zn<br />

24.7 0.040 21.3 17.3 0.105 8.16 23.8 69.7<br />

Mean at Tapu (N=6)<br />

Pooled t-test: concentration<br />

21.2 0.022 19.55 13.98 0.123 8.333 8.147 54.38<br />

significantly higher than<br />

control site<br />

No No No No No No No No<br />

Probability value (p) 0.9958 0.8942 0.9444 0.9525 0.1727 0.2937 1.0000 1.0000<br />

Ratio <strong>of</strong> means where<br />

significant<br />

- - - - - - - -<br />

Mean at Waiomu (N=8)<br />

Pooled t-test: concentration<br />

27.3 0.089 26.0 31.8 0.079 8.80 35.3 82.3<br />

significantly higher than<br />

control site<br />

Yes Yes Yes Yes No Yes Yes Yes<br />

Probability value (p) 0.0334 0.0022 0.0004 0.0001 0.9451 0.0297 0.0014 0.0001<br />

Ratio <strong>of</strong> means where<br />

significant<br />

1.1 2.2 1.2 1.8 - 1.1 1.5 1.2<br />

Mean at Tararu (N=7)<br />

Pooled t-test: concentration<br />

24.5 0.166 16.3 23.0 0.179 6.04 25.6 99.1<br />

significantly higher than<br />

control site<br />

No Yes No Yes Yes No No Yes<br />

Probability value (p) 0.55 0.0001 0.99 0.0056 0.0012 1.0 0.16 0.0001<br />

Ratio <strong>of</strong> means where<br />

significant<br />

4.2 - 1.3 1.7 - - 1.4<br />

Interpretive note<br />

It should be borne <strong>in</strong> m<strong>in</strong>d that this comparison relates to effects that may have been<br />

caused by small m<strong>in</strong>e operations <strong>in</strong> a specific sub-catchment, which are substantive<br />

enough to stand out above more general trace element enrichments <strong>in</strong> <strong>Firth</strong> <strong>of</strong> Thames<br />

sediments. At <strong>the</strong> more general level, <strong>the</strong> control sites <strong>the</strong>mselves show evidence <strong>of</strong><br />

trace element enrichment. For example, <strong>the</strong>re is consistent arsenic enrichment at all<br />

three <strong>of</strong> <strong>the</strong> control sites, which have an average arsenic concentration <strong>in</strong> surface<br />

sediments <strong>of</strong> 24.7 mg/kg (dry weight).<br />

Tapu<br />

Tapu is <strong>the</strong> nor<strong>the</strong>rnmost <strong>of</strong> <strong>the</strong> three sites selected on <strong>the</strong> basis <strong>of</strong> historical m<strong>in</strong><strong>in</strong>g<br />

activity. No statistically significant difference was found <strong>in</strong> trace element concentrations<br />

between Tapu and <strong>the</strong> control sites. Results for Tapu were <strong>in</strong>dist<strong>in</strong>guishable from those<br />

<strong>of</strong> <strong>the</strong> control sites, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> presence <strong>of</strong> generally elevated arsenic (Table 3-6). In<br />

<strong>the</strong> case <strong>of</strong> Tapu, <strong>the</strong>re is no specific evidence for a localised effect from historic<br />

m<strong>in</strong><strong>in</strong>g <strong>in</strong> <strong>the</strong> Tapu catchment which is over and above o<strong>the</strong>r enrichments <strong>in</strong> <strong>the</strong> <strong>Firth</strong> <strong>of</strong><br />

Thames sediments.<br />

Doc # 1120743 Page 27


Waiomu Bay<br />

Mov<strong>in</strong>g down <strong>the</strong> coast, Waiomu Bay was <strong>the</strong> middle <strong>of</strong> <strong>the</strong> three m<strong>in</strong><strong>in</strong>g areas<br />

selected. Anecdotal evidence has <strong>in</strong>dicated that iron sta<strong>in</strong><strong>in</strong>g occurs periodically on <strong>the</strong><br />

foreshore which <strong>in</strong>dicates that metals may still be discharged from <strong>the</strong> old Monowai<br />

m<strong>in</strong>e and precipitate on <strong>the</strong> foreshore. By contrast with Tapu, and by comparison with<br />

<strong>the</strong> control sites, sediments <strong>of</strong> Waiomu Bay are significantly enriched with seven <strong>of</strong> <strong>the</strong><br />

eight trace elements tested – all but mercury.<br />

However, although statistically significant, <strong>in</strong> most cases <strong>the</strong>se enrichments are not<br />

substantial. Only one <strong>of</strong> <strong>the</strong> elements exceeds its expected concentration by a factor <strong>of</strong><br />

more than two, and this is cadmium (Table 3-6). Add<strong>in</strong>g to this picture, contam<strong>in</strong>ant<br />

depth pr<strong>of</strong>iles taken at Waiomu Bay show no significant difference <strong>in</strong> trace element<br />

concentrations with depth down to 30 cm (Appendix 2). In this regard, sediments <strong>of</strong><br />

Waiomu Bay are no different from those <strong>of</strong> <strong>the</strong> control site <strong>of</strong> Te Puru (Appendix 2).<br />

This lack <strong>of</strong> a change with depth, coupled with <strong>the</strong> fact that <strong>the</strong> local enrichments<br />

(relative to control sites) are only marg<strong>in</strong>al or modest, suggests that <strong>the</strong> results from<br />

Waiomu Bay may reflect slight differences <strong>in</strong> sediment composition this area, ra<strong>the</strong>r<br />

than be<strong>in</strong>g caused by run-<strong>of</strong>f from m<strong>in</strong><strong>in</strong>g <strong>in</strong> <strong>the</strong> catchment.<br />

Tararu<br />

The sou<strong>the</strong>rnmost <strong>of</strong> <strong>the</strong> three areas was Tararu. Relative to controls, this site shows<br />

statistically significant enrichment <strong>in</strong> half <strong>of</strong> <strong>the</strong> elements: cadmium, mercury, z<strong>in</strong>c and<br />

copper. However, once aga<strong>in</strong>, <strong>the</strong> magnitude <strong>of</strong> enrichment is modest with <strong>the</strong><br />

exception <strong>of</strong> cadmium. The apparent enrichment <strong>of</strong> mercury is also caused by one<br />

moderately elevated result, which could be treated as a data outlier (Appendix 2).<br />

Depth samples were not collected at Tararu. The results for this area do not provide<br />

any conv<strong>in</strong>c<strong>in</strong>g evidence for a more than m<strong>in</strong>or localised effect from past m<strong>in</strong><strong>in</strong>g.<br />

Benefits <strong>of</strong> normalisation<br />

It was found that normalisation <strong>of</strong> data for any <strong>of</strong> <strong>the</strong> sites did not assist <strong>in</strong><br />

<strong>in</strong>terpretations <strong>of</strong> potential sources, but tended only to confuse matters. In <strong>the</strong> case <strong>of</strong><br />

Waiomu Bay, normalis<strong>in</strong>g <strong>the</strong> data aga<strong>in</strong>st lithium suggested that arsenic, copper, lead<br />

and z<strong>in</strong>c may be moderately enriched. Normalis<strong>in</strong>g us<strong>in</strong>g iron concentrations<br />

suggested that only arsenic, copper and lead were enriched. Normalis<strong>in</strong>g us<strong>in</strong>g<br />

alum<strong>in</strong>ium suggested that most <strong>of</strong> <strong>the</strong> elements were enriched at this site. Elemental<br />

normalisation did not <strong>in</strong>dicate that any <strong>of</strong> <strong>the</strong> o<strong>the</strong>r sites have undergone any<br />

geochemical enrichment.<br />

Effect <strong>of</strong> localised m<strong>in</strong><strong>in</strong>g sites - overall picture<br />

Overall, <strong>the</strong> results suggest that ei<strong>the</strong>r local m<strong>in</strong><strong>in</strong>g operations may not have<br />

contributed substantially to trace elements <strong>in</strong> <strong>the</strong> nearest <strong>Firth</strong> <strong>of</strong> Thames sediments, or<br />

that any local impact was lost aga<strong>in</strong>st more significant contributions from o<strong>the</strong>r sources,<br />

which also impacted <strong>the</strong> m<strong>in</strong><strong>in</strong>g control sites.<br />

Data ga<strong>the</strong>red <strong>in</strong> this work, and <strong>the</strong> former DSIR study, both <strong>in</strong>dicate that trace element<br />

concentrations <strong>in</strong> coastal sediments <strong>of</strong> <strong>the</strong> lower <strong>Firth</strong> <strong>of</strong> Thames sediments are<br />

generally elevated above <strong>the</strong>ir natural levels (Section 3.3). Of <strong>the</strong> sources discussed <strong>in</strong><br />

Section 1.1, those most likely to have caused this general elevation are enhanced<br />

wea<strong>the</strong>r<strong>in</strong>g and erosion follow<strong>in</strong>g land clearance, and <strong>the</strong> impact <strong>of</strong> historic m<strong>in</strong><strong>in</strong>g<br />

operations which <strong>in</strong>volved disposal <strong>of</strong> large volumes <strong>of</strong> tail<strong>in</strong>gs directly to <strong>the</strong> Oh<strong>in</strong>emuri<br />

River. An explanation <strong>of</strong> <strong>the</strong> lack <strong>of</strong> any evidence <strong>of</strong> metal enrichment from historical<br />

m<strong>in</strong><strong>in</strong>g (except perhaps at Waiomu Bay) may be due to <strong>the</strong> relatively low volumes <strong>of</strong><br />

metals be<strong>in</strong>g discharged from <strong>the</strong> m<strong>in</strong><strong>in</strong>g po<strong>in</strong>t sources, relative to contributions from<br />

<strong>the</strong>se o<strong>the</strong>r sources. This would lead to <strong>the</strong> m<strong>in</strong><strong>in</strong>g discharges be<strong>in</strong>g diluted by much<br />

Page 28 Doc # 1120743


larger volumes <strong>of</strong> sediment from elsewhere with<strong>in</strong> <strong>the</strong> catchments which are also<br />

elevated <strong>in</strong> arsenic and copper.<br />

The results <strong>of</strong> this work, with little evidence for significant localised impacts from former<br />

m<strong>in</strong><strong>in</strong>g sites <strong>in</strong> <strong>the</strong> Coromandel Pen<strong>in</strong>sula itself, are <strong>in</strong> agreement with <strong>the</strong> work <strong>of</strong><br />

Craw and Chappell (2000). These authors exam<strong>in</strong>ed metal redistribution <strong>in</strong> historic<br />

Coromandel m<strong>in</strong>e wastes and found that <strong>the</strong> decomposition <strong>of</strong> sulphides <strong>in</strong> such<br />

wastes is slow, result<strong>in</strong>g only <strong>in</strong> millimetre-scale alteration zones over one hundred<br />

years. The authors concluded that <strong>the</strong> comb<strong>in</strong>ation <strong>of</strong> slow decomposition, localised<br />

<strong>in</strong>corporation <strong>of</strong> metals <strong>in</strong>to iron oxyhydroxide cements, low permeability, and almost<br />

constant water saturation <strong>in</strong> a moist climate ensures that metal discharges <strong>in</strong>to <strong>the</strong><br />

environment from wastes <strong>in</strong> <strong>the</strong> Coromandel area are generally at low levels.<br />

Cadmium and z<strong>in</strong>c<br />

The only results which stand out <strong>in</strong> this comparison are apparent trends for both<br />

cadmium and z<strong>in</strong>c. Relative enrichment factors for <strong>the</strong>se two elements (compared with<br />

<strong>the</strong> m<strong>in</strong><strong>in</strong>g control sites) <strong>in</strong>crease as <strong>the</strong> sampl<strong>in</strong>g location moves fur<strong>the</strong>r south. The<br />

three control sites cover a reasonable geographical spread <strong>of</strong> <strong>the</strong> area north <strong>of</strong><br />

Thames, and <strong>the</strong>ir pooled results can be taken to represent averages <strong>of</strong> this area.<br />

Cadmium and z<strong>in</strong>c appear to become more enriched <strong>the</strong> closer <strong>the</strong> samples are<br />

collected from <strong>the</strong> Waihou/Piako river mouths (Table 3-7 and Figure 3-1). In this<br />

comparison, data for Kuranui Bay and Thames is excluded because <strong>the</strong>se sites show<br />

strong evidence <strong>of</strong> localised trace element enrichments, which may be associated with<br />

fill and reclamation (Section 3.5.4). 7<br />

Table 3-7 Apparent enrichment <strong>of</strong> cadmium and z<strong>in</strong>c <strong>in</strong> sediments relative to <strong>the</strong><br />

three m<strong>in</strong><strong>in</strong>g control sites mov<strong>in</strong>g from south to north. Numbers are<br />

enrichment ratios, represent<strong>in</strong>g <strong>the</strong> average concentration <strong>in</strong> sediments at a<br />

given site divided by <strong>the</strong> pooled average for <strong>the</strong> m<strong>in</strong><strong>in</strong>g control sites.<br />

Location<br />

Enrichment<br />

ratios<br />

Cd Zn<br />

Waihou and Piako river mouths<br />

and Opani mudflat<br />

4.5 1.42<br />

Tararu 4.2 1.4<br />

Waiomu 2.2 1.2<br />

Tapu 0.5 0.8<br />

Enrichment ratio for cadmium<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Waihou/Piako Tararu Waiomu Tapu<br />

Location (south to north)<br />

Figure 3-1 Apparent enrichment <strong>of</strong> cadmium relative to <strong>the</strong> three m<strong>in</strong><strong>in</strong>g control sites<br />

mov<strong>in</strong>g from south to north.<br />

7 The enrichment factors for cadmium at Kuranui Bay and <strong>the</strong> Thames stormwater pipel<strong>in</strong>e are 10.3 and 10.0<br />

respectively, whereas <strong>the</strong> Thames mudflats, deep harbour, wharf and near-shore stormwater sites (comb<strong>in</strong>ed) show<br />

an enrichment factor <strong>of</strong> 2.2.<br />

Doc # 1120743 Page 29


This trend is tentative evidence <strong>of</strong> long-range transport <strong>of</strong> <strong>the</strong>se two elements<br />

dom<strong>in</strong>at<strong>in</strong>g over local sources. Spatial trends <strong>in</strong> element concentrations <strong>in</strong> <strong>the</strong> <strong>Firth</strong> <strong>of</strong><br />

Thames sediments are exam<strong>in</strong>ed <strong>in</strong> fur<strong>the</strong>r detail <strong>in</strong> Section 3.6.<br />

3.5.3 Seaward versus landward<br />

<strong>Trace</strong> element concentrations <strong>in</strong> samples collected from nearest <strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames<br />

water (seaward) were compared with those from samples collected closer to <strong>the</strong> land<br />

(landward) (see Figures 2-3 and 2-4 for an <strong>in</strong>dication <strong>of</strong> each class <strong>of</strong> sample).<br />

Data was compared on a site-by-site basis, and by group<strong>in</strong>g data <strong>in</strong>to all seaward sites<br />

versus all landward sites. When group<strong>in</strong>g data, this type <strong>of</strong> comparison requires a<br />

paired t-test ra<strong>the</strong>r than data pool<strong>in</strong>g, to ensure that real differences are not lost <strong>in</strong> <strong>the</strong><br />

noise caused by changes <strong>in</strong> concentrations between sampl<strong>in</strong>g sites. There were twenty<br />

data pairs for each element <strong>in</strong> <strong>the</strong> paired t-test.<br />

On a site-by-site basis, and with or without normalisation, no statistical difference (to<br />

p=0.05) was found between seaward and landward samples. Us<strong>in</strong>g grouped data,<br />

marg<strong>in</strong>al differences emerged for copper (p


Table 3-8 Results <strong>of</strong> Student’s t-tests between Thames and Kuranui Bay sites and<br />

o<strong>the</strong>r coastal sites. Mean values are <strong>in</strong> mg/kg (dry weight), and have not been<br />

normalised to any o<strong>the</strong>r variable. Ratios <strong>of</strong> means are unitless.<br />

As Cd Cr Cu Hg Ni Pb Zn<br />

Mean <strong>of</strong> reference sites (N=41) 24.6 0.069 21.1 20.6 0.119 7.95 24.0 74.9<br />

Mean at Kuranui Bay (N=9) 36.1 0.407 22.7 16.4 0.763 8.10 29.9 146<br />

Pooled t-test: concentration<br />

significantly higher than reference<br />

sites Yes Yes No No Yes No No Yes<br />

Probability value (p) 0.02 0.0019 0.58 0.98 0.0001 0.82 0.18 0.0001<br />

Ratio <strong>of</strong> means where significant 1.5 5.9 6.4 1.9<br />

Mean at Thames stormwater<br />

pipel<strong>in</strong>e (N=5, except N=4 for<br />

arsenic due to one outlier be<strong>in</strong>g<br />

removed) 24.4 0.396 24.0 16.9 0.470 8.74 35.6 149<br />

Pooled t-test: concentration<br />

significantly higher than reference<br />

sites No Yes No No Yes No Yes Yes<br />

Probability value (p) 0.55 0.0001 0.08 0.84 0.0001 0.08 0.01 0.0001<br />

Ratio <strong>of</strong> means where significant 5.7 4.0 1.5 2.0<br />

Mean at Thames mudflats, deep<br />

harbour, wharf and stormwater sites<br />

(N=11)<br />

14.2 0.084 24.8 14.0 0.355 8.48 19.9 72.4<br />

Pooled t-test: concentration<br />

significantly higher than reference<br />

sites No No Yes No Yes No No No<br />

Probability value (p) 1.0 0.25 0.004 0.99 0.0003 0.08 0.89 0.68<br />

Ratio <strong>of</strong> means where significant 1.2 3.0<br />

<strong>Trace</strong> element enrichments <strong>in</strong> <strong>the</strong> area <strong>of</strong> <strong>the</strong> Thames stormwater discharge pipel<strong>in</strong>e<br />

and Kuranui Bay are very similar (Table 3.8), imply<strong>in</strong>g that a common source is<br />

responsible for <strong>the</strong> locally elevated mercury, cadmium, and z<strong>in</strong>c. Of <strong>the</strong>se, mercury and<br />

cadmium are <strong>the</strong> most enriched.<br />

A possible natural source <strong>of</strong> mercury is <strong>the</strong> c<strong>in</strong>nabar (mercuric sulphide) deposit<br />

situated <strong>in</strong> <strong>the</strong> Kauaeranga Valley; Thames Wharf is located on <strong>the</strong> Kauaeranga River.<br />

The Kauaeranga Valley was m<strong>in</strong>ed for c<strong>in</strong>nabar between 1899 and approximately 1906<br />

(Section 2.2.2). However, based on subsequent review <strong>of</strong> historic <strong>in</strong>formation from this<br />

area, <strong>the</strong> most likely source is m<strong>in</strong>e tail<strong>in</strong>gs and o<strong>the</strong>r municipal or <strong>in</strong>dustrial fill that has<br />

been deposited <strong>in</strong> <strong>the</strong> immediate vic<strong>in</strong>ity as part <strong>of</strong> historic land reclamation. This is<br />

because <strong>the</strong> area between <strong>the</strong> two anomalous sampl<strong>in</strong>g po<strong>in</strong>ts (Kuranui Bay and <strong>the</strong><br />

Thames pipel<strong>in</strong>e) is a large area <strong>of</strong> reclaimed land known as <strong>the</strong> Moanataiari<br />

reclamation. The Moanataiari subdivision <strong>of</strong> <strong>the</strong> town <strong>of</strong> Thames and <strong>the</strong> Thames<br />

landfill both sit on this reclaimed land, as shown <strong>in</strong> Figure 3-2.<br />

Doc # 1120743 Page 31


Figure 3-2 Aerial photograph <strong>of</strong> <strong>the</strong> Moanataiari reclamation dated 24 June 2006.<br />

Imagery sourced from Terral<strong>in</strong>k International Ltd (TIL) 2006 and is <strong>the</strong> property<br />

<strong>of</strong> TIL and <strong>the</strong> Waikato Regional Aerial Photography Service (WRAPS) 2006.<br />

Copyright Reserved.<br />

The follow<strong>in</strong>g summary <strong>of</strong> <strong>the</strong> reclamation appears <strong>in</strong> a report prepared for <strong>the</strong> M<strong>in</strong>istry<br />

for <strong>the</strong> Environment (2001) <strong>in</strong> relation to <strong>the</strong> effect <strong>of</strong> climate change on coastal areas:<br />

“The Moanataiari reclamation was formed progressively from <strong>the</strong> turn <strong>of</strong> <strong>the</strong><br />

century, <strong>in</strong>itially by dump<strong>in</strong>g m<strong>in</strong>e tail<strong>in</strong>gs and mullock 8 over <strong>in</strong>tertidal flats.<br />

Dump<strong>in</strong>g dredg<strong>in</strong>gs from <strong>the</strong> port fur<strong>the</strong>r reclaimed <strong>the</strong> area, which was <strong>the</strong>n<br />

capped with a raft <strong>of</strong> wea<strong>the</strong>red rock and clay from <strong>the</strong> hills under more<br />

controlled conditions <strong>in</strong> <strong>the</strong> mid to late 1960s. Hous<strong>in</strong>g construction was generally<br />

underway <strong>in</strong> <strong>the</strong> 1970s. The end result was a ‘little Holland’ extend<strong>in</strong>g 500 m from<br />

<strong>the</strong> l<strong>in</strong>e <strong>of</strong> <strong>the</strong> coast <strong>in</strong>to <strong>the</strong> sea.”<br />

In addition to m<strong>in</strong>e tail<strong>in</strong>gs, <strong>the</strong> area <strong>of</strong> <strong>the</strong> hot-spot is near a significant historic foundry,<br />

and a coastal landfill. It is <strong>the</strong>refore likely that this reclaimed area also received foundry<br />

slag or o<strong>the</strong>r forms <strong>of</strong> <strong>in</strong>dustrial fill dur<strong>in</strong>g <strong>the</strong> long history <strong>of</strong> Thames. 9<br />

There are two possibilities about <strong>the</strong> source <strong>of</strong> local mercury contam<strong>in</strong>ation. Deeper<br />

sediment samples collected from this area may represent <strong>the</strong> physical tail <strong>of</strong> <strong>the</strong><br />

reclamation’s fill material (such as old m<strong>in</strong>e tail<strong>in</strong>gs). This tail may extend some<br />

distance beyond <strong>the</strong> present-day seawall. Secondly, sediments <strong>in</strong> this immediate area<br />

<strong>of</strong> <strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames are likely to be receiv<strong>in</strong>g leachate from <strong>the</strong> base <strong>of</strong> <strong>the</strong><br />

Moanataiari reclamation, as ra<strong>in</strong>water and groundwater enter and flow through it.<br />

Three additional threads <strong>of</strong> evidence are available which ei<strong>the</strong>r support <strong>the</strong> case that<br />

this general area is a localised hotspot, or suggest that <strong>the</strong> fill material is hav<strong>in</strong>g an<br />

impact on concentrations <strong>of</strong> some trace elements <strong>in</strong> nearby sediments <strong>of</strong> <strong>the</strong> <strong>Firth</strong>.<br />

1. Vertical core sample from Kuranui Bay, collected as part <strong>of</strong> this work. Results from<br />

analysis <strong>of</strong> sediments from different depths <strong>in</strong> this core reveals a strong <strong>in</strong>crease <strong>in</strong><br />

8 Mullock is def<strong>in</strong>ed as rubbish, refuse or dirt.<br />

9 Under <strong>the</strong> umbrella <strong>of</strong> current legislation, foundry slag is deposited <strong>in</strong> an authorised landfill.<br />

Page 32 Doc # 1120743


concentrations <strong>of</strong> arsenic, cadmium, mercury and z<strong>in</strong>c with depth (Appendix 2). The<br />

deepest sample (25 -30 cm) was found to conta<strong>in</strong> 149 mg/kg arsenic, 2.07 mg/kg<br />

cadmium, 5.14 mg/kg mercury and 469 mg/kg z<strong>in</strong>c (Appendix 2). This contrasts<br />

with <strong>the</strong> results for vertical core samples from Waiomu Bay and Te Puru. Such a<br />

relationship, where <strong>the</strong> oldest sediments conta<strong>in</strong> <strong>the</strong> highest trace element<br />

concentrations, suggests that <strong>the</strong> contam<strong>in</strong>ation at Kuranui Bay is primarily a result<br />

<strong>of</strong> historic fill<strong>in</strong>g and reclamation. It is not yet clear whe<strong>the</strong>r <strong>the</strong> highest result at<br />

depth may represent <strong>the</strong> depth where leachate <strong>in</strong> groundwater has <strong>the</strong> strongest<br />

impact on sediment quality, or represents <strong>the</strong> fill material itself. It might be expected<br />

that <strong>the</strong> fill will extend beyond <strong>the</strong> base <strong>of</strong> <strong>the</strong> seawall (Figure 3.2).<br />

2. Results from Environment Waikato’s 2003 shallow sediment sampl<strong>in</strong>g. As<br />

discussed <strong>in</strong> Section 3.3.1, shallow (0-2 cm) sediment samples have previously<br />

been collected from five locations <strong>in</strong> <strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames and analysed for 33<br />

elements (results are provided <strong>in</strong> Appendix 6). One <strong>of</strong> <strong>the</strong>se locations was Kuranui<br />

Bay. A statistical comparison can be made between <strong>the</strong> results from Kuranui Bay<br />

composite with those from <strong>the</strong> o<strong>the</strong>r four sampl<strong>in</strong>g sites <strong>in</strong> <strong>the</strong> same data set.<br />

Concentrations <strong>of</strong> 12 <strong>of</strong> <strong>the</strong> 33 elements are statistically higher <strong>in</strong> <strong>the</strong> Kuranui Bay<br />

sample (Table 3-9). Of <strong>the</strong> elements which are present at significantly greater<br />

concentrations <strong>in</strong> <strong>the</strong> Kuranui Bay sample, concentrations <strong>of</strong> cadmium, silver,<br />

mercury, z<strong>in</strong>c, manganese and antimony are substantially enriched, by factors <strong>of</strong><br />

three or more. In addition to <strong>the</strong>se, arsenic is probably enriched <strong>in</strong> <strong>the</strong> Kuranui Bay<br />

sample (at confidence level <strong>of</strong> just under 95%), by a factor <strong>of</strong> two. For <strong>the</strong> elements<br />

<strong>in</strong> common with those assayed <strong>in</strong> <strong>the</strong> URS sampl<strong>in</strong>g round (2005), relative<br />

enrichments are consistent (compare Table 3-8 with Table 3-9) despite <strong>the</strong> different<br />

sampl<strong>in</strong>g depths (0-2 cm <strong>in</strong> <strong>the</strong> 2003 samples and 0-10 cm <strong>in</strong> <strong>the</strong> 2005 samples).<br />

Cadmium and mercury are <strong>the</strong> most enriched elements <strong>of</strong> those <strong>in</strong> common<br />

between <strong>the</strong> two surveys.<br />

Table 3-9 <strong>Trace</strong> element concentrations <strong>in</strong> shallow (0-2 cm) sediment samples from<br />

Kuranui Bay which are statistically higher than those at four o<strong>the</strong>r sites <strong>in</strong><br />

<strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames at a 95% confidence level.<br />

Element Measured concentrations (mg/kg dry weight)<br />

Enrichment<br />

ratio<br />

Four non-Kuranui Bay sites<br />

Confidence<br />

Kuranui Bay<br />

Mean <strong>in</strong>terval (Composite result)<br />

<strong>Lower</strong> Upper<br />

Cadmium 0.035 0.010 0.060 0.34 9.7<br />

Silver 0.067 0.030 0.100 0.30 4.5<br />

Mercury 0.198 0 0.520 0.84 4.2<br />

Z<strong>in</strong>c 53.1 28.9 77.3 199 3.7<br />

Manganese 474 127 820 1480 3.1<br />

Antimony 0.26 0 0.64 0.81 3.1<br />

Molybdenum 0.47 0 1.02 1.22 2.6<br />

Lead 19.7 7.3 32.2 42.9 2.2<br />

Caesium 0.74 0.48 0.99 1.2 1.6<br />

Lithium 12.4 7.5 17.3 18.7 1.5<br />

T<strong>in</strong> 0.40 0.27 0.53 0.6 1.5<br />

Boron 10.4 8.1 12.7 13.0 1.3<br />

3. Sediment sampl<strong>in</strong>g carried out <strong>in</strong> <strong>the</strong> same area <strong>in</strong> 2004, as part <strong>of</strong> a resource<br />

consent for closure <strong>of</strong> <strong>the</strong> Thames Landfill (K<strong>in</strong>gett Mitchell Ltd., 2004). In this work,<br />

sediment samples were collected from 16 locations around <strong>the</strong> coast <strong>of</strong> <strong>the</strong><br />

Moanataiari reclamation (Figure 3-2) to a depth <strong>of</strong> 14 cm. Of <strong>the</strong>se samples, three<br />

were <strong>in</strong> Kuranui Bay, four were seaward <strong>of</strong> <strong>the</strong> Thames landfill (Figure 3-2), six<br />

were south <strong>of</strong> <strong>the</strong> landfill, and three were southwest <strong>of</strong> <strong>the</strong> landfill. In this case <strong>the</strong>re<br />

is no specific control group <strong>of</strong> samples also collected to a depth <strong>of</strong> 14 cm elsewhere<br />

<strong>in</strong> <strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames from which a statistical comparison might be made.<br />

Doc # 1120743 Page 33


However, results for mercury show evidence <strong>of</strong> substantial local enrichment, and<br />

can be directly compared with sediment quality guidel<strong>in</strong>es (Section 2.5). This<br />

comparison is made <strong>in</strong> Table 3-10.<br />

Table 3-10 Concentrations <strong>of</strong> mercury <strong>in</strong> 0-14 cm sediment samples collected from<br />

<strong>the</strong> vic<strong>in</strong>ity <strong>of</strong> <strong>the</strong> Moanataiari reclamation, and comparison to ANZECC<br />

(2000) guidel<strong>in</strong>e values for sediment quality. Data source: K<strong>in</strong>gett Mitchell<br />

Ltd, 2004.<br />

Mercury concentrations <strong>in</strong> sediment<br />

samples (mg/kg dry weight)<br />

Average mercury concentration<br />

(mg/kg) & proportion <strong>of</strong> <strong>the</strong><br />

ANZECC ISQG-High <strong>of</strong> 1 mg/kg (a<br />

ratio)<br />

Factor by which average mercury<br />

concentration exceeds <strong>the</strong><br />

ANZECC ISQG-Low <strong>of</strong> 0.15 mg/kg<br />

Kuranui<br />

Bay<br />

2.67; 2.55;<br />

2.37<br />

Seaward <strong>of</strong><br />

landfill<br />

1.47; 1.29;<br />

1.91; 1.73<br />

Location<br />

South <strong>of</strong><br />

landfill<br />

0.59; 0.35;<br />

0.86; 0.60;<br />

1.31; 0.6<br />

Southwest<br />

<strong>of</strong> landfill<br />

1.02; 0.82;<br />

2.99<br />

2.53 1.56 0.60 1.61<br />

16.9 10.4 4.0 10.7<br />

This data shows that samples collected from <strong>the</strong> vic<strong>in</strong>ity <strong>of</strong> <strong>the</strong> reclamation by K<strong>in</strong>gett<br />

Mitchell <strong>in</strong> 2004 were strongly enriched with mercury, to a po<strong>in</strong>t where sediment <strong>in</strong> this<br />

area would meet a reasonable test <strong>of</strong> <strong>the</strong> Resource Management Act and Waikato<br />

Regional Plan def<strong>in</strong>itions <strong>of</strong> ‘contam<strong>in</strong>ated land,’ on <strong>the</strong> basis <strong>of</strong> its mercury content.<br />

Risks associated with this contam<strong>in</strong>ation would be primarily to organisms liv<strong>in</strong>g <strong>in</strong> <strong>the</strong><br />

mar<strong>in</strong>e sediment. Currently <strong>the</strong>re is no evidence <strong>of</strong> presence <strong>of</strong> risks to residents <strong>of</strong> <strong>the</strong><br />

Moanataiari subdivision, due to <strong>the</strong> likelihood <strong>of</strong> a deep capp<strong>in</strong>g layer <strong>of</strong> clean<br />

overburden hav<strong>in</strong>g been placed over <strong>the</strong> older m<strong>in</strong>e tail<strong>in</strong>gs or o<strong>the</strong>r fill layers. As part<br />

<strong>of</strong> a separate project on contam<strong>in</strong>ants <strong>in</strong> urban soils, a s<strong>in</strong>gle composite soil sample<br />

(consist<strong>in</strong>g <strong>of</strong> 16 x 0-10 cm subsamples) was collected from Moanataiari school <strong>in</strong><br />

January 2007, and was found to conta<strong>in</strong> only normal background concentrations <strong>of</strong><br />

arsenic, cadmium, copper, chromium, lead, mercury, nickel, and z<strong>in</strong>c.<br />

Fur<strong>the</strong>r work is needed to determ<strong>in</strong>e <strong>the</strong> contam<strong>in</strong>ant load<strong>in</strong>gs and environmental<br />

significance <strong>of</strong> fill that was used <strong>in</strong> <strong>the</strong> Moanataiari reclamation on sediment quality<br />

nearby <strong>in</strong> <strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames, and quantify its significance <strong>in</strong> relation to o<strong>the</strong>r sources<br />

<strong>of</strong> contam<strong>in</strong>ants.<br />

3.5.5 Agriculturally proximate versus control sites<br />

Sediment samples were collected around <strong>the</strong> mouth <strong>of</strong> <strong>the</strong> Waihou and Piako Rivers to<br />

determ<strong>in</strong>e if agricultural discharges were hav<strong>in</strong>g an adverse impact on sediment quality<br />

<strong>in</strong> <strong>the</strong> lower <strong>Firth</strong> <strong>of</strong> Thames. For this analysis, <strong>the</strong> data was divided <strong>in</strong>to six composite<br />

samples represent<strong>in</strong>g areas that might be most <strong>in</strong>fluenced by agricultural sources –<br />

<strong>the</strong>se were <strong>the</strong> Waihou and Piako River mouths and <strong>the</strong> Opani mudflat between <strong>the</strong>m –<br />

and 52 o<strong>the</strong>r composites for comparison.<br />

Samples for <strong>the</strong> Thames stormwater pipel<strong>in</strong>e site and Kuranui Bay were removed from<br />

<strong>the</strong> comparison data set, because <strong>the</strong>se sites show evidence <strong>of</strong> atypical localised<br />

enrichment (Section 3.5.4). Samples deeper than 10 cm were also excluded from <strong>the</strong><br />

comparison set, and four non-detections were set equal to half <strong>the</strong>ir detection limits.<br />

Results <strong>of</strong> Student’s t-tests are shown <strong>in</strong> Table 3-11.<br />

Page 34 Doc # 1120743


Table 3-11 Results <strong>of</strong> Student’s t-tests between sites closest to agricultural sources<br />

and o<strong>the</strong>r areas. Mean values are <strong>in</strong> mg/kg (dry weight), and have not been<br />

normalised to any o<strong>the</strong>r variable.<br />

As Cd Cr Cu Hg Ni Pb Zn<br />

Average <strong>of</strong> sites closest<br />

to agricultural sources 8.27 0.178 26.6 10.1 0.275 8.70 28.4 98.8<br />

Average <strong>of</strong> o<strong>the</strong>r sites 22.4 0.072 21.9 19.2 0.166 8.06 23.2 74.4<br />

Pooled t-test for<br />

agricultural > o<strong>the</strong>r:<br />

Agricultural significantly<br />

greater No Yes Yes No No No No Yes<br />

Probability value <strong>of</strong><br />

pooled t-test; p= 1.0 0.0002 0.0059 1.00 0.11 0.09 0.11 0.0006<br />

Ratio <strong>of</strong> averages<br />

(agricultural/o<strong>the</strong>r) where<br />

difference is significant 2.5 1.2 1.3<br />

Pooled Student’s t-tests <strong>in</strong>dicate highly significant differences for cadmium, z<strong>in</strong>c and<br />

chromium, with sediments <strong>of</strong> sites closest to agricultural sources conta<strong>in</strong><strong>in</strong>g <strong>the</strong> highest<br />

concentrations <strong>of</strong> <strong>the</strong>se three elements (Table 3-11). The fact that <strong>the</strong> same sites show<br />

no statistical elevation <strong>of</strong> arsenic, copper, mercury, nickel and lead (Table 3-6)<br />

suggests that <strong>the</strong> additional cadmium, z<strong>in</strong>c and chromium <strong>in</strong> sediments at <strong>the</strong>se<br />

locations is less likely to be caused by <strong>the</strong> ongo<strong>in</strong>g <strong>in</strong>fluence <strong>of</strong> historic m<strong>in</strong><strong>in</strong>g<br />

discharges than <strong>the</strong> modern <strong>in</strong>fluence <strong>of</strong> agricultural sources. This idea is supported by<br />

<strong>the</strong> fact that many agricultural soils receive high annual load<strong>in</strong>gs <strong>of</strong> both cadmium (from<br />

superphosphate fertiliser) and z<strong>in</strong>c (from facial eczema remedies), but overall, do not<br />

receive comparably high load<strong>in</strong>gs <strong>of</strong> arsenic, copper, mercury, nickel or lead (Section<br />

1.1.3).<br />

• Relative to its background concentrations, <strong>the</strong> most enriched element <strong>of</strong> <strong>the</strong>se<br />

three is cadmium, concentrations <strong>of</strong> which are 2.5 times higher at those sites<br />

closest to agricultural sources than o<strong>the</strong>r sites. In terms <strong>of</strong> total load<strong>in</strong>gs, <strong>the</strong> most<br />

enriched is z<strong>in</strong>c, with <strong>the</strong> agriculturally <strong>in</strong>fluenced sediments conta<strong>in</strong><strong>in</strong>g 24.4 mg/kg<br />

more z<strong>in</strong>c than <strong>the</strong> o<strong>the</strong>r areas.<br />

This statistical analysis suggests that agricultural activities may also contribute<br />

chromium to receiv<strong>in</strong>g environments. Additional load<strong>in</strong>gs and concentrations <strong>of</strong><br />

chromium are less substantial than those <strong>of</strong> cadmium or z<strong>in</strong>c (Table 3-11), and <strong>the</strong><br />

source <strong>of</strong> additional chromium is not known. However, agricultural sources are not<br />

excluded, because <strong>the</strong> data <strong>of</strong> Frankl<strong>in</strong> et al. (2005) <strong>in</strong>dicates that phosphate fertiliser<br />

and certa<strong>in</strong> N-P-K fertiliser blends can conta<strong>in</strong> high concentrations <strong>of</strong> chromium.<br />

3.5.6 Key f<strong>in</strong>d<strong>in</strong>gs<br />

In Section 3.5, a range <strong>of</strong> statistical comparisons have been made between <strong>the</strong> various<br />

types <strong>of</strong> sites that were sampled <strong>in</strong> <strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames. Results suggest <strong>the</strong> follow<strong>in</strong>g:<br />

• Data ga<strong>the</strong>red to date provides little evidence that former m<strong>in</strong><strong>in</strong>g sites along <strong>the</strong><br />

lower eastern coast <strong>of</strong> <strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames had, or cont<strong>in</strong>ue to have, a substantive<br />

impact on <strong>the</strong> quality <strong>of</strong> <strong>the</strong>ir nearest coastal sediments, relative to <strong>the</strong> more<br />

general impact from o<strong>the</strong>r sources (Section 3.5.2).<br />

• An apparent trend <strong>in</strong> cadmium and z<strong>in</strong>c enrichment is evident, with concentrations<br />

highest at sites closest to <strong>the</strong> mouths <strong>of</strong> <strong>the</strong> Waihou and Piako Rivers (Section<br />

3.5.2). Student’s t-tests <strong>in</strong>dicate that sediments from <strong>the</strong> sites closest to agricultural<br />

sources conta<strong>in</strong> more cadmium and z<strong>in</strong>c than o<strong>the</strong>r areas (Section 3.5.5).<br />

• There is tentative evidence that a significant proportion <strong>of</strong> arsenic and copper <strong>in</strong><br />

<strong>Firth</strong> <strong>of</strong> Thames sediments may be sourced from <strong>the</strong> land through wea<strong>the</strong>r<strong>in</strong>g and<br />

erosion processes (Section 3.5.3).<br />

Doc # 1120743 Page 35


• A site <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity <strong>of</strong> Thames shows evidence <strong>of</strong> be<strong>in</strong>g a localised hotspot for<br />

mercury and cadmium (<strong>in</strong> particular), and z<strong>in</strong>c <strong>in</strong> <strong>the</strong> mar<strong>in</strong>e sediments (Section<br />

3.5.4). This is from Kuranui Bay south to an area adjacent to <strong>the</strong> Thames<br />

stormwater discharge pipel<strong>in</strong>e. Results <strong>of</strong> depth samples at Kuranui Bay suggest<br />

that <strong>the</strong> worst contam<strong>in</strong>ation was historic. Current evidence suggests that <strong>the</strong> most<br />

likely cause is m<strong>in</strong>e tail<strong>in</strong>gs and <strong>in</strong>dustrial fill that were used as <strong>the</strong> base <strong>of</strong> <strong>the</strong><br />

Moanataiari reclamation. The area may warrant closer <strong>in</strong>vestigation to evaluate<br />

contam<strong>in</strong>ant load<strong>in</strong>gs, potential to discharge and environmental significance <strong>of</strong> any<br />

<strong>in</strong>dustrially-sourced fill that was used <strong>in</strong> this area.<br />

• Elevated arsenic, copper, lead, cadmium and z<strong>in</strong>c concentrations along <strong>the</strong> lower<br />

eastern coast <strong>of</strong> <strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames (Section 3.3) appear to be dom<strong>in</strong>ated by<br />

larger-scale sources, which are capable <strong>of</strong> caus<strong>in</strong>g an impact over <strong>the</strong> area as a<br />

whole. The three most likely larger-scale sources are enhanced wea<strong>the</strong>r<strong>in</strong>g and<br />

erosion follow<strong>in</strong>g land clearance, <strong>the</strong> impact <strong>of</strong> historic m<strong>in</strong><strong>in</strong>g operations which<br />

<strong>in</strong>volved disposal <strong>of</strong> large volumes <strong>of</strong> tail<strong>in</strong>gs directly to <strong>the</strong> Oh<strong>in</strong>emuri River<br />

(Section 1.1.2), and agricultural <strong>in</strong>puts (Section 1.1.3).<br />

3.6 Correlations and spatial trends<br />

3.6.1 Approach and correlation matrix<br />

Pearson’s correlation coefficients were determ<strong>in</strong>ed for element concentrations <strong>in</strong><br />

sediments collected as part <strong>of</strong> this work. Interpretation <strong>of</strong> <strong>the</strong> correlations is provided <strong>in</strong><br />

<strong>the</strong> subsequent sections.<br />

As previously, samples for <strong>the</strong> Thames pipel<strong>in</strong>e site and Kuranui Bay were removed<br />

from <strong>the</strong> data set before deriv<strong>in</strong>g correlation coefficients, because <strong>of</strong> <strong>the</strong> evidence <strong>of</strong><br />

strong localised enrichment from a common source <strong>in</strong> <strong>the</strong>se two areas (Section 3.5.4).<br />

Data sets for cadmium, chromium, copper, mercury, lead and z<strong>in</strong>c were log-normalised<br />

prior to derivation <strong>of</strong> <strong>the</strong> correlation matrix. Data sets for arsenic and nickel did not<br />

require log-normalisation.<br />

The <strong>in</strong>ter-element correlation matrix is provided <strong>in</strong> Table 3-12.<br />

Table 3-12 Pearson’s correlation coefficients for relationships between element<br />

concentrations <strong>in</strong> sediments (N = 62 pairs). Yellow shaded boxes represent<br />

highly significant relationships with probability values <strong>of</strong> p0.474)<br />

and pR>0.408). (See text for <strong>in</strong>formation about data set<br />

coverage.)<br />

[As] 1<br />

[As] Log[Cd] Log[Cr] Log[Cu] Log[Hg] [Ni] Log[Pb] Log[Zn]<br />

Log[Cd] –0.255 1<br />

Log[Cr] –0.232 0.063 1<br />

Log[Cu] 0.672 0.119 -0.073 1<br />

Log[Hg] –0.479 0.412 0.157 – 0.485 1<br />

[Ni] –0.098 –0.208 0.859 – 0.183 0.058 1<br />

Log[Pb] 0.202 0.546 0.260 0.241 –0.046 0.104 1<br />

Log[Zn] –0.079 0.850 0.081 0.199 0.160 – 0.150 0.690 1<br />

The relationship between element concentration and straight-l<strong>in</strong>e distance from <strong>the</strong><br />

Waihou River mouth (<strong>in</strong> kilometres) was also exam<strong>in</strong>ed, us<strong>in</strong>g <strong>the</strong> same data set but<br />

without any non-coastal sites (i.e. exclud<strong>in</strong>g <strong>the</strong> Thames mudflat, Thames harbour, and<br />

Piako River mouth samples). Results <strong>of</strong> this analysis are shown <strong>in</strong> Table 3-13.<br />

Page 36 Doc # 1120743


Table 3-13 Pearson’s correlation coefficients between element concentrations at <strong>the</strong><br />

coastal sites and distance from <strong>the</strong> Waihou River mouth (N = 49 pairs).<br />

Yellow shaded boxes represent highly significant relationships with probability<br />

values <strong>of</strong> p0.527) and pR>0.456). (See text for<br />

<strong>in</strong>formation about data set coverage.)<br />

Element Pearson’s correlation<br />

coefficient (R)<br />

Arsenic, As 0.454<br />

Log cadmium, Cd -0.646<br />

Log chromium, Cr 0.001<br />

Log copper, Cu -0.080<br />

Log mercury, Hg -0.310<br />

Nickel, Ni 0.348<br />

Log lead, Pb -0.245<br />

Log z<strong>in</strong>c, Zn -0.709<br />

The proportion <strong>of</strong> f<strong>in</strong>e particles <strong>in</strong> sediment can <strong>in</strong>fluence trace element concentrations.<br />

F<strong>in</strong>e particles have a larger surface area per unit weight than course particles and can<br />

<strong>the</strong>refore adsorb proportionately more <strong>of</strong> a given trace element. Measurement <strong>of</strong> <strong>the</strong><br />

percentage f<strong>in</strong>es was carried out on only 15 samples, across <strong>the</strong> range <strong>of</strong> sampl<strong>in</strong>g<br />

locations (Appendix 2). An assumption could be made that <strong>the</strong> percentage f<strong>in</strong>es<br />

measured at each location is representative <strong>of</strong> that location, and this would allow this<br />

measured f<strong>in</strong>es value to be assigned to all samples from that area. However, <strong>the</strong><br />

validity <strong>of</strong> this assumption cannot be tested, so it is safer <strong>in</strong> this case to restrict <strong>the</strong><br />

correlation analysis to <strong>the</strong> 15 sample pairs. Correlation coefficients between<br />

percentage f<strong>in</strong>es and element concentrations <strong>in</strong> <strong>the</strong> same samples are provided <strong>in</strong><br />

Table 3-14.<br />

Table 3-14 Pearson’s correlation coefficients between element concentration and<br />

percentage <strong>of</strong> f<strong>in</strong>es <strong>in</strong> <strong>the</strong> sediment (N = 15 pairs). Yellow shaded boxes<br />

represent highly significant relationships with probability values <strong>of</strong> p0.760) and pR>0.641).<br />

3.6.2 Z<strong>in</strong>c, cadmium, and lead<br />

Variable Pearson’s correlation<br />

coefficient (R)<br />

Distance -0.747<br />

Arsenic, As -0.730<br />

Log cadmium, Cd 0.705<br />

Log chromium, Cr 0.323<br />

Log copper, Cu -0.636<br />

Log mercury, Hg 0.383<br />

Nickel, Ni 0.405<br />

Log lead, Pb 0.327<br />

Log z<strong>in</strong>c, Zn 0.709<br />

Concentrations <strong>of</strong> z<strong>in</strong>c, cadmium and lead are very highly (p


log (cadmium concentration, mg/kg)<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1.0<br />

-1.2<br />

-1.4<br />

-1.6<br />

-1.8<br />

1.7 1.8 1.9 2.0 2.1 2.2<br />

log (z<strong>in</strong>c concentration, mg/kg)<br />

Figure 3-3 Relationship between z<strong>in</strong>c and cadmium concentrations (mg/kg) <strong>in</strong> <strong>Firth</strong><br />

<strong>of</strong> Thames sediment samples. (See Section 3.6.1 for <strong>in</strong>formation about data<br />

set coverage.)<br />

log (z<strong>in</strong>c concentration, mg/kg)<br />

2.2<br />

2.1<br />

2.0<br />

1.9<br />

1.8<br />

1.7<br />

0 5 10 15 20 25<br />

Distance (km)<br />

Figure 3-4 Relationship between concentrations <strong>of</strong> z<strong>in</strong>c <strong>in</strong> sediments and distance<br />

from <strong>the</strong> Waihou River mouth <strong>in</strong> kilometres. (See Section 3.6.1 for<br />

<strong>in</strong>formation about data set coverage.)<br />

These differences <strong>in</strong> behaviour suggest <strong>the</strong> presence <strong>of</strong> two significant sources <strong>of</strong> z<strong>in</strong>c<br />

and cadmium, one <strong>of</strong> which is (or was) also a source <strong>of</strong> lead. In o<strong>the</strong>r words, <strong>the</strong><br />

correlations suggest <strong>the</strong> presence <strong>of</strong> one significant source <strong>of</strong> all three metals (lead,<br />

cadmium and z<strong>in</strong>c) and ano<strong>the</strong>r significant source <strong>of</strong> two metals only (cadmium and<br />

z<strong>in</strong>c). Possible sources <strong>in</strong> each category could <strong>in</strong>clude m<strong>in</strong><strong>in</strong>g, and agriculture,<br />

respectively.<br />

Both lead sulphide (galena) and z<strong>in</strong>c sulphide (sphalerite, which also conta<strong>in</strong>s a<br />

significant quality <strong>of</strong> cadmium) co-occur naturally <strong>in</strong> many epi<strong>the</strong>rmal m<strong>in</strong>eral deposits<br />

<strong>in</strong> <strong>the</strong> Coromandel and Hauraki goldfields. This natural co-occurrence <strong>of</strong> <strong>the</strong>se two<br />

metals could possibility expla<strong>in</strong> <strong>the</strong> apparent correlation between lead and<br />

z<strong>in</strong>c/cadmium. A majority <strong>of</strong> <strong>the</strong> base metals sulphide deposits occur around or south<br />

<strong>of</strong> Thames (an exception be<strong>in</strong>g Monowai M<strong>in</strong>e on <strong>the</strong> Paroquet Stream at Waiomu).<br />

Page 38 Doc # 1120743


In <strong>the</strong> fifteen samples where percentage f<strong>in</strong>es <strong>in</strong> <strong>the</strong> sediment was measured, z<strong>in</strong>c and<br />

cadmium are also positively correlated with this variable (Table 3-14). The data also<br />

shows a decrease <strong>in</strong> <strong>the</strong> proportion <strong>of</strong> f<strong>in</strong>es head<strong>in</strong>g north. This suggests that an<br />

unknown proportion <strong>of</strong> <strong>the</strong> decrease <strong>in</strong> z<strong>in</strong>c and cadmium concentrations with distance<br />

from <strong>the</strong> Waihou River mouth may be caused by a decreas<strong>in</strong>g content <strong>of</strong> f<strong>in</strong>es.<br />

However, this result should be treated with caution, because not all elements show <strong>the</strong><br />

same behaviour – for example, lead, nickel and chromium show no significant variation<br />

with percentage f<strong>in</strong>es or distance (Table 3-14). In addition, m<strong>in</strong><strong>in</strong>g itself is likely to have<br />

been a major source <strong>of</strong> f<strong>in</strong>es, and it may be artificial to attempt to dist<strong>in</strong>guish f<strong>in</strong>es from<br />

element concentrations if both were caused by m<strong>in</strong><strong>in</strong>g.<br />

Geographical trends <strong>in</strong> z<strong>in</strong>c and cadmium concentrations that were detected us<strong>in</strong>g<br />

Pearson’s correlation coefficients (Table 3-13 and Figure 3-3) are <strong>in</strong> keep<strong>in</strong>g with those<br />

which became evident us<strong>in</strong>g a Student’s t-test approach (Table 3-7 and Figure 3-1),<br />

where m<strong>in</strong><strong>in</strong>g control sites were compared to o<strong>the</strong>r sites. The two statistical<br />

approaches are different ways <strong>of</strong> approach<strong>in</strong>g <strong>the</strong> same question.<br />

3.6.3 Arsenic and copper<br />

Copper and arsenic are also highly (p


presence <strong>of</strong> natural m<strong>in</strong>erals <strong>in</strong> <strong>the</strong> sediments that are enriched <strong>in</strong> arsenic and copper.<br />

Ano<strong>the</strong>r possibility is that arsenic has more effectively spread throughout <strong>the</strong> <strong>Firth</strong> <strong>of</strong><br />

Thames than o<strong>the</strong>r elements sourced from m<strong>in</strong><strong>in</strong>g, but this idea is undercut by <strong>the</strong><br />

correlative relationship between concentrations <strong>of</strong> arsenic and copper. Unlike arsenic,<br />

where released, copper is expected to be relatively immobile.<br />

Three factors are consistent with an hypo<strong>the</strong>sis that additional arsenic and copper <strong>in</strong><br />

<strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames sediments is most likely to be ma<strong>in</strong>ly from wea<strong>the</strong>r<strong>in</strong>g <strong>of</strong> m<strong>in</strong>erals<br />

<strong>in</strong> coastal areas <strong>of</strong> <strong>the</strong> Coromandel Pen<strong>in</strong>sula.<br />

1. In Section 3.5.3 it was shown that arsenic and copper concentrations are likely to<br />

be slightly higher <strong>in</strong> samples collected from nearest <strong>the</strong> land (landward samples),<br />

compared with samples collected from nearest <strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames water (seaward<br />

samples).<br />

2. The negative correlation with f<strong>in</strong>es (Table 3-14) suggests that <strong>the</strong> larger particles<br />

contribute a greater mass <strong>of</strong> arsenic or copper to <strong>the</strong> concentration measurement.<br />

This behaviour is opposite to that observed for metal enrichment <strong>in</strong> sediments from<br />

most <strong>in</strong>dustrial sources, where <strong>the</strong> highest concentrations are commonly<br />

associated with <strong>the</strong> f<strong>in</strong>est size fractions because <strong>the</strong>se have <strong>the</strong> greatest surface<br />

areas available for metal re-adsorption from solution. However, it is not an<br />

unexpected behaviour <strong>in</strong> cases <strong>of</strong> natural m<strong>in</strong>eralisation. Such a trend implies that<br />

movement <strong>of</strong> whole m<strong>in</strong>eral particles may dom<strong>in</strong>ate <strong>the</strong> mass flow <strong>of</strong> arsenic and<br />

copper be<strong>in</strong>g washed <strong>in</strong>to <strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames through wea<strong>the</strong>r<strong>in</strong>g and erosion<br />

(ra<strong>the</strong>r than dissolution and leach<strong>in</strong>g <strong>of</strong> arsenic and copper <strong>in</strong>to <strong>the</strong> aqueous<br />

phase).<br />

3. A m<strong>in</strong>eral source would also expla<strong>in</strong> an association between copper, arsenic and<br />

iron, given that <strong>the</strong> Coromandel range conta<strong>in</strong>s a significant natural abundance <strong>of</strong><br />

volcanic–hydro<strong>the</strong>rmal m<strong>in</strong>erals such as arsenopyrite (FeAsS) and chalcopyrite<br />

CuFeS2 (Section 1.1.1). Arsenic is a common trace component found <strong>in</strong> pyrite<br />

which occurs throughout <strong>the</strong> Hauraki Goldfield <strong>in</strong> both ore rock and <strong>the</strong> host rock.<br />

Copper is a major element found <strong>in</strong> chalcopyrite which co-occurs with pyrite, to a<br />

greater or lesser degree, with pyrite with<strong>in</strong> <strong>the</strong> Coromandel and Hauraki goldfields.<br />

However, <strong>the</strong> data does not rule out a past contribution to arsenic <strong>in</strong> sediments from<br />

m<strong>in</strong><strong>in</strong>g. If <strong>the</strong> elevated arsenic were from an Oh<strong>in</strong>emuri m<strong>in</strong><strong>in</strong>g source, some features<br />

<strong>of</strong> <strong>the</strong> observed pattern might be achieved through one <strong>of</strong> three mechanisms:<br />

• The m<strong>in</strong><strong>in</strong>g contribution did cause elevated arsenic as well as o<strong>the</strong>r elements <strong>in</strong> <strong>the</strong><br />

<strong>Firth</strong> <strong>of</strong> Thames, but <strong>the</strong> arsenic spread more effectively than most <strong>of</strong> <strong>the</strong> o<strong>the</strong>r<br />

elements. This is possible and likely for dissolved arsenic, but would not expla<strong>in</strong> <strong>the</strong><br />

correlation with copper, which would be less mobile if it were <strong>in</strong> <strong>the</strong> dissolved<br />

phase. This explanation is <strong>the</strong>refore unlikely.<br />

• Dissolved arsenic that entered <strong>the</strong> <strong>Firth</strong> dur<strong>in</strong>g <strong>the</strong> m<strong>in</strong><strong>in</strong>g era was flushed out to<br />

sea, and not much copper made it to <strong>the</strong> <strong>Firth</strong> <strong>in</strong> <strong>the</strong> first place. Zn-Cd-Pb and Hg<br />

were transported to <strong>the</strong> mouth <strong>of</strong> <strong>the</strong> Wiahou River, but salted out on entry <strong>in</strong>to <strong>the</strong><br />

<strong>Firth</strong> <strong>of</strong> Thames. Under this scenario <strong>the</strong> modern picture may be a mix <strong>of</strong> <strong>the</strong><br />

residue <strong>of</strong> m<strong>in</strong><strong>in</strong>g for Zn-Cd-Pb and Hg, and local sources for arsenic and copper.<br />

• The Oh<strong>in</strong>emuri m<strong>in</strong><strong>in</strong>g contribution did cause elevated arsenic <strong>in</strong> <strong>Firth</strong> sediments,<br />

but those most highly contam<strong>in</strong>ated sediments are now usually buried deeper than<br />

10 cm, and any rema<strong>in</strong><strong>in</strong>g trends with distance (Zn-Cd-Pb-Hg) reflect a residual<br />

ongo<strong>in</strong>g contribution from <strong>the</strong> Waihou River.<br />

Overall, <strong>the</strong> correlation between arsenic and copper (and both to some extent with iron)<br />

<strong>in</strong> sediments, <strong>the</strong> <strong>in</strong>verse relationship <strong>of</strong> both elements with f<strong>in</strong>es, <strong>the</strong> lack <strong>of</strong> a<br />

conv<strong>in</strong>c<strong>in</strong>g trend <strong>in</strong> concentration <strong>of</strong> ei<strong>the</strong>r element with distance north, and <strong>the</strong><br />

Page 40 Doc # 1120743


apparent concentration gradient <strong>in</strong> mov<strong>in</strong>g from land to shore, suggest that most <strong>of</strong> <strong>the</strong><br />

additional copper and arsenic <strong>in</strong> <strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames surface sediments (relative to<br />

Raglan Harbour – Section 3.3.1) may be caused by wea<strong>the</strong>r<strong>in</strong>g and erosion <strong>of</strong> natural<br />

sulphide m<strong>in</strong>erals <strong>in</strong> <strong>the</strong> Coromandel area. As discussed <strong>in</strong> Section 1.1.1, it is probable<br />

that such wea<strong>the</strong>r<strong>in</strong>g and erosion has been accelerated by land clearance which<br />

accompanied progressive waves <strong>of</strong> human colonisation.<br />

Although <strong>the</strong> idea that arsenic concentrations <strong>in</strong> modern surface sediments are<br />

dom<strong>in</strong>ated by local natural sources more readily accounts for observed correlations<br />

and trends, an <strong>in</strong>fluence <strong>of</strong> past m<strong>in</strong><strong>in</strong>g operations cannot be ruled out.<br />

3.6.4 Chromium and nickel<br />

Chromium and nickel do not appear to be elevated <strong>in</strong> <strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames relative to<br />

Raglan, do not change with distance along <strong>the</strong> coast, and closely correlate with each<br />

o<strong>the</strong>r (Table 3-12). Concentrations <strong>of</strong> chromium and nickel <strong>in</strong> <strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames’<br />

surface sediments appear to be at <strong>the</strong>ir natural basel<strong>in</strong>e levels.<br />

3.6.5 Mercury<br />

In concentration units (mg/kg), mercury is <strong>the</strong> most enriched <strong>of</strong> <strong>the</strong> elements measured<br />

<strong>in</strong> coastal sediments <strong>of</strong> <strong>the</strong> eastern coast <strong>of</strong> <strong>the</strong> lower <strong>Firth</strong> <strong>of</strong> Thames (Section 3.3.1).<br />

Despite this, correlation data for mercury provides little immediate <strong>in</strong>dication <strong>of</strong><br />

probable source for <strong>the</strong> additional mercury.<br />

• Mercury concentrations are negatively correlated with concentrations <strong>of</strong> arsenic and<br />

copper (mercury concentrations tend to be higher <strong>in</strong> samples with less arsenic or<br />

copper), but are positively correlated with cadmium. 11 Mercury is uncorrelated with<br />

nickel, chromium, lead or z<strong>in</strong>c. There is no evidence that mercury concentrations<br />

are higher <strong>in</strong> seaward than landward samples (Section 3.5.3), or that mercury<br />

concentrations are highest <strong>in</strong> samples collected from nearest <strong>the</strong> mouth <strong>of</strong> <strong>the</strong><br />

Waihou River (Table 3-13), or are <strong>in</strong>fluenced by f<strong>in</strong>es (Table 3-14).<br />

On <strong>the</strong> o<strong>the</strong>r hand, <strong>the</strong>re is evidence <strong>of</strong> strong localised enrichment by mercury <strong>in</strong> <strong>the</strong><br />

Kuranui Bay and Thames areas, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> Thames mudflats (Table 3-8). The<br />

correlation statistics discussed above are based on <strong>the</strong> data set with samples from<br />

Kuranui Bay and Thames stormwater pipel<strong>in</strong>e area excluded, but <strong>the</strong> Thames mudflat<br />

samples reta<strong>in</strong>ed.<br />

Closer exam<strong>in</strong>ation <strong>of</strong> <strong>the</strong> data for mercury (Appendix 2) reveals a feature that was<br />

missed <strong>in</strong> <strong>the</strong> statistical overview, and not <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> effect <strong>of</strong> distance assessment<br />

(Table 3-13). This is that samples collected from <strong>the</strong> Piako River mouth appear to be<br />

unexpectedly elevated <strong>in</strong> mercury, despite <strong>the</strong> fact that <strong>the</strong> catchment <strong>of</strong> this river is<br />

agricultural with no known m<strong>in</strong><strong>in</strong>g <strong>in</strong>fluence. Average concentrations <strong>of</strong> mercury <strong>in</strong><br />

surface samples are presented <strong>in</strong> Table 3-15 and Figure 3-6.<br />

11<br />

These statistics are based on <strong>the</strong> data set with samples from Kuranui Bay and Thames stormwater pipel<strong>in</strong>e area<br />

excluded. See Section 3.6.1.<br />

Doc # 1120743 Page 41


Table 3-15 Average mercury concentrations <strong>in</strong> surface (0-10 cm or grab) sediment<br />

samples from all sites. Sites <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity <strong>of</strong> <strong>the</strong> Thames pipel<strong>in</strong>e and Kuranui<br />

Bay are separated out due to evidence <strong>of</strong> a localised source <strong>of</strong> mercury,<br />

cadmium and z<strong>in</strong>c <strong>in</strong> this area (Section 3.5.4). One outlier <strong>of</strong> 1.52 mg/kg<br />

mercury for Thames mudflat sample SDB584 has been removed from <strong>the</strong> data<br />

set prior to calculat<strong>in</strong>g <strong>the</strong>se averages.<br />

Average mercury concentration (mg/kg)<br />

0.35<br />

0.30<br />

0.25<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

0.00<br />

Location<br />

Thames pipel<strong>in</strong>e/Kuranui anomaly<br />

Mercury concentration<br />

(mg/kg dry weight)<br />

Thames stormwater pipel<strong>in</strong>e 0.40<br />

Kuranui Bay 0.41<br />

Thames stormwater and wharf 0.28<br />

O<strong>the</strong>r sites (south to north)<br />

Piako River Mouth 0.32<br />

Opani mudflat 0.27<br />

Thames mudflats and harbour 0.23<br />

Waihou River mouth 0.22<br />

Tararu Stream 0.18<br />

Thornton 0.08<br />

Te Puru 0.09<br />

Waiomu Bay 0.08<br />

Tapu 0.12<br />

Te Mata 0.15<br />

Piako River mouth<br />

Opani mudflat<br />

Thames mudflats & harbour<br />

Waihou River mouth<br />

Sampl<strong>in</strong>g location<br />

Tararu<br />

Thornton<br />

Te Puru<br />

Waiomu Bay<br />

Tapu<br />

Te Mata<br />

Figure 3-6 Average concentrations <strong>of</strong> mercury mov<strong>in</strong>g from <strong>the</strong> Piako River mouth<br />

east and <strong>the</strong>n north, exclud<strong>in</strong>g <strong>the</strong> Thames pipel<strong>in</strong>e/Kuranui Bay anomaly.<br />

(O<strong>the</strong>r details are as for Table 3-15.)<br />

Pooled Student’s t-tests show significantly more mercury (p


is no positive correlation between mercury and elements that may be sourced from<br />

erosion <strong>of</strong> <strong>the</strong> Coromandel ranges (copper and arsenic). However, <strong>the</strong>re is evidence<br />

that <strong>the</strong> Piako River may be a significant conduit by which mercury enters <strong>the</strong> <strong>Firth</strong> <strong>of</strong><br />

Thames (Table 3-15 and Figure 3-6). Yet, unlike cadmium and z<strong>in</strong>c, <strong>the</strong>re are no<br />

particularly substantive sources <strong>of</strong> mercury <strong>in</strong> agriculture (Section 1.1.3) and no<br />

evidence <strong>of</strong> mercury enrichment <strong>in</strong> sediments <strong>of</strong> Raglan Harbour, which is itself<br />

surrounded by agricultural land (Section 3.3.1).<br />

Toge<strong>the</strong>r <strong>the</strong>se observations suggest <strong>the</strong> presence <strong>of</strong> a unique source <strong>of</strong> mercury to<br />

<strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames, which is not related to m<strong>in</strong><strong>in</strong>g, erosion <strong>of</strong> Coromandel m<strong>in</strong>erals, or<br />

treatments used <strong>in</strong> agriculture, but which is delivered to <strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames via <strong>the</strong><br />

Piako River (potentially among o<strong>the</strong>r routes).<br />

Recent work <strong>in</strong> mercury chemistry provides a likely reason for this. Wetlands can<br />

substantially <strong>in</strong>crease <strong>the</strong> flux <strong>of</strong> mercury to nearby receiv<strong>in</strong>g environments systems<br />

(O’Driscoll et al, 2005). This is significant because <strong>the</strong> Piako River passes directly<br />

through <strong>the</strong> middle <strong>of</strong> New Zealand’s largest area <strong>of</strong> wetlands and peatland (Figure 2.1<br />

and Appendix 8) and is <strong>the</strong> ma<strong>in</strong> river dra<strong>in</strong><strong>in</strong>g <strong>the</strong> Hauraki Pla<strong>in</strong>s. Water <strong>of</strong> <strong>the</strong> Piako<br />

River can carry sufficient dissolved organic matter and iron to impart a dist<strong>in</strong>ct colour.<br />

Mercury concentrations <strong>in</strong> <strong>the</strong> Piako river channel grab sample sediments are about<br />

four times greater than might o<strong>the</strong>rwise be expected (Table 3-15). Exclud<strong>in</strong>g <strong>the</strong><br />

Kuranui Bay anomaly, mercury concentrations <strong>in</strong> shallow surface sediments (0-2 cm)<br />

are about seven times higher than those <strong>in</strong> Raglan harbour (Section 3.3.1). The total<br />

area <strong>of</strong> <strong>the</strong> Piako catchment (Appendix 8) is approximately 1488 km 2 . The area <strong>of</strong><br />

major wetlands with<strong>in</strong> this catchment (Figure 2.1) is approximately 108 km 2 , or about<br />

7% <strong>of</strong> <strong>the</strong> total Piako catchment area. A back-<strong>of</strong>-envelope calculation suggests that<br />

mercury enrichment <strong>in</strong> sediments <strong>of</strong> <strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames might be consistent with <strong>the</strong><br />

Hauraki wetlands/peatlands caus<strong>in</strong>g a localised <strong>in</strong>crease <strong>in</strong> mercury flux <strong>of</strong> about 70<br />

times. 12 Although this is a very rough estimate and carries a number <strong>of</strong> untested<br />

assumptions, such a magnitude is consistent with O’Driscoll et al (2005), who note that<br />

<strong>in</strong> <strong>the</strong> Experimental Lakes Area reservoir project <strong>in</strong> Ontario, it has been found that<br />

wetland areas <strong>of</strong> catchment provide 26-79 times more methylmercury per unit area to<br />

downstream water than areas that conta<strong>in</strong> no wetlands. In pr<strong>in</strong>ciple, contributions from<br />

<strong>the</strong> Piako catchment’s wetlands (Figure 2.1) could, <strong>the</strong>refore, be capable (<strong>in</strong> <strong>the</strong>ory) <strong>of</strong><br />

caus<strong>in</strong>g most <strong>of</strong> <strong>the</strong> observed mercury enrichments <strong>in</strong> <strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames sediments. 13<br />

Mercury mobilised from wetlands to receiv<strong>in</strong>g environments is known to be ma<strong>in</strong>ly<br />

associated with dissolved organic matter. As concentrations <strong>of</strong> dissolved organic<br />

carbon <strong>in</strong> dra<strong>in</strong>age waters <strong>in</strong>crease, more mercury is transported. Peatlands would not<br />

necessarily conta<strong>in</strong> more mercury than elsewhere, but dissolved organic carbon<br />

formed by oxidation and dra<strong>in</strong>age <strong>of</strong> peat is likely to be a vehicle for enhanced mercury<br />

transport to downstream receiv<strong>in</strong>g environments. In conjunction with <strong>the</strong> results <strong>of</strong> this<br />

work (e.g. Figure 3.6), it is <strong>the</strong>refore thought probable that <strong>the</strong> peatlands <strong>of</strong> <strong>the</strong> Hauraki<br />

Pla<strong>in</strong>s contribute a substantial flux <strong>of</strong> mercury to <strong>the</strong> Piako River, and this becomes a<br />

significant source <strong>of</strong> mercury to <strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames.<br />

Such a source would be consistent with <strong>the</strong> statistical observations about mercury <strong>in</strong><br />

this study, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> fact that <strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames sediments appear 7-11 times<br />

more enriched <strong>in</strong> mercury than sediments <strong>of</strong> Raglan Harbour. The catchment <strong>of</strong> Raglan<br />

Harbour does not <strong>in</strong>clude significant areas <strong>of</strong> peatland.<br />

The relationship between mercury and arsenic and copper concentrations is shown <strong>in</strong><br />

Figure 3-7.<br />

12<br />

i.e. The wetland area is about 7% <strong>of</strong> <strong>the</strong> total Piako catchment. 7% <strong>of</strong> a 50 times enrichment <strong>in</strong> <strong>the</strong><br />

wetland zone = an overall <strong>in</strong>crease <strong>of</strong> 4 times (one end <strong>of</strong> <strong>the</strong> observed range), and 7% <strong>of</strong> a 96 times<br />

enrichment = 7 times (<strong>the</strong> o<strong>the</strong>r end <strong>of</strong> <strong>the</strong> observed range). The average <strong>of</strong> 50 and 96 is 73.<br />

13<br />

Exclud<strong>in</strong>g <strong>the</strong> localised Kuranui Bay/Thames pipel<strong>in</strong>e anomaly, which appears to be associated with<br />

<strong>the</strong> Moanataitiri reclamation (Section 3.5.4).<br />

Doc # 1120743 Page 43


log (mercury concentration, mg/kg)<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1.0<br />

-1.2<br />

-1.4<br />

5 10 15 20 25 30 35<br />

Arsenic concentration, mg/kg<br />

-1.4<br />

0.8 1.0 1.2 1.4 1.6<br />

log (copper concentration, mg/kg)<br />

Figure 3-7 Relationship between concentrations <strong>of</strong> mercury and arsenic, and<br />

mercury and copper, <strong>in</strong> <strong>Firth</strong> <strong>of</strong> Thames sediments. Site coverage is as<br />

described <strong>in</strong> Table 3.15.<br />

It is <strong>in</strong>itially unclear why <strong>the</strong>re is a negative correlation between concentrations <strong>of</strong><br />

mercury and those <strong>of</strong> copper or arsenic (Table 3-12; Figure 3-7), given that<br />

concentrations <strong>of</strong> <strong>the</strong>se two elements do not significantly change with distance north.<br />

However, <strong>the</strong> observed relationships would be consistent with <strong>the</strong> idea that sites with<br />

proportionately more <strong>of</strong> <strong>the</strong> Coromandel range-sourced m<strong>in</strong>eral gra<strong>in</strong>s (richer <strong>in</strong> copper<br />

and arsenic) have proportionately less <strong>of</strong> <strong>the</strong>ir sediment sourced from <strong>the</strong> Waihou and<br />

Piako Rivers (sediment which may be richer <strong>in</strong> mercury). The negative correlation<br />

between arsenic or copper and f<strong>in</strong>es discussed previously (Table 3-14, Section 3.6.3)<br />

is also consistent with this <strong>in</strong>terpretation.<br />

Similarly, <strong>the</strong> positive correlation between mercury and cadmium (Table 3.12) may also<br />

reflect <strong>the</strong> <strong>in</strong>fluence <strong>of</strong> sediments sourced from <strong>the</strong> Piako River, which services an<br />

agricultural catchment. This correlation may represent two different sources shar<strong>in</strong>g <strong>the</strong><br />

common transport route. Whereas wetlands and peatlands may be a source <strong>of</strong><br />

mobilised mercury, phosphate fertiliser is <strong>the</strong> most likely agricultural source <strong>of</strong><br />

cadmium, but both elements would be carried to <strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames by <strong>the</strong> same river<br />

system.<br />

Correlations between mercury and cadmium, arsenic or copper are all, <strong>the</strong>refore,<br />

consistent with an hypo<strong>the</strong>sis that a significant amount <strong>of</strong> mercury enter<strong>in</strong>g <strong>the</strong> <strong>Firth</strong> <strong>of</strong><br />

Thames may orig<strong>in</strong>ate from <strong>the</strong> Hauraki Pla<strong>in</strong>s.<br />

3.6.6 Pr<strong>in</strong>cipal Components Analysis<br />

Pr<strong>in</strong>cipal Components Analysis (PCA) was also performed on <strong>the</strong> same data set as for<br />

<strong>the</strong> correlation matrix (Table 3.12, Section 3.6.1). Results are provided <strong>in</strong> Table 3-16.<br />

As might be expected, PCA results are consistent with <strong>the</strong> <strong>in</strong>ter-relationships shown <strong>in</strong><br />

<strong>the</strong> correlation matrix and with <strong>in</strong>terpretations made <strong>in</strong> <strong>the</strong> preced<strong>in</strong>g sections. N<strong>in</strong>ety<br />

percent <strong>of</strong> <strong>the</strong> data variance <strong>in</strong> <strong>the</strong> eight elements was associated with <strong>the</strong> first four<br />

factors.<br />

The mean<strong>in</strong>gs <strong>of</strong> factors generated <strong>in</strong> PCAs require a certa<strong>in</strong> amount <strong>of</strong> <strong>in</strong>terpretation,<br />

and for this reason <strong>the</strong> follow<strong>in</strong>g descriptive <strong>in</strong>terpretations should not be viewed as<br />

def<strong>in</strong>itive. However, <strong>in</strong>terpretations which might be placed on each factor are as<br />

follows:<br />

Page 44 Doc # 1120743<br />

log (mercury concentration, mg/kg)<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1.0<br />

-1.2


Table 3-16 Results <strong>of</strong> Pr<strong>in</strong>cipal Components Analysis on <strong>the</strong> correlation matrix data<br />

set. Weight<strong>in</strong>gs less than -0.4 or greater than 0.4 are highlighted.<br />

F1 F2 F3 F4 F5 F6 F7 F8<br />

As 0.26 -0.76 0.36 0.31 -0.32 0.14 -0.01 -0.09<br />

Cd -0.92 -0.11 -0.25 0.09 0.17 0.02 -0.20 -0.08<br />

Cr -0.31 0.51 0.76 0.06 0.17 -0.09 0.10 -0.13<br />

Cu -0.04 -0.81 0.33 0.29 0.36 -0.11 0.02 0.09<br />

Hg -0.42 0.60 -0.37 0.54 -0.18 -0.05 0.06 0.05<br />

Ni -0.04 0.54 0.81 0.04 -0.03 0.16 -0.12 0.11<br />

Pb -0.74 -0.33 0.35 -0.21 -0.37 -0.21 -0.01 0.05<br />

Zn -0.91 -0.27 -0.07 -0.12 0.06 0.24 0.15 0.03<br />

• Factor 1 is a ‘z<strong>in</strong>c-cadmium-lead-mercury’ group, denot<strong>in</strong>g <strong>the</strong> sum or positive <strong>in</strong>tercorrelations<br />

between <strong>the</strong>se elements, and accounts for 32% <strong>of</strong> <strong>the</strong> data set’s<br />

variation. This first factor probably represents <strong>the</strong> sum <strong>of</strong> m<strong>in</strong><strong>in</strong>g and agricultural<br />

sources, with <strong>the</strong> mercury component reflect<strong>in</strong>g this element’s mild correlation with<br />

cadmium (Table 3-12). It was speculated that <strong>the</strong> mild mercury-cadmium<br />

relationship may come about because <strong>the</strong> Piako River may act as a conduit for both<br />

agricultural cadmium, and wetland/peatland-sourced mercury (Section 3.6.5).<br />

• Factor 2 is an ‘arsenic-copper and oppos<strong>in</strong>g elements’ group, and accounts for<br />

29% <strong>of</strong> <strong>the</strong> data variation. This factor denotes that arsenic and copper follow each<br />

o<strong>the</strong>r, but are both <strong>in</strong>versely related to mercury, chromium and nickel. In terms <strong>of</strong><br />

sources, this factor could be taken to represent direct contributions from erosion <strong>of</strong><br />

<strong>the</strong> Coromandel (arsenic and copper), and <strong>the</strong> proportion <strong>of</strong> this material <strong>in</strong> relation<br />

to sediment sourced from elsewhere (mercury <strong>in</strong>creases as arsenic and copper<br />

decrease). An <strong>in</strong>verse relationship between arsenic-copper and ei<strong>the</strong>r chromium or<br />

nickel is not evident <strong>in</strong> <strong>the</strong> correlation matrix (Table 3-12), but <strong>the</strong> <strong>in</strong>verse<br />

relationship with mercury is. However, a PCA can occasionally detect underly<strong>in</strong>g<br />

relationships that are masked when <strong>in</strong>ter-element correlations pull <strong>in</strong> different<br />

directions. If <strong>the</strong>re is a genu<strong>in</strong>e <strong>in</strong>verse relationship between arsenic-copper and<br />

chromium-nickel, it might be for <strong>the</strong> same reasons as <strong>the</strong> <strong>in</strong>verse relationship<br />

between arsenic-copper and mercury (see Section 3.6.5 and Figure 3.7).<br />

• Factor 3 groups <strong>the</strong> two metals nickel and chromium and accounts for 22% <strong>of</strong> <strong>the</strong><br />

data set’s total variation. This ‘nickel-chromium’ factor could be taken to denote <strong>the</strong><br />

natural state <strong>of</strong> sediments. These two elements are not enriched and <strong>in</strong> <strong>the</strong>ir natural<br />

state are correlated with each-o<strong>the</strong>r (Table 3-12).<br />

• Factor 4 is a residual ‘mercury only’ factor, which accounts for 7% <strong>of</strong> <strong>the</strong> data<br />

variation. The existence <strong>of</strong> a ‘mercury only’ factor might be consistent with a source<br />

<strong>of</strong> mercury that is not bound up with <strong>the</strong> o<strong>the</strong>r sources (m<strong>in</strong><strong>in</strong>g, agricultural<br />

treatments, or erosional contributions). In Section 3.6.5, it is suggested that <strong>the</strong><br />

Hauraki peatlands and wetlands may be such a unique source.<br />

3.6.7 Key f<strong>in</strong>d<strong>in</strong>gs<br />

The focus <strong>in</strong> Section 3.6 was on <strong>in</strong>ferences that might be made based on correlations<br />

between <strong>the</strong> elements. Results suggest <strong>the</strong> follow<strong>in</strong>g:<br />

• Concentrations <strong>of</strong> z<strong>in</strong>c, cadmium and lead are highly correlated with each o<strong>the</strong>r.<br />

However, z<strong>in</strong>c and cadmium concentrations decrease with distance north <strong>of</strong> <strong>the</strong><br />

Waihou River mouth, whereas lead concentrations do not. For <strong>the</strong>se three<br />

elements, correlations, trends and relative enrichments are consistent with <strong>the</strong><br />

hypo<strong>the</strong>sis that:<br />

- Past m<strong>in</strong><strong>in</strong>g <strong>in</strong> <strong>the</strong> Oh<strong>in</strong>emuri catchment may have been a significant source <strong>of</strong><br />

lead, z<strong>in</strong>c and cadmium to coastal sediments <strong>of</strong> <strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames.<br />

Doc # 1120743 Page 45


- Agricultural treatments (facial eczema remedies and phosphate fertilisers) may<br />

be a significant ongo<strong>in</strong>g source <strong>of</strong> z<strong>in</strong>c and cadmium (respectively).<br />

• Copper and arsenic concentrations are also highly correlated to each o<strong>the</strong>r and<br />

also show associations with iron. These elements are uncorrelated with <strong>the</strong> o<strong>the</strong>r<br />

elements. Several factors suggest that additional arsenic and copper <strong>in</strong> <strong>the</strong> <strong>Firth</strong> <strong>of</strong><br />

Thames sediments may be primarily from wea<strong>the</strong>r<strong>in</strong>g and erosion <strong>of</strong> m<strong>in</strong>erals <strong>in</strong><br />

coastal areas <strong>of</strong> <strong>the</strong> Coromandel Pen<strong>in</strong>sula.<br />

• Mercury is <strong>the</strong> most enriched element <strong>in</strong> coastal sediments <strong>of</strong> <strong>the</strong> eastern coast <strong>of</strong><br />

<strong>the</strong> lower <strong>Firth</strong> <strong>of</strong> Thames, <strong>in</strong> concentration units (mg/kg). However, <strong>the</strong>re is no<br />

evidence that this additional mercury may be sourced from past m<strong>in</strong><strong>in</strong>g, erosion <strong>of</strong><br />

natural m<strong>in</strong>erals, or agricultural treatments. Instead, observations suggest <strong>the</strong><br />

presence <strong>of</strong> a unique source <strong>of</strong> mercury to <strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames, which is delivered<br />

to <strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames via <strong>the</strong> Piako River (among o<strong>the</strong>r potential conduits). Based<br />

on recent literature, it is thought possible that a substantial flux <strong>of</strong> mercury may<br />

enter <strong>the</strong> Piako River from <strong>the</strong> wetlands and peatlands <strong>of</strong> <strong>the</strong> Hauraki Pla<strong>in</strong>s.<br />

• Concentrations <strong>of</strong> chromium and nickel <strong>in</strong> <strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames’ surface sediments<br />

correlate strongly with each o<strong>the</strong>r and appear to be at <strong>the</strong>ir natural basel<strong>in</strong>e levels.<br />

Page 46 Doc # 1120743


4 Summary and recommendations<br />

4.1 Summary<br />

4.1.1 Relative enrichments<br />

Arsenic, cadmium, copper, mercury, lead and z<strong>in</strong>c are enriched <strong>in</strong> sediments <strong>of</strong> <strong>the</strong><br />

lower eastern coast <strong>of</strong> <strong>Firth</strong> <strong>of</strong> Thames, relative to concentrations present before<br />

Polynesian and European colonisation, and reference concentrations <strong>in</strong> sediments<br />

from Raglan Harbour. Concentrations <strong>of</strong> <strong>the</strong> o<strong>the</strong>r five elements measured <strong>in</strong> some or<br />

all samples (chromium, nickel, alum<strong>in</strong>ium, iron and lithium) are more typical <strong>of</strong> those<br />

observed <strong>in</strong> clean harbour sediments <strong>in</strong> o<strong>the</strong>r areas. Relative to its expected<br />

background concentration, <strong>the</strong> most highly enriched element is mercury. The average<br />

concentration <strong>of</strong> mercury <strong>in</strong> <strong>the</strong> lower <strong>Firth</strong>’s sediments is approximately seven times<br />

higher than <strong>in</strong> o<strong>the</strong>rwise comparable reference sediments. In absolute mass terms, <strong>the</strong><br />

most highly enriched element is z<strong>in</strong>c. The <strong>Firth</strong>’s sediments conta<strong>in</strong> about 10 mg/kg<br />

more z<strong>in</strong>c than might o<strong>the</strong>rwise be expected.<br />

4.1.2 Comparison to guidel<strong>in</strong>es<br />

The two elements which are nearest to or occasionally exceed guidel<strong>in</strong>e values for<br />

sediments are arsenic and mercury. Arsenic and mercury concentrations <strong>in</strong> <strong>the</strong> <strong>Firth</strong> <strong>of</strong><br />

Thames coastal sediments are not extremely high, but are at a po<strong>in</strong>t where <strong>the</strong>y may<br />

have adverse effects on some sediment-dwell<strong>in</strong>g organisms, at some locations. Both<br />

arsenic and mercury exceeded <strong>the</strong>ir respective ISQG-Low guidel<strong>in</strong>es at eight <strong>of</strong> <strong>the</strong><br />

thirteen (62% <strong>of</strong>) sites sampled by URS NZ Ltd. These were not <strong>the</strong> same sites. Sites<br />

with <strong>the</strong> highest mercury were not <strong>the</strong> sites with <strong>the</strong> highest arsenic. Although<br />

concentrations <strong>of</strong> copper, cadmium, lead and z<strong>in</strong>c were higher than typical values for<br />

uncontam<strong>in</strong>ated sediments, <strong>the</strong>y are still well below <strong>the</strong> lowest sediment quality<br />

guidel<strong>in</strong>e values. These elements are unlikely to pose a risk to <strong>the</strong> health <strong>of</strong> <strong>the</strong> <strong>Firth</strong>’s<br />

aquatic ecosystems.<br />

4.1.3 Local and general sources<br />

Only one area (at two adjacent sampl<strong>in</strong>g locations) stands out as a hotspot <strong>of</strong> localised<br />

metal contam<strong>in</strong>ation, which looks likely to have been from m<strong>in</strong>e tail<strong>in</strong>gs and<br />

urban/<strong>in</strong>dustrial fill deposited <strong>in</strong> <strong>the</strong> area as part <strong>of</strong> land reclamation. This is <strong>the</strong><br />

sediment <strong>in</strong> Kuranui Bay and an adjacent area <strong>in</strong> nor<strong>the</strong>rn Thames, which appears to<br />

have become contam<strong>in</strong>ated as a result <strong>of</strong> <strong>the</strong> Moanataiari reclamation. Depth results<br />

suggest that <strong>the</strong> worst contam<strong>in</strong>ation <strong>in</strong> this area was historic, but an ongo<strong>in</strong>g<br />

contribution from leachate from <strong>the</strong> base <strong>of</strong> <strong>the</strong> reclamation is also likely.<br />

Apart from this area, <strong>the</strong> <strong>in</strong>fluence <strong>of</strong> local sources appears m<strong>in</strong>or. The results provide<br />

little evidence that former m<strong>in</strong><strong>in</strong>g sites along <strong>the</strong> lower eastern coast <strong>of</strong> <strong>the</strong> <strong>Firth</strong> <strong>of</strong><br />

Thames had, or cont<strong>in</strong>ue to have, a significant impact on <strong>the</strong> quality <strong>of</strong> <strong>the</strong>ir nearest<br />

coastal sediments, relative to <strong>the</strong> more general impact from o<strong>the</strong>r sources. The clearest<br />

evidence <strong>of</strong> a local effect from past m<strong>in</strong><strong>in</strong>g is at Waiomu Bay, where sediment samples<br />

were statistically enriched with seven <strong>of</strong> <strong>the</strong> eight trace elements tested. However,<br />

although (statistically) significant, <strong>the</strong>se enrichments were not particularly substantial.<br />

Although <strong>the</strong>re is some evidence for <strong>the</strong> presence <strong>of</strong> <strong>the</strong> occasional gra<strong>in</strong> <strong>of</strong> a metalrich<br />

m<strong>in</strong>eral <strong>in</strong> sediments, more generally <strong>the</strong> data suggests that elevated arsenic,<br />

copper, lead, cadmium and z<strong>in</strong>c concentrations along <strong>the</strong> lower eastern coast <strong>of</strong> <strong>the</strong><br />

<strong>Firth</strong> <strong>of</strong> Thames are likely to be dom<strong>in</strong>ated by larger-scale sources, which are capable<br />

<strong>of</strong> caus<strong>in</strong>g an impact over <strong>the</strong> area as a whole. The three most likely larger-scale<br />

sources are enhanced wea<strong>the</strong>r<strong>in</strong>g and erosion follow<strong>in</strong>g land clearance, <strong>the</strong> impact <strong>of</strong><br />

historic m<strong>in</strong><strong>in</strong>g operations which <strong>in</strong>volved disposal <strong>of</strong> large volumes <strong>of</strong> tail<strong>in</strong>gs directly<br />

to <strong>the</strong> Oh<strong>in</strong>emuri River, and agricultural <strong>in</strong>puts. A fourth possible source identified <strong>in</strong><br />

Doc # 1120743 Page 47


this work (for mercury) may be dissolved organic matter enter<strong>in</strong>g <strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames<br />

from wetlands and peatlands <strong>of</strong> <strong>the</strong> Piako River catchment.<br />

4.1.4 Probable dom<strong>in</strong>ant sources by element<br />

(Note: Sources <strong>of</strong> <strong>the</strong> trace elements discussed <strong>in</strong> this section are <strong>in</strong> addition to those<br />

responsible for <strong>the</strong> natural background.)<br />

Z<strong>in</strong>c and cadmium<br />

Results for z<strong>in</strong>c and cadmium are <strong>the</strong> most consistent with <strong>the</strong> existence <strong>of</strong> two<br />

significant diffuse sources <strong>of</strong> z<strong>in</strong>c and cadmium to <strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames: past m<strong>in</strong><strong>in</strong>g <strong>in</strong><br />

<strong>the</strong> Oh<strong>in</strong>emuri-Waihou catchment and current agricultural treatments.<br />

• Oh<strong>in</strong>emuri catchment m<strong>in</strong><strong>in</strong>g is thought to be <strong>the</strong> most likely m<strong>in</strong><strong>in</strong>g-related source<br />

<strong>of</strong> z<strong>in</strong>c and cadmium, because <strong>of</strong> <strong>the</strong> large volumes <strong>of</strong> tail<strong>in</strong>gs <strong>in</strong>volved. The<br />

Waihou River is known to have received between 500-800 tonnes per annum <strong>of</strong><br />

tail<strong>in</strong>gs from <strong>the</strong> Oh<strong>in</strong>emuri River for over 50 years.<br />

• Facial eczema remedies are <strong>the</strong> most substantial potential source <strong>of</strong> z<strong>in</strong>c from<br />

agriculture, and phosphate fertilisers are <strong>the</strong> most substantial source <strong>of</strong> cadmium<br />

Lead<br />

Results for lead are consistent with <strong>the</strong> existence <strong>of</strong> one significant diffuse source <strong>of</strong><br />

additional lead, which is most likely to be <strong>the</strong> <strong>in</strong>fluence <strong>of</strong> past m<strong>in</strong><strong>in</strong>g <strong>in</strong> <strong>the</strong> Oh<strong>in</strong>emuri<br />

catchment. This m<strong>in</strong><strong>in</strong>g source appears to have been a source <strong>of</strong> significant lead, z<strong>in</strong>c<br />

and cadmium. Unlike z<strong>in</strong>c and cadmium, <strong>the</strong>re is no evidence <strong>of</strong> an additional<br />

agricultural source <strong>of</strong> lead.<br />

Copper and arsenic<br />

Several factors suggest that additional arsenic and copper <strong>in</strong> <strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames<br />

sediments is primarily from wea<strong>the</strong>r<strong>in</strong>g <strong>of</strong> m<strong>in</strong>erals such as pyrite <strong>in</strong> coastal areas <strong>of</strong><br />

<strong>the</strong> Coromandel Pen<strong>in</strong>sula. It is likely that <strong>the</strong> rate and extent <strong>of</strong> wea<strong>the</strong>r<strong>in</strong>g and<br />

erosion, and <strong>in</strong>flux <strong>of</strong> arsenic and copper, was enhanced by historic land clearance<br />

activities around <strong>the</strong> coastal areas <strong>of</strong> <strong>the</strong> Coromandel Pen<strong>in</strong>sula, follow<strong>in</strong>g Polynesian<br />

and European settlement <strong>in</strong> <strong>the</strong> area.<br />

Mercury<br />

For mercury, <strong>the</strong> most enriched element, <strong>the</strong>re is no positive evidence that past m<strong>in</strong><strong>in</strong>g,<br />

erosion <strong>of</strong> natural m<strong>in</strong>erals, or agricultural treatments have been significant sources to<br />

<strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames sediments. Ra<strong>the</strong>r, <strong>the</strong> results suggest a unique source <strong>of</strong> mercury<br />

which is delivered to <strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames via <strong>the</strong> Piako River among o<strong>the</strong>r potential<br />

conduits. Based on recent literature, it is thought likely that this mercury may orig<strong>in</strong>ate<br />

from dra<strong>in</strong>age <strong>of</strong> <strong>the</strong> wetlands and peatlands <strong>of</strong> <strong>the</strong> Hauraki Pla<strong>in</strong>s. In addition to this,<br />

<strong>the</strong> area around <strong>the</strong> Moanataiari reclamation is a localised hot-spot <strong>of</strong> mercury<br />

contam<strong>in</strong>ation.<br />

Page 48 Doc # 1120743


4.2 Recommendations<br />

In this section, specific recommendations are numbered and italicised. The rationale for<br />

each recommendation is provided <strong>in</strong> <strong>the</strong> non-italicised text immediately preced<strong>in</strong>g <strong>the</strong><br />

recommendation.<br />

Although several elements are enriched <strong>in</strong> <strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames sediments, it is not yet<br />

clear whe<strong>the</strong>r <strong>the</strong>ir concentrations are at steady state, <strong>in</strong>creas<strong>in</strong>g or decreas<strong>in</strong>g. In <strong>the</strong><br />

face <strong>of</strong> a steady source <strong>of</strong> a given metal, concentrations can sometimes decrease as a<br />

result <strong>in</strong> a greater <strong>in</strong>flux <strong>of</strong> clean sediment caus<strong>in</strong>g dilution. Conversely, better control<br />

<strong>of</strong> ‘clean’ sediment <strong>in</strong>puts can result <strong>in</strong> a relative <strong>in</strong>crease <strong>in</strong> <strong>the</strong> concentrations <strong>of</strong><br />

contam<strong>in</strong>ants <strong>in</strong> deposited sediments.<br />

1. It is recommended that sediments <strong>of</strong> <strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames be sampled once every<br />

five years to allow for early warn<strong>in</strong>g, <strong>in</strong> <strong>the</strong> event that concentrations <strong>of</strong> one or more<br />

trace elements are gradually <strong>in</strong>creas<strong>in</strong>g. Future test<strong>in</strong>g could also <strong>in</strong>clude related<br />

variables, such as concentrations <strong>of</strong> dissolved organic carbon <strong>in</strong> <strong>the</strong> Piako River.<br />

In terms <strong>of</strong> diffuse contam<strong>in</strong>ation, two elements stand out as a consequence <strong>of</strong><br />

exceed<strong>in</strong>g sediment quality guidel<strong>in</strong>es at several locations. These are mercury and<br />

arsenic. There is reasonable evidence that <strong>the</strong> additional arsenic was caused by<br />

enhanced wea<strong>the</strong>r<strong>in</strong>g and erosion <strong>of</strong> <strong>the</strong> Coromandel Pen<strong>in</strong>sula, follow<strong>in</strong>g colonisation<br />

and land clearance. There may be little that can be done about this source, but options<br />

may be worth <strong>in</strong>vestigat<strong>in</strong>g. Arsenic does not bioaccumulate. For mercury, <strong>the</strong>re is<br />

tentative evidence that <strong>the</strong> element is mobilised <strong>in</strong> dra<strong>in</strong>age water from <strong>the</strong> peatlands<br />

and wetlands <strong>of</strong> <strong>the</strong> Hauraki Pla<strong>in</strong>s. Mercury is <strong>of</strong> more <strong>in</strong>herent concern that arsenic,<br />

due to its ability to change its chemical form and accumulate both <strong>in</strong> organisms, and up<br />

food cha<strong>in</strong>s (bioaccumulation and biomagnification). This is particularly given that <strong>the</strong><br />

<strong>Firth</strong> <strong>of</strong> Thames is an important site for waders and shorebirds, and <strong>the</strong> <strong>in</strong>tertidal area<br />

from Kaiaua to <strong>the</strong> Waihou River mouth is listed as a wetland <strong>of</strong> <strong>in</strong>ternational<br />

importance under <strong>the</strong> Ramsar Convention.<br />

2. For mercury, it is recommended that future work focus on:<br />

a. Quantify<strong>in</strong>g <strong>the</strong> relative significance <strong>of</strong> wetlands and peat deposits <strong>in</strong> <strong>the</strong><br />

Hauraki Pla<strong>in</strong>s as sources <strong>of</strong> mercury to <strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames, relative to o<strong>the</strong>r<br />

sources, <strong>in</strong>clud<strong>in</strong>g possible geo<strong>the</strong>rmal <strong>in</strong>puts. A reliable estimate <strong>of</strong> mercury<br />

fluxes from various sources would require ultra-trace measurements <strong>of</strong> mercury<br />

concentrations <strong>in</strong> waters and suspended sediments enter<strong>in</strong>g <strong>the</strong> <strong>Firth</strong> <strong>of</strong><br />

Thames over one or more seasons, and flow volumes.<br />

b. Identify<strong>in</strong>g land management factors that would <strong>in</strong>crease or decrease mercury<br />

<strong>in</strong>puts to <strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames.<br />

c. Identify<strong>in</strong>g <strong>the</strong> most significant risks associated with mercury which has entered<br />

<strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames sediment reservoir. This would need to <strong>in</strong>clude an<br />

assessment <strong>of</strong> likely trends <strong>in</strong> sediment mercury concentrations, and probable<br />

chemical transformations and <strong>the</strong>ir significance. A focus on <strong>the</strong> significance <strong>of</strong><br />

mercury <strong>in</strong> <strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames to both wildlife, and human food sources, would<br />

be appropriate.<br />

d. Mangrove colonisation has <strong>the</strong> potential to substantially alter mercury chemistry<br />

<strong>in</strong> colonised areas. Ideally, <strong>the</strong> relationships between mangrove establishment<br />

and mercury cycl<strong>in</strong>g (<strong>in</strong>clud<strong>in</strong>g mobilisation and fixation) should also be<br />

<strong>in</strong>vestigated.<br />

3. For arsenic, <strong>in</strong>vestigate <strong>the</strong> feasibility <strong>of</strong> any simple erosion control measures that<br />

could be brought to bear. Measures to limit erosion should also reduce <strong>the</strong> <strong>in</strong>flux <strong>of</strong><br />

Doc # 1120743 Page 49


arsenic (and copper), and should eventually result <strong>in</strong> a lower concentration <strong>of</strong><br />

arsenic <strong>in</strong> surface sediments.<br />

One area stands out as a localised hotspot <strong>of</strong> contam<strong>in</strong>ation by several elements, most<br />

notably mercury. This is Kuranui Bay and an adjacent part <strong>of</strong> nor<strong>the</strong>rn Thames, <strong>in</strong> <strong>the</strong><br />

area <strong>of</strong> <strong>the</strong> pipel<strong>in</strong>e. <strong>Sediments</strong> <strong>in</strong> this area appear to have become contam<strong>in</strong>ated as a<br />

result <strong>of</strong> fill material used <strong>in</strong> <strong>the</strong> base <strong>of</strong> <strong>the</strong> Moanataiari reclamation dur<strong>in</strong>g <strong>the</strong> long<br />

history <strong>of</strong> Thames. Potential risks that <strong>the</strong> area may pose to <strong>the</strong> wider ecosystem have<br />

not been quantified. Potential ongo<strong>in</strong>g discharges are unknown. Contam<strong>in</strong>ated sites<br />

<strong>in</strong>vestigations are carried out <strong>in</strong> stages, called tiers. A tier I <strong>in</strong>vestigation would <strong>in</strong>clude<br />

a detailed review <strong>of</strong> history and limited specific sampl<strong>in</strong>g. Results <strong>of</strong> <strong>the</strong> tier I<br />

<strong>in</strong>vestigation are used to guide <strong>the</strong> tier II <strong>in</strong>vestigation, which typically <strong>in</strong>cludes more<br />

detailed sampl<strong>in</strong>g and a site-specific risk assessment.<br />

4. Specific tier I and II contam<strong>in</strong>ated site <strong>in</strong>vestigations should be carried out <strong>in</strong> <strong>the</strong><br />

area <strong>of</strong> <strong>the</strong> <strong>of</strong> <strong>the</strong> Moanataiari reclamation to determ<strong>in</strong>e hazards, pathways, risks to<br />

aquatic organisms, and management options.<br />

Page 50 Doc # 1120743


References<br />

Ackermann, F. 1980: A procedure for correct<strong>in</strong>g <strong>the</strong> gra<strong>in</strong> size effect <strong>in</strong> heavy metal analysis <strong>of</strong><br />

estuar<strong>in</strong>e and coastal sediments. Environmental Technology Letters 1:518-527.<br />

ANZECC and ARMCANZ 2000: Australian and New Zealand Guidel<strong>in</strong>es for Fresh and Mar<strong>in</strong>e<br />

Water Quality. Australian and New Zealand Environment and Conservation Council (ANZECC)<br />

and Agriculture and Resource Management Council <strong>of</strong> Australia and New Zealand<br />

(ARMCANZ).<br />

Basher, L.R. 2003: The Motueka and Riwaka catchments. Landcare Research, L<strong>in</strong>coln.<br />

Bennet-Chambers, M.; Davies, P. and Knott, B. 1999: Cadmium <strong>in</strong> aquatic ecosystems <strong>in</strong><br />

Western Australia: a legacy <strong>of</strong> nutrient-deficient soils. Journal <strong>of</strong> Environmental Management<br />

57:283-295.<br />

Birch, G.F. and Taylor, S.E. 1999: Source <strong>of</strong> heavy metals <strong>in</strong> sediments <strong>of</strong> <strong>the</strong> Port Jackson<br />

estuary, Australia. Science <strong>of</strong> <strong>the</strong> Total Environment 227:123-138.<br />

Craw, D. and Chappell, D. A. 2000: Metal redistribution <strong>in</strong> historic m<strong>in</strong>e wastes, Coromandel<br />

Pen<strong>in</strong>sula, New Zealand. New Zealand Journal <strong>of</strong> Geology and Geophysics, 43:187-198.<br />

de Groot, A.J., Zschuppe, K.H. and Salomons, W, 1982: Standardization <strong>of</strong> methods <strong>of</strong> analysis<br />

for heavy metals <strong>in</strong> sediments. Hydrobiologia 92:689-695.<br />

D<strong>in</strong>, Z. 1992: Use <strong>of</strong> alum<strong>in</strong>ium to normalise heavy-metal data from estuar<strong>in</strong>e and coastal<br />

sediments <strong>of</strong> <strong>the</strong> Straits <strong>of</strong> Malacca. Mar<strong>in</strong>e Pollution Bullet<strong>in</strong> 24 :484-494.<br />

Frankl<strong>in</strong>, R.E., Duis, L. and Brown, R. 2005: <strong>Trace</strong> element content <strong>of</strong> selected fertilizers and<br />

micronutrient source materials. Communications <strong>in</strong> Soil Science and Plant Analysis, 36:1591-<br />

1609.<br />

Gray, C.W., McLaren, R.G. and Roberts A.H.C. 2003: Cadmium leach<strong>in</strong>g from some New<br />

Zealand pasture soils. European Journal <strong>of</strong> Soil Science, 54:159-166.<br />

Holl<strong>in</strong>ger, E. 2002: Textures, m<strong>in</strong>eralogy and geochemistry <strong>of</strong> low-sulfidation Au-Ag epi<strong>the</strong>rmal<br />

ve<strong>in</strong>s <strong>in</strong> <strong>the</strong> Gladstone Hill area, Waihi, New Zealand. M.Sc. Thesis, University <strong>of</strong> Auckland.<br />

Hume, T.M. and Dahm, J. 1992: An Investigation <strong>of</strong> <strong>the</strong> effects <strong>of</strong> Polynesian and European<br />

land use on sedimentation <strong>in</strong> Coromandel estuaries. DSIR Mar<strong>in</strong>e and Freshwater Consultancy<br />

Report No. 6104.<br />

Jenk<strong>in</strong>s, I. 1991: Aspects <strong>of</strong> Waste Rock Characterisation for <strong>the</strong> Epi<strong>the</strong>rmal Ve<strong>in</strong>-hosted<br />

Deposits <strong>of</strong> <strong>the</strong> Hauraki Goldfield. MSc Thesis, University <strong>of</strong> Auckland.<br />

K<strong>in</strong>gett Mitchell Ltd, 2004: Assessment <strong>of</strong> <strong>the</strong> coastal environment adjacent to <strong>the</strong> Thames<br />

Landfill. Report prepared by K<strong>in</strong>gett Mitchell Ltd on behalf <strong>of</strong> <strong>the</strong> Thames Coromandel District<br />

Council. Included as Appendix E <strong>of</strong> Maunsell, 2005: Statement <strong>of</strong> support<strong>in</strong>g <strong>in</strong>formation and<br />

assessment <strong>of</strong> environmental effects, closure <strong>of</strong> Burke Street Landfill, Thames. Prepared for<br />

Thames Coromandel District Council. Environment Waikato Document 989791.<br />

Liv<strong>in</strong>gston, M.E. (Ed.) 1987: Water and soil miscellaneous publication Number 104. Prelim<strong>in</strong>ary<br />

Studies on <strong>the</strong> Effects <strong>of</strong> Past M<strong>in</strong><strong>in</strong>g on <strong>the</strong> Aquatic Environment, Coromandel Pen<strong>in</strong>sula.<br />

Published for <strong>the</strong> National Water and Soil Conservation Authority by <strong>the</strong> Water and Soil<br />

Directorate, M<strong>in</strong>istry <strong>of</strong> Works and Development, Well<strong>in</strong>gton.<br />

Lor<strong>in</strong>g, D.H. 1991: Normalization <strong>of</strong> heavy metal data from estuar<strong>in</strong>e and coastal sediments.<br />

Journal <strong>of</strong> Mar<strong>in</strong>e Science. 48:101-115.<br />

Lor<strong>in</strong>g, D.H. and Rantala, R.T.T. 1992: Manual for <strong>the</strong> geochemical analyses <strong>of</strong> mar<strong>in</strong>e<br />

sediments and suspended particulate matter. Earth Science Reviews, 32:235-283.<br />

Mart<strong>in</strong>, C.E. and Mculloch, J.T. 1999: Nd-Sr isotopic and trace element geochemistry <strong>of</strong> river<br />

sediments and soils <strong>in</strong> a fertilised catchment, NSW Australia. Geochimica et Cosmochimica<br />

Acta 63:287-305.<br />

M<strong>in</strong>istry for <strong>the</strong> Environment, 2001: Plann<strong>in</strong>g for Climate Change Effects on <strong>Coast</strong>al Marg<strong>in</strong>s. A<br />

report prepared for <strong>the</strong> M<strong>in</strong>istry for <strong>the</strong> Environment as part <strong>of</strong> <strong>the</strong> New Zealand Climate Change<br />

Programme. September 2001, Ref. ME410. Available from:<br />

http://www.climatechange.govt.nz/resources/reports/effect-coastal-sep01/part5.pdf<br />

Doc # 1120743 Page 51


Moore, P., Richie, N. and Homer, L. 1996: Coromandel Gold. A Guide to <strong>the</strong> Historic Goldfields<br />

<strong>of</strong> <strong>the</strong> Coromandel. Dunmore Press.<br />

Moore, T.A., Black, A. Centeno, J.A., Hard<strong>in</strong>g, J.S. and Trumm, D.A. 2005: Metal Contam<strong>in</strong>ants<br />

<strong>in</strong> New Zealand. Source, Treatments, and Effects on Ecology and Human Health. Resolutionz<br />

Press.<br />

National Oceanic and Atmospheric Adm<strong>in</strong>istration, 1988: National status and trends program for<br />

mar<strong>in</strong>e environmental quality progress report - a summary <strong>of</strong> selected data on chemical<br />

contam<strong>in</strong>ants <strong>in</strong> sediments collected dur<strong>in</strong>g 1984, 1985,1986 and 1987. National Oceanic and<br />

Atmospheric Adm<strong>in</strong>istration (NOAA), National Ocean Service NOS OM 44.<br />

O’Driscoll, N.J., Rencz, A, and Lean, D.R.S. 2005: The biogeochemistry and fate <strong>of</strong> mercury <strong>in</strong><br />

<strong>the</strong> environment. In Sigel, A. Sigel, H. and Sigel, R.K.O. (Eds.) Metal ions <strong>in</strong> biological systems<br />

43. Biogeochemical cycles <strong>of</strong> <strong>the</strong> elements. Taylor and Francis Group, Florida.<br />

Ritchie, H. 2000: Good farm management? – A review <strong>of</strong> hill country resource management<br />

issues <strong>in</strong> <strong>the</strong> Waikato region. Environment Waikato Technical Report 2000/15, Environment<br />

Waikato, Hamilton.<br />

Rumsby, A.J., 1996: Environmental geochemistry <strong>of</strong> sulphide m<strong>in</strong>e wastes, Tui M<strong>in</strong>e, Mt Te<br />

Aroha. MSc Thesis, University <strong>of</strong> Waikato.<br />

Salomons, W., and Förstner, U. 1980: <strong>Trace</strong> metal analysis <strong>of</strong> polluted sediments. Part II:<br />

Evaluation <strong>of</strong> environmental impact. Environmental Technology Letters 1:506-517.<br />

Tay, K.A. 1981: Heavy Metals <strong>in</strong> <strong>the</strong> Tui M<strong>in</strong>e Dra<strong>in</strong>age. MSc Thesis, University <strong>of</strong> Waikato.<br />

Taylor, M.D. 1997a: The fate <strong>of</strong> Uranium Contam<strong>in</strong>ants <strong>of</strong> Phosphate Fertilisers <strong>in</strong> New Zealand<br />

Soils. MSc Thesis. University <strong>of</strong> Waikato.<br />

Taylor, M,D,, 1997b:. Accumulation <strong>of</strong> cadmium derived from fertiliser <strong>in</strong> New Zealand soils.<br />

Science <strong>of</strong> <strong>the</strong> Total Environment. 208:123-126.<br />

Taylor, M.D.; Pandey, S.; Lee, R. 2005: Reduction <strong>of</strong> Road Run-<strong>of</strong>f Contam<strong>in</strong>ants: Laboratory<br />

experiments and monitor<strong>in</strong>g <strong>of</strong> treatment walls. Land Transport New Zealand Research Report<br />

282, Land Transport New Zealand, Well<strong>in</strong>gton, New Zealand.<br />

United States Environmental Protection Agency, 2001. Methods for collection, storage and<br />

manipulation <strong>of</strong> sediments for chemical and toxicological analyses: technical manual. USEPA,<br />

October 2001.<br />

Watson, D.P. 1989: The geology, m<strong>in</strong>eralisation and field relationship <strong>of</strong> <strong>the</strong> Kauaeranga<br />

c<strong>in</strong>nabar deposit. In Kear, D. (Ed.) M<strong>in</strong>eral Deposits <strong>of</strong> New Zealand. Monograph 13. Australian<br />

Institute <strong>of</strong> M<strong>in</strong><strong>in</strong>g and Metallurgy.<br />

Webster, J.G. 1995: Chemical processes affect<strong>in</strong>g trace metal transport <strong>in</strong> <strong>the</strong> Waihou River<br />

and estuary, New Zealand. New Zealand Journal <strong>of</strong> Mar<strong>in</strong>e and Freshwater Research 29:539-<br />

553.<br />

Page 52 Doc # 1120743


Appendix 1. Fur<strong>the</strong>r details <strong>of</strong> each location from which<br />

sediment samples were collected by URS as part <strong>of</strong> this study.<br />

Waihou River mouth<br />

The Waihou River is <strong>the</strong> largest river with<strong>in</strong> <strong>the</strong> study area. The dra<strong>in</strong>age catchment<br />

<strong>in</strong>cludes <strong>the</strong> follow<strong>in</strong>g m<strong>in</strong><strong>in</strong>g <strong>in</strong>puts:<br />

• Mt Te Aroha (Tui M<strong>in</strong>e) – a base metal m<strong>in</strong>e which operated between 1967 and<br />

1973 and which is regarded as one <strong>of</strong> New Zealand’s most contam<strong>in</strong>ated sites.<br />

• Karangahake Gorge, sections <strong>of</strong> which were m<strong>in</strong>ed between 1882 and1933.<br />

• Martha Hill m<strong>in</strong>e <strong>in</strong> Waihi, which is currently operational, but which operates<br />

under modern resource consent conditions which m<strong>in</strong>imise potential impacts.<br />

Historical evidence suggests that tail<strong>in</strong>gs from several different m<strong>in</strong>es conta<strong>in</strong><strong>in</strong>g high<br />

concentrations <strong>of</strong> pyrite (FeS2) and o<strong>the</strong>r metal sulphides, were deposited directly <strong>in</strong>to<br />

<strong>the</strong> Waihou River and its tributaries dur<strong>in</strong>g <strong>the</strong> early 1900s. Water and sediment<br />

sampl<strong>in</strong>g conducted <strong>in</strong> <strong>the</strong> catchment has previously <strong>in</strong>dicated significant heavy metal<br />

contam<strong>in</strong>ation (Liv<strong>in</strong>gston, 1987).<br />

In addition to possible metal contam<strong>in</strong>ation due to historical m<strong>in</strong><strong>in</strong>g operations,<br />

agricultural activities may result <strong>in</strong> elevated cadmium concentrations <strong>in</strong> sediments.<br />

Urban <strong>in</strong>puts from Waihi, Paeroa and Te Ahora townships also dra<strong>in</strong> to <strong>the</strong> Waihou<br />

River. Two composite samples were collected from this area, with each consist<strong>in</strong>g <strong>of</strong><br />

five sub-samples (Appendix 1). Sampl<strong>in</strong>g was conducted on <strong>the</strong> western and eastern<br />

banks <strong>of</strong> <strong>the</strong> river mouth us<strong>in</strong>g an Eckman grab sampl<strong>in</strong>g device deployed from a boat.<br />

Sub-samples collected and accepted us<strong>in</strong>g this method were surface samples, to a<br />

nom<strong>in</strong>al depth <strong>of</strong> at least 10 cm (see Section 2.3.3 for fur<strong>the</strong>r details). Several <strong>of</strong> <strong>the</strong><br />

sub-samples were collected by URS staff on foot, as <strong>the</strong> fast-flow<strong>in</strong>g current <strong>in</strong> <strong>the</strong><br />

Waihou River prevented sampl<strong>in</strong>g us<strong>in</strong>g <strong>the</strong> Eckman bottom grabber.<br />

Piako River mouth and Opani mudflats<br />

There is no known m<strong>in</strong><strong>in</strong>g <strong>in</strong>fluence <strong>in</strong> <strong>the</strong> Piako River catchment area, but agricultural<br />

<strong>in</strong>puts are a potential source <strong>of</strong> trace elements <strong>in</strong> this area. Three composite sediment<br />

samples were collected from this area, each consist<strong>in</strong>g <strong>of</strong> five sub-samples (Appendix<br />

1). Piako River mouth sampl<strong>in</strong>g was conducted on <strong>the</strong> western and eastern banks <strong>of</strong><br />

<strong>the</strong> river mouth. Sites were accessed by boat on an <strong>in</strong>com<strong>in</strong>g tide and <strong>the</strong> sub-samples<br />

collected with an Eckman bottom grab sampler (Section 2.3.3) to a nom<strong>in</strong>al depth <strong>of</strong> 10<br />

cm. Samples could not be collected from <strong>the</strong> edge <strong>of</strong> <strong>the</strong> channel beyond <strong>the</strong> location<br />

<strong>of</strong> SDB 578, as <strong>the</strong> sediment was too hard to penetrate. Sediment samples that were<br />

collected from <strong>the</strong> ma<strong>in</strong> channel conta<strong>in</strong>ed ma<strong>in</strong>ly shell fragments and could not be<br />

analysed. A separate composite (made <strong>of</strong> five sub-samples <strong>of</strong> 0-10 cm depth) was<br />

collected from <strong>the</strong> Opani mudflat (see po<strong>in</strong>t SDB568 <strong>in</strong> Figure 2-2), which is situated<br />

between <strong>the</strong> mouths <strong>of</strong> <strong>the</strong> Waihou and Piako rivers (Appendix 1).<br />

Thames urban samples<br />

Discharges <strong>of</strong> stormwater from urban areas can result <strong>in</strong> elevated concentrations <strong>of</strong><br />

copper, lead and z<strong>in</strong>c <strong>in</strong> sediments. Two general sampl<strong>in</strong>g locations near <strong>the</strong> Thames<br />

township were used as part <strong>of</strong> this sampl<strong>in</strong>g programme.<br />

Stormwater pipel<strong>in</strong>e vic<strong>in</strong>ity<br />

Three composite samples (each made <strong>of</strong> five sub-samples <strong>of</strong> 0-10 cm depth) and one<br />

vertical core consist<strong>in</strong>g <strong>of</strong> two depths (0-2 cm and 2-10 cm) were collected from <strong>the</strong><br />

area <strong>of</strong> <strong>the</strong> Thames stormwater pipel<strong>in</strong>e (Appendix 1). Sub-samples were collected<br />

us<strong>in</strong>g a plastic hand trowel to a depth <strong>of</strong> 10 cm (i.e. 0-10 cm, Section 2.3.1), and<br />

vertical pr<strong>of</strong>ile samples were collected with a sediment corer. One composite sample<br />

(consist<strong>in</strong>g <strong>of</strong> five sub-samples) was taken along <strong>the</strong> walkable length <strong>of</strong> <strong>the</strong> pipel<strong>in</strong>e.<br />

Two <strong>of</strong> <strong>the</strong> sub-samples for <strong>the</strong> o<strong>the</strong>r composite were collected along <strong>the</strong> channel <strong>of</strong> a<br />

small stream, which discharged from a small PVC pipe (approx. 50 mm OD)<br />

Doc # 1120743 Page 53


immediately adjacent to <strong>the</strong> pipel<strong>in</strong>e outfall. <strong>Sediments</strong> were generally very f<strong>in</strong>e-gra<strong>in</strong>ed<br />

silty sediments, with <strong>the</strong> upper 2-3 cm centimetres appear<strong>in</strong>g to be an oxic layer.<br />

Thames stormwater outlet and wharf areas<br />

One composite sediment sample (consist<strong>in</strong>g <strong>of</strong> five 0-10 cm sub-samples) was<br />

collected from each <strong>of</strong> <strong>the</strong>se two areas, us<strong>in</strong>g a plastic hand trowel (Appendix 1). Subsamples<br />

for <strong>the</strong> stormwater composite sample were collected from <strong>the</strong> true right-hand<br />

side <strong>of</strong> <strong>the</strong> channel and adjacent to <strong>the</strong> Thames stormwater outlet. They were collected<br />

dur<strong>in</strong>g a storm event. These samples were found to conta<strong>in</strong> very f<strong>in</strong>e-gra<strong>in</strong>ed silty<br />

sediments, with <strong>the</strong> upper 2-3 cm appear<strong>in</strong>g to be an oxic layer. The wharf area is also<br />

<strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity <strong>of</strong> <strong>the</strong> Kauaeranga River outflow (NZMS T13 360473). Samples from this<br />

area were found to conta<strong>in</strong> ma<strong>in</strong>ly f<strong>in</strong>e to medium gra<strong>in</strong> silty sediments, with <strong>the</strong> upper<br />

2-3 cm appear<strong>in</strong>g to be an oxic layer.<br />

Thames Harbour mudflats and deeper harbour<br />

The Thames Harbour mudflats might receive trace element <strong>in</strong>puts from both distant<br />

and nearby sources. The Piako River mouth may contribute significant sediment<br />

carried from <strong>the</strong> Hauraki Pla<strong>in</strong>s. Inputs from <strong>the</strong> urban area could result <strong>in</strong> elevated<br />

concentrations <strong>of</strong> copper, lead and z<strong>in</strong>c as a result <strong>of</strong> road and ro<strong>of</strong> run-<strong>of</strong>f and<br />

<strong>in</strong>dustrial discharges. The Kauaeranga River also discharges <strong>in</strong>to Thames Harbour.<br />

The Kauaeranga Valley was m<strong>in</strong>ed for c<strong>in</strong>nabar (mercuric sulphide, HgS) between<br />

1899 to approximately 1906 (Watson, 1989). A total <strong>of</strong> eight composite sediment<br />

samples (each made <strong>of</strong> five sub-samples <strong>of</strong> 0-10 cm depth) were collected from <strong>the</strong><br />

Thames mudflats (Appendix 1). The mudflats were observed to conta<strong>in</strong> ma<strong>in</strong>ly f<strong>in</strong>e to<br />

medium gra<strong>in</strong> silty sediments, with <strong>the</strong> upper 2-3 cm appear<strong>in</strong>g to be an oxic layer. Two<br />

<strong>of</strong> <strong>the</strong>se samples were analysed <strong>in</strong> duplicate for quality assurance purposes. A<br />

separate composite sample (made <strong>of</strong> five sub-samples <strong>of</strong> 0-10 cm depth) was collected<br />

from fur<strong>the</strong>r out <strong>in</strong>to <strong>the</strong> Thames harbour (po<strong>in</strong>t SDB569 <strong>in</strong> Figure 2-2) to a nom<strong>in</strong>al<br />

depth <strong>of</strong> about 10 cm, us<strong>in</strong>g <strong>the</strong> Eckman grab sampler.<br />

Tararu Stream<br />

Historical m<strong>in</strong><strong>in</strong>g activities were undertaken at several locations with<strong>in</strong> this catchment.<br />

Access to <strong>the</strong> site was ga<strong>in</strong>ed from <strong>the</strong> shore. Six composite sediment samples (each<br />

compris<strong>in</strong>g five sub-samples <strong>of</strong> 0-10 cm depth) were collected from <strong>the</strong> <strong>in</strong>tertidal zone<br />

surround<strong>in</strong>g <strong>the</strong> stream mouth at this location us<strong>in</strong>g <strong>the</strong> plastic hand trowel (Appendix<br />

1). These were ma<strong>in</strong>ly f<strong>in</strong>e to medium gra<strong>in</strong> gravels conta<strong>in</strong><strong>in</strong>g some medium gra<strong>in</strong><br />

sands. Two <strong>of</strong> <strong>the</strong>se samples were analysed <strong>in</strong> duplicate for quality assurance<br />

purposes.<br />

Tapu Stream<br />

Historical m<strong>in</strong><strong>in</strong>g activities have been undertaken at several locations (<strong>in</strong>clud<strong>in</strong>g<br />

Sheridan and Mahara) with<strong>in</strong> this catchment between 1869 and 1906. Access to <strong>the</strong><br />

site was ga<strong>in</strong>ed from <strong>the</strong> shore. Six composite sediment samples (each compris<strong>in</strong>g five<br />

sub-samples <strong>of</strong> 0-10 cm depth) were collected from <strong>the</strong> <strong>in</strong>tertidal zone surround<strong>in</strong>g <strong>the</strong><br />

stream mouth us<strong>in</strong>g <strong>the</strong> plastic hand trowel (Appendix 1). <strong>Sediments</strong> from this site were<br />

found to consist ma<strong>in</strong>ly <strong>of</strong> coarse gra<strong>in</strong> gravels.<br />

Te Puru<br />

This was a control site, as <strong>the</strong>re have not been any significant past m<strong>in</strong><strong>in</strong>g or<br />

agricultural activities with<strong>in</strong> <strong>the</strong> catchment. Access to <strong>the</strong> site was ga<strong>in</strong>ed from <strong>the</strong><br />

shore. As with Tararu and Tapu, six composite sediment samples (0-10 cm) were<br />

collected <strong>in</strong> <strong>the</strong> <strong>in</strong>tertidal zone surround<strong>in</strong>g <strong>the</strong> stream mouth. In addition, a vertical<br />

pr<strong>of</strong>ile sample was collected us<strong>in</strong>g a sediment corer, with sub-samples from depths 0-2<br />

cm, 2-10 cm, 15-20 cm and 25-30 cm be<strong>in</strong>g analysed <strong>in</strong>dividually. <strong>Sediments</strong> from this<br />

site were found to consist ma<strong>in</strong>ly <strong>of</strong> medium to coarse gra<strong>in</strong> sands.<br />

Thornton Bay<br />

Like Te Puru, this was also a control site, as <strong>the</strong>re have not been any significant past<br />

m<strong>in</strong><strong>in</strong>g or agricultural activities with<strong>in</strong> <strong>the</strong> catchment. Access to <strong>the</strong> site was ga<strong>in</strong>ed<br />

Page 54 Doc # 1120743


from <strong>the</strong> shore. Six composite sediment samples (each compris<strong>in</strong>g five sub-samples <strong>of</strong><br />

0-10 cm depth) were collected from <strong>the</strong> <strong>in</strong>tertidal zone surround<strong>in</strong>g <strong>the</strong> stream mouth<br />

us<strong>in</strong>g <strong>the</strong> plastic hand trowel (Appendix 1). <strong>Sediments</strong> from this site were found to<br />

consist <strong>of</strong> ma<strong>in</strong>ly medium to coarse gra<strong>in</strong> sands.<br />

Waiomu Stream<br />

A number <strong>of</strong> m<strong>in</strong>es operated with<strong>in</strong> this valley between 1890 and 1936 (<strong>in</strong>clud<strong>in</strong>g<br />

Paroquet, Broken Hill, Monowai and Comstock M<strong>in</strong>es). Access to <strong>the</strong> site was ga<strong>in</strong>ed<br />

from <strong>the</strong> shore. Exploration <strong>in</strong> this area from 1971 to 1973 and 1983 to 1984 has<br />

revealed <strong>the</strong> presence <strong>of</strong> ore bodies still with<strong>in</strong> this region (Moore et al., 1996). The ore<br />

deposit has been described as be<strong>in</strong>g an epi<strong>the</strong>rmal ve<strong>in</strong> deposit with significant base<br />

metal sulphides (>3%). These would have <strong>the</strong> potential to elevate concentrations <strong>of</strong><br />

elements <strong>in</strong> sediments if <strong>the</strong> ore body undergoes oxidation. In 1981, a prelim<strong>in</strong>ary<br />

survey <strong>of</strong> <strong>the</strong> Waiomu stream conducted by <strong>the</strong> Department <strong>of</strong> Scientific and Industrial<br />

Research (DSIR), National Water and Soil Conservation Authority (NWASCA), <strong>the</strong><br />

M<strong>in</strong>istry <strong>of</strong> Agriculture and Fisheries (MAF) and <strong>the</strong> Hauraki Regional Water Board<br />

(Liv<strong>in</strong>gston, 1987) detected elevated concentrations <strong>of</strong> various trace elements (<strong>in</strong><br />

particular, arsenic, cadmium and z<strong>in</strong>c) <strong>in</strong> <strong>the</strong> water and sediment <strong>of</strong> <strong>the</strong> Comstock<br />

Stream (a tributary <strong>of</strong> <strong>the</strong> Waiomu Stream). Slightly elevated concentrations <strong>of</strong> copper,<br />

lead and z<strong>in</strong>c have been detected <strong>in</strong> several locations with<strong>in</strong> <strong>the</strong> Waiomu Stream<br />

water, and elevated concentrations <strong>of</strong> lead and z<strong>in</strong>c have been detected <strong>in</strong> Waiomu<br />

Stream sediments (Liv<strong>in</strong>gston, 1987). Six composite sediment samples (each with five<br />

0-10 cm sub-samples) were collected <strong>in</strong> <strong>the</strong> <strong>in</strong>tertidal zone surround<strong>in</strong>g <strong>the</strong> stream<br />

mouth. One <strong>of</strong> <strong>the</strong>se was analysed <strong>in</strong> duplicate for quality assurance purposes. In<br />

addition, a vertical pr<strong>of</strong>ile sample was collected us<strong>in</strong>g a sediment corer, with subsamples<br />

from depths 0-2 cm, 2-10 cm, 15-20 cm and 25-30 cm be<strong>in</strong>g analysed<br />

<strong>in</strong>dividually (Appendix 1). <strong>Sediments</strong> from this site were found to consist <strong>of</strong> ma<strong>in</strong>ly<br />

coarse gra<strong>in</strong> gravels.<br />

Te Mata<br />

This was a third control site, as <strong>the</strong>re have not been any significant past m<strong>in</strong><strong>in</strong>g or<br />

agricultural activities with<strong>in</strong> <strong>the</strong> catchment. Access to <strong>the</strong> site was ga<strong>in</strong>ed from <strong>the</strong><br />

shore. Six composite sediment samples (each compris<strong>in</strong>g five sub-samples <strong>of</strong> 0-10 cm<br />

depth) were collected from <strong>the</strong> <strong>in</strong>tertidal zone surround<strong>in</strong>g <strong>the</strong> stream mouth us<strong>in</strong>g <strong>the</strong><br />

plastic hand trowel (Appendix 1). <strong>Sediments</strong> from this site were found to consist <strong>of</strong><br />

ma<strong>in</strong>ly medium to f<strong>in</strong>e gra<strong>in</strong> sands.<br />

Kuranui Bay<br />

This location has been sampled <strong>in</strong> <strong>the</strong> past by Environment Waikato and elevated<br />

mercury and z<strong>in</strong>c concentrations were detected. No m<strong>in</strong><strong>in</strong>g activities are known to have<br />

occurred <strong>in</strong> this catchment, but <strong>the</strong>re are a number <strong>of</strong> old m<strong>in</strong>es nearby surround<strong>in</strong>g <strong>the</strong><br />

Thames township. Access to <strong>the</strong> site was ga<strong>in</strong>ed from <strong>the</strong> shore. Seven composite<br />

sediment samples (each made <strong>of</strong> five 0-10 cm sub-samples) were collected <strong>in</strong> <strong>the</strong><br />

<strong>in</strong>tertidal zone surround<strong>in</strong>g <strong>the</strong> stream mouth, with a plastic hand trowel. One <strong>of</strong> <strong>the</strong>se<br />

was analysed <strong>in</strong> duplicate for quality assurance purposes. In addition, a vertical pr<strong>of</strong>ile<br />

sample was collected us<strong>in</strong>g a sediment corer, with sub-samples from depths 0-2 cm, 2-<br />

10 cm, 15-20 cm and 25-30 cm be<strong>in</strong>g analysed <strong>in</strong>dividually (Appendix 1). <strong>Sediments</strong><br />

from this site were found to consist <strong>of</strong> ma<strong>in</strong>ly f<strong>in</strong>e to medium gra<strong>in</strong> silts. All sediment<br />

samples were collected from <strong>the</strong> south side <strong>of</strong> <strong>the</strong> Pukeh<strong>in</strong>au Stream and SDB 562<br />

was collected from around <strong>the</strong> area <strong>of</strong> a stormwater pipe.<br />

Doc # 1120743 Page 55


Appendix 2. Measured concentrations <strong>of</strong> eight trace<br />

elements <strong>in</strong> 78 sediment samples collected as part <strong>of</strong> this<br />

study.<br />

Unless o<strong>the</strong>rwise <strong>in</strong>dicated sampl<strong>in</strong>g depths are 0-10 cm or surface grab samples (see<br />

Appendix 1). All element concentrations are <strong>in</strong> mg/kg (ppm) dry weight.<br />

Te Mata<br />

As Cd Cr Cu Hg Ni Pb Zn Li Fe Al<br />

Near beach SDV790 23.4 0.03 19.9 11.4 0.16 8.4 25.9 60.4<br />

SDV795 27.3 0.03 21.5 11.3 0.15 9.1 30.6 64.4<br />

SDV794 27.4 0.03 20.3 11 0.16 8.2 30 62.9<br />

Far beach SDV791 27.3 0.03 21.5 11.3 0.15 9.1 30.6 64.4<br />

Tapu<br />

Page 56 Doc # 1120743<br />

%<br />

F<strong>in</strong>es<br />

SDV792 26.9 0.03 20.9 11.5 0.16 8.6 30.8 64.3 17 32300 18300 4.81<br />

SDV793 28.1 0.03 20 11.2 0.15 8.4 31.5 64.1<br />

Near beach SDV796 23.4 0.02 22.7 13.9 0.11 8.7 9.32 58.2<br />

SDV801 18.8 0.02 19.2 13.7 0.09 8.1 8.16 53.1<br />

SDV800 16.9 0.03 19.5 13.7 0.13 8.4 11.1 57.4<br />

Far beach SDV797 27.3 0.02 18.3 14 0.21 8.2 5.63 51.5<br />

Waiomu Bay<br />

SDV798 19.7 0.02 17.8 14.4 0.1 8.4 6.74 52.4 16 25600 12900 1.36<br />

SDV799 21 0.02 19.8 14.2 0.1 8.2 7.93 53.7<br />

Near beach SDB611 34.5 0.1 26.1 39.9 0.08 8.9 45 79.2<br />

SDB613 26.3 0.12 30 34.1 0.06 9.8 37.5 83.3<br />

Far beach SDB612 34 0.17 30.9 41.6 0.09 8.6 65.3 97.1 17 44900 8830 2.14<br />

QA/QC<br />

Duplicate<br />

(SDB<br />

594) 25.9 0.1 29.2 39.4 0.07 9.8 29.7 84.1<br />

SDB614 29.6 0.1 26.9 35.2 0.16 9.4 30.7 82.6 15 35900 8890 1.11<br />

Stream SDB 615 21 0.02 20.8 17 0.07 7.9 20.9 71.7<br />

Depth samples<br />

Te Puru<br />

0-2 cm SDB619A 21


Appendix 2 cont<strong>in</strong>ued...<br />

Thornton<br />

As Cd Cr Cu Hg Ni Pb Zn Li Fe Al<br />

Near beach SDV802 21.9 0.03 20.6 17.2 0.07 8.2 22.7 72.1<br />

SDV803 24.4 0.03 22 19.3 0.08 7.8 20 70.2<br />

SDV804 24 0.03 20.6 18.3 0.07 8 19.6 69.4<br />

Far beach SDB615 21 0.02 20.8 17 0.07 7.9 20.9 71.7<br />

Tararu<br />

Stream<br />

Doc # 1120743 Page 57<br />

%<br />

F<strong>in</strong>es<br />

SDB616 24.1 0.03 22.8 17.4 0.08 8.6 26.3 78.6 20 32400 11000 2.35<br />

SDB621 22.7 0.04 22.1 17.6 0.09 8.3 23.6 74<br />

Near beach SDB602 20.5 0.12 26.7 14 0.34 9 30.5 100 31 37500 23400 86.6<br />

SDB601 23.1 0.18 14.2 23.3 0.15 5 24.5 93.8<br />

SDB600 30.4 0.07 13.9 23.8 0.15 5.5 25.4 87.6<br />

Far beach SDB597 21.1 0.16 13.5 20.9 0.18 5.7 25.5 80.3<br />

Kuranui<br />

Bay<br />

SDB598 25.9 0.1 15.3 25.7 0.15 5.8 24.4 92 18 40800 12500 2.99<br />

QA/QC<br />

Duplicate<br />

(SDB 595) 26.3 0.21 15.8 31.3 0.14 5.6 24.1 104<br />

SDB599 24.4 0.32 14.8 22.3 0.14 5.7 24.8 136<br />

Near beach SDB563 20.7 0.34 22.4 15.8 0.36 7.6 28.7 130<br />

SDB560 20.7 0.34 22.4 15.8 0.36 7.6 28.7 130<br />

SDB558 36.9 0.21 21.8 12.7 1.12 7.6 26.9 102<br />

QA/QC<br />

Duplicate<br />

(SDB 591) 23.4 0.18 25 12.1 0.53 8.6 29.2 102<br />

Far beach SDB561 73.7 0.69 16.1 22.3 1.43 6.8 30 206<br />

SDB559 23.4 0.18 25 12.1 0.53 8.6 29.2 102 29 30000 23300 87.2<br />

SDB562 79.3 0.61 18.2 23.1 1.46 7.5 28.2 181 20 32900 13500 37.7<br />

Depth<br />

samples<br />

0-2 cm SDB812 16.8 0.19 29 12.9 0.35 9.5 33.9 116<br />

2-10 cm SDB813 30 0.92 24.5 20.5 0.73 9.1 34.5 243<br />

15-20 cm SDB814 50 0.71 24.6 22.7 0.89 9.5 48.8 222<br />

25-30 cm SDB815 149 2.07 16.4 44.6 5.14 7.4 60.7 469 17 30300 12300 61.2<br />

Thames Wharf and stormwater<br />

Thames mudflats<br />

Deeper Thames Harbour<br />

Thames pipel<strong>in</strong>e<br />

SDB567 8.7 0.1 22.8 10 0.21 7.3 25 80<br />

SDB602 20.5 0.12 26.7 14 0.34 9 30.5 100<br />

SDB580 14.2 0.05 26.9 16.2 0.16 8.7 14.3 62.1<br />

SDB581 15.6 0.08 24.9 16.4 0.19 8.5 15.9 65.9 15 34700 20500 19.1<br />

SDB582 13.8 0.03 21.9 13.5 0.14 8.8 15.5 56.2<br />

SDB583 15.1 0.05 23.6 14.2 0.17 8.6 17 59.7<br />

SDB584 17.1 0.05 28.7 18.5 1.52 8.5 12.3 57.4 12 33200 16600 9.49<br />

SDB585 14.3 0.06 21.7 14.1 0.15 8.4 16.1 59.7<br />

SDB576Av 15.5 0.05 27 16.1 0.47 8.6 14.9 63.1 14 34100 15300 4.76<br />

SDB573Av 12.1 0.12 22.3 10.1 0.22 8 24.9 78.9 21 29800 17000 58.8<br />

SDB569 9.6 0.23 26.4 11.1 0.34 9 32.5 113<br />

SDB564 27.1 0.31 26.5 15.8 0.42 9.3 37.1 143<br />

SDB565 25.7 0.53 26.3 18.5 0.54 9.5 39.5 183 27 31900 23300 94.6<br />

SDB566 433 0.32 22.9 16.5 0.53 8.5 40 145 23 53400 18900 77.7<br />

0-2 cm SDB810 16.3 0.32 25 14.3 0.37 8.7 30.7 124<br />

2-10 cm SDB811 28.5 0.5 19.2 19.3 0.49 7.7 30.7 151


Appendix 2 cont<strong>in</strong>ued...<br />

Waihou River mouth<br />

Piako River mouth<br />

Opani<br />

mudflat<br />

As Cd Cr Cu Hg Ni Pb Zn Li Fe Al<br />

SDB574 5.1 0.08 31.4 7.6 0.14 8.4 19 72.3<br />

Page 58 Doc # 1120743<br />

%<br />

F<strong>in</strong>es<br />

SDB575 9.4 0.14 30.1 12.2 0.29 10 34 111 31 33500 26500 95.8<br />

SDB578 7.5 0.19 21.5 9.3 0.28 7.6 25.7 90.9<br />

SDB579 10.5 0.27 25.3 10.9 0.33 8.9 30.8 113 22 24800 18800 93.7<br />

SDB571 9.6 0.22 26.1 10.9 0.34 8.9 31.9 107 26 27500 19600 94<br />

SDB568 7.5 0.17 25.1 9.7 0.27 8.4 28.9 98.5


Appendix 3. Quality assurance and quality control results<br />

A. Sampl<strong>in</strong>g and measurement precision <strong>in</strong> relation to site heterogeneity<br />

Six composited samples were re-composited by <strong>the</strong> laboratory to evaluate <strong>the</strong><br />

variability <strong>in</strong> both <strong>the</strong> sample and <strong>the</strong> laboratory procedures. To determ<strong>in</strong>e <strong>the</strong> precision<br />

<strong>of</strong> <strong>the</strong> analysis, <strong>the</strong> relative percentage differences (RPD) is calculated for replicate<br />

samples via <strong>the</strong> procedure outl<strong>in</strong>ed <strong>in</strong> section 1020 <strong>of</strong> <strong>the</strong> American Public Health<br />

Association (APHA) standard method. If <strong>the</strong> RPD is with<strong>in</strong> ± 25% <strong>the</strong> analysis is<br />

considered to be acceptable. RPD were calculated for various samples with<strong>in</strong> each<br />

sample run and compared to one ano<strong>the</strong>r. Results are provided <strong>in</strong> Table 1.<br />

Table 1. Relative percentage difference (RPD) <strong>of</strong> replicate samples.<br />

As Cd Cr Cu Hg Ni Pb Zn<br />

SDB612 34 0.17 30.9 41.6 0.09 8.6 65.3 97.1<br />

QA/QC SDB 594 (dup. SDB612) 25.9 0.1 29.2 39.4 0.07 9.8 29.7 84.1<br />

SDV792 27.4 0.03 20.3 11 0.16 8.2 30 62.9<br />

QA/QC SDB 593 (dup. SVB792) 26.5 0.03 21.4 11.9 0.15 9 31.5 65.6<br />

SDB558 36.9 0.21 21.8 12.7 1.12 7.6 26.9 102<br />

QA/QC SDB591 (dup. SDB558) 23.4 0.18 25 12.1 0.53 8.6 29.2 102<br />

SDB598 25.9 0.1 15.3 25.7 0.15 5.8 24.4 92<br />

QA/QC SDB 595 (dup. SDB598) 26.3 0.21 15.8 31.3 0.14 5.6 24.1 104<br />

OZ SDB573B 11.1 0.11 24.4 11.7 0.23 8.4 26.5 83.7<br />

QA/QC SDD573E 13 0.12 20.1 8.4 0.2 7.5 23.2 74<br />

SDB580 14.2 0.04 26.1 16 0.12 8.7 14 61.1<br />

QA/QC SDB590 (dup. SDB580) 14.1 0.05 27.7 16.3 0.19 8.6 14.5 63.1<br />

Relative percentage difference<br />

612/594 27.0 51.9 5.7 5.4 25.0 -13.0 74.9 14.3<br />

792/593 3.3 0.0 -5.3 -7.9 6.5 -9.3 -4.9 -4.2<br />

558/591 44.8 15.4 -13.7 4.8 71.5 -12.3 -8.2 0.0<br />

598/595 -1.5 -71.0 -3.2 -19.6 6.9 3.5 1.2 -12.2<br />

573B/573E -15.8 -8.7 19.3 32.8 14.0 11.3 13.3 12.3<br />

580/590 0.7 -22.2 -5.9 -1.9 -45.2 1.2 -3.5 -3.2<br />

The RPD for arsenic, cadmium, mercury and lead <strong>in</strong> sample SDB612/SDB594 are<br />

greater than <strong>the</strong> quality control criteria. The composites <strong>of</strong> this sample were reanalysed<br />

to determ<strong>in</strong>e if <strong>the</strong> variability was due to analytical variability, sample<br />

variability or sample heterogeneity. The lead concentration <strong>in</strong> sample SDB612 was<br />

significantly higher than <strong>in</strong> any o<strong>the</strong>r surficial sample collected <strong>in</strong> this study. To<br />

determ<strong>in</strong>e if result was caused by a s<strong>in</strong>gle high sub-sample, each <strong>of</strong> <strong>the</strong> sub-samples<br />

was re-analysed. A comparison <strong>of</strong> <strong>the</strong> average values <strong>of</strong> <strong>the</strong> all <strong>of</strong> <strong>the</strong> sub samples with<br />

<strong>the</strong> reported values <strong>of</strong> <strong>the</strong> composite SDB612 shows that <strong>the</strong> RDP for cadmium,<br />

mercury and lead are outside <strong>the</strong> acceptable range. The high variability <strong>of</strong> cadmium<br />

and mercury may be due to low concentrations <strong>of</strong> those samples present <strong>in</strong> <strong>the</strong><br />

sediment. Analytical values near <strong>the</strong> sample detection limit will have a larger signal-tonoise<br />

ratio and, <strong>the</strong>refore, a greater RDP between replicates. Several o<strong>the</strong>r QA/QC<br />

samples (SDB598/595 for cadmium and SDB580/590 and SDB558/591 mercury) also<br />

display high RDP for <strong>the</strong>se compounds which may be due to relatively low<br />

Doc # 1120743 Page 59


concentrations <strong>of</strong> <strong>the</strong>se compounds presents <strong>in</strong> <strong>the</strong> samples. The variability <strong>in</strong> <strong>the</strong><br />

arsenic concentration <strong>in</strong> <strong>the</strong> sub-samples and <strong>the</strong> composite are similar, which suggest<br />

<strong>the</strong> variability between replicates SDB594 and SDB612 is not due to <strong>the</strong> composit<strong>in</strong>g or<br />

sample heterogeneity. The large variability <strong>in</strong> lead between SDB594 and SDB612 was<br />

not reproduced <strong>in</strong> <strong>the</strong> subsequent re-analysis <strong>of</strong> <strong>the</strong> sub-samples (Table 2). It is likely,<br />

<strong>the</strong>refore, that this outlier was caused by a small gra<strong>in</strong> <strong>of</strong> lead m<strong>in</strong>erals or metallic lead<br />

be<strong>in</strong>g present <strong>in</strong> <strong>the</strong> sample, which skewed <strong>the</strong> analytical result. Therefore, <strong>the</strong> first<br />

result (<strong>the</strong> outlier) was not considered to adequately represent <strong>the</strong> composition <strong>of</strong> <strong>the</strong><br />

sediment <strong>in</strong> this location.<br />

Table 2. Analysis <strong>of</strong> <strong>in</strong>dividual sub-samples <strong>of</strong> Composite SDB612.<br />

Sample number As Cd Cr Cu Hg Ni Pb Zn<br />

SBD612A 31.7 0.08 22.1 35.5 0.06 8.6 33.8 79.9<br />

SDB612B 34.1 0.1 32.7 39.6 0.05 9.2 31.5 85.8<br />

SDB612C 41.4 0.12 25.5 35.4 0.07 7.9 32 90.3<br />

SDB612D 29.8 0.11 24.2 39.8 0.06 8.7 35.3 84.4<br />

SDB612E 34 0.1 24.5 39.7 0.06 8.2 28.2 81.5<br />

Average 34.2 0.10 25.8 38.0 0.06 8.5 32.2 84.4<br />

std dev 4.4 0.01 4.1 2.3 0.01 0.5 2.7 4.0<br />

95% conf error 5.5 0.02 5.0 2.9 0.01 0.6 3.3 5.0<br />

%conf error <strong>of</strong> mean 16.0 18.1 19.5 7.6 14.6 7.2 10.3 6.0<br />

Value <strong>of</strong> Composite SDB612 34 0.17 30.9 41.6 0.09 8.6 65.3 97.1<br />

95% lower 28.7 0.08 20.8 35.1 0.05 7.9 28.8 79.4<br />

95% upper 39.7 0.12 30.8 40.9 0.07 9.1 35.5 89.4<br />

RDP 0.6 -50.0 -18.0 -9.0 -40.0 -0.9 -68.0 -14.0<br />

Values highlighted <strong>in</strong> red exceed QA/QC criteria.<br />

Quality control reports<br />

Five quality control reports cover <strong>the</strong> analysis undertaken by Hills Laboratories for <strong>the</strong><br />

various sample batches that were analysed. All quality control data conta<strong>in</strong>ed with <strong>the</strong><br />

reports were acceptable, except for sample batch 382278 (which <strong>in</strong>cludes samples<br />

collected from Te Mata Bay, Tapu, Thorton, Thames Harbour and Waihou River<br />

mouth). Duplicate samples for lead on sample 382504/4 had greater sample variation<br />

than would normally have been expected. Hills Laboratories believed that this<br />

variability was due to heterogeneity <strong>of</strong> <strong>the</strong> sample ra<strong>the</strong>r than analytical error or crosscontam<strong>in</strong>ation.<br />

This sample was not a sample submitted by URS and was not taken as<br />

part <strong>of</strong> this study.<br />

Page 60 Doc # 1120743


Appendix 4. Metal concentrations <strong>in</strong> sediments normalised<br />

aga<strong>in</strong>st various benchmark variables.<br />

A. Gra<strong>in</strong> size normalisation: sediment metal concentration divided by<br />

percentage f<strong>in</strong>es. Normalised trace element concentrations are <strong>in</strong> mg/kg dry<br />

weight.<br />

Location Sample % As Cd Cr Cu Hg Ni Pb Zn<br />

Waiomu Bay<br />

number F<strong>in</strong>es<br />

Far beach SDB612 2.14% 1589 7.9 1444 1944 4.2 402 3051 4537<br />

Te Mata<br />

SDB614 1.11% 2397 9.0 2424 3171 14.<br />

4<br />

847 2766 7441<br />

Far beach<br />

Tapu<br />

SDV792 4.81% 569.6 0.6<br />

2<br />

422.0 229 3.3 171 623.7 1308<br />

Far beach<br />

Thornton<br />

SDV798 1.36% 1449 1.5 1309 1059 7.4 618 495.6 3853<br />

Far beach<br />

Kuranui Bay<br />

SDB616 2.35% 1026 1.3 97 753 3.4 366 1119 3345<br />

Far beach SDB559 87.2% 27 0.2 28.7 13.9 0.6 9.9 33.5 117<br />

1<br />

1<br />

SDB562 37.7% 210 1.6 48.3 61.3 3.9 19.9 74.8 480<br />

Depth samples SDB815<br />

(25-<br />

61.2% 244 3.4 26.8 72.9 8.4 12.1 99.2 766<br />

30cm)<br />

Te Puru<br />

Far beach<br />

Tararu Stream<br />

SDB608 2.1% 125 1.9 1157 1071 3.8 395 995 3510<br />

Near beach SDB602 86.6% 23.7 0.1 30.8 16.2 0.3 10.4 35.2 116<br />

Far beach<br />

Thames<br />

Harbour<br />

SDB598 2.99 866 3.3 512 860 5.0 194 816 3077<br />

SDB581 19.1% 40.8 0.2 65.2 42.9 0.5 22.3 41.6 173<br />

1<br />

0<br />

SDB584 9.49% 180 0.5 302 195 16. 90 130 605<br />

Thames<br />

stormwater<br />

pipel<strong>in</strong>e<br />

Thames<br />

stormwater<br />

(near shore)<br />

Waihao River<br />

Inland River<br />

mouth<br />

SDB576<br />

A<br />

SDB565<br />

A<br />

SDB566<br />

A<br />

Doc # 1120743 Page 61<br />

4<br />

3<br />

0<br />

4.76% 309 1.1 588 349 4.2 186 336 1475<br />

94.6% 27.2 0.5<br />

6<br />

77.7% 557 0.4<br />

1<br />

SDB602 86.6% 23.7 0.1<br />

4<br />

SDB573<br />

B<br />

58.8% 18.9 0.1<br />

9<br />

SDB575 95.8% 9.8 0.1<br />

5<br />

9<br />

27.8 19.6 0.5<br />

7<br />

29.5 21.2 0.6<br />

8<br />

30.8 16.2 0.3<br />

9<br />

41.5 19.9 0.3<br />

9<br />

31.4 12.7 0.3<br />

0<br />

10.0 41.8 193<br />

10.9 51.5 187<br />

10.4 35.2 116<br />

14.3 45.1 142<br />

10.4 35.5 116


Location Sample % As Cd Cr Cu Hg Ni Pb Zn<br />

number F<strong>in</strong>es<br />

SDB579 93.7% 11.2 0.2 27.0 11.6 0.3 9.5 32.9 121<br />

9<br />

5<br />

SDB571 94.0% 10.2 0.2 27.8 11.6 0.3 9.5 33.9 114<br />

3<br />

6<br />

B. Gra<strong>in</strong> size normalisation. Metal concentration divided by lithium<br />

concentration (normalised figures are unitless).<br />

Location<br />

Sample<br />

number<br />

As Cd Cr Cu Hg Ni Pb Zn<br />

Li<br />

(mg/kg) Metal Conc/Li<br />

Waiomu Bay<br />

Far beach SDB612 16.5 2.1 0.01 1.9 2.5 0.01 0.52 4.0 5.9<br />

Te Mata<br />

SDB614 15.2 1.9 0.01 1.8 2.3 0.01 0.62 2.0 5.4<br />

Far beach<br />

Tapu<br />

SDV792 17.1 1.6 0.002 1.2 0.64 0.01 0.48 1.8 3.7<br />

Far beach<br />

Thornton<br />

SDV798 15.7 1.3 0.001 1.1 0.92 0.01 0.54 0.43 3.3<br />

Far beach SDB616 20.3 1.2 0.001 1.1 0.86 0.004 0.42 1.3 3.9<br />

Kuranui Bay<br />

Far beach SDB559 28.6 0.82 0.01 0.87 0.42 0.02 0.30 1.0 3.6<br />

SDB562 19.5 4.1 0.03 0.93 1.2 0.07 0.38 1.4 9.3<br />

Depth<br />

samples<br />

SDB815<br />

(25-30cm) 17.0 8.8 0.12 0.96 2.6 0.30 0.44 3.6 27.6<br />

Te Puru<br />

Far beach SDB608 23.1 1.1 0.002 1.1 0.97 0.003 0.36 0.90 3.2<br />

Tararu Stream<br />

Near beach SDB602 31.4 0.65 0.004 0.85 0.45 0.01 0.29 0.97 3.2<br />

Far beach SDB598 17.7 1.5 0.01 0.86 1.5 0.01 0.33 1.38 5.2<br />

Thames Harbour<br />

SDB581 14.9 1.0 0.01 1.7 1.1 0.01 0.57 1.1 4.4<br />

SDB584 11.6 1.5 0.004 2.5 1.6 0.13 0.73 1.1 4.9<br />

QA/QC SDB576A 13.5 1.1 0.004 2.1 1.2 0.01 0.67 1.2 5.2<br />

Thames stormwater pipel<strong>in</strong>e<br />

SDB565A 26.9 0.96 0.02 0.98 0.69 0.02 0.35 1.5 6.8<br />

SDB566A 22.6 19.2 0.01 1.0 0.73 0.02 0.38 1.8 6.4<br />

Thames stormwater (near shore)<br />

SDB602 31.4 0.65 0.004 0.85 0.45 0.01 0.29 0.97 3.2<br />

Waihao River (outer zone)<br />

OZ SDB573B 21.1 0.53 0.01 1.2 0.55 0.01 0.40 1.3 4.0<br />

Inland river mouth<br />

SDB575 30.8 0.31 0.005 0.98 0.34 0.01 0.32 1.1 3.6<br />

SDB579 22.2 0.47 0.01 1.1 0.49 0.01 0.40 1.4 5.1<br />

SDB571 25.8 0.37 0.01 1.0 0.42 0.01 0.34 1.2 4.1<br />

Page 62 Doc # 1120743


C. Gra<strong>in</strong> size normalisation Metal concentration divided by iron concentration<br />

(normalised figures are unitless).<br />

Location<br />

As Cd Cr Cu Hg Ni Pb Zn<br />

Sample<br />

Number Fe (mg/kg) Metal Conc/Fe (x 10 -4 )<br />

Waiomu Bay<br />

Far beach SDB612 44900 7.6 0.04 6.9 9.3 0.02 1.9 14.5 21.6<br />

Te Mata<br />

SDB614 35900 8.2 0.03 7.5 9.8 0.04 2.6 8.6 23.0<br />

Far beach<br />

Tapu<br />

SDV792 32300 8.5 0.01 6.3 3.4 0.05 2.5 9.3 19.5<br />

Far beach<br />

Thornton<br />

SDV798 25600 7.7 0.01 7.0 5.6 0.04 3.3 2.6 20.5<br />

Far beach<br />

Kuranui Bay<br />

SDB616 32400 7.4 0.01 7.0 5.4 0.02 2.7 8.1 24.3<br />

Far beach SDB559 30000 7.8 0.06 8.3 4.0 0.18 2.9 9.7 34.0<br />

SDB562<br />

SDB815<br />

32900 24.1 0.19 5.5 7.0 0.44 2.3 8.6 55.0<br />

Depth samples (25-30cm)<br />

Te Puru<br />

30300 49.2 0.68 5.4 14.7 1.7 2.4 20.0 154.8<br />

Far beach SDB608 38500 6.9 0.01 6.3 5.8 0.02 2.2 5.4 19.1<br />

Tararu Stream<br />

Near beach SDB602 37500 5.5 0.03 7.1 3.7 0.09 2.4 8.1 26.7<br />

Far beach SDB598 40800 6.3 0.02 3.8 6.3 0.04 1.4 6.0 22.5<br />

Thames Harbour<br />

SDB581 34700 4.5 0.02 7.2 4.7 0.05 2.4 4.6 19.0<br />

SDB584 33200 5.2 0.02 8.6 5.6 0.46 2.6 3.7 17.3<br />

QA/QC SDB576A 34100 4.3 0.01 8.2 4.9 0.06 2.6 4.7 20.6<br />

Thames stormwater pipel<strong>in</strong>e<br />

SDB565A 31900 8.1 0.17 8.2 5.8 0.17 3.0 12.4 57.4<br />

SDB566A 53400 81.1 0.06 4.3 3.1 0.10 1.6 7.5 27.2<br />

Thames stormwater (near shore)<br />

SDB602<br />

Waihao River (outer zone)<br />

37500 5.5 0.03 7.1 3.7 0.09 2.4 8.1 26.7<br />

OZ SDB573B 29800 3.7 0.04 8.2 3.9 0.08 2.8 8.9 28.1<br />

Inland river mouth<br />

SDB575 33500 2.8 0.04 9.0 3.6 0.09 3.0 10.1 33.1<br />

SDB579 24800 4.2 0.11 10.2 4.4 0.13 3.6 12.4 45.6<br />

SDB571 27500 3.5 0.08 9.5 4.0 0.12 3.2 11.6 38.9<br />

Doc # 1120743 Page 63


D. Gra<strong>in</strong> size normalisation. Metal concentration divided by alum<strong>in</strong>ium<br />

concentration (normalised figures are unitless).<br />

Location<br />

Sample<br />

Number<br />

As Cd Cr Cu Hg Ni Pb Zn<br />

Al<br />

mg/kg Metal Conc/Al (x 10 -4 )<br />

Waiomu Bay<br />

Far beach SDB612 8830 35.5 0.19 35.0 47.1 0.10 9.7 74.0 110.0<br />

Te Mata<br />

SDB614 8890 33.3 0.11 30.3 40.0 0.18 10.6 34.5 92.9<br />

Far beach<br />

Tapu<br />

SDV792 18300 15.0 0.02 11.1 6.0 0.09 4.5 16.4 34.4<br />

Far beach<br />

Thornton<br />

SDV798 12900 15.3 0.02 13.8 11.2 0.08 6.5 5.2 40.6<br />

Far beach<br />

Kuranui Bay<br />

SDB616 11000 21.9 0.03 20.7 15.8 0.07 7.8 23.9 71.5<br />

Far beach SDB559 23300 10.0 0.08 10.7 5.2 0.23 3.7 12.5 43.8<br />

SDB562<br />

SDB815<br />

13500 58.7 0.45 13.5 17.1 1.1 5.6 20.9 134.1<br />

Depth samples<br />

Te Puru<br />

(25-30cm) 12300 121.1 1.7 13.3 36.3 4.2 6.0 49.3 381.3<br />

Far beach<br />

Tararu Stream<br />

SDB608 13100 20.2 0.03 18.5 17.2 0.06 6.3 16.0 56.3<br />

Near beach SDB602 23400 8.8 0.05 11.4 6.0 0.15 3.8 13.0 42.7<br />

Far beach SDB598 12500 20.7 0.08 12.2 20.6 0.12 4.6 19.5 73.6<br />

Thames Harbour<br />

SDB581 20500 7.6 0.04 12.1 8.0 0.09 4.1 7.8 32.1<br />

SDB584 16600 10.3 0.03 17.3 11.1 0.92 5.1 7.4 34.6<br />

QA/QC SDB576A 15300 9.6 0.03 18.3 10.8 0.13 5.9 10.5 45.9<br />

Thames stormwater pipel<strong>in</strong>e<br />

SDB565A 23300 11.0 0.23 11.3 7.9 0.23 4.1 17.0 78.5<br />

SDB566A 18900 229.1 0.17 12.1 8.7 0.28 4.5 21.2 76.7<br />

Thames stormwater (near shore)<br />

SDB602<br />

Waihao River (outer zone)<br />

23400 8.8 0.05 11.4 6.0 0.15 3.8 13.0 42.7<br />

OZ SDB573B 17000 6.5 0.06 14.4 6.9 0.14 4.9 15.6 49.2<br />

Inland river mouth<br />

SDB575 26500 3.5 0.05 11.4 4.6 0.11 3.8 12.8 41.9<br />

SDB579 18800 5.6 0.14 13.5 5.8 0.18 4.7 16.4 60.1<br />

SDB571 19600 4.9 0.11 13.3 5.6 0.17 4.5 16.3 54.6<br />

Page 64 Doc # 1120743


Appendix 5. Statistical summary <strong>of</strong> results for eight trace<br />

elements <strong>in</strong> each <strong>of</strong> <strong>the</strong> ten areas sampled.<br />

All results are mg/kg dry wt. Individual sample results highlighted <strong>in</strong> yellow exceed <strong>the</strong><br />

ANZECC (2000) ISQG-Low; those <strong>in</strong> red exceed <strong>the</strong> ANZECC ISQG-High (refer to<br />

Section 2.5).<br />

Waiomu Bay<br />

As Cd Cr Cu Hg Ni Pb Zn<br />

SDB611 34.5 0.1 26.1 39.9 0.08 8.9 45 79.2<br />

SDB613 26.3 0.12 30 34.1 0.06 9.8 37.5 83.3<br />

SDB612 34 0.17 30.9 41.6 0.09 8.6 65.3 97.1<br />

SDB614 29.6 0.1 26.9 35.2 0.16 9.4 30.7 82.6<br />

SDB 615 21 0.02 20.8 17 0.07 7.9 20.9 71.7<br />

SDB 594 25.9 0.1 29.2 39.4 0.07 9.8 29.7 84.1<br />

SDB619A 21 0.05 22 21 0.05 8 26.5 79<br />

Maximum 21 0.02 20.8 17 0.05 7.9 20.9 71.7<br />

M<strong>in</strong>imum 34 0.17 30.9 41.6 0.16 9.8 65.3 97.1<br />

Median 26.3 0.10 26.9 35.2 0.07 8.9 30.7 82.6<br />

Average 27.5 0.09 26.6 32.6 0.1 8.9 36.5 82.4<br />

Std dev 5.5 0.05 3.9 9.7 0.0 0.8 14.9 7.7<br />

95% conf error 6.9 0.06 4.9 12.1 0.0 1.0 18.5 9.6<br />

%conf error <strong>of</strong> mean 25.0 63.5 18.3 37.0 54.5 11.0 50.5 11.6<br />

Guidel<strong>in</strong>e value 20 1.5 80 65 0.15 21 50 200<br />

Def<strong>in</strong>itely below TV 15.0 0.5 65.4 40.9 0.1 18.7 24.7 176.8<br />

Def<strong>in</strong>itely above GL 25.0 2.5 94.6 89.1 0.2 23.3 75.3 223.2<br />

95% lower 20.6 0.0 21.7 20.5 0.0 7.9 18.1 72.9<br />

95% upper 34.3 0.2 31.4 44.7 0.1 9.9 55.0 92.0<br />

Te Mata<br />

As Cd Cr Cu Hg Ni Pb Zn<br />

SDV790 23.4 0.03 19.9 11.4 0.16 8.4 25.9 60.4<br />

SDV795 27.3 0.03 21.5 11.3 0.15 9.1 30.6 64.4<br />

SDV794 27.4 0.03 20.3 11 0.16 8.2 30 62.9<br />

SDV791 29.6 0.1 26.9 35.2 0.16 9.4 30.7 82.6<br />

SDV792 27.4 0.03 20 11.2 0.15 8.4 31.5 64.1<br />

SDV793 21 0.02 20.8 17 0.07 7.9 20.9 71.7<br />

SDB 593 25.9 0.1 29.2 39.4 0.07 9.8 29.7 84.1<br />

M<strong>in</strong>imum 21 0.02 19.9 11 0.07 7.9 20.9 60.4<br />

Maximum 29.6 0.1 29.2 39.4 0.16 9.8 31.5 84.1<br />

Median 27.3 0.03 20.8 11.4 0.15 8.4 30 64.4<br />

Average 26.0 0.05 22.7 19.5 0.1 8.7 28.5 70.0<br />

Std dev 2.9 0.04 3.8 12.4 0.0 0.7 3.8 9.7<br />

95% conf error 3.6 0.04 4.7 15.4 0.1 0.9 4.7 12.1<br />

%conf error <strong>of</strong> mean 13.8 90.3 20.7 79.0 39.9 9.9 16.6 17.3<br />

Guidel<strong>in</strong>e value 20 1.5 80 65 0 21 50 200<br />

Def<strong>in</strong>itely below GL 17.2 0.1 63.4 13.7 0.1 18.9 41.7 165.5<br />

Def<strong>in</strong>itely above GL 22.8 2.9 96.6 116.3 0.2 23.1 58.3 234.5<br />

95% lower 22.4 0.00 18.0 4.1 0.1 7.9 23.8 57.9<br />

95% upper 29.6 0.09 27.4 34.9 0.2 9.6 33.2 82.1<br />

Doc # 1120743 Page 65


Tapu<br />

As Cd Cr Cu Hg Ni Pb Zn<br />

SDV796 23.4 0.02 22.7 13.9 0.11 8.7 9.32 58.2<br />

SDV801 18.8 0.02 19.2 13.7 0.09 8.1 8.16 53.1<br />

SDV800 16.9 0.03 19.5 13.7 0.13 8.4 11.1 57.4<br />

SDV797 27.3 0.02 18.3 14 0.21 8.2 5.63 51.5<br />

SDV798 19.7 0.02 17.8 14.4 0.1 8.4 6.74 52.4<br />

SDV799 21 0.02 19.8 14.2 0.1 8.2 7.93 53.7<br />

M<strong>in</strong>imum 27.3 0.03 22.7 14.4 0.21 8.7 11.1 58.2<br />

Maximum 16.9 0.02 17.8 13.7 0.09 8.1 5.63 51.5<br />

Median 20.35 0.02 19.4 14 0.11 8.3 8 53.4<br />

Average 21.2 0.02 19.6 14.0 0.1 8.3 8.1 54.4<br />

Std dev 3.7 0.004 1.7 0.3 0.04 0.2 1.9 2.8<br />

95% conf error 4.6 0.01 2.1 0.3 0.1 0.3 2.4 3.4<br />

%conf error <strong>of</strong> mean 21.7 23.4 10.9 2.5 44.9 3.2 29.3 6.3<br />

Guidel<strong>in</strong>e value 20 1.5 80 65 0 21 50 200<br />

Def<strong>in</strong>itely below GL 15.7 1.1 71.3 63.4 0.1 20.3 35.4 187.4<br />

Def<strong>in</strong>itely above GL 24.3 1.9 88.7 66.6 0.2 21.7 64.6 212.6<br />

95% lower 16.6 0.0 17.4 13.6 0.1 8.1 5.8 51.0<br />

95% upper 25.8 0.0 21.7 14.3 0.2 8.6 10.5 57.8<br />

Thornton<br />

As Cd Cr Cu Hg Ni Pb Zn<br />

SDV802 21.9 0.03 20.6 17.2 0.07 8.2 22.7 72.1<br />

SDV803 24.4 0.03 22 19.3 0.08 7.8 20 70.2<br />

SDV804 24 0.03 20.6 18.3 0.07 8 19.6 69.4<br />

SDB615 21 0.02 20.8 17 0.07 7.9 20.9 71.7<br />

SDB616 24.1 0.03 22.8 17.4 0.08 8.6 26.3 78.6<br />

SDB621 22.7 0.04 22.1 17.6 0.09 8.3 23.6 74<br />

M<strong>in</strong>imum 21 0.02 20.6 17 0.07 7.8 19.6 69.4<br />

Maximum 24.4 0.04 22.8 19.3 0.09 8.6 26.3 78.6<br />

Median 23.35 0.03 21.4 17.5 0.075 8.1 21.8 71.9<br />

Average 23.0 0.03 21.5 17.8 0.1 8.1 22.2 72.7<br />

Std dev 1.6 0.01 0.7 1.1 0.0 0.2 1.4 1.3<br />

95% conf error 2.0 0.01 0.8 1.3 0.0 0.2 1.7 1.6<br />

%conf error <strong>of</strong> mean 8.8 20.7 3.9 7.4 8.1 2.6 7.7 2.2<br />

Guidel<strong>in</strong>e value 20 1.5 80 65 0 21 50 200<br />

Def<strong>in</strong>itely below GL 18.2 1.2 76.9 60.2 0.1 20.5 46.1 195.7<br />

Def<strong>in</strong>itely above GL 21.8 1.8 83.1 69.8 0.2 21.5 53.9 204.3<br />

95% lower 21.0 0.02 20.6 16.5 0.1 7.9 20.5 71.1<br />

95% upper 25.0 0.04 22.3 19.1 0.1 8.3 23.9 74.2<br />

Page 66 Doc # 1120743


Kuranui Bay<br />

As Cd Cr Cu Hg Ni Pb Zn<br />

SDB563 20.7 0.34 22.4 15.8 0.36 7.6 28.7 130<br />

SDB560 20.7 0.34 22.4 15.8 0.36 7.6 28.7 130<br />

SDB561 73.7 0.69 16.1 22.3 1.43 6.8 30 206<br />

SDB559 23.4 0.18 25 12.1 0.53 8.6 29.2 102<br />

SDB562 79.3 0.61 18.2 23.1 1.46 7.5 28.2 181<br />

SDB591 23.4 0.18 25 12.1 0.53 8.6 29.2 102<br />

SDB812 16.8 0.19 29 12.9 0.35 22.4 33.9 116<br />

EW KB 19.4 0.34 15.7 21.2 0.84 6.4 42.9 199<br />

M<strong>in</strong>imum 16.8 0.18 15.7 12.1 0.35 6.4 28.2 102<br />

Maximum 79.3 0.69 29 23.1 1.46 22.4 42.9 206<br />

Median 22.05 0.34 15.8 22.4 0.53 7.6 29.2 130<br />

Average 34.7 0.4 21.7 16.9 0.73 9.4 31.4 145.8<br />

Std dev 25.9 0.2 4.7 4.6 0.5 5.3 5.0 43.0<br />

95% conf error 32.2 0.24 5.9 5.8 0.6 6.6 6.2 53.3<br />

%conf error <strong>of</strong> mean 92.9 67.5 26.9 34.0 79.3 69.6 19.8 36.6<br />

Guidel<strong>in</strong>e value 20 1.5 80 65 0 21 50 200<br />

Def<strong>in</strong>itely below GL 1.4 0.5 58.4 42.9 0.0 6.4 40.1 126.8<br />

Def<strong>in</strong>itely above GL 38.6 2.5 101.6 87.1 0.3 35.6 59.9 273.2<br />

95% lower 2.5 0.1 15.9 11.2 0.2 2.9 25.1 92.4<br />

95% upper 66.9 0.6 27.6 22.7 1.3 16.0 37.6 199.1<br />

Te Puru<br />

As Cd Cr Cu Hg Ni Pb Zn<br />

SDB604 22.4 0.03 22.4 20.4 0.06 8.2 19.2 69.2<br />

SDB603 25 0.18 12.9 21.9 0.15 5.3 19.2 81.2<br />

SDB606 26.4 0.04 24.3 22.5 0.08 8.3 20.9 73.7<br />

SDB609 26.5 0.04 24.6 26.5 0.09 8.6 21.1 76.4<br />

SDB608 26.4 0.04 24.3 22.5 0.08 8.3 20.9 73.7<br />

SDB607 22.8 0.03 22.5 20 0.06 8.3 18.6 68.3<br />

SDB816 21.6 0.03 20.9 19.4 0.13 8 20 65.2<br />

M<strong>in</strong>imum 21.6 0.03 12.9 19.4 0.06 5.3 18.6 65.2<br />

Maximum 26.5 0.18 24.6 26.5 0.15 8.6 21.1 81.2<br />

Median 25 0.04 22.5 21.9 0.08 8.3 20 73.7<br />

Average 24.4 0.06 21.7 21.9 0.09 7.9 20.0 72.5<br />

Std dev 2.1 0.06 4.1 2.4 0.03 1.1 1.0 5.4<br />

95% conf error 2.6 0.07 5.1 3.0 0.04 1.4 1.2 6.7<br />

%conf error <strong>of</strong> mean 10.8 122.6 23.5 13.5 46.1 18.0 6.2 9.3<br />

Guidel<strong>in</strong>e value 20 1.5 80 65 0 21 50 200<br />

Def<strong>in</strong>itely below GL 17.8 -0.3 61.2 56.2 0.1 17.2 46.9 181.5<br />

Def<strong>in</strong>itely above GL 22.2 3.3 98.8 73.8 0.2 24.8 53.1 218.5<br />

95% lower 21.8 -0.01 16.6 18.9 0.1 6.4 18.7 65.8<br />

95% upper 27.1 0.12 26.8 24.8 0.1 9.3 21.2 79.2<br />

Doc # 1120743 Page 67


Tararu Stream As Cd Cr Cu Hg Ni Pb Zn<br />

SDB602 20.5 0.12 26.7 14 0.34 9 30.5 100<br />

SDB601 23.1 0.18 14.2 23.3 0.15 5 24.5 93.8<br />

SDB600 30.4 0.07 13.9 23.8 0.15 5.5 25.4 87.6<br />

SDB597 21.1 0.16 13.5 20.9 0.18 5.7 25.5 80.3<br />

SDB598 25.9 0.1 15.3 25.7 0.15 5.8 24.4 92<br />

SDB599 24.4 0.32 14.8 22.3 0.14 5.7 24.8 136<br />

SDB 595 26.3 0.21 15.8 31.3 0.14 5.6 24.1 104<br />

M<strong>in</strong>imum 20.5 0.07 13.5 14 0.14 5 24.1 80.3<br />

Maximum 30.4 0.32 26.7 31.3 0.34 9 30.5 136<br />

Median 24.4 0.16 14.8 23.3 0.15 5.7 24.8 93.8<br />

Average 24.5 0.17 16.3 23.0 0.18 6.0 25.6 99.1<br />

Std dev 3.4 0.08 4.6 5.2 0.07 1.3 2.2 18.0<br />

95% conf error 4.2 0.10 5.8 6.5 0.09 1.7 2.8 22.4<br />

%conf error <strong>of</strong> mean 17.2 62.4 35.4 28.1 50.4 27.3 10.8 22.6<br />

Guidel<strong>in</strong>e value 20 1.5 80 65 0.15 21 50 200<br />

Def<strong>in</strong>itely below GL 16.6 0.6 51.7 46.8 0.07 15.3 44.6 154.8<br />

Def<strong>in</strong>itely above GL 23.4 2.4 108.3 83.2 0.23 26.7 55.4 245.2<br />

95% lower 20.3 0.06 10.5 16.6 0.1 4.4 22.8 76.7<br />

95% upper 28.8 0.27 22.1 29.5 0.3 7.7 28.4 121.5<br />

Waihou River<br />

As Cd Cr Cu Hg Ni Pb Zn<br />

SDB573B 11.1 0.11 24.4 11.7 0.23 8.4 26.5 83.7<br />

SDD573E 13 0.12 20.1 8.4 0.2 7.5 23.2 74<br />

SDB574 5.1 0.08 31.4 7.6 0.14 8.4 19 72.3<br />

SDB575 9.4 0.14 30.1 12.2 0.29 10 34 111<br />

SDB568 7.5 0.17 25.1 9.7 0.27 8.4 28.9 98.5<br />

SDB569 9.6 0.23 26.4 11.1 0.34 9 32.5 113<br />

SDB578 7.5 0.19 21.5 9.3 0.28 7.6 25.7 90.9<br />

SDB579 10.5 0.27 25.3 10.9 0.33 8.9 30.8 113<br />

SDB571 9.6 0.22 26.1 10.9 0.34 8.9 31.9 107<br />

SDB580 14.2 0.04 26.1 16 0.12 8.7 14 61.1<br />

SDB590 14.1 0.05 27.7 16.3 0.19 8.6 14.5 63.1<br />

M<strong>in</strong>imum 5.1 0.04 20.1 7.6 0.12 7.5 14 61.1<br />

Maximum 14.2 0.27 31.4 16.3 0.34 10 34 113<br />

Median 9.6 0.14 26.1 10.9 0.27 8.6 26.5 90.9<br />

Average 10.1 0.15 25.8 11.3 0.25 8.6 25.5 89.8<br />

Std dev 2.9 0.08 3.3 2.8 0.08 0.7 7.1 20.1<br />

95% conf error 3.6 0.09 4.1 3.4 0.10 0.8 8.8 24.9<br />

%conf error <strong>of</strong> mean 35.0 63.8 15.8 30.6 39.06 9.9 34.5 27.8<br />

Guidel<strong>in</strong>e value 20 1.5 80 65 0.15 21 50 200<br />

Def<strong>in</strong>itely below GL 13.0 0.54 67.4 45.1 0.09 18.9 32.8 144.5<br />

Def<strong>in</strong>itely above GL 27.0 2.46 92.6 84.9 0.21 23.1 67.2 255.5<br />

95% lower 6.6 0.05 21.8 7.8 0.15 7.7 16.7 64.9<br />

95% upper 13.7 0.24 29.9 14.7 0.35 9.4 34.4 114.7<br />

Page 68 Doc # 1120743


Thames Harbour<br />

As Cd Cr Cu Hg Ni Pb Zn<br />

SDB581 15.6 0.08 24.9 16.4 0.19 8.5 15.9 65.9<br />

SDB582 13.8 0.03 21.9 13.5 0.14 8.8 15.5 56.2<br />

SDB583 15.1 0.05 23.6 14.2 0.17 8.6 17 59.7<br />

SDB584 17.1 0.05 28.7 18.5 1.52 8.5 12.3 57.4<br />

SDB585 14.3 0.06 21.7 14.1 0.15 8.4 16.1 59.7<br />

SDB576A 14.7 0.05 28 16.6 0.2 9 16 70.2<br />

SDB576B 16.3 0.04 21.7 14.6 0.17 7.2 12.5 52.5<br />

SDB576C 17.8 0.04 30.7 17 1.58 8.8 15.3 64.3<br />

SDB576D 15.8 0.04 24.4 16.1 0.2 8.5 13.2 55.8<br />

SDB576E 12.7 0.07 30.3 16 0.22 9.4 17.5 72.9<br />

SDB567 8.7 0.1 22.8 10 0.21 7.3 25 80<br />

SDB602 20.5 0.12 26.7 14 0.34 9 30.5 100<br />

Thames GC 13.2 0.05 16.5 10 0.22 8.1 28.9 62.2<br />

M<strong>in</strong>imum 8.7 0.03 16.5 10 0.14 7.2 12.3 52.5<br />

Maximum 20.5 0.12 30.7 18.5 1.58 9.4 30.5 100<br />

Median 15.1 0.05 24.4 14.6 0.2 8.5 16 62.2<br />

Average 15.0 0.06 24.8 14.7 0.4 8.5 18.1 65.9<br />

Std dev 2.8 0.03 4.0 2.5 0.5 0.6 6.0 12.8<br />

95% conf error 3.5 0.03 5.0 3.1 0.63 0.8 7.5 15.9<br />

%conf error <strong>of</strong> mean 23.3 54.1 20.3 21.3 154.7 9.3 41.3 24.1<br />

Guidel<strong>in</strong>e value 20 1.5 80 65 0.15 21 50 200<br />

Def<strong>in</strong>itely below GL 15.3 0.69 63.8 51.1 -0.08 19.1 29.4 151.7<br />

Def<strong>in</strong>itely above GL 24.7 2.31 96.2 78.9 0.38 22.9 70.6 248.3<br />

Thames stormwater pipel<strong>in</strong>e<br />

As Cd Cr Cu Hg Ni Pb Zn<br />

SDB564 27.1 0.31 26.5 15.8 0.42 9.3 37.1 143<br />

SDB565 25.7 0.53 26.3 18.5 0.54 9.5 39.5 183<br />

SDB566 433 0.32 22.9 16.5 0.53 8.5 40 145<br />

SDB810 16.3 0.32 25 14.3 0.37 8.7 30.7 124<br />

M<strong>in</strong>imum 16.3 0.31 22.9 14.3 0.37 8.5 30.7 124<br />

Maximum 433 0.53 26.5 18.5 0.54 9.5 40 183<br />

Median 26.4 0.32 25.65 16.15 0.48 9 38.3 144<br />

Average 125.5 0.37 25.2 16.3 0.47 9.0 36.8 148.8<br />

Std dev 205.0 0.11 1.7 1.7 0.08 0.5 4.3 24.7<br />

95% conf error 254.5 0.13 2.1 2.2 0.10 0.6 5.3 30.7<br />

%conf error <strong>of</strong> mean 202.8 35.8 8.2 13.3 22.3 6.6 14.4 20.6<br />

Guidel<strong>in</strong>e value 20 1.5 80 65 0 21 50 200<br />

Def<strong>in</strong>itely below GL -20.6 1.0 73.5 56.4 0.1 19.6 42.8 158.7<br />

Def<strong>in</strong>itely above GL 60.6 2.0 86.5 73.6 0.2 22.4 57.2 241.3<br />

95% lower -129.0 0.24 23.1 14.1 0.4 8.4 31.5 118.1<br />

95% upper 380.1 0.50 27.2 18.4 0.6 9.6 42.1 179.4<br />

Doc # 1120743 Page 69


Appendix 6. Concentrations <strong>of</strong> 33 elements, total organic<br />

carbon and dry matter <strong>in</strong> composite shallow (0-2 cm) sediment<br />

samples collected <strong>in</strong> October 2003 from five locations <strong>in</strong> <strong>the</strong><br />

<strong>Firth</strong> <strong>of</strong> Thames and five locations <strong>in</strong> Raglan Harbour.<br />

All trace element concentrations are <strong>in</strong> units <strong>of</strong> mg/kg (dry weight). In all cases but <strong>the</strong><br />

first Te Puru entry, composites comprised five equal samples from each location, with<br />

each sample compris<strong>in</strong>g twelve subsamples. In <strong>the</strong> case <strong>of</strong> first Te Puru entry, samples<br />

that made up <strong>the</strong> composite were analysed <strong>in</strong>dividually, and <strong>the</strong> reported result for<br />

each element is <strong>the</strong> average <strong>of</strong> <strong>the</strong> five results. Results for <strong>the</strong> Te Puru composite<br />

sample compare well with <strong>the</strong>se averages. This is a means <strong>of</strong> validat<strong>in</strong>g <strong>the</strong> composite<br />

analysis approach.<br />

Constituent<br />

Te<br />

Puru<br />

Te<br />

Puru<br />

<strong>Firth</strong> <strong>of</strong> Thames sites . Raglan Harbour sites<br />

Kaiaua Miranda Kuranui<br />

Bay<br />

Thames<br />

Ponganui<br />

Creek<br />

Whatitir<strong>in</strong>ui<br />

Is<br />

Calcium 20960 22417 12100 27500 18600 10100 16300 26000 39200 13300 8980<br />

Magnesium 5900 6147 3220 3390 5930 5560 2710 4040 3080 4130 4930<br />

Sodium 4710 4938 3990 4210 5750 7920 5640 5930 5720 7070 8750<br />

Potassium 908 934 1030 949 1110 1760 1150 1370 1090 1400 1970<br />

Lithium 17.0 17.6 11.3 10.4 18.7 10.9 8.9 13.6 9.9 15.6 19.5<br />

Rubidium 3.20 3.28 7.55 6.54 4.57 4.21 6.29 6.65 5.85 7.9 9.95<br />

Phosphorus 376 385 212 215 364 343 347 552 554 649 543<br />

Boron 8.60 8.83 11 10 13 12 15 16 14 18 22<br />

Iron 32600 33033 15000 11200 29200 27200 13700 25300 23400 24900 28200<br />

Manganese 549 567 327 272 1480 747 131 299 261 300 297<br />

Silver 0.076 0.092 0.05 0.05 0.3 0.09 0.02 < 0.02 0.15 0.03 0.03<br />

Alum<strong>in</strong>ium 10140 10617 6470 4880 9300 14400 6020 10600 8180 12600 14300<br />

Arsenic 16.84 17.3 5.3 4.3 19.4 13.2 6.9 7.7 7.2 9 10.9<br />

Barium 4.82 4.91 6.76 5.16 4.94 9.12 7.66 12.8 11.6 14.2 18<br />

Bismuth 0.294 0.285 0.07 0.04 0.3 0.13 0.04 0.05 0.04 0.07 0.1<br />

Cadmium 0.04 0.04 0.02 0.03 0.34 0.05 0.03 0.02 0.02 0.02 0.03<br />

Cobalt 11.3 11.7 9.11 5.85 12.2 11.2 3.85 8.23 7.74 8.27 8.98<br />

Chromium 21.3 21.9 7.1 7.1 15.7 16.5 10.5 14.5 13.2 16.8 17.2<br />

Caesium 0.752 0.763 0.92 0.74 1.2 0.53 0.59 0.73 0.61 0.9 1.17<br />

Copper 17.5 17.6 5.4 3.7 21.2 10 3.3 7 6.1 8.4 9<br />

Mercury 0.472 0.103 0.05 0.05 0.84 0.22 0.02 0.02 0.02 0.03 0.04<br />

Lanthanum 4.86 5.12 10 9.26 5.98 7.85 5.74 8.4 9.39 9.16 12.9<br />

Molybdenum 0.906 0.925 0.2 0.18 1.22 0.59 0.34 0.3 0.36 0.37 0.42<br />

Nickel 7.30 7.48 4.2 3.9 6.4 8.1 4.9 8.4 6.9 9.8 10.3<br />

Lead 23.3 23.9 15.3 11.5 42.9 28.9 4.34 5.6 4.6 6.73 9.19<br />

Antimony 0.590 0.602 0.15 0.04 0.81 0.28 0.11 0.12 0.12 0.12 0.16<br />

Selenium


Appendix 7. Results <strong>of</strong> Student’s t-tests between Thames<br />

and Kuranui Bay sites and three m<strong>in</strong><strong>in</strong>g reference sites<br />

(Te Puru, Thornton and Te Mata).<br />

Mean values are <strong>in</strong> mg/kg (dry weight) and have not been normalised to any o<strong>the</strong>r<br />

variable. Ratios <strong>of</strong> means are unitless.<br />

Mean <strong>of</strong> control sites (Te<br />

Puru, Thornton and Te Mata)<br />

(N=20)<br />

As Cd Cr Cu Hg Ni Pb Zn<br />

24.7 0.040 21.3 17.3 0.105 8.16 23.8 69.7<br />

Mean at Kuranui Bay (N=9)<br />

Pooled t-test: concentration<br />

36.1 0.407 22.71 16.37 0.763 8.1 29.92 145.8<br />

significantly higher than<br />

control site<br />

No No No No No No No No<br />

Probability value (p) 0.019 0.0001 0.122 0.69 0.0001 0.56 0.0004 0.0001<br />

Ratio <strong>of</strong> means where<br />

significant<br />

1.5 10.3 - - 7.3 - 1.3 2.1<br />

Mean at Thames stormwater<br />

pipel<strong>in</strong>e (N=5, except N=4 for<br />

arsenic due to one outlier<br />

be<strong>in</strong>g removed)<br />

Pooled t-test: concentration<br />

24.4 0.396 23.9 16.9 0.47 8.74 35.6 149<br />

significantly higher than<br />

control site<br />

No Yes Yes No Yes No Yes Yes<br />

Probability value (p) 0.56 0.0001 0.024 0.58 0.0001 0.07 0.0001 0.0001<br />

Ratio <strong>of</strong> means where<br />

significant<br />

- 10.0 1.1 - 4.5 - 1.5 2.1<br />

Mean at Thames mudflats,<br />

deep harbour, wharf and<br />

stormwater sites (N=11)<br />

Pooled t-test: concentration<br />

14.2 0.084 24.81 14.01 0.355 8.48 19.89 72.36<br />

significantly higher than<br />

control site<br />

No Yes Yes No Yes No No No<br />

Probability value (p) 1.0000 0.0048 0.0003 0.9805 0.0045 0.1096 0.9642 0.2778<br />

Ratio <strong>of</strong> means where<br />

significant<br />

- 2.1 1.2 - 3.4 - - -<br />

Doc # 1120743 Page 71


Appendix 8. Map show<strong>in</strong>g <strong>the</strong> full extent <strong>of</strong> catchments<br />

feed<strong>in</strong>g <strong>the</strong> lower <strong>Firth</strong> <strong>of</strong> Thames.<br />

For closer detail <strong>of</strong> <strong>the</strong> <strong>Firth</strong> <strong>of</strong> Thames area, refer to Figures 2-1 and 2-2.<br />

Page 72 Doc # 1120743

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!