13.12.2015 Views

Direct Current Stimulation (HD-tDCS)

Bikson_NAN2015final

Bikson_NAN2015final

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

High-Definition transcranial<br />

<strong>Direct</strong> <strong>Current</strong> <strong>Stimulation</strong><br />

(<strong>HD</strong>-<strong>tDCS</strong>)<br />

Marom Bikson<br />

Lucas Parra, Jacek Dmochowski,<br />

Asif Rahman, Dennis Truong,<br />

Abhishek Datta, Davide Reato,<br />

Belen Lafon, Gregory Kronberg,<br />

Thomas Radman<br />

Department of Biomedical Engineering, The City College<br />

of New, New York, NY<br />

$ NIH (NINDS, NCI), NSF, Epilepsy FoundaDon, Wallace<br />

Coulter FoundaDon, DoD (USAF, AFOSR)


Disclosure:<br />

Soterix Medical Inc. produces <strong>tDCS</strong> and High-Defini=on<br />

<strong>tDCS</strong>. Marom Bikson is co- founder of Soterix Medical.<br />

Some of the clinical data presented may be supported by<br />

Soterix Medical.<br />

The City University of New York has patents on <strong>tDCS</strong> and<br />

High-Defini=on <strong>tDCS</strong> with Marom Bikson as inventor.<br />

<strong>tDCS</strong> and <strong>HD</strong>-<strong>tDCS</strong> are regulated as inves=ga=onal<br />

devices in the USA.


Transcranial <strong>Direct</strong> <strong>Current</strong> S=mula=on (<strong>tDCS</strong>)<br />

• Non-invasive, portable, well-tolerated.<br />

• Low-intensity (~2 mA) current passed<br />

between scalp electrodes (~20 min).<br />

• For rehabiliaDon, neuropsychiatric<br />

treatment, neuroenhacment.<br />

Ø Can a “simple” interven=on modulate brain func=on?<br />

Ø How is specificity of ac=on achieved?


Neuromodula=on: Electrotherapy Delivery PlaRorms<br />

Deep Brain<br />

S=mula=on (invasive)<br />

Transcranial Magne=c<br />

S=mula=on<br />

transcranial <strong>Direct</strong><br />

<strong>Current</strong> <strong>Stimulation</strong><br />

C<br />

B<br />

A<br />

Decreasing Cost<br />

Decreasing Risk<br />

Increasing Efficacy, Specificity<br />

• Deployable, compact<br />

• Minimal supervision<br />

• Adverse events:<br />

itching, erythema<br />

• IRB / FDA “NSR”<br />

? <strong>tDCS</strong> Specificity


What makes <strong>tDCS</strong> specific?<br />

Given the diversity of <strong>tDCS</strong> applica=on spanning neuropsychiatric<br />

treatment, rehabilita=on, and learning in healthy individuals.<br />

• Anatomical targe=ng (specificity)<br />

The control of <strong>tDCS</strong> electrode placement to<br />

guide current flow to brain targets<br />

Design facilitated by current flow models.<br />

• Func=onal targe=ng (specificity)<br />

The use of <strong>tDCS</strong> adjunct to behavioral / cogniDve<br />

training to facilitate the outcomes of training.<br />

Design facilitated by animal models of plasDcity. ?


Anatomical targeting with <strong>tDCS</strong><br />

• “Conventional” <strong>tDCS</strong> varies the<br />

position of two large electrodes.<br />

• Montage specific effects<br />

on behavior and<br />

neurophysiology well<br />

documented.<br />

• “Shaping” outcomes vs<br />

“targeting” brain regions.<br />

ConvenDonal bipolar large electrodes


Anatomical targeting with <strong>tDCS</strong><br />

ConvenDonal bipolar large electrodes


Anatomical targeting with <strong>tDCS</strong><br />

High-DefiniDon electrodes in “4x1” configuraDon<br />

Datta et. al. Brain Stim 2009<br />

ConvenDonal bipolar large electrodes


Non-invasive targeting while maintaining<br />

tolerability and deployable advantages.


Anatomical targeting with <strong>tDCS</strong><br />

High-DefiniDon electrodes in “4x1” configuraDon<br />

Datta et. al. Brain Stim 2009<br />

Dmochowski Neural Engr. 2011


Anatomical targeting with <strong>tDCS</strong><br />

High-DefiniDon electrodes in “4x1” configuraDon<br />

Datta et. al. Brain Stim 2009<br />

Dmochowski Neural Engr. 2011<br />

OpDmized <strong>tDCS</strong> is a “closed” problem<br />

But “best” montage different for:<br />

a) Maximum intensity at target.<br />

b) Focality (minimizing relaDve<br />

intensity outside of target).


Anatomical targeting with <strong>tDCS</strong><br />

Consider a three-electrode setup<br />

Dmochowski Neural Engr. 2011<br />

Bikson Brain Stim. 2014<br />

1 mA<br />

1 mA<br />

I 1<br />

I 2<br />

E 1 E 2 I 1 E 1 +I 2 E 2<br />

1) Linearity of Lead-Fields<br />

+ 2) “Quasi-Uniform Assumption”: Region E α Neuromodulation


Anatomical targeting with <strong>tDCS</strong><br />

Dmochowski Neural Engr. 2011<br />

Bikson Brain Stim. 2014<br />

E 1<br />

I 1<br />

E <br />

E 2<br />

I 2<br />

Σ<br />

E M<br />

I M<br />

Optimization algorithm<br />

S I = E<br />

Linear optimized is “closed” problem: real-time,<br />

individualized, and subject to any constraints


Customized targeting with <strong>tDCS</strong><br />

Super-obese<br />

Obesity / Craving / AddicDon<br />

Pediatric<br />

Epilepsy / AD<strong>HD</strong> / CP<br />

Stroke<br />

RehabilitaDon<br />

(motor, aphasia)<br />

Truong Neuroimage 2013<br />

Datta Brain <strong>Stimulation</strong> 2011<br />

Dmochowski Neuroimage 2013<br />

Kessler PLoS ONE 2013<br />

Gillick Frontiers 2014


<strong>tDCS</strong> mechanisms: Neuromodula=on<br />

High-intensity Pulses<br />

Low-intensity DC<br />

Over-driving a<br />

neural network<br />

NeuromodulaDon comes from<br />

secondary non-linear changes


<strong>tDCS</strong> mechanisms: Neuromodula=on<br />

High-intensity Pulses<br />

Low-intensity DC<br />

Over-driving a<br />

neural network


<strong>tDCS</strong> mechanisms: Neuromodula=on<br />

High-intensity Pulses<br />

Low-intensity DC<br />

Over-driving a<br />

neural network


<strong>tDCS</strong> mechanisms: Neuromodula=on<br />

High-intensity Pulses<br />

Over-driving a<br />

neural network<br />

Low-intensity DC<br />

InteracDng with<br />

specific acDvity<br />

in a neural<br />

network<br />

(NeuromodulaDon)


Anatomical targeting with brain stimulation<br />

Supra-threshold<br />

s=mula=on<br />

Up / down stream<br />

and axons of<br />

passage stimulated.<br />

Circuit.<br />

DBS M1s TMS<br />

Sub-threshold<br />

s=mula=on<br />

<strong>Stimulation</strong> primary<br />

neuromodulation<br />

target. Endogenous<br />

circuit.<br />

• “Quasi-Uniform” <strong>HD</strong>-<strong>tDCS</strong> assumption: 4x1 Neuromodulation is<br />

linear with local electric field magnitude. Bikson Brain Stim 2010


From Anatomical Targe=ng to Func=onal Targe=ng<br />

Network of interest (e.g.<br />

depression, math cells)<br />

Other networks – not targets<br />

for neuromodula=on<br />

Preferen=al modula=on<br />

of more ac=ve network<br />

(ac=vity dependent)<br />

<strong>Current</strong> flow across en=re<br />

region


What makes <strong>tDCS</strong> specific?<br />

Given the diversity of <strong>tDCS</strong> applica=on spanning neuropsychiatric<br />

treatment, rehabilita=on, and learning in healthy individuals.<br />

• Anatomical targe=ng (specificity)<br />

The control of <strong>tDCS</strong> electrode placement to<br />

guide current flow to brain targets<br />

Design facilitated by current flow models.<br />

Treats eact<br />

region by<br />

sliding scale<br />

-<br />

+<br />

• Func=onal targe=ng (specificity)<br />

The use of <strong>tDCS</strong> adjunct to behavioral / cogniDve<br />

training to facilitate the outcomes of training.<br />

Design facilitated by animal models of plasDcity. ?<br />

Ac=vity-<br />

Dependent


The theory of Func=onal Targe=ng<br />

How could weights helps<br />

with so many sports?<br />

It’s a tool to enhance<br />

specific training.<br />

How could Electroceuticals<br />

(<strong>tDCS</strong>) treat many disorders?<br />

It’s tool to enhance cognitive<br />

training and therapy.


The theory of Func=onal Targe=ng


The theory of Func=onal Targe=ng<br />

How does <strong>tDCS</strong> just enhance<br />

the trained task?<br />

+<br />

Cellular mechanism:<br />

Functional Selectivity<br />

Bikson et. al. Front Human Neuro 2013


Biophysical basis of <strong>tDCS</strong> func=onal selec=vity<br />

1 <strong>tDCS</strong> produces a sustained weak<br />

polariza=on of neuronal membranes<br />

2 Weak polariza=on modulates<br />

synap=c efficacy and plas=city


Biophysical basis of <strong>tDCS</strong> func=onal selec=vity<br />

1 <strong>tDCS</strong> produces a sustained weak<br />

polariza=on of neuronal membranes<br />

2 Weak polariza=on modulates<br />

synap=c efficacy


<strong>Direct</strong> <strong>Current</strong>


<strong>tDCS</strong>: Sustained weak polariza=on<br />

Brain slice: Optical Mapping with Voltage Sensitive Dyes<br />

Bikson J Physiol. 2004


<strong>tDCS</strong>: Sustained weak polariza=on<br />

Brain slice: Optical Mapping with Voltage Sensitive Dyes<br />

DC On<br />

<strong>Direct</strong> <strong>Current</strong><br />

(~ 0.2 mV)<br />

Bikson J Physiol. 2004


Biophysical basis of <strong>tDCS</strong> func=onal selec=vity<br />

1 <strong>tDCS</strong> produces a sustained weak<br />

polariza=on of neuronal membranes<br />

2 Weak polariza=on modulates<br />

synap=c efficacy


Biophysical basis of <strong>tDCS</strong> func=onal selec=vity<br />

1 <strong>tDCS</strong> produces a sustained weak<br />

polariza=on of neuronal membranes<br />

2 Weak polariza=on modulates<br />

synap=c efficacy


Biophysical basis of <strong>tDCS</strong> func=onal selec=vity<br />

Theta-burst plasDcity session, no <strong>tDCS</strong><br />

Theta-burst session plasDcity session with <strong>tDCS</strong><br />

Theta-burst<br />

session<br />

Accelerated plasDcity<br />

when <strong>tDCS</strong> is present


Biophysical basis of <strong>tDCS</strong> func=onal selec=vity<br />

Theta-burst plasDcity session, no <strong>tDCS</strong><br />

Theta-burst session plasDcity session with <strong>tDCS</strong><br />

Theta-burst<br />

session<br />

Theta-burst<br />

session<br />

Theta-burst<br />

session<br />

Theta-burst<br />

session<br />

Boosted maximum<br />

plasDcity


Biophysical basis of <strong>tDCS</strong> func=onal selec=vity


High-Definition transcranial<br />

<strong>Direct</strong> <strong>Current</strong> <strong>Stimulation</strong><br />

(<strong>HD</strong>-<strong>tDCS</strong>)<br />

Marom Bikson<br />

Lucas Parra, Jacek Dmochowski,<br />

Asif Rahman, Dennis Truong,<br />

Abhishek Datta, Davide Reato,<br />

Belen Lafon, Gregory Kronberg,<br />

Thomas Radman<br />

Department of Biomedical Engineering, The City College<br />

of New, New York, NY<br />

$ NIH (NINDS, NCI), NSF, Epilepsy FoundaDon, Wallace<br />

Coulter FoundaDon, DoD (USAF, AFOSR)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!