27.12.2015 Views

Mitsubishi_Manuals_259

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

MELDAS is a registered trademark of <strong>Mitsubishi</strong> Electric Corporation.<br />

Other company and product names that appear in this manual are trademarks or registered<br />

trademarks of their respective companies.


Introduction<br />

Thank you for selecting the <strong>Mitsubishi</strong> numerical control unit.<br />

This instruction manual describes the handling and caution points for using this AC<br />

servo/spindle.<br />

Incorrect handling may lead to unforeseen accidents, so always read this instruction<br />

manual thoroughly to ensure correct usage.<br />

Make sure that this instruction manual is delivered to the end user.<br />

Always store this manual in a safe place.<br />

All specifications for the MDS-CH Series are described in this manual. However, each<br />

CNC may not be provided with all specifications, so refer to the specifications for the<br />

CNC on hand before starting use.<br />

Notes on Reading This Manual<br />

(1) Since the description of this specification manual deals with NC in general, for the<br />

specifications of individual machine tools, refer to the manuals issued by the<br />

respective machine manufacturers. The "restrictions" and "available functions"<br />

described in the manuals issued by the machine manufacturers have precedence<br />

to those in this manual.<br />

(2) This manual describes as many special operations as possible, but it should be<br />

kept in mind that items not mentioned in this manual cannot be performed.


Precautions for safety<br />

Please read this manual and auxiliary documents before starting installation, operation,<br />

maintenance or inspection to ensure correct usage. Thoroughly understand the device, safety<br />

information and precautions before starting operation.<br />

The safety precautions in this instruction manual are ranked as "WARNING" and "CAUTION".<br />

DANGER<br />

When there is a potential risk of fatal or serious injuries if<br />

handling is mistaken.<br />

WARNING<br />

When a dangerous situation, or fatal or serious injuries may<br />

occur if handling is mistaken.<br />

CAUTION<br />

When a dangerous situation may occur if handling is mistaken<br />

leading to medium or minor injuries, or physical damage.<br />

Note that some items described as CAUTION may lead to major results depending on<br />

the situation. In any case, important information that must be observed is described.<br />

The numeric control unit is configured of the control unit, operation board, servo drive unit,<br />

spindle drive unit, power supply, servomotor and spindle motor, etc.<br />

In this manual, the following items are generically called the "motor".<br />

• Servomotor<br />

• Linear servomotor<br />

• Spindle motor<br />

In this manual, the following items are generically called the "unit".<br />

• Servo drive unit<br />

• Spindle drive unit<br />

• Power supply unit<br />

• Scale I/F unit<br />

• Magnetic pole detection unit


DANGER<br />

There are no "DANGER" items in this manual.<br />

1. Electric shock prevention<br />

WARNING<br />

Do not open the front cover while the power is ON or during operation. Failure to observe this<br />

could lead to electric shocks.<br />

Do not operate the unit with the front cover removed. The high voltage terminals and charged<br />

sections will be exposed, and can cause electric shocks.<br />

Do not remove the front cover even when the power is OFF unless carrying out wiring work or<br />

periodic inspections. The inside of the units is charged, and can cause electric shocks.<br />

Wait at least 15 minutes after turning the power OFF before starting wiring or inspections.<br />

Failure to observe this could lead to electric shocks.<br />

Ground the unit and motor with Class C (former class 3) grounding or higher.<br />

Wiring and inspection work must be done by a qualified technician.<br />

Wire the servo drive unit and servomotor after installation. Failure to observe this could lead to<br />

electric shocks.<br />

Do not touch the switches with wet hands. Failure to observe this could lead to electric shocks.<br />

Do not damage, apply forcible stress, place heavy items on the cables or get them caught.<br />

Failure to observe this could lead to electric shocks.<br />

2. Injury prevention<br />

The linear servomotor uses a powerful magnet on the secondary side, and could adversely<br />

affect pacemakers, etc.<br />

During installation and operation of the machine, do not place portable items that could<br />

malfunction or fail due to the influence of the linear servomotor's magnetic force.<br />

Take special care not to pinch fingers, etc., when installing (and unpacking) the linear<br />

servomotor.<br />

1. Fire prevention<br />

CAUTION<br />

Install the units, motors and regenerative resistor on noncombustible material. Direct installation<br />

on combustible material or near combustible materials could lead to fires.<br />

Shut off the power on the power supply unit side if a fault occurs in the units. Fires could be<br />

caused if a large current continues to flow.<br />

Provide a sequence that shut off the power at the regenerative resistor error signal-ON when<br />

using the regenerative resistor. The regenerative resistor could abnormally overheat and cause<br />

a fire due to a fault in the regenerative transistor, etc.<br />

The battery unit could heat up, ignite or rupture if submerged in water, or if the poles are<br />

incorrectly wired.


2. Injury prevention<br />

CAUTION<br />

Do not apply a voltage other than that specified in Instruction Manual on each terminal. Failure<br />

to observe this item could lead to ruptures or damage, etc.<br />

Do not mistake the terminal connections. Failure to observe this item could lead to ruptures or<br />

damage, etc.<br />

Do not mistake the polarity ( + , – ). Failure to observe this item could lead to ruptures or<br />

damage, etc.<br />

Do not touch the radiation fin on unit back face, regenerative resistor or motor, etc., or place<br />

parts (cables, etc.) while the power is turned ON or immediately after turning the power OFF.<br />

These parts may reach high temperatures, and can cause burns.<br />

Structure the cooling fan on the unit back face so that it cannot be touched after installation.<br />

Touching the cooling fan during operation could lead to injuries.<br />

3. Various precautions<br />

Observe the following precautions. Incorrect handling of the unit could lead to faults, injuries and<br />

electric shocks, etc.<br />

(1) Transportation and installation<br />

Correctly transport the product according to its weight.<br />

Use the motor's hanging bolts only when transporting the motor. Do not transport the motor<br />

when it is installed on the machine.<br />

Do not stack the products above the tolerable number.<br />

Do not hold the cables, axis or detector when transporting the motor.<br />

Do not hold the connected wires or cables when transporting the units.<br />

Do not hold the front cover when transporting the unit. The unit could drop.<br />

Follow this Instruction Manual and install the unit or motor in a place where the weight can be<br />

borne.<br />

Do not get on top of or place heavy objects on the unit.<br />

Always observe the installation directions of the units or motors.<br />

Secure the specified distance between the units and control panel, or between the servo drive<br />

unit and other devices.<br />

Do not install or run a unit or motor that is damaged or missing parts.<br />

Do not block the intake or exhaust ports of the motor provided with a cooling fan.<br />

Do not let foreign objects enter the units or motors. In particular, if conductive objects such as<br />

screws or metal chips, etc., or combustible materials such as oil enter, rupture or breakage<br />

could occur.<br />

The units and motors are precision devices, so do not drop them or apply strong impacts to<br />

them.


CAUTION<br />

Store and use the units under the following environment conditions.<br />

Environment<br />

Unit<br />

Conditions<br />

Motor<br />

Ambient<br />

temperature<br />

Ambient<br />

humidity<br />

Atmosphere<br />

Altitude<br />

Vibration<br />

During operation<br />

During storage/<br />

transportation<br />

During operation<br />

During storage/<br />

transportation<br />

0°C to 55°C<br />

(with no freezing)<br />

–15°C to 70°C<br />

(with no freezing)<br />

90%RH or less<br />

(with no dew condensation)<br />

90%RH or less<br />

(with no dew condensation)<br />

0°C to 40°C<br />

(with no freezing)<br />

Note 1)<br />

–20°C to 65°C<br />

(with no freezing)<br />

20% to 90%RH<br />

(with no dew condensation)<br />

90% RH or less<br />

(with no dew condensation)<br />

Indoors (where unit is not subject to direct sunlight),<br />

with no corrosive gas, combustible gas, oil mist,<br />

dust or conductive particles<br />

Operation/storage: 1,000m or less above sea level<br />

Transportation: 10,000m or less above sea level<br />

(This specified value may be exceeded<br />

only during air-transport)<br />

To follow each unit and motor specifications<br />

Note 1) -15°C to 55°C for linear servomotor.<br />

Securely fix the servomotor to the machine. Insufficient fixing could lead to the servomotor<br />

slipping off during operation.<br />

Always install the servomotor with reduction gear in the designated direction. Failure to do<br />

so could lead to oil leaks.<br />

Structure the rotary sections of the motor so that it can never be touched during operation.<br />

Install a cover, etc., on the shaft.<br />

When installing a coupling to a servomotor shaft end, do not apply an impact by<br />

hammering, etc. The detector could be damaged.<br />

Do not apply a load exceeding the tolerable load onto the servomotor shaft. The shaft<br />

could break.<br />

Store the motor in the package box.<br />

When inserting the shaft into the built-in IPM motor, do not heat the rotor higher than<br />

130°C. The magnet could be demagnetized, and the specifications characteristics will not<br />

be ensured.<br />

Always use a nonmagnetic tool (explosion-proof beryllium copper alloy safety tool: NGK<br />

Insulators) when installing the linear servomotor.<br />

Always provide a mechanical stopper on the end of the linear servomotor's travel path.<br />

If the unit has been stored for a long time, always check the operation before starting<br />

actual operation. Please contact the Service Center or Service Station.


(2) Wiring<br />

CAUTION<br />

Correctly and securely perform the wiring. Failure to do so could lead to runaway of the motor.<br />

Do not install a condensing capacitor, surge absorber or radio noise filter on the output side of<br />

the drive unit.<br />

Correctly connect the output side of the drive unit (terminals U, V, W). Failure to do so could<br />

lead to abnormal operation of the motor.<br />

Always install an AC reactor for each power supply unit.<br />

Always install an appropriate breaker for each power supply unit. Breakers cannot be shared<br />

by several units.<br />

Direct application of a commercial power supply to the motor could cause burning. Always<br />

connect the motor to the drive unit's output terminals (U, V, W).<br />

When using an inductive load such as a relay, always connect a diode as a noise measure<br />

parallel to the load.<br />

When using a capacitance load such as a lamp, always connect a protective resistor as a noise<br />

measure serial to the load.<br />

Do not reverse the direction of a diode which<br />

connect to a DC relay for the control output<br />

signals to suppress a surge. Connecting it<br />

backwards could cause the drive unit to<br />

malfunction so that signals are not output, and<br />

emergency stop and other safety circuits are<br />

inoperable.<br />

Drive unit<br />

COM<br />

(24VDC)<br />

Control output<br />

signal<br />

Diode reverse orientation<br />

RA<br />

Do not connect/disconnect the cables connected between the units while the power is ON.<br />

Securely tighten the cable connector fixing screw or fixing mechanism. An insecure fixing could<br />

cause the cable to fall off while the power is ON.<br />

When using a shielded cable instructed in the connection manual, always ground the cable with<br />

a cable clamp, etc.<br />

Always separate the signals wires from the drive wire and power line.<br />

Use wires and cables that have a wire diameter, heat resistance and flexibility that conforms to<br />

the system.


CAUTION<br />

(3) Trial operation and adjustment<br />

Check and adjust each program and parameter before starting operation. Failure to do so could<br />

lead to unforeseen operation of the machine.<br />

Do not make remarkable adjustments and changes as the operation could become unstable.<br />

The usable motor and unit combination is predetermined. Always check the models before<br />

starting trial operation.<br />

If the axis is unbalanced due to gravity, etc., balance the axis using a counterbalance, etc.<br />

The linear servomotor does not have a stopping device such as magnetic brakes. Install a<br />

stopping device on the machine side.<br />

(4) Usage methods<br />

Install an external emergency stop circuit so that the operation can be stopped and power<br />

shut off immediately.<br />

Turn the power OFF immediately if smoke, abnormal noise or odors are generated from the unit<br />

or motor.<br />

Unqualified persons must not disassemble or repair the unit.<br />

Never make modifications.<br />

Reduce magnetic damage by installing a noise filter. The electronic devices used near the unit<br />

could be affected by magnetic noise.<br />

Use the unit, motor and regenerative resistor with the designated combination. Failure to do so<br />

could lead to fires or trouble.<br />

The brake (magnetic brake) assembled into the servomotor are for holding, and must not be<br />

used for normal braking. Do not apply the brakes in the servo ON state. Doing so will lead to a<br />

drop in the brake life. Always turn the servo OFF before applying the brakes.<br />

There may be cases when holding is not possible due to the magnetic brake's life or the<br />

machine construction (when ball screw and servomotor are coupled via a timing belt, etc.).<br />

Install a stop device to ensure safety on the machine side.<br />

After changing the programs/parameters or after maintenance and inspection, always test the<br />

operation before starting actual operation.<br />

Do not enter the movable range of the machine during automatic operation. Never place body<br />

parts near or touch the spindle during rotation.<br />

Follow the power supply specification conditions given in the separate specifications manual for<br />

the power (input voltage, input frequency, tolerable sudden power failure time, etc.).


CAUTION<br />

(5) Troubleshooting<br />

If a hazardous situation is predicted during power failure or product trouble, use a servomotor<br />

with magnetic brakes or install an external brake mechanism.<br />

Use a double circuit configuration<br />

that allows the operation circuit for<br />

the magnetic brakes to be operated<br />

even by the external emergency<br />

stop signal.<br />

Shut off with the servomotor<br />

brake control output.<br />

Servomotor<br />

Magnetic<br />

brake<br />

MBR<br />

Shut off with NC brake<br />

control PLC output.<br />

EMG<br />

24VDC<br />

Always turn the input power OFF when an alarm occurs.<br />

Never go near the machine after restoring the power after a power failure, as the machine<br />

could start suddenly. (Design the machine so that personal safety can be ensured even if the<br />

machine starts suddenly.)<br />

(6) Maintenance, inspection and part replacement<br />

Always backup the programs and parameters in the CNC device before starting maintenance<br />

or inspections.<br />

The capacity of the electrolytic capacitor will drop over time due to self-discharging, etc. To<br />

prevent secondary disasters due to failures, replacing this part every five years when used<br />

under a normal environment is recommended. Contact the Service Center or Service Station<br />

for replacement.<br />

Do not perform a megger test (insulation resistance measurement) during inspections.<br />

If the battery low warning is issued, back up the machining programs, tool data and<br />

parameters with an input/output unit, and then replace the battery.<br />

Do not short circuit, charge, overheat, incinerate or disassemble the battery.<br />

The heat radiating fin used in the 37kW and smaller unit contains substitute Freon as the<br />

refrigerant.<br />

Take care not to damage the heat radiating fin during maintenance and replacement work.<br />

(7) Disposal<br />

Do not dispose of this unit as general industrial waste. The<br />

37kW and smaller unit with heat radiating fin protruding from<br />

the back of the unit contains substitute Freon. Do not dispose<br />

of this type of unit as general industrial waste. Always return<br />

to the Service Center or Service Station.<br />

Heat<br />

radiating<br />

fin<br />

Do not disassemble the unit or motor.<br />

Dispose of the battery according to local laws.<br />

Always return the secondary side (magnet side) of the linear servomotor to the Service<br />

Center or Service Station.


CAUTION<br />

(8) Transportation<br />

The unit and motor are precision parts and must be handled carefully.<br />

According to a United Nations Advisory, the battery unit and battery must be transported<br />

according to the rules set forth by the International Civil Aviation Organization (ICAO),<br />

International Air Transportation Association (IATA), International Maritime Organization<br />

(IMO), and United States Department of Transportation (DOT), etc.<br />

(9) General precautions<br />

The drawings given in this Specifications and Maintenance Instruction Manual show the covers and<br />

safety partitions, etc., removed to provide a clearer explanation. Always return the covers or partitions to<br />

their respective places before starting operation, and always follow the instructions given in this manual.


CONTENTS<br />

1. Preface<br />

1-1 Inspection at purchase.................................................................................................................. 1-2<br />

1-1-1 Package contents ................................................................................................................. 1-2<br />

1-1-2 Rating nameplate.................................................................................................................. 1-2<br />

1-1-3 Power supply unit model....................................................................................................... 1-2<br />

1-1-4 Servo drive unit model .......................................................................................................... 1-3<br />

1-1-5 Spindle drive unit model........................................................................................................ 1-3<br />

1-2 Explanation of each part............................................................................................................... 1-4<br />

1-2-1 Explanation of each power supply unit part.......................................................................... 1-4<br />

1-2-2 Explanation of each servo drive unit part.............................................................................. 1-5<br />

1-2-3 Explanation of each spindle drive unit part........................................................................... 1-5<br />

2. Wiring and Connection<br />

2-1 Part system connection diagram .................................................................................................. 2-3<br />

2-2 Main circuit terminal block/control circuit connector ..................................................................... 2-5<br />

2-2-1 Connector pin assignment .................................................................................................... 2-5<br />

2-2-2 Names and applications of main circuit terminal block signals and control circuit connectors 2-7<br />

2-2-3 How to use the control circuit terminal block (MDS-CH-SP-750) ......................................... 2-8<br />

2-3 NC and drive unit connection ....................................................................................................... 2-10<br />

2-4 Motor and detector connection ..................................................................................................... 2-11<br />

2-4-1 Connection of HC-H Series .................................................................................................. 2-11<br />

2-4-2 Connection of the spindle motor ........................................................................................... 2-14<br />

2-4-3 Connection of the linear servomotor LM-NP Series ............................................................. 2-15<br />

2-5 Connection of power supply ......................................................................................................... 2-16<br />

2-5-1 Standard connection ............................................................................................................. 2-16<br />

2-5-2 DC connection bar ................................................................................................................ 2-18<br />

2-5-3 Two-part system control of power supply unit....................................................................... 2-19<br />

2-5-4 Using multiple power supply units ........................................................................................ 2-20<br />

2-6 Connection of AC reactor ............................................................................................................. 2-21<br />

2-6-1 Features of the AC reactor.................................................................................................... 2-21<br />

2-6-2 Wiring of AC reactor.............................................................................................................. 2-21<br />

2-7 Wiring of contactors...................................................................................................................... 2-22<br />

2-7-1 Contactor power ON sequences........................................................................................... 2-23<br />

2-7-2 Contactor shutoff sequences ................................................................................................ 2-23<br />

2-7-3 Contactor control signal (MC1) output circuit........................................................................ 2-24<br />

2-8 Wiring of the motor brake ............................................................................................................. 2-25<br />

2-8-1 Motor brake release sequence ............................................................................................. 2-25<br />

2-8-2 Control during the servo OFF command .............................................................................. 2-25<br />

2-8-3 Operation sequences when an emergency stop occurs....................................................... 2-25<br />

2-8-4 Motor brake control connector (CN20) output circuit............................................................ 2-26<br />

2-9 Wiring of an external emergency stop .......................................................................................... 2-27<br />

2-9-1 External emergency stop setting .......................................................................................... 2-27<br />

2-9-2 Operation sequences of CN23 external emergency stop function ....................................... 2-28<br />

2-9-3 Example of emergency stop circuit....................................................................................... 2-29<br />

2-10 Connecting the Grounding Cable ............................................................................................... 2-30<br />

2-10-1 Connecting the Frame Ground (FG)................................................................................... 2-30<br />

2-10-2 Grounding cable size .......................................................................................................... 2-30<br />

3. Installation<br />

3-1 Installation of the units.................................................................................................................. 3-2<br />

3-1-1 Environmental conditions...................................................................................................... 3-2<br />

3-1-2 Installation direction and clearance ...................................................................................... 3-3<br />

3-1-3 Prevention of entering of foreign matter ............................................................................... 3-3<br />

3-1-4 Panel installation hole work drawings (Panel cut drawings)................................................. 3-4<br />

3-1-5 Heating value ........................................................................................................................ 3-5<br />

3-1-6 Heat radiation countermeasures........................................................................................... 3-6


3-2 Installation of servomotor/spindle motor....................................................................................... 3-7<br />

3-2-1 Environmental conditions...................................................................................................... 3-7<br />

3-2-2 Cautions for mounting load (prevention of impact on shaft) ................................................. 3-8<br />

3-2-3 Installation direction .............................................................................................................. 3-8<br />

3-2-4 Tolerable load of axis ............................................................................................................ 3-9<br />

3-2-5 Oil and waterproofing measures........................................................................................... 3-10<br />

3-2-6 Cable stress .......................................................................................................................... 3-12<br />

3-3 Installing the linear servomotor..................................................................................................... 3-13<br />

3-3-1 Installation environment........................................................................................................ 3-13<br />

3-3-2 Installing the linear servomotor............................................................................................. 3-13<br />

3-3-3 Cooling the linear servomotor............................................................................................... 3-15<br />

3-4 Noise measures............................................................................................................................ 3-16<br />

4. Setup<br />

4-1 Initial setup.................................................................................................................................... 4-2<br />

4-1-1 Setting the rotary switch........................................................................................................ 4-2<br />

4-1-2 Transition of LED display after power is turned ON.............................................................. 4-3<br />

4-2 Servo drive unit initial parameter settings..................................................................................... 4-4<br />

4-2-1 List of servo parameters ....................................................................................................... 4-4<br />

4-2-2 Limitations to electronic gear setting value........................................................................... 4-19<br />

4-2-3 Setting excessive detection error width ................................................................................ 4-19<br />

4-2-4 Setting motor and detector model......................................................................................... 4-20<br />

4-2-5 Setting servo specifications .................................................................................................. 4-21<br />

4-2-6 Initial setup of the linear servo system.................................................................................. 4-22<br />

4-2-7 Standard parameter list according to motor.......................................................................... 4-31<br />

4-3 Spindle drive unit initial parameter settings.................................................................................. 4-33<br />

4-3-1 List of spindle parameters..................................................................................................... 4-33<br />

4-3-2 Details of bit-corresponding parameters............................................................................... 4-50<br />

4-3-3 Setting spindle drive unit and motor model .......................................................................... 4-54<br />

4-3-4 Spindle specification parameters screen .............................................................................. 4-55<br />

4-3-5 Spindle control signals .......................................................................................................... 4-58<br />

5. Adjustment<br />

5-1 Servo adjustment data output function (D/A output) .................................................................... 5-2<br />

5-1-1 D/A output specifications ...................................................................................................... 5-2<br />

5-1-2 Setting the output data.......................................................................................................... 5-2<br />

5-1-3 Setting the output magnification ........................................................................................... 5-2<br />

5-2 Gain adjustment............................................................................................................................ 5-3<br />

5-2-1 Current loop gain .................................................................................................................. 5-3<br />

5-2-2 Speed loop gain .................................................................................................................... 5-3<br />

5-2-3 Position loop gain.................................................................................................................. 5-5<br />

5-3 Characteristics improvement ........................................................................................................ 5-8<br />

5-3-1 Optimal adjustment of cycle time.......................................................................................... 5-8<br />

5-3-2 Vibration suppression measures .......................................................................................... 5-11<br />

5-3-3 Improving the cutting surface precision ................................................................................ 5-15<br />

5-3-4 Improvement of protrusion at quadrant changeover............................................................. 5-23<br />

5-3-6 Improvement of characteristics during acceleration/deceleration ........................................ 5-26<br />

5-4 Settings for emergency stop......................................................................................................... 5-29<br />

5-4-1 Vertical axis drop prevention control..................................................................................... 5-29<br />

5-4-2 Deceleration control.............................................................................................................. 5-31<br />

5-4-3 Dynamic braking stop ........................................................................................................... 5-32<br />

5-5 Collision detection function........................................................................................................... 5-33<br />

5-6 Spindle adjustment data output function (D/A output).................................................................. 5-36<br />

5-6-1 D/A output specifications ...................................................................................................... 5-36<br />

5-6-2 Parameter settings................................................................................................................ 5-36<br />

5-6-3 Output data settings.............................................................................................................. 5-36<br />

5-6-4 Setting the output magnification ........................................................................................... 5-37


5-7 Spindle adjustment ....................................................................................................................... 5-40<br />

5-7-1 Items to check during trial operation..................................................................................... 5-40<br />

5-7-2 Adjusting the spindle rotation speed..................................................................................... 5-40<br />

5-7-3 Adjusting the acceleration/deceleration................................................................................ 5-40<br />

5-7-4 Adjusting the orientation ....................................................................................................... 5-42<br />

5-7-5 Synchronous tap adjustment ................................................................................................ 5-49<br />

5-7-6 Z-phase (magnetic) automatic adjustment (Only when using IPM spindle motor)............... 5-51<br />

5-7-7 PLG automatic adjustment ................................................................................................... 5-51<br />

5-7-8 Calculating the theoretical acceleration/deceleration ........................................................... 5-52<br />

5-8 Spindle specifications ................................................................................................................... 5-54<br />

5-8-1 Spindle coil changeover........................................................................................................ 5-54<br />

6. Dedicated Options<br />

6-1 Dynamic brake unit .................................................................................................................. 6-2<br />

6-1-2 Outline dimension drawings of dynamic brake unit .............................................................. 6-3<br />

6-2 Battery option................................................................................................................................ 6-4<br />

6-2-1 Battery unit............................................................................................................................ 6-4<br />

6-2-2 Connection............................................................................................................................ 6-8<br />

6-2-3 Dedicated battery cable drawing .......................................................................................... 6-8<br />

6-3 Cables and connectors................................................................................................................. 6-9<br />

6-3-1 Cable option list .................................................................................................................... 6-10<br />

6-3-2 Connector outline dimension drawings................................................................................. 6-14<br />

6-3-3 Flexible conduits ................................................................................................................... 6-21<br />

6-3-4 Cable wire and assembly...................................................................................................... 6-23<br />

6-3-5 Option cable connection diagram ......................................................................................... 6-25<br />

6-3-6 Main circuit cable connection drawing.................................................................................. 6-28<br />

6-4 Scale I/F unit................................................................................................................................. 6-29<br />

6-4-1 Outline................................................................................................................................... 6-29<br />

6-4-2 Model configuration............................................................................................................... 6-29<br />

6-4-3 List of specifications.............................................................................................................. 6-29<br />

6-4-4 Unit outline dimension drawing............................................................................................. 6-30<br />

6-4-5 Description of connector ....................................................................................................... 6-30<br />

6-4-6 Example of detector conversion unit connection .................................................................. 6-31<br />

6-4-7 Cables................................................................................................................................... 6-32<br />

6-5 Magnetic pole detection unit......................................................................................................... 6-36<br />

6-5-1 Outline................................................................................................................................... 6-36<br />

6-5-2 Model configuration............................................................................................................... 6-36<br />

6-5-3 List of specifications.............................................................................................................. 6-36<br />

6-5-4 Outline dimensions ............................................................................................................... 6-36<br />

6-5-5 Assignment of connector pins............................................................................................... 6-37<br />

6-5-6 Installing onto the linear servomotor..................................................................................... 6-37<br />

6-6 Detectors ...................................................................................................................................... 6-38<br />

6-6-1 List of detector specifications................................................................................................ 6-38<br />

6-6-2 Outline dimension drawings.................................................................................................. 6-39<br />

6-6-3 Cable connection diagram .................................................................................................... 6-41<br />

6-6-4 Maintenance ......................................................................................................................... 6-42<br />

6-7 Spindle option specification parts ................................................................................................. 6-43<br />

6-7-1 Magnetic sensor orientation (one-point orientation) ............................................................. 6-44<br />

6-7-2 Multi-point orientation using encoder (4096-point orientation) ............................................. 6-48<br />

6-7-3 Multi-point orientation using motor built-in encoder (4096-point orientation) ....................... 6-51<br />

6-7-4 Contour control (C axis control) encoder.............................................................................. 6-53<br />

6-7-5 Integrated rotary encoder (Special order part)...................................................................... 6-56<br />

6-8 AC reactor..................................................................................................................................... 6-57<br />

6-8-1 Combination with power supply unit ..................................................................................... 6-57<br />

6-8-2 Outline dimension drawings.................................................................................................. 6-57


7. Peripheral Devices<br />

7-1 Selection of wire ........................................................................................................................... 7-2<br />

7-1-1 Example of wires by unit....................................................................................................... 7-2<br />

7-2 Selection of main circuit breaker and contactor ........................................................................... 7-5<br />

7-2-1 Selection of earth leakage breaker....................................................................................... 7-5<br />

7-2-2 Selection of no-fuse breaker................................................................................................. 7-6<br />

7-2-3 Selection of contactor ........................................................................................................... 7-7<br />

7-3 Control circuit related.................................................................................................................... 7-8<br />

7-3-1 Circuit protector..................................................................................................................... 7-8<br />

7-3-2 Fuse protection ..................................................................................................................... 7-9<br />

7-3-3 Relays ................................................................................................................................... 7-10<br />

7-3-4 Surge absorber ..................................................................................................................... 7-11<br />

8. Troubleshooting<br />

8-1 Points of caution and confirmation ............................................................................................... 8-2<br />

8-2 Troubleshooting at start up........................................................................................................... 8-3<br />

8-3 Protective functions list of units .................................................................................................... 8-4<br />

8-3-1 List of alarms......................................................................................................................... 8-4<br />

8-3-2 List of warnings ..................................................................................................................... 8-16<br />

8-3-3 Protection functions and resetting methods ......................................................................... 8-17<br />

8-3-4 Parameter numbers during initial parameter error................................................................ 8-19<br />

8-3-5 Troubleshooting .................................................................................................................... 8-20<br />

8-4 Spindle system troubleshooting.................................................................................................... 8-39<br />

8-4-1 Introduction ........................................................................................................................... 8-39<br />

8-4-2 First step ............................................................................................................................... 8-39<br />

8-4-3 Second step .......................................................................................................................... 8-40<br />

8-4-4 When there is no alarm or warning....................................................................................... 8-41<br />

9. Characteristics<br />

9-1 Overload protection characteristics .............................................................................................. 9-2<br />

9-1-1 Servomotor (HC-H series) .................................................................................................... 9-2<br />

9-1-2 Linear servomotor (LM-NP Series) ....................................................................................... 9-9<br />

9-2 Duty characteristics ...................................................................................................................... 9-10<br />

9-3 Magnetic brake characteristics ..................................................................................................... 9-14<br />

9-4 Dynamic brake characteristics...................................................................................................... 9-17<br />

9-4-1 Deceleration torque............................................................................................................... 9-17<br />

9-4-2 Determining the coasting amount with emergency stop....................................................... 9-18<br />

9-5 Vibration class .............................................................................................................................. 9-20<br />

10. Specifications<br />

10-1 Power supply unit/drive unit........................................................................................................ 10-2<br />

10-1-1 Installation environment conditions..................................................................................... 10-2<br />

10-1-2 Servo drive unit................................................................................................................... 10-2<br />

10-1-3 Spindle drive unit................................................................................................................. 10-3<br />

10-1-4 Power supply unit................................................................................................................ 10-3<br />

10-1-5 Outline dimension drawings................................................................................................ 10-4<br />

10-1-6 Terminal layout.................................................................................................................... 10-8<br />

10-1-7 The combination of servo drive unit and a motor ............................................................... 10-9<br />

10-2 Servomotor ................................................................................................................................. 10-10<br />

10-2-1 Specifications list................................................................................................................. 10-10<br />

10-2-2 Torque characteristics......................................................................................................... 10-12<br />

10-2-3 Model configuration............................................................................................................. 10-14<br />

10-2-4 Outline dimension drawings................................................................................................ 10-15


10-3 Linear servomotor....................................................................................................................... 10-21<br />

10-3-1 List of specifications............................................................................................................ 10-21<br />

10-3-2 Outline dimension drawings................................................................................................ 10-22<br />

11. Selection<br />

11-1 Selection of servomotor.............................................................................................................. 11-2<br />

11-1-1 Servomotor.......................................................................................................................... 11-2<br />

11-1-2 Regeneration methods........................................................................................................ 11-3<br />

11-1-3 Motor series characteristics ................................................................................................ 11-4<br />

11-1-4 Servomotor precision .......................................................................................................... 11-4<br />

11-1-5 Selection of servomotor capacity ........................................................................................ 11-6<br />

11-1-6 Example of servo selection ................................................................................................. 11-10<br />

11-1-7 Motor shaft conversion load torque..................................................................................... 11-13<br />

11-1-8 Expressions for load inertia calculation............................................................................... 11-14<br />

11-1-9 Other precautions................................................................................................................ 11-15<br />

11-2 Selection of linear servomotor .................................................................................................... 11-16<br />

11-2-1 Maximum feedrate .............................................................................................................. 11-16<br />

11-2-2 Maximum thrust................................................................................................................... 11-16<br />

11-2-3 Continuous thrust ................................................................................................................ 11-18<br />

11-3 Selection of the power supply unit.............................................................................................. 11-20<br />

11-3-1 Selection of the power supply unit capacity ........................................................................ 11-20<br />

11-3-2 Selection with continuous rated capacity ............................................................................ 11-20<br />

11-3-3 Selection with maximum momentary rated capacity........................................................... 11-22<br />

12. Inspection<br />

12-1 Inspections.................................................................................................................................. 12-2<br />

12-2 Service parts............................................................................................................................... 12-2<br />

12-3 Daily inspections......................................................................................................................... 12-3<br />

12-3-1 Maintenance tools............................................................................................................... 12-3<br />

12-3-2 Inspection positions ............................................................................................................ 12-3<br />

12-4. Replacement methods of units and parts..................................................................................... 12-4<br />

12-4-1 Drive unit and power supply unit replacements..................................................................... 12-4<br />

12-4-2 Battery unit replacements...................................................................................................... 12-4<br />

12-4-3 Cooling fan replacements...................................................................................................... 12-4<br />

Appendix 1. Compliance to EC Directives<br />

1. European EC Directives .................................................................................................................... A1-2<br />

2. Cautions for EC Directive compliance............................................................................................... A1-2<br />

Appendix 2. EMC Installation Guidelines<br />

1. Introduction........................................................................................................................................ A2-2<br />

2. EMC Instructions ............................................................................................................................... A2-2<br />

3. EMC Measures.................................................................................................................................. A2-3<br />

4. Measures for panel structure............................................................................................................. A2-3<br />

4.1 Measures for control box unit................................................................................................... A2-3<br />

4.2 Measures for door .................................................................................................................... A2-4<br />

4.3 Measures for operation board panel ........................................................................................ A2-4<br />

4.4 Shielding of the power supply input section............................................................................. A2-4<br />

5. Measures for various cables ............................................................................................................. A2-5<br />

5.1 Measures for wiring in box ....................................................................................................... A2-5<br />

5.2 Measures for shield treatment.................................................................................................. A2-5<br />

5.3 Servomotor power cable .......................................................................................................... A2-6<br />

5.4 Servomotor feedback cable ..................................................................................................... A2-6<br />

5.5 Spindle motor power cable....................................................................................................... A2-7<br />

5.6 Cable between control box and operation board panel ........................................................... A2-7


6. EMC Countermeasure Parts ............................................................................................................. A2-8<br />

6.1 Shield clamp fitting ................................................................................................................... A2-8<br />

6.2 Ferrite core ............................................................................................................................... A2-9<br />

6.3 Power line filter......................................................................................................................... A2-10<br />

6.4 Surge protector......................................................................................................................... A2-12<br />

Appendix 3. EC Declaration of conformity<br />

1. Low voltage equipment...................................................................................................................... A3-2<br />

2. Electromagnetic compatibility............................................................................................................ A3-12<br />

Appendix 4. Instruction Manual for Compliance with UL/c-UL Standard<br />

1. UL/c-UL listed products ..................................................................................................................... A4-2<br />

2. Operation surrounding air ambient temperature ............................................................................... A4-3<br />

3. Notes for AC servo/spindle system ................................................................................................... A4-3<br />

3.1 General Precaution .................................................................................................................. A4-3<br />

3.2 Installation ................................................................................................................................ A4-3<br />

3.3 Short-circuit ratings .................................................................................................................. A4-3<br />

3.5 Field Wiring Reference Table for Input and Output.................................................................. A4-4<br />

3.6 Motor Over Load Protection ..................................................................................................... A4-6<br />

3.7 Flange of servomotor ............................................................................................................... A4-7<br />

3.8 Spindle Drive / Motor Combinations......................................................................................... A4-7<br />

4. AC Servo/Spindle System Connection.............................................................................................. A4-8<br />

Appendix 5. Higher Harmonic Suppression Measure Guidelines<br />

1. Calculating the equivalent capacity of the higher harmonic generator ............................................. A5-3<br />

1.1 Calculating the total equivalent capacity (Step 1) .................................................................... A5-3<br />

1.2 Calculating the higher harmonic current flow (Step 2) ............................................................. A5-4<br />

Appendix 6. Transportation Restrictions for Lithium Batteries<br />

Appendix 6-1 Transportation restrictions for lithium batteries ............................................................ A6-2<br />

Appendix 6-1-1 Restriction for packing .......................................................................................... A6-2<br />

Appendix 6-1-2 Issuing domestic law of the United State for primary lithium battery transportation A6-5<br />

Appendix 7. Compliance with China Compulsory Product Certification (CCC Certification) System<br />

Appendix 7-1 Outline of China Compulsory Product Certification System......................................... A7-2<br />

Appendix 7-2 First Catalogue of Products subject to Compulsory Product Certification ................... A7-2<br />

Appendix 7-3 Precautions for Shipping Products ............................................................................... A7-3<br />

Appendix 7-4 Application for Exemption............................................................................................. A7-4<br />

Appendix 7-5 <strong>Mitsubishi</strong> NC Product Subject to/Not Subject to CCC Certification ............................ A7-5


1. Preface<br />

1-1 Inspection at purchase ....................................................................................................................... 1-2<br />

1-1-1 Package contents........................................................................................................................ 1-2<br />

1-1-2 Rating nameplate ........................................................................................................................ 1-2<br />

1-1-3 Power supply unit model ............................................................................................................. 1-2<br />

1-1-4 Servo drive unit model................................................................................................................. 1-3<br />

1-1-5 Spindle drive unit model .............................................................................................................. 1-3<br />

1-2 Explanation of each part .................................................................................................................... 1-4<br />

1-2-1 Explanation of each power supply unit part ................................................................................ 1-4<br />

1-2-2 Explanation of each servo drive unit part.................................................................................... 1-5<br />

1-2-3 Explanation of each spindle drive unit part ................................................................................. 1-5<br />

1 - 1


1. Preface<br />

1-1 Inspection at purchase<br />

Open the package, and read the rating nameplates to confirm that the drive units, power supply unit and<br />

servomotor are as ordered.<br />

1-1-1 Package contents<br />

Packaged parts Qty. Packaged parts Qty.<br />

Power supply unit 1 Servo drive unit 1<br />

Servo/spindle motor 1 Spindle drive unit 1<br />

1-1-2 Rating nameplate<br />

The rating nameplate is attached to the front of the unit.<br />

The following rating nameplate is for the servo drive unit. The same matters are indicated on the power<br />

supply unit and spindle drive unit.<br />

Caution statement<br />

Unit Capacity<br />

Model<br />

Global industrial<br />

standards<br />

Software version<br />

Input/output condition<br />

Instruction manual No.<br />

Serial No., Date of<br />

manufacture<br />

1-1-3 Power supply unit model<br />

MDS - CH - CV - [ ]<br />

Series<br />

Power supply unit<br />

Symbol<br />

Rated<br />

Output<br />

[kW]<br />

Symbol<br />

Rated<br />

Output<br />

[kW]<br />

37 2.2 260 22.0<br />

55 3.7 300 26.0<br />

75 5.5 370 30.0<br />

110 7.5 450(Note) 37.0<br />

150 11.0 550(Note) 45.0<br />

185 15.0 750(Note) 55.0<br />

220 18.5<br />

(Note) DC connection bar is required. Always install a large capacity drive unit in the left<br />

side of power supply unit, and connect with DC connection bar.<br />

1 - 2


1. Preface<br />

1-1-4 Servo drive unit model<br />

MDS - CH - V1 - [ ]<br />

Series<br />

1-axis servo drive unit<br />

Symbol<br />

Rated<br />

Output<br />

[kW]<br />

Symbol<br />

Rated<br />

Output<br />

[kW]<br />

05 0.5 70 7.0<br />

10 1.0 90 9.0<br />

20 2.0 110 11.0<br />

35 3.5 150 15.0<br />

45 4.5 185(Note) 18.5<br />

(Note) DC connection bar is required. Always install a large capacity drive unit in the left side of<br />

power supply unit, and connect with DC connection bar.<br />

MDS - CH - V2 - [ ]<br />

Series<br />

2-axis servo drive unit<br />

Symbol<br />

Rated<br />

Output<br />

[kW]<br />

Symbol<br />

Rated<br />

Output<br />

[kW]<br />

0505 0.5 / 0.5 3510 3.5 / 1.0<br />

1005 1.0 / 0.5 3520 3.5 / 2.0<br />

1010 1.0 / 1.0 3535 3.5 / 3.5<br />

2010 2.0 / 1.0 4520 4.5 / 2.0<br />

2020 2.0 / 2.0 4535 4.5 / 3.5<br />

1-1-5 Spindle drive unit model<br />

MDS - CH - SP[ ] - [ ]<br />

Series<br />

Spindle drive unit<br />

Symbol<br />

Cont.<br />

Rating<br />

[kW]<br />

Symbol<br />

Cont.<br />

Rating<br />

[kW]<br />

15 0.75 185 15.0<br />

22 1.5 220 18.5<br />

37 2.2 260 22.0<br />

55 3.7 300 26.0<br />

75 5.5 370(Note) 30.0<br />

110 7.5 450(Note) 37.0<br />

150 11.0 550(Note) 45.0<br />

750(Note) 55.0<br />

Symbol<br />

None<br />

H<br />

Corresponding spindle motor<br />

Standard specifications part<br />

• High-speed part: 10000r/min or more<br />

• C axis detector (1/10000 o )<br />

correspondence:<br />

ERM280 (HEIDENHAIN)<br />

• IPM spindle motor compatible<br />

(Conventional SPM class has been<br />

eliminated.)<br />

(Note) DC connection bar is required. Always install a large capacity drive unit in the left side of<br />

power supply unit, and connect with DC connection bar.<br />

1 - 3


1. Preface<br />

1-2 Explanation of each part<br />

1-2-1 Explanation of each power supply unit part<br />

Each part name<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Name<br />

TE1 L1, L2, L3<br />

TE2 L+, L–<br />

TE3<br />

L11, L21<br />

MC1<br />

Description<br />

Power supply input terminal<br />

(3-phase AC input)<br />

Converter voltage output terminal<br />

(DC output)<br />

PE Grounding terminal<br />

<br />

Main circuit<br />

---<br />

CHARGE<br />

LAMP<br />

CN4 ---<br />

Control circuit<br />

Control power input terminal (single-phase<br />

AC input)<br />

External contactor control terminal<br />

TE2 output charging/discharging circuit<br />

indication LED<br />

Servo/spindle communication connector<br />

(master)<br />

CN9 ---<br />

Servo/spindle communication connector<br />

(slave)<br />

CN23 --- External emergency stop input connector<br />

SW1 --- Power supply setting switch<br />

LED --- Power supply status indication LED<br />

Precautions<br />

CN23 is located at the bottom of the power supply unit.<br />

Each part name<br />

<br />

<br />

<br />

<br />

<br />

-1<br />

-2<br />

<br />

Name<br />

TE1 L1, L2, L3<br />

-1 TE2-1 L+, L–<br />

-2 TE2-2 L+, L–<br />

TE3<br />

L11, L21<br />

MC1, MC2<br />

Description<br />

Power supply input terminal<br />

(3-phase AC input)<br />

Voltage output terminal (DC output)<br />

CV-450/550/750<br />

Voltage output terminal (DC output)<br />

CV-450/550<br />

Control power input terminal<br />

(single-phase AC input)<br />

External contactor control terminal<br />

PE Grounding terminal<br />

<br />

Main circuit<br />

---<br />

CHARGE<br />

LAMP<br />

CN4 ---<br />

Control circuit<br />

TE2 output charging circuit indication<br />

LED<br />

Servo/spindle communication connector<br />

(master)<br />

CN9 ---<br />

Servo/spindle communication connector<br />

(slave)<br />

CN23 --- External emergency stop input connector<br />

SW1 --- Power supply setting switch<br />

LED --- Power supply status indication LED<br />

Precautions<br />

CN23 is located at the bottom of the power supply unit.<br />

TE2-2 is used to connect a 30kW or smaller drive unit.<br />

The connector layout will differ according to the units being used.<br />

Check each unit outline drawing for details.<br />

1 - 4


1. Preface<br />

1-2-2 Explanation of each servo drive unit part<br />

Each part name<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

TE1<br />

Name<br />

MU, MV, MW<br />

LU, LV, LW<br />

TE2 L+, L–<br />

TE3 L11, L21<br />

<br />

Main circuit<br />

PE<br />

Description<br />

Motor drive output terminal<br />

(3-phase AC output)<br />

Converter voltage input terminal<br />

(DC input)<br />

Control power input terminal<br />

(single-phase AC input)<br />

Grounding terminal<br />

CN1A ---<br />

NC or upward axis communication<br />

connector<br />

CN1B ---<br />

Battery unit/terminator<br />

Lower axis communication connector<br />

CN4 --- Power supply communication connector<br />

CN9 --- Maintenance connector (normally not used)<br />

CN2L ---<br />

Motor side detector connection connector<br />

(L axis)<br />

CN2M ---<br />

Motor side detector connection connector<br />

(M axis)<br />

CN3L ---<br />

Machine side detector connection<br />

connector (L axis)<br />

CN3M ---<br />

Machine side detector connection<br />

connector (M axis)<br />

CN20 --- Electromagnetic/dynamic brake connector<br />

SW1 --- Axis No. setting switch<br />

<br />

Control circuit<br />

LED --- Unit status indication LED<br />

Precautions<br />

1. The connector names differ for the V1 drive unit.<br />

(CN2L/CN3L → CN2/CN3, CN2M/CN3M → Not mounted)<br />

The MU, MV and MW terminals are not provided. The LU, LV and LW terminals<br />

are named U, V and W.<br />

1-2-3 Explanation of each spindle drive unit part<br />

Each part name<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Name<br />

TE1 U, V, W<br />

TE2 L+, L–<br />

TE3 L11, L21<br />

<br />

Main circuit<br />

PE<br />

Description<br />

Motor drive output terminal<br />

(3-phase AC output)<br />

Converter voltage input terminal<br />

(DC input)<br />

Control power input terminal<br />

(single-phase AC input)<br />

Grounding terminal<br />

CN1A --- NC or upward axis communication connector<br />

CN1B ---<br />

Battery unit/terminator lower axis<br />

communication connector<br />

CN4 --- Power supply communication connector<br />

CN9 --- Maintenance connector (normally not used)<br />

CN5 --- Internal PLG encoder connection connector<br />

CN7 --- C axis control encoder connection connector<br />

CN6 --- Magnetic sensor connection connector<br />

CN8 --- CNC connection connector<br />

SW1 --- Axis No. setting switch<br />

<br />

Control circuit<br />

Precautions<br />

LED --- Unit status indication LED<br />

The connector and terminal block layout will differ according to the<br />

units being used.<br />

Check each unit outline drawing for details.<br />

1 - 5


2. Wiring and Connection<br />

2-1 Part system connection diagram........................................................................................................ 2-3<br />

2-2 Main circuit terminal block/control circuit connector .......................................................................... 2-5<br />

2-2-1 Connector pin assignment .......................................................................................................... 2-5<br />

2-2-2 Names and applications of main circuit terminal block signals and control circuit connectors .. 2-7<br />

2-2-3 How to use the control circuit terminal block (MDS-CH-SP-750) ............................................... 2-8<br />

2-3 NC and drive unit connection........................................................................................................... 2-10<br />

2-4 Motor and detector connection ........................................................................................................ 2-11<br />

2-4-1 Connection of HC-H Series....................................................................................................... 2-11<br />

2-4-2 Connection of the spindle motor ............................................................................................... 2-14<br />

2-4-3 Connection of the linear servomotor LM-NP Series.................................................................. 2-15<br />

2-5 Connection of power supply............................................................................................................. 2-16<br />

2-5-1 Standard connection ................................................................................................................. 2-16<br />

2-5-2 DC connection bar..................................................................................................................... 2-18<br />

2-5-3 Two-part system control of power supply unit........................................................................... 2-19<br />

2-5-4 Using multiple power supply units............................................................................................. 2-20<br />

2-6 Connection of AC reactor................................................................................................................. 2-21<br />

2-6-1 Features of the AC reactor........................................................................................................ 2-21<br />

2-6-2 Wiring of AC reactor .................................................................................................................. 2-21<br />

2-7 Wiring of contactors ......................................................................................................................... 2-22<br />

2-7-1 Contactor power ON sequences............................................................................................... 2-23<br />

2-7-2 Contactor shutoff sequences .................................................................................................... 2-23<br />

2-7-3 Contactor control signal (MC1) output circuit............................................................................2-24<br />

2-8 Wiring of the motor brake................................................................................................................. 2-25<br />

2-8-1 Motor brake release sequence.................................................................................................. 2-25<br />

2-8-2 Control during the servo OFF command................................................................................... 2-25<br />

2-8-3 Operation sequences when an emergency stop occurs........................................................... 2-25<br />

2-8-4 Motor brake control connector (CN20) output circuit ................................................................ 2-26<br />

2-9 Wiring of an external emergency stop ............................................................................................. 2-27<br />

2-9-1 External emergency stop setting............................................................................................... 2-27<br />

2-9-2 Operation sequences of CN23 external emergency stop function ........................................... 2-28<br />

2-9-3 Example of emergency stop circuit ........................................................................................... 2-29<br />

2-10 Connecting the Grounding Cable................................................................................................... 2-30<br />

2-10-1 Connecting the Frame Ground (FG) ....................................................................................... 2-30<br />

2-10-2 Grounding cable size............................................................................................................... 2-30<br />

2 - 1


2. Wiring and Connection<br />

DANGER<br />

1. Wiring work must be done by a qualified technician.<br />

2. Wait at least 15 minutes after turning the power OFF and check the voltage<br />

with a tester, etc., before starting wiring. Failure to observe this could lead to<br />

electric shocks.<br />

3. Securely ground the drive units and servo/spindle motor with Class 3<br />

grounding or higher.<br />

4. Wire the drive units and servo/spindle motor after installation. Failure to<br />

observe this could lead to electric shocks.<br />

5. Do not damage, apply forcible stress, place heavy items on the cables or get<br />

them caught. Failure to observe this could lead to electric shocks.<br />

6. Always insulate the power terminal connection section. Failure to observe<br />

this could lead to electric shocks.<br />

1. Correctly and securely perform the wiring. Failure to do so could lead to<br />

runaway of the servo/spindle motor.<br />

2. Do not mistake the terminal connections.<br />

Failure to observe this item could lead to ruptures or damage, etc.<br />

3. Do not mistake the polarity ( + , – ). Failure to observe this item could lead to<br />

ruptures or damage, etc.<br />

4. Do not mistake the direction of the diodes for the surge absorption installed<br />

on the DC relay for the motor brake and contactor (magnetic contactor)<br />

control. The signal might not be output when a failure occurs.<br />

Drive unit<br />

COM<br />

(24VDC)<br />

CAUTION<br />

Control output signal<br />

RA<br />

5. Electronic devices used near the drive units may receive magnetic<br />

obstruction. Reduce the effect of magnetic obstacles by installing a noise<br />

filter, etc.<br />

6. Do not install a phase advancing capacitor, surge absorber or radio noise<br />

filter on the power line (U, V, W) of the servo/spindle motor.<br />

7. Do not modify this unit.<br />

8. The half-pitch connector (CN1A, etc.) on the front of the drive units have the<br />

same shape. If the connectors are connected incorrectly, faults could occur.<br />

Make sure that the connection is correct.<br />

9. When grounding the motor, connect to<br />

the protective grounding terminal on the<br />

drive units, and ground from the other<br />

protective grounding terminal.<br />

(Use one-point grounding)<br />

Do not separately ground the connected<br />

motor and drive unit as noise could be<br />

generated.<br />

2 - 2


2. Wiring and Connection<br />

2-1 Part system connection diagram<br />

<strong>Mitsubishi</strong> CNC<br />

MDS-CH-CV-[ ]<br />

MDS-CH-SP-[ ]<br />

MDS-CH-V2-[ ]<br />

SV1,2<br />

(CSH21)<br />

SH21 cable<br />

Battery unit<br />

BT-[ BT-[ ] ]<br />

CN1A<br />

CN1B<br />

CN1A<br />

CN1A<br />

CN1B<br />

CN4<br />

CN4<br />

CN8<br />

SH21 cable<br />

CN4<br />

CN3M<br />

CNV13 cable<br />

Machine side<br />

detector<br />

External emergency<br />

stop<br />

CN23 CN9<br />

CN9<br />

CN7<br />

CN9<br />

CN3L<br />

CNV13 cable<br />

Machine side<br />

detector<br />

Circuit breaker<br />

R<br />

S<br />

T<br />

AC reactor<br />

CH-AL[ CH-AL[ ] K ]K<br />

Magnetic<br />

contactor<br />

TE1<br />

L1<br />

L2<br />

L3<br />

TE2<br />

L+<br />

TE2<br />

L+<br />

CN6<br />

CN5<br />

TE1<br />

U<br />

V<br />

W<br />

CNP5S cable<br />

M<br />

3~<br />

PLG<br />

CN20<br />

TE2<br />

L+<br />

CN2L<br />

CN2M<br />

TE1<br />

MU<br />

MV<br />

MW<br />

CNV12 cable<br />

CNV12 cable<br />

M<br />

3~<br />

Motor side<br />

detector<br />

Ground<br />

TE3<br />

L-<br />

L-<br />

L-<br />

LU<br />

Main circuit<br />

MC<br />

MC1<br />

L11<br />

L21<br />

TE3<br />

L11<br />

L21<br />

TE3<br />

L11<br />

L21<br />

LV<br />

LW<br />

M<br />

3~<br />

Motor side<br />

detector<br />

Control circuit<br />

Ground<br />

Ground<br />

Ground<br />

(Note 1) The total length of the SH21 cable must be within 30m.<br />

(Note 2) The connection method will differ according to the used motor.<br />

(Note 3) When not using an absolute position detector, connect the terminal connector (R-TM).<br />

(Note 4) The main circuit ( ) and control circuit (◦) are safely separated.<br />

2 - 3


2. Wiring and Connection<br />

Example of actual wiring<br />

Servo drive unit<br />

Spindle drive unit<br />

Battery<br />

unit<br />

Power supply unit<br />

NC controller<br />

SH21 SH21 SH21<br />

SH21<br />

L+<br />

L-<br />

L+<br />

L-<br />

L11<br />

L21<br />

L11<br />

L21<br />

L11<br />

L21<br />

MC1<br />

CNV12 cable<br />

CNP5S cable<br />

DRTE1<br />

cable<br />

L1<br />

L2<br />

L3<br />

Contactor<br />

DRSV cable<br />

(Drive line)<br />

DRSP cable<br />

(Drive line)<br />

AC reactor<br />

Breaker<br />

Servo motor<br />

Spindle motor<br />

L1 L2 L3<br />

Note)<br />

The main circuit cable wiring must be prepared by the user.<br />

The wiring to the grounding cable is not shown. Refer to section "2-10 Wiring the Grounding Cable".<br />

2 - 4


2. Wiring and Connection<br />

2-2 Main circuit terminal block/control circuit connector<br />

CAUTION<br />

Do not apply a voltage other than that specified in Instruction Manual on each<br />

terminal. Failure to observe this item could lead to rupture or damage, etc.<br />

2-2-1 Connector pin assignment<br />

Power supply unit<br />

Terminal<br />

Unit<br />

MDS-CH-CV-37 to<br />

MDS-CH-CV-370<br />

MDS-CH-CV-450<br />

MDS-CH-CV-550<br />

MDS-CH-CV-750<br />

<br />

Terminal<br />

position<br />

1<br />

2<br />

<br />

<br />

<br />

<br />

<br />

TE1 <br />

L1 L2 L3<br />

<br />

L1 L2 L3<br />

<br />

L1 L2 L3<br />

PE<br />

37-185 220-370<br />

Screw size M5×12 M8×14<br />

Tightening torque 2.0Nm 6.0Nm<br />

450 550<br />

Screw size M8×16 M10×20<br />

Tightening torque 6.0Nm 11.0Nm<br />

750<br />

Screw size M10×20<br />

Tightening torque 11.0Nm<br />

<br />

1<br />

L+<br />

<br />

L–<br />

Terminal specification/Pin assignment<br />

TE2<br />

TE3 <br />

L+<br />

L–<br />

37-185 220-370<br />

Screw size M6×15 M6×15<br />

Tightening torque 3.0Nm 3.0Nm<br />

2<br />

<br />

450 550<br />

Screw size M10×20 M10×20<br />

Tightening torque 11.0Nm 11.0Nm<br />

L+<br />

L–<br />

450 550<br />

Screw size M6×16 M6×16<br />

Tightening torque 3.0Nm 3.0Nm<br />

L1 L12 MC1<br />

<br />

L+<br />

L–<br />

750<br />

Screw size M10×20<br />

Tightening torque 11.0Nm<br />

L11 L12 MC1<br />

L11<br />

L21<br />

MC1<br />

L12 L22 MC2<br />

L12 L22 MC2<br />

37-185 220-370<br />

Screw size M4×10 M4×10<br />

Tightening torque 1.2Nm 1.2Nm<br />

450 550<br />

Screw size M4×8 M4×8<br />

Tightening torque 1.2Nm 1.2Nm<br />

750<br />

Screw size M4×8<br />

Tightening torque 1.2Nm<br />

Refer to PE terminal of TE1.<br />

450 550<br />

Screw size M8×16 M10×20<br />

Tightening torque 6.0Nm 11.0Nm<br />

750<br />

Screw size M10×20<br />

Tightening torque 11.0Nm<br />

2 - 5


2. Wiring and Connection<br />

Servo/spindle drive unit<br />

Terminal<br />

Unit<br />

MDS-CH-V-150 or less<br />

MDS-CH-SP-300 or less<br />

MDS-CH-V2 Series<br />

MDS-CH-V1-185<br />

MDS-CH-SP-370<br />

MDS-CH-SP-450/550<br />

MDS-CH-SP-750<br />

<br />

Terminal<br />

position<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

UU V W<br />

MU MV MW<br />

<br />

U V W<br />

Terminal specification/Pin assignment<br />

TE1<br />

TE2<br />

<br />

TE3 <br />

Corresponding<br />

unit<br />

PE<br />

LU LV LW<br />

V1- 10-35 45-90 110-150<br />

V2- 1010-4535 ---- ----<br />

SP- 15-37 55-185 220-300<br />

Screw size M4×10 M5×12 M8×14<br />

Tightening torque 1.2Nm 2.0Nm 6.0Nm<br />

L+<br />

L–<br />

V1/V2/SP<br />

Screw size M6×16<br />

Tightening torque 3.0Nm<br />

L11<br />

L21<br />

PE<br />

<br />

<br />

370 450/550/750<br />

Screw size M8×16 M10×20<br />

Tightening torque 6.0Nm 11.0Nm<br />

370 450/550/750<br />

Screw size M10×20 M10×20<br />

Tightening torque 11.0Nm 11.0Nm<br />

L11 L21<br />

L+<br />

L–<br />

V1/V2/SP<br />

Screw size M4×10<br />

Tightening torque 1.2Nm<br />

Refer to PE terminal of TE1.<br />

370/450/550 750<br />

Screw size M4×8 Refer to "2-2-3".<br />

Tightening torque 1.2Nm Refer to "2-2-3".<br />

370 450/550/750<br />

Screw size M8×16 M10×20<br />

Tightening torque 6.0Nm 11.0Nm<br />

2 - 6


2. Wiring and Connection<br />

2-2-2 Names and applications of main circuit terminal block signals and control circuit<br />

connectors<br />

The following table shows the details for each terminal block signal.<br />

Name Signal name Description<br />

L1 . L2 . L3<br />

L11 . L21<br />

(L12 . L22)<br />

MC1<br />

(MC2)<br />

U . V . W<br />

LU . LV . LW<br />

MU . MV . MW<br />

Main circuit<br />

power supply<br />

Control circuit<br />

power supply<br />

Contactor<br />

control<br />

Motor output<br />

Motor output<br />

Servo<br />

Protective<br />

grounding (PE)<br />

Main circuit power supply input terminal<br />

Connect a 3-phase 380 to 480VAC, 50/60Hz power supply.<br />

Control circuit power supply input terminal<br />

Connect a single-phase 380 to 480VAC, 50/60Hz power supply.<br />

Connect the same power supply phase for L11 and L12, and L21 and<br />

L22.<br />

Contactor control terminal<br />

The MC1 terminal has the same phase as L21. Connect to a different<br />

phase than the phase connected to L21. (Connect MC2 with L21.)<br />

Servo/spindle motor power output terminal<br />

The servo/spindle motor power terminal (U, V, W) is connected.<br />

motor power output terminal (L-axis/M-axis)<br />

The servo/spindle motor power terminal (U, V, W) is connected.<br />

Grounding terminal<br />

The servomotor/spindle motor grounding terminal is connected and<br />

grounded.<br />

1. Always use one AC reactor per power supply unit.<br />

Failure to observe this could lead to unit damage.<br />

CAUTION<br />

2. When sharing a breaker for several power supply units, of a short-circuit<br />

fault occurs in a small capacity unit, the breaker could trip. This can be<br />

hazardous, so do not share the breaker.<br />

3. Be sure to use the breaker of proper capacity for each Power Supply Unit.<br />

2 - 7


2. Wiring and Connection<br />

2-2-3 How to use the control circuit terminal block (MDS-CH-SP-750)<br />

The control power for the 75kW spindle unit is not connected to the terminal block, so wire according to<br />

the following instructions.<br />

Length to peel<br />

Treatment of wire end<br />

Single wire: Peel the wire sheath, and use the wire.<br />

(Wire size: 0.25 to 2.5 mm 2 )<br />

Approx. 10mm<br />

Stranded wire: Peel the wire sheath, and then twist the core wires.<br />

Take care to prevent short circuits with the<br />

neighboring poles due to the fine strands of the core wires. Solder plating onto the<br />

core wire section could cause a contact defect and must be avoided. (Wire size:<br />

0.25 to 2.5 mm 2 )<br />

Use a bar terminal and bundle the strands. (Made by Phoenix contact)<br />

Bar terminal for one wire<br />

(Bar terminal phenol with insulation sleeve)<br />

Bar terminal for two wires<br />

(TWIN phenol with insulation sleeve)<br />

Wire size<br />

Bar terminal type<br />

[mm 2 ] AWG For one wire For two wires<br />

0.25 24<br />

AI0.25-6YE<br />

AI0.25-8YE<br />

–<br />

0.5 20<br />

AI0.5-6WH<br />

AI0.5-8WH<br />

–<br />

AI0.75-6GY<br />

AI-TWIN2×0.75-8GY<br />

0.75 18 AI0.75-8GY<br />

AI-TWIN2×0.75-10G<br />

Y<br />

1 18<br />

AI1-6RD<br />

AI1-8RD<br />

AI-TWIN2×1-8RD<br />

AI-TWIN2×1-10RD<br />

1.5 16<br />

AI1.5-6BK<br />

AI1.5-8BK<br />

AI-TWIN2×1.5-8BK<br />

AI-TWIN2×1.5-12BK<br />

2.5 14<br />

AI2.5-8BU<br />

AI2.5-8BU-1000<br />

AI-TWIN2×2.5-10BU<br />

AI-TWIN2×2.5-13BU<br />

Crimping tool<br />

CRIMPFOX-UD6<br />

Connection method<br />

Insert the core wire section of the wire into the opening, and tighten with a screwdriver so that the<br />

wire does not come out. (Tightening torque: 0.5 to 0.6 N•m) When inserting the wire into the<br />

opening, make sure that the terminal screw is sufficiently loose. When using a wire that is 1.5 mm 2<br />

or less, two wires can be inserted into one opening.<br />

2 - 8


2. Wiring and Connection<br />

Flat-tip screwdriver<br />

· Tip : 0.4 to 0.6 mm<br />

· Total width : 2.5 to 3.5 mm<br />

Loosen Tighten<br />

Wire<br />

Opening<br />

Control circuit terminal block<br />

2 - 9


2. Wiring and Connection<br />

2-3 NC and drive unit connection<br />

The NC bus cables are connected from the NC to each drive unit so that they run in a straight line from<br />

the NC to the terminal connector (battery unit). And up to 7 axes can be connected per system. (Note<br />

that the number of connected axes is limited by the CNC. The following drawing shows an example with<br />

4 axes connected.)<br />

< Connection ><br />

CN1A : CN1B connector on NC or previous stage's drive unit<br />

CN1B : CN1A connector on next stage's drive unit or terminal connector (battery unit)<br />

CN4 : Connector for communication between power supply unit (master side) and drive unit<br />

Connected to the NC<br />

Refer to the<br />

instruction manual<br />

of each NC for<br />

details.<br />

CN1A<br />

MDS-CH-V2-[ ][ ]<br />

1st/2nd axis<br />

MDS-CH-V1-[ ]<br />

3rd axis<br />

MDS-CH-SP-[ ]<br />

4th axis (final axis)<br />

Connect to the battery<br />

unit with a terminal<br />

connector or SH21<br />

cable.<br />

CN1B CN1A CN1B CN1A<br />

CN1B<br />

MDS-CH-CV-[ ]<br />

SH21 cable<br />

CN4<br />

CN4<br />

Max. length of 30m from the NC to the terminal connector.<br />

CAUTION<br />

POINT<br />

Wire the SH21 cable between the NC and drive unit so that the distance<br />

between the NC and terminal connector (battery unit) is within 30m.<br />

Axis Nos. are determined by the rotary switch for setting the axis No. (Refer to<br />

section "4-1-1 Setting the rotary switch".) The axis No. has no relation to the<br />

order for connecting to the NC.<br />

2 - 10


2. Wiring and Connection<br />

2-4 Motor and detector connection<br />

2-4-1 Connection of HC-H Series<br />

The OSE105, OSA105, OSE104 or OSA104 detector can be used. The detector connection method is<br />

the same for all models.<br />

(1) Connecting the servomotor without brakes<br />

Detector connector<br />

MS3102A22-14P<br />

MDS-CH-V1 Series<br />

L<br />

J<br />

K<br />

N<br />

Option cable : CNV12<br />

(Refer to Chapter 6 for details on the cable treatment.)<br />

H<br />

S<br />

R<br />

E<br />

Max. 30m<br />

CN2<br />

Pin<br />

A<br />

B<br />

C<br />

D<br />

E<br />

F<br />

G<br />

H<br />

J<br />

K<br />

L<br />

M<br />

N<br />

P<br />

R<br />

S<br />

T<br />

U<br />

V<br />

Signal<br />

BAT<br />

SD<br />

SD*<br />

RQ<br />

RQ*<br />

FG<br />

LG<br />

P5 (+5V)<br />

Power wire and grounding wire<br />

(Refer to Chapter 7 for details on selecting the wire.)<br />

U<br />

V<br />

W<br />

Power connector<br />

JL04HV-2E22-22PE-B<br />

Servomotor<br />

D<br />

C<br />

A<br />

B<br />

Pin<br />

A<br />

B<br />

C<br />

D<br />

Signal<br />

U<br />

V<br />

W<br />

Grounding<br />

Note) The above connection is used for the single-axis servo drive unit.<br />

2 - 11


2. Wiring and Connection<br />

(2) Connecting the servomotor with brakes<br />

Use the same wiring as the servomotor without brakes, and add the wiring for the brakes. The<br />

brakes can be released when 24VDC is supplied. To ensure safety, use a twisted wire or shielded<br />

wire for the motor brake wiring, and sequence it with the emergency stop switch.<br />

MDS-CH-V1 Series<br />

Option cable: CNV12<br />

(Refer to Chapter 6 for details on the cable treatment.)<br />

Detector connector<br />

MS3102A22-14P<br />

Max. 30m<br />

CN2<br />

CN20<br />

24VDC<br />

J<br />

K<br />

L<br />

N<br />

H<br />

S<br />

R<br />

E<br />

Pin<br />

A<br />

B<br />

C<br />

D<br />

E<br />

F<br />

G<br />

H<br />

J<br />

K<br />

L<br />

M<br />

N<br />

P<br />

R<br />

S<br />

T<br />

U<br />

V<br />

Name<br />

BAT<br />

SD<br />

SD*<br />

RQ<br />

RQ*<br />

FG<br />

LG<br />

P5 (+5V)<br />

DRSV1<br />

U V W<br />

Power wire and grounding wire<br />

(Refer to Chapter 7 for details on selecting the wire.)<br />

Motor brake wiring<br />

(Refer to section "2.8 Wiring of the motor brake" for details.)<br />

Power connector<br />

JL04HV-2E22-22PE-B<br />

Servomotor<br />

D<br />

C<br />

A<br />

B<br />

Pin<br />

A<br />

B<br />

C<br />

D<br />

Name<br />

U<br />

V<br />

W<br />

Grounding<br />

Brake connector<br />

MS3102A10SL-4P<br />

A<br />

B<br />

Pin<br />

A<br />

B<br />

Name<br />

B1<br />

B2<br />

24VDC does not have a polarity.<br />

Note) The above connection is used for the single-axis servo drive unit.<br />

Refer to section "2.8 Wiring of the motor brake" for details on the motor brake wiring.<br />

2 - 12


2. Wiring and Connection<br />

(3) When linear scale is connected as a closed system<br />

Detector connector<br />

MS3102A22-14P<br />

MDS-CH-V1 Series<br />

J<br />

K<br />

L<br />

N<br />

Option cable: CNV12<br />

(Refer to Chapter 6 for details on the cable treatment.)<br />

H<br />

S<br />

R<br />

E<br />

Max. 30m<br />

CN2<br />

CN3<br />

Pin<br />

A<br />

B<br />

C<br />

D<br />

E<br />

F<br />

G<br />

H<br />

J<br />

K<br />

L<br />

M<br />

N<br />

P<br />

R<br />

S<br />

T<br />

U<br />

V<br />

Name<br />

BAT<br />

SD<br />

SD*<br />

RQ<br />

RQ*<br />

FG<br />

LG<br />

P5 (+5V)<br />

DRSV1<br />

Option cable: CNL3<br />

(Refer to Chapter 6 for details on the cable treatment.)<br />

U<br />

V<br />

W<br />

Servomotor<br />

Linear scale<br />

Note) The above connection is used for the single-axis servo drive unit.<br />

Refer to section "6-4-6 Example of scale I/F unit connection" for details on connecting the linear<br />

scale.<br />

2 - 13


2. Wiring and Connection<br />

2-4-2 Connection of the spindle motor<br />

Refer to each motor specifications for details on the motor side connection destination, specifications<br />

and outline, and for the spindle PLG detector specifications.<br />

MDS-CH-SP[ ] Series<br />

Option cable : CNP5S<br />

(Refer to Chapter 6 for details on the cable treatment.)<br />

Max. 30m<br />

CN5<br />

Detector connector<br />

178289-6<br />

*Tyco Electric<br />

Pin<br />

A2<br />

B2<br />

A3<br />

B3<br />

A4<br />

B4<br />

A1<br />

B5<br />

A6<br />

B6<br />

Signal<br />

PA<br />

RA<br />

PB<br />

RB<br />

PZ<br />

RZ<br />

P5<br />

GND<br />

MOH<br />

RG<br />

U V W<br />

U V W<br />

Power wire and grounding wire<br />

(Refer to Chapter 7 for details on selecting the wire.)<br />

Spindle motor<br />

2 - 14


2. Wiring and Connection<br />

2-4-3 Connection of the linear servomotor LM-NP Series<br />

Refer to section "6-4 Scale I/F unit" when connecting the linear scale via the scale I/F unit<br />

(1) Connecting the linear scale directly to the drive unit<br />

MDS-CH-V1 Series<br />

Option cable : CNL2S<br />

(Refer to Chapter 6 for details on the cable treatment.)<br />

Max. 30m<br />

CN2<br />

DRSV1<br />

Power wire and grounding wire<br />

U<br />

V<br />

W<br />

(Refer to Chapter 7 for details on selecting the wire.)<br />

Linear servomotor<br />

Motor thermal signal<br />

Connect to the DI input on the<br />

NC control unit so that motor<br />

overheating can be detected.<br />

Absolute position linear scale<br />

Cooling cable<br />

When using an oil-cooled motor<br />

CAUTION<br />

1. Only the absolute position linear scale can be directly connected to the drive<br />

unit.<br />

Connect the relative linear scale via the scale I/F unit.<br />

(Refer to section "6-4 Scale I/F unit for details.)<br />

2. Only the MDS-CH-V1 Series can drive the linear servomotor.<br />

2 - 15


2. Wiring and Connection<br />

2-5 Connection of power supply<br />

CAUTION<br />

1. Make sure that the power supply voltage is within the specified range of the<br />

power supply unit. Failure to observe this could lead to damage or faults.<br />

2. For safety purposes, always install a circuit breaker (CB), and make sure that<br />

the circuit is cut off when an error occurs or during inspections. Refer to<br />

Chapter 7 and select a circuit breaker.<br />

3. The wire size will differ according to each unit capacity. Refer to Chapter 7<br />

and select the size.<br />

4. For safety purposes, always install a magnetic contactor (contactor) on the<br />

main circuit power supply input. Large rush currents will flow when the power<br />

is turned ON. Refer to Chapter 7 and select the correct contactor.<br />

5. A semiconductor element (bidirectional thyristor) is used in the power supply<br />

unit's magnetic contact drive circuit. A surge absorber is incorporated to<br />

protect this element, and a leakage current of up to 15mA is passed. Check<br />

with the maker beforehand to confirm that the exciting coil (contactor) will not<br />

malfunction with this leakage current.<br />

6. Do not connect anything to the MC1 terminal when not using the contactor.<br />

The semiconductor element in the power supply unit will be damaged if the<br />

power supply (R, S, T) is directly connected.<br />

2-5-1 Standard connection<br />

Directly drive the magnetic contactor (contactor) using the power supply unit's TE3 terminal (MC1)<br />

(1) For MDS-CH-CV-370 and smaller<br />

MDS-CH-CV<br />

(37.0kW or less)<br />

MDS-CH-SP<br />

(30.0kW or less)<br />

MDS-CH-V1/V2<br />

L1<br />

No-fuse<br />

breaker<br />

L11<br />

AC reactor<br />

CH-AL[ ]K<br />

L12<br />

LCVTE1<br />

Magnetic<br />

contactor<br />

TE1<br />

L1<br />

CN4<br />

CN4<br />

L2<br />

L21<br />

L22<br />

L2<br />

L3<br />

L31<br />

L32<br />

L3<br />

TE2<br />

L+<br />

L+<br />

TE2<br />

L+<br />

L+<br />

TE2<br />

L+<br />

L11<br />

L21<br />

Ground<br />

MC1<br />

Breaker<br />

Follow section "7-3-1<br />

Circuit protector" when<br />

installing a breaker.<br />

MC<br />

LCVTE3<br />

TE3<br />

MC1<br />

L11<br />

L21<br />

L-<br />

L-<br />

L11<br />

L21<br />

L-<br />

TE3<br />

L11<br />

L21<br />

L-<br />

L11<br />

L21<br />

L-<br />

TE3<br />

L11<br />

L21<br />

Main circuit connection<br />

Ground<br />

Ground<br />

Ground<br />

CAUTION<br />

1. The power supply unit is a power supply regenerative type converter; an AC<br />

reactor is installed in the power supply line. When connecting to the TE3<br />

terminal, connect to the power supply side (primary side) of the AC reactor.<br />

2. Connect the power supply unit's CN4 connector with the spindle drive unit in<br />

the same system. (Connect with the servo drive unit if there is no spindle<br />

drive unit.)<br />

2 - 16


2. Wiring and Connection<br />

(2) For MDS-CH-CV-450 and larger<br />

L1<br />

No-fuse<br />

breaker<br />

L11<br />

AC reactor<br />

CH-AL[ ]K<br />

L12<br />

LCVTE1<br />

Magnetic<br />

contactor<br />

MDS-CH-CV<br />

(45/55/75kW or less)<br />

TE1 TE2-2<br />

L1 L+<br />

MDS-CH-SP<br />

(37/45/55/75kW)<br />

MDS-CH-V1/V2<br />

L+<br />

TE2<br />

L2<br />

L21<br />

L22<br />

L2<br />

L-<br />

L-<br />

L3<br />

L31<br />

L32<br />

L3<br />

Ground<br />

Breaker<br />

MC<br />

LCVTE3<br />

TE3 TE2-1<br />

L+<br />

MC1<br />

L-<br />

L12<br />

L11<br />

Enclosed<br />

dedicated<br />

bar<br />

TE2<br />

L+<br />

L-<br />

TE3<br />

L11<br />

TE3<br />

L11<br />

Follow section "7-3-1<br />

Circuit protector" when<br />

installing a breaker.<br />

L21<br />

L22<br />

MC2<br />

L21<br />

L21<br />

Ground<br />

Ground<br />

Ground<br />

POINT<br />

The TE3 MC2 is used to control the magnetic contactor (contactor) with an<br />

independent power supply.<br />

Normally, use the wiring shown above. (MC1 and L21 are the same phase.)<br />

2 - 17


2. Wiring and Connection<br />

2-5-2 DC connection bar<br />

When connecting a large capacity drive unit with the L+L- terminal of power supply unit, DC connection<br />

bar is required. In use of the following large capacity drive units, use a dedicated DC connection bar.<br />

The DC connection bar to be used depends on the connected power supply, so make a selection<br />

according to the following table. Also refer to the section "3-1-4 Panel installation hole work drawings".<br />

Large capacity drive unit Power supply unit Required connection bar<br />

MDS-CH-V1-185<br />

MDS-DH-SP-370<br />

MDS-CH-SP-450<br />

MDS-CH-SP-550<br />

MDS-CH-CV-450<br />

MDS-CH-CV-550<br />

Following (1)<br />

MDS-CH-SP-750 MDS-CH-CV-750 Following (2)<br />

< Outline dimension drawings ><br />

(1) For connecting MDS-CH-CV-450/550<br />

12 x 24 long hole φ12<br />

12.5<br />

(25)<br />

(17) 57.5<br />

14.5<br />

3<br />

89<br />

(Note) This DC connection bar is a set of two DC connection bars.<br />

(2) For connecting MDS-CH-CV-750<br />

93<br />

26<br />

41 26<br />

13<br />

27<br />

20<br />

12.5<br />

(R)<br />

68±0.5<br />

12.5<br />

φ13 hole<br />

CAUTION<br />

1. These DC connection bars are accessories.<br />

2. Always install a large capacity drive unit in the left side of power supply unit,<br />

and connect with DC connection bar.<br />

2 - 18


2. Wiring and Connection<br />

2-5-3 Two-part system control of power supply unit<br />

Confirm that the total capacity of the drive units does not exceed the power supply unit's capacity.<br />

The axis controlled to the power supply unit's CN4 connector is the axis controlled by the power supply<br />

unit. The final axis connected to the CN4 connector must be the spindle drive unit.<br />

MDS-CH-CV<br />

MDS-CH-SP<br />

MDS-CH-V1/V2<br />

CN4<br />

(1st part system)<br />

CN4<br />

No-fuse<br />

breaker<br />

L1<br />

AC reactor<br />

CH-AL[ ]K<br />

L11<br />

L12<br />

Magnetic<br />

contactor<br />

L1<br />

TE1<br />

CN9<br />

(2nd part system)<br />

L2<br />

L21<br />

L22<br />

L2<br />

L3<br />

L31<br />

L32<br />

L3<br />

TE2<br />

L+<br />

TE2<br />

L+<br />

TE2<br />

L+<br />

Ground<br />

TE3<br />

L-<br />

L-<br />

L-<br />

Breaker<br />

MC<br />

MC1<br />

L11<br />

TE3<br />

L11<br />

TE3<br />

L11<br />

L21<br />

L21<br />

L21<br />

Follow section "7-3-1<br />

Circuit protector" when<br />

installing a breaker.<br />

Ground<br />

Ground<br />

Ground<br />

MDS-CH-SP<br />

MDS-CH-V1/V2<br />

CN4<br />

TE2<br />

TE2<br />

L+<br />

L+<br />

L-<br />

L-<br />

Breaker<br />

TE3<br />

L11<br />

L21<br />

TE3<br />

L11<br />

L21<br />

Main circuit connection<br />

Follow section "7-3-1<br />

Circuit protector" when<br />

installing a breaker.<br />

Ground<br />

Ground<br />

CAUTION<br />

Arrange the units next to each other so that the TE2 (L+, L-) wiring is as short as<br />

possible. The above drawing shows the units in two stages for explanatory<br />

purposes.<br />

2 - 19


2. Wiring and Connection<br />

2-5-4 Using multiple power supply units<br />

In a system configured of multiple spindle drive units, etc., there may be cases when the units cannot be<br />

driven with one power supply unit. Use several power supply units in this case. Refer to section "11-7<br />

Selecting the power supply unit" for details on making a selection.<br />

MDS-CH-CV<br />

MDS-CH-SP<br />

MDS-CH-V1/V2<br />

CN4<br />

CN4<br />

L1<br />

No-fuse<br />

breaker<br />

L11<br />

AC reactor<br />

CH-AL[ ]K<br />

L12<br />

Magnetic<br />

contactor<br />

L1<br />

TE1<br />

CN9<br />

L2<br />

L21<br />

L22<br />

L2<br />

L3<br />

L31<br />

L32<br />

L3<br />

TE2<br />

L+<br />

TE2<br />

L+<br />

TE2<br />

L+<br />

Ground<br />

TE3<br />

L-<br />

L-<br />

L-<br />

Breaker<br />

MC<br />

MC1<br />

L11<br />

TE3<br />

L11<br />

TE3<br />

L11<br />

L21<br />

L21<br />

L21<br />

Follow section "7-3-1<br />

Circuit protector" when<br />

installing a breaker.<br />

Ground<br />

Ground<br />

Ground<br />

MDS-CH-CV<br />

MDS-CH-SP<br />

MDS-CH-V1/V2<br />

CN4<br />

CN4<br />

L1<br />

No-fuse<br />

breaker<br />

L11<br />

AC reactor<br />

CH-AL[ ]K<br />

L12<br />

Magnetic<br />

contactor<br />

TE1<br />

L1<br />

CN9<br />

L2<br />

L21<br />

L22<br />

L2<br />

L3<br />

L31<br />

L32<br />

L3<br />

TE2<br />

L+<br />

TE2<br />

L+<br />

TE2<br />

L+<br />

Ground<br />

TE3<br />

L-<br />

L-<br />

L-<br />

Breaker<br />

MC<br />

MC1<br />

L11<br />

TE3<br />

L11<br />

TE3<br />

L11<br />

L21<br />

L21<br />

L21<br />

Follow section "7-3-1<br />

Circuit protector" when<br />

installing a breaker.<br />

Main circuit connection<br />

Ground<br />

Ground<br />

Ground<br />

CAUTION<br />

1. An AC reactor and breaker must be installed for each power supply unit.<br />

2. The communication cable connected with the NC can be split for each power<br />

supply unit.<br />

(Refer to section 2-3. NC and drive unit connection.)<br />

2 - 20


2. Wiring and Connection<br />

2-6 Connection of AC reactor<br />

2-6-1 Features of the AC reactor<br />

This AC reactor smoothes out distorted waveforms when regenerating unnecessary energy into the<br />

power, and is effective in suppressing unnecessary higher harmonics.<br />

These features prevent other devices from malfunctioning. A radio noise filter is assembled in the AC<br />

reactor.<br />

During power regeneration<br />

Power supply<br />

unit side<br />

AC reactor<br />

Power supply side<br />

2-6-2 Wiring of AC reactor<br />

The installation direction of the AC reactor is set. If installed in reverse, the effective of the AC reactor<br />

will not be sufficiently achieved, and the noise suppressing effect may also drop.<br />

Protection cover<br />

DRIVE<br />

MAIN<br />

Grounding terminal and<br />

installation hole<br />

Refer to section "6-7 AC reactor" for the outline dimensions of the AC reactor.<br />

CAUTION<br />

1. The AC reactor's terminal protection cover is provided only on the upper<br />

installation surface. Install so that the terminals cannot be touched from the<br />

side. Add a protection cover as required.<br />

2. The AC reactor will become hot.<br />

• Use flame-resistant wires.<br />

• Lead the wires so that they do not contact the AC reactor.<br />

3. A terminal is provided on the AC reactor, so always ground the unit.<br />

2 - 21


2. Wiring and Connection<br />

2-7 Wiring of contactors<br />

A contactor (magnetic contactor) is inserted in the main circuit power supply input (L1, L2, L3) of a<br />

power supply unit, and the power supply input is shut off when an emergency stop or servo alarm<br />

occurs.<br />

When an emergency stop or servo alarm occurs, the servo drive unit stops the motor using deceleration<br />

control or a dynamic brake. The spindle drive unit performs the deceleration stop control. The power<br />

supply unit must maintain the power supply (power regeneration) while returning the energy from each<br />

axis being decelerated to the power line. Thus, the contactor cannot be shut off. Therefore, the NC<br />

controls the contactors. The NC confirms that all axes are stopped, or confirms the dynamic brake<br />

operation, and then it outputs a contactor shutoff command of the power supply unit via the drive unit.<br />

Give consideration to the above, and examine the contactor drive method in the following order of<br />

priority.<br />

CAUTION<br />

1. The contactors cannot be driven other than from a power supply unit.<br />

Undervoltage (alarm) may occur if the contactors are shut off at the same<br />

time as an emergency stop occurrence.<br />

2. Do not directly shut off the contactors with an external sequence. They may<br />

shut off faster than the emergency stop input, and the input power supply<br />

may be shut off during the deceleration control or vertical axis drop<br />

prevention control. If this happens, an undervoltage alarm will occur, and<br />

deceleration control or drop hold may not be possible. When<br />

double-protecting, use a power supply unit external emergency stop input.<br />

(Refer to section "2-9 Wiring of an external emergency stop.)<br />

No.<br />

Abbreviation<br />

Parameter name<br />

SV036 PTYP Power supply type The following parameter must be set.<br />

Descriptions<br />

F E D C B A 9 8 7 6 5 4 3 2 1 0<br />

AMP RTYP PTYP<br />

2 - 22


2. Wiring and Connection<br />

2-7-1 Contactor power ON sequences<br />

The main circuit power supply is turned ON in the sequences in the following drawing when the<br />

contactor control output (TE3: MC1) of the power supply unit is used. Each interface voltage of the main<br />

circuit power supply (L1/L2/L3) is checked. If voltage is applied on any voltage (if the contactor is<br />

melted), contactor melting (alarm 6A) is detected.<br />

Control power supply (L11/L21)<br />

Main circuit power supply (L1/L2/L3)<br />

Contactor fusion check<br />

Approx. 800ms<br />

(Monitoring of power status)<br />

Contactor control terminal (MC1)<br />

Emergency stop from NC (EMG)<br />

ON<br />

OFF<br />

ON<br />

Cancel<br />

Contactor power ON sequences<br />

Approx. 4ms<br />

Operation delay time<br />

POINT<br />

1. The parameters must be set when controlling the contactor (MC1)<br />

2. The power supply unit's power state is monitored approx. 800ms after the<br />

contactor control terminal (MC1) turns ON. If the voltage is insufficient, the<br />

main circuit error (alarm 6C) or open phase (alarm 67) will occur. In all other<br />

cases, a ground fault (alarm 69) will occur.<br />

2-7-2 Contactor shutoff sequences<br />

When an emergency stop or servo alarm occurs, the NC confirms the zero speed (motor stop or<br />

dynamic brake operation) for all axes, and then shuts off the contactors.<br />

If MC shut off enabled is not output, an external emergency stop signal (EMGX) will be output in 30<br />

seconds from the power supply unit's CN23 connector to forcibly shut off the MC1 terminal. The spindle<br />

will coast after that.<br />

Emergency stop (EMG)<br />

1st axis<br />

(dynamic brake stop)<br />

2nd axis<br />

(deceleration control)<br />

3rd axis<br />

(deceleration control + drop<br />

prevention control)<br />

Contactor control terminal (MC1)<br />

(When normal)<br />

MC1 (during NC emergency<br />

stop error)<br />

(Power supply unit's CN23<br />

operates)<br />

Cancel<br />

ON<br />

Speed<br />

0<br />

Speed<br />

0<br />

Speed<br />

0<br />

OFF<br />

Output<br />

OFF<br />

Output<br />

Drop prevention<br />

30s<br />

Contactor shutoff sequences<br />

When vertical axis drop prevention<br />

function is valid (Delayed by the time<br />

set with sv048)<br />

When vertical axis drop prevention<br />

function is not valid<br />

2 - 23


2. Wiring and Connection<br />

2-7-3 Contactor control signal (MC1) output circuit<br />

A contactor or AC relay, etc., can be driven. Install a surge absorber when using a conductive load.<br />

Contactor<br />

MDS-CH-CV-370 or less<br />

TE3<br />

MC1<br />

37kW<br />

or less<br />

Bidirectional<br />

thyristor<br />

L21<br />

L11<br />

Surge absorber<br />

L2<br />

L1<br />

Contactor<br />

MDS-CH-CV-450 or more<br />

TE3<br />

MC1<br />

45kW<br />

or<br />

more<br />

MC2<br />

L21<br />

L11<br />

Surge absorber<br />

L2<br />

L1<br />

POINT<br />

The 45kW and larger units have MC1 and MC2. For normal use, connect MC2<br />

and L21. MC2 is used when controlling the contactor with an independent power<br />

supply.<br />

2 - 24


2. Wiring and Connection<br />

2-8 Wiring of the motor brake<br />

The magnetic brake of servomotors with a magnetic brake is driven by the motor brake control<br />

connector (CN20) on the servo drive unit. The servo drive unit releases the brake when the motor is ON.<br />

(Servo ON means when torque is generated in the motor.)<br />

2-8-1 Motor brake release sequence<br />

The motor brake control connector (CN20: MBR) releases the magnetic brake in the sequences in the<br />

following drawing when canceling the emergency stop. The brake is released after the start of the power<br />

ON to the servomotor.<br />

Emergency stop (EMG)<br />

Dynamic brake<br />

ON<br />

Cancel<br />

Cancel<br />

ON<br />

Magnetic brake<br />

Cancel<br />

ON<br />

Servo ready signal (RDY)<br />

Servo ready completion<br />

signal (SA)<br />

ON<br />

OFF<br />

ON<br />

OFF<br />

Ready completion<br />

Command input enable<br />

0 500 1000 1500 Time (ms)<br />

Motor brake control sequences when an emergency stop is canceled<br />

2-8-2 Control during the servo OFF command<br />

When a servo OFF command is input by an NC sequence input, the motor brake turns ON<br />

simultaneously when the motor ON is shut off. Note that the vertical axis drop prevention control is not<br />

validated, so a drop due to the brake operation lag occurs. When the servo OFF is canceled, a drop due<br />

to an uncontrolled state does not occur.<br />

200ms<br />

Servo OFF command<br />

Dynamic brake<br />

Motor ON (GATE)<br />

Motor brake control output<br />

CN20 connector (MBR)<br />

SERVO ON<br />

SERVO OFF<br />

OFF<br />

ON<br />

ON<br />

OFF<br />

OFF<br />

ON<br />

Motor brake control sequences when a servo OFF command is output<br />

CAUTION<br />

The vertical axis drop prevention control only is performed during an emergency<br />

stop (including alarms and power failures). It is not performed when a servo OFF<br />

command is input.<br />

2-8-3 Operation sequences when an emergency stop occurs<br />

The motor brake control output operation when an emergency stop occurs differs according to the motor<br />

deceleration stop method. Refer to section "5-4 Setting for emergency stop" for details on the operation<br />

sequences for each stop method.<br />

2 - 25


2. Wiring and Connection<br />

2-8-4 Motor brake control connector (CN20) output circuit<br />

The motor brakes can be controlled with the CN20 connector.<br />

The brakes controlled with the CN20 connector include the magnetic brakes and dynamic brakes<br />

(external dedicated option for MDS-CH-V1-110 or more). (Unit internal relay specifications: 30VDC-5A/<br />

250VAC-8A)<br />

When<br />

using<br />

CN20<br />

MDS-CH-V1/V2<br />

CN20<br />

3 MBR<br />

2 DBU<br />

1 24VDC<br />

Emergency<br />

Stop switch<br />

24VDC<br />

Always install a surge<br />

absorber<br />

Brake<br />

POINT<br />

To ensure safety in an emergency, make sure that the magnetic brakes are<br />

applied in sequence with the emergency stop switch.<br />

CAUTION<br />

1. Always install a surge absorber near the motor's brake terminal to eliminate<br />

noise and protect the contacts. Refer to section "7-4-3 Surge absorber".<br />

2. The brakes cannot be released just by connecting the CN20 and motor brake<br />

terminal. 24VDC must be supplied.<br />

2 - 26


2. Wiring and Connection<br />

2-9 Wiring of an external emergency stop<br />

2-9-1 External emergency stop setting<br />

Besides the emergency stop input from the NC communication cable (CN1A, CN1B), double-protection<br />

when an emergency stop occurs can be provided by directly inputting an external emergency stop to the<br />

CN23 connector on the power supply unit. Even if the emergency stop is not input from CNC for some<br />

reason, the contactors will be shut off by the external emergency stop input from CN23 connector on the<br />

power supply unit.<br />

Emergency stop<br />

MDS-CH-V1/V2/SP<br />

MDS-CH-CV<br />

<strong>Mitsubishi</strong> NC<br />

SV1,2<br />

Alarm<br />

SH21<br />

(FCUA-R000)<br />

CN1A<br />

CN1B<br />

CN4<br />

Alarm<br />

SH21<br />

(FCUA-R000)<br />

CN4<br />

TE3<br />

MC1<br />

L11<br />

L21<br />

Contactor shutoff<br />

command<br />

External emergency stop input<br />

(24VDC)<br />

CN23<br />

3 EMG2<br />

2 NC<br />

1 EMG1<br />

No.<br />

SV036<br />

Abbreviation<br />

PTYP<br />

Parameter name<br />

Power supply unit<br />

type<br />

Descriptions<br />

Set the external emergency stop with the PTYP parameter of the drive unit connected<br />

to the power supply unit.<br />

SP041 Setting value External emergency stop invalid<br />

Setting value +40 [hex] External emergency stop valid<br />

Example) For CV-300, change PTYP [30] to PTYP [70].<br />

When connecting with a unit SP370 or above, set bit8 to 1.<br />

CAUTION<br />

The emergency stop signal input to the CNC side cannot be used as a substitute<br />

for the external emergency stop function (CN23).<br />

POINT<br />

1. The parameter must be set for the CN23 external emergency stop function.<br />

2. The emergency stop signal input to the CNC side cannot be used as a<br />

substitute for the external emergency stop function.<br />

2 - 27


2. Wiring and Connection<br />

2-9-2 Operation sequences of CN23 external emergency stop function<br />

If only CN23, an external emergency stop, is input when external emergency stop valid is set in the<br />

parameters (the emergency stop is not input in CNC), an "In external emergency stop" (warning EA) will<br />

be detected. At this time, the system itself does not enter an emergency stop status. (There will be no<br />

deceleration control or dynamic brake stop).<br />

If a contactor shutoff command is not issued from the CNC within 30 seconds after the external<br />

emergency stop is input, the power supply unit itself outputs contactor shutoff signal (MC1), and then it<br />

shuts off the contactors, and an external emergency stop error (alarm 55) is detected. If the emergency<br />

stop is input from CNC within 30 seconds, the warning EA replaces the "In CNC emergency stop"<br />

(warning E7). A normal emergency stop status (warning E7) will result if the contactor shutoff command<br />

from the CNC are further input.<br />

Ready ON is possible even if CN23, an external emergency stop has been input when the emergency<br />

stop is canceled, but an external emergency stop error (alarm 55) will occur after 30 seconds.<br />

CN23<br />

External emergency stop input<br />

(EMGX)<br />

NC<br />

Main emergency stop input<br />

(EMG)<br />

Motor speed<br />

Contactor control command<br />

Contactor control terminal (MC1)<br />

OFF<br />

ON<br />

OFF<br />

ON<br />

0<br />

ON<br />

OFF<br />

ON<br />

OFF<br />

Deceleration control<br />

Drive unit status display<br />

dx<br />

EA<br />

E7<br />

Cx → dx<br />

External emergency stop input sequences<br />

CN23<br />

External emergency stop input<br />

(EMGX)<br />

NC<br />

Main emergency stop input<br />

(EMG)<br />

Motor speed<br />

Contactor control command<br />

Contactor control terminal (MC1)<br />

OFF<br />

ON<br />

OFF<br />

ON<br />

0<br />

ON<br />

OFF<br />

ON<br />

OFF<br />

The communication line enters an<br />

emergency stop state by the output<br />

from the servo.<br />

Dynamic brake<br />

Drive unit status display<br />

dx<br />

EA<br />

55, E7<br />

0 30 Time (s)<br />

When neither a main emergency stop nor contactor shutoff command is input<br />

2 - 28


2. Wiring and Connection<br />

2-9-3 Example of emergency stop circuit<br />

(1) Outline of function<br />

The power supply unit's external emergency stop can be validated by wiring to the CN23 connector,<br />

and setting the parameters and rotary switch. If the emergency stop cannot be processed and the<br />

external contractor cannot be shut off (due to a fault) by the CNC unit, the external contactor can be<br />

shut off by the power supply unit instead of the CNC. At this time, the spindle motor will coast and<br />

the servomotor will stop with the dynamic brakes.<br />

EN60204-1 Category 1 can be basically complied with by installing the external emergency stop<br />

switch and contactor.<br />

CAUTION<br />

1. The power supply unit external emergency stop function is a function that<br />

assists the NC emergency stop.<br />

2. The emergency stop signal input to the CNC side cannot be used as a<br />

substitute for the external emergency stop function (CN23).<br />

3. It will take 30 seconds for the external contactor to function after the<br />

emergency stop is input to CN23. (This time is fixed.)<br />

The emergency stop is a signal used to<br />

stop the machine in an emergency. This<br />

is connected to the CNC unit. Wire to the<br />

power supply unit when necessary.<br />

The servo/spindle unit will be decelerated<br />

and controlled by the software according<br />

to the deceleration stop command issued<br />

from the CNC unit.<br />

External<br />

Emergency<br />

Switch<br />

TM1<br />

R<br />

RA1<br />

R<br />

GND<br />

MBR*<br />

GND<br />

CN23<br />

EMG<br />

Power Supply<br />

Unit<br />

CN4<br />

CUP<br />

&<br />

ASIC<br />

NC Unit<br />

CUP<br />

&<br />

ASIC<br />

SV1/2<br />

Servo/Spindle<br />

Drive Unit<br />

CN4<br />

Hardware Emergency<br />

CN1A/B<br />

Software Emergency<br />

(2) Example of emergency stop circuit<br />

The diagram on the right shows an<br />

example of the emergency stop circuit<br />

(EN60204-1 Category 0 stop) in which an<br />

off delay timer (TM1) is installed as a<br />

power shutoff method independent from<br />

the NC emergency stop input. The required safety category may be high depending on the machine<br />

and the Safety Standards may not be met. Thus, always pay special attention when selecting the<br />

parts and designing the circuit.<br />

MC<br />

External<br />

Contactor<br />

L11<br />

L21<br />

MC1<br />

L1<br />

L2<br />

L3<br />

AC Reactor<br />

MC-OFF*<br />

L11<br />

L21<br />

P<br />

N<br />

CUP<br />

&<br />

ASIC<br />

CN20<br />

MBR*<br />

Motor<br />

Brake<br />

Setting the off delay timer (TM1) time<br />

Set the TM1 operation time so that it functions after it has been confirmed that all axes have<br />

stopped.<br />

If the set time is too short, the spindle motor will coast to a stop.<br />

tm ≥ All axes stop time<br />

Provide a mechanism that shuts off the power even if the CNC system fails.<br />

POINT<br />

Stop Categories in EN60204-1<br />

• Category 0: The power is instantly shut off using machine parts.<br />

• Category 1: The drive section is stopped with the control (hardware/software<br />

or communication network), and then the power is instantly shut<br />

off using machine parts.<br />

(Caution) Refer to the Standards for details.<br />

Refer to Section 9.2.5.4.2 in EN60204-1: Safety of Machinery<br />

Electrical Equipment of Machines – Part 1.<br />

2 - 29


2. Wiring and Connection<br />

2-10 Connecting the Grounding Cable<br />

2-10-1 Connecting the Frame Ground (FG)<br />

Each unit has an FG connection terminal. Please connect an earth wire to the main ground of a cabinet<br />

or a machine frame.<br />

MDS-CH-V1/V2/SP MDS-CH-CV<br />

CH-AL<br />

Grounding<br />

plate<br />

HC-H Series<br />

Servomotor<br />

SJ-4 Series<br />

Servomotor<br />

POINT<br />

Connect the grounding cable from each unit<br />

directly to the grounding plate. Noise from<br />

other units could result in malfunctions.<br />

Unit<br />

Grounding<br />

2-10-2 Grounding cable size<br />

Earth wire size should follow the following table.<br />

Type<br />

MDS-CH-CV Unit<br />

MDS-CH-V1/V2/SP[] Unit<br />

CH-AL (AC Reactor)<br />

Grounding cable size<br />

Same as TE1 (L1/L2/L3)<br />

Same as TE1 (U/V/W)<br />

5.5 mm 2 (AWG10) or more<br />

2 - 30


3. Installation<br />

3-1 Installation of the units ....................................................................................................................... 3-2<br />

3-1-1 Environmental conditions ............................................................................................................ 3-2<br />

3-1-2 Installation direction and clearance............................................................................................. 3-3<br />

3-1-3 Prevention of entering of foreign matter...................................................................................... 3-3<br />

3-1-4 Panel installation hole work drawings (Panel cut drawings) ....................................................... 3-4<br />

3-1-5 Heating value .............................................................................................................................. 3-5<br />

3-1-6 Heat radiation countermeasures ................................................................................................. 3-6<br />

3-2 Installation of servomotor/spindle motor ............................................................................................ 3-7<br />

3-2-1 Environmental conditions ............................................................................................................ 3-7<br />

3-2-2 Cautions for mounting load (prevention of impact on shaft) ....................................................... 3-8<br />

3-2-3 Installation direction..................................................................................................................... 3-8<br />

3-2-4 Tolerable load of axis .................................................................................................................. 3-9<br />

3-2-5 Oil and waterproofing measures ............................................................................................... 3-10<br />

3-2-6 Cable stress .............................................................................................................................. 3-12<br />

3-3 Installing the linear servomotor ........................................................................................................ 3-13<br />

3-3-1 Installation environment ............................................................................................................ 3-13<br />

3-3-2 Installing the linear servomotor ................................................................................................. 3-13<br />

3-3-3 Cooling the linear servomotor ................................................................................................... 3-15<br />

3-4 Noise measures ............................................................................................................................... 3-16<br />

3 - 1


3. Installation<br />

CAUTION<br />

1. Install the unit on noncombustible material. Direct installation on combustible<br />

material or near combustible materials may lead to fires.<br />

2. Follow the instructions in this manual and install the unit while allowing for the<br />

unit weight.<br />

3. Do not get on top of the units or motor, or place heavy objects on the unit.<br />

Failure to observe this could lead to injuries.<br />

4. Always use the unit within the designated environment conditions.<br />

5. Do not let conductive objects such as screws or metal chips, etc., or<br />

combustible materials such as oil enter the units.<br />

6. Do not block the units intake and outtake ports. Doing so could lead to failure.<br />

7. The units and servomotor are precision devices, so do not drop them or apply<br />

strong impacts to them.<br />

8. Do not install or run units or servomotor that is damaged or missing parts.<br />

9. When storing for a long time, please contact your dealer.<br />

3-1 Installation of the units<br />

CAUTION<br />

1. Always observe the installation directions. Failure to observe this could lead to<br />

faults.<br />

2. Secure the specified distance between the units and panel, or between the<br />

units and other devices. Failure to observe this could lead to faults.<br />

3-1-1 Environmental conditions<br />

Environment<br />

Conditions<br />

Ambient temperature 0°C to +55°C (with no freezing)<br />

Ambient humidity 90% RH or less (with no dew condensation)<br />

Storage temperature –15°C to +70°C (with no freezing)<br />

Storage humidity 90% RH or less (with no dew condensation)<br />

Atmosphere<br />

Indoors (Where unit is not subject to direct sunlight)<br />

With no corrosive gas, combustible gas, oil mist or dust<br />

Altitude<br />

Operation/storage: 1000m or less above sea level<br />

Transportation: 10000m or less above sea level<br />

Vibration<br />

Operation/storage: 4.9m/s 2 (0.5G) or less<br />

Transportation: 49m/s 2 (5G) or less<br />

Caution) When installing at 1,000m or higher above sea level, the unit's heat dissipation<br />

characteristics will drop as the altitude gets higher.<br />

The upper limit of the ambient temperature drops by 1°C per each 100m increase in<br />

altitude. (The ambient temperature at an altitude of 2000m is 0 to 45°C.).<br />

3 - 2


3. Installation<br />

3-1-2 Installation direction and clearance<br />

Wire each unit in consideration of the maintainability and the heat dissipation, also secure sufficient<br />

space for ventilation.<br />

Do not leave a space between the power supply unit and drive unit when installing.<br />

100mm or<br />

more<br />

Do not leave a space<br />

10mm<br />

or more<br />

10mm<br />

or more<br />

100mm or<br />

more<br />

Wind<br />

passage<br />

70mm<br />

or more<br />

100mm or<br />

more<br />

Panel<br />

100mm or<br />

more<br />

Panel<br />

Wind<br />

passage<br />

CAUTION<br />

The ambient temperature condition for the power supply unit or the drive units is<br />

55°C or less. Because heat can easily accumulate in the upper portion of the<br />

units, give sufficient consideration to heat dissipation when designing the panel.<br />

If required, install a fan in the panel to agitate the heat in the upper portion of the<br />

units.<br />

3-1-3 Prevention of entering of foreign matter<br />

Treat the cabinet with the following items.<br />

• Make sure that the cable inlet is dust and oil proof by using<br />

packing, etc.<br />

• Make sure that the external air does not enter inside by<br />

using head radiating holes, etc.<br />

• Close all clearances.<br />

• Securely install door packing.<br />

• If there is a rear cover, always apply packing.<br />

• Oil will tend to accumulate on the top. Take special<br />

measures such as oil-proofing to the top so that oil does not<br />

enter the cabinet from the screw holds.<br />

• After installing each unit, avoid machining in the periphery. If<br />

cutting chips, etc., stick onto the electronic parts, trouble<br />

may occur.<br />

3 - 3


3. Installation<br />

3-1-4 Panel installation hole work drawings (Panel cut drawings)<br />

Prepare a square hole to match the unit width.<br />

Unit [mm]<br />

60<br />

2-M5 screw 2-M5 screw<br />

2-M5 screw<br />

4-M5 screw<br />

Square<br />

342 360 342<br />

Square<br />

360 342<br />

Square<br />

360 342 Square 360<br />

hole<br />

hole<br />

hole<br />

hole<br />

52<br />

82<br />

112<br />

142<br />

Unit width: 60mm Unit width: 90mm Unit width: 120mm Unit width: 150mm<br />

120<br />

4-M5 screw<br />

180<br />

4-M5 screw<br />

15<br />

180<br />

4-M5<br />

screw<br />

360<br />

4-M10<br />

screw<br />

CV<br />

SP<br />

341<br />

Square<br />

hole<br />

360<br />

341<br />

Square<br />

hole<br />

360<br />

450<br />

Square<br />

hole<br />

Square<br />

hole<br />

480<br />

395.5<br />

34.5<br />

222<br />

282<br />

282<br />

440<br />

Unit width: 240mm<br />

Unit width: 300mm<br />

CV-750 and SP-750<br />

POINT<br />

1. The 75kW spindle drive unit is always installed to the right of the 75kW power<br />

supply unit with no space between. When using the enclosed bar (for L+/L–<br />

connection fitting), leave 34.5mm open between the CV and SP square<br />

holes. Other units cannot be connected together. (Enclosed bar:<br />

C352D058 ... Refer to section 2-5.)<br />

2. Always install the 37kW to 55kW spindle drive units to the left of the power<br />

supply unit with no space between.<br />

3. A TE2-1 terminal (L+/L–) connection fitting is enclosed with the 45kW and<br />

higher power supply units.<br />

4. Install the power supply unit and drive unit with no space between.<br />

3 - 4


3. Installation<br />

3-1-5 Heating value<br />

Each heating value is calculated with the following values.<br />

The value for the spindle drive unit includes the continuous rated output, the value for the servo drive<br />

unit includes the rated output, and the value for the power supply unit includes the AC reactor's heating<br />

value.<br />

Type<br />

MDS-CH- Inside<br />

panel<br />

Heating amount<br />

[W] Type<br />

Outside<br />

panel<br />

MDS-CH- Inside<br />

panel<br />

Heating amount<br />

[W]<br />

Outside<br />

panel<br />

Type<br />

MDS-CH- Inside<br />

panel<br />

Heating<br />

amount [W]<br />

Outside<br />

panel<br />

Type<br />

MDS-CH- Inside<br />

panel<br />

Heating amount<br />

[W]<br />

Outside<br />

panel<br />

CV-37 34 21 SP[]-15 20 50 V1-05 11 25 V2-0505 22 50<br />

CV-55 35 30 SP[]-37 50 54 V1-10 18 41 V2-1005 29 66<br />

CV-75 38 43 SP[]-55 55 88 V1-20 28 76 V2-1010 35 82<br />

CV-110 44 81 SP[]-75 61 121 V1-35 35 115 V2-2010 44 134<br />

CV-150 49 106 SP[]-110 70 170 V1-45 44 164 V2-2020 47 155<br />

CV-185 55 140 SP[]-150 81 231 V1-70 60 258 V2-3510 49 166<br />

CV-220 57 153 SP[]-185 102 353 V1-90 68 302 V2-3520 53 189<br />

CV-260 65 196 SP[]-220 107 380 V1-110 76 327 V2-3535 61 232<br />

CV-300 74 247 SP[]-260 131 513 V1-150 95 455 V2-4520 62 238<br />

CV-370 86 315 SP[]-300 158 668 VI-185 225 575 V2-4535 69 276<br />

CV-450 148 353 SP[]-370 306 797<br />

CV-550 173 428 SP[]-450 355 945<br />

CV-750 235 615 SP[]-550 420 1140<br />

SP[]-750 566 1579<br />

POINT<br />

Design the panel's heating value taking the actual axis operation (load rate) into<br />

consideration. With a general machine tool, the servo drive unit's load rate is<br />

approx. 50%, so the heating values inside the panel are half the values shown<br />

above. (Excluding the power supply and spindle drive unit.)<br />

(Example 1)<br />

When using MDS-CH-CV-260, MDS-CH-SP[]-185 and MDS-CH-V2-3535<br />

Total heating value = (65 + 196) + (102 + 353) + (61 + 232) = 1009 [W]<br />

Heating value in panel = (65) + (102) + (61 × 0.5) = 197.5 [W]<br />

3 - 5


3. Installation<br />

3-1-6 Heat radiation countermeasures<br />

In order to secure reliability and life, design the temperature in the panel so that the ambient<br />

temperature of each unit is 55°C or less.<br />

If heat accumulates at the top of the unit, etc., install a fan so that the temperature in the panel remains<br />

constant.<br />

Please refer to following method for heat radiation countermeasures.<br />

Calculate total heat radiation of each<br />

mounted unit (W)<br />

Calculate cabinet’s cooling capacity<br />

(W1)<br />

<br />

(1) Average temperature in cabinet : T ≤ 55°C<br />

(2) Cabinet peripheral temperature : Ta ≤ 0°C to 45°C<br />

(3) Internal temperature rise value : ∆T = T–Tamax<br />

= 10°C<br />

W ≤ W1<br />

∆T≤10°C<br />

Comparison of W and W1<br />

Selection of heat exchanger<br />

Mounting design<br />

Collection of internal temperature rise<br />

distribution data<br />

Evaluation<br />

∆T>10°C<br />

Improvements<br />

Completion<br />

W>W1<br />

<br />

1) Refer to Specifications Manual, etc. for the heat<br />

generated by each unit.<br />

2) Enclosed cabinet (thin steel plate) cooling capacity<br />

calculation equation<br />

W1 = U × A × ∆T<br />

U: 6W/m 2 × °C (with internal agitating fan)<br />

4W/m 2 × °C (without internal agitating fan)<br />

A: Effective heat radiation area (m 2 )<br />

(Heat dissipation area in panel)<br />

Sections contacting other objects are excluded.<br />

∆T: Internal temperature rise value (10°C)<br />

3) Points of caution for heat radiation countermeasures<br />

when designing mounting state<br />

• Layout of convection in panel<br />

• Collect hot air at suction port in heat exchanger<br />

cabinet.<br />

4) Understanding the temperature rise distribution in the<br />

panel<br />

∆T (average value) ≤ 10°C<br />

∆Tmax (maximum value) ≤ 15°C<br />

R (inconsistency ∆Tmax – ∆Tmin) ≤ 6°C<br />

(Evaluate existence of heat spots)<br />

Examples of mounting and temperature measurement positions (reference)<br />

• Measurement position (example)<br />

Relay, etc.<br />

Flow of<br />

air<br />

Heat<br />

exchanger<br />

Unit<br />

Flow of air<br />

3 - 6


3. Installation<br />

3-2 Installation of servomotor/spindle motor<br />

CAUTION<br />

1. Do not hold the cables, axis or detector when transporting the motor. Failure to<br />

observe this could lead to faults or injuries.<br />

2. Securely fix the motor to the machine. Insufficient fixing could lead to the<br />

motor deviating during operation. Failure to observe this could lead to<br />

injuries.<br />

3. When coupling to a servomotor shaft end, do not apply an impact by<br />

hammering, etc. The detector could be damaged.<br />

4. Never touch the rotary sections of the motor during operations. Install a<br />

cover, etc., on the shaft.<br />

5. Do not apply a load exceeding the tolerable load onto the servomotor shaft.<br />

The shaft could break.<br />

6. Do not connect or disconnect any of the connectors while the power is ON.<br />

3-2-1 Environmental conditions<br />

Environment<br />

Conditions<br />

Ambient temperature 0°C to +40°C (with no freezing)<br />

Ambient humidity 20% to 90%RH or less (with no dew condensation)<br />

Storage temperature –20°C to +65°C (with no freezing)<br />

Storage humidity 20% to 90%RH or less (with no dew condensation)<br />

Atmosphere<br />

Altitude<br />

Vibration<br />

• Indoors (Where unit is not subject to direct sunlight)<br />

• No corrosive gases, flammable gases, oil mist or dust<br />

Operation/storage: 1000m or less above sea level<br />

Transportation: 10000m or less above sea level<br />

X: 19.6m/s<br />

HC-H Series (Servomotor)<br />

2 (2G)<br />

Y: 19.6m/s 2 (2G)<br />

SJ Series (Spindle motor) Refer to each specifications.<br />

Refer to section "3-3 Installing the linear servomotor" for the linear servomotor's environmental<br />

conditions.<br />

The vibration conditions are as shown below.<br />

200<br />

Servomotor<br />

Vibration amplitude<br />

(double-sway width) (µm)<br />

100<br />

80<br />

60<br />

50<br />

40<br />

30<br />

20<br />

X<br />

Acceleration<br />

Y<br />

0<br />

1000 2000 3000<br />

Speed (r/min)<br />

Refer to each spindle motor specifications for details on the spindle motor vibration conditions.<br />

3 - 7


3. Installation<br />

3-2-2 Cautions for mounting load (prevention of impact on shaft)<br />

When using the servomotor with key way, use the<br />

screw hole at the end of the shaft to mount the pulley<br />

onto the shaft. To install, first place the double-end<br />

Servomotor<br />

stud into the shaft screw holes, contact the coupling<br />

end surface against the washer, and press in as if<br />

tightening with a nut. When the shaft does not have a<br />

key way, use a frictional coupling, etc.<br />

When removing the pulley, use a pulley remover, and<br />

make sure not to apply an impact on the shaft.<br />

Pulley<br />

Install a protective cover on the rotary sections such<br />

as the pulley installed on the shaft to ensure safety.<br />

The direction of the detector installed on the servomotor cannot be changed.<br />

Double-end stud<br />

Nut<br />

Washer<br />

CAUTION<br />

Never hammer the end of the shaft<br />

during assembly.<br />

3-2-3 Installation direction<br />

There are no restrictions on the installation direction. Installation in any<br />

direction is possible, but as a standard the motor is installed so that the<br />

motor power line and detector cable cannon plugs (lead-in wires) face<br />

downward. Installation in the standard direction is effective against<br />

dripping. Measure to prevent oil and water must be taken when not<br />

installing in the standard direction. When the motor is not installed in<br />

the standard direction, refer to section "3-2-5 Oil and waterproofing<br />

measures" and take the appropriate measures.<br />

The brake plates may make a sliding sound when a servomotor with<br />

magnetic brake is installed with the shaft facing upward, but this is not<br />

a fault.<br />

Up<br />

Down<br />

Standard installation<br />

direction<br />

3 - 8


3. Installation<br />

3-2-4 Tolerable load of axis<br />

There is a limit to the load that can be applied on the motor shaft. Make sure that the load applied on the<br />

radial direction and thrust direction, when mounted on the machine, is below the tolerable values given<br />

below. These loads also affect the motor output torque, so consider them when designing the machine.<br />

Servomotor<br />

During operation<br />

Tolerable radial load Tolerable thrust load<br />

HC-H52T, 53T, 102T, 103T, 152T, 153T<br />

(Taper shaft)<br />

392N (L=52.7) 490N<br />

HC-H52S, 53S, 102S, 103S, 152S, 153S<br />

(Straight shaft)<br />

980N (L=52.7) 490N<br />

HC-H202S, 203S, 352S, 353S, 452S, 453S<br />

(Straight shaft)<br />

1500N (L=52.7)<br />

490N<br />

HC-H702S, 703S (Straight shaft) 1300N (L=52.7) 590N<br />

HC-H902S, 903S (Straight shaft) 2500N (L=52.7) 1100N<br />

HC-H1102S, 1103S (Straight shaft) 2700N (L=52.7) 1500N<br />

Caution: The symbols in the table follow the drawing below.<br />

L<br />

Radial load<br />

Thrust load<br />

L : Length from flange installation surface to center of load weight [mm]<br />

CAUTION<br />

1. Use a flexible coupling when connecting with a ball screw, etc., and keep the<br />

shaft core deviation to below the tolerable radial load of the shaft.<br />

2. When directly installing the gear on the motor shaft, the radial load increases<br />

as the diameter of the gear decreases. This should be carefully considered<br />

when designing the machine.<br />

3. When directly installing the pulley on the motor shaft, carefully consider so<br />

that the radial load (double the tension) generated from the timing belt<br />

tension is less than the values shown in the table above.<br />

4. In machines where thrust loads such as a worm gear are applied, carefully<br />

consider providing separate bearings, etc., on the machine side so that loads<br />

exceeding the tolerable thrust loads are not applied to the motor.<br />

5. Do not use a rigid coupling as an excessive bending load will be applied on<br />

the shaft and could cause the shaft to break.<br />

3 - 9


3. Installation<br />

3-2-5 Oil and waterproofing measures<br />

A format based on IEC Standards (IP types) is displayed as the motor<br />

protective format (refer to "10-2-1 Specifications list."). However, these<br />

Standards are short-term performance specifications. They do not<br />

guarantee continuous environmental protection characteristics.<br />

Measures such as covers, etc., must be provided if there is any<br />

possibility that oil or water will fall on the motor, or the motor will be<br />

constantly wet and permeated by water. Note that the motor’s IP-type<br />

is not indicated as corrosion-resistant.<br />

Servomotor<br />

Oil or water<br />

When a gear box is installed on the servomotor, make sure that the oil level height from the center<br />

of the shaft is higher than the values given below. Open a breathing hole on the gear box so that the<br />

inner pressure does not rise.<br />

Servomotor<br />

Oil level (mm)<br />

HC-H52, 53, 102, 103, 152, 153 20<br />

HC-H202, 203, 352, 353 25<br />

HC-H452, 453, 702, 703 25<br />

HC-H902, 903, 1102, 1103 30<br />

Oil level<br />

Gear<br />

Lip<br />

V-ring<br />

Servomotor<br />

When installing the servomotor horizontally, set the power cable and detector cable to face<br />

downward.<br />

When installing vertically or on an inclination, provide a cable trap.<br />

Cable trap<br />

CAUTION<br />

1. The servomotors, including those having IP65 and IP67 specifications, do not<br />

have a completely waterproof (oil-proof) structure. Do not allow oil or water to<br />

constantly contact the motor, enter the motor, or accumulate on the motor. Oil<br />

can also enter the motor through cutting chip accumulation, so be careful of<br />

this also.<br />

2. When the motor is installed facing upwards, take measures on the machine<br />

side so that gear oil, etc., does not flow onto the motor shaft.<br />

3. Do not remove the detector from the motor. (The detector installation screw is<br />

treated for sealing.)<br />

3 - 10


3. Installation<br />

Do not use the unit with the cable submerged in oil or<br />

water.<br />

(Refer to right drawing.)<br />

Cover<br />

Servomotor<br />

Oil or water pool<br />

Capillary tube Phenomenon<br />

Make sure that oil and water do not flow along the cable<br />

into the motor or detector. (Refer to right drawing.)<br />

Cover<br />

Servomotor<br />

Respiration<br />

When installing on the top of the shaft end, make sure<br />

that oil from the gear box, etc., does not enter the<br />

servomotor. The servomotor does not have a<br />

waterproof structure.<br />

Gear<br />

Lubricating oil<br />

Servomotor<br />

3 - 11


3. Installation<br />

3-2-6 Cable stress<br />

Sufficiently consider the cable clamping method so that bending stress and the stress from the<br />

cable's own weight is not applied on the cable connection part.<br />

In applications where the servomotor moves, make sure that excessive stress is not applied on the<br />

cable.<br />

If the detector cable and servomotor wiring are stored in a cable bear and the servomotor moves,<br />

make sure that the cable bending part is within the range of the optional detector cable.<br />

Fix the detector cable and power cable enclosed with the servomotor.<br />

Make sure that the cable sheathes will not be cut by sharp cutting chips, worn, or stepped on by<br />

workers or vehicles.<br />

The bending life of the detector cable is as shown below. Regard this with a slight allowance. If the<br />

servomotor/spindle motor is installed on a machine that moves, make the bending radius as large<br />

as possible.<br />

1 10 8<br />

5 10 7<br />

2 10 7<br />

1 10 7<br />

No. of bends (times)<br />

5 10 6<br />

2 10 6<br />

1 10 6<br />

TS-91026<br />

5 10 5<br />

2 10 5<br />

A14B2343<br />

1 10 5<br />

5 10 4 4 7 10 20 40 70 100 200<br />

Bending radius (mm)<br />

3 10 4<br />

Detector cable bending life<br />

Note: The values in this graph are calculated values and are not guaranteed.<br />

The oil resistance characteristics are given below. Note that these values are not guaranteed for all<br />

types of oils.<br />

Item<br />

Characteristics<br />

Tensile strength 65% or more of value before immersion in oil<br />

Oil<br />

resistance<br />

Sheath<br />

Elongation<br />

Oil resistance conditions<br />

The detector cable sheath is made of flame retardant PVC.<br />

65% or more of value before immersion in oil<br />

70°C for four hours (JIS C 2320 Class 1 No. 2<br />

insulation oil)<br />

3 - 12


3. Installation<br />

3-3 Installing the linear servomotor<br />

CAUTION<br />

1. Securely fix the linear servomotor onto the machine. Incomplete fixing could<br />

cause the servomotor to come off during operation, and lead to injuries.<br />

2. The connectors, cooling ports, etc., cannot be repaired or replaced. The<br />

entire servomotor must be replaced, so take special care when handling.<br />

3. Use nonmagnetic tools during installation.<br />

4. An attraction force is generated in the magnetic body by the secondary side<br />

permanent magnet. Take care not to catch fingers or hands. Take special<br />

care when installing the primary side after the secondary side.<br />

5. Install the counterbalance for the vertical axis and the holding brakes on the<br />

machine side. The balance weight cannot track at 9.8m/s 2 or more, so use a<br />

pneumatic counterbalance, etc., having high trackability.<br />

6. Always install an electrical and mechanical stopper at the stroke end.<br />

7. Take measure to prevent metal cutting chips from being attracted to the<br />

secondary side permanent magnet.<br />

8. Oil-proofing and dust-proofing measures must be provided for the linear<br />

scale.<br />

3-3-1 Installation environment<br />

Environment<br />

Conditions<br />

Ambient temperature 0°C to 40°C (with no freezing)<br />

Ambient humidity 80% RH or less (with no dew condensation)<br />

Storage temperature –15°C to 50°C (with no freezing)<br />

Storage humidity 90% RH or less (with no dew condensation)<br />

Atmosphere<br />

Indoors (Where unit is not subject to direct sunlight)<br />

With no corrosive gas, flammable gas or dust<br />

Vibration<br />

4.9m/s 2 or less<br />

3-3-2 Installing the linear servomotor<br />

(1) Installing the primary side<br />

Dimensions for tie-in with secondary side<br />

Center of primary side<br />

0.5[mm] or less<br />

H ± 0.1[mm]<br />

A<br />

0.1 A<br />

0.1<br />

0.1<br />

Center of secondary side<br />

Caution: H dimensions = (primary side height dimensions) + (secondary side height dimensions)<br />

+ (clearance length: 0.5[mm]).<br />

3 - 13


3. Installation<br />

Example of installation procedures<br />

An example of the installation procedures is shown below.<br />

Step 2<br />

Install the primary side on the position where there is no secondary side<br />

Step 1<br />

Install the secondary side (1 part)<br />

Step 4<br />

Install the remaining secondary side<br />

Step 3<br />

Move over to the secondary side where the<br />

primary side is installed.<br />

CAUTION<br />

1. Installing the primary side on the position where there is no secondary side,<br />

as shown above, is recommended to avoid risks posed by the attraction force<br />

of the permanent magnet between the primary side and secondary side.<br />

2. If the primary side must be installed over the secondary side, use a material<br />

handling device, such as a crane, which can sufficiently withstand the load<br />

such as the attraction force.<br />

3. Note that an attraction force will be generated even after the primary side has<br />

been installed and is moved over to the secondary side.<br />

POINT<br />

1. Keep the moving sections (primary side) as light as possible, and the base<br />

section (secondary side) as heavy and rigid as possible.<br />

2. Make the machine's rigidity as high as possible.<br />

3. Securely fix the base section (secondary side) onto the foundation with<br />

anchor bolts.<br />

4. Keep the primary resonance frequency of the entire machine as high as<br />

possible. (Should be 200Hz or more.) Install the servomotor so that the thrust<br />

is applied on the center of the moving sections. If the force is not applied on<br />

the center of the moving parts, a moment will be generated.<br />

5. Use an effective cooling method such as circulated cooling oil.<br />

6. Select a motor capacity that matches the working conditions.<br />

7. Create a mechanism that can withstand high speeds and high acceleration/<br />

deceleration.<br />

3 - 14


3. Installation<br />

(2) Installing the secondary side<br />

Direction<br />

When using multiple secondary sides, lay the units out so that the nameplates on the products all<br />

face the same direction in order to maintain the pole arrangement.<br />

Rating nameplate<br />

Procedures<br />

Install with the following procedure to eliminate clearances between the secondary sides.<br />

Step 2.<br />

Fix with bolt.<br />

Step 1.<br />

Press against.<br />

Secondary side used as<br />

installation reference<br />

CAUTION<br />

1. Use nonmagnetic tools when installing the secondary side.<br />

2. When placing the secondary side onto the installation surface, use the<br />

screws on the product, and suspend with eye bolts, etc.<br />

3. If the secondary side is already installed and another secondary side is being<br />

added, place the secondary side away from the side already installed, and<br />

then slide the additional secondary side to the specific position.<br />

3-3-3 Cooling the linear servomotor<br />

(1) A cooling pipe is embedded on the primary side of the linear servomotor. Flow at least 5 liters of<br />

cooling oil per minute.<br />

(2) When using with natural cooling, the continuous rating will be dropped to 50% compared to when<br />

using cooling oil.<br />

3 - 15


3. Installation<br />

3-4 Noise measures<br />

Noise includes "propagation noise" generated from the power supply or relay, etc., and propagated<br />

along a cable causing the power supply unit or drive unit to malfunction, and "radiated noise"<br />

propagated through air from a peripheral device, etc., and causing the power supply unit or drive unit to<br />

malfunction.<br />

Always implement these noise measures to prevent the peripheral devices and unit from malfunctioning.<br />

The measures differ according to the noise propagation path, so refer to the following explanation and<br />

take appropriate measures.<br />

(1) Mandatory noise measures<br />

• Accurately ground all of the cables connected to this unit and requiring shielding treatment with<br />

clamp fittings. (The communication cable connected to the NC can be grounded with one clamp<br />

fitting on the NC side. However, the communication cables connected between each drive unit<br />

are not required to ground with the clamp fitting.)<br />

Make sure that the detector cable or the signal wire (FG wire) for the communication cable to the<br />

NC is accurately grounded to the connector shell section.<br />

• Do not lay the "drive unit input/output power wire" and "signal wires" bundled in a parallel state.<br />

Always separate these wires.<br />

• Use one-point grounding for the drive unit and motor.<br />

(Refer to section "2-10 Wiring the grounding cable.)<br />

• Accurately ground the AC reactor using the FG terminal on the terminal block in addition to the PE<br />

terminal on the body.<br />

• Install a surge killer on devices (magnetic contactor, relay, etc.) that generate high levels of noise.<br />

• Accurately ground all of the detector cables with clamp fittings.<br />

(The FG wire to the connector shell must also be grounded.)<br />

• Always take the measures given in "Appendix 2 EMC Installation Guidelines" for the European<br />

EMC Directives.<br />

(2) Propagation noise measures<br />

Always take the following measures when noise generating devices are installed near this unit.<br />

• Install a power line filter in the stage before the power supply unit.<br />

• Install a ferrite core on the signal wire.<br />

• Wire the spindle PLG detector cable away from other wires.<br />

(3) Measures against radiated noise<br />

The types of propagation paths of the noise and the noise measures for each propagation path are<br />

shown below.<br />

Noise generated<br />

from drive unit<br />

Airborne<br />

propagation noise<br />

Noise directly radiated<br />

from drive unit<br />

Path <br />

Magnetic<br />

induction noise<br />

Path <br />

and <br />

Noise radiated from<br />

power line<br />

Path <br />

Static induction<br />

noise<br />

Path <br />

Noise radiated from<br />

servomotor/spindle<br />

motor<br />

Path <br />

Cable propagation<br />

noise<br />

Noise propagated over<br />

power line<br />

Path <br />

Noise lead in from<br />

grounding wire by<br />

leakage current<br />

Path <br />

3 - 16


3. Installation<br />

Example) Drive system<br />

<br />

<br />

<br />

<br />

<br />

Instrument<br />

Receiver<br />

<br />

<br />

Drive<br />

unit<br />

<br />

Sensor<br />

power<br />

supply<br />

<br />

Sensor<br />

<br />

Servomotor<br />

Spindle motor<br />

M<br />

Noise<br />

propagation<br />

path<br />

<br />

<br />

<br />

<br />

Measures<br />

When devices such as instrument, receiver or sensor, which handle minute signals<br />

and are easily affected by noise, or the signal wire of these devices, are stored in<br />

the same panel as the drive units and the wiring is close, the device could<br />

malfunction due to airborne propagation of the noise. In this case, take the following<br />

measures.<br />

(1) Install devices easily affected as far away from the drive units as possible.<br />

(2) Lay devices easily affected as far away from the signal wire of the drive unit as<br />

possible.<br />

(3) Do not lay the signal wire and power line in parallel or in a bundled state.<br />

(4) Insert a line noise filter on the input/output wire to suppress noise radiated from<br />

the wires.<br />

(5) Use a shield wire for the signal wire and power line, or place in separate metal<br />

ducts.<br />

If the signal wire is laid in parallel to the power line, or if it is bundled with the power<br />

line, the noise could be propagated to the signal wire and cause malfunction<br />

because of the magnetic induction noise or static induction noise. In this case, take<br />

the following measures.<br />

(1) Install devices easily affected as far away from the drive unit as possible.<br />

(2) Lay devices easily affected as far away from the signal wire of the drive unit as<br />

possible.<br />

(3) Do not lay the signal wire and power line in parallel or in a bundled state.<br />

(4) Use a shield wire for the signal wire and power line, or place in separate metal<br />

ducts.<br />

If the power supply for the peripheral devices is connected to the power supply in<br />

the same system as the drive units, the noise generated from the power supply unit<br />

could back flow over the power line and cause the devices to malfunction. In this<br />

case, take the following measures.<br />

• Install a power line filter on the power supply unit's power line.<br />

If a closed loop is created by the peripheral device and drive unit grounding wire, the<br />

noise current could be fed back causing the device to malfunction. In this case,<br />

change the device grounding methods and the grounding place.<br />

3 - 17


4. Setup<br />

4-1 Initial setup........................................................................................................................................ 4-2<br />

4-1-1 Setting the rotary switch ............................................................................................................ 4-2<br />

4-1-2 Transition of LED display after power is turned ON .................................................................. 4-3<br />

4-2 Servo drive unit initial parameter settings ........................................................................................ 4-4<br />

4-2-1 List of servo parameters ............................................................................................................ 4-4<br />

4-2-2 Limitations to electronic gear setting value.............................................................................. 4-19<br />

4-2-3 Setting excessive detection error width ................................................................................... 4-19<br />

4-2-4 Setting motor and detector model............................................................................................ 4-20<br />

4-2-5 Setting servo specifications ..................................................................................................... 4-21<br />

4-2-6 Initial setup of the linear servo system..................................................................................... 4-22<br />

4-2-7 Standard parameter list according to motor ............................................................................ 4-31<br />

4-3 Spindle drive unit initial parameter settings.................................................................................... 4-33<br />

4-3-1 List of spindle parameters........................................................................................................ 4-33<br />

4-3-2 Details of bit-corresponding parameters..................................................................................4-50<br />

4-3-3 Setting spindle drive unit and motor model ............................................................................. 4-54<br />

4-3-4 Spindle specification parameters screen................................................................................. 4-55<br />

4-3-5 Spindle control signals............................................................................................................. 4-58<br />

4 - 1


4. Setup<br />

4-1 Initial setup<br />

Check the combination of the drive unit and motor connected.<br />

The linear servomotor can be driven with the MDS-CH-V1 Series software version "BND-583W000-B0"<br />

and higher.<br />

4-1-1 Setting the rotary switch<br />

Before turning on the power, the axis No. must be set with the rotary switch. The rotary switch settings<br />

will be validated when the units are turned ON.<br />

(1) Setting the power supply unit<br />

7 8 9 4 56 A BCD<br />

3<br />

2<br />

1<br />

0<br />

E<br />

F<br />

SW1<br />

With contactor<br />

0<br />

(melting detection)<br />

1 With no contactor<br />

2<br />

3<br />

With contactor<br />

4<br />

(melting detection)<br />

5 With no contactor<br />

6<br />

7<br />

8<br />

9<br />

A<br />

B<br />

C<br />

D<br />

E<br />

F<br />

MDS-CH-CV setting<br />

Setting prohibited<br />

Setting prohibited<br />

External emergency<br />

stop (Not used CN23)<br />

External emergency<br />

stop (Used CN23)<br />

(2) Setting the servo/spindle drive unit<br />

7 8 9<br />

4 56 A 7 8 9 BCD<br />

4 56 A BCD<br />

3<br />

3<br />

2<br />

1 E<br />

0 F<br />

2<br />

1 E<br />

0 F<br />

When MDS-CH-V2 Series are used<br />

Rotary switch<br />

setting<br />

Set axis No.<br />

0 1st axis<br />

1 2nd axis<br />

2 3rd axis<br />

3 4th axis<br />

4 5th axis<br />

5 6th axis<br />

6 7th axis<br />

7<br />

8<br />

9<br />

A<br />

B<br />

C<br />

D<br />

E<br />

F<br />

Not usable<br />

Axis not used<br />

POINT<br />

When an axis that is not used is selected, that axis will not be controlled when<br />

the power is turned ON, and "Ab" will remain displayed on the LED. If the power<br />

of the axis not in use is disconnected, the NC system's emergency stop cannot<br />

be released.<br />

4 - 2


4. Setup<br />

4-1-2 Transition of LED display after power is turned ON<br />

When CNC, each drive unit and the power supply unit power have been turned ON, each unit will<br />

automatically execute self-diagnosis and initial settings for operation, etc. The LEDs on the front of the<br />

units will change as shown below according to the progression of these processes.<br />

If an alarm occurs, the alarm No. will appear on the LEDs. Refer to "Chapter 8 Troubleshooting" for<br />

details on the alarm displays.<br />

Drive units<br />

Power supply unit<br />

Waiting for NC<br />

power start up<br />

NC power ON<br />

LED display<br />

Drive unit initialization complete<br />

Waiting for NC power start up<br />

NC power ON<br />

LED display<br />

NC power<br />

ON<br />

Executing initial<br />

communication with NC<br />

Executing initial communication<br />

with NC<br />

A : Initializing<br />

b : Ready OFF, in emergency stop<br />

c : Ready ON/servo OFF<br />

Servo ON state<br />

Emergency stop state<br />

The LED will alternate between<br />

F# → E7 → not lit.<br />

(# is the set axis No.)<br />

Servo OFF sate<br />

Servo ON state<br />

Emergency stop state<br />

NC power OFF<br />

Repeats lighting and going out.<br />

(1st axis in the display example)<br />

4 - 3


4. Setup<br />

4-2 Servo drive unit initial parameter settings<br />

Refer to each CNC instruction manual for details on the operation methods and system specification<br />

parameter settings.<br />

4-2-1 List of servo parameters<br />

No. Abbrev. Parameter name Explanation<br />

SV001<br />

SV002<br />

PC1*<br />

PC2*<br />

Motor side gear<br />

ratio<br />

Machine side gear<br />

ratio<br />

SV003 PGN1 Position loop gain 1<br />

SV004 PGN2 Position loop gain 2<br />

SV005 VGN1 Speed loop gain 1<br />

SV006 VGN2 Speed loop gain 2<br />

SV007<br />

SV008<br />

VIL<br />

VIA<br />

Speed loop delay<br />

compensation<br />

Speed loop lead<br />

compensation<br />

Setting<br />

range (Unit)<br />

Set the motor side and machine side gear ratio.<br />

For the rotary axis, set the total deceleration (acceleration) ratio.<br />

1 to 32767<br />

Even if the gear ratio is within the setting range, the electronic gears may<br />

overflow and cause an alarm. 1 to 32767<br />

Set the position loop gain. The standard setting is “33”.<br />

The higher the setting value is, the more precisely the command can be<br />

followed and the shorter the positioning time gets, however, note that a<br />

bigger shock is applied to the machine during acceleration/deceleration.<br />

When using the SHG control, also set SV004 (PGN2) and SV057 (SHGC).<br />

(If “201” or bigger is set, the SHG control cannot be used.)<br />

When using the SHG control, also set SV003 (PGN1) and SV057 (SHGC).<br />

When not using the SHG control, set to “0”.<br />

Set the speed loop gain.<br />

Set this according to the load inertia size.<br />

The higher the setting value is, the more accurate the control will be,<br />

however, vibration tends to occur.<br />

If vibration occurs, adjust by lowering by 20 to 30%.<br />

The value should be determined to be 70 to 80% of the value at the time<br />

when the vibration stops.<br />

If the noise is bothersome at high speed<br />

during rapid traverse, etc, lower the speed<br />

loop gain.<br />

As in the right figure, set the speed loop<br />

gain of the speed 1.2 times as fast as the<br />

motor’s rated speed, and use this with<br />

SV029 (VCS).<br />

When not using, set to “0”.<br />

VGN1<br />

VGN2<br />

0<br />

VCS<br />

VLMT<br />

(Rated speed*1.2)<br />

Set this when the limit cycle occurs in the full-closed loop, or overshooting<br />

occurs in positioning.<br />

Select the control method with SV027 (SSF1)/bit1, 0 (vcnt).<br />

Normally, use “Changeover type 2”.<br />

When you set this parameter, make sure to set the torque offset (SV032<br />

(TOF)). When not using, set to “0”.<br />

No changeover<br />

When SV027 (SSF1)/ bit1, 0 (vcnt)=00<br />

The delay compensation control is always valid.<br />

Changeover type 1<br />

When SV027 (SSF1)/ bit1, 0 (vcnt)=01<br />

The delay compensation control works when the command from the NC<br />

is “0”.<br />

Overshooting that occurs during pulse feeding can be suppressed.<br />

Changeover type 2<br />

When SV027 (SSF1)/ bit1, 0 (vcnt)=10<br />

The delay compensation control works when the command from the NC<br />

is “0” and the position droop is “0”. Overshooting or the limit cycle that<br />

occurs during pulse feeding or positioning can be suppressed.<br />

Set the gain of the speed loop integration control.<br />

The standard setting is “1364”. During the SHG control, the standard<br />

setting is “1900”. Adjust the value by increasing/decreasing it by about<br />

100 at a time.<br />

Raise this value to improve contour tracking precision in high-speed<br />

cutting. Lower this value when the position droop vibrates (10 to 20Hz).<br />

1 to 200<br />

(rad/s)<br />

0 to 999<br />

(rad/s)<br />

1 to 10000<br />

-1000 to<br />

1000<br />

0 to 32767<br />

1 to 9999<br />

Parameters with an asterisk * in the abbreviation, such as PC1*, are validated with the NC power is turned ON again.<br />

4 - 4


4. Setup<br />

No. Abbrev. Parameter name Explanation<br />

SV009<br />

SV010<br />

SV011<br />

SV012<br />

IQA<br />

IDA<br />

IQG<br />

IDG<br />

Current loop q axis<br />

lead compensation<br />

Current loop d axis<br />

lead compensation<br />

Current loop q axis<br />

gain<br />

Current loop d axis<br />

gain<br />

SV013 ILMT Current limit value<br />

SV014<br />

SV015<br />

SV016<br />

ILMTsp<br />

FFC<br />

LMC1<br />

Current limit value in<br />

special control<br />

Acceleration rate<br />

feed forward gain<br />

Lost motion<br />

compensation 1<br />

Set the gain of current loop.<br />

As this setting is determined by the motor’s electrical characteristics, the<br />

setting is fixed for each type of motor.<br />

Set the standard values for all the parameters depending on each motor<br />

type.<br />

Set the normal current (torque) limit value. (Limit values for both + and -<br />

direction.)<br />

When the value is “500” (a standard setting), the maximum torque is<br />

determined by the specification of the motor.<br />

Set the current (torque) limit value in a special control (initial absolute<br />

position setting, stopper control, etc). (Limit values for both of the + and -<br />

directions.)<br />

Set to “500” when not using.<br />

When a relative error in the synchronous control is large, apply this<br />

parameter to the axis that is delaying. The standard setting value is “0”.<br />

For the SHG control, set to “100”.<br />

To adjust a relative error in acceleration/deceleration, increase the value by<br />

50 to 100 at a time.<br />

Set this when the protrusion (that occurs due to the non-sensitive band by<br />

friction, torsion, backlash, etc) at quadrant change is too large.<br />

This compensates the torque at quadrant change.<br />

This is valid only when the lost motion compensation (SV027 (SSF1/lmc))<br />

is selected.<br />

Type 1: When SV027 (SSF1)/bit9, 8 (lmc)=01<br />

Set the compensation amount based on the motor torque before the<br />

quadrant change.<br />

The standard setting is “100”. Setting to “0” means the compensation<br />

amount is zero.<br />

Normally, use Type 2.<br />

Type 2: When SV027 (SSF1)/bit9, 8 (lmc)=10<br />

Set the compensation amount based on the stall (rated) current of the<br />

motor.<br />

The standard setting is double of the friction torque. Setting to “0”<br />

means the compensation amount is zero.<br />

When you wish different compensation amount depending on the direction<br />

When SV041 (LMC2) is “0”, compensate with the value of SV016<br />

(LMC1) in both of the + and -directions.<br />

If you wish to change the compensation amount depending on the<br />

command direction, set this and SV041 (LMC2). (SV016: + direction,<br />

SV041: - direction. However, the directions may be opposite<br />

depending on other settings.)<br />

When “-1” is set, the compensation won’t be performed in the direction of<br />

the command.<br />

Parameters with an asterisk * in the abbreviation, such as PC1*, are validated with the NC power is turned ON again.<br />

Setting<br />

range (Unit)<br />

1 to 20480<br />

1 to 4096<br />

In case of<br />

MDS-B-Vx4,<br />

1 to 8192<br />

0 to 999<br />

(Stall<br />

[rated]<br />

current %)<br />

0 to 999<br />

(Stall<br />

[rated]<br />

current %)<br />

0 to 999<br />

(%)<br />

-1 to 200<br />

(%)<br />

-1 to 100<br />

(Stall<br />

[rated]<br />

current %)<br />

4 - 5


4. Setup<br />

No. Abbrev. Parameter name Explanation<br />

Setting<br />

range (Unit)<br />

HEX setting<br />

F E D C B A 9 8 7 6 5 4 3 2 1 0<br />

spm drvall drvup mpt3 mp abs vdir fdir vfb seqh dfbx fdir2<br />

bit Meaning when “0” is set Meaning when “1” is set<br />

0 fdir2 Speed feedback forward polarity Speed feedback reverse polarity<br />

1 dfbx Dual feedback control stop Dual feedback control start<br />

2<br />

3 vfb<br />

Speed feedback filter stop<br />

Speed feedback filter stop<br />

(2250Hz)<br />

4 fdir Position feedback forward polarity Position feedback reverse polarity<br />

5<br />

SV017<br />

SPEC*<br />

Servo specification<br />

selection<br />

6<br />

7 abs Incremental control Absolute position control<br />

8 mp MP scale 360P (2mm pitch) MP scale 720P (1mm pitch)<br />

9 mpt3<br />

MP scale ABS detection NC<br />

control<br />

MP scale ABS detection<br />

automatic (Standard swetting)<br />

A<br />

B<br />

C<br />

D<br />

E<br />

spm<br />

2 : Rotary servomotor<br />

8 : Linear servomotor<br />

All other setting values are prohibited<br />

F<br />

(Note 1) Set to “0” for bits with no particular description.<br />

SV018<br />

PIT*<br />

Ball screw pitch<br />

Pole pitch<br />

Set the ball screw pitch. Set to “360” for the rotary axis.<br />

Set the pole pitch when using the linear servomotor.<br />

1 to 32767<br />

(mm/rev)<br />

Parameters with an asterisk * in the abbreviation, such as PC1*, are validated with the NC power is turned ON again.<br />

4 - 6


4. Setup<br />

No. Abbrev. Parameter name Explanation<br />

SV019<br />

RNG1*<br />

Position detector<br />

resolution<br />

In the case of the semi-closed loop control<br />

Set the same value as SV020 (RNG2). (Refer to the explanation of<br />

SV020.)<br />

In the case of the full-closed loop control<br />

Set the number of pulses per ball screw pitch.<br />

Detector model name Resolution SV019 setting<br />

OHE25K-ET, OHA25K-ET 100,000 (p/rev) 100<br />

OSE104-ET,OSA104-ET 100,000 (p/rev) 100<br />

OSE105-ET,OSA105-ET 1,000,000 (p/rev) 1000<br />

RCN723 (Heidenhain) 8,000,000 (p/rev) 8000<br />

Relative position<br />

detection scale<br />

AT41 (Mitsutoyo)<br />

FME type, FLE type<br />

(Futaba)<br />

MP type (<strong>Mitsubishi</strong><br />

Heavy Industries)<br />

AT342 (Mitsutoyo)<br />

AT343 (Mitsutoyo)<br />

AT543 (Mitsutoyo)<br />

LC191M (Heidenhain)<br />

LC491M (Heidenhain)<br />

MDS-B-HR<br />

Refer to specification<br />

manual for each detector<br />

1 (m/p)<br />

Refer to specification<br />

manual for each detector<br />

Refer to specification<br />

manual for each detector<br />

0.5 (m/p)<br />

0.05 (m/p)<br />

0.05 (m/p)<br />

Refer to specification<br />

manual for each detector.<br />

Refer to specification<br />

manual for each detector.<br />

Analog cycle/500<br />

PIT/Resolution<br />

(m)<br />

The same as<br />

SV018 (PIT)<br />

PIT/Resolution<br />

(m)<br />

PIT/Resolution<br />

(m)<br />

Twice as big as<br />

SV018 (PIT)<br />

20 times as big<br />

as SV018 (PIT)<br />

PIT/Resolution<br />

(m)<br />

PIT/Resolution<br />

(m)<br />

PIT/Resolution<br />

(m)<br />

PIT/Resolution<br />

(m)<br />

Setting range<br />

(Unit)<br />

1 to 9999<br />

(kp/rev)<br />

1 to 9999<br />

(kp/pit)<br />

For linear servomotor control<br />

Set the number of pulses (K pulses) per pole pitch.<br />

(Set the same value for SV020: RNG2.)<br />

AT342 LC191M HR + relative position detector HR + AT342<br />

120 600 or 1200 PIT/Resolution (m) 1500<br />

1 to 9999<br />

(kp/pit)<br />

SV020<br />

RNG2*<br />

Speed detector<br />

resolution<br />

Note) The above value applies for the linear servomotor with 60mm<br />

pole pitch.<br />

Set the number of pulses per one revolution of the motor side detector.<br />

Detector model name<br />

SV020 setting<br />

OSE104, OSA104 100<br />

OSE105, OSA105 1000<br />

1 to 9999<br />

(kp/rev)<br />

SV021<br />

SV022<br />

SV023<br />

SV024<br />

OLT<br />

OLL<br />

OD1<br />

INP<br />

Overload detection<br />

time constant<br />

Overload detection<br />

level<br />

Excessive error<br />

detection width<br />

during servo ON<br />

In-position<br />

detection width<br />

Set the same value as SV019: RNG1 when using linear servomotor<br />

control.<br />

Set the detection time constant of Overload 1 (Alarm 50).<br />

Set to “60” as a standard. (For machine tool builder adjustment.)<br />

Set the current detection level of Overload 1 (Alarm 50) in respect to the<br />

stall (rated) current.<br />

Set to “150” as a standard. (For machine tool builder adjustment.)<br />

Set the excessive error detection width when servo ON.<br />

<br />

OD1=OD2=<br />

Rapid traverse rate<br />

(mm/min)<br />

60*PGN1<br />

/2 (mm)<br />

When “0” is set, the excessive error detection will not be performed.<br />

Set the in-position detection width.<br />

Set the accuracy required for the machine.<br />

The lower the setting is, the higher the positioning accuracy gets, however,<br />

the cycle time (setting time) becomes longer. The standard setting is “50”.<br />

1 to 999<br />

(s)<br />

110 to 500<br />

(Stall [rated]<br />

current %)<br />

0 to 32767<br />

(mm)<br />

0 to 32767<br />

(m)<br />

Parameters with an asterisk * in the abbreviation, such as PC1*, are validated with the NC power is turned ON again.<br />

4 - 7


4. Setup<br />

No. Abbrev. Parameter name Explanation<br />

HEX setting<br />

F E D C B A 9 8 7 6 5 4 3 2 1 0<br />

pen ent mtyp<br />

bit<br />

Explanation<br />

0 Set the motor type. Set this along with SV017 (SPEC)/spm.<br />

1 1) When SV017/spm=2 (Rotary servomotor)<br />

2 Setting 0x 1x 2x 3x 4x 5x 6x 7x<br />

3 x0<br />

4 mtyp x1<br />

5 x2<br />

6 x3<br />

7 x4<br />

x5<br />

x6<br />

x7<br />

x8<br />

x9<br />

xA<br />

xB<br />

xC<br />

xD<br />

xE<br />

xF<br />

SV025<br />

MTYP* Motor/Detector type<br />

Setting 8x 9x Ax Bx Cx Dx Ex Fx<br />

x0 HC-H52 HC-H53<br />

x1 HC-H102 HC-H103<br />

x2 HC-H152 HC-H153<br />

x3 HC-H202 HC-H203<br />

x4 HC-H352 HC-H353<br />

x5 HC-H452 HC-H453<br />

x6 HC-H702 HC-H703<br />

x7 HC-H902 HC-H903<br />

x8 HC-H1102 HC-H1103<br />

x9 HC-H1502<br />

xA<br />

xB<br />

xC<br />

xD<br />

xE<br />

xF<br />

2) When SV017/spm=8 (Linear servomotor)<br />

Setting 0x 1x 2x 3x 4x 5x 6x 7x<br />

x0<br />

x1<br />

x2<br />

x3<br />

x4<br />

x5<br />

x6<br />

x7<br />

x8<br />

x9<br />

xA<br />

xB<br />

xC<br />

xD<br />

xE<br />

xF<br />

LM-NP5G-60P<br />

(Natural cooling)<br />

LM-NP5G-60P<br />

(Oil cooled)<br />

Parameters with an asterisk * in the abbreviation, such as PC1*, are validated with the NC power is turned ON again.<br />

4 - 8


4. Setup<br />

No. Abbrev. Parameter name Explanation<br />

8<br />

9<br />

A<br />

B<br />

ent<br />

Setting range<br />

(Unit)<br />

HEX setting<br />

Set the detector type.<br />

Set the position detector type for “pen”, and the speed detector type<br />

for “ent”. In the case of the semi-closed loop control, set the same<br />

value for “pen” and “ent”.<br />

C<br />

pen<br />

setting<br />

ent setting<br />

Detector model name<br />

D 0 0 OSE104<br />

E pen 1 1 OSA104<br />

F 2 2 OSE105, OSA105<br />

3 3<br />

4 Setting impossible OHE25K-ET, OSE104-ET<br />

5 Setting impossible OHA25K-ET, OSA104-ET<br />

6<br />

OSE105-ET, OSA105-ET, RCN723<br />

Setting impossible<br />

(Heidenhain)<br />

7 Setting impossible<br />

8<br />

Relative position detection scale, MP type<br />

Setting impossible<br />

(<strong>Mitsubishi</strong> Heavy Industries)<br />

SV025 MTYP* Motor/Detector type 9<br />

AT41 (Mitsutoyo), FME type, FLE type<br />

Setting impossible<br />

(Futaba)<br />

A<br />

A<br />

AT342, AT343, AT543 (Mitsutoyo),<br />

LC191M/491M (Heidenhain), MDS-B-HR<br />

B Setting impossible<br />

C -<br />

For semi-closed speed synchronization<br />

C<br />

C<br />

(Current<br />

synchronization)<br />

setting<br />

The setting of the slave axis in the speed/current<br />

synchronization control.<br />

When the master axis is the semi-closed control.<br />

D - For closed-loop speed control<br />

D<br />

A<br />

Settings for slave axis in 2-scale 2-linear<br />

servomotor system (Using CN3 connector)<br />

D<br />

D<br />

The setting of the slave axis in the speed/ current<br />

synchronization control.<br />

When the master axis is the full-closed control.<br />

For linear servomotor current synchronization<br />

D<br />

E<br />

For V2 closed-loop current synchronization<br />

control<br />

E Setting impossible<br />

F Setting impossible<br />

SV026<br />

OD2<br />

Excessive error<br />

detection width<br />

during servo OFF<br />

Set the excessive error detection width when servo ON.<br />

For the standard setting, refer to the explanation of SV023 (OD1).<br />

When “0” is set, the excessive error detection will not be performed.<br />

0 to 32767<br />

(mm)<br />

Parameters with an asterisk * in the abbreviation, such as PC1*, are validated with the NC power is turned ON again.<br />

4 - 9


4. Setup<br />

No. Abbrev. Parameter name Explanation<br />

Setting range<br />

(Unit)<br />

HEX setting<br />

F E D C B A 9 8 7 6 5 4 3 2 1 0<br />

aflt zrn2 afse ovs lmc omr zrn3 vfct vcnt<br />

bit Meaning when “0” is set Meaning when “1” is set<br />

0 Set the execution changeover type of the speed loop delay compensation.<br />

1 vcnt 00: Delay compensation changeover invalid 10: Delay compensation type 2<br />

01: Delay compensation changeover type 1 11: Setting prohibited<br />

2<br />

3<br />

4 Set the number of compensation pulses of the jitter compensation.<br />

5 vfct 00: Jitter compensation invalid 10: Jitter compensation 2 pulses<br />

01: Jitter compensation 1 pulse 11: Jitter compensation 3 pulses<br />

SV027 SSF1 Servo function 6 zrn3 ABS scale: Set to “1” in using AT342, AT343, AT543, LC191M/491M.<br />

selection 1 7 omr Machine side compensation invalid Machine side compensation valid<br />

SV028<br />

SV029<br />

MSFT Pole shift amount<br />

VCS<br />

Speed at the change<br />

of speed loop gain<br />

8<br />

9 lmc<br />

A<br />

B<br />

C<br />

D<br />

Set the compensation amount with SV016 (LMC1) and SV041 (LMC2).<br />

00: Lost motion compensation stop 10: Lost motion compensation type 2<br />

01: Lost motion compensation type 1 11: Setting prohibited<br />

Set the compensation amount with SV031 (OVS1) and SV042 (OVS2).<br />

ovs 00: Overshooting compensation stop 10: Overshooting compensation type 2<br />

01: Overshooting compensation type 1 11: Setting prohibited<br />

afse 00: Adoptive filter sensitivity standard<br />

11: Adoptive filter sensitivity increase (Set 2bits at a time)<br />

E zrn2 Set to “1”.<br />

F aflt Adoptive filter stop Adoptive filter start<br />

(Note) Set to "0" for bits with no particular description.<br />

Set the pole shift amount for the linear servomotor.<br />

This is not used for the rotary servomotor.<br />

Set to “0”.<br />

If the noise is bothersome at high speed during rapid traverse, etc, lower<br />

the speed loop gain.<br />

Set the speed at which the speed loop gain changes, and use this with<br />

SV006 (VGN2).<br />

When not using, set to “0”.<br />

The setting unit differs for the linear servo, but the function is the same as<br />

that explained here.<br />

-32768 to<br />

32767 (µm)<br />

0 to 9999<br />

(r/min)<br />

0 to 9999<br />

(mm/s)<br />

Abbrev. Parameter name Explanation<br />

Setting range<br />

(Unit)<br />

When 100% is set, the voltage equivalent to the logical<br />

non-energized time will be compensated.<br />

SV030 0 to 255<br />

Voltage dead time When “0” is set, a 100% compensation will be performed. 0 to 255<br />

IVC<br />

compensation Adjust in increments of 10% from the default value 100%. (%)<br />

If increased too much, vibration or vibration noise may be<br />

generated.<br />

Parameters with an asterisk * in the abbreviation, such as PC1*, are validated with the NC power is turned ON again.<br />

4 - 10


4. Setup<br />

No. Abbrev. Parameter name Explanation<br />

Setting range<br />

(Unit)<br />

Set this if overshooting occurs during positioning. This compensates the<br />

motor torque during positioning.<br />

This is valid only when the overshooting compensation SV027 (SSF1/ovs)<br />

is selected.<br />

SV031<br />

OVS1<br />

Overshooting<br />

compensation 1<br />

SV032 TOF Torque offset<br />

Type 1: When SV027 (SSF1)/ bitB, A (ovs)=01<br />

Set the compensation amount based on the motor’s stall current.<br />

This compensates overshooting that occurs during pulse feeding.<br />

Normally, use Type 2.<br />

Type 2: When SV027 (SSF1)/ bitB, A (ovs)=10<br />

Set the compensation amount based on the motor’s stall current.<br />

Increase by 1% and determine the amount that overshooting doesn’t<br />

occur.<br />

In Type 2, compensation during the feed forward control during circular<br />

cutting won’t be performed.<br />

Type 3: When SV027 (SSF1)/ bitB, A (ovs)=11<br />

Use this to perform the overshooting compensation during circular<br />

cutting or the feed forward control. The setting method is the same in<br />

Type 2.<br />

-1 to 100<br />

(Stall [rated]<br />

current %)<br />

When you wish different compensation amount depending on the direction<br />

When SV042 (OVS2) is “0”, compensate with the value of SV031<br />

(OVS1) in both of the + and -directions.<br />

If you wish to change the compensation amount depending on the<br />

command direction, set this and SV042 (OVS2). (SV031: + direction,<br />

SV042: - direction. However, the directions may be opposite<br />

depending on other settings.)<br />

When “-1” is set, the compensation won’t be performed in the direction of<br />

the command.<br />

Set the unbalance torque of vertical axis and inclined axis. -100 to 100<br />

(Stall [rated]<br />

current %)<br />

HEX setting<br />

F E D C B A 9 8 7 6 5 4 3 2 1 0<br />

dos nfd2 nf3 nfd1 zck<br />

SV033<br />

SSF2<br />

Servo function<br />

selection 2<br />

bit Meaning when “0” is set Meaning when “1” is set<br />

0 zck Z phase check valid (Alarm 42) Z phase check invalid<br />

1 Set the filter depth for Notch filter 1 (SV038).<br />

2 nfd1 Value 000 001 010 011 100 101 110 111<br />

3<br />

Depth (dB)<br />

Deep<br />

Infntly<br />

deep<br />

-18.1 -12.0 -8.5 -6.0 -4.1 -2.5 -1.2<br />

4 nf3 Notch filter 3 stop Notch filter 3 start (1125Hz)<br />

5 Set the operation frequency of Notch filter 2 (SV046).<br />

6 nfd2 Value 000 001 010 011 100 101 110 111<br />

7<br />

8<br />

9<br />

A<br />

B<br />

C<br />

D<br />

E<br />

F<br />

dos<br />

Depth (dB)<br />

Deep<br />

Infntly<br />

deep<br />

-18.1 -12.0 -8.5 -6.0 -4.1 -2.5 -1.2<br />

Shallow<br />

Shallow<br />

0: MP scale absolute position detection, offset demand signal output<br />

(Note) Set to “0” for bits with no particular description.<br />

Parameters with an asterisk * in the abbreviation, such as PC1*, are validated with the NC power is turned ON again.<br />

4 - 11


4. Setup<br />

No. Abbrev. Parameter name Explanation<br />

Setting range<br />

(Unit)<br />

HEX setting<br />

F E D C B A 9 8 7 6 5 4 3 2 1 0<br />

ovsn zeg mohn has2 has1<br />

SV034 SSF3 Servo function<br />

selection 3<br />

bit Meaning when “0” is set Meaning when “1” is set<br />

Setting for normal use. HAS control 1 valid<br />

0 has1<br />

(High acceleration rate support)<br />

Setting for normal use. HAS control 2 valid<br />

1 has2<br />

(Overshooting support)<br />

2 mohnMDS-B-HR motor thermal valid MDS-B-HR motor thermal ignored<br />

3<br />

4<br />

5<br />

Z phase normal edge detection Z phase reverse edge detection<br />

zeg<br />

(normal)<br />

(Valid only when SV027/bit6=1)<br />

6<br />

7<br />

8<br />

9<br />

A<br />

linN Set the number of linear servos connected in parallel.<br />

B<br />

C<br />

D<br />

E<br />

F<br />

Set the non-sensitive band of the overshooting compensation type 3 in<br />

ovsn increments of 2m at a time.<br />

In the feed forward control, the non-sensitive band of the model<br />

position droop is set, and overshooting of the model is ignored.<br />

Set the same value as the standard SV040.<br />

(Note) Set to “0” for bits with no particular description.<br />

SV035<br />

SSF4<br />

HEX setting<br />

F E D C B A 9 8 7 6 5 4 3 2 1 0<br />

clt clG1 cl2n clet cltq<br />

bit Meaning when “0” is set Meaning when “1” is set<br />

0<br />

1<br />

2<br />

3<br />

4<br />

5<br />

Servo function<br />

6<br />

selection 4 7<br />

8<br />

Set the retracting torque for collision detection in respect to the<br />

Cltq maximum torque of the motor.<br />

9 00: 100% 01: 90% 10: 80% (Standard) 11: 70%<br />

Setting for normal use<br />

The disturbance torque peak of the<br />

A clet<br />

latest two seconds is displayed in<br />

MPOS of the servo monitor screen.<br />

B cl2n Collision detection method 2 valid<br />

Collision detection method 2<br />

invalid<br />

C<br />

Collision detection method 1<br />

Set the collision detection level during cutting feed (G1).<br />

D clG1 The G1 collision detection level=SV060*clG1.<br />

E<br />

When clG1=0, the collision detection method 1 during cutting feed<br />

won’t function.<br />

Setting for normal use<br />

The guide value of the SV059<br />

F clt<br />

setting value is displayed in MPOS<br />

of the servo monitor screen.<br />

Parameters with an asterisk * in the abbreviation, such as PC1*, are validated with the NC power is turned ON again.<br />

4 - 12


4. Setup<br />

No. Abbrev. Parameter name Explanation<br />

Setting range<br />

(Unit)<br />

HEX setting<br />

F E D C B A 9 8 7 6 5 4 3 2 1 0<br />

amp rtyp ptyp<br />

bit<br />

0<br />

1<br />

Explanation<br />

When the CN4 connector of the drive unit and the power supply are<br />

connected, setting below is necessary.<br />

2 To validate the external emergency stop function, add 40h.<br />

3 Setting 0x 1x 2x 3x 4x 5x 6x 7x 8x<br />

4 ptyp x0<br />

Not<br />

used<br />

5 x1 CV-110<br />

6 x2 CV-220<br />

7 x3<br />

SV036 PTYP* Power supply type x4 CV-37<br />

CV-300<br />

x5 CV-150 CV-450 CV-550 CV-750<br />

x6 CV-55 CV-260<br />

x7 CV-370<br />

x8 CV-75<br />

x9 CV-185<br />

8 "0": Standard setting<br />

9 "1": When MDS-CH-V1-185 is connected<br />

rtyp<br />

A<br />

B<br />

C Set "0".<br />

D<br />

E amp<br />

F<br />

SV037 JL Load inertia scale<br />

SV038<br />

SV039<br />

FHz1<br />

LMCD<br />

Notch filter frequency<br />

1<br />

Lost motion<br />

compensation timing<br />

Set “the motor inertia + motor axis conversion load inertia” in respect to the<br />

motor inertia.<br />

Jl+Jm Jm Motor inertia<br />

SV037(JL) = *100<br />

Jm<br />

Jl Motor axis conversion load inertia<br />

Set total weight of the moving section for the linear servomotor as a kg unit.<br />

Set the vibration frequency to suppress if machine vibration occurs.<br />

(Valid at 36 or more) When not using, set to “0”.<br />

Set this when the lost motion compensation timing doest not match.<br />

Adjust by increasing the value by 10 at a time.<br />

0 to 5000<br />

(%)<br />

0 to 5000<br />

(kg)<br />

0 to 9000<br />

(Hz)<br />

0 to 2000<br />

(ms)<br />

Setting range<br />

Abbrev. Parameter name Explanation<br />

(Unit)<br />

Set the non-sensitive band of the lost motion compensation<br />

SV040 Lost motion<br />

0 to 100<br />

in the feed forward control.<br />

0 to 100<br />

LMCT compensation<br />

When “0” is set, the actual value that is set is 2m.<br />

(µm)<br />

non-sensitive band<br />

Adjust by increasing by 1m at a time.<br />

Parameters with an asterisk * in the abbreviation, such as PC1*, are validated with the NC power is turned ON again.<br />

4 - 13


4. Setup<br />

No. Abbrev. Parameter name Explanation<br />

SV041<br />

SV042<br />

SV043<br />

SV044<br />

LMC2<br />

OVS2<br />

OBS1<br />

OBS2<br />

Lost motion<br />

compensation 2<br />

Overshooting<br />

compensation 2<br />

Setting range<br />

(Unit)<br />

Set this with SV016 (LMC1) only when you wish to set the lost motion -1 to 200<br />

compensation amount to be different depending on the command directions. (Stall [rated]<br />

Set to “0” as a standard.<br />

current %)<br />

Set this with SV031 (OVS1) only when you wish to set the overshooting -1 to 100<br />

compensation amount to be different depending on the command directions. (Stall [rated]<br />

Set to “0” as a standard.<br />

current %)<br />

Set the disturbance observer filter band.<br />

Disturbance observer Set to “100” as a standard.<br />

filter frequency To use the disturbance observer, also set SV037 (JL) and SV044 (OBS2).<br />

When not using, set to “0”.<br />

Set the disturbance observer gain. The standard setting is “100” to “300”.<br />

Disturbance observer<br />

To use the disturbance observer, also set SV037 (JL) and SV043 (OBS1).<br />

gain<br />

When not using, set to “0”.<br />

0 to 1000<br />

(rad/s)<br />

0 to 500<br />

(%)<br />

Setting range<br />

Abbrev. Parameter name Explanation<br />

(Unit)<br />

SV045 0 to 100 0 to 100<br />

When you use the collision detection function, set the<br />

TRUB Frictional torque<br />

(Stall [rated]<br />

frictional torque.<br />

current %)<br />

SV046<br />

SV047<br />

SV048<br />

SV049<br />

SV050<br />

SV051<br />

SV052<br />

SV053<br />

FHz2<br />

EC<br />

EMGrt<br />

PGN1sp<br />

PGN2sp<br />

DFBT<br />

DFBN<br />

OD3<br />

Notch filter frequency Set the vibration frequency to suppress if machine vibration occurs.<br />

2<br />

(Valid at 36 or more) When not using, set to “0”.<br />

Inductive voltage<br />

compensation gain<br />

Vertical axis drop<br />

prevention time<br />

Position loop gain 1<br />

in spindle<br />

synchronous control<br />

Position loop gain 2<br />

in spindle<br />

synchronous control<br />

Set the inductive voltage compensation gain. Set to “100” as a standard.<br />

If the current FB peak exceeds the current command peak, lower the gain.<br />

Input a length of time to prevent the vertical axis from dropping by delaying<br />

Ready OFF until the brake works when the emergency stop occurs.<br />

Increase the setting by 100msec at a time and set the value where the axis<br />

does not drop.<br />

Set the position loop gain during the spindle synchronous control<br />

(synchronous tapping, synchronous control with spindle/C axis).<br />

Set the same value as the value of the spindle parameter, position loop gain<br />

in synchronous control.<br />

When performing the SHG control, set this with SV050 (PGN2sp) and<br />

SV058 (SHGCsp).<br />

Set this with SV049 (PGN1sp) and SV058 (SHGCsp) if you wish to perform<br />

the SHG control in the spindle synchronous control (synchronous tapping,<br />

synchronous control with spindle/C axis).<br />

When not performing the SHG control, set to “0”.<br />

Set the control time constant in dual feed back.<br />

Dual feed back When “0” is set, the actual value that is set is 1msec.<br />

control time constant The higher the time constant is, the closer it gets to the semi-closed control,<br />

so the limit of the position loop gain is raised.<br />

Dual feedback<br />

control dead zone<br />

Excessive error<br />

detection width in<br />

special control<br />

Set to “0” as a standard.<br />

Set the dead zone in the dual feedback control.<br />

Set the excessive error detection width when servo ON in a special control<br />

(initial absolute position setting, stopper control, etc.).<br />

If “0” is set, excessive error detection won’t be performed.<br />

0 to 9000<br />

(Hz)<br />

0 to 200<br />

(%)<br />

0 to 20000<br />

(ms)<br />

1 to 200<br />

(rad/s)<br />

0 to 999<br />

(rad/s)<br />

0 to 9999<br />

(ms)<br />

0 to 9999<br />

(µm)<br />

0 to 32767<br />

(mm)<br />

Parameters with an asterisk * in the abbreviation, such as PC1*, are validated with the NC power is turned ON again.<br />

4 - 14


4. Setup<br />

No. Abbrev. Parameter name Explanation<br />

SV054<br />

SV055<br />

SV056<br />

ORE<br />

EMGx<br />

EMGt<br />

Overrun detection<br />

width in closed loop<br />

control<br />

Max. gate off delay<br />

time after<br />

emergency stop<br />

Deceleration time<br />

constant at<br />

emergency stop<br />

SV057 SHGC SHG control gain<br />

SV058<br />

SV059<br />

SV060<br />

SV061<br />

SV062<br />

SHGCsp<br />

TCNV<br />

TLMT<br />

DA1NO<br />

DA2NO<br />

SV063 DA1MPY<br />

SV064 DA2MPY<br />

SV065<br />

TLC<br />

SHG control gain in<br />

spindle<br />

synchronous control<br />

Collision detection<br />

torque estimating<br />

gain<br />

Collision detection<br />

level<br />

D/A output channel 1<br />

data No.<br />

D/A output channel 2<br />

data No.<br />

D/A output channel 1<br />

output scale<br />

D/A output channel 2<br />

output scale<br />

Machine side<br />

compensation spring<br />

constant<br />

Set the overrun detection width in the full-closed loop control.<br />

If the gap between the motor side detector and the linear scale (machine<br />

side detector) exceeds the value set by this parameter, it is judged to be<br />

overrun and Alarm 43 will be detected.<br />

When “-1” is set, the alarm detection won’t be performed. When “0” is set,<br />

overrun is detected with a 2mm width.<br />

Set a length of time from the point when the emergency stop is input to the<br />

point when READY OFF is compulsorily executed.<br />

Normally, set the same value as the absolute value of SV056.<br />

In preventing the vertical axis from dropping, the gate off is delayed for the<br />

length of time set by SV048 if SV055’s value is smaller than that of SV048.<br />

In the vertical axis drop prevention time control, set the time constant used<br />

for the deceleration control at emergency stop. Set a length of time that<br />

takes from rapid traverse rate (rapid) to stopping.<br />

Normally, set the same value as the rapid traverse acceleration/deceleration<br />

time constant.<br />

When executing the synchronous operation, put the minus sign to the<br />

settings of both of the master axis and slave axis.<br />

When performing the SHG control, set this with S003 (PGN1) and SV004<br />

(PGN2).<br />

When not performing the SHG control, set to “0”.<br />

Set this with SV049 (PGN1sp) and SV050 (PGN2sp) if you wish to perform<br />

the SHG control in the spindle synchronous control (synchronous tapping,<br />

synchronous control with spindle/C axis).<br />

When not performing the SHG control, set to “0”.<br />

Set the torque estimating gain when using the collision detection function.<br />

After setting as SV035/bitF(clt)=1 and performing acceleration/deceleration,<br />

set the value displayed in MPOS of the NC servo monitor screen.<br />

Set to “0” when not using the collision detection function.<br />

When using the collision detection function, set the collision detection level<br />

during the G0 feeding.<br />

If “0” is set, none of the collision detection function will work.<br />

Input the data number you wish to output to D/A output channel.<br />

In the case of MDS-C1-V2, set the axis on the side to which the data will<br />

not be output to “-1”.<br />

Set the scale with a 1/256 unit.<br />

When “0” is set, output is done with the standard output unit.<br />

Set the spring constant of the machine side compensation.<br />

In the semi-closed loop control, the machine side compensation amount is<br />

calculated with the following equation.<br />

Compensation amount=<br />

When not using, set to “0”.<br />

F (mm/min) 2 *SV065<br />

R (mm)*10 9<br />

Parameters with an asterisk * in the abbreviation, such as PC1*, are validated with the NC power is turned ON again.<br />

(m)<br />

Setting range<br />

(Unit)<br />

-1 to 32767<br />

(mm)<br />

0 to 20000<br />

(ms)<br />

-20000 to<br />

20000<br />

(ms)<br />

0 to 1200<br />

(rad/s)<br />

0 to 1200<br />

(rad/s)<br />

-32768 to<br />

32767<br />

0 to 999<br />

(Stall [rated]<br />

current %)<br />

-1 to 127<br />

-32768 to<br />

32767<br />

(Unit: 1/256)<br />

-32768 to<br />

32767<br />

4 - 15


4. Setup<br />

No. Abbrev. Parameter name Explanation<br />

F E D C B A 9 8 7 6 5 4 3 2 1 0<br />

pabs rabs<br />

bit Meaning when "0" is set Meaning when "1" is set<br />

SV081<br />

SPEC2*<br />

Servo specification<br />

selection 2<br />

0<br />

1 rabs<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

A<br />

B<br />

C<br />

D<br />

E<br />

F<br />

Normal setting Rotary axis machine end absolute<br />

position control<br />

Normal setting<br />

pabs<br />

(Note) Set to "0" for bits with no particular description.<br />

Speed/current synchronous<br />

control absolute position control<br />

F E D C B A 9 8 7 6 5 4 3 2 1 0<br />

obshj lmc3 lmct<br />

SV082<br />

SSF5<br />

Servo function<br />

selection5<br />

bit Meaning when "0" is set Meaning when "1" is set<br />

Setting for normal use Lost motion compensation 3<br />

0 lmct<br />

adjustment time measurement<br />

valid<br />

1 lmc3 Lost motion compensation 3 stop Lost motion compensation 3 start<br />

2<br />

3<br />

4<br />

5<br />

6<br />

Normal use<br />

7 obshj<br />

8<br />

9<br />

A<br />

B<br />

C<br />

D<br />

E<br />

F<br />

(Note) Set to "0" for bits with no particular description.<br />

Disturbance observer<br />

High-load inertia compatible<br />

control<br />

Parameters with an asterisk * in the abbreviation, such as PC1*, are validated with the NC power turned ON again.<br />

4 - 16


4. Setup<br />

No. Abbrev. Parameter name Explanation<br />

Setting range<br />

(Unit)<br />

F E D C B A 9 8 7 6 5 4 3 2 1 0<br />

nfd5<br />

nfd4<br />

bit Meaning when set to 0 Meaning when set to 1<br />

0<br />

1 Set the filter depth for Notch filter 4 (SV038).<br />

2 Setting value Deep ← → Shallow<br />

3<br />

nfd4<br />

000 001 010 011 100 101 110 111<br />

Depth (dB) - ∞ -18.1 -12.0 -8.5 -6.0 -4.1 -2.5 -1.2<br />

4<br />

SV083<br />

SSF6<br />

Servo function<br />

selection 6<br />

5 nfd5 Set the filter depth for Notch filter 5 (SV046).<br />

6 Setting value Deep ← → Shallow<br />

7 000 001 010 011 100 101 110 111<br />

Depth (dB) -∞ -18.1 -12.0 -8.5 -6.0 -4.1 -2.5 -1.2<br />

8<br />

9<br />

A<br />

B<br />

C<br />

D<br />

E<br />

F<br />

(Note) Set to "0" for bits with no particular description.<br />

F E D C B A 9 8 7 6 5 4 3 2 1 0<br />

bit Meaning when set to 0 Meaning when set to 1<br />

0<br />

1<br />

2<br />

3<br />

4<br />

SV084<br />

SSF7<br />

Servo function<br />

selection 7<br />

5<br />

6<br />

7<br />

8<br />

9<br />

A<br />

B<br />

C<br />

D<br />

E<br />

F<br />

(Note) Set to "0" for bits with no particular description.<br />

Parameters with an asterisk * in the abbreviation, such as PC1*, are validated with the NC power turned ON again.<br />

4 - 17


4. Setup<br />

No. Abbrev. Parameter name Explanation<br />

SV085<br />

SV086<br />

SV087<br />

SV088<br />

SV089<br />

:<br />

SV100<br />

LMCk<br />

LMCc<br />

FHz4<br />

FHz5<br />

Lost motion<br />

compensation<br />

spring constant<br />

Lost motion<br />

compensation<br />

viscous coefficient<br />

Notch filter<br />

frequency 4<br />

Notch filter<br />

frequency 5<br />

Setting range<br />

(Unit)<br />

Set the machine system's spring constant when using lost motion<br />

compensation type 3. 0 to 32767<br />

Set the machine system's viscous coefficient when using lost motion<br />

compensation type 3. 0 to 32767<br />

Set the vibration frequency to suppress if machine vibration occurs. (Valid at<br />

141 or more) When not using, set to "0".<br />

To use this function, set to not "0" (normally "1") when turning the power ON.<br />

0 to 2250<br />

(Hz)<br />

This function cannot be used with adaptive filter. 0 to 2250<br />

(Hz)<br />

Not used. Set to "0".<br />

Parameters with an asterisk * in the abbreviation, such as PC1*, are validated with the NC power turned ON again.<br />

0<br />

4 - 18


4. Setup<br />

4-2-2 Limitations to electronic gear setting value<br />

The servo drive unit has internal electronic gear. The command value from the NC is converted into a<br />

detector resolution unit to carry out position control. The electronic gears are single gear ratios<br />

calculated from multiple parameters. However, each value (ELG1, ELG2) must be 32767 or less.<br />

If the value overflows, the initial parameter error (alarm 37) will be output.<br />

If an alarm occurs, the mechanical specifications and electrical specifications must be revised so that<br />

the electronic gears are within the specifications range.<br />

Parameters related to electronic gears<br />

SV001 (PC1), SV002 (PC2), SV003 (PGN1) (SV049 (PGN1sp)), SV018 (PIT), SV019 (RNG1), SV020 (RNG2)<br />

Reduced fraction of<br />

ELG1<br />

ELG2 = PC2 × RANG<br />

PC1 × PIT × IUNIT<br />

<br />

RANG = RNG1<br />

(reduced fraction)<br />

<br />

RANG = (RNG2 × PGN1sp)<br />

IUNIT = 2/NC command unit (µm) 1µm: IUNIT = 2, 0.1µm: IUNIT = 20<br />

When the above is calculated, the following conditions must be satisfied.<br />

ELG1 ≤ 32767<br />

ELG2 ≤ 32767<br />

Method of confirming maximum setting range for PC1 and PC2 (Example)<br />

For semi-closed loop, 10mm ball screw lead, 1µm command unit and OSA104 motor side detector.<br />

The following parameters can be determined with the above conditions.<br />

SV018 (PIT) = 10, SV019 (RNG1) = 100, SV020 (RNG2) = 100, IUNIT = 2<br />

According to the specifications, the maximum setting value for ELG1 and ELG2 is 32767.<br />

ELG1 PC2 × 100 5 × PC2 Thus, the maximum<br />

value is: PC1 <<br />

PC2 < 6553<br />

=<br />

=<br />

ELG2 PC1 × 10 × 2 1 × PC1<br />

32767<br />

Set the PC1 and PC2 gear ratio to within the above calculation results.<br />

4-2-3 Setting excessive detection error width<br />

The following parameters are determined according to each axis' feedrate.<br />

No. Abbrev. Parameter name Explanation<br />

SV023 OD1 Excessive error detection<br />

width at servo ON<br />

SV026 OD2 Excessive error detection<br />

width at servo OFF<br />

Set "6" as a standard. A protective function will activate if the error<br />

between the position command and position feedback is excessive. If<br />

the machine load is heavy and problems occur with the standard<br />

settings, gradually increase the setting value.<br />

<br />

OD1 = OD2 =<br />

Rapid traverse rate (mm/min)<br />

÷ 2 (mm)<br />

60 × PGN1<br />

4 - 19


4. Setup<br />

4-2-4 Setting motor and detector model<br />

The settings are made as shown below according to the motor and detector model being used.<br />

Check the model in the specifications, and set accordingly.<br />

No. Abbr. Parameter name Explanation<br />

SV025 MTYP Motor/detector Set the servomotor and detector model. (HEX setting)<br />

model F E D C B A 9 8 7 6 5 4 3 2 1 0<br />

pen ent mon<br />

pen (Position detector)<br />

bit Semi-closed loop bit Closed loop<br />

0 OSE104 4 OSE104-ET<br />

1 OSA104 5 OSA104-ET<br />

2 OSA105 / OSE105 6 OSA105-ET/OSE105-ET<br />

OBA13/OBA14/OBA17 8 ABZ SCALE<br />

9 ABS SCALE (AT41, FME, FLE type)<br />

A<br />

ABS SCALE<br />

(AT342, 343, 543, LC191M type)<br />

Scale I/F unit<br />

C<br />

Synchronous control (only slave axis)<br />

(MDS-B-HR type)<br />

D<br />

2-scale 2-linear servo system<br />

closed-loop synchronous control<br />

4 - 20<br />

ent (Speed detector)<br />

bit<br />

Explanation<br />

0 OHE25K/OSE104<br />

1 OHA25K/OSA104<br />

2 OSA105/OSE105/OBA13/OCA14/OSA17<br />

For normal control, speed synchronous control/linear servo (ABS SCALE,<br />

A<br />

scale I/F)<br />

Dedicated for synchronous control semi-closed loop (current instructed<br />

C<br />

synchronization)<br />

For speed synchronous control, current command synchronization/<br />

D<br />

linear current synchronization<br />

E Closed current synchronization<br />

The scale detectors used in combination with the linear servomotor are shown<br />

below.<br />

Resolution Detector<br />

Model<br />

Display type Type Pen ent<br />

(um) ID<br />

0.1 B0h<br />

LC191M<br />

0.05 B1h<br />

H-ABS-LS<br />

0.1 B0h<br />

LC491M<br />

0.05 B1h<br />

ABS<br />

AT342 0.5 24h<br />

A or D A or D<br />

AT342<br />

AT343 0.05 25h<br />

AT543 0.05 25h M-ABS-LS<br />

Analog 51h HR + AT32<br />

MDS-B-HR<br />

cycle/500 52h, 56h BHR-Version INC<br />

When connecting the detector ID:52H, set SV034(SSF) to 1.<br />

mon (Motor model)<br />

bit 0 to 7 Setting Motor model Setting Motor model<br />

B0 HC-H52 C0 HC-H53<br />

B1 HC-H102 C1 HC-H103<br />

B2 HC-H152 C2 HC-H153<br />

B3 HC-H202 C3 HC-H203<br />

B4 HC-H352 C4 HC-H353<br />

Hex setting B5 HC-H452 C5 HC-H453<br />

B6 HC-H702 C6 HC-H702<br />

B7 HC-H902 C7 HC-H903<br />

B8 HC-H1102 C8 HC-H1103<br />

B9 HC-H1502<br />

08<br />

LM-NP5G-60P<br />

(Natural cooling)<br />

LM-NP5G-60P<br />

18<br />

(Oil-cooled)<br />

SV017 spm must also be set.<br />

Note 1) For synchronous control, the master axis is set as the standard, and synchronous control is set for the slave axis.<br />

Note 2) When carrying out synchronous control with the MDS-CH-V2 Series, set the L axis as the master and the M axis as the<br />

slave.<br />

Note 3) Synchronous control with the MDS-CH-V1 Series is compatible only with the absolute position system.


4. Setup<br />

4-2-5 Setting servo specifications<br />

No. Abbr. Parameter name Explanation<br />

SV017 SPEC Servo<br />

specifications<br />

These parameters are set with HEX values. Set as shown below to match the<br />

servo specifications.<br />

F E D C B A 9 8 7 6 5 4 3 2 1 0<br />

spm mpt3 mp abs vdir fdir spwv seqh dfbx vdir2<br />

bit Meaning when set to 0 Meaning when set to 1<br />

0 vdir2 Speed feedback forward polarity Speed feedback reverse polarity<br />

1 dfbx Dual feedback control invalid Dual feedback control valid<br />

2<br />

3 spwv Speed feedback filter invalid Speed feedback filter valid<br />

4 fdir<br />

Position feedback forward<br />

polarity<br />

Position feedback reverse<br />

polarity<br />

5<br />

7 abs Relative position detection Absolute position detection<br />

8 mp MP scale 360P (2mm pitch) MP scale 720P (1mm pitch)<br />

9 mpt3<br />

A<br />

B<br />

MP scale absolute position<br />

detection type 1, 2<br />

MP scale absolute position<br />

detection type 3<br />

C<br />

to F spm "0010": HC-H motor (hexadecimal setting "2")<br />

"1001": LN-NP5G linear servomotor (hexadecimal setting "8")<br />

Set "0" for all bits other than those above.<br />

SV036 PTYP Power supply type These parameters are set with HEX values.<br />

F E D C B A 9 8 7 6 5 4 3 2 1 0<br />

amp rtyp ptyp<br />

bit<br />

ptyp<br />

rtyp<br />

Amp<br />

Explanation<br />

Set a power supply unit model. (Only units with wiring to CN4 connector)<br />

Setting<br />

value<br />

Content<br />

Setting<br />

value<br />

Content<br />

00 With no power supply unit 22 CH-CV-220 22kW<br />

04 CH-CV-37 3.7kW 26 CH-CV-260 26kW<br />

06 CH-CV-55 5.5kW 30 CH-CV-300 30kW<br />

08 CH-CV-75 7.5kW 37 CH-CV-370 37kW<br />

11 CH-CV-110 11kW 45 CH-CV-450 45kW<br />

15 CH-CV-150 15kW 55 CH-CV-550 55kW<br />

19 CH-CV-185 18.5kW 75 CH-CV-750 75kW<br />

Normally, set "00".<br />

Always set "0". (Power regeneration type)<br />

Set "1" when connecting V1-185.<br />

Always set "0". (For MDS-CH)<br />

SV027 SSF1 Special servo<br />

function selection 1<br />

SV033 SSF2 Special servo<br />

function selection 2<br />

SV001 PC1 Motor gear ratio<br />

SV002 PC2 Machine gear ratio<br />

Normally, set "4000".<br />

Normally, set "0000".<br />

Set the motor gear ratio in PC1 and the machine gear ratio in PC2.<br />

For the rotary axis, set the total deceleration (acceleration) ratio.<br />

SV018 PIT Ball screw pitch Set the ball screw pitch as an mm unit. Set 360 for the rotary axis.<br />

SV019 RNG1 Position detector<br />

resolution<br />

SV020 RNG2 Speed detector<br />

resolution<br />

SV003 PGN1 Position loop gain 1 Normally, set "33".<br />

Set the motor detector resolution as a kp/rev unit for both parameters.<br />

Refer to section "4-2-4 Setting motor and detector model" for details on the<br />

settings.<br />

4 - 21


4. Setup<br />

4-2-6 Initial setup of the linear servo system<br />

The methods of setting up the poles for the linear servomotor are explained in this section.<br />

The motor is driven by the magnetic force created by the coil and the magnetic force of the permanent<br />

magnet. Thus, it is necessary to comprehend at which pole of the permanent magnet the coil is located.<br />

With the conventional rotary motor, the coil and permanent magnet are located in the motor, and the<br />

relation of the two parts is fixed. The relation of the detector installed on the motor and the motor itself<br />

is also fixed.<br />

With the linear servo system the coil (motor primary side), permanent magnet (motor secondary side)<br />

and linear are installed independently, so the pole must be adjusted according to the linear servomotor<br />

and linear scale relation.<br />

If this pole is not adjusted, the motor may not operate or may not operate correctly, so always set as<br />

explained below.<br />

(1) Installing the linear servomotor and linear scale<br />

The installation direction of the linear servomotor and linear scale is explained in this section.<br />

1) Linear servomotor's pole direction<br />

The pole direction of the linear servomotor is shown below. As shown in the drawing, if moved<br />

in the direction having the power cable connector or MDS-B-MD installation hole, the pole will<br />

move in the minus direction. If moved in the opposite direction, the pole will move in the plus<br />

direction.<br />

Motor primary side<br />

Magnetic pole detector unit<br />

installation holes<br />

Power cable connector<br />

Motor secondary<br />

side<br />

Plus direction<br />

Minus direction<br />

4 - 22


4. Setup<br />

2) Linear scale feedback direction<br />

The linear scales include the Mitutoyo scale and Heidenhain scale, etc. The feedback direction<br />

of the Mitutoyo AT342 scale is shown below. When moved to the left, looking from the direction<br />

with the detector head facing downward and the AT342 display facing forward, the feedback<br />

moves in the plus direction. When moved in the opposite direction, the position moves in the<br />

minus direction.<br />

The polarity (plus/minus) of the Heidenhain scale is the opposite of the Mitutoyo scale.<br />

Scale unit body<br />

Signal cable<br />

Plus direction<br />

Mitutoyo<br />

AT342<br />

Detection head<br />

Minus direction<br />

Scale unit body<br />

HEIDENHAIN<br />

Signal cable<br />

Detection head<br />

Plus direction<br />

Minus direction<br />

If the linear servomotor's pole direction and linear scale's feedback direction are same, the<br />

state is called forward polarity. If these directions differ, the state is called reverse polarity.<br />

Normally, these are installed to achieve forward polarity, but can be installed to achieve<br />

reverse polarity. Set the parameters as shown below. When this parameter is set, the servo<br />

drive unit's position direction can be reversed. Thus, the position data displayed on the Servo<br />

Monitor screen will have a plus/minus direction opposite from the linear scale feedback<br />

direction.<br />

(The Heidenhain scale indicates the case of the A, B phase analog output of the measurement<br />

length system LS, LIDA and LIF. Thus, when using another scale, confirm that the A and B<br />

phase analog outputs have the same relation.)<br />

No.<br />

Abbr.<br />

SV017 SPEC<br />

Parameter<br />

name<br />

Servo<br />

specifications<br />

Explanation<br />

HEX setting parameter. Set as shown below according to the servo<br />

specifications.<br />

F E D C B A 9 8 7 6 5 4 3 2 1 0<br />

spm drvall drvup mpt3 mp abs vmh vdir fdir seqh dfbx vdir2<br />

bit Meaning when set to 0 Meaning when set to 1<br />

4 fdir<br />

Main side (CN2) feedback<br />

forward polarity<br />

Main side (CN2) feedback<br />

reverse polarity<br />

4 - 23


4. Setup<br />

Table of feedback polarity according to linear servomotor and linear scale installation direction<br />

Connected scale AT342 scale Heidenhain scale<br />

Item Polarity SPEC (fdir) Polarity SPEC (fdir)<br />

1 Forward polarity 0 Reverse polarity 1<br />

2 Reverse polarity 1 Forward polarity 0<br />

3 Reverse polarity 1 Forward polarity 0<br />

Installation No.<br />

4 Forward polarity 0 Reverse polarity 1<br />

5 Reverse polarity 0 Forward polarity 1<br />

6 Forward polarity 0 Reverse polarity 1<br />

7 Forward polarity 1 Reverse polarity 0<br />

8 Reverse polarity 1 Forward polarity 0<br />

Installation 1 Installation 2<br />

Power cable<br />

connector<br />

Signal cable<br />

Signal<br />

cable<br />

Detection head<br />

Detection head<br />

Power cable<br />

connector<br />

Installation 3 Installation 4<br />

Power cable<br />

connector<br />

Detection head<br />

Signal cable<br />

Detection head<br />

Signal cable<br />

Power cable<br />

connector<br />

Fig. (1)-1 When linear scale detection head is installed on motor's primary side<br />

(This is for the AT342. The signal cable direction is reversed for the Heidenhain scale.)<br />

Installation 5 Installation 6<br />

Power cable<br />

connector<br />

Signal<br />

cable<br />

Detection head<br />

Detection head<br />

Signal cable<br />

Power cable connector<br />

Installation 7 Installation 8<br />

Power cable<br />

connector<br />

Detection head<br />

Detection head<br />

Signal cable<br />

Signal cable<br />

Power cable connector<br />

Fig. (1)-2 When linear scale body is installed on motor's primary side<br />

(This is for the AT342. The signal cable direction is reversed for the Heidenhain scale.)<br />

4 - 24


4. Setup<br />

(2) DC excitation function<br />

By using the DC excitation function, the linear servomotor can be moved to 0º on the pole<br />

regardless of the feedback from the linear scale.<br />

This DC excitation function is required to determine the pole shift amount. When determining the<br />

pole shift amount, carry out DC excitation after confirming that the cycle counter displayed on the<br />

Servo Monitor screen is not "0" (Z phase passed).<br />

The following parameters are used for DC excitation.<br />

No.<br />

Abbr.<br />

SV034 SSF3<br />

Parameter<br />

name<br />

Servo<br />

function<br />

selection 3<br />

Explanation<br />

HEX setting parameter. Set as shown below according to the servo specifications.<br />

F E D C B A 9 8 7 6 5 4 3 2 1 0<br />

ovsm linN toff os2 dcd test mohn has2 has1<br />

bit Meaning when set to 0 Meaning when set to 1<br />

4 dcd Setting for normal use. DC excitation mode<br />

No. Abbrev. Parameter name Explanation<br />

D/A output channel 1 Set the initial excitation level for DC excitation.<br />

SV061 DA1NO<br />

data No.<br />

Set 20 when starting DC excitation.<br />

D/A output channel 2 Set the final excitation level for DC excitation.<br />

SV062 DA2NO<br />

data No.<br />

Normally, 40 is set.<br />

D/A output channel 1 Set the initial excitation time for DC excitation. (ms)<br />

SV063 DA1MPY<br />

output scale Normally, 500 is set.<br />

* Set to |SV061| ≤ |SV062|.<br />

<br />

1. Secure the distance (PIT) that the linear servomotor moves during<br />

DC excitation.<br />

2. Set SV034:dcd to "1", and the setting values for starting DC<br />

excitation in SV061 to SV063.<br />

3. Release emergency stop. (Start DC excitation.)<br />

4. Apply emergency stop. (Stop DC excitation)<br />

Magnet<br />

Motor<br />

Setting range<br />

(Unit)<br />

0 to 100<br />

[Stall rated current %]<br />

0 to 100<br />

[Stall rated current %]<br />

-32768 to 32767<br />

[Stall rated current %]<br />

Movement<br />

distance within<br />

PIT setting value<br />

Movement<br />

distance within<br />

PIT setting value<br />

<br />

1. When the emergency stop is released, the value set in SV061 will flow to the V phase (V phase<br />

excitation) for (SV063 setting value × 1/2) msec, and the motor will move toward the pole 120°.<br />

The movement direction and distance depend on the position of the linear servomotor when<br />

emergency stop is released as shown below. (It may not be possible to confirm movement when<br />

already near pole 120°.)<br />

2. Next, the current set in SV061 will flow the U phase (U phase excitation) for (SV063 setting value<br />

× 1/2) msec, and the servomotor will move toward the pole 0°. In this case, the movement will be<br />

in the same direction for all examples shown below.<br />

3. Finally, the current set in SV062 will flow to the U phase, and the magnetic pole 0° position will<br />

be established.<br />

Magnetic<br />

pole 120°<br />

Magnetic<br />

pole 120°<br />

Magnetic<br />

pole 300°<br />

Magnetic<br />

pole 0°<br />

Motor<br />

Magnet<br />

V phase<br />

excitation<br />

U phase<br />

excitation<br />

Magnetic<br />

pole 360°<br />

(Magnetic<br />

pole 0°)<br />

Magnetic<br />

pole 300°<br />

Magnet<br />

Motor<br />

U phase<br />

excitation<br />

V phase<br />

excitation<br />

Magnetic<br />

pole 120°<br />

Magnetic<br />

pole 0°<br />

Motor<br />

Magnet<br />

V phase<br />

excitation<br />

U phase<br />

excitation<br />

Fig. (2)-1<br />

When linear servomotor<br />

is between pole<br />

0° and 120°.<br />

Fig. (2)-2<br />

When linear servomotor<br />

is between pole<br />

300° and 360°.<br />

Fig. (2)-3<br />

When linear servomotor<br />

is between pole<br />

120° and 300°.<br />

4 - 25


4. Setup<br />

<br />

1. During DC excitation, confirm the value displayed at MAX CURRENT 2 on the NC Servo Monitor<br />

screen.<br />

If the linear servomotor does not move even when the MAX CURRENT 2 value is 100 or more,<br />

the cable connection may be incorrect, so confirm the connection.<br />

2. Confirm the MAIN side feedback polarity (SPEC/fdir) achieved with DC excitation.<br />

The MAIN side feedback polarity can be confirmed with the direction that the linear servomotor<br />

moves during U phase excitation, and the increment/decrement of the cycle counter displayed<br />

on the NC Servo Monitor screen. Judge whether the polarity confirmed with DC excitation<br />

matches the polarity set with the servo parameters. Correct the servo parameter polarity if<br />

incorrect.<br />

fdir correction table according to linear servomotor movement with DC excitation.<br />

Motor movement<br />

Cycle counter<br />

increment/decrement<br />

Linear servomotor polarity<br />

Minus direction<br />

Linear servomotor polarity<br />

Plus direction<br />

Increment Decrement Increment Decrement<br />

ABS SCALL Correctly set Incorrectly set Incorrectly set Correctly set<br />

MDS-B-HR Incorrectly set Correctly set Correctly set Incorrectly set<br />

(3) Setting the pole shift<br />

When the linear servomotor and linear scale are installed, the linear servomotor does not know<br />

which pole the permanent magnet is at. Thus, if the linear servomotor is driven in that state, it may<br />

not move or could runaway. By setting the pole shift amount, the linear servomotor can be driven<br />

correctly no matter which pole it is at.<br />

For the pole shift amount, set the data displayed at Rn on the NC Absolute Position Monitor screen<br />

during DC excitation (while the emergency stop is released).<br />

No. Abbrev. Parameter name Explanation<br />

SV028 MSFT Pole shift amount Set the pole shift amount<br />

* The SV028 setting value is validated after the NC power is rebooted.<br />

Setting range<br />

(Unit)<br />

-30000 to 30000<br />

(µm)<br />

1) For system to which MDS-B-MD is not connected<br />

If the pole shift amount is set, it will be validated after the NC power is rebooted.<br />

2) For system to which MDS-B-MD is connected<br />

Normally, the motor is driven with the pole created by MDS-B-MD. However, if this pole shift<br />

amount is set, it will be validated when the Z phase has been passed once after the NC power<br />

has been rebooted. However, if there is a deviation of 30º or more between the pole before and<br />

after pole shifting, the pole shift amount will not be validated, and instead the 9B warning (Pole<br />

shift warning) will be detected. The motor will be driven with the pole achieved before pole<br />

shifting.<br />

If the "9B alarm" occurs, carry out DC excitation again to determine the pole shift amount. The<br />

correct pole shift amount can be achieved even if a value is set in SV028 at this time.<br />

4 - 26


4. Setup<br />

Flow chart for DC excitation and pole shift amount setting<br />

Start of adjustment<br />

Cycle counter = 0?<br />

N<br />

Y<br />

Move the motor's<br />

primary side.<br />

Change SV017/fdir<br />

(Change the polarity)<br />

Set SV061: 20<br />

SV062: 40<br />

SV063: 500<br />

Set SV034/dcd to "1"<br />

Release the emergency stop<br />

Confirm the motor movement and NC<br />

Servo Monitor MAX CURRENT 2 value.<br />

Increase the SV061,<br />

SV062 setting values<br />

Y<br />

N<br />

Has a time exceeding<br />

SV063 setting value<br />

elapsed?<br />

Y<br />

Emergency stop<br />

MAX CURRENT 2 < 100?<br />

N<br />

Y<br />

Did the motor not move?<br />

N<br />

Check the connection<br />

SV061 = SV062?<br />

N<br />

Y<br />

Increase the SV062<br />

setting value<br />

Release the emergency stop<br />

Confirm direction that the motor's<br />

primary side moves to the end<br />

Confirm Rn on the NC<br />

Absolute Position Motor<br />

Emergency stop<br />

N<br />

Is the polarity correct?<br />

Y<br />

Set the Rn display value in<br />

SV028, and SV034/dcd to "0"<br />

Reboot the NC power, and<br />

carry out normal operation.<br />

4 - 27


4. Setup<br />

(4) Setting the parallel drive system<br />

When driving the linear servomotor with a parallel drive system, confirm that the following<br />

parameters are correctly set for each control method. If incorrectly set, correct the setting and<br />

reboot the NC power supply.<br />

When using a parallel drive system, do not simultaneously DC excite the master side and slave<br />

side. When carrying out DC excitation of either axis, make sure that current is not flowing to the<br />

other axis.<br />

No. Abbr. Parameter name Explanation<br />

SV017 SPEC Servo<br />

specifications<br />

HEX setting parameter. Set as shown below according to the servo<br />

specifications.<br />

F E D C B A 9 8 7 6 5 4 3 2 1 0<br />

spm drvall drvup mpt3 mp abs vmh vdir fdir seqh dfbx vdir2<br />

bit Meaning when set to 0 Meaning when set to 1<br />

4 fdir<br />

Main side (CN2) feedback<br />

forward polarity<br />

Main side (CN2) feedback<br />

reverse polarity<br />

0 vdir2<br />

Sub-side (CN3) feedback<br />

forward polarity<br />

Sub-side (CN3) feedback<br />

reverse polarity<br />

SV025 MTYP<br />

Motor/detector type HEX setting parameter. Set as follows according to detector type.<br />

F E D C B A 9 8 7 6 5 4 3 2 1 0<br />

pen ent mtyp<br />

8<br />

9<br />

A<br />

B<br />

C<br />

D<br />

E<br />

F<br />

bit<br />

Details<br />

ent Set the position detector type. (Refer to section 4-2-4.)<br />

pen Set the speed detector type. (Refer to section 4-2-4.)<br />

No. Abbrev. Parameter name Explanation<br />

SV028 MSFT Pole shift amount<br />

Set the pole shift amount<br />

Setting range<br />

(Unit)<br />

-30000 to 30000<br />

(µm)<br />

4 - 28


4. Setup<br />

2-scale 2-drive control (System using only main side (CN2 connector side) feedback)<br />

Setting<br />

Master axis<br />

Slave axis<br />

parameter<br />

SV017/fdir<br />

Normally, set the setting value<br />

for control.<br />

SV017/vdir2 Set "0". Set "0".<br />

SV025/pen, ent Set AAxx.<br />

SV028<br />

Normally, set the setting value<br />

for control.<br />

Normally, set the setting value for control.<br />

Set AAxx.<br />

Normally, set the setting value for control.<br />

2-scale 2-drive control (System also using sub- side (CN3 connector side) feedback)<br />

Setting<br />

parameter<br />

SV017/fdir<br />

SV017/vdir2<br />

Master axis<br />

Normally, set the setting value<br />

for control.<br />

Set "0".<br />

SV025/pen, ent Set AAxx.<br />

SV028<br />

Normally, set the setting value<br />

for control.<br />

Slave axis<br />

Normally, set the setting value for control.<br />

If the master axis and linear servomotor pole<br />

directions are the same, set to the same<br />

setting as SV017/fdir for the master axis.<br />

If the pole directions are reversed, set the<br />

opposite setting as SV017/fdir for the master<br />

axis.<br />

Set DAxx.<br />

Normally, set the setting value for control.<br />

1-scale 2-drive control<br />

Setting<br />

parameter<br />

SV017/fdir<br />

Master axis<br />

Normally, set the setting value<br />

for control.<br />

SV017/vdir2 Set "0". Set "0".<br />

SV025/pen, ent Set AAxx.<br />

Set DDxx.<br />

SV028<br />

Normally, set the setting value<br />

for control.<br />

Slave axis<br />

If the master axis and linear motor pole<br />

directions are the same, set to the same<br />

setting as SV017/fdir for the master axis.<br />

If the pole directions are reversed, set the<br />

opposite setting as SV017/fdir for the master<br />

axis.<br />

Set the pole shift amount when DC excitation<br />

is carried out with the connected detector.<br />

CAUTION<br />

1. When carrying out DC excitation with the parallel drive system, if the current<br />

flows to the parallel axis the machine could break down or the accuracy may<br />

not be satisfied.<br />

2. When carrying out DC excitation with the parallel drive system, make sure<br />

that current does not flow to the parallel axis.<br />

4 - 29


4. Setup<br />

(5) Settings when motor thermal is not connected<br />

POINT<br />

When driving the motor with a system connected to the MDS-B-HR, the servo<br />

drive unit's protection function will activate if the motor reaches an abnormal<br />

temperature.<br />

If the system does not require the motor abnormal temperature detection, set<br />

the following parameter to ignore the signal from the MDS-B-HR.<br />

No.<br />

Abbr.<br />

SV034 SSF3<br />

Parameter<br />

name<br />

Explanation<br />

Servo Set the motor thermal with the following parameter.<br />

function<br />

selection 3 F E D C B A 9 8 7 6 5 4 3 2 1 0<br />

ovsm toff os2 dcd mohn has2 has1<br />

bit Meaning when set to 0 Meaning when set to 1<br />

2 mohm HR motor thermal valid HR motor thermal invalid<br />

4 - 30


4. Setup<br />

4-2-7 Standard parameter list according to motor<br />

(1) HC-H Series (2000, 3000r/min rating)<br />

Motor<br />

HC-H Standard motor<br />

52 53 102 103 152 153 202 203 352 353 452 453 702 703 902 903 1102 1103 1502<br />

Unit<br />

name<br />

05 05 10 10 20 20 20 35 35 45 45 70 70 90 90 110 150 150 185<br />

SV001 - - - - - - - - - - - - - - - - - - -<br />

SV002 - - - - - - - - - - - - - - - - - - -<br />

SV003 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47<br />

SV004 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125<br />

SV005 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75<br />

SV006 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

SV007 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

SV008 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900<br />

SV009 4096 4096 4096 4096 4096 4096 4096 4096 4096 4096 4096 4096 4096 4096 4096 4096 4096 4096 4096<br />

SV010 4096 4096 4096 4096 4096 4096 4096 4096 4096 4096 4096 4096 4096 4096 4096 4096 4096 4096 4096<br />

SV011 1024 1024 1024 1280 1024 1280 1024 1024 1024 768 1024 768 768 768 768 768 768 768 768<br />

SV012 1024 1024 1024 1280 1024 1280 1024 1024 1024 768 1024 768 768 768 768 768 768 768 768<br />

SV013 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500<br />

SV014 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500<br />

SV015 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100<br />

SV016 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

SV017 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008<br />

SV018 - - - - - - - - - - - - - - - - - - -<br />

SV019 - - - - - - - - - - - - - - - - - - -<br />

SV020 - - - - - - - - - - - - - - - - - - -<br />

SV021 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60<br />

SV022 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150<br />

SV023 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6<br />

SV024 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50<br />

SV025 xxB0 xxC0 xxB1 xxC1 xxB2 xxC2 xxB3 xxC3 xxB4 xxC4 xxB5 xxC5 xxB6 xxC6 xxB7 xxC7 xxB8 xxC8 xxB9<br />

SV026 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6<br />

SV027 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000<br />

SV028 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

SV029 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

SV030 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

SV031 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

SV032 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

SV033 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010 0010<br />

SV034 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000<br />

SV035 0000 0000 0000 0000 0040 0040 0040 0040 0040 0040 0040 0040 0040 0000 0000 0000 0000 0000 0000<br />

SV036 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000<br />

SV037 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

SV038 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

SV039 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

SV040 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

SV041 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

SV042 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

SV043 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

SV044 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

SV045 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

SV046 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

SV047 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100<br />

SV048 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

SV049 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15<br />

SV050 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

SV051 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

SV052 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

SV053 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

SV054 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

SV055 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

SV056 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

SV057 281 281 281 281 281 281 281 281 281 281 281 281 281 281 281 281 281 281 281<br />

SV058 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

SV059 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

SV060 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

SV061 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

SV062 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

SV063 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

SV064 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

SV065 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

(System parameter area)<br />

SV081 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000<br />

SV082 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000<br />

SV083 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000<br />

SV084 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000<br />

SV085 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

SV086 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

SV087 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

SV088 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

SV089<br />

:<br />

SV100<br />

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Note) Set the detector model in the xx of SV025. Normally, "00", "11" or "22" is set.<br />

4 - 31


4. Setup<br />

(2) Linear servomotor LM-N Series<br />

Motor<br />

LM-N Series (Natural cooling)<br />

LM-N Series (Oil-cooled)<br />

LM-NP5G-60P-X0<br />

LM-NP5G-60P-X0<br />

Unit name 150 150<br />

SV001 1 1<br />

SV002 1 1<br />

SV003 47 47<br />

SV004 125 125<br />

SV005 - -<br />

SV006 0 0<br />

SV007 0 0<br />

SV008 1364 1364<br />

SV009 10240 10240<br />

SV010 10240 10240<br />

SV011 1024 1024<br />

SV012 1024 1024<br />

SV013 500 500<br />

SV014 500 500<br />

SV015 0 0<br />

SV016 0 0<br />

SV017 8xxx 8xxx<br />

SV018 60 60<br />

SV019 - -<br />

SV020 - -<br />

SV021 60 60<br />

SV022 150 150<br />

SV023 20 20<br />

SV024 50 50<br />

SV025 Xx08 Xx18<br />

SV026 20 20<br />

SV027 4000 4000<br />

SV028 - -<br />

SV029 0 0<br />

SV030 0 0<br />

SV031 0 0<br />

SV032 0 0<br />

SV033 0000 0000<br />

SV034 0003 0003<br />

SV035 0000 0000<br />

SV036 0000 0000<br />

SV037 0 0<br />

SV038 0 0<br />

SV039 0 0<br />

SV040 0 0<br />

SV041 0 0<br />

SV042 0 0<br />

SV043 0 0<br />

SV044 0 0<br />

SV045 0 0<br />

SV046 0 0<br />

SV047 100 100<br />

SV048 0 0<br />

SV049 15 15<br />

SV050 0 0<br />

SV051 0 0<br />

SV052 0 0<br />

SV053 0 0<br />

SV054 0 0<br />

SV055 0 0<br />

SV056 0 0<br />

SV057 281 281<br />

SV058 0 0<br />

SV059 0 0<br />

SV060 0 0<br />

SV061 0 0<br />

SV062 0 0<br />

SV063 0 0<br />

SV064 0 0<br />

OS1<br />

OS2<br />

4 - 32


4. Setup<br />

4-3 Spindle drive unit initial parameter settings<br />

Refer to each CNC instruction manual for details on the operation methods and system specification<br />

parameter settings.<br />

4-3-1 List of spindle parameters<br />

(Note 1) The settings of parameters with an asterisk in the CNG column can be changed without<br />

turning the CNC power OFF.<br />

(Note 2) "DEC" in the TYP column means that the parameter is set with a decimal, and "HEX" means<br />

that the parameter is set with a hexadecimal.<br />

(Note 3) If "0002" is set for SP257 (RPM)", the speed (r/min) set with each parameter will be doubled.<br />

(Example: If SP017 is set to 20000r/min, the motor's actual maximum speed will be<br />

40000r/min.)<br />

<br />

Name Abbr. Parameter name Details TYP<br />

SP001 PGM Magnetic sensor,<br />

motor built-in<br />

encoder orientation<br />

position loop gain<br />

SP002 PGE Encoder orientation<br />

position loop gain<br />

SP003<br />

PGC<br />

Position gain during<br />

C-axis non-cutting<br />

SP004 OINP Orientation<br />

in-position width<br />

SP005 OSP Orientation mode<br />

changing speed<br />

limit value<br />

SP006 CSP Orientation mode<br />

deceleration rate<br />

SP007<br />

OPST Position shift<br />

amount for<br />

orientation<br />

As the set value is larger, the orientation time<br />

becomes shorter and servo rigidity is increased.<br />

However, vibration is increased and the machine<br />

becomes likely to overshoot.<br />

As the set value is larger, the orientation time<br />

becomes shorter and servo rigidity is increased.<br />

However, vibration is increased and the machine<br />

becomes likely to overshoot.<br />

Set the position loop gain for the C-axis non-cutting<br />

mode. (Valid when the control input 1 bit F is set to<br />

"0" in the C-axis control mode.)<br />

Set the position error range in which an orientation<br />

completion signal is output.<br />

Set the motor speed limit value to be used when<br />

the speed loop is changed to the position loop in<br />

orientation mode.<br />

When this parameter is set to "0", SP017 (TSP)<br />

becomes the limit value.<br />

If the orientation is not stable when using a<br />

machine with two or more gear stages with a large<br />

deceleration rate, the operation may be stabilized<br />

by setting the SP037 bit D to "1".<br />

As the set value is larger, the orientation time<br />

becomes shorter. However, the machine becomes<br />

likely to overshoot.<br />

Set the stop position for orientation.<br />

(1) Motor built-in encoder and encoder orientation<br />

Set a value obtained by dividing 360° by 4096.<br />

(2) Magnetic sensor orientation<br />

Divide -5°C to +5° by 1024, and set 0° as "0".<br />

C<br />

N<br />

G<br />

Standard<br />

setting<br />

Unit<br />

Permissible<br />

setting range<br />

DEC * 100 1/10<br />

s -1 0 to 2000<br />

DEC * 100 1/10<br />

s -1 0 to 2000<br />

DEC * 15 s -1 0 to 200<br />

DEC * 16 1/16° 0 to 2880<br />

DEC 0 r/min 0 to 32767<br />

DEC * 20 0 to 1000<br />

DEC * 0<br />

(1) -4095 to<br />

4095<br />

(2) -512 to<br />

512<br />

SP008 Not used. Set "0". – 0 – –<br />

SP009 PGT Synchronous tap<br />

position loop gain<br />

SP010 PGS Spindle<br />

synchronization<br />

position loop gain<br />

Set the spindle position loop gain for synchronous<br />

tapping.<br />

Set the spindle position loop gain for spindle<br />

synchronization.<br />

DEC * 15 s -1 0 to 200<br />

DEC * 15 s -1 0 to 200<br />

SP011 to SP016 Not used. Set "0". – 0 – –<br />

SP017 TSP Maximum motor<br />

speed<br />

Set the maximum motor speed. DEC 6000 r/min 1 to 32767<br />

SP018 ZSP Motor zero speed Set the motor speed for which zero-speed output<br />

is performed.<br />

The spindle will coast at speeds less than the set<br />

speed.<br />

DEC 50 r/min 1 to 1000<br />

4 - 33


4. Setup<br />

Name Abbr. Parameter name Details TYP<br />

SP019<br />

SP020<br />

CSN1 Speed command<br />

acceleration/<br />

deceleration time<br />

constant<br />

SDTS Speed detection set<br />

value<br />

Set the time constant for a speed command from<br />

"0" to the maximum speed.<br />

(This parameter is invalid in position loop mode.)<br />

Set the motor speed for which speed detection<br />

output is performed.<br />

Usually, the setting value is 10% of SP017 (TSP).<br />

C<br />

N<br />

G<br />

Standard<br />

setting<br />

Unit<br />

Permissible<br />

setting range<br />

DEC 30 10ms 1 to 32767<br />

DEC 600 r/min 0 to 32767<br />

SP021 TLM1 Torque limit 1 Set the torque limit rate for torque limit signal 001. DEC * 10 % 1 to 120<br />

SP022 VGNP1 Speed loop gain Set the speed loop proportional gain in speed<br />

proportional term control mode. When the gain is increased,<br />

under speed control response is improved but vibration and sound<br />

become larger.<br />

SP023 VGNI1 Speed loop gain<br />

integral term under<br />

speed control<br />

Set the speed loop integral gain in speed control<br />

mode. Normally, this is set so that the ratio in<br />

respect to SP022 (VGNP1) is approximately<br />

constant.<br />

DEC 63 rad/s 1 to 1000<br />

DEC 60 1/10<br />

rad/s<br />

SP024 Not used. Set "0". DEC 0 –<br />

SP025<br />

SP026<br />

SP027<br />

SP028<br />

SP029<br />

SP030<br />

SP031<br />

SP032<br />

GRA1 Spindle gear teeth<br />

count 1<br />

GRA2 Spindle gear teeth<br />

count 2<br />

GRA3 Spindle gear teeth<br />

count 3<br />

GRA4 Spindle gear teeth<br />

count 4<br />

GRB1 Motor shaft gear<br />

teeth count 1<br />

GRB2 Motor shaft gear<br />

teeth count 2<br />

GRB3 Motor shaft gear<br />

teeth count 3<br />

GRB4 Motor shaft gear<br />

teeth count 4<br />

Set the number of gear teeth of the spindle<br />

corresponding to gear 00.<br />

• When spindle speed is slower than motor speed<br />

GRA[ ] > GRB [ ] will be established.<br />

• When GRA or GRB is larger than 32767<br />

Adjust to less than 32767<br />

Set the number of gear teeth of the spindle<br />

corresponding to gear 01.<br />

Set the number of gear teeth of the spindle<br />

corresponding to gear 10.<br />

Set the number of gear teeth of the spindle<br />

corresponding to gear 11.<br />

Set the number of gear teeth of the motor shaft<br />

corresponding to gear 00.<br />

Set the number of gear teeth of the motor shaft<br />

corresponding to gear 01.<br />

Set the number of gear teeth of the motor shaft<br />

corresponding to gear 10.<br />

Set the number of gear teeth of the motor shaft<br />

corresponding to gear 11.<br />

1 to 1000<br />

DEC 1 1 to 32767<br />

DEC 1 1 to 32767<br />

DEC 1 1 to 32767<br />

DEC 1 1 to 32767<br />

DEC 1 1 to 32767<br />

DEC 1 1 to 32767<br />

DEC 1 1 to 32767<br />

DEC 1 1 to 32767<br />

4 - 34


4. Setup<br />

<br />

Name Abbr. Parameter name Details TYP<br />

SP033 SFNC1 Spindle function 1 Set the spindle function 1 in bit units.<br />

Refer to the section "4-3-2" for details.<br />

SP034 SFNC2 Spindle function 2 Set the spindle function 2 in bit units.<br />

Refer to the section "4-3-2" for details.<br />

SP035 SFNC3 Spindle function 3 Set the spindle function 3 in bit units.<br />

Refer to the section "4-3-2" for details.<br />

SP036 SFNC4 Spindle function 4 Set the spindle function 4 in bit units.<br />

Refer to the section "4-3-2" for details.<br />

SP037 SFNC5 Spindle function 5 Set the spindle function 5 in bit units.<br />

Refer to the section "4-3-2" for details.<br />

SP038 SFNC6 Spindle function 6 Set the spindle function 6 in bit units.<br />

Refer to the section "4-3-2" for details.<br />

SP039 ATYP Drive unit type Set the drive unit type.<br />

Set the compatible unit No. from the standard<br />

motors indicated in section "4-3-3".<br />

SP040 MTYP Motor type This parameter is valid when SP034 (SFNC2) bit0<br />

is set to "0".<br />

Set the compatible motor No. from the standard<br />

motors indicated in section "4-3-3". (Set 0 for the<br />

CH Series.)<br />

SP041 PTYP Power supply unit<br />

type<br />

SP042 CRNG C-axis detector<br />

range<br />

SP043 TRNG Synchronous tap,<br />

spindle<br />

synchronization<br />

detection range<br />

SP044 TRANS NC communication<br />

frequency<br />

SP045 CSNT Fixed control<br />

constant<br />

SP046 CSN2 Speed command<br />

dual cushion<br />

SP047 SDTR Speed detection<br />

reset value<br />

C<br />

N<br />

G<br />

Standard<br />

setting<br />

Unit<br />

Permissible<br />

setting range<br />

HEX 0000 0000 to FFFF<br />

HEX 0000 0000 to FFFF<br />

HEX 0000 0000 to FFFF<br />

HEX 0000 0000 to FFFF<br />

HEX 0000 0000 to FFFF<br />

HEX 0000 0000 to FFFF<br />

HEX 0000 0000 to 0011<br />

HEX 0000 0000 to 001F<br />

Set the power supply unit type.<br />

Set according to the table in section "4-3-3". Set 0<br />

when not connecting the unit.<br />

HEX 0000 0000 to FFFF<br />

Set to 0 unless especially designated. DEC 0 0 to 11<br />

Set to 0 unless especially designated. DEC 0 0 to 7<br />

Set a frequency of data communication with NC. DEC Standard=0<br />

Special=1028<br />

-32768 to<br />

32767<br />

Set to 0 unless especially designated. DEC * 0 0 to 1000<br />

For an acceleration/deceleration time constant<br />

defined in SP019 (CSN1), this parameter is used<br />

to provide smooth movement only at the start of<br />

acceleration/deceleration. As the value of this<br />

parameter is smaller, it moves smoother but the<br />

acceleration/deceleration time becomes longer.<br />

To make this parameter invalid, set "0".<br />

Set the reset hysteresis width for a speed<br />

detection set value defined in SP020 (SDTS).<br />

SP048 SUT Speed reach range Set the speed deviation rate with respect to the<br />

commanded speed for output of the speed reach<br />

signal.<br />

SP049 TLM2 Torque limit 2 Set the torque limit rate for the torque limit signal<br />

010.<br />

SP050 TLM3 Torque limit 3 Set the torque limit rate for the torque limit signal<br />

011.<br />

SP051 TLM4 Torque limit 4 Set the torque limit rate for the torque limit signal<br />

100.<br />

SP052 TLM5 Torque limit 5 Set the torque limit rate for the torque limit signal<br />

101.<br />

SP053 TLM6 Torque limit 6 Set the torque limit rate for the torque limit signal<br />

110.<br />

SP054 TLM7 Torque limit 7 Set the torque limit rate for the torque limit signal<br />

111.<br />

SP055 SETM Excessive speed<br />

deviation timer<br />

Set the timer value until the excessive speed<br />

deviation alarm is output. The value of this<br />

parameter should be longer than the acceleration/<br />

deceleration time.<br />

Set a value approx. 1.5-fold of the acceleration/<br />

deceleration time.<br />

DEC 0 0 to 1000<br />

DEC 30 r/min 0 to 1000<br />

DEC 15 % 0 to 100<br />

DEC * 20 % 0 to 120<br />

DEC * 30 % 0 to 120<br />

DEC * 40 % 0 to 120<br />

DEC * 50 % 0 to 120<br />

DEC * 60 % 0 to 120<br />

DEC * 70 % 0 to 120<br />

DEC 12 s 0 to 60<br />

4 - 35


4. Setup<br />

Name Abbr. Parameter name Details TYP<br />

SP056 PYVR Variable excitation Set the minimum value of the variable excitation<br />

rate. Select a smaller value when gear noise is too<br />

high. However, a larger value is effective for<br />

impact response.<br />

• If "50" or higher is set to improve the impact load<br />

response, check that there are no problems with<br />

the gear noise, motor excitation noise, vibration<br />

during position control excluding C-axis control,<br />

and vibration during orientation stop.<br />

• If "50" or less is set to improve the gear noise,<br />

motor excitation noise or vibration during<br />

orientation, check that there are no problems<br />

with the impact load response, cutting accuracy<br />

during position control excluding C-axis control,<br />

and the holding force during orientation stop. If<br />

there is any problem with the vibration or cutting<br />

accuracy during position control excluding<br />

C-axis control, or if an insufficient rigidity or<br />

vibration occurs during orientation stop, set the<br />

variable excitation minimum value for only<br />

position control and orientation separately in<br />

SP116.<br />

(Practical setting range: 20 to 75)<br />

SP057 STOD Fixed control<br />

constant<br />

SP058 SDT2 Fixed control<br />

constant<br />

SP059 MKT Coil changeover<br />

base cutoff timer<br />

SP060 MKT2 Current limit timer<br />

after coil<br />

changeover<br />

SP061 MKIL Current limit value<br />

after coil<br />

changeover<br />

Set the value shown in the parameter list.<br />

The standard setting is 7.<br />

Set the value shown in the parameter list.<br />

The standard setting is 0.<br />

Set the base cutoff time when changing the<br />

contactor during coil changeover. If the value is<br />

too small, the contactor could melt. The value<br />

must be set higher than the standard setting value<br />

(150ms) when controlling a large contactor. Set<br />

the maximum delay time for ON/OFF of the<br />

contactor + 50ms.<br />

Set the time to limit the current after changing the<br />

contactor when the coil is changed.<br />

Set the current limit value after changing the<br />

contactor when the coil is changed.<br />

The limit time is SP060.<br />

C<br />

N<br />

G<br />

Standard<br />

setting<br />

Unit<br />

Permissible<br />

setting range<br />

DEC * 50 % 0 to 100<br />

DEC 7 r/min 0 to 50<br />

DEC 0 r/min 0 to 32767<br />

DEC 150 ms 0 to 10000<br />

DEC 500 ms 0 to 10000<br />

DEC 75 % 0 to 120<br />

SP062 – – Not used. Set "0". DEC 0 – –<br />

SP063 OLT Overload alarm Set the detection time constant for the motor DEC 60 s 0 to 1000<br />

detection time overload alarm detection process.<br />

SP064 OLL Overload alarm<br />

detection level<br />

Set the detection level for the motor overload<br />

alarm detection process.<br />

DEC 120 % 0 to 180<br />

4 - 36


4. Setup<br />

<br />

Name Abbr. Parameter name Details TYP C N<br />

G<br />

SP065 VCGN1 Target value of Set the magnification of speed loop proportional<br />

variable speed loop gain with respect to SP022 (VGNP1) at the<br />

proportional gain maximum motor speed defined in SP017 (TSP).<br />

SP066 VCSN1 Change starting<br />

speed of variable<br />

speed loop<br />

proportional gain<br />

Set the speed when the speed loop proportional<br />

gain change starts.<br />

Proportional gain<br />

SP022<br />

Standard<br />

setting<br />

Unit<br />

Permissible<br />

setting range<br />

DEC 100 % 0 to 100<br />

DEC 0 r/min 0 to 32767<br />

SP022 ×<br />

SP065<br />

100<br />

SP066<br />

SP017<br />

Speed<br />

SP067 VIGWA Change starting<br />

speed of variable<br />

current loop gain<br />

SP068 VIGWB Change ending<br />

speed of variable<br />

current loop gain<br />

SP069 VIGN Target value of<br />

variable current<br />

loop gain<br />

Set the speed where the current loop gain change<br />

starts.<br />

Set the speed where the current loop gain change<br />

ends.<br />

Set the magnification of current loop gain (torque<br />

component and excitation component) for a<br />

change ending speed defined in SP068 (VIGWB).<br />

When this parameter is set to "0", the magnification<br />

is 1.<br />

Gain<br />

SP069 × (1/16)-fold<br />

DEC 0 r/min 0 to 32767<br />

DEC 0 r/min 0 to 32767<br />

DEC 0 1/16-<br />

fold<br />

0 to 32767<br />

1-fold<br />

SP067 SP068 SP017<br />

Speed<br />

SP070 FHz Machine resonance<br />

suppression filter<br />

frequency 1<br />

Use the following table for reference when setting<br />

SP067 to SP069.<br />

Motor maximum<br />

SP067 SP068 SP069<br />

speed<br />

(VIGWA) (VIGWB) (VIGN)<br />

SP017 (TSP)<br />

6000 or less 0 0 0<br />

6001 to 8000 5000 8000 32<br />

8001 or more 5000 10000 32<br />

Observe the following when setting this parameter:<br />

1) If the motor seems to hunt (high frequency<br />

vibration) when rotating at high speeds,<br />

decrement SP069 (VIGN) by "-8" at a time,<br />

and set a value at which hunting does not<br />

occur.<br />

2) If the motor seems to groan (low frequency<br />

vibration) when rotating at high speeds,<br />

increment SP069 (VIGN) by "+8" at a time, and<br />

set a value at which groaning does not occur.<br />

3) If "AL32" (overcurrent) or "AL75" (overvoltage)<br />

occurs when decelerating from the maximum<br />

speed, decrement or increment SP069 (VIGN)<br />

by "+8" or "-8" to a value where the alarm does<br />

not occur.<br />

4) If there is no problem when rotating at the<br />

maximum speed, but phenomenon 1) or 2)<br />

occurs during rotation in the medium-speed<br />

range, change the SP067 (VIGWA) and<br />

SP068 (VIGWB) setting.<br />

Also refer to section 5-7. Spindle adjustment.<br />

If mechanical vibration occurs during speed or<br />

position control, set the frequency for suppressing<br />

the vibration. Set a value higher than 100Hz. Set<br />

"0" when not using this function.<br />

DEC * 0 Hz 0 to 2250<br />

4 - 37


4. Setup<br />

Name Abbr. Parameter name Details TYP C N<br />

G<br />

SP071 VR2WA Fixed control<br />

constant<br />

SP072 VR2WB Fixed control<br />

constant<br />

SP073 VR2GN Fixed control<br />

constant<br />

SP074 IGDEC Fixed control<br />

constant<br />

SP075 R2KWS Fixed control<br />

constant<br />

SP076<br />

FONS Machine resonance<br />

suppression filter<br />

operation speed<br />

These parameters are determined by <strong>Mitsubishi</strong>.<br />

Do not change them unless specially designated.<br />

If the vibration increases while the motor is<br />

stopped (ex., during orientation stop) when the<br />

machine vibration suppression filter is activated<br />

with SP070 and SP084, set this parameter to<br />

activate the machine vibration suppression filter at<br />

a speed higher than that set with this parameter.<br />

The filter is valid in all speed ranges when "0" is<br />

set.<br />

Standard<br />

setting<br />

Unit<br />

Permissible<br />

setting range<br />

DEC 0 r/min 0 to 32767<br />

DEC 0 r/min 0 to 32767<br />

DEC 0 r/min 0 to 32767<br />

DEC 0 % 0 to 1000<br />

DEC * 0 -32768 to<br />

32767<br />

DEC * 0 r/min 0 to 32767<br />

SP077 TDSL Fixed control These parameters are determined by <strong>Mitsubishi</strong>. DEC 14 0 to 63<br />

constant<br />

Do not change them unless specially designated.<br />

SP078 FPWM Fixed control<br />

DEC 0 0 to 3<br />

constant<br />

SP079 ILMT Fixed control<br />

DEC 0 0 to 32767<br />

constant<br />

SP080 SWTD Fixed control<br />

DEC 0 0 to 32767<br />

constant<br />

SP081 – – Not used. Set "0". – 0<br />

SP082 – – Not used. Set "0". – 0<br />

SP083 VGPYR Fixed control These parameters are determined by <strong>Mitsubishi</strong>. DEC * 0 % 0 to 100<br />

constant<br />

Do not change them unless specially designated.<br />

SP084 FHz2 Machine resonance If the machine vibrates during speed or position DEC * 0 Hz 0 to 2250<br />

suppression filter<br />

frequency 2<br />

control, and the vibration cannot be eliminated<br />

only with the previous machine resonance filter 1,<br />

set the frequency for controlling the vibration here.<br />

Set a value higher than 71Hz. Set "0" when not<br />

using this function.<br />

SP085 AIQM Fixed control These parameters are determined by <strong>Mitsubishi</strong>. DEC 0 % 0 to 150<br />

constant<br />

Do not change them unless specially designated.<br />

SP086 AIQN Fixed control<br />

DEC 0 r/min 0 to 32767<br />

constant<br />

SP087 DIQM Target value of Set the minimum value of variable torque limit at DEC 75 % 0 to 150<br />

variable torque limit deceleration.<br />

magnification at<br />

deceleration<br />

SP088 DIQN Speed for starting<br />

change of variable<br />

torque limit<br />

magnification at<br />

deceleration<br />

Set the speed where the torque limit value at<br />

deceleration starts to change.<br />

Torque limit<br />

100%<br />

Inversely proportional<br />

to speed<br />

DEC 3000 r/min 0 to 32767<br />

SP087<br />

SP066<br />

SP017<br />

Speed<br />

1) When using the high-speed rotation<br />

(10000r/min or higher) specifications motor,<br />

and occurrence of the "AL32" (overcurrent) or<br />

"AL75" (overvoltage) alarm during deceleration<br />

is not improved by changing the SP067<br />

(VIGWA) to SP069 (VIGN) setting values,<br />

decrement the SP087 (DIQM) value by "-15" at<br />

a time until the alarms no longer occur.<br />

2) If the above problems are not occurring, and the<br />

deceleration time is longer than the acceleration<br />

time, change the SP087 (DIQM) value following<br />

the acceleration/deceleration adjustment<br />

procedures explained in section "5-7 Spindle<br />

adjustment". Adjust the deceleration time so<br />

that it is the same as the acceleration time.<br />

4 - 38


4. Setup<br />

Name Abbr. Parameter name Details TYP C N<br />

G<br />

Standard<br />

setting<br />

Unit<br />

Permissible<br />

setting range<br />

SP089 to SP092 Not used. Set "0". DEC 0 –<br />

SP093 ORE Fixed control These parameters are determined by <strong>Mitsubishi</strong>. DEC 0 0 to 32767<br />

constant<br />

Do not change them unless specially designated.<br />

SP094 LMAV Load meter output Set the filter time constant of load meter output. DEC 0 4ms 0 to 32767<br />

filter<br />

When "0" is set, a filter time constant is set to<br />

200ms.<br />

SP095 VFAV Fixed control These parameters are determined by <strong>Mitsubishi</strong>. DEC 0 –<br />

constant<br />

Do not change them unless specially designated<br />

SP096 EGAR Encoder gear ratio Set the gear ratio between the spindle side and<br />

the encoder side (except for the motor-built-in<br />

encoder) as indicated below.<br />

1 : 1 Setting value = 0<br />

1 : 2 Setting value = 1<br />

1 : 4 Setting value = 2<br />

1 : 8 Setting value = 3<br />

1 : 16 Setting value = 4<br />

2 : 1 Setting value = -1<br />

4 : 1 Setting value = -2<br />

3 : 1 Setting value = -3<br />

DEC 0 -3 to 4<br />

<br />

Name Abbr. Parameter name Details TYP<br />

SP097 SPECO Orientation<br />

specification<br />

Set the orientation specifications in bit units.<br />

Refer to the section "4-3-2".<br />

SP098 VGOP Speed loop gain Set the speed loop proportional gain in orientation<br />

proportional term in mode.<br />

orientation mode When this parameter value is increased, response<br />

is improved but vibration and sound become<br />

larger.<br />

SP099 VGOI Speed loop gain<br />

integral term in<br />

orientation mode<br />

Set the speed loop integral gain in orientation<br />

mode. Set so that the percentage in respect to<br />

SP098 (VGOP) is approximately constant.<br />

(Setting value approx. 1:1)<br />

SP100 VGOD Speed loop gain Set the speed loop gain delay advance gain in<br />

delay advance term orientation mode. The impact responsiveness will<br />

in orientation mode increase when the value is increased, but the<br />

deviation of the orientation stop position from<br />

forward run, and the orientation stop position from<br />

reverse run could increase. PI control is applied<br />

when "0" is set. This is effective for a machine with<br />

large frictional torque, and for reducing the<br />

inconsistency in orientation stop position. Note<br />

that when "0" is set, a torque limit signal must<br />

always be input for clamping if the spindle is<br />

mechanically clamped during orientation stop. Set<br />

"15" if there are no particular problems.<br />

SP101 DINP Orientation dummy<br />

in-position width<br />

SP102 OODR Excessive error<br />

value in orientation<br />

mode<br />

SP103 FTM Positioning<br />

completion OFF<br />

time timer<br />

This is valid when SP097 (SPEC0) -bit2 is set to<br />

"1". If this value is set larger than the normal<br />

in-position width (SP004:OINP) to shorten the<br />

ATC time, it will appear that orientation is<br />

completed earlier. However, if the value is too<br />

large, the ATC operation may start before the<br />

spindle position reaches the ATC position.<br />

Carefully check the operation when using this<br />

parameter.<br />

Set the excessive error width for detecting the<br />

excessive error alarm during orientation. Normally<br />

set "32767". The excessive error alarm will not be<br />

output when "0" is set.<br />

Set the time for forcedly turning OFF the index<br />

positioning completion signal (different from the<br />

orientation completion signal) after the leading<br />

edge of the indexing start signal.<br />

C<br />

N<br />

G<br />

Standard<br />

setting<br />

Unit<br />

Permissible<br />

setting range<br />

HEX 0000 0000 to FFFF<br />

DEC 63 rad/s 0 to 2000<br />

DEC 60 1/10<br />

rad/s<br />

DEC 15 1/10<br />

rad/s<br />

0 to 2000<br />

0 to 1000<br />

DEC 16 1/16° 0 to 2880<br />

DEC 32767<br />

1/4<br />

pulse<br />

0 to 32767<br />

( 1 pulse = 0.088° )<br />

DEC 200 ms 0 to 10000<br />

4 - 39


4. Setup<br />

Name Abbr. Parameter name Details TYP<br />

SP104 TLOR Torque limit value<br />

for orientation<br />

servo locking<br />

SP105 IQGO Current loop gain<br />

magnification 1 in<br />

orientation mode<br />

SP106 IDGO Current loop gain<br />

magnification 2 in<br />

orientation mode<br />

SP107 CSP2 Deceleration rate 2<br />

in orientation mode<br />

SP108 CSP3 Deceleration rate 3<br />

in orientation mode<br />

SP109 CSP4 Deceleration rate 4<br />

in orientation mode<br />

SP110 WCML Fixed control<br />

constant<br />

SP111 WDEL Fixed control<br />

constant<br />

SP112 WCLP Fixed control<br />

constant<br />

SP113 WINP Fixed control<br />

constant<br />

SP114 OPER Orientation pulse<br />

miss check value<br />

Set the torque limit value for orientation in-position<br />

output. The external torque limit value will have<br />

the priority when the external torque limit signal is<br />

input.<br />

Set the magnification for current loop gain (torque<br />

component) at orientation completion. The<br />

magnification will be 100% (1-fold) when "100" is<br />

set. If vibration occurs during orientation stop, and<br />

the vibration cannot be eliminated by changing the<br />

SP001 (PGM), SP002 (PGE), SP098 (VGOP) and<br />

SP099 (VGOI) settings, the state may be improved<br />

by changing this parameter.<br />

1) Reduce the setting value when minute<br />

vibration occurs in the frequency.<br />

2) Increase the setting value if minute vibration<br />

occurs at low frequencies. Always change the<br />

SP106 (IDGO) value to the same value when<br />

changing this parameter. (Practical setting<br />

range: 50 to 300)<br />

Set the magnification for current loop gain<br />

(excitation component) at orientation completion.<br />

Refer to SP105 (IQGO) for details on setting this<br />

parameter.<br />

Set the deceleration rate in orientation mode<br />

corresponding to the gear 01.<br />

When this parameter is set to "0", the rate will be<br />

the same as SP006 (CSP).<br />

Set the deceleration rate in orientation mode<br />

corresponding to the gear 10.<br />

When this parameter is set to "0", the rate will be<br />

the same as SP006 (CSP).<br />

Set the deceleration rate in orientation mode<br />

corresponding to the gear 11.<br />

When this parameter is set to "0", the rate will be<br />

the same as SP006 (CSP).<br />

These parameters are determined by <strong>Mitsubishi</strong>.<br />

Do not change them unless specially designated.<br />

If the pulse miss value during orientation stop<br />

exceeds this setting, the alarm "5C" will occur.<br />

(Set 0 to invalidate.)<br />

The orientation start memo setting must always be<br />

invalidated when this parameter is set to a value<br />

other than "0".<br />

(Set SP038 (SFNC6) bit6 to "0".) Establish the<br />

following expression when using this setting.<br />

SP114 setting value ≥ SP004 setting value/16/<br />

(360/4096) + 20, or set a multiple of 4 larger or<br />

equal to the value calculated with the right side<br />

when using PLG orientation.<br />

SP115 OPS2 Index clamp speed When the control input 4 bitC is set to "1", the<br />

value set in this parameter is used for the<br />

orientation changeover speed instead of SP005<br />

(OSP). In all other cases, if SP097 (SPECO) -bit4<br />

is set to "1", the maximum spindle speed for<br />

indexing is set here.<br />

C<br />

N<br />

G<br />

Standard<br />

setting<br />

Unit<br />

Permissible<br />

setting range<br />

DEC 100 % 0 to 120<br />

DEC 100 % 0 to 1000<br />

DEC 100 % 0 to 1000<br />

DEC * 0 0 to 1000<br />

DEC * 0 0 to 1000<br />

DEC * 0 0 to 1000<br />

DEC * 0 Fold 0 to 32767<br />

DEC * 0 1/256<br />

fold<br />

0 to 32767<br />

DEC * 0 r/min 0 to 32767<br />

DEC * 0 360/<br />

4096<br />

fold<br />

DEC * 0 360/<br />

4096°<br />

0 to 32767<br />

0 to 32767<br />

DEC 0 r/min 0 to 32767<br />

4 - 40


4. Setup<br />

Name Abbr. Parameter name Details TYP<br />

SP116 OPYVR Variable constant<br />

rate during position<br />

loop<br />

SP117 ORUT Orientation<br />

changeover speed<br />

reach range<br />

SP118 ORCT Number of<br />

orientation retries<br />

SP119 MPGH Orientation position<br />

loop gain H coil<br />

magnification<br />

SP120 MPGL Orientation position<br />

loop gain L coil<br />

magnification<br />

SP121 MPCSH Orientation<br />

deceleration rate H<br />

coil magnification<br />

SP122 MPCAL Orientation<br />

deceleration rate L<br />

coil magnification<br />

SP123 MGD0 Magnetic sensor<br />

output peak value<br />

SP124 MGD1 Magnetic sensor<br />

linear zone width<br />

SP125 MGD2 Magnetic sensor<br />

changeover point<br />

When the control input 4-bitB is set to "1", the<br />

value set in this parameter is used for the<br />

minimum excitation rate instead of SP056 (PYVR).<br />

In all other cases, if this parameter is set to a value<br />

other than "0", the value set in this parameter will<br />

be used instead of SP056 (PYVR) for the<br />

minimum excitation rate during position control<br />

including orientation control (excluding C-axis<br />

control).<br />

Set this value when using a machine with large<br />

inertia, and the motor continues to run when<br />

orientation is executed from the stopped state, or if<br />

it takes a long time for orientation to stop.<br />

Normally set this to "0".<br />

Set the number of times to retry orientation when<br />

an orientation pulse miss occurs. This parameter<br />

is invalid when SP114 (OPER) is set to "0". Alarm<br />

"A9" will appear while retrying orientation, and<br />

alarm "5C" will appear if there is a pulse miss even<br />

after the designated number of retires.<br />

Set the orientation position loop gain for the H coil<br />

when using the coil changeover motor. Set the<br />

magnification in respect to SP001 (PGM) and<br />

SP002 (PGE), using "256" as 1-fold. The<br />

magnification will also be 1-fold when "0" is set.<br />

This is used to shorten the orientation time for<br />

each coil. However, normally the time is adjusted<br />

with SP121 (MPCSH). Use this parameter when<br />

the time cannot be adjusted sufficiently with<br />

SP121.<br />

Set the orientation position loop gain for the L coil<br />

when using the coil changeover motor. The setting<br />

method is the same as SP119 (MPGH).<br />

When using the coil changeover motor, set the<br />

deceleration rate for orientation with the H coil. Set<br />

the magnification in respect to SP006 (CSP),<br />

using "256" as 1-fold. The magnification will also<br />

be 1-fold when "0" is set. This is used to shorten<br />

the orientation time for each coil.<br />

When using the coil changeover motor, set the<br />

deceleration rate for orientation with the L coil.<br />

The setting method is the same as SP121<br />

(MPCSH).<br />

This parameter is used for adjusting the operation<br />

during magnetic sensor orientation. Set the peak<br />

value of the magnetic sensor output. If the gap<br />

between the sensor and magnet is small, set a<br />

large value. If the gap is large, set a small value. If<br />

the operation stops just before the stop point<br />

during orientation, change this parameter so that<br />

the target point is reached. Use the standard<br />

setting if there are no problems.<br />

This parameter is used for adjusting the operation<br />

during magnetic sensor orientation. Set the width<br />

of the magnetic sensor linear zone. If the<br />

installation radius of the magnet is large, set a<br />

small value. If the radius is small, set a large<br />

value. Use the standard setting if there are no<br />

problems during orientation.<br />

This parameter is used for adjusting the operation<br />

during magnetic sensor orientation. Set the<br />

distance from the target stop point for changing<br />

the position feedback to magnetic sensor output.<br />

Normally, a value that is approx. half of SP124<br />

(MGDI) is set.<br />

C<br />

N<br />

G<br />

Standard<br />

setting<br />

Unit<br />

Permissible<br />

setting range<br />

DEC * 0 % 0 to 100<br />

DEC * 0 r/min 0 to 32767<br />

DEC * 0 times 0 to 100<br />

DEC * 0 1/256<br />

fold<br />

DEC * 0 1/256<br />

fold<br />

DEC * 0 1/256<br />

fold<br />

DEC * 0 1/256<br />

fold<br />

DEC<br />

DEC<br />

DEC<br />

* Standard<br />

magnet<br />

= 542<br />

Compact<br />

magnet<br />

= 500<br />

* Standard<br />

magnet<br />

= 768<br />

Compact<br />

magnet<br />

= 440<br />

* Standard<br />

magnet<br />

= 384<br />

Compact<br />

magnet<br />

= 220<br />

0 to 2560<br />

0 to 2560<br />

0 to 2560<br />

0 to 2560<br />

– 0 to 10000<br />

– 0 to 10000<br />

– 0 to 10000<br />

SP126 to SP128 Not used. Set "0". DEC 0 – –<br />

4 - 41


4. Setup<br />

<br />

Name Abbr. Parameter name Details TYP<br />

SP129 SPECC<br />

SP130 PGC1<br />

SP131 PGC2<br />

SP132 PGC3<br />

SP133 PGC3<br />

C-axis specification Select the specifications for C-axis control with bit<br />

correspondence. Refer to section 4-3-2 for details.<br />

1st position loop Set the position loop gain for C-axis cutting (when<br />

gain for C-axis control input 1 bitF is "1").<br />

cutting<br />

Select SP130 to 132 according to the control input<br />

3 bit combination.<br />

2nd position loop<br />

gain for C-axis<br />

cutting<br />

3rd position loop<br />

gain for C-axis<br />

cutting<br />

Position loop gain<br />

when stopped<br />

during C-axis<br />

cutting<br />

SP134 VGCP0 Speed loop<br />

proportional item<br />

for C-axis<br />

non-cutting<br />

SP135 VGCI0<br />

SP136 VGCD0<br />

SP137 VGCP1<br />

SP138 VGCI1<br />

SP139 VGCD1<br />

SP140 VGCP2<br />

SP141 VGCI2<br />

SP142 VGCD2<br />

SP143 VGCP3<br />

SP144 VGCI3<br />

SP145 VGCD3<br />

SP146 VGCP4<br />

Speed loop gain<br />

integral item for<br />

C-axis non-cutting<br />

Speed loop gain<br />

delay/advance item<br />

for C-axis<br />

non-cutting<br />

1st speed loop gain<br />

proportional time<br />

for C-axis cutting<br />

1st speed loop gain<br />

integral item for<br />

C-axis cutting<br />

1st speed loop gain<br />

delay/advance item<br />

for C-axis cutting<br />

2nd speed loop<br />

gain proportional<br />

time for C-axis<br />

cutting<br />

2nd speed loop<br />

gain integral item<br />

for C-axis cutting<br />

2nd speed loop<br />

gain delay/advance<br />

item for C-axis<br />

cutting<br />

3rd speed loop gain<br />

proportional time<br />

for C-axis cutting<br />

3rd speed loop gain<br />

integral item for<br />

C-axis cutting<br />

3rd speed loop gain<br />

delay/advance item<br />

for C-axis cutting<br />

Speed loop gain<br />

proportional item<br />

when stopped<br />

during C-axis<br />

cutting<br />

[Control input 3]<br />

bit4 bit3 bit2 bit1 bit0<br />

Position loop<br />

gain selection<br />

0 1 1 0 0 SP130<br />

0 1 1 0 1 SP131<br />

0 1 1 1 0 SP132<br />

Set the position loop gain when stopped during<br />

C-axis cutting (when control input 1bitF is "1").<br />

Regardless of the control input 3 bit0 and 1 states,<br />

the value set in this parameter will be valid when<br />

stopping during C-axis cutting.<br />

Proportional item:<br />

Set the speed loop proportional gain for the<br />

C-axis. The responsiveness will increase when<br />

the value is increased, but vibration and noise<br />

will increase.<br />

Integral item:<br />

Set the speed loop integral gain for the C-axis.<br />

Delay/advance item:<br />

Set the speed loop delay/advance gain for the<br />

C-axis. The impact responsiveness will increase<br />

when the value is increased, but the stop<br />

position may become more inconsistent.<br />

"PI" control is applied when "0" is set. Set this<br />

when the machine's frictional torque is large, or<br />

to improve the accuracy during C-axis cutting.<br />

Note that when "0" is set, if the spindle is<br />

mechanically stopped during spindle stopping,<br />

always input a torque limit signal when fixing the<br />

spindle.<br />

C<br />

N<br />

G<br />

Standard<br />

setting<br />

Unit<br />

Permissible<br />

setting range<br />

HEX 0000 0000 to FFFF<br />

DEC * 15 s -1 0 to 200<br />

DEC * 15 s -1 0 to 200<br />

DEC * 15 s -1 0 to 200<br />

DEC * 15 s -1 0 to 200<br />

DEC 63 rad/s 0 to 5000<br />

DEC 60 1/10<br />

rad/s<br />

DEC 15 1/10<br />

rad/s<br />

0 to 5000<br />

0 to 5000<br />

DEC 63 rad/s 0 to 5000<br />

DEC 60 1/10<br />

rad/s<br />

DEC 15 1/10<br />

rad/s<br />

0 to 5000<br />

0 to 5000<br />

The selected parameter No. for each of the above<br />

gains depends on the status of the control input 1<br />

and 3 bit for C-axis control. DEC 63 rad/s 0 to 5000<br />

[Control input 1, 3]<br />

Control<br />

input 1 Control input 3 Gain selection<br />

bitF bit4 bit3 bit2 bit1 bit0 Movement<br />

command<br />

present<br />

0 0 1 1<br />

0<br />

or<br />

1<br />

0<br />

or<br />

1<br />

1 0 1 1 0 0<br />

1 0 1 1 0 1<br />

1 0 1 1 1 0<br />

1 0 1 1 1 1<br />

SP134<br />

SP135<br />

SP136<br />

SP137<br />

SP138<br />

SP139<br />

SP140<br />

SP141<br />

SP142<br />

SP143<br />

SP144<br />

SP145<br />

SP137<br />

SP138<br />

SP139<br />

Movement<br />

command<br />

0<br />

Same as<br />

left<br />

SP146<br />

SP147<br />

SP148<br />

DEC 60 1/10<br />

rad/s<br />

DEC 15 1/10<br />

rad/s<br />

0 to 5000<br />

0 to 5000<br />

DEC 63 rad/s 0 to 5000<br />

DEC 60 1/10<br />

rad/s<br />

DEC 15 1/10<br />

rad/s<br />

0 to 5000<br />

0 to 5000<br />

DEC 63 rad/s 0 to 5000<br />

4 - 42


4. Setup<br />

Name Abbr. Parameter name Details TYP<br />

SP147 VGCI4<br />

SP148 VGCD4<br />

SP149 CZRN<br />

SP150 CPDT<br />

SP151 CPSTL<br />

SP152 CPSTH<br />

SP153 CINP<br />

Speed loop gain<br />

integral item when<br />

stopped during<br />

C-axis cutting<br />

Speed loop gain<br />

delay/advance item<br />

when stopped<br />

during C-axis<br />

cutting<br />

C-axis zero point<br />

return speed<br />

C-axis zero point<br />

return deceleration<br />

rate<br />

C-axis zero point<br />

return position shift<br />

amount (Low byte)<br />

C-axis zero point<br />

return position shift<br />

amount (High byte)<br />

C-axis in-position<br />

width<br />

SP154 CODRL Excessive error<br />

width for C-axis<br />

(Low byte)<br />

SP155 CODRH Excessive error<br />

width for C-axis<br />

(High byte)<br />

SP156 OVSH<br />

Fixed control<br />

constant<br />

This is valid when the SP129 (SPECC) bitE is set<br />

to "0".<br />

Set the speed for changing from the speed loop to<br />

the position loop during C-axis automatic zero<br />

point return.<br />

This is valid when the SP129 (SPECC) bitE is set<br />

to "0".<br />

Set the deceleration rate for decelerating from the<br />

C-axis zero point return speed to the target stop<br />

point.<br />

Decrease the setting if machine sways when<br />

stopping.<br />

This is valid when the SP129 (SPECC) bitE is set<br />

to "0".<br />

Set the C-axis zero point position.<br />

Set the position error range for outputting the<br />

in-position signal during C-axis control.<br />

C<br />

N<br />

G<br />

Standard<br />

setting<br />

Unit<br />

DEC 60 1/10<br />

rad/s<br />

DEC 15 1/10<br />

rad/s<br />

Permissible<br />

setting range<br />

0 to 5000<br />

0 to 5000<br />

DEC * 50 r/min 0 to 500<br />

DEC * 1 0 to 10000<br />

HEX * 0 1/<br />

1000°<br />

HEX * 0<br />

HEX * 03E8 1/<br />

1000°<br />

Set the excessive error width for the C-axis. HEX D4C0 1/<br />

1000°<br />

These parameters are determined by <strong>Mitsubishi</strong>.<br />

Set to "0" unless especially designated.<br />

HEX 0001<br />

SP157 to SP158 Not used. Set "0". DEC 0<br />

SP159 CPY0<br />

SP160 CPY1<br />

SP161 IQGC0<br />

SP162 IDGC0<br />

SP163 IQGC1<br />

SP164 IDGC1<br />

SP165 PGC2<br />

SP166 PGC3<br />

Variable excitation<br />

rate during C-axis<br />

non-cutting<br />

Variable excitation<br />

rate during C-axis<br />

cutting<br />

Current loop gain<br />

magnification 1 for<br />

C-axis non-cutting<br />

Current loop gain<br />

magnification 2 for<br />

C-axis non-cutting<br />

Current loop gain<br />

magnification 1 for<br />

C-axis cutting<br />

Current loop gain<br />

magnification 2 for<br />

C-axis cutting<br />

C-axis position loop<br />

gain 2<br />

C-axis position loop<br />

gain 3<br />

Set the minimum value of the variable excitation<br />

rate during C-axis non-cutting (when control input<br />

1 bitF is "0").<br />

Set the minimum value of the variable excitation<br />

rate during C-axis cutting (when control input 1<br />

bitF is "1").<br />

Set the magnification of the current loop gain<br />

(torque amount) during C-axis non-cutting (when<br />

control input 1 bitF is "0").<br />

Set the magnification of the current loop gain<br />

(excitation amount) during C-axis non-cutting<br />

(when control input 1 bitF is "0").<br />

Set the magnification of the current loop gain<br />

(torque amount) during C-axis cutting (when<br />

control input 1 bitF is "1").<br />

Set the magnification of the current loop gain<br />

(excitation amount) during C-axis cutting (when<br />

control input 1 bitF is "1").<br />

Set the 2nd position loop gain for carrying out<br />

SHG control during C-axis control. This setting<br />

value is valid for both non-cutting and cutting.<br />

Set the 3rd position loop gain for carrying out SHG<br />

control during C-axis control. This setting value is<br />

valid for both non-cutting and cutting.<br />

0 to<br />

FFFFFFFF<br />

0 to FFF<br />

0 to<br />

FFFFFFFF<br />

DEC * 0 0.1% 0 to 1000<br />

DEC * 50 % 0 to 100<br />

DEC * 100 % 0 to 100<br />

DEC 100 % 0 to 1000<br />

DEC 100 % 0 to 1000<br />

DEC 100 % 0 to 1000<br />

DEC 100 % 0 to 1000<br />

DEC * 0 s -1 0 to 999<br />

DEC * 0 s -1 0 to 999<br />

4 - 43


4. Setup<br />

Name Abbr. Parameter name Details TYP<br />

SP167 PGU<br />

SP168 VGUP<br />

SP169 VGU1<br />

SP170 VGUD<br />

Position loop gain<br />

during increased<br />

spindle holding<br />

force<br />

Speed loop gain<br />

proportional item<br />

during increased<br />

spindle holding<br />

force<br />

Speed loop gain<br />

integral item during<br />

increased spindle<br />

holding force<br />

Set the position loop gain when the disturbance<br />

observer is validated during C-axis control (when<br />

control input 4 bitF is "1").<br />

This setting value is valid for both non-cutting and<br />

cutting.<br />

Set the speed loop proportional gain when the<br />

disturbance observer is validated during C-axis<br />

control (when control input 4 bitF is "1").<br />

This setting value is valid for both non-cutting and<br />

cutting.<br />

Set the speed loop integral gain when the<br />

disturbance observer is validated during C-axis<br />

control (when control input 4 bitF is "1").<br />

This setting value is valid for both non-cutting and<br />

cutting.<br />

Speed loop gain Set the speed loop delay/advance gain when the<br />

delay/advance item disturbance observer is validated during C-axis<br />

during increased control (when control input 4 bitF is "1").<br />

spindle holding This setting value is valid for both non-cutting and<br />

force<br />

cutting.<br />

C<br />

N<br />

G<br />

Standard<br />

setting<br />

Unit<br />

Permissible<br />

setting range<br />

DEC 15 s -1 0 to 200<br />

DEC 0 rad/s 0 to 5000<br />

DEC 0 1/10<br />

rad/s<br />

DEC 0 1/10<br />

rad/s<br />

SP171 to SP176 Not used. Set "0". 0<br />

0 to 5000<br />

0 to 5000<br />

<br />

Name Abbr. Parameter name Details TYP<br />

SP177 SPECS Spindle<br />

specifications for<br />

spindle<br />

synchronization<br />

Select the spindle specifications for spindle<br />

synchronous control with bit correspondence.<br />

Refer to the section "4-3-2" for details.<br />

SP178 VGSP Spindle<br />

Set the speed loop proportional gain in spindle<br />

synchronous speed synchronous mode.<br />

loop gain<br />

proportional term<br />

The responsiveness will increase when the value<br />

is increased, but the vibration and noise will also<br />

increase.<br />

SP179 VGSI Spindle<br />

Set the speed loop integral gain in spindle<br />

synchronous speed synchronous mode.<br />

loop gain integral<br />

term<br />

SP180 VGSD Spindle<br />

Set the speed loop delay advance gain in spindle<br />

synchronous speed synchronous mode.<br />

loop gain delay<br />

advance term<br />

The impact responsiveness will increase when the<br />

value is increased, but the stop position may<br />

become more inconsistent.<br />

"PI" control is applied when "0" is set. Set "15" if<br />

there are no problems.<br />

SP181 VCGS Spindle<br />

synchronous target<br />

value of variable<br />

speed loop<br />

proportional gain<br />

SP182 VCSS Spindle<br />

synchronous<br />

change starting<br />

speed of variable<br />

speed loop<br />

proportional gain<br />

Set the percentage of the speed loop proportional<br />

gain in respect to the maximum speed set in<br />

SP178 (VGSP) for spindle synchronization SP017<br />

(TSP).<br />

Set the speed to start changing the speed loop<br />

proportional gain during spindle synchronization.<br />

SP178<br />

SP178 × (SP181/100)<br />

Proportional gain<br />

C<br />

N<br />

G<br />

Standard<br />

setting<br />

Unit<br />

Permissible<br />

setting range<br />

HEX 0000 0000 to FFFF<br />

DEC 63 rad/s 0 to 2000<br />

DEC 60 1/10<br />

rad/s<br />

DEC 15 1/10<br />

rad/s<br />

0 to 2000<br />

0 to 1000<br />

DEC 100 % 0 to 100<br />

DEC 0 r/min 0 to 32767<br />

Speed<br />

SP182<br />

SP017<br />

4 - 44


4. Setup<br />

Name Abbr. Parameter name Details TYP<br />

SP183 SYNV Spindle<br />

synchronous<br />

sync matching<br />

speed<br />

Set the error range of the speed command for<br />

outputting the synchronous speed matching signal<br />

when changing from the speed loop to the position<br />

loop spindle synchronization.<br />

SP184 Not used. Set "0". 0<br />

SP185 SINP Spindle<br />

synchronous<br />

in-position width<br />

SP186 SODR Spindle<br />

synchronous<br />

excessive error<br />

width<br />

SP187 IQGS Spindle<br />

synchronous<br />

current loop gain<br />

magnification1<br />

SP188 IDGS Spindle<br />

synchronous<br />

current loop gain<br />

magnification 2<br />

SP189 PG2S Position loop gain 2<br />

for spindle<br />

synchronous<br />

SP190 PG3S Position loop gain 3<br />

for spindle<br />

synchronous<br />

Set the error range of the position for outputting<br />

the in-position signal during spindle<br />

synchronization.<br />

Set the excessive error width in the spindle<br />

synchronous mode.<br />

Set the magnification of current loop gain (torque<br />

component) in the spindle synchronous mode.<br />

Set the magnification of current loop gain<br />

(excitation component) in the spindle synchronous<br />

mode.<br />

Set the second position loop gain for SGH control<br />

during spindle synchronous.<br />

Set the third position loop gain for SGH control<br />

during spindle synchronous.<br />

C<br />

N<br />

G<br />

Standard<br />

setting<br />

Unit<br />

Permissible<br />

setting range<br />

DEC * 20 r/min 0 to 1000<br />

DEC * 16 1/16° 0 to 2880<br />

DEC 32767<br />

SP191 to SP192 Not used. Set "0". 0<br />

Pulse 0 to 32767<br />

(1 pulse<br />

=<br />

0.088°)<br />

DEC 100 % 0 to 1000<br />

DEC 100 % 0 to 1000<br />

DEC * 0 s -1 0 to 999<br />

DEC * 0 s -1 0 to 999<br />

<br />

Name Abbr. Parameter name Details TYP<br />

SP193 SPECT Synchronized<br />

tapping<br />

specifications<br />

SP194 VGTP Synchronized<br />

tapping speed loop<br />

gain proportional<br />

term<br />

SP195 VGTI Synchronized<br />

tapping speed loop<br />

gain integral term<br />

Set the synchronized tapping specifications in bit<br />

units.<br />

Refer to the section "4-3-2" for details.<br />

Set the speed loop proportional gain in<br />

synchronized tapping mode.<br />

The responsiveness will increase when the value<br />

is increased, but the vibration and noise will also<br />

increase.<br />

Set the speed loop integral gain in synchronized<br />

tapping mode.<br />

SP196 VGTD Synchronized Set the speed loop delay advance gain in<br />

tapping speed loop synchronized tapping mode.<br />

gain delay advance The impact responsiveness will increase when the<br />

term<br />

value is increased, but the stop position may<br />

become more inconsistent.<br />

"PI" control is applied when "0" is set. Set "15" if<br />

there are no problems.<br />

C<br />

N<br />

G<br />

Standard<br />

setting<br />

Unit<br />

Permissible<br />

setting range<br />

HEX 0000 0000 to FFFF<br />

DEC 63 rad/s 0 to 2000<br />

DEC 60 1/10<br />

rad/s<br />

DEC 15 1/10<br />

rad/s<br />

SP197 Not used. Set "0". 0<br />

SP198 VCGT Synchronized Set the percentage of the speed loop proportional<br />

tapping target value gain in respect to SP194 (VGTP) for the maximum<br />

of variable speed<br />

loop proportional<br />

speed set in SP017 (TSP) during synchronous tap<br />

control.<br />

gain<br />

0 to 2000<br />

0 to 1000<br />

DEC 100 % 0 to 100<br />

4 - 45


4. Setup<br />

Name Abbr. Parameter name Details TYP<br />

SP199 VCST Synchronized<br />

tapping change<br />

starting speed of<br />

variable speed loop<br />

proportional gain<br />

Set the speed where the speed loop proportional<br />

gain change starts during synchronized tapping.<br />

SP194<br />

SP194 × (SP198/100)<br />

Proportional gain<br />

C<br />

N<br />

G<br />

Standard<br />

setting<br />

Unit<br />

Permissible<br />

setting range<br />

DEC 0 r/min 0 to 32767<br />

SP200 FFC1 Synchronized<br />

tapping acceleration<br />

feed forward<br />

gain<br />

SP201 FFC2 Synchronized<br />

tapping acceleration<br />

feed forward<br />

gain<br />

SP202 FFC3 Synchronized<br />

tapping acceleration<br />

feed forward<br />

gain<br />

SP203 FFC4 Synchronized<br />

tapping acceleration<br />

feed forward<br />

gain<br />

Set the acceleration feed forward gain for<br />

selection of gear 00 at synchronized tapping.<br />

Set this value if the positional error with the Z axis<br />

increases when the motor's acceleration rate<br />

changes.<br />

Set the acceleration feed forward gain for<br />

selection of gear 01 at synchronized tapping.<br />

The setting method is the same as SP200 (FFC1).<br />

Set the acceleration feed forward gain for<br />

selection of gear 10 at synchronized tapping.<br />

The setting method is the same as SP200 (FFC1).<br />

Set the acceleration feed forward gain for<br />

selection of gear 11 at synchronized tapping.<br />

The setting method is the same as SP200 (FFC1).<br />

DEC * 0 % 0 to 1000<br />

DEC * 0 % 0 to 1000<br />

DEC * 0 % 0 to 1000<br />

DEC * 0 % 0 to 1000<br />

SP204 to SP213 Not used. Set "0". 0<br />

SP214 TZRN Synchronized<br />

tapping<br />

zero point return<br />

speed<br />

This parameter is valid when SP193 (SPECT) bitE<br />

is set to "0".<br />

Set the speed for changing from the speed loop to<br />

position loop during zero point return.<br />

DEC * 50 r/min 0 to 500<br />

SP215 TPDT Synchronized<br />

tapping<br />

zero point return<br />

deceleration rate<br />

SP216 TPST Synchronous<br />

tapping zero point<br />

return position shift<br />

amount<br />

SP217 TINP Synchronized<br />

tapping<br />

in-position width<br />

SP218 TODR Synchronized<br />

tapping excessive<br />

error width<br />

SP199<br />

SP017<br />

This parameter is valid when SP193 (SPECT) bitE<br />

is set to "0".<br />

Set the deceleration rate for decelerating from the<br />

synchronous tapping zero point return speed to<br />

the target stop point.<br />

Decrease the setting if machine sways during zero<br />

point return.<br />

This parameter is valid when SP193 (SPECT) bitE<br />

is set to "0".<br />

Set the synchronized tapping zero point position.<br />

Set the position error range for outputting the<br />

in-position signal during synchronous tapping.<br />

Set the excessive error width during synchronized<br />

tapping.<br />

SP219 IQGT Synchronized tap- Set the magnification of current loop gain (torque<br />

ping current loop component) during synchronized tapping.<br />

gain magnification 1<br />

SP220 IDGT Synchronized tapping<br />

current loop<br />

Set the magnification of current loop gain<br />

(excitation component) during synchronized<br />

gain magnification 2 tapping.<br />

Speed<br />

DEC * 1 Pulse 0 to 10000<br />

HEX * 0 360°/<br />

4096<br />

0 to 4095<br />

DEC * 16 1/16° 0 to 2880<br />

DEC 32767<br />

Pulse 0 to 32767<br />

(1 pulse<br />

=<br />

0.088°)<br />

DEC 100 % 0 to 1000<br />

DEC 100 % 0 to 1000<br />

4 - 46


4. Setup<br />

Name Abbr. Parameter name Details TYP<br />

SP221 PG2T Position loop gain 2<br />

for synchronous<br />

tapping<br />

SP222 PG3T Position loop gain 3<br />

for synchronous<br />

tapping<br />

Set the second position loop gain for SGH control<br />

during synchronous tapping.<br />

Set the third position loop gain for SGH control<br />

during synchronous tapping.<br />

C<br />

N<br />

G<br />

Standard<br />

setting<br />

Unit<br />

Permissible<br />

setting range<br />

DEC * 0 s -1 0 to 999<br />

DEC * 0 s -1 0 to 999<br />

<br />

Name Abbr. Parameter name Details TYP<br />

SP223 SPDV Fixed control<br />

constant<br />

SP224 SPDF Fixed control<br />

constant<br />

SP225 OXKPH Fixed control<br />

constant<br />

SP226 OXKPL Fixed control<br />

constant<br />

SP227 OXVKP Fixed control<br />

constant<br />

SP228 OXVKI Fixed control<br />

constant<br />

SP229 OXSFT Fixed control<br />

constant<br />

SP230 WIH Fixed control<br />

constant<br />

SP231 OL2T Fixed control<br />

constant<br />

These parameters are determined by <strong>Mitsubishi</strong>.<br />

Set to "0" unless especially designated.<br />

C<br />

N<br />

G<br />

Standard<br />

setting<br />

Unit<br />

Permissible<br />

setting range<br />

DEC * 0 r/min 0 to 800<br />

DEC * 0 0 to 2813<br />

DEC * 0 1/256<br />

fold<br />

DEC * 0 1/256<br />

fold<br />

DEC * 0 1/256<br />

fold<br />

DEC * 0 1/256<br />

fold<br />

DEC * 0 1/256<br />

fold<br />

0 to 2560<br />

0 to 2560<br />

0 to 2560<br />

0 to 2560<br />

0 to 2048<br />

DEC * 0 % 0 to 100<br />

DEC * 0 min 0 to 60<br />

SP232 Not used. Set "0". 0<br />

SP233 JL Disturbance<br />

observer total<br />

inertia ratio<br />

Set the ratio of the motor inertia + load inertia and<br />

motor inertia when using the disturbance observer<br />

(when control input 4 bitF is set to "1").<br />

Setting value =<br />

Motor inertia + Load inertia<br />

× 100<br />

Motor inertia<br />

DEC 0 % 0 to 5000<br />

SP234 OBS1 Disturbance<br />

observer low pass<br />

filter frequency<br />

SP235 OBS2 Disturbance<br />

observer gain<br />

SP236 OBS3 Fixed control<br />

constant<br />

Normally set a value higher than "100". This<br />

parameter is invalid when a value less than "50" is<br />

set.<br />

Set the low pass filter frequency when using the<br />

disturbance observer (when control input 4 bitF is<br />

set to "1").<br />

Setting value (1/s) = 2πf<br />

Input a value approx. 1.5-fold of the disturbance<br />

frequency in f.<br />

Set the gain when using the disturbance observer<br />

(when control input 4 bitF is set to "1").<br />

These parameters are determined by <strong>Mitsubishi</strong>.<br />

Set to "0" unless especially designated.<br />

SP237 to SP241 Not used. Set "0". 0<br />

SP242 Vavx Fixed control<br />

constant<br />

SP243 UTTM Transient/steady<br />

judgment timer<br />

These parameters are determined by <strong>Mitsubishi</strong>.<br />

Set to "0" unless especially designated.<br />

When the difference between the speed command<br />

during motor acceleration/deceleration and the<br />

speed feedback is within the judgment value and<br />

the time set in this parameter has elapsed, the<br />

motor control is changed from the transient state<br />

to the steady state. Setting "0" is the same as<br />

1000ms.<br />

DEC 0 1/s 0 to 1000<br />

DEC 0 % 0 to 500<br />

DEC * 0 -32768 to<br />

32767<br />

DEC * 0 r/min 0 to 32767<br />

DEC * 0 ms 0 to 1000<br />

4 - 47


4. Setup<br />

Name Abbr. Parameter name Details TYP<br />

SP244 OPLP Torque command<br />

for open loop<br />

SP245 PGHS PLG compensation<br />

setting<br />

SP246 TEST Fixed control<br />

constant<br />

Set the torque command value for an open loop.<br />

The value will be the same as 2048 (=50%) when<br />

"0" is set. If the load is heavy, and the motor does<br />

not rotate past a set speed, set a value higher than<br />

2048. Wait at least five minutes before running the<br />

motor in this case as the drive unit or motor could<br />

be damaged.<br />

Set "1" to validate the PLG waveform compensation<br />

function.<br />

Carry out compensation again when the value is<br />

set to "0".<br />

These parameters are determined by <strong>Mitsubishi</strong>.<br />

Set to "0" unless especially designated.<br />

C<br />

N<br />

G<br />

Standard<br />

setting<br />

Unit<br />

DEC * 0 100/<br />

4096<br />

%<br />

Permissible<br />

setting range<br />

0 to 4096<br />

DEC * 0 0 to 1<br />

DEC * 0 -32768 to<br />

32767<br />

SP247 to SP248 Not used. Set "0". 0<br />

SP249 SMO Speedometer<br />

speed<br />

Set the motor speed for outputting 10V. DEC * 0 r/min 0 to 32767<br />

SP250 LMO Load meter voltage Set the output voltage for a 120% load. DEC * 0 V 0 to 10<br />

SP251 to SP252 Not used. Set "0". 0<br />

SP253 DA1NO D/A output channel Set the output data NO. in channel 1 (CN9-9 pin) DEC * 0 -32768 to<br />

1 data number of the D/A output function. Normally set "0".<br />

Refer to section 5-6 for details on setting.<br />

32767<br />

SP254 DA2NO D/A output channel<br />

2 data number<br />

SP255 DA1MP D/A output channel<br />

1 magnification<br />

SP256 DA2MP D/A output channel<br />

2 magnification<br />

Set the output data NO. in channel 2 (CN9-19 pin)<br />

of the D/A output function. Normally set "0".<br />

Refer to section 5-6 for details on setting.<br />

Set the output magnification for the first channel<br />

(CN9-9) of the D/A output function.<br />

Refer to section 5-6 for details on setting.<br />

Set the output magnification for the second<br />

channel (CN9-19) of the D/A output function.<br />

Refer to section 5-6 for details on setting.<br />

DEC * 0 -32768 to<br />

32767<br />

DEC * 0<br />

1/256<br />

fold<br />

DEC * 0 1/256<br />

fold<br />

-32768 to<br />

32767<br />

-32768 to<br />

32767<br />

4 - 48


4. Setup<br />

<br />

Name Abbr. Parameter name Details TYP<br />

SP257<br />

to<br />

SP320<br />

RPM<br />

to<br />

BSD<br />

SP321<br />

RPML to<br />

to<br />

BSDL<br />

SP384<br />

Motor constant<br />

(H)<br />

Motor constant<br />

(L)<br />

Set these parameters in the following cases.<br />

1) When using the standard motor with the wide<br />

range output specifications and base slide<br />

function (when SP034 (SFNC2)-bit0 is set to<br />

"0", and SP035(SFNC3)-bit0 or bit2 is set to<br />

1), set the values from SP314 (SPO) to SP320<br />

(BSD).<br />

2) When using a special motor without coil<br />

changeover (electronic output changeover)<br />

specifications (when SP034 (SFNC2)-bit0 is<br />

set to "1" or bit2 is set to "0"), set the values<br />

from SP257 (RPM) to SP320 (BSD).<br />

3) When using the coil changeover (electronic<br />

output changeover) specifications motor (when<br />

SP034 (SFNC2)-bit0 is set to "1", and bit2 is<br />

set to "1"), set the H coil (high-speed output)<br />

motor constants in SP257 (RPM) to SP320<br />

(BSD).<br />

This parameter is determined by <strong>Mitsubishi</strong>, and<br />

must not be changed by the user.<br />

Set this parameter when using the coil<br />

changeover motor (electronic output changeover<br />

motor). (When SP034 (SFNC2)-bit0 is set to "1"<br />

and bit2 is set to "1".)<br />

Set the L coil (low-speed output) motor constants<br />

for the coil changeover motor (electronic output<br />

changeover motor).<br />

This parameter is determined by <strong>Mitsubishi</strong>, and<br />

must not be changed by the user.<br />

C<br />

N<br />

G<br />

Standard<br />

setting<br />

Unit<br />

Permissible<br />

setting range<br />

HEX 0000 0000 to FFFF<br />

HEX 0000 0000 to FFFF<br />

4 - 49


4. Setup<br />

4-3-2 Details of bit-corresponding parameters<br />

The bits not explained in the section "4-3-1 List of spindle parameters" are shown below. These<br />

parameters are designated in the "List of spindle parameter settings" enclosed when the spindle motor<br />

is delivered. Basically none of the settings need to be changed by the machine maker.<br />

Bits with no explanation must be set to "0".<br />

Name Abbr. Details TYP<br />

SP033 SFNC1 Spindle function 1<br />

F E D C B A 9 8 7 6 5 4 3 2 1 0<br />

poff hzs ront pycal pychg pyoff<br />

bit Abbr. Content 0 setting 1 setting Supplement<br />

6 pyoff Special function Invalid Valid<br />

8 pychg Special function Invalid Valid<br />

9 pycal<br />

Motor temperature rise reduce<br />

function<br />

Invalid Valid<br />

Only during highspeed<br />

operation<br />

C ront READY ON control Invalid Valid<br />

E hzs<br />

High-speed gate OFF during<br />

zero speed<br />

Invalid Valid<br />

F poff Contactor hold during NC OFF Invalid Valid<br />

HEX<br />

setting<br />

SP034 SFNC2<br />

SP035 SFNC3<br />

SP036 SFNC4<br />

Spindle function 2<br />

F E D C B A 9 8 7 6 5 4 3 2 1 0<br />

nfd2 nfd1 sdir nf3 mkc2 mts1<br />

bit Abbr. Content 0 setting 1 setting Supplement<br />

0 mtsl Special motor constant setting Invalid Valid<br />

2 mkc2 Coil changeover function<br />

Not<br />

available<br />

Available<br />

4 nf3 3rd resonance filter Valid Invalid<br />

7 sdir<br />

Speed detector installation<br />

direction<br />

Normal Reverse<br />

A-C nfd1 1st filter SP070 (FHz) depth setting for machine resonance suppression filter<br />

Deep ←<br />

→ Shallow<br />

Setting value (CBA) 000 001 010 011 100 101 110 111<br />

Depth (Dd) -∞ -18 -12 -9 -6 -4 -3 -1<br />

D-F nfd2 1st filter SP084 (FHz) depth setting for machine resonance suppression filter<br />

Deep ←<br />

→ Shallow<br />

Setting value (CBA) 000 001 010 011 100 101 110 111<br />

Depth (Dd) -∞ -18 -12 -9 -6 -4 -3 -1<br />

Spindle function 3<br />

F E D C B A 9 8 7 6 5 4 3 2 1 0<br />

lbsd hbsd lwid hwid<br />

bit Abbr. Content 0 setting 1 setting Supplement<br />

0 hwid H-coil wide-range constant output Invalid Valid<br />

1 lwid L-coil wide-range constant output Invalid Valid<br />

2 hbsd H-coil base slide Invalid Valid Set in SP320<br />

3 lbsd L-coil base slide Invalid Valid Set in SP384<br />

Spindle function 4<br />

F E D C B A 9 8 7 6 5 4 3 2 1 0<br />

HEX<br />

setting<br />

HEX<br />

setting<br />

HEX<br />

setting<br />

bit Abbr. Content 0 setting 1 setting Supplement<br />

– – Valid Invalid<br />

– – Valid Invalid<br />

– – Valid Invalid<br />

– – Valid Invalid<br />

There are no settings.<br />

4 - 50


4. Setup<br />

Name Abbr. Details TYP<br />

SP037 SFNC5<br />

SP038 SFNC6<br />

Spindle function 5<br />

F E D C B A 9 8 7 6 5 4 3 2 1 0<br />

splg osocl nplgc noplg nsno nosg plgo nsno enco<br />

bit Abbr. Content 0 setting 1 setting Supplement<br />

0 enco Encoder orientation Invalid Valid<br />

Also output to<br />

CN8 when valid.<br />

1 nsno Magnetic sensor orientation Invalid Valid<br />

2 plgo PLG orientation Invalid Valid<br />

Also output to<br />

CN8 when valid.<br />

8 nosg No-signal detection Always<br />

Only during<br />

From immediately<br />

position loop<br />

after position<br />

orientation<br />

detector power is<br />

turned ON<br />

9 pl80 Special function Invalid Valid Set to "0"<br />

A noplg<br />

Constant monitor of Z-phase<br />

no-signal detection<br />

Invalid Valid<br />

Motor built-in<br />

encoder<br />

B nplgc AB-phase error detection Valid Invalid<br />

Motor built-in<br />

encoder<br />

D ospcl<br />

Orientation changeover speed Motor<br />

limit value<br />

side<br />

Spindle side<br />

F splg Special function Invalid Valid Set to "0"<br />

Spindle function 6<br />

F E D C B A 9 8 7 6 5 4 3 2 1 0<br />

open XFzs dcsn P180 sdt2 orm adin plg2 pftm alty<br />

bit Abbr. Content 0 setting 1 setting Supplement<br />

0 alty<br />

Decelerate to stop at specific<br />

alarm occurrence<br />

Invalid Valid<br />

2 pftm<br />

Encoder feedback serial<br />

communication<br />

Invalid Valid<br />

3 Plg2<br />

Semi-closed pulse signal output<br />

2-fold<br />

Invalid Valid<br />

5 adin Special function Invalid Valid<br />

6 orm Orientation start memo Invalid Valid<br />

8 sdt2 Special function Invalid Valid<br />

9 pl80 Special function Invalid Valid<br />

B dcsn Dual cushion valid range<br />

Accelera-<br />

Deceleratiotion/deceleration<br />

C XFzs Special function Invalid Valid<br />

F open Open loop operation Invalid Valid<br />

HEX<br />

setting<br />

HEX<br />

setting<br />

4 - 51


4. Setup<br />

Name Abbr. Details TYP<br />

SP097 SPECO<br />

SP129 SPECC<br />

SP177 SPECS<br />

Orientation specifications<br />

F E D C B A 9 8 7 6 5 4 3 2 1 0<br />

ksft gcgh tlmp isp2 zdir tlet vg8x mdir fdir ocsl pyfx dmin odi2 odi1<br />

bit Abbr. Content 0 setting 1 setting Supplement<br />

0 odi1 Orientation rotation direction<br />

Set with two bits 0<br />

00: Pre 01: Motor forward run direction<br />

1 odi2<br />

and 1 bit<br />

10: Motor reverse run 11: Setting not possible<br />

2 dmin<br />

Orientation position front<br />

Invalid Valid<br />

loading<br />

3 pyfx<br />

Excitation during servo lock<br />

min. (50%)<br />

SP056/SP116 setting value<br />

Invalid<br />

Valid<br />

Movable excitation<br />

rate during<br />

orientation stop<br />

4 ocsl Maximum speed clamp value SP005 SP115 During indexing<br />

5 fdir Encoder detector polarity + –<br />

6 mdir<br />

Magnetic sensor installation<br />

polarity<br />

+ –<br />

7 vg8x Special function Invalid Valid Set "0".<br />

8 tlet Special function Invalid Valid Set "0".<br />

9 zdir Special function Invalid Valid Set "0".<br />

A isp2 Special function Invalid Valid Set "0".<br />

B tlmp Special function Invalid Valid Set "0".<br />

C gcgh Special function Invalid Valid Set "0".<br />

D ksft Special function Invalid Valid Set "0".<br />

Set all other bits to "0".<br />

C-axis control<br />

F E D C B A 9 8 7 6 5 4 3 2 1 0<br />

zrtn ptyp fb9x zrtd zrn2 vg8x fdir rtrn adin fclx<br />

bit Abbr. Content 0 setting 1 setting Supplement<br />

0 fclx Droop Closed<br />

Semiclosed<br />

1 adin Interpolation A/D compensation Invalid Valid<br />

2 rtrn Special function Invalid Valid<br />

5 fdir Position detection direction<br />

Positive<br />

side<br />

Negative<br />

side<br />

7 vg8x<br />

Speed gain during torque limit x<br />

1/8<br />

Valid Invalid<br />

B zrn2 Special function Invalid Valid<br />

C zrtd Special function Invalid Valid<br />

D<br />

E<br />

fb9x<br />

ptyp<br />

Pulse selection for speed<br />

control<br />

Automatic zero point return<br />

operation<br />

F zrtn Spindle rotation direction<br />

Normal<br />

pulse<br />

Available<br />

Forward<br />

run<br />

C-axis<br />

control<br />

pulse<br />

Not<br />

available<br />

Reverse<br />

run<br />

During C-axis<br />

control<br />

During C-axis<br />

control<br />

During automatic<br />

zero point return<br />

Spindle synchronous control<br />

F E D C B A 9 8 7 6 5 4 3 2 1 0<br />

odx8 fdir rtrn adin fclx<br />

bit Abbr. Content 0 setting 1 setting Supplement<br />

0 fclx<br />

Spindle synchronous control<br />

loop<br />

Closed<br />

Semiclosed<br />

1 adin Interpolation A/D compensation Invalid Valid<br />

2 rtrn Special function Invalid Valid<br />

5 fdir<br />

Spindle synchronous position<br />

Direction<br />

(+) (-)<br />

detector polarity<br />

commanded from<br />

NC<br />

D odx8 Excessive error width (SP186) 1-fold 8-fold<br />

Detection width<br />

enlarged<br />

HEX<br />

setting<br />

HEX<br />

setting<br />

HEX<br />

setting<br />

4 - 52


4. Setup<br />

Name Abbr. Details TYP<br />

SP193 SPECT<br />

Synchronous tap control<br />

F E D C B A 9 8 7 6 5 4 3 2 1 0<br />

zrtn ptyp odx8 fdir cdir rtrn adin fclx<br />

bit Abbr. Content 0 setting 1 setting Supplement<br />

0 fclx Droop Closed<br />

Semiclosed<br />

For [fdir] opposing<br />

1 adin Interpolation A/D compensation Invalid Valid<br />

2 rtrn Special function Invalid Valid<br />

Detector<br />

4 cdir Position command polarity<br />

Forward Reverse<br />

run run<br />

Spindle motor<br />

5 fdir Position detector polarity<br />

(+)<br />

opposing<br />

(-) correct<br />

position<br />

D odx8 Excessive error width (SP218) 1-fold 8-fold<br />

During synchronous tap<br />

control<br />

E<br />

ptyp<br />

Automatic zero point return<br />

operation<br />

F zrtn Spindle rotation direction<br />

Available<br />

Forward<br />

run<br />

Not<br />

available<br />

Reverse<br />

run<br />

During synchronous tap<br />

control<br />

During zero point return<br />

HEX<br />

setting<br />

4 - 53


4. Setup<br />

4-3-3 Setting spindle drive unit and motor model<br />

Name Abbr. Details TYP<br />

SP039 ATYP<br />

Set the drive unit model.<br />

F E D C B A 9 8 7 6 5 4 3 2 1 0<br />

ATYP<br />

HEX setting<br />

Setting<br />

value<br />

Content<br />

Setting<br />

value<br />

Content<br />

00 --- 0A CH-SP-220 22kW<br />

01 CH-SP-075 0.75kW 0B CH-SP-260 26kW<br />

02 CH-SP-15 1.5kW 0C CH-SP-300 30kW<br />

03 CH-SP-22 2.2kW 0D CH-SP-370 37kW<br />

04 CH-SP-37 3.7kW 0E CH-SP-450 45kW<br />

05 CH-SP-55 5.5kW 0F CH-SP-04 0.4kW<br />

06 CH-SP-75 7.5kW 10 CH-SP-550 55kW<br />

07 CH-SP-110 11kW 11 CH-SP-750 75kW<br />

08 CH-SP-150 15kW<br />

09 CH-SP-185 18.5kW<br />

SP040 MTYP<br />

Set the motor being used. (Refer to the "List of spindle parameter settings", separately enclosed with the<br />

product.)<br />

Note that this parameter is valid only when SP034 (SFNC2)-bit0 is set to "0".<br />

Setting<br />

value<br />

Motor model<br />

Maximum<br />

speed (r/min)<br />

Compatible drive unit model<br />

HEX setting<br />

Set 0 for the CH Series.<br />

SP041 PTYP<br />

F E D C B A 9 8 7 6 5 4 3 2 1 0<br />

** ptyp<br />

HEX setting<br />

ptyp<br />

Setting<br />

value<br />

00<br />

Set the power supply type. (Only units with wiring to CN4 connector)<br />

Content<br />

With no power<br />

supply unit<br />

Setting<br />

value<br />

Content<br />

22 CH-CV-220 22kW<br />

04 CH-CV-37 3.7kW 26 CH-CV-260 26kW<br />

06 CH-CV-55 5.5kW 30 CH-CV-300 30kW<br />

08 CH-CV-75 7.5kW 37 CH-CV-370 37kW<br />

11 CH-CV-110 11kW 45 CH-CV-450 45kW<br />

15 CH-CV-150 15kW 55 CH-CV-550 55kW<br />

19 CH-CV-185 18.5kW 75 CH-CV-750 75kW<br />

When using an external emergency stop function (CN23 connector) of the<br />

power supply unit, set a value of the above setting values with "40" added.<br />

Example) When using an external emergency stop in CH-CV-260,<br />

setting value = 26 + 40 = 66<br />

Set bit8 to "1" when connecting a unit higher than MDS-CH-SP[ ]-370.<br />

4 - 54


4. Setup<br />

4-3-4 Spindle specification parameters screen<br />

The spindle parameters include parameters<br />

used with the spindle drive unit and on the NC<br />

side.<br />

(1) The 384 parameters transferred from the<br />

NC to the spindle drive unit are the<br />

parameters transferred when the power is<br />

turned ON.<br />

(2) Parameters used on NC side<br />

The spindle specification parameters<br />

indicated in this section are the<br />

parameters used on the NC side.<br />

[SPINDLE BASE SPEC. PARAM]<br />

#<br />

1<br />

2<br />

3<br />

4<br />

slimt 1<br />

2<br />

3<br />

4<br />

8000<br />

8000<br />

8000<br />

8000<br />

17<br />

18<br />

19<br />

20<br />

stapt 1<br />

2<br />

3<br />

4<br />

5 smax 1 6000 21 sori<br />

6<br />

7<br />

8<br />

2<br />

3<br />

4<br />

6000<br />

6000<br />

6000<br />

22<br />

23<br />

24<br />

sgear<br />

smini<br />

serr<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

ssift 1<br />

2<br />

3<br />

4<br />

stap 1<br />

2<br />

3<br />

4<br />

#( ) Data( )<br />

0<br />

0<br />

0<br />

0<br />

1500<br />

3000<br />

4000<br />

5000<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

sname<br />

senc_pno<br />

sana_pno<br />

spfig<br />

senc_no<br />

sana_no<br />

smcp-no<br />

200<br />

400<br />

1000<br />

2000<br />

0<br />

0<br />

10<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

No. Items Details<br />

1 slimt 1 Limit rotation speed Gear 00<br />

2 slimt 2 Limit rotation speed Gear 01<br />

3 slimt 3 Limit rotation speed Gear 10<br />

4 slimt 4 Limit rotation speed Gear 11<br />

5 smax 1 Maximum rotation speed Gear 00<br />

6 smax 2 Maximum rotation speed Gear 01<br />

7 smax 3 Maximum rotation speed Gear 10<br />

8 smax 4 Maximum rotation speed Gear 11<br />

9 ssift 1 Shift rotation speed Gear 00<br />

10 ssift 2 Shift rotation speed Gear 01<br />

11 ssift 3 Shift rotation speed Gear 10<br />

12 ssift 4 Shift rotation speed Gear 11<br />

13 stap 1 Maximum tap rotation speed Gear 00<br />

14 stap 2 Maximum tap rotation speed Gear 01<br />

15 stap 3 Maximum tap rotation speed Gear 10<br />

16 stap 4 Maximum tap rotation speed Gear 11<br />

17 stapt1 Tap time constant Gear 00<br />

18 stapt2 Tap time constant Gear 01<br />

19 stapt3 Tap time constant Gear 10<br />

20 stapt4 Tap time constant Gear 11<br />

Set spindle rotation speed for<br />

maximum motor rotation speed<br />

with gears 00, 01, 10, 11.<br />

Set maximum spindle rotation<br />

speed with gears 00, 01, 10, 11.<br />

Set the value that equal to or<br />

larger than "slimit" value.<br />

Setting range<br />

(Unit)<br />

0 to 99999 (r/min)<br />

0 to 99999 (r/min)<br />

Set spindle rotation speed for<br />

gear shifting with gears 00, 01,<br />

10, 11. 0 to 32767 (r/min)<br />

Set maximum spindle rotation<br />

speed during tap cycle with<br />

gears 00, 01, 10, 11.<br />

Set the time constant to the<br />

maximum tap speed during<br />

constant inclination tap cycle at<br />

gear 00, 01, 10, 11.<br />

22 sgear Encoder gear ratio Set the gear ratio between the<br />

spindle and encoder.<br />

23 smini Minimum rotation speed Set the spindle's minimum<br />

rotation speed. Even if an S<br />

command lower than this value<br />

is input, the spindle will continue<br />

rotating at this rotation speed.<br />

0 to 99999 (r/min)<br />

0 to 5000 (ms)<br />

0 : 1/1<br />

1 : 1/2<br />

2 : 1/4<br />

3 : 1/8<br />

0 to 32767 (r/min)<br />

4 - 55


4. Setup<br />

Limit rotation speed (slimit)<br />

slimit sets the spindle's maximum rotation speed.<br />

Set a value obtained by multiplying the spindle<br />

motor's maximum rotation speed (SP017) with the<br />

gear ratio.<br />

There are four slimit settings used for gear<br />

changeover.<br />

Limit rotation speed = (SP017) × A<br />

B<br />

Spindle motor<br />

Spindle limit rotation<br />

speed (slimit)<br />

Spindle motor maximum<br />

rotation speed (SP017)<br />

Number of teeth: A<br />

Number of teeth: B<br />

Spindle<br />

Maximum rotation speed (Smax)<br />

Set this when the spindle's maximum rotation<br />

speed is to be limited to below the limit rotation<br />

speed (slimit) depending on the gear<br />

specifications or machine specifications, etc.<br />

There are four Smax settings used for gear<br />

changeover.<br />

Spindle motor<br />

maximum<br />

rotation speed<br />

(SP017)<br />

Smax<br />

Spindle speed<br />

(r/min)<br />

slimit<br />

Tap maximum rotation speed (Stap)<br />

Set the spindle's maximum rotation speed<br />

(stap) for the tap cycle. The relation of the<br />

tap maximum rotation speed and spindle<br />

tap time constant is shown on the right.<br />

Tap maximum<br />

rotation speed<br />

(stap)<br />

(r/min)<br />

Tap time constant<br />

(stapt)<br />

Time (ms)<br />

4 - 56


4. Setup<br />

(2) Spindle monitor screen<br />

The spindle drive unit status can be confirmed on the NC screen. An example is shown below. The<br />

screen configuration may differ depending on the NC, but the items are the same.<br />

[SPINDLE MONITOR]<br />

GAIN<br />

DROOP<br />

SPEED<br />

LOAD<br />

AMP DISP<br />

ALARM<br />

CYC CNT<br />

D/I<br />

UNIT TYP<br />

UNIT NO<br />

S/W VER<br />

1 WORK TIME<br />

2 ALM HIST<br />

D/O<br />

Item Unit Display details<br />

GAIN 1/s Displays the position loop gain when operating with the position command.<br />

DROOP pulse Displays the position deviation amount when operating with the position command.<br />

SPEED r/min The motor rotation speed is displayed.<br />

LOAD % The motor load ratio (load) is displayed.<br />

The short-term rating is 100%. (30-minute rating for standard spindle motor.)<br />

AMP DISP<br />

The data of the 7-segment LED display for the spindle drive unit is displayed.<br />

ALARM<br />

The alarm No. is displayed when an alarm other than that displayed on the AMP DISP 7-segment LED.<br />

CYC CNT<br />

Displays the current position from the position detector's reference Z-phase when operating with the<br />

position command.<br />

D/I 1L<br />

H<br />

Control signal input 1<br />

Displays the control input signal sent from the NC to the spindle drive unit.<br />

D/I 2L<br />

H<br />

Control signal input 2<br />

Displays the control input signal sent from the NC to the spindle drive unit.<br />

D/I 3L<br />

H<br />

Control signal input 3<br />

Displays the control input signal sent from the NC to the spindle drive unit.<br />

D/I 4L<br />

H<br />

Control signal input 4<br />

Displays the control input signal sent from the NC to the spindle drive unit.<br />

D/O 1L<br />

H<br />

Control signal output 1<br />

Displays the control input signal sent from the spindle drive unit to the NC.<br />

D/O 2L<br />

H<br />

Control signal output 2<br />

Displays the control input signal sent from the spindle drive unit to the NC.<br />

D/O 3L<br />

H<br />

Control signal output 3<br />

Displays the control input signal sent from the spindle drive unit to the NC.<br />

D/O 4L<br />

H<br />

Control signal output 4<br />

Displays the control input signal sent from the spindle drive unit to the NC.<br />

UNIT TYP<br />

The spindle drive unit type is displayed.<br />

UNIT NO<br />

The spindle drive unit serial No. is displayed.<br />

S/W VER<br />

The software version in the spindle drive unit is displayed.<br />

1 WORK TIME The cumulative working time of the spindle drive unit is displayed.<br />

2 ALM HIST 1~8 Displays the history of alarms occurring in the spindle drive.<br />

"1" indicates the alarm that occurred last.<br />

Refer to section "4-3-5 Spindle control signals" for details on the control input and control output.<br />

4 - 57


4. Setup<br />

4-3-5 Spindle control signals<br />

(1) Spindle control input<br />

The control input signals are shown below. The corresponding control input bit changes from 0 to 1<br />

while the command is received from the NC.<br />

Note that some signals cannot be input depending on the NC specifications.<br />

Name<br />

Details<br />

Control input 1 7 6 5 4 3 2 1 0<br />

1L ALMR PRM SRV RDY<br />

F E D C B A 9 8<br />

1H G1 TL3 TL2 TL1<br />

bit Abbrev. Details<br />

0 RDY Ready ON command<br />

1 SRV Servo ON command<br />

6 PRM Parameter conversion command<br />

7 ALMR Drive unit alarm reset command<br />

8 TL1 Torque limit 1<br />

9 TL2 Torque limit 2<br />

A TL3 Torque limit 3<br />

F G1 Cutting<br />

Control input 2 7 6 5 4 3 2 1 0<br />

1L<br />

1H<br />

F E D C B A 9 8<br />

This signal is not used.<br />

Control input 3 7 6 5 4 3 2 1 0<br />

1L GR2 GR1 SC5 SC4 SC3 SC2 SC1<br />

F E D C B A 9 8<br />

1H PCGH LCS ORC WRI WRN SRI SRN<br />

bit Abbrev. Details<br />

0 SC1 Spindle control mode selection command 1<br />

1 SC2 Spindle control mode selection command 2<br />

2 SC3 Spindle control mode selection command 3<br />

3 SC4 Spindle control mode selection command 4<br />

4 SC5 Spindle control mode selection command 5<br />

5 GR1 Gear selection command 1<br />

6 GR2 Gear selection command 2<br />

8 SRN Forward run start command<br />

9 SRI Reverse run start command<br />

A WRN Index forward run command<br />

B WRI Index reverse run command<br />

C ORC Orientation start command<br />

D LCS L coil selection command (When using coil changeover motor)<br />

Control input 4 7 6 5 4 3 2 1 0<br />

1L<br />

1H<br />

F E D C B A 9 8<br />

TLUP<br />

bit Abbrev. Details<br />

F TLUP Spindle holding force up<br />

4 - 58


4. Setup<br />

(2) Spindle control input signals<br />

Each signal function and signal name for control input is shown below.<br />

1) Speed command<br />

When the speed command value is "0", the motor speed will be "0".<br />

The motor's maximum speed is designated with SP017 (TSP)<br />

when the speed command value is the maximum.<br />

The run command must also be input to rotate the motor.<br />

Max.<br />

rotation<br />

SP017<br />

(TSP)<br />

r/min<br />

Max<br />

Speed<br />

command<br />

value<br />

2) Forward run start command (SRN)<br />

This is the run command. The speed command must also be input to rotate the motor.<br />

SRN<br />

1 (ON)<br />

Explanation<br />

The motor rotates in the counterclockwise direction (CCW),<br />

looking from the shaft, according to the speed command.<br />

The motor decelerates to a stop.<br />

0 (OFF)<br />

The drive unit's power module is then turned OFF.<br />

Orientation has a priority when the orientation command is input.<br />

Spindle motor<br />

rotation direction<br />

Counterclockwise<br />

direction<br />

3) Reverse run start command (SRI)<br />

This is the run command. The speed command must also be input to rotate the motor.<br />

SRI<br />

1 (ON)<br />

Explanation<br />

The motor rotates in the clockwise direction (CW) according<br />

to the speed command.<br />

The motor decelerates to a stop.<br />

0 (OFF)<br />

The drive unit's power module is then turned OFF.<br />

Orientation has a priority when the orientation command is input.<br />

Spindle motor<br />

rotation direction<br />

Clockwise direction<br />

4) Torque limit 1, 2, 3 (TL1, TL2, TL3)<br />

Use this to temporarily decrease the spindle motor's output torque, such as when clamping the<br />

spindle motor on the machine side. Designate a percentage, using the motor's short-term rating as<br />

100%, for the torque limit.<br />

Set the SP021 and SP049 to 054 torque limit values with a combination of TL1 to 3.<br />

TL3 TL2 TL1 Torque limit value TL3 TL2 TL1 Torque limit value<br />

0 0 1 SP021 1 0 1 SP052<br />

0 1 0 SP049 1 1 0 SP053<br />

0 1 1 SP050 1 1 1 SP054<br />

1 0 0 SP051<br />

5) Orientation start command (ORC)<br />

This signal starts orientation.<br />

ORC<br />

Explanation<br />

1 (ON)<br />

Orientation starts regardless of the run command (SRN,<br />

SRI).<br />

When one of the run commands (SRN or SRI) is selected,<br />

0 (OFF)<br />

the motor starts rotating at the commanded speed again.<br />

Orientation has a priority when the orientation command is input.<br />

4 - 59


4. Setup<br />

6) Gear selection command 1, 2 (GR1, GR2)<br />

Select the number of spindle gear stages required to carry out orientation or various position<br />

control operations.<br />

GR2 GR1 Gear ratio<br />

0 0 SP025, 029<br />

0 1 SP026, 030<br />

1 0 SP027, 031<br />

1 1 SP028, 032<br />

CAUTION<br />

Do not change the gear selection command signal while the orientation<br />

command or servo command is input.<br />

7) Index forward run command (WRN), reverse run command (WRI)<br />

This command is valid while the orientation start signal is ON.<br />

WRN Explanation WRI Explanation<br />

1 (ON)<br />

Indexing starts in the<br />

counterclockwise direction (CCW)<br />

looking from the motor shaft side.<br />

1 (ON)<br />

Indexing starts in the clockwise<br />

direction (CW) looking from the<br />

motor shaft side.<br />

0 (OFF) Indexing is not carried out. 0 (OFF) Indexing is not carried out.<br />

8) L coil selection command (LCS)<br />

This command is input to select the coil method when changing the coils.<br />

LSC<br />

Explanation<br />

1 (ON) Select low-speed coil.<br />

0 (OFF) Select high-speed coil.<br />

9) READY ON command (MS)<br />

This signal is input when the motor is ready to rotate. The forward run and reverse run start<br />

commands will not be accepted if input before this signal turns ON.<br />

MS<br />

Explanation<br />

1 (ON) Ready-ON<br />

0 (OFF) Ready-OFF<br />

10) Cutting (G1)<br />

This signal judges the cutting and non-cutting state during C-axis control.<br />

G1<br />

Explanation<br />

1 (ON) Judged as cutting.<br />

0 (OFF) Judged as not cutting.<br />

4 - 60


4. Setup<br />

11) Spindle control mode selection command 1, 2, 3, 4, 5 input (SC1, SC2, SC3, SC4, SC5)<br />

The speed control mode is entered when the following bits are not selected.<br />

SC5 SC4 SC3 SC2 SC1 Gear ratio SC5 SC4 SC3 SC2 SC1 Gear ratio<br />

0 1 0 0 0 1 0 0 0 0<br />

Synchronous<br />

Spindle<br />

0 1 0 0 1 1 0 0 0 1<br />

tap control<br />

synchronous<br />

0 1 0 1 0 mode<br />

1 0 0 1 0 control mode<br />

0 1 0 1 1<br />

1 0 0 1 1<br />

0 1 1 0 0<br />

0 1 1 0 1 C-axis control<br />

0 1 1 1 0 mode<br />

0 1 1 1 1<br />

12) Servo ON command (SRV)<br />

This command is input for position control, excluding orientation. If this signal is not ON, position<br />

control will not start even if the position control mode is selected with the spindle control mode<br />

selection command combination.<br />

G1<br />

Explanation<br />

1 (ON) Servo ON<br />

0 (OFF) Servo OFF<br />

4 - 61


4. Setup<br />

(3) Spindle control output bit<br />

The control signal outputs are shown below. The corresponding control output bit will change from<br />

0 to 1 while the command is output from the spindle drive unit to the NC.<br />

Name<br />

Details<br />

Control output<br />

7 6 5 4 3 2 1 0<br />

1 1L ALM PRMA WRN SON RON<br />

F E D C B A 9 8<br />

1H CD INP ZFIN TL3A TL2A TL1A<br />

bit Abbrev. Details<br />

0 RON In ready ON<br />

1 SON In servo ON<br />

4 WRN In drive unit warning<br />

6 PRMA In parameter conversion<br />

7 ALM In drive unit alarm<br />

8 TL1A Inputting torque limit 1 signal<br />

9 TL2A Inputting torque limit 2 signal<br />

A TL3A Inputting torque limit 3 signal<br />

D ZFIN Z-phase passed<br />

E INP In position loop in-position<br />

F CL Limiting current<br />

Control output<br />

2 1L<br />

1H<br />

7 6 5 4 3 2 1 0<br />

F E D C B A 9 8<br />

This signal is not used.<br />

Control output<br />

7 6 5 4 3 2 1 0<br />

3 1L GR2A GR1A SC5A SC4A SC3A SC2A SC1A<br />

F E D C B A 9 8<br />

1H LCSA ORCA WRIA WRNA SRIA SRNA<br />

bit Abbrev. Details<br />

0 SC1A Inputting spindle control mode selection command 1 signal<br />

1 SC2A Inputting spindle control mode selection command 2 signal<br />

2 SC3A Inputting spindle control mode selection command 3 signal<br />

3 SC4A Inputting spindle control mode selection command 4 signal<br />

4 SC5A Inputting spindle control mode selection command 5 signal<br />

5 GR1A Inputting gear selection command 1 signal<br />

6 GR2A Inputting gear selection command 2 signal<br />

8 SRNA Motor in forward run<br />

9 SRIA Motor in reverse run<br />

A WRNA In index forward run command<br />

B WRIA In index reverse run command<br />

C ORCA Inputting orientation start command signal<br />

D LCSA Selecting L coil (when using coil changeover motor)<br />

Control output<br />

7 6 5 4 3 2 1 0<br />

4 1L WRCF MKC SYSA ORCF ZS US SD CD<br />

F E D C B A 9 8<br />

1H TLUA ATA SD2<br />

bit Abbrev. Details<br />

0 CD Current detection<br />

1 SD Speed detection 1<br />

2 US Speed reached<br />

3 ZS Zero speed<br />

4 ORCF Orientation completed<br />

5 SYSA Synchronous speed match<br />

6 MKC In coil changeover<br />

7 WRCF Index positioning completed<br />

9 SD2 Speed detection 2<br />

D ATA In automatic adjustment<br />

E TLUA Spindle holding force increased<br />

4 - 62


4. Setup<br />

(4) Spindle control output signals<br />

Each signal function and signal name for control output is shown below.<br />

Orientation completed (ORCF)<br />

1) This signal turns ON when the orientation command is input and the spindle position has<br />

reached a set range (in-position range) in respect to the target stop position.<br />

2) This signal turns OFF when orientation is completed and the spindle position leaves the<br />

in-position range, and turns ON again when the spindle enters the in-position range<br />

again. When the orientation command turns OFF, this signal will turn OFF even if the<br />

spindle is in the in-position range.<br />

3) The in-position range can be set with parameter SP004 (OINP).<br />

Index positioning completed (WRCF)<br />

1) This signal turns ON during indexing when the spindle position has reached a set range<br />

(in-position range) in respect to the target stop position.<br />

Once this signal turns ON, it remains ON regardless of the spindle position until the<br />

orientation signal turns OFF or the next indexing signal is input.<br />

This signal will always turn OFF when the indexing signal is input even if the currently<br />

stopped position and next indexing position are within the in-position range. Minimum off<br />

period = 200ms (standard value)<br />

2) The minimum off period can be set with parameter SP103 (FTM).<br />

Inputting torque limit 1, 2, 3 signal (TL1A, TL2A, TL3A)<br />

1) This signal turns ON while the torque limit signal (1 to 3) is input.<br />

Motor in forward run (SRNA)<br />

1) This signal turns ON while the start signal is input and the motor is rotating in the CCW<br />

direction looking from the motor shaft.<br />

2) This signal may turn ON and OFF if the motor speed is several r/min or less.<br />

Motor in reverse run (SRIA)<br />

1) This signal turns ON while the start signal is input and the motor is rotating in the CW<br />

direction looking from the motor shaft.<br />

2) This signal may turn ON and OFF if the motor speed is several r/min or less.<br />

In drive unit alarm (ALM)<br />

1) This signal turns ON while an alarm is occurring in the unit.<br />

In READY ON (RON)<br />

1) If there is no abnormality, this signal turns ON one second after the READY ON signal is<br />

input from the NC.<br />

2) The motor will start rotating if the start signal (forward run, reverse run, orientation) is<br />

turned ON while this signal is ON.<br />

3) This signal turns OFF if the READY ON signal is input from the NC, or if an alarm<br />

occurs.<br />

4) If the READY ON signal from the NC turns OFF while the spindle motor is rotating, the<br />

motor will decelerate to a stop. This signal will remain ON until the motor stops.<br />

Current detection (CD)<br />

1) This signal turns ON if the current flowing to the motor is approx. 110% or more of the<br />

rating while the start signal (forward run, reverse run, orientation) is ON.<br />

(The motor output (current) guarantee value is 120% of the rating.)<br />

4 - 63


4. Setup<br />

Speed detection (SD)<br />

1) This signal turns ON if the motor speed drops to below the value set in parameter SP020<br />

(SDTS).<br />

2) The ON to OFF hysteresis width is set with parameter SP047 (SDTR).<br />

3) This signal turns ON when the motor speed drops below the set speed regardless of the<br />

input signal status.<br />

Motor speed<br />

Parameter SP047 (SDTR)<br />

Parameter SP020 (SDTS)<br />

Speed<br />

detection<br />

0<br />

ON<br />

OFF<br />

Speed reached (US)<br />

1) This signal turns ON when the start command signal (forward run, reverse run) turns ON<br />

and the motor speed reaches the ±15% (standard value) range of the speed command<br />

value.<br />

Speed command value<br />

Speed reached range<br />

Parameter SP048 (SUT)<br />

Motor speed<br />

Forward run 0<br />

(reverse run) ON<br />

start command<br />

OFF<br />

Speed<br />

reached<br />

ON<br />

OFF<br />

2) This signal turns OFF when the start command signal turns OFF.<br />

3) If the forward run signal turns OFF and the reverse run signal turns ON during forward<br />

run, the signal will be output as shown below.<br />

4) The speed reached range can be set with parameter SP048 (SUT).<br />

Speed command value<br />

0<br />

Motor speed<br />

Speed reached range<br />

Parameter SP048 (SUT)<br />

Motor forward run<br />

Speed command<br />

Forward run<br />

start command<br />

Reverse run<br />

start command<br />

ON<br />

OFF<br />

ON<br />

OFF<br />

Motor reverse run<br />

Speed reached range<br />

Parameter SP048 (SUT)<br />

Speed<br />

reached<br />

ON<br />

OFF<br />

4 - 64


4. Setup<br />

Zero speed (ZS)<br />

1) This signal turns ON when the motor speed drops below the speed set in parameter<br />

SP018 (ZSP) regardless of the input signal state.<br />

2) Once this signal turns ON, it will not turn OFF for at least 200ms.<br />

3) If the parameter SP018 (ZSP) setting value is too small (approx. 10r/min or less), the<br />

output may not turn ON even if the motor is stopped.<br />

Motor speed<br />

0<br />

Zero speed range<br />

Parameter SP018 (ZSP)<br />

Forward run<br />

start command<br />

Reverse run<br />

start command<br />

ON<br />

OFF<br />

ON<br />

OFF<br />

Zero<br />

speed<br />

ON<br />

OFF<br />

200ms<br />

Changing coil (MKC)<br />

1) This signal turns ON for the time set in parameter SP059: MKT while the L coil selection<br />

signal is ON or OFF when using the coil changeover motor.<br />

2) The coil is not changed while the orientation command is input, so this signal will not turn<br />

ON even if the L coil selection signal turns ON or OFF. In this case, the coil will be<br />

changed after the orientation command turns OFF. This signal will turn ON at that time.<br />

Do not turn the start command ON or OFF while this signal is ON.<br />

L coil selection<br />

signal<br />

ON<br />

OFF<br />

T1<br />

T1<br />

During coil<br />

change<br />

ON<br />

OFF<br />

Changing L coil selection (LCSA)<br />

1) This signal turns ON while the L coil is selected for the coil changing motor.<br />

2) This signal turns ON when the L coil selection signal is ON, and stays ON until the L coil<br />

selection signal turns OFF.<br />

3) The coil will not change when the orientation command is input, so this signal will not<br />

turn ON even if the L coil selection signal turns ON. In this case, the coil will be changed<br />

after the orientation command turns OFF. This signal will turn ON at that time.<br />

L coil selection<br />

signal<br />

ON<br />

OFF<br />

L coil selected<br />

ON<br />

OFF<br />

4 - 65


4. Setup<br />

In orientation start command signal (ORCA)<br />

1) This signal turns ON while the orientation start command (ORC) is input to the spindle<br />

drive unit.<br />

Inputting gear selection 1, 2, signal (GR1A, GR2A)<br />

1) The corresponding output signal turns ON while the gear selection 1, 2 (GR1, GR2) is<br />

input to the spindle drive unit.<br />

In forward run indexing (WRNA), in reverse run indexing (WRIA)<br />

1) The corresponding output signal turns ON while forward run indexing (WRN) or reverse<br />

run indexing (WRI) is input to the spindle drive unit.<br />

Synchronization speed match (SYSA)<br />

1) During spindle synchronous control, this signal turns ON when the control changes from<br />

speed control to spindle synchronous control.<br />

In drive unit warning (WRN)<br />

1) This signal turns ON when a warning is occurring in the spindle drive unit.<br />

Z-phase passed (ZFIN)<br />

1) This signal turns ON when the Z-phase is passed for the first time after servo ON in<br />

position control.<br />

In servo ON (SON)<br />

1) This signal turns ON after the servo ON signal (SRV) is input from the NC and the loop<br />

changes from the speed loop to the position loop.<br />

In position loop in-position (INP)<br />

1) This signal turns ON when the spindle position is in the rang set with SP153 (CINP)<br />

during C-axis control, SP185 (SINP) during spindle synchronous control, or SP217<br />

(TINP) during synchronous tap control.<br />

In spindle control mode selection command 1, 2, 3, 4, 5 signal input (SC1A, SC2A, SC3A,<br />

SC4A, SC5A)<br />

1) The corresponding output signal turns ON when the spindle control mode selection<br />

command 1, 2, 3, 4, 5 (SC1, SC2, SC3, SC4, SC5) is input.<br />

Spindle holding force increased (TLUA)<br />

1) This signal turns ON while the spindle holding force up (TLUP) signal is input.<br />

Limiting current (CL)<br />

1) This signal turns ON when a load exceeding the spindle's overload withstand level is<br />

applied during spindle motor rotation. This may also turn ON during motor<br />

acceleration/deceleration.<br />

4 - 66


4. Setup<br />

(5) Input/output interface<br />

The spindle drive unit has a general-purpose input/output interface.<br />

Output interface<br />

The signals required for coil changeover can be output.<br />

To output the coil changeover signal to the CN9 connector's pin 8, set SP034 (SFC2) bit2 (mkch)<br />

to "1".<br />

The signal will be output if the L coil is designated for the control signal input.<br />

Spindle drive unit<br />

Spindle motor<br />

Tolerable voltage 24VDC or less<br />

Tolerable current 50mA or less<br />

U<br />

V<br />

W<br />

MC2<br />

U<br />

V<br />

W<br />

U<br />

Z<br />

Spindle drive unit<br />

8<br />

10<br />

CN9<br />

connector<br />

CN9<br />

8<br />

S<br />

MC1<br />

MC1<br />

RA<br />

MC2<br />

X<br />

V<br />

X<br />

Y<br />

Z<br />

BU<br />

W<br />

Y<br />

10<br />

RA<br />

T<br />

MC2<br />

RA<br />

MC1<br />

BV<br />

Coil changeover wiring diagram<br />

Low-speed coil selection : Y connection (MC1 ON, MC2 OFF)<br />

High-speed coil selection : connection (MC1 OFF, MC2 ON)<br />

Use the contactors recommended in section "7-2-3 Selecting the contactor" for the MC1 and MC2<br />

contactors.<br />

Refer to section "5-8-1(4) Coil changeover contactor (magnetic contact)".<br />

Input interface<br />

A trigger is input to shift to the speed monitor mode. (Protective door open/close information, etc.)<br />

The spindle drive unit monitors the spindle motor's speed at this time. (Function to monitor whether<br />

spindle motor is below limit speed together with corresponding NC.) This function monitors the<br />

spindle monitor speed limit value designated with SP223 (SPDV) and the error speed detection<br />

time designated with SP224 (SPDF). The 5E alarm occurs when an error is detected.<br />

(This is not supported with the MDS-CH Series drive unit.)<br />

External contact<br />

ON conditions<br />

External contact<br />

OFF conditions<br />

18VDC to 25.2VDC<br />

9mA or more<br />

4VDC or less<br />

2mA or less<br />

CN9<br />

connector<br />

20<br />

24V<br />

10k<br />

33.3k<br />

Switch<br />

10<br />

Spindle drive unit<br />

4 - 67


5. Adjustment<br />

5-1 Servo adjustment data output function (D/A output).......................................................................... 5-2<br />

5-1-1 D/A output specifications............................................................................................................. 5-2<br />

5-1-2 Setting the output data ................................................................................................................ 5-2<br />

5-1-3 Setting the output magnification.................................................................................................. 5-2<br />

5-2 Gain adjustment ................................................................................................................................. 5-3<br />

5-2-1 Current loop gain......................................................................................................................... 5-3<br />

5-2-2 Speed loop gain .......................................................................................................................... 5-3<br />

5-2-3 Position loop gain ........................................................................................................................ 5-5<br />

5-3 Characteristics improvement.............................................................................................................. 5-8<br />

5-3-1 Optimal adjustment of cycle time ................................................................................................ 5-8<br />

5-3-2 Vibration suppression measures............................................................................................... 5-11<br />

5-3-3 Improving the cutting surface precision..................................................................................... 5-15<br />

5-3-4 Improvement of protrusion at quadrant changeover ................................................................. 5-18<br />

5-3-5 Improvement of overshooting.................................................................................................... 5-23<br />

5-3-6 Improvement of characteristics during acceleration/deceleration............................................. 5-26<br />

5-4 Settings for emergency stop ............................................................................................................ 5-29<br />

5-4-1 Vertical axis drop prevention control ......................................................................................... 5-29<br />

5-4-2 Deceleration control .................................................................................................................. 5-31<br />

5-4-3 Dynamic braking stop................................................................................................................ 5-32<br />

5-5 Collision detection function .............................................................................................................. 5-33<br />

5-6 Spindle adjustment data output function (D/A output) ..................................................................... 5-36<br />

5-6-1 D/A output specifications........................................................................................................... 5-36<br />

5-6-2 Parameter settings .................................................................................................................... 5-36<br />

5-6-3 Output data settings .................................................................................................................. 5-36<br />

5-6-4 Setting the output magnification................................................................................................ 5-37<br />

5-7 Spindle adjustment........................................................................................................................... 5-40<br />

5-7-1 Items to check during trial operation ......................................................................................... 5-40<br />

5-7-2 Adjusting the spindle rotation speed ......................................................................................... 5-40<br />

5-7-3 Adjusting the acceleration/deceleration .................................................................................... 5-40<br />

5-7-4 Adjusting the orientation............................................................................................................ 5-42<br />

5-7-5 Synchronous tap adjustment..................................................................................................... 5-49<br />

5-7-6 Z-phase (magnetic) automatic adjustment (Only when using IPM spindle motor) ................... 5-51<br />

5-7-7 PLG automatic adjustment........................................................................................................ 5-51<br />

5-7-8 Calculating the theoretical acceleration/deceleration ............................................................... 5-52<br />

5-8 Spindle specifications....................................................................................................................... 5-54<br />

5-8-1 Spindle coil changeover ............................................................................................................ 5-54<br />

5 - 1


5. Adjustment<br />

5-1 Servo adjustment data output function (D/A output)<br />

The MDS-CH-V1/V2 servo drive unit has a function to D/A output the various control data.<br />

The servo adjustment data required for setting the servo parameters to match the machine can be D/A<br />

output. Measure using a hi-coder, synchroscope, etc.<br />

5-1-1 D/A output specifications<br />

Item<br />

Explanation<br />

No. of channels 2ch<br />

Output cycle 888µs<br />

Output precision 8bit<br />

Output voltage range 0 to +5V<br />

Output magnification<br />

setting<br />

±1/256 to ±128-fold<br />

CN9 connector<br />

Output pins<br />

Channel 1 = Pin 9<br />

Channel 2 = Pin 19<br />

GND = Pins 1, 11<br />

5-1-2 Setting the output data<br />

No. Abbrev. Parameter name Explanation<br />

SV061 DA1NO<br />

D/A output channel 1 Input the No. of the data to be output to each D/A output channel.<br />

data No.<br />

(When "-1" is set, the D/A output for that channel will be invalid.)<br />

SV062 DA2NO<br />

D/A output channel 2 (When using the 2-axis integrated unit, set the D/A output for the axis not to be<br />

data No.<br />

measured to invalid (-1).)<br />

No. CH1 output data Standard output unit<br />

-1 D/A output not selected<br />

Output magnification<br />

standard setting value<br />

(SV063, SV064)<br />

Output unit for<br />

standard setting<br />

Output cycle<br />

13 (2000 r/min) 1000 r/min / V 3.5ms<br />

CH1: Speed feedback<br />

r/min<br />

0<br />

9 (3000 r/min) 1500 r/min / V 3.5ms<br />

CH2: Current command Rated (stall) current % 131 Stall 100% / V 3.5ms<br />

1 Current command Rated (stall) current % 131 Stall 100% / V 3.5ms<br />

2 Current command Rated (stall) current %<br />

3 Current feedback Rated (stall) current % 131 Stall 100% / V 3.5ms<br />

20<br />

11<br />

CN9<br />

10<br />

1<br />

6 Position droop low-order Interpolation unit 328 (Display unit: 1µm) 10µm / 0.5V 3.5ms<br />

7 – – –<br />

8 Position F∆T low-order<br />

Interpolation unit/<br />

NC communication<br />

cycle<br />

55 (1µm, 3.5ms) 1000mm/min / 0.5V 3.5ms<br />

9 – – –<br />

10<br />

Position command<br />

low-order<br />

11 – – –<br />

Interpolation unit 328 (Display unit: 1µm) 10µm / 0.5V 3.5ms<br />

12 Feedback position low-order Interpolation unit 328 (Display unit: 1µm) 10µm / 0.5V 3.5ms<br />

13 – – –<br />

125 Test output saw tooth wave 0 to +5V 0 or 256 Cycle: 227.5ms 0.8ms<br />

126 Test output oblong wave 0 to +5V 0 or 256 Cycle: 1.7ms 0.8ms<br />

127 Test output 2.5V (data 0) 0 or 256 – 0.8ms<br />

* Interpolation unit<br />

This is the NC internal unit. The command unit (input unit) will be as shown on the right.<br />

5-1-3 Setting the output magnification<br />

No. Abbrev. Parameter name Explanation Setting range<br />

SV063 DA1MPY D/A output channel 1 output<br />

magnification<br />

SV064 DA2MPY D/A output channel 2 output<br />

magnification<br />

Command unit<br />

10µm<br />

1µm<br />

0.1µm<br />

The magnification is set with a 1/256 unit. When 256 is set, the<br />

magnification will be 1.<br />

Analog output voltage = {(Output data value) × (Setting value of SV063 or SV064) × 76.3/1,000,000} + 2.5V<br />

Interpolation unit<br />

5µm<br />

0.5µm<br />

0.05µm<br />

–32768 to 32767<br />

5 - 2


5. Adjustment<br />

5-2 Gain adjustment<br />

5-2-1 Current loop gain<br />

No. Abbrev. Parameter name Explanation Setting range<br />

SV009 IQA Current loop q axis leading<br />

compensation<br />

SV010 IDA Current loop d axis leading<br />

compensation<br />

1 to 20480<br />

1 to 20480<br />

SV011 IQG Current loop q axis gain 1 to 8192<br />

SV012 IDG Current loop d axis gain<br />

This setting is determined by the motor's electrical characteristics.<br />

Set the standard parameters for all parameters.<br />

(These are used for maker adjustments.)<br />

1 to 8192<br />

5-2-2 Speed loop gain<br />

(1) Setting the speed loop gain<br />

The speed loop gain (SV005 (VGN1)) is an important parameter for determining the<br />

responsiveness of the servo control. During servo adjustment, the highest extent that this value can<br />

be set to becomes important. The setting value has a large influence on the machine cutting<br />

precision and cycle time.<br />

1) Refer to the following table and set the standard VGN1 according to the size of the entire load<br />

inertia (motor and machine load inertia).<br />

2) If the standard speed gain setting value is exceeded, the current command fluctuation will<br />

increase even if the speed feedback fluctuates by one pulse. This can cause the machine to<br />

vibrate easily, so set a lower value to increase the machine stability.<br />

OSA/OSE105<br />

OSA/OSE104<br />

600<br />

HC-H52 ~ 152 HC-H53 ~ 153<br />

Speed gain setting range (VGN1)<br />

HC-H202 ~ 702<br />

HC-H203 ~ 703<br />

HC-H902, 1102<br />

HC-H903, 1103<br />

Speed<br />

gain<br />

VGN1<br />

300<br />

0<br />

100 300 500 100 300 500 100 300 500 100 300 500<br />

Load inertia scale Load inertia scale Load inertia scale Load inertia scale<br />

(Total load inertia<br />

(Total load inertia<br />

(Total load inertia (Total load inertia<br />

÷ motor inertia)<br />

÷ motor inertia)<br />

÷ motor inertia)<br />

÷ motor inertia)<br />

LM-NP5G-60P<br />

Speed<br />

gain<br />

VGN1<br />

1200<br />

800<br />

Scale resolution<br />

0.01µm<br />

0.1µm<br />

400<br />

0<br />

0 600 1800 3000<br />

Total weight of moving section [kg]<br />

POINT<br />

The final VGN1 setting value is 70 to 80% of the maximum value at which the<br />

machine does not resonate.<br />

Suppressing the resonance with the vibration suppression function and increasing<br />

the VGN1 setting is effective for adjusting the servo later.<br />

5 - 3


5. Adjustment<br />

<br />

Set the standard VGN1. Use the standard value if no problem (such as machine resonance) occurs.<br />

If sufficient cutting precision cannot be obtained at the standard VGN1, VGN1 can be raised above<br />

the standard value as long as a 70 percent margin in respect to the machine resonance occurrence<br />

limit is maintained. The cutting accuracy can also be improved by adjusting with the disturbance<br />

observer.<br />

<br />

Machine resonance is occurring if the shaft makes abnormal sounds when operating or stopping,<br />

and a fine vibration can be felt when the machine is touched while stopped. Machine resonance<br />

occurs because the servo control responsiveness includes the machine resonance points. (Speed<br />

control resonance points occur, for example, at parts close to the motor such as ball screws.)<br />

Machine resonance can be suppressed by lowering VGN1 and the servo control responsiveness,<br />

but the cutting precision and cycle time are sacrificed. Thus, set a vibration suppression filter and<br />

suppress the machine resonance (Refer to section "5-3-2 Vibration suppression measures"), and<br />

set a value as close as possible to the standard VGN1. If the machine resonance cannot be<br />

sufficiently eliminated even by using a vibration suppression filter, then lower the VGN1.<br />

No. Abbrev. Parameter name Explanation Setting range<br />

SV005 VGN1 Speed loop gain Set this according to the load inertia size.<br />

If vibration occurs, adjust by lowering the setting by 20% to 30% at a time.<br />

1 to 10000<br />

(2) Setting the speed loop leading compensation<br />

The speed loop leading compensation (SV008 (VIA)) determines the characteristics of the speed<br />

loop mainly at low frequency regions. 1364 is set as a standard, and 1900 is set as a standard<br />

during SHG control. The standard value may drop in respect to loads with a large inertia.<br />

When the VGN1 is set lower than the standard value because the load inertia is large or because<br />

machine resonance occurred, the speed loop control band is lowered. If the standard value is set in<br />

the leading compensation in this status, the leading compensation control itself will induce vibration.<br />

In concrete terms, a vibration of 10 to 20Hz could be caused during acceleration/deceleration or<br />

stopping, and the position droop waveform could be disturbed when accelerating to a constant<br />

speed and when stopped. (Refer to the following graphs.)<br />

This vibration cannot be suppressed by the vibration suppression functions. Lower the VIA in<br />

increments of 100 from the standard setting value. Set a value where vibration does not occur and the<br />

position droop waveform converges smoothly. Because lowering the VIA causes a drop in the position<br />

control's trackability, the vibration suppression is improved even when a disturbance observer is used<br />

without lowering the VIA. (Be careful of machine resonance occurrence at this time.)<br />

Speed FB<br />

0<br />

Time<br />

D/A output range<br />

0<br />

Time<br />

Position<br />

droop<br />

0<br />

Time<br />

0<br />

Time<br />

Vibration waveform with leading compensation control<br />

Adjusted position droop waveform<br />

If VIA is lowered, the position droop waveform becomes smooth and overshooting does not occur.<br />

However, because the trackability in respect to the position commands becomes worse, the<br />

positioning time and accuracy are sacrificed. VIA must be kept high (set the standard value) to<br />

guarantee precision, especially in high-speed contour cutting (generally F = 1000 or higher). When<br />

adjusting, the cutting precision will be better if adjustment is carried out to a degree where<br />

overshooting does not occur and a high VIA is maintained, without pursuing position droop<br />

smoothness.<br />

5 - 4


5. Adjustment<br />

If there are no vibration or overshooting problems, the high-speed contour cutting precision can be<br />

further improved by setting the VIA higher than the standard value. In this case, adjust by raising<br />

the VIA in increments of 100 from the standard value.<br />

Setting a higher VIA improves the trackability regarding position commands in machines for which<br />

cycle time is important, and the time to when the position droop converges on the in-position width<br />

is shortened.<br />

It is easier to adjust the VIA to improve precision and cycle time if a large value (a value near the<br />

standard value) can be set in VGN1, or if VGN1 can be raised equivalently using the disturbance<br />

observer.<br />

No. Abbrev. Parameter name Explanation Setting range<br />

SV008 VIA Speed loop leading<br />

compensation<br />

1364 is set as a standard. 1900 is set as a standard during SHG control.<br />

Adjust in increments of approx. 100.<br />

Raise the VIA and adjust to improve the contour tracking precision in<br />

high-speed cutting. If the position droop vibrates (10 to 20Hz), lower the<br />

VIA and adjust.<br />

1 to 9999<br />

(0.0687rad/s)<br />

POINT<br />

Position droop vibration of 10Hz or less is not leading compensation control<br />

vibration. The position loop gain must be adjusted.<br />

5-2-3 Position loop gain<br />

(1) Setting the position loop gain<br />

The position loop gain (SV003 (PGN1)) is a parameter that determines the trackability to the<br />

command position. 33 is set as a standard. Set the same position loop gain value between<br />

interpolation axes.<br />

When PGN1 is raised, the trackability will be raised and the settling time will be shortened, but a speed<br />

loop that has a responsiveness that can track the position loop gain with increased response will be<br />

required. If the speed loop responsiveness is insufficient, several Hz of vibration or overshooting will<br />

occur during acceleration/deceleration. Vibration or overshooting will also occur when VGN1 is<br />

smaller than the standard value during VIA adjustment, but the vibration in the position loop occurs<br />

generally 10Hz or less. (The VIA vibration occurs from 10 to 20Hz.) When the position control includes<br />

machine resonance points (Position control machine resonance points occur at the machine end<br />

parts, etc.) because of insufficient machine rigidity, the machine will vibrate during positioning, etc. In<br />

either case, lower PGN1 and adjust so that vibration does not occur.<br />

If the machine also vibrates due to machine backlash when the motor stops, the vibration can be<br />

suppressed by lowering the PGN1 and smoothly stopping.<br />

If SHG control is used, an equivalently high position loop gain can be maintained while suppressing<br />

these vibrations. To adjust the SHG control, gradually raise the gain from a setting where 1/2 of a<br />

normal control PGN1 where vibration did not occur was set in PGN1. If the PGN1 setting value is<br />

more than 1/2 of the normal control PGN1 when SHG control is used, there is an improvement<br />

effect in position control. (Note that for the settling time the improvement effect is at 1/ 2 or more.)<br />

No. Abbrev. Parameter name Explanation Setting range<br />

SV003 PGN1 Position loop gain 1 Set 33 as a standard. If PGN1 is increased, the settling time will be<br />

shortened, but a sufficient speed loop response will be required.<br />

1 to 400<br />

(rad/s)<br />

SV004 PGN2 Position loop gain 2 Set 0. (For SHG control) 0 to 999<br />

SV057 SHGC SHG control gain Set 0. (For SHG control) 0 to 1200<br />

CAUTION<br />

Always set the same value for the position loop gain between the interpolation<br />

axes.<br />

5 - 5


5. Adjustment<br />

(2) Setting the position loop gain for spindle synchronous control<br />

During spindle synchronous control (synchronous tapping control, etc.), there are three sets of<br />

position loop gain parameters besides the normal control.<br />

No. Abbrev. Parameter name Explanation Setting range<br />

SV049 PGN1sp Position loop gain 1<br />

during spindle<br />

synchronization<br />

SV050 PGN2sp Position loop gain 2<br />

during spindle<br />

synchronization<br />

SV058 SHGCsp SHG control gain<br />

during spindle<br />

synchronization<br />

Set 15 as a standard. Set the same parameter as the 1 to 200<br />

position loop gain for the spindle (rad/s)<br />

synchronous control.<br />

Set 0 as a standard.<br />

(For SHG control)<br />

Set 0 as a standard.<br />

(For SHG control)<br />

0 to 999<br />

0 to 1200<br />

CAUTION<br />

Always set the same value for the position loop gain between the spindle and<br />

servo synchronous axes.<br />

(3) SHG control (option function)<br />

If the position loop gain is increased or feed forward control (NC function) is used to shorten the<br />

settling time or increase the precision, the machine system may vibrate easily.<br />

SHG control changes the position loop to a high-gain by stably compensating the servo system<br />

position loop through a delay. This allows the settling time to be reduced and a high precision to be<br />

achieved. (SHG: Smooth High-Gain)<br />

(Feature 1) When the SHG control is set, even if PGN1 is set to the same value as the conventional<br />

gain, the position loop gain will be doubled.<br />

(Feature 2) The SHG control response is smoother than conventional position control during<br />

acceleration/deceleration, so the gain can be increased further with SHG control<br />

compared to the conventional position control.<br />

(Feature 3) With SHG control, a high gain is achieved so a high precision can be obtained during<br />

contour control.<br />

The following drawing shows an example of the improvement in roundness<br />

characteristics with SHG control.<br />

50.0<br />

: Commanded path<br />

: SHG control (PGN1=47)<br />

: Conventional control (PGN1=33)<br />

0.0<br />

<br />

Control<br />

method<br />

Roundness error (µm)<br />

-50.0<br />

-50.0 0.0<br />

50.0<br />

(F=3000mm/min, ERROR=5.0µm/div)<br />

Conventional<br />

control<br />

SHG control<br />

(PGN 33)<br />

SHG control<br />

(PGN 47)<br />

Shape error characteristics<br />

During SHG control, PGN1, PGN2 and SHGC are set with the following ratio.<br />

8<br />

PGN1 : PGN2 : SHGC = 1 :<br />

3 : 6<br />

5.7<br />

2.5<br />

22.5<br />

5 - 6


5. Adjustment<br />

During SHG control even if the PGN1 setting value is the same, the actual position loop gain will be<br />

higher, so the speed loop must have a sufficient response. If the speed loop response is low,<br />

vibration or overshooting could occur during acceleration/deceleration in the same manner as<br />

conventional control. If the speed loop gain has been lowered because machine resonance occurs,<br />

lower the position loop gain and adjust.<br />

No. Abbrev. Parameter name<br />

SV003 PGN1<br />

(SV049) (PGN1sp)<br />

SV004 PGN2<br />

(SV050) (PGN2sp)<br />

SV057 SHGC<br />

(SV058) (SHGCsp)<br />

Position loop gain 1<br />

Setting<br />

ratio<br />

Position loop gain 2 8<br />

3<br />

SHG control gain<br />

SV008 VIA Speed loop leading<br />

compensation<br />

SV015 FFC Acceleration feed<br />

forward gain<br />

Setting example Explanation Setting range<br />

1 23 26 33 38 47 60 70 80 90 100<br />

62 70 86 102 125 160 186 213 240 266<br />

6 140 160 187 225 281 360 420 480 540 600<br />

1 to 400<br />

0 to 999<br />

0 to 1200<br />

Set 1900 as a standard for SHG control. 1 to 9999<br />

Set 100 as a standard for SHG control. 0 to 999<br />

POINT<br />

The SHG control is an optional function. If the option is not set in the CNC, the<br />

alarm 37 (at power ON) or warning E4, Error Parameter No. 104 (2304 for M50/<br />

M60 Series CNC) will be output.<br />

5 - 7


5. Adjustment<br />

5-3 Characteristics improvement<br />

5-3-1 Optimal adjustment of cycle time<br />

The following items must be adjusted to adjust the cycle time. Refer to the Instruction <strong>Manuals</strong> provided<br />

with each CNC for the acceleration/deceleration pattern.<br />

Rapid traverse rate (rapid) : This will affect the maximum speed during positioning.<br />

Clamp speed (clamp) : This will affect the maximum speed during cutting.<br />

Acceleration/deceleration time : Set the time to reach the feedrate.<br />

constant (G0t∗, G1t∗)<br />

In-position width (SV024) : This will affect each block's movement command end time.<br />

Position loop gain (SV003) : This will affect each block's movement command settling time.<br />

(1) Adjusting the rapid traverse acceleration/deceleration time constants<br />

To adjust the rapid traverse, the CNC axis specification parameter rapid traverse rate (rapid) and<br />

acceleration/deceleration time constant (G0t∗) are adjusted. The rapid traverse rate is set so that<br />

the motor speed matches the machine specifications in the range below the maximum speed in the<br />

motor specifications. For the acceleration/deceleration time constants, carry out rapid traverse<br />

reciprocation operation, and set so that the maximum current command value at acceleration/<br />

deceleration is within the range shown below.<br />

If the drive unit's input voltage is less than the rated voltage, the torque will easily become<br />

insufficient, and excessive errors will occur easily during acceleration/deceleration.<br />

(2) Adjusting the cutting feed acceleration/deceleration time constants<br />

To adjust the cutting rate, the NC axis specification parameter clamp speed (clamp) and acceleration/<br />

deceleration time constant (G1t∗) are adjusted. The in-position width at this time must be set to the<br />

same value as actual cutting.<br />

• Determining the clamp rate and adjusting the acceleration/deceleration time constant<br />

(Features) The maximum cutting rate (clamp speed) can be determined freely.<br />

(Adjustment) Carry out cutting feed reciprocation operation with no dwell at the maximum<br />

cutting rate and adjust the acceleration/deceleration time constant to 90% or less<br />

(refer to following table).<br />

• Setting the step acceleration/deceleration and adjusting the clamp speed<br />

(Features)<br />

The acceleration/deceleration time constant is determined with the position loop<br />

in the servo, so the acceleration/deceleration F∆T can be reduced.<br />

(Adjustment) Set 1 (step) for the acceleration/deceleration time constant and carry out cutting<br />

feed reciprocation operation with no dwell. Adjust the cutting feed rate so that the<br />

maximum current command value during acceleration/deceleration is within the<br />

range shown below, and then set the value in the clamp speed.<br />

2000r/min HC-H Series<br />

Max. current<br />

Motor model<br />

command value<br />

3000r/min HC-H Series<br />

Max. current<br />

Motor model<br />

command value<br />

(HC-H52) (385% or less) (HC-H53) (289% or less)<br />

(HC-H102) (353% or less) HC-H103 276% or less<br />

HC-H152 498% or less HC-H153 351% or less<br />

HC-H202 340% or less HC-H203 318% or less<br />

HC-H352 263% or less HC-H353 243% or less<br />

HC-H452 272% or less HC-H453 243% or less<br />

HC-H702 283% or less HC-H703 194% or less<br />

HC-H902 217% or less HC-H903 219% or less<br />

HC-H1102 200% or less HC-H1103 187% or less<br />

Natural cooling<br />

Oil cooled<br />

Max. current<br />

Max. current<br />

Motor model<br />

Motor model<br />

command value<br />

command value<br />

LM-NP5G-60P 658% or less LM-NP5G-60P 273% or less<br />

5 - 8


5. Adjustment<br />

(3) Adjusting the in-position width<br />

Because there is a response delay in the servomotor drive due to position loop control, a "settling<br />

time" is also required for the motor to actually stop after the command speed from the CNC reaches 0.<br />

The movement command in the next block is generally started after it is confirmed that the machine<br />

has entered the "in-position width" range set for the machine.<br />

Set the precision required for the machine as the in-position width. If a high precision is set<br />

needlessly, the cycle time will increase due to a delay in the settling time.<br />

The in-position width is validated with the servo parameter settings, but there may be cases when<br />

the NC parameters must also be set. Refer to each NC Instruction Manual.<br />

No. Abbrev. Parameter name Unit Explanation Setting range<br />

SV024 INP In-position detection<br />

width<br />

µm Set 50 as a standard.<br />

Set the precision required for the machine.<br />

0 to 32767<br />

POINT<br />

The in-position width setting and confirmation availability depend on the CNC<br />

parameters.<br />

5 - 9


5. Adjustment<br />

(4) Adjusting the settling time<br />

The settling time is the time required for<br />

the position droop to enter the in-position<br />

width after the feed command (F∆T) from<br />

the CNC reaches 0.<br />

The settling time can be shortened by<br />

raising the position loop gain or using SHG<br />

control. However, a sufficient response<br />

(sufficiently large VGN1 setting) for the<br />

speed loop is required to carry out stable<br />

control.<br />

The settling time during normal control<br />

when the CNC is set to linear acceleration/<br />

deceleration can be calculated using the<br />

following equation. During SHG control,<br />

estimate the settling time by multiplying<br />

PGN1 by 2.<br />

10<br />

Settling time (ms) = – 3<br />

×<br />

PGN1<br />

ln<br />

F∆T<br />

0<br />

Position<br />

droop<br />

F<br />

0<br />

G0tL<br />

INP<br />

F × 10 6<br />

60×G0tL×PGN1 2 × 1 – exp<br />

Setting time<br />

–<br />

Time<br />

In-position<br />

PGN1×G0tL<br />

10 3<br />

PGN1 : Position loop gain1 (SV003) (rad/s)<br />

F : Rapid traverse rate (mm/min)<br />

G0tL : Rapid traverse linear acceleration/<br />

deceleration time constant (ms)<br />

INP : In-position width (SV024) (µm)<br />

3000<br />

Speed command<br />

(r/min) 0<br />

Time<br />

-3000<br />

200<br />

Current command<br />

(Rated current %) 0<br />

Time<br />

-200<br />

(Reference)<br />

G0tL =<br />

Example of speed/current command waveform during acceleration/deceleration<br />

The rapid traverse acceleration/deceleration time setting value G0tL for when linear<br />

acceleration/deceleration is set is calculated with the following expression.<br />

(J L + J M ) × No<br />

95.5 × (0.8 × T MAX – T L )<br />

–<br />

6000<br />

( PGN1 × K) 2 (ms)<br />

N O : Motor reach speed (r/min)<br />

J L : Motor shaft conversion load inertia (×10 –4 kg·m 2 )<br />

J M : Motor inertia (×10 –4 kg·m 2 )<br />

T MAX : Motor max. torque<br />

(N·m)<br />

T L : Motor shaft conversion load (friction, unbalance) torque (N·m)<br />

PGN1 : Position loop gain 1<br />

(rad/s)<br />

K : "1" during normal control, "2" during SHG control<br />

5 - 10


5. Adjustment<br />

5-3-2 Vibration suppression measures<br />

If vibration (machine resonance) occurs, it can be suppressed by lowering the speed loop gain (VGN1).<br />

However, cutting precision and cycle time will be sacrificed. (Refer to "5-2-2 Speed loop gain".) Thus, try<br />

to maintain the VGN1 as high as possible, and suppress the vibration using the vibration suppression<br />

functions.<br />

If the VGN1 is lowered and adjusted because vibration cannot be sufficiently suppressed with the<br />

vibration suppression functions, adjust the entire gain (including the position loop gain) again.<br />

<br />

• A fine vibration is felt when the machine is touched, or a groaning sound is heard.<br />

• Vibration or noise occurs during rapid traverse.<br />

POINT<br />

Suppress the vibration using the vibration suppression functions, and maintain<br />

the speed loop gain (SV005 (VGN1)) as high as possible.<br />

(1) Machine resonance suppression filter<br />

The machine resonance suppression filter will function at the set frequency. Use the D/A output<br />

function to output the current feedback and measure the resonance frequency. Note that the<br />

resonance frequency that can be measured is 0 to 500Hz. For resonance exceeding 500Hz,<br />

directly measure the phase current with a current probe, etc. (Refer to next page.)<br />

When the machine resonance suppression filter is set, vibration may occur at a separate<br />

resonance frequency that existed latently at first. In this case, the servo control is stabilized when<br />

the machine resonance suppression filter depth is adjusted and the filter is adjusted so as not to<br />

operate more than required.<br />

<br />

1. Set the resonance frequency in the machine resonance suppression filter frequency (SV038<br />

(FHz1), SV046 (FHz2)).<br />

2. If the machine starts to vibrate at another frequency, raise (make shallower) the machine<br />

resonance suppression filter depth compensation value (SV033 (SSF2.nfd)), and adjust to the<br />

optimum value at which the resonance can be eliminated.<br />

3. When the vibration cannot be completely eliminated, use another vibration suppression control<br />

(jitter compensation, adaptive filter) in combination with the machine resonance suppression<br />

filter.<br />

No. Abbrev. Parameter name Unit Explanation Setting range<br />

SV038 FHz1 Machine resonance<br />

suppression filter<br />

frequency 1<br />

SV046 FHz2 Machine resonance<br />

suppression filter<br />

frequency 2<br />

Hz<br />

Hz<br />

Set the resonance frequency to be suppressed. (Valid at<br />

36 or more).<br />

Set 0 when the filter is not to be used.<br />

Set the resonance frequency to be suppressed. (Valid at<br />

36 or more).<br />

Set 0 when the filter is not to be used.<br />

0 to 9000<br />

(Hz)<br />

0 to 9000<br />

(Hz)<br />

5 - 11


5. Adjustment<br />

No. Abbrev. Parameter name Explanation<br />

Setting range<br />

(Unit)<br />

HEX setting<br />

F E D C B A 9 8 7 6 5 4 3 2 1 0<br />

dos hvx svx nfd2 nf3 nfd1 zck<br />

bit Meaning when “0” is set Meaning when “1” is set<br />

0 zck Z phase check valid (Alarm 42) Z phase check invalid<br />

1 Set the filter depth for Notch filter 1 (SV038).<br />

2 nfd1 Value 000 001 010 011 100 101 110 111<br />

3<br />

Depth (dB)<br />

Deep<br />

Infntly<br />

deep<br />

-18.1 -12.0 -8.5 -6.0 -4.1 -2.5 -1.2<br />

Shallow<br />

4 nf3 Notch filter 3 stop Notch filter 3 start (1125Hz)<br />

5 Set the filter depth of Notch filter 2 (SV046).<br />

6 nfd2 Value 000 001 010 011 100 101 110 111<br />

SV033<br />

SSF2<br />

Servo function<br />

selection 2<br />

7<br />

Depth (dB)<br />

Deep<br />

Infntly<br />

deep<br />

-18.1 -12.0 -8.5 -6.0 -4.1 -2.5 -1.2<br />

Shallow<br />

8 Set "0".<br />

9 Set "0".<br />

A Set "0".<br />

B Set "0".<br />

C<br />

Digital signal output selection<br />

D<br />

E<br />

F<br />

dos<br />

0000: MP scale absolute position detection, offset demand signal<br />

output<br />

0001: Specified speed signal output<br />

0010 to 1111: Setting prohibited<br />

Measuring the phase current<br />

Direct observation<br />

The phase current is output to the CN9 pin. Connect a hi-corder between the GND (pin 1, 11) and<br />

the phase current to be measured, and observe the state.<br />

7: L axis U-phase current FB<br />

17: L axis V-phase current FB<br />

6: M axis U-phase current FB<br />

16: M axis V-phase current FB<br />

20 ms<br />

Current feedback: 9 crests<br />

Machine<br />

resonance<br />

frequency<br />

=<br />

9 cycles<br />

= 450 Hz<br />

20 x 10 -3 s<br />

1V/div<br />

Set the speed loop gain (SV005: VGN1) to approx. 50 to 100, disconnect<br />

the resonance filter, and measure the waveform while the axis is stopped.<br />

5 - 12


5. Adjustment<br />

<br />

This function is compatible with the MDS-CH-V1/V2 Series' machine resonance suppression filter<br />

(SV038: FHz1, SV046: FHz2). Some machines have three or more machine resonance points and<br />

the resonance cannot be eliminated. Try the following methods in this case.<br />

1) When there are three machine resonance points including one exceeding 800Hz<br />

When the 3rd machine resonance filter is set (SV033: nfd3),<br />

the resonance filter is applied at 1125Hz, and the machine may<br />

Machine resonance filter<br />

not resonate at 800Hz or more. Then, remove the remaining<br />

two machine resonances with the 1st and 2nd machine<br />

resonance suppression filters.<br />

If the machine resonance cannot be eliminated even by setting<br />

the 1st and 2nd machine resonance suppression filter<br />

800Hz 1125Hz 1450Hz<br />

frequencies, it may be possible to suppress the machine<br />

resonance by additionally setting the 3rd machine resonance<br />

suppression filter.<br />

[Example] If the machine resonance is approx. 1100Hz and high, validate the 3rd machine<br />

resonance suppression filter. Then, adjust the machine resonance suppression<br />

filters (SV038: FHz1, SV046: FHz2).<br />

2) When there are three or more machine resonance points 1<br />

Eliminate as much of the machine resonance as possible with the 1st and 2nd machine<br />

resonance filters. It may then be possible to eliminate the machine resonance by increasing the<br />

adaptive filter sensitivity (SV027: afse).<br />

3) When there are three or more machine resonance points 2<br />

With the MDS-CH-V1/V2 Series machine resonance<br />

suppression filter, the filter is also applied at the odd-fold of the<br />

set frequency. If one machine resonance is near the odd-fold<br />

of another machine resonance, set the machine resonance<br />

suppression filter frequency to the lower resonance, and try<br />

changing it by approx. 10 to 20Hz. It may be possible to<br />

eliminate two machine resonances by setting the most<br />

effective value.<br />

[Example] If the machine resonates at 300Hz and 900Hz,<br />

both machine resonances can be eliminated by<br />

setting 300Hz.<br />

Machine resonance<br />

300Hz 900Hz 1500Hz<br />

Machine resonance filter<br />

Set 300Hz to suppress the<br />

machine resonance near 900Hz.<br />

4) When machine resonance does not change even when machine resonance filter is set<br />

Only the frequency calculated with the following expression can be set with the MDS-CH-V1/V2<br />

Series machine resonance suppression filter. If the set frequency is not available, set a<br />

frequency that is 1 part of the odd amount (1/3, etc.). It may be possible to eliminate the<br />

machine resonance.<br />

Machine resonance frequency setting range (Hz) = 9000/N (N = 4 to 128)<br />

[Example] To set 1400Hz, setting 470Hz may be just as effective.<br />

5 - 13


5. Adjustment<br />

(2) Jitter compensation<br />

The load inertia becomes much smaller than usual if the motor position enters the machine<br />

backlash when the motor is stopped. Because this means that an extremely large VGN1 is set for<br />

the load inertia, vibration may occur.<br />

Jitter compensation can suppress the vibration that occurs at the motor stop by ignoring the<br />

backlash amount of speed feedback pulses when the speed feedback polarity changes.<br />

Increase the number of ignored pulses by one pulse at a time, and set a value at which the vibration<br />

can be suppressed. (Because the position feedback is controlled normally, there is no worry of<br />

positional deviation.)<br />

When jitter compensation is set to an axis that is not vibrating is set, vibration could be induced, so<br />

take care.<br />

No. Abbrev. Parameter name Explanation<br />

SV027 SSF1 Special servo function Set the jitter compensation with the following parameter.<br />

selection 1<br />

F E D C B A 9 8 7 6 5 4 3 2 1 0<br />

aflt zrn2 afrg afse ovs2 ovs1 lmc2 lmc1 omr vfct2 vfct1 upc vcnt2 vcnt1<br />

bit<br />

No jitter<br />

compensation<br />

One pulse<br />

compensation<br />

Two pulse<br />

compensation<br />

Three pulse<br />

compensation<br />

4 vfct1 0 1 0 1<br />

5 vfct2 0 0 1 1<br />

POINT<br />

Jitter compensation vibration suppression is only effective when the motor is<br />

stopped.<br />

(3) Adaptive filter (option function)<br />

The servo drive unit detects the machine resonance point and automatically sets the filter constant.<br />

Even if the ball screw and table position relation changes causing the resonance point to change,<br />

the filter will track these changes.<br />

Set the special servo function selection 1 (SV027 (SSF1)) bit F to activate the adaptive filter.<br />

If the adaptive filter's sensitivity is low, and the machine resonance cannot be suppressed, set<br />

(SV027 (SSF1)) bits 12 and 13.<br />

No. Abbrev. Parameter name Explanation<br />

SV027 SSF1 Special servo function Activate the adaptive filter by setting the following parameters.<br />

selection 1<br />

F E D C B A 9 8 7 6 5 4 3 2 1 0<br />

aflt zrn2 afrg afse ovs2 ovs1 lmc2 lmc1 omr vfct2 vfct1 upc vcnt2 vcnt1<br />

bit Meaning when "0" is set Meaning when "1" is set<br />

F aflt Adaptive filter stopped Adaptive filter activated<br />

D<br />

C<br />

afrg<br />

afse<br />

00: Normal adaptive filter<br />

sensitivity<br />

11: Increased adaptive filter<br />

sensitivity<br />

POINT<br />

The adaptive filter is an optional function. If the option is not set in the CNC,<br />

alarm 37 (at power ON) or warning E4 "Error Parameter No. 105" (2305 for<br />

M50/M60 Series CNC) will be output.<br />

5 - 14


5. Adjustment<br />

5-3-3 Improving the cutting surface precision<br />

If the cutting surface precision or roundness is poor,<br />

these can be improved by increasing the speed<br />

loop gain (VGN1, VIA) or by using the disturbance<br />

observer function.<br />

Y<br />

<br />

• The surface precision in the 45° direction of a<br />

taper or arc is poor.<br />

• The load fluctuation during cutting is large,<br />

causing vibration or surface precision defects to<br />

occur.<br />

X<br />

POINT<br />

Adjust by raising the speed loop gain equivalently to improve cutting surface<br />

precision, even if the measures differ. In this case, it is important how much the<br />

machine resonance can be controlled, so adjust making sufficient use of<br />

vibration suppression functions.<br />

(1) Adjusting the speed loop gain (VGN1)<br />

If the speed loop gain is increased, the cutting surface precision will be improved but the machine<br />

will resonate easily.<br />

The final VGN1 setting should be approx. 70 to 80% of the maximum value where resonance does<br />

not occur. (Refer to "5-2-2 (1) Setting the speed loop gain")<br />

(2) Adjusting the speed loop leading compensation (VIA)<br />

The VIA has a large influence on the position trackability, particularly during high-speed cutting<br />

(generally F1000 or more). Raising the setting value improves the position trackability, and the<br />

contour precision during high-speed cutting can be improved. For high-speed high-precision cutting<br />

machines, adjust so that a value equal to or higher than the standard value can be set.<br />

When VIA is set lower than the standard value and set to a value differing between interpolation<br />

axes, the roundness may worsen (the circle may distort). This is due to differences occurring in the<br />

position trackability between interpolation axes. The distortion can be improved by matching the<br />

VIA with the smaller of the values. Note that because the position trackability is not improved, the<br />

surface precision will not be improved.<br />

(Refer to "5-2-2 (2) Setting the speed loop leading compensation")<br />

No. Abbrev. Parameter name Explanation Setting range<br />

SV005 VGN1 Speed loop gain Increase the value by 10 to 20% at a time.<br />

If the machine starts resonating, lower the value by 20 to 30% at a time.<br />

The setting value should be 70 to 80% of the value where resonance<br />

does not occur.<br />

1 to 999<br />

SV008 VIA Speed loop leading<br />

compensation<br />

1364 is set as a standard. 1900 is set as a standard during SHG control.<br />

Adjust in increments of approx. 100.<br />

Raise the VIA and adjust to improve the contour tracking precision in<br />

high-speed cutting. If the position droop vibrates (10 to 20Hz), lower the<br />

VIA and adjust.<br />

1 to 9999<br />

(0.0687rad/s)<br />

5 - 15


5. Adjustment<br />

(3) Disturbance observer<br />

The disturbance observer can reduce the effect caused by disturbance, frictional resistance or<br />

torsion vibration during cutting by estimating the disturbance torque and compensating it. It also is<br />

effective in suppressing the vibration caused by speed leading compensation control.<br />

<br />

Adjust VGN1 to the value where vibration does not occur, and then lower it 10 to 20%.<br />

Set the load inertia scale (SV037 (JL)) with a percentage in respect to the motor inertia of the<br />

total load inertia.<br />

Set the observer filter band (observer pole) in the disturbance observer 1 (SV043 (OBS1)), and<br />

estimate the high frequency disturbance to suppress the vibration. Set "600" as a standard.<br />

Set the observer gain in disturbance observer 2 (SV044 (OBS2)). The disturbance observer<br />

will function here for the first time. Set 100 first, and if vibration does not occur, increase the<br />

setting by 50 at a time to increase the observer effect.<br />

If vibration occurs, lower OBS1 by 50 at a time. The vibration can be eliminated by lowering<br />

OBS2, but the effect of the disturbance observer can be maintained by keeping OBS2 set to a<br />

high value.<br />

No. Abbrev. Parameter name Unit Explanation Setting range<br />

SV037 JL Load inertia scale % Set the load inertia that includes the motor in respect to the<br />

motor inertia. (When the motor is a single unit, set 100%)<br />

JL =<br />

Jl + Jm<br />

Jm<br />

Jm : Motor inertia<br />

Jl : Machine inertia<br />

0 to 5000<br />

(%)<br />

SV043 OBS1 Disturbance observer<br />

1<br />

SV044 OBS2 Disturbance observer<br />

2<br />

kg Set the total weight of the moving section for the linear servo. 0 to 5000<br />

rad/s<br />

Set the observer filter band (observer pole).<br />

Set "600" as a standard, and raise the setting by 50 at a time if<br />

vibration occurs.<br />

% Set the observer gain.<br />

Set 100 to 300 as a standard, and lower the setting if vibration<br />

occurs.<br />

0 to 1000<br />

(rad)<br />

0 to 500<br />

(%)<br />

Machine behavior when machine's center of gravity is high (Example)<br />

If the machine's center of gravity is high, the speed response may drop in respect to the ball screw<br />

section's movement, making it difficult to attain a stable speed range. The disturbance observer is<br />

effective in this case.<br />

Machine<br />

center of<br />

gravity<br />

Movement of machine's<br />

center of gravity<br />

Movement is offset, and<br />

speed response drops.<br />

Motor<br />

Ball screw movement<br />

Before using disturbance observer<br />

After using disturbance observer<br />

Vibration between<br />

10 and 20Hz<br />

Vibration is reduced<br />

Position droop waveform<br />

Position droop waveform<br />

5 - 16


5. Adjustment<br />

(4) Machine side compensation (Machining center)<br />

This function compensates the shape of the machine end during high-speed and high acceleration/<br />

deceleration. The spring effect from the tool (spindle) end to the motor (scale) end is compensated.<br />

If the machine has a large spring effect, the shape may be fine during low-speed operation.<br />

However, at high speeds (specially when using a small diameter), the section from the tool (shaft)<br />

end to the outer sides of the motor (scale) end could swell, and deteriorate the shape (cause the<br />

shape to round).<br />

This function controls the movement of the motor (scale) end caused by the speed, and improves<br />

the tool (spindle) end accuracy at all speeds. This is particularly effective for the roundness<br />

accuracy during servo adjustment. Note that the roundness must be adjusted at the machine end<br />

with a DDB or grid encoder.<br />

• Without machine side compensation<br />

• With machine side compensation<br />

The inner side is driven by the amount<br />

that the end section swells due to the<br />

spring effect.<br />

During high<br />

acceleration, the end<br />

section swells outward<br />

due to the spring effect.<br />

Machine path<br />

(machining surface)<br />

Machine path<br />

(machining surface)<br />

Machine roundness<br />

(machining surface)<br />

Elliptical shape fault<br />

Command path<br />

(ideal path)<br />

Low speed:<br />

Example:<br />

R25mm<br />

F1000mm/min<br />

High speed<br />

(high acceleration):<br />

Example:<br />

R25mm<br />

F10000mm/min<br />

Command path<br />

(ideal path)<br />

Machine roundness<br />

(machining surface)<br />

Elliptical shape is<br />

improved<br />

Both low speed and<br />

high speed are on the<br />

same path.<br />

No. Abbrev. Parameter name Explanation<br />

SV027 SSF1 Servo function The machine side compensation starts with the following parameter.<br />

Setting range<br />

(Unit)<br />

selection 1 F E D C B A 9 8 7 6 5 4 3 2 1 0<br />

aflt zrn2 afse ovs lmc omr zrn3 vfct upc vcnt<br />

bit Meaning when “0” is set Meaning when “1” is set<br />

7 omr Machine side compensation invalid Machine side compensation valid<br />

SV065 TLC Machine side<br />

compensation spring<br />

constant<br />

The value calculated with the following expression is used as the<br />

compensation amount.<br />

Compensation amount (µm) = Command speed F (mm/min)2 × SV065 (TOF)<br />

Radius R (mm) × 10 9<br />

This is the value for an open loop and will actually vary according to the<br />

tool's spring constant. Determine the actual value when adjusting.<br />

Set to "0" when not using this function.<br />

-32768 to<br />

32767<br />

CAUTION<br />

If an excessive value is set in the machine side compensation spring constant<br />

(SV065: TLC), the machine could vibrate when stopping.<br />

5 - 17


5. Adjustment<br />

5-3-4 Improvement of protrusion at quadrant changeover<br />

The response delay (caused by dead band from friction, torsion, expansion/contraction, backlash, etc.)<br />

caused when the machine advance direction reverses is compensated with the lost motion compensation<br />

(LMC compensation) function.<br />

With this, the protrusions that occur at the quadrant changeover in the DBB measurement method, or<br />

the streaks that occur when the quadrant changes during circular cutting can be improved.<br />

Compensation<br />

Cutting<br />

direction<br />

Circle cutting path before compensation Circle cutting path after compensation<br />

DBB: Double Ball Bar<br />

(1) Lost motion compensation (LMC compensation)<br />

The lost motion compensation compensates the response delay during the reversal by adding the<br />

torque command set with the parameters when the speed direction changes. There are three<br />

methods of LMC compensation. Type 2 is explained below.<br />

Type 1 : Compensation effective in areas where axis movement speed is slow.<br />

(Usually, Type 2 is used.)<br />

Type 2 : Compensation effective for lathe systems<br />

Type 3 : Compensation effective for machining centers<br />

<br />

Set the special servo function selection 1 (SV027 (SSF1)) bit 9. (The LMC compensation type 2 will<br />

start).<br />

Set the compensation amount with a stall % (rated current % for the general-purpose motor) unit in<br />

the lost motion compensation 1 (SV016 (LMC1)). The LMC1 setting value will be used for<br />

compensation in the positive and negative directions when SV041 (LMC2) is 0.<br />

If the compensation amount is to be changed in the direction to be compensated, set LMC2. The<br />

compensation direction setting will be as shown below with the CW/CCW setting in the NC parameter.<br />

If only one direction is to be compensated, set the side not to be compensated as -1.<br />

Compensation<br />

point<br />

CW<br />

CCW<br />

A X axis: LMC2 X axis: LMC1<br />

+Y<br />

D<br />

The Y axis command direction<br />

changes from + to –.<br />

A<br />

The X axis command direction<br />

changes from + to –.<br />

B Y axis: LMC1 Y axis: LMC2<br />

C X axis: LMC1 X axis: LMC2<br />

-X<br />

+X<br />

D Y axis: LMC2 Y axis: LMC1<br />

C<br />

The X axis command direction<br />

changes from – to +.<br />

-Y<br />

B<br />

The Y axis command direction<br />

changes from – to +.<br />

No. Abbrev. Parameter name Explanation<br />

SV027 SSF1 Special servo function The lost motion compensation starts with the following parameter.<br />

selection 1 F E D C B A 9 8 7 6 5 4 3 2 1 0<br />

aflt zrn2 afrg afse ovs2 ovs1 lmc2 lmc1 omr vfct2 vfct1 upc vcnt2vcnt1<br />

bit No LMC LMC type 1 LMC type 2 Setting prohibited.<br />

8 lmc1 0 1 0 1<br />

9 lmc2 0 0 1 1<br />

No. Abbrev. Parameter name Unit Explanation Setting range<br />

SV016 LMC1 Lost motion Stall % (rated While measuring the quadrant protrusion amount, adjust –1 to 200<br />

compensation 1 current %) with a 5% unit.<br />

The ± direction setting value will be applied when LMC2 is<br />

(%)<br />

SV041 LMC2 Lost motion<br />

compensation 2<br />

Stall % (rated<br />

current %)<br />

set to 0.<br />

Set 0 as a standard.<br />

Set this when the compensation amount is to be changed<br />

according to the direction.<br />

5 - 18<br />

–1 to 200<br />

(%)


5. Adjustment<br />

<br />

First confirm whether the axis to be compensated is an unbalance axis (vertical axis, slant axis). If it<br />

is an unbalance axis, carry out the adjustment after performing step "(2) Unbalance torque<br />

compensation".<br />

Next, measure the frictional torque. Carry out reciprocation operation (approx. F1000) with the axis<br />

to be compensated and measure the load current % when fed at a constant speed on the NC servo<br />

monitor screen. The frictional torque of the machine at this time is expressed with the following<br />

expression.<br />

Frictional torque (%) =<br />

(+ feed load current %) – (– feed load current %)<br />

2<br />

The standard setting value for the lost motion compensation 1 (LMC1) is double the frictional torque<br />

above.<br />

(Example)<br />

Assume that the load current % was 25% in the + direction and –15% in the – direction<br />

when JOG feed was carried out at approx. F1000. The frictional torque is as shown<br />

below, so 20% × 2 = 40% (LMC2 remains at zero, and compensation is carried out in<br />

both directions.) is set for LMC1. (LMC2 is left set at 0.) With this setting, 40%<br />

compensation will be carried out when the command reverses from the + direction to the<br />

– direction, and when the command reverses from the – direction to the + direction.<br />

25 – (–15)<br />

2<br />

= 20%<br />

Perform the final adjustment, carrying out the CNC sampling measurement (DBB measurement) or<br />

actual cutting. If the compensation amount is insufficient, increase LMC1 or LMC2 by 5% at a time.<br />

Note that if the setting is too high, biting may occur.<br />

Compensation 0 Optimum Too high<br />

POINT<br />

1. When either parameter SV016 (LMC1) or SV041 (LMC2) is set to 0, the same<br />

amount of compensation is carried out in both the positive and negative direction<br />

with the setting value of the other parameter (the parameter not set to 0).<br />

2. To compensate in only one direction, set -1 in the parameter (LMC1 or LMC2)<br />

for the direction in which compensation is prohibited.<br />

3. The value set based on the friction torque is the standard value for LMC<br />

compensation. The optimum compensation value changes with the cutting<br />

conditions (cutting speed, cutting radius, blade type, workpiece material,<br />

etc.). Be sure to ultimately make test cuts matching the target cutting and<br />

determine the compensation amount.<br />

4. Once LMC compensation type 1 is started, the overshooting compensation<br />

and the adaptive filter cannot be simultaneously started.<br />

5 - 19


5. Adjustment<br />

(2) Unbalance torque compensation<br />

If the load torque differs in the positive and negative directions such as with a vertical axis or slant<br />

axis, the torque offset (SV032 (TOF)) is set to carry out accurate lost motion compensation.<br />

<br />

Measure the unbalance torque. Carry out reciprocation operation (approx. F1000) with the axis to<br />

be compensated and measure the load current % when fed at a constant speed on the NC servo<br />

monitor screen. The unbalance torque at this time is expressed with the following expression.<br />

(+ feed load current %) + (– feed load current %)<br />

Unbalance torque (%) =<br />

2<br />

The unbalance torque value above is set for the torque offset (TOF).<br />

If there is a difference in the protrusion amount according to the direction, make an adjustment with<br />

LMC2. Do not adjust with TOF.<br />

(Example)<br />

Assume that the load current % was −40% in the + direction and −20% in the – direction<br />

when JOG feed was carried out at approx. F1000. The unbalance torque is as shown<br />

below, so −30% is set for TOF.<br />

−40 + (−20)<br />

2<br />

= −30%<br />

No.<br />

Abbrev.<br />

Parameter<br />

name<br />

SV032 TOF Torque offset Stall % (rated<br />

current %)<br />

Unit Explanation Setting range<br />

Set this parameter when carrying out the lost motion<br />

compensation.<br />

Set the unbalance torque amount.<br />

–100 to 100<br />

POINT<br />

Even when TOF is set, the torque output characteristics of the motor and load<br />

current display of the CNC servo monitor will not change. Only the<br />

characteristics of the LMC compensation function are affected.<br />

5 - 20


5. Adjustment<br />

(3) Adjusting the lost motion compensation timing<br />

If the speed loop gain has been lowered from the standard setting value because the machine<br />

rigidity is low or because machine resonance occurs easily, or when cutting at high speeds, the<br />

quadrant protrusion may appear later than the quadrant changeover point on the servo control. In<br />

this case, suppress the quadrant protrusion by setting the lost motion compensation timing (SV039<br />

(LMCD)) to delay the LMC compensation.<br />

<br />

If a delay occurs in the quadrant protrusion in the circle or arc cutting as shown below in respect to<br />

the cutting direction when CNC sampling measurement (DBB measurement) or actual cutting is<br />

carried out, and the compensation appears before the protrusion position, set the lost motion<br />

compensation timing (SV039 (LMCD)).<br />

While measuring the arc path, increase LMCD by 10 ms at a time, to find the timing that the<br />

protrusion and compensation position match.<br />

After<br />

compensation<br />

Cutting<br />

direction<br />

Before timing delay compensation<br />

After timing delay compensation<br />

No. Abbrev. Parameter name Unit Explanation Setting range<br />

SV039 LMCD Lost motion<br />

compensation timing<br />

ms<br />

Set this when the lost motion compensation timing does not<br />

match. Adjust while increasing the value by 10 at a time.<br />

0 to 2000<br />

(ms)<br />

When the LMCD is gradually raised, a two-peaked contour may occur at the motor side FB position<br />

DBB measurement. However, due to the influence of the cutter diameter in cutting such as end<br />

milling, the actual cutting surface becomes smooth.<br />

Because satisfactory cutting can be achieved even if this two-peaked contour occurs, consider the<br />

point where the protrusion becomes the smallest and finest possible without over compensating<br />

(bite-in) as the optimum setting.<br />

Quadrant changeover point<br />

Cutter center path<br />

Cutter diameter<br />

Actual cutting surface<br />

Cutting direction<br />

Point of LMC compensation execution<br />

5 - 21


5. Adjustment<br />

(4) Adjusting for feed forward control<br />

In LMC compensation, a model position considering the position loop gain is calculated based on<br />

the position command sent from the CNC, and compensation is carried out when the feed changes<br />

to that direction. When the CNC carries out feed forward (fwd) control, overshooting equivalent to<br />

the operation fraction unit occurs in the position commands, and the timing of the model position<br />

direction change may be mistaken. As a result, the LMC compensation timing may deviate, or<br />

compensation may be carried out twice or more.<br />

If feed forward control is carried out and the compensation does not operate correctly, adjust with<br />

the dead band (SV040 (LMCT)) during feed forward control. In this dead band control, overshooting<br />

of the set width or less is ignored. The model position direction change point is correctly recognized,<br />

and the LMC compensation is correctly executed.<br />

This parameter is meaningless when feed forward control is not being carried out.<br />

<br />

If the compensation timing deviates during feed forward control, increase the LMCT setting by 1µm<br />

at a time.<br />

Note that 2µm are set even when the LMCT is set to 0.<br />

No. Abbrev. Parameter name Unit Explanation Setting range<br />

SV040 LMCT Dead band during<br />

feed forward control<br />

µm This setting is valid only during feed forward control.<br />

2µm is set when this is set to 0. Adjust by increasing the value<br />

by 1µm at a time.<br />

0 to 100<br />

(µm)<br />

POINT<br />

Setting of the dead band (SV040 (LMCT)) during feed forward control is effective<br />

for improving overshooting compensation mis-operation during feed forward<br />

control.<br />

5 - 22


5. Adjustment<br />

5-3-5 Improvement of overshooting<br />

The phenomenon when the machine position goes past or exceeds the command during feed<br />

stopping is called overshooting. Overshooting is compensated by overshooting compensation<br />

(OVS compensation).<br />

Overshooting occurs due to the following two causes.<br />

Machine system torsion: Overshooting will occur mainly during rapid traverse settling<br />

Machine system friction: Overshooting will occur mainly during one pulse feed<br />

Either phenomenon can be confirmed by measuring the position droop.<br />

Speed<br />

FB<br />

0<br />

Position<br />

command<br />

0<br />

Position<br />

droop<br />

0<br />

Position<br />

droop<br />

0<br />

Overshoot<br />

Overshoot<br />

Time<br />

Time<br />

Overshooting during rapid traverse settling Overshooting during pulse feed<br />

(1) Overshooting compensation (OVS compensation)<br />

In OVS compensation, the overshooting is suppressed by subtracting the torque command set in<br />

the parameters when the motor stops. There are two types (type 1 and type 2) of OVS<br />

compensation. The standard method is type 2.<br />

OVS compensation type 2 has a compensation effect for the overshooting during either rapid<br />

traverse settling or pulse feed. Note that there is no compensation if the next feed command has<br />

been issued before the motor positioning (stop). (Therefore, there is no compensation during circle<br />

cutting.) There is also no compensation for the dead band when the CNC is carrying out feed<br />

forward control. To compensate overshooting during feed forward control, refer to the following<br />

section "(2) Adjusting for feed forward control".<br />

<br />

Set the special servo function selection 1 (SV027 (SSF1)) bit B. (OVS compensation type 2 will start.)<br />

Observe the position droop waveform using the D/A output, and increase the overshoot<br />

compensation 1 (SV031 (OVS1)) value 1% at a time. Set the smallest value where the overshooting<br />

does not occur. If SV042 (OVS2) is 0, the overshooting will be compensated in both the<br />

forward/reverse directions with the OVS1 setting value.<br />

If the compensation amount is to be changed in the direction to be compensated, set the + direction<br />

compensation value in OVS1 and the – direction compensation value in OVS2. If only one direction is<br />

to be compensated, set the side not to be compensated as -1. The compensation direction setting will<br />

be as reversed with the NC parameter CW/CCW setting.<br />

POINT<br />

In OVS compensation type 2, there is no compensation in the following cases.<br />

1. There is no compensation if the next feed command has been issued before<br />

the motor positioning (stop). (There is no compensation in circle cutting.)<br />

2. There is no compensation when the CNC is carrying out feed forward (fwd)<br />

control.<br />

5 - 23


5. Adjustment<br />

(2) Adjusting for feed forward control<br />

Use OVS compensation type 3 if overshooting is a problem in contour cutting during feed forward<br />

control.<br />

If OVS compensation type 3 is used to attempt to compensate overshooting, the overshooting may<br />

conversely become larger, or projections may appear during arc cutting. This is because overshooting<br />

equivalent to the operation fraction unit occurs in the position commands when the CNC is carrying<br />

out feed forward (fwd) control. Because of this, the OVS compensation recognizes a change in the<br />

command direction, and executes the compensation in the opposite direction.<br />

If the compensation is in the opposite direction when carrying out feed forward control, adjust with<br />

the dead band (SV034 (SSF3) bit C to F: ovsn) during feed forward control. By ignoring<br />

overshooting of a set width in the ovsn or less, the command direction change point is correctly<br />

recognized, and the OVS compensation is correctly executed.<br />

This parameter is insignificant when feed forward control is not used.<br />

<br />

If the OVS compensation is carried out in reverse during feed forward control, increase the LMCT<br />

setting by 1µm at a time.<br />

Note that 2µm are set even when the LMCT is set to 0.<br />

POINT<br />

OVS compensation type 3 is used if overshooting is a problem during feed<br />

forward control.<br />

No. Abbrev. Parameter name Explanation<br />

SV027 SSF1 Special servo function<br />

selection 1<br />

The overshooting compensation starts with the following parameter.<br />

F E D C B A 9 8 7 6 5 4 3 2 1 0<br />

aflt zrn2 afrg afse ovs2 ovs1 lmc2 lmc1 omr vfct2 vfct1 upc vcnt2 vcnt1<br />

bit Meaning when "0" is set. Meaning when "1" is set.<br />

A ovs1<br />

B ovs2<br />

Overshooting compensation type<br />

2 stop<br />

Overshooting compensation type<br />

3 stop<br />

Overshooting compensation type<br />

2 start<br />

Overshooting compensation type<br />

3 start<br />

No.<br />

Abbrev.<br />

Parameter<br />

name<br />

SV031 OVS1 Overshooting<br />

compensation 1<br />

SV042 OVS2 Overshooting<br />

compensation 2<br />

Unit Explanation Setting range<br />

Stall % (rated<br />

current %)<br />

Stall % (rated<br />

current %)<br />

Increase the value by 1% at a time, and find the value where<br />

overshooting does not occur. When OVS2 is set to 0, the<br />

setting value will be applied in both the ± directions.<br />

Set 0 as a standard.<br />

Set this when the compensation amount is to be changed<br />

according to the direction.<br />

–1 to 100<br />

(%)<br />

–1 to 100<br />

(%)<br />

No. Abbrev. Parameter name Explanation<br />

SV034 SSF3 Special servo function The overshooting compensation starts with the following parameter.<br />

selection 3<br />

F E D C B A 9 8 7 6 5 4 3 2 1 0<br />

ovsn linN toff os2 dcd test mohn has2 has1<br />

bit Name Explanation<br />

C<br />

D<br />

E<br />

F<br />

ovsn Set the dead band for the overshoot compensation type 3.<br />

5 - 24


5. Adjustment<br />

POINT<br />

1. When either parameter SV031 (OVS1) or SV042 (OVS2) is set to 0, the same<br />

amount of compensation is carried out in both the positive and negative<br />

direction, using the setting value of the other parameter (the parameter not<br />

set to 0).<br />

2. To compensate in only one direction, set -1 in the parameter (OVS1 or OVS2)<br />

for the direction in which compensation is prohibited.<br />

3. For contour cutting, the projection at the arc end point is compensated with<br />

OVS compensation. LMC compensation is carried out at the arc starting<br />

point.<br />

OVS compensation<br />

LMC compensation<br />

Cutting direction<br />

Work<br />

5 - 25


5. Adjustment<br />

5-3-6 Improvement of characteristics during acceleration/deceleration<br />

(1) SHG control (option function)<br />

Because SHG control has a smoother response during acceleration/deceleration than conventional<br />

position controls, the acceleration/deceleration torque (current FB) has more ideal output<br />

characteristics (A constant torque is output during acceleration/deceleration.) The peak torque is<br />

kept low by the same acceleration/deceleration time constant, enabling the time constant to be<br />

shortened.<br />

Refer to item "(3) SHG control" in section "5-2-3 Position loop gain" for details on setting SHG<br />

control.<br />

3000<br />

Speed command<br />

(r/min)<br />

0<br />

Time<br />

-3000<br />

200<br />

Current FB<br />

(stall current%)<br />

0<br />

Time<br />

-200<br />

Acceleration/deceleration characteristics during conventional control<br />

3000<br />

Speed command<br />

(r/min)<br />

0<br />

Time<br />

-3000<br />

200<br />

Current FB<br />

(stall current %)<br />

0<br />

Time<br />

-200<br />

Acceleration/deceleration characteristics during SHG control<br />

No. Abbrev. Parameter name<br />

SV003<br />

(SV049)<br />

SV004<br />

(SV050)<br />

SV057<br />

(SV058)<br />

SV008<br />

SV015<br />

PGN1<br />

(PGN1sp)<br />

Setting<br />

ratio<br />

Setting example Explanation Setting<br />

range<br />

Position loop gain 1 1 23 26 33 38 47 60 70 80 90 100<br />

1 to 400<br />

(rad/s)<br />

Always set a<br />

PGN2<br />

8<br />

Position loop gain 2<br />

62 70 86 102 125 160 186 213 240 266 combination of 0 to 999<br />

(PGN2sp)<br />

3<br />

3 parameters.<br />

SHGC<br />

(SHGCsp) SHG control gain 6 140 160 187 225 281 360 420 480 540 600 0 to 1200<br />

VIA<br />

FFC<br />

Speed loop leading<br />

compensation<br />

Acceleration feed<br />

forward gain<br />

Set 1900 as a standard value during SHG control. 1 to 9999<br />

Set 100 as a standard value during SHG control. 0 to 999<br />

5 - 26


5. Adjustment<br />

(2) Acceleration feed forward<br />

Vibration may occur at 10 to 20 Hz during acceleration/deceleration when a short time constant of<br />

30 ms or less is applied, and a position loop gain (PGN1) higher than the general standard value or<br />

SHG control is used. This is because the torque is insufficient when starting or when starting<br />

deceleration, and can be resolved by setting the acceleration feed forward gain (SV015 (FFC)).<br />

This is also effective in reducing the peak current (torque).<br />

While measuring the current command waveform, increase FFC by 50 to 100 at a time and set the<br />

value where vibration does not occur.<br />

Current<br />

command<br />

(%)<br />

200<br />

100<br />

0<br />

200<br />

100<br />

0<br />

0<br />

20<br />

40 60<br />

Time (ms)<br />

80<br />

100<br />

0<br />

20<br />

40 60<br />

Time (ms)<br />

80<br />

100<br />

No FFC setting<br />

With FFC setting<br />

Acceleration feed forward gain means that the speed loop gain during acceleration/deceleration is<br />

raised equivalently. Thus, the torque (current command) required during acceleration/deceleration<br />

starts sooner. The synchronization precision will improve if the FFC of the delayed side axis is<br />

raised between axes for which high-precision synchronous control (such as synchronous tapping<br />

control and superimposition control).<br />

No. Abbrev. Parameter name Unit Explanation Setting range<br />

SV015 FFC Acceleration feed<br />

forward gain<br />

% The standard setting value is 0. To improve the acceleration/<br />

deceleration characteristics, increase the value by 50 to 100 at<br />

a time. During SHG control, the standard setting value is 100.<br />

1 to 999<br />

POINT<br />

Overshooting occurs easily when a value above the standard value is set during<br />

SHG control.<br />

5 - 27


5. Adjustment<br />

(3) Inductive voltage compensation<br />

The current loop response is improved by compensating the back electromotive force element<br />

induced by the motor rotation. This improved the current command efficiency, and allows the<br />

acceleration/deceleration time constant to the shortened.<br />

<br />

1. While accelerating/decelerating at rapid traverse, adjust the inductive voltage compensation<br />

gain (SV047 (EC)) so that the current FB peak is a few % smaller than the current command<br />

peak.<br />

3000<br />

Speed command<br />

(r/min)<br />

0<br />

-3000<br />

Current<br />

command<br />

(Rated current %)<br />

200<br />

0<br />

-200<br />

With inductive<br />

voltage<br />

compensation<br />

No inductive voltage<br />

compensation<br />

Time<br />

Time<br />

Inductive voltage compensation<br />

No. Abbrev. Parameter name Unit Explanation Setting range<br />

SV047 EC Inductive voltage<br />

compensation gain<br />

% Set 100 as a standard. Lower the gain if the current FB peak<br />

exceeds the current command peak.<br />

0 to 200<br />

POINT<br />

If the current FB peak becomes larger than the current command peak (over<br />

compensation), an overcurrent (alarm 3A) will occur easily. Note that over<br />

compensation will occur easily if the load inertia is large.<br />

5 - 28


5. Adjustment<br />

5-4 Settings for emergency stop<br />

5-4-1 Vertical axis drop prevention control<br />

The vertical axis drop prevention control is a function that prevents the vertical axis from dropping due to<br />

a delay in the brake operation when an emergency stop occurs. The no-control time until the brakes<br />

activate can be eliminated by delaying ready OFF from the servo drive unit by the time set in the<br />

parameters when an emergency stop occurs.<br />

(1) Operating conditions<br />

The emergency stop signal has been input.<br />

The NC power has been turned OFF.<br />

An alarm has occurred. (This differs according to the occurring alarm. Refer to "Chapter 8<br />

Troubleshooting" for details.)<br />

CAUTION<br />

1. This function does not prevent dropping of the axis under all conditions.<br />

2. The drop prevention function may not activate if the power fails or if a spindle<br />

alarm (overheating, etc.) occurs. To always prevent the vertical axis from<br />

dropping, install a balance unit, etc., on the machine.<br />

(2) Function outline and parameter settings<br />

While stopped ....... The drive unit enters the ready OFF state after the vertical axis drop prevention<br />

time (SV048) has elapsed.<br />

While moving......... Deceleration stop is carried out, and the drive unit enters the ready OFF state<br />

after the larger value of the vertical axis drop prevention time (SV048) and<br />

emergency stop maximum delay time (SV055) has elapsed.<br />

No. Abbrev. Parameter name Explanation Setting range<br />

SV048 EMGrt Vertical axis drop<br />

prevention time<br />

SV055 EMGx Gate cutoff<br />

maximum delay<br />

time during<br />

emergency stop<br />

SV056 EMGt Deceleration control<br />

time constant at<br />

emergency stop<br />

Set the time to delay the ready OFF when an emergency stop<br />

occurs. Set a value larger than the brake activation time.<br />

The set time will not be assured if the power supply to the power<br />

supply unit is cut off.<br />

Set the maximum ready OFF delay time.<br />

This is normally set to the same value as SV048.<br />

To turn ready OFF after a deceleration stop, set the same value as<br />

SV056. Note that this value is valid if SV056 is larger than SV048.<br />

When a value smaller than SV048 is input, the same value as<br />

SV048 will be automatically set.<br />

The set time will not always be assured if the power supply to the<br />

power supply unit is cut off.<br />

Deceleration stop will be carried out if moving when SV048 is set,<br />

so set that deceleration stop time constant.<br />

Normally set the same value as the rapid traverse time constant.<br />

When this parameter is set, a constant inclination direct<br />

deceleration stop control will be carried out at emergency stop.<br />

A step stop (dynamic brake operation) will be carried out when this<br />

parameter is set to "0".<br />

0 to 2000<br />

(ms)<br />

0 to 2000<br />

(ms)<br />

0 to 2000<br />

(ms)<br />

CAUTION<br />

1. The drop prevention function will be invalidated if SV048 and SV055 are both<br />

set to "0".<br />

2. SV048 and SV055 are set for each axis. However, when using a 2-axis drive<br />

unit, the value for the axis with the larger setting will be valid.<br />

3. When only SV048 is set, step stop will be used for deceleration stop and the<br />

machine could vibrate. Thus, set the rapid traverse time constant in SV055.<br />

5 - 29


5. Adjustment<br />

Emergency stop<br />

Emergency stop<br />

Brake activation<br />

Brake activation<br />

Servo ON<br />

Tbd<br />

Tbd: Brake activation<br />

delay time<br />

Servo ON<br />

Tbd<br />

Tbd: Brake activation<br />

delay time<br />

EMGrt<br />

EMGrt > Tbd<br />

Motor speed<br />

0<br />

Rapid<br />

traverse<br />

rate<br />

Command<br />

Actual<br />

operation<br />

EMGt<br />

Detect in-position<br />

and turn servo OFF<br />

EMGx<br />

Drop prevention function sequence at<br />

emergency stop<br />

Deceleration stop function sequence<br />

at emergency stop<br />

(3) Adjustment procedures<br />

• Set the drop prevention function parameters in the vertical axis servo parameters SV048, 055,<br />

and 056.<br />

(a) Carry out emergency stops with SV048 (EMGrt) for the vertical axis set to 50, 100, etc., and<br />

use the smallest drop amount value on the NC screen for the setting value. (Several um will<br />

remain due to the brake play.)<br />

(b) Set SV056 (EMGt). This is normally set to the same value as the rapid traverse time<br />

constant.<br />

(c) Set SV055 (EMGx). This is normally set to the same value as SV048. To turn ready OFF<br />

after a deceleration stop, set the same value as SV056 (EMGt). Note that this value is valid if<br />

SV056 (EMGt) is larger than SV048 (EMGrt).<br />

• If there is another axis (servo/spindle unit) between the vertical axis and power supply unit, set<br />

that axis to the same setting values (SV048, 055, 056) as the vertical axis. (Set the largest value<br />

if there are several vertical axes.)<br />

If the other axis is a spindle, set the spindle parameter SP033 bit F to "1".<br />

MDS-CH-V1<br />

(vertical axis)<br />

CN1A<br />

CN1B<br />

MDS-CH-V1/V2/SP[ ]<br />

(other axis)<br />

CN1A<br />

CN1B<br />

MDS-CH-CV<br />

CN4<br />

CN4<br />

CN4<br />

• If the 2-axis drive unit is an axis controlling a vertical axis or the power supply unit, set the servo<br />

parameters SV048, 055, and 056 for both the L and M axes.<br />

The parameter setting section differs for each system, so change the standard parameter value.<br />

5 - 30


5. Adjustment<br />

5-4-2 Deceleration control<br />

If the deceleration stop function is validated, the MDS-CH-V1/V2 servo drive unit will decelerate to stop<br />

the motor according to the set time constants. After stopping, zero-speed state is immediately notified<br />

and the dynamic brakes will be applied.<br />

If an emergency stop factor (external emergency stop, malfunction in unit, etc.) occurs, operation will be<br />

stopped with the dynamic brakes.<br />

<br />

1. When the load inertia is large, deceleration stop can be executed at a shorter time than the dynamic<br />

brakes.<br />

(The stop time for the normal acceleration/deceleration time constants will be achieved.)<br />

(1) Setting the deceleration control time constant<br />

Set the time for stopping from the rapid traverse rate (rapid: axis specification parameter) in the<br />

deceleration time constant for emergency stop (SV056: EMGt).<br />

If linear acceleration/deceleration is selected for rapid traverse, the same value as the acceleration/<br />

deceleration time constant (G0tL) will be the standard value. If another acceleration/deceleration<br />

pattern is selected, set rapid traverse to linear acceleration/deceleration and adjust to a suitable<br />

acceleration/deceleration time constant. Use that value as the standard value.<br />

<br />

When an emergency stop occurs, the motor will decelerate at the same inclination from each<br />

speed.<br />

RAPID<br />

Emergency stop occurrence<br />

Constant inclination<br />

deceleration<br />

Motor speed<br />

Dynamic brake<br />

CN20 connector (DBU)<br />

Dynamic brake control output<br />

OFF<br />

ON<br />

OFF<br />

ON<br />

EMGt<br />

Time<br />

No. Abbr. Parameter name Unit Explanation Setting range<br />

SV055 EMGx Gate cutoff<br />

maximum delay<br />

time during<br />

emergency stop<br />

SV056 EMGt Deceleration<br />

control time<br />

constant<br />

ms<br />

ms<br />

This is normally set to the same value as SV056 ENGt.<br />

Set "0" when not using the deceleration stop function or<br />

drop prevention function.<br />

Set the time to stop from the rapid traverse rate (rapid).<br />

As the standard, set the same value as the rapid traverse<br />

acceleration/deceleration time constant (G0tL). Set "0"<br />

when not using the deceleration stop function.<br />

0 to 20000<br />

(ms)<br />

0 to 20000<br />

(ms)<br />

POINT<br />

1. Deceleration control will not take place when a servo alarm, for which the<br />

stopping method is dynamic, occurs. The motor will stop with dynamic<br />

braking regardless of the parameter setting.<br />

2. If the power fails and the deceleration time constant is set to a relatively long<br />

time, the braking method may change from deceleration control to dynamic<br />

braking due to a drop in the bus voltage in the drive unit.<br />

CAUTION<br />

If the deceleration control time constant (EMGt) is set to a value longer than the<br />

acceleration/deceleration time constant, the overtravel point (stroke end point)<br />

may be exceeded.<br />

Take care as the axis could collide with the machine end.<br />

5 - 31


5. Adjustment<br />

5-4-3 Dynamic braking stop<br />

Dynamic braking stop takes place when the deceleration stop function is not used.<br />

With dynamic braking stop, the dynamic brakes activate simultaneously with the occurrence of an<br />

emergency stop. The motor brake control output also activates simultaneously.<br />

Zero-speed state is immediately notified to the NC when dynamic braking stop takes place.<br />

Emergency stop occurrence<br />

Motor speed<br />

Dynamic brake<br />

(Built-in for 9kW and smaller units)<br />

CN20 connector (DBU)<br />

Dynamic brake control output<br />

OFF<br />

ON<br />

OFF<br />

ON<br />

Time<br />

CAUTION<br />

The dynamic brakes cannot be used for normal braking.<br />

If the dynamic brakes activate continuously, the internal regenerative resistor<br />

could burn, so always eliminate the cause of the emergency stop before<br />

resuming operation.<br />

5 - 32


5. Adjustment<br />

5-5 Collision detection function<br />

The purpose of the collision detection function is to quickly detect a collision and decelerate to a stop.<br />

This allows damage to the head to the machine to be reduced.<br />

Impact during a collision cannot be prevented even when the collision detection function is used, so this<br />

function does not guarantee that the machine will not break and does not guarantee the machine fault or<br />

machine accuracy after a collision. Add a mechanism to prevent machine collision, etc., on the machine<br />

side if necessary.<br />

Collisions are detected using the following two methods. In either method, a servo alarm will occur after<br />

deceleration stop.<br />

(1) Collision detection method 1<br />

The required torque is calculated from the position command issued from the NC. The disturbance<br />

torque is calculated from the difference with the actual torque. When this disturbance torque<br />

exceeds the collision detection level set with the parameters, the axis will decelerate to a stop at the<br />

driver unit’s maximum torque. After decelerating to a stop, the alarm will occur, and the system will<br />

stop.<br />

Method 1 only operates when SHG control is being used. (If acceleration/deceleration operation is<br />

carried out when not using SHG control, a load error alarm (58/59) will immediately occur.)<br />

Method 1 enables independent setting of the collision detection levels for rapid traverse and cutting<br />

feed. The collision detection level during cutting feed is set at 0 to 7-fold (integer magnification) of<br />

the collision detection level during rapid traverse. When 0-fold is set, collision detection method 1<br />

will not function during cutting feed.<br />

(2) Collision detection method 2<br />

When the current command reaches the drive unit's maximum current, the axis will decelerate to a<br />

stop at the drive unit's maximum torque. After decelerating to a stop, the alarm will occur, and the<br />

system will stop.<br />

Note that this method can be ignored by setting the servo parameter SV035 (SSF4/cl2n) to "1".<br />

Method 2 detection range<br />

Method 1 detection range<br />

Torque<br />

Actual tolerable<br />

torque range<br />

offset<br />

Estimated torque<br />

Maximum drive<br />

unit capacity<br />

G0 modal collision<br />

detection level<br />

Speed<br />

Friction torque<br />

Method 1 detection range<br />

Method 2 detection range<br />

G0 modal<br />

Maximum driver<br />

capacity<br />

G1 modal<br />

G1 modal collision<br />

detection level<br />

5 - 33


5. Adjustment<br />

<br />

1. Confirm that SHG control is being used.<br />

2. SV032 (TOF) Torque offset<br />

Using jog, etc., move the axis to be adjusted at approx. F1000mm/min, and check the load<br />

current on the [I/F Diagnosis Screen/Servo Monitor]. If the current load is positive during<br />

movement, check the maximum value. If the current load is negative during movement, check<br />

the minimum value. Set the average value of the + and - directions.<br />

3. SV045 (TRUB) Friction torque<br />

Using jog, etc., move the axis to be adjusted at approx. F1000mm/min in both directions, and<br />

check the load current on the [I/F Diagnosis Screen/Servo Monitor]. Subtract the current load<br />

value during movement in the - direction from the current load value during movement in the +<br />

direction, and set the absolute position of that value divided by 2.<br />

4. SV059 (TCNV) Torque estimated gain<br />

Set SV035 (SSF4/clt) (bit F) of the axis to be adjusted to "1".<br />

Using jog, etc., move the axis to be adjusted at the maximum rapid traverse rate in both<br />

directions until the MPOF display on the [I/F Diagnosis Screen/Servo Monitor] stabilizes.<br />

Set the MPOF value displayed on the [I/F Diagnosis Screen/ Servo Monitor].<br />

Return the SV035 (SSF4/clt) (bit F) setting to "0".<br />

5. SV035 (SSF4/cl2n) (bit B)<br />

Set this bit to "1" when the acceleration/deceleration time constant is short and the current is<br />

limited.<br />

6. SV060 (TLMT) Collision detection level (for method 1, G0 modal)<br />

Initially set to "100". (When SV035 (SSF4/clet) is set to "1", the MPOF value shows the<br />

estimated disturbance torque peak value for the last two seconds, so this can be used as a<br />

reference when setting. However, this value is averaged, so initially set a value approx. double<br />

the display value.)<br />

Carry out no-load operation at the maximum rapid traverse rate. If it appears an alarm will occur,<br />

raise the setting value in increments of 20.<br />

If it appears an alarm will not occur, lower the setting value in increments of 10.<br />

Set a value 1.5-fold of the limit where an alarm does not occur.<br />

7. SV035 (SSF4/clG1) (bit C to E)<br />

Divide the maximum cutting load by the SV060 (TLMT) setting value. (Round up values below<br />

the decimal.) Set that value.<br />

(Example) When the maximum cutting load is 200%, and the SV060 (TLMT) setting value is 80%.<br />

200/80 = 2.5 → The setting value is rounded up to "3", so 3xxx is set in SV035 (SSF4).<br />

No. Abbr. Parameter name Explanation<br />

SV035 SSF4 Special servo Set the collision detection with the following parameter.<br />

function selection 4<br />

F E D C B A 9 8 7 6 5 4 3 2 1 0<br />

clt clG1 cl2n clet cltq iup tdt<br />

bit Meaning when set to 0 Meaning when set to 1<br />

8,9 cltq Set the deceleration torque for when a collision is detected.<br />

The past two-second estimated<br />

A clet Setting for normal use<br />

disturbance torque peak value is<br />

displayed at MPOF on the Servo<br />

Monitor screen.<br />

B cl2n Setting for normal use<br />

Collision detection method 2 is<br />

invalidated.<br />

Set the collision detection level for the collision detection method<br />

1, G1 modal.<br />

When 0 is set<br />

C<br />

D<br />

E<br />

clG1<br />

: The method 1, G1 modal collision detection<br />

will not be carried out.<br />

When 1 to 7 is set : The method 1, G0 modal collision detection<br />

level (SV060 (TLMT)) will be multiplied by the<br />

set value, and the value is set as the level for<br />

the method 1, G1 modal.<br />

F clt Setting for normal use<br />

The guide value for the SV059<br />

(TCNV) setting value is displayed<br />

at MPOF on the Servo Monitor<br />

screen.<br />

5 - 34


5. Adjustment<br />

No. Abbr. Parameter name Unit Explanation Setting range<br />

SV032 TOF Torque offset Stall %<br />

(rated<br />

current %)<br />

SV045 TRUB Current<br />

compensation/<br />

Frictional torque<br />

SV059 TCNV Torque estimated<br />

gain<br />

SV060 TLMT G0 collision<br />

detection level<br />

Stall %<br />

(rated<br />

current %)<br />

Stall %<br />

(rated<br />

current %)<br />

Set the unbalance torque amount of axes having an<br />

unbalance torque such as vertical axes as a percentage<br />

(%) of the stall rated current.<br />

When using the collision detection function, set the<br />

friction torque as a percentage of the stall rated current.<br />

Use the eight low-order bits.<br />

Set "0" when not using the collision detection function.<br />

When using the collision detection function, set the<br />

estimated torque gain.<br />

A guideline setting value can be displayed in MPOF on the<br />

Servo Monitor screen by setting SV035 (SSF4/clt) to "1".<br />

Set "0" when not using the collision detection function.<br />

When using the collision detection function, set the<br />

collision detection level during method G0 modal as a<br />

percentage of the stall rated current.<br />

Set "0" when not using the collision detection function.<br />

–100 to 100<br />

0 to 100<br />

0 to 32767<br />

0 to 100<br />

CAUTION<br />

1. Even when this function is valid, complete prevention of collisions may not be<br />

possible due to NC faults or the machine structure.<br />

2. If the collision detection level is set very close to its limit, a collision may be<br />

mistakenly detected in a normal status, so set a slightly larger collision<br />

detection level.<br />

3. After adjusting the machine for maintenance, etc., or replacing the motor or<br />

detector, adjust the parameters related to collision detection again.<br />

4. In particular, the SV059 (TCNV) torque estimated gain must be changed<br />

when the detector resolution changes due to detector replacement, or when<br />

the position control system is changed (when the closed loop and<br />

semi-closed loop are changed, etc.).<br />

5 - 35


5. Adjustment<br />

5-6 Spindle adjustment data output function (D/A output)<br />

The spindle drive unit has a function to D/A output various control data.<br />

The drive unit's status and each data can be confirmed using this D/A output function.<br />

5-6-1 D/A output specifications<br />

Item<br />

Explanation<br />

No. of channels<br />

2ch<br />

Output cycle 444µs<br />

Output precision<br />

8bit<br />

Output voltage range 0 to +10V<br />

Output magnification setting ±1/256 to ±128-fold<br />

Output pin<br />

Function<br />

CN9 connector<br />

Channel 1 = Pin 9<br />

Channel 2 = Pin 19<br />

GND = Pins 1, 11<br />

Phase current feedback output function<br />

U phase current FB: pin 7<br />

V phase current FB: pin 17<br />

CN9<br />

20 10<br />

11 1<br />

Speedometer<br />

5-6-2 Parameter settings<br />

Each channel's data number and output magnification are set with the following parameters.<br />

No. Abbr. Parameter name Details<br />

SP253<br />

SP254<br />

SP255<br />

SP256<br />

DA1N0<br />

DA2N0<br />

DA1MPY<br />

DA2MPY<br />

D/A output channel<br />

1 data number<br />

D/A output channel<br />

2 data number<br />

D/A output channel<br />

1 magnification<br />

D/A output channel<br />

2 magnification<br />

Set the output data number for channel 1 of the D/A output function.<br />

* When this parameter is set to "0", the speed meter will be output.<br />

Refer to section "5-6-3" for settings other than "0".<br />

Set the output data number for channel 2 of the D/A output function.<br />

* When this parameter is set to "0", the load meter will be output.<br />

Refer to section "5-6-3" for settings other than "0".<br />

Set the data magnification for channel 1 of the D/A output function.<br />

* The magnification is the setting value divided by 256-fold.<br />

Note that if "0" is set, the magnification will be 1-fold.<br />

Set the data magnification for channel 2 of the D/A output function.<br />

* The magnification is the setting value divided by 256-fold.<br />

Note that if "0" is set, the magnification will be 1-fold.<br />

5-6-3 Output data settings<br />

Set the No. of the data to be output in SP253 and SP254.<br />

A correlation of the output data and the data No. is shown below.<br />

* The values in brackets indicate the conversion value for the output voltage 1V change. (Note that this<br />

is when the magnification is set to 1-fold.)<br />

Data No.<br />

CH1<br />

CH2<br />

(setting value) Output data Units Output data Units<br />

0 (Normal) Speedometer output Maximum speed at 10V (Note 2) Load meter output 120% load at 10V<br />

2 Current command<br />

When the actual data is 4096, the current command data is regarded<br />

(Note 1)<br />

as 100%. [0.625%/V]<br />

3 Current feedback<br />

When the actual data is 4096, the current feedback data is regarded<br />

(Note 1)<br />

as 100%. [0.625%/V]<br />

4 Speed feedback Actual data r/min [25.6r/min/V]<br />

6 Position droop low-order<br />

7 Position droop high-order<br />

8 Position F∆t low-order<br />

9 Position F∆t high-order<br />

10 Position command low-order<br />

11 Position command high-order<br />

12 Feedback position low-order<br />

13 Feedback position high-order<br />

80 Control input 1<br />

81 Control input 2<br />

82 Control input 3<br />

83 Control input 4<br />

84 Control output 1<br />

85 Control output 2<br />

86 Control output 3<br />

87 Control output 4<br />

Interpolation units (When the actual data is 23040000, the position droop data is<br />

regarded as 360°.) [low-order: 0.0004°/V, high-order: 26.2°/V]<br />

Interpolation units/NC communication cycle<br />

[low-order: 0.0004°/V, high-order: 26.2°/V]<br />

Interpolation units (When the actual data is 23040000, the position command data<br />

is regarded as 360°.) [low-order: 0.0004°/V, high-order: 26.2°/V]<br />

Interpolation units (When the actual data is 23040000, the feedback position data<br />

is regarded as 360°.) [low-order: 0.0004°/V, high-order: 26.2°/V]<br />

Bit correspondence<br />

Bit correspondence<br />

Note 1) The spindle motor's 30-minute rated output is 100%.<br />

Note 2) The maximum speed (motor rotation speed) at the speedometer 10V output can be changed with parameter "SP249".<br />

5 - 36


5. Adjustment<br />

5-6-4 Setting the output magnification<br />

Set the output magnification of the data to be output in SP255 and SP256.<br />

DATA = actual data ×<br />

SP255 or SP256<br />

Expression <br />

256<br />

The output data has the D/A output specifications shown in "Fig. 1" below.<br />

* When the data is "0", the output will be 5V. (0 offset: 5V)<br />

When the maximum data "127" is set, the output will be 10V. When the minimum data "–128" is set, the<br />

output will be 0V.<br />

(Note) The speedometer output and load meter output data will have the D/A output specifications<br />

shown in "Fig. 2" below.<br />

+10V<br />

+10V<br />

+5V<br />

+5V<br />

DATA<br />

-128 0 +127<br />

+127 +255<br />

Fig. 1 Fig. 2<br />

DATA<br />

(Example 1) Current command, current feedback<br />

The data is regarded as 100% when the actual data is 4096.<br />

Therefore, for example, the actual data is output as shown below during +120% current<br />

feedback.<br />

Actual data = 4096 × 1.2 = 4915<br />

If parameter SP255 (SP256) is set to "256", or if the magnification is set to 1-fold, the D/A<br />

output voltage will be as follows according to Expression .<br />

DATA = 4915 > +128<br />

The D/A output maximum voltage value will be exceeded. Thus, in this case, parameter<br />

SP255 (SP256) will be set in the following manner.<br />

DATA = 4915 ∗ {setting value} / 256 < 128<br />

Thus, {setting value} < 6.666.... (= 128 ∗ 256/4915), and the data can be confirmed with<br />

the SP255 (SP254) setting value "6".<br />

At this time, the D/A output voltage value will be:<br />

D/A output voltage = 5V + {4915 × 6/256 × (5V/128)} = 9.5V.<br />

An example of the waveform is shown below.<br />

10<br />

133%<br />

9.5V 120%<br />

D/A output voltage (V)<br />

(current command)<br />

5<br />

0%<br />

Current command<br />

conversion value<br />

(%)<br />

Time<br />

0<br />

Example of current command waveform<br />

5 - 37<br />

–133%


5. Adjustment<br />

(Example 2) Speed Feedback<br />

The data unit is r/min.<br />

Thus, if the motor is rotating at +2000r/min, the actual data "2000" will be output.<br />

If parameter SP255 (SP256) is set to "256", or if the magnification is set to 1-fold, the D/A<br />

output voltage will exceed the maximum value (DATA = 2000 > +128).<br />

Thus, in this case, parameter SP255 (SP256) should be set as follows.<br />

DATA = 2000 ∗ {setting value} / 256 < 128<br />

Thus, {setting value} < 16.384 (= 128 ∗ 256/2000)<br />

The data can be confirmed by setting SP255 (SP254) to "16".<br />

At this time, the D/A output voltage value (= 5V + {2000 × 16/256 × (5V/128)}) will be<br />

9.88V.<br />

2000<br />

10V<br />

Speed FB<br />

conversion value<br />

(r/min)<br />

0<br />

Time<br />

5V<br />

D/A output voltage (V)<br />

(Speed FB)<br />

-2000<br />

120<br />

0V<br />

Current command<br />

(rated current %)<br />

0<br />

-120<br />

Time<br />

Example of speed/current command waveform during acceleration/deceleration<br />

(Example 3) Position droop<br />

The data unit is a value equivalent to 360° when the actual data is 23040000.<br />

Thus, when the position droop is +0.1 degrees, the actual data 0.1 × 23040000/360 =<br />

6400 will be output.<br />

If parameter SP255 (SP256) is set to "256", or if the magnification is set to 1-fold, the D/A<br />

output voltage will exceed the maximum value (DATA = 6400 > +128).<br />

Thus, in this case, parameter SP255 (SP256) should be set as follows.<br />

DATA = 6400 ∗ {setting value} / 256 < 128<br />

Thus, {setting value} < 5.12 (= 128 ∗ 256/6400)<br />

The data can be confirmed by setting SP255 (SP256) to "5".<br />

At this time, the D/A output voltage value (= 5V + {6400 × 5/256 × (5V/128)}) will be<br />

9.88V.<br />

5 - 38


5. Adjustment<br />

(Example 4) Confirm the orientation complete signal with the control output 4L.<br />

The data unit is bit corresponding data.<br />

Refer to the section "1.1" for the meanings of the control output 4L bit corresponding<br />

signals.<br />

The orientation complete signal corresponds to the control output 4L/bit 4.<br />

Thus, if the orientation complete signal is ON for example, bit 4 will be set to "1", and the<br />

actual data 16 (=2 4 ) will be output.<br />

If parameter SP255 (SP256) is set to "256", or if the magnification is set to 1-fold, the D/A<br />

output voltage will be less than the maximum value (DATA = 16 < +128), so the data can<br />

be confirmed.<br />

The D/A output voltage value (= 5V + {16 × 256/256 × (5V/128)}) will be 5.625V.<br />

Note that if bits other than bit 4 are ON, the voltage of that bits will be added to the value<br />

6.25V above, when measuring the actual orientation complete signal, check with the<br />

(5.625V-5V) = 0.625V changed voltage.<br />

(Note) When orientation is completed, indexing position complete (bit 7) will turn ON<br />

simultaneously, so the actual data = 128 (=2 7 ) will be added.<br />

* D/A output voltage = 5V + {(16 + 128) × 256/256 × (5V/128)} = 10.625V<br />

[Reference]<br />

If 10V is exceeded, as explained above, the data will overflow, so the actual voltage will<br />

be (= calculated D/A voltage – 10∗n: n is the maximum integer that establishes a<br />

positive value in the right side of the expression).<br />

Example: When above indexing position complete signal is added<br />

V = 10.625 – 10∗1 = 0.625 (V)<br />

Orientation start<br />

Orientation speed<br />

When orientation complete<br />

signal turns OFF<br />

Motor speed<br />

0<br />

Time<br />

10V<br />

Orientation complete<br />

signal<br />

OFF<br />

ON<br />

5.625V<br />

5V<br />

0.625V<br />

D/A output voltage (V)<br />

(Speed FB)<br />

Orientation time<br />

0V<br />

5 - 39


5. Adjustment<br />

5-7 Spindle adjustment<br />

The MDS-CH-SP[ ] spindle drive unit has a function to D/A output various control data.<br />

The drive unit's status and each data can be confirmed using this D/A output function.<br />

5-7-1 Items to check during trial operation<br />

Directly couple the motor and machine, and check the control status during machine run-in.<br />

(1) Check that the command speed and actual speed match.<br />

(a) If the speeds do not match, check spindle parameters SP000 to SP384 again.<br />

(Especially check SP017, SP034, SP040 and SP257 to SP384.)<br />

(b) Check the NC parameters Slimit1 to 4, Smax 1 to 4, and Smini.<br />

(2) Is the rotation smooth?<br />

(3) Is there any abnormal noise?<br />

(4) Are there any abnormal odors?<br />

(5) Has the bearing temperature risen abnormally?<br />

5-7-2 Adjusting the spindle rotation speed<br />

The rotation speed is received as digital signals from the NC, and thus does not need to be adjusted. If<br />

the spindle rotation speed does not match the commanded value due to a dimensional error, such as<br />

the pulley diameter, adjust the parameters with the following method.<br />

1. Setting Slimit<br />

Slimit = (SP017 value) × (deceleration rate between motor and spindle)<br />

2. Set the S command to half of the maximum spindle rotation speed, and then measure the spindle<br />

rotation speed.<br />

If the speeds do not match, change the Slimit value in small increments until the speed matches.<br />

3. Set the S command to the maximum spindle rotation speed, and check whether the spindle rotation<br />

speed matches.<br />

4. In machines involving gear changeover, etc., change the gears, and then adjust with steps 1. to 3.<br />

above.<br />

5-7-3 Adjusting the acceleration/deceleration<br />

Measure the acceleration/deceleration waveform using the "5-6. Spindle adjustment data output<br />

function (D/A output function)", and confirm that it is within ±15% of the theoretical<br />

acceleration/deceleration time. (Note: Refer to "5-7-8" for details on calculating the theoretical<br />

acceleration/deceleration time.) Adjust SP087 and SP088.<br />

(1) When acceleration/deceleration time do not match theoretical values<br />

• If there is an error in the motor shaft conversion load inertia calculation, these may not necessary<br />

match.<br />

Check load inertia again.<br />

• If the acceleration time is long and the deceleration time is short, the friction torque may be large.<br />

Check the load meter value (Spindle Monitor screen) at the maximum speed. If 10% or more, the<br />

friction torque may be relatively high. There may be mechanical friction such as bearing friction or<br />

timing belt friction. After running in the machine, measure the acceleration/deceleration time<br />

again.<br />

* If the acceleration/deceleration times do not match even when the above problems are not<br />

present, the spindle motor and spindle drive unit may not be the designated products, or one of<br />

the parameter settings may be incorrect. Check the spindle motor and drive unit models, and<br />

check the parameters again.<br />

(2) When the acceleration time is no problem but the deceleration time differs greatly from the<br />

acceleration time.<br />

Adjust the deceleration time as indicated on the next page.<br />

5 - 40


5. Adjustment<br />

Deceleration adjustment procedures<br />

Adjust SP087 as shown below so that the deceleration time is the same as the acceleration time.<br />

Initial setting value<br />

Speedometer display<br />

Max. r/min<br />

Torque limit<br />

100%<br />

Measure acceleration/<br />

deceleration waveform at<br />

spindle maximum speed<br />

command<br />

Ta<br />

Td<br />

0 r/min<br />

SP087<br />

SP088<br />

SP017<br />

Speed<br />

1.1 × Ta < Td<br />

Yes<br />

No<br />

0.95 × Ta > Td<br />

Yes<br />

No<br />

Set SP087 setting<br />

value to -5<br />

Set SP087 setting<br />

value to +5<br />

Measure acceleration/<br />

deceleration waveform at<br />

spindle maximum speed<br />

command<br />

Measure acceleration/<br />

deceleration waveform at<br />

spindle maximum speed<br />

command<br />

0.95 × Ta > Td<br />

Yes<br />

1.1 × Ta < Td<br />

Yes<br />

No<br />

No<br />

Set the SP087 value<br />

at this point.<br />

Variable current loop gain adjustment<br />

Adjust so that the current output to the spindle motor is stable. In most cases, the default value can<br />

be used. However, if fine vibration (hunting), etc., occurs at high speed regions, this must be<br />

adjusted.<br />

Operate at maximum<br />

speed<br />

Hunting { Abnormal<br />

high-frequency vibration }<br />

Yes<br />

No<br />

SP017<br />

Motor maximum<br />

speed<br />

SP067<br />

VIGWA<br />

SP068<br />

VIGWB<br />

SP069<br />

VIGN<br />

0 to 6000 0 0 0<br />

6001 to 8000 5000 8000 32<br />

8001 or more 5000 10000 32<br />

SP069 × (1/16)-fold<br />

Gain<br />

Decrease SP069 value<br />

in increments of -8.<br />

Groaning { Abnormal<br />

low-frequency vibration }<br />

Yes<br />

No<br />

1-fold<br />

SP067<br />

SP068<br />

SP017<br />

Speed<br />

Increase SP069 value<br />

in increments of +8.<br />

Maximum speed →<br />

decelerate<br />

Alarm 32 or 75 occurs.<br />

Yes<br />

Increase or decrease SP069<br />

value by +8 or -8 units<br />

No<br />

Set the SP069<br />

value at this point.<br />

5 - 41


5. Adjustment<br />

5-7-4 Adjusting the orientation<br />

Orientation is not possible if the gear ratio between the spindle motor and spindle exceeds 1:31.<br />

(1) Preparing to adjust the orientation<br />

1) Motor built-in encoder parameters<br />

No. Abbr. Parameter name Initial value<br />

SP001 PGM Motor built-in encoder orientation position loop gain 100<br />

SP004 OINP Orientation in-position width 16<br />

SP005 OSP Orientation mode changing speed limit value 0<br />

SP006 CSP Orientation mode deceleration rate 20<br />

SP007 OPST Position shift amount for orientation 0<br />

SP025 GRA1 Spindle gear teeth count 1 1<br />

SP026 GRA2 Spindle gear teeth count 2 1<br />

SP027 GRA3 Spindle gear teeth count 3 1<br />

SP028 GRA4 Spindle gear teeth count 4 1<br />

SP029 GRB1 Motor shaft gear teeth count 1 1<br />

SP030 GRB2 Motor shaft gear teeth count 2 1<br />

SP031 GRB3 Motor shaft gear teeth count 3 1<br />

SP032 GRB4 Motor shaft gear teeth count 4 1<br />

SP097 SPECO Orientation specification 0000<br />

SP098 VGOP Speed loop gain proportional term in orientation mode 63<br />

SP099 VGOI Speed loop gain integral term in orientation mode 60<br />

SP100 VGOD Speed loop gain delay advance term in orientation mode 15<br />

SP105 IQGO Current loop gain magnification 1 in orientation mode 100<br />

SP106 IDGO Current loop gain magnification 2 in orientation mode 100<br />

SP107 CSP2 Deceleration rate 2 in orientation mode 0<br />

SP108 CSP3 Deceleration rate 3 in orientation mode 0<br />

SP109 CSP4 Deceleration rate 4 in orientation mode 0<br />

SP119 MPGH Orientation position loop gain H coil magnification 0<br />

SP120 MPGL Orientation position loop gain L coil magnification 0<br />

SP121 MPCSH Orientation deceleration rate H coil magnification 0<br />

SP122 MPCSL Orientation deceleration rate L coil magnification 0<br />

[Preparation]<br />

1) Confirm that the parameters are set as shown above.<br />

Note: 1) Motor built-in encoder orientation is only possible when the spindle and motor are directly<br />

connected or are connected with gears (timing belt) at 1:1.<br />

The built-in encoder with Z-phase must be mounted in the motor being used.<br />

5 - 42


5. Adjustment<br />

2) Encoder orientation parameters<br />

No. Abbr. Parameter name Initial value<br />

SP002 PGE Encoder orientation position loop gain 100<br />

SP004 OINP Orientation in-position width 16<br />

SP005 OSP Orientation mode changing speed limit value 0<br />

SP006 CSP Orientation mode deceleration rate 20<br />

SP007 OPST Position shift amount for orientation 0<br />

SP025 GRA1 Spindle gear teeth count 1 1 to 32767<br />

SP026 GRA2 Spindle gear teeth count 2 1 to 32767<br />

SP027 GRA3 Spindle gear teeth count 3 1 to 32767<br />

SP028 GRA4 Spindle gear teeth count 4 1 to 32767<br />

SP029 GRB1 Motor shaft gear teeth count 1 1 to 32767<br />

SP030 GRB2 Motor shaft gear teeth count 2 1 to 32767<br />

SP031 GRB3 Motor shaft gear teeth count 3 1 to 32767<br />

SP032 GRB4 Motor shaft gear teeth count 4 1 to 32767<br />

SP096 EGRA Encoder gear ratio 0<br />

SP097 SPECO Orientation specification 0000<br />

SP098 VGOP Speed loop gain proportional term in orientation mode 63<br />

SP099 VGOI Speed loop gain integral term in orientation mode 60<br />

SP100 VGOD Speed loop gain delay advance term in orientation mode 15<br />

SP105 IQGO Current loop gain magnification 1 in orientation mode 100<br />

SP106 IDGO Current loop gain magnification 2 in orientation mode 100<br />

SP107 CSP2 Deceleration rate 2 in orientation mode 0<br />

SP108 CSP3 Deceleration rate 3 in orientation mode 0<br />

SP109 CSP4 Deceleration rate 4 in orientation mode 0<br />

SP119 MPGH Orientation position loop gain H coil magnification 0<br />

SP120 MPGL Orientation position loop gain L coil magnification 0<br />

SP121 MPCSH Orientation deceleration rate H coil magnification 0<br />

SP122 MPCSL Orientation deceleration rate L coil magnification 0<br />

[Preparation]<br />

1) The correct gear ratio (or pulley ratio) must be set<br />

from the motor shaft to the encoder rotation shaft.<br />

Confirm that the correct number of gear teeth is set in<br />

SP025 (GRA1) to SP032 (GRB4).<br />

SP025 (GRA1) to SP028 (GRA4) = A × C × E<br />

SP029 (GRB1) to SP032 (GRB4) = B × D × F<br />

Note: SP025 (GRA1) to SP032 (GRB4) may be set<br />

to the user settings, so correctly set according<br />

to the machine.<br />

2) Confirm that the parameters are set as shown above.<br />

Spindle<br />

A<br />

B<br />

A<br />

D<br />

C<br />

F<br />

Encoder<br />

E<br />

Spindle<br />

motor<br />

5 - 43


5. Adjustment<br />

3) Magnesensor orientation parameters<br />

No. Abbr. Parameter name Initial value<br />

SP001 PGM Magnetic sensor orientation position loop gain 100<br />

SP004 OINP Orientation in-position width 16<br />

SP005 OSP Orientation mode changing speed limit value 0<br />

SP006 CSP Orientation mode deceleration rate 20<br />

SP007 OPST Position shift amount for orientation 0<br />

SP025 GRA1 Spindle gear teeth count 1 1 to 32767<br />

SP026 GRA2 Spindle gear teeth count 2 1 to 32767<br />

SP027 GRA3 Spindle gear teeth count 3 1 to 32767<br />

SP028 GRA4 Spindle gear teeth count 4 1 to 32767<br />

SP029 GRB1 Motor shaft gear teeth count 1 1 to 32767<br />

SP030 GRB2 Motor shaft gear teeth count 2 1 to 32767<br />

SP031 GRB3 Motor shaft gear teeth count 3 1 to 32767<br />

SP032 GRB4 Motor shaft gear teeth count 4 1 to 32767<br />

SP097 SPECO Orientation specification 0000<br />

SP098 VGOP Speed loop gain proportional term in orientation mode 63<br />

SP099 VGOI Speed loop gain integral term in orientation mode 60<br />

SP100 VGOD Speed loop gain delay advance term in orientation mode 15<br />

SP105 IQGO Current loop gain magnification 1 in orientation mode 100<br />

SP106 IDGO Current loop gain magnification 2 in orientation mode 100<br />

SP107 CSP2 Deceleration rate 2 in orientation mode 0<br />

SP108 CSP3 Deceleration rate 3 in orientation mode 0<br />

SP109 CSP4 Deceleration rate 4 in orientation mode 0<br />

SP119 MPGH Orientation position loop gain H coil magnification 0<br />

SP120 MPGL Orientation position loop gain L coil magnification 0<br />

SP121 MPCSH Orientation deceleration rate H coil magnification 0<br />

SP122 MPCSL Orientation deceleration rate L coil magnification 0<br />

SP123 MGD0 Magnetic sensor output peak value Standard magnet = 542<br />

Compact magnet = 500<br />

SP124 MGD1 Magnetic sensor linear zone width Standard magnet = 768<br />

Compact magnet = 440<br />

SP125 MGD2 Magnetic sensor changeover point Standard magnet = 384<br />

Compact magnet = 220<br />

[Preparation]<br />

1) The correct gear ratio (or pulley ratio) must be set<br />

from the motor shaft to the magnetic sensor rotation<br />

shaft. Confirm that the correct number of gear teeth<br />

is set in SP025 (GRA1) to SP032 (GRB4).<br />

SP025 (GRA1) to SP028 (GRA4) = A × C × E<br />

SP029 (GRB1) to SP032 (GRB4) = B × D × F<br />

Spindle<br />

Note: 1) SP025 (GRA1) to SP032 (GRB4) may be set to the user settings, so correctly set<br />

according to the machine.<br />

2) Confirm that the parameters are set as shown above.<br />

B<br />

A<br />

D<br />

C<br />

F<br />

E<br />

Spindle<br />

motor<br />

5 - 44


5. Adjustment<br />

(2) General adjustment of orientation<br />

1) First confirm that the orientation command (ORC) is input while the machine is in the correct<br />

state, and that the orientation complete signal (ORCF) turns ON when there is even one<br />

unstable operation point. If the excessive error alarm (AL52) occurs, or if the operation does not<br />

stop and forward/reverse run is repeated at a low speed during magnetic sensor orientation,<br />

change the value set in SP097 (SPECO) bit-5 or -6. Refer to section 3) if the excessive error<br />

alarm is not eliminated even after changing this value.<br />

2) Adjust the position shift SP007 (OPST) value so that the machine stops at the target stop<br />

position. If the stop position command data is input from an external source during encoder or<br />

motor PLG orientation, the machine will stop as shown below according to the issued data<br />

regardless of the detector's installation direction. The 0° position shown below will be shifted by<br />

SP007 (OPST).<br />

0H<br />

(0°)<br />

A<br />

Encoder<br />

400H<br />

(90°)<br />

C00H<br />

(270°)<br />

A<br />

Spindle<br />

B<br />

A<br />

C<br />

D<br />

E<br />

F<br />

Spindle<br />

motor<br />

800H<br />

(180°)<br />

View A<br />

Note 1) The external stop position command data is read in at the rising edge of orientation start, so<br />

always change it before inputting the orientation start command. It will not be valid if<br />

changed after orientation starts.<br />

3) Adjusting the orientation time and vibration<br />

Normal rotation<br />

speed<br />

Orientation<br />

changeover<br />

speed<br />

Phenomenon<br />

Overtravels when<br />

stopping<br />

SP001/SP002<br />

Decrease the setting<br />

value<br />

Adjustment knack<br />

SP006<br />

Decrease the setting<br />

value<br />

Orientation time is<br />

long<br />

Increase the setting<br />

value<br />

Increase the setting<br />

value<br />

Hunting occurs when<br />

stopping<br />

Decrease the setting<br />

value<br />

Do not change<br />

Excessive error alarm<br />

occurs<br />

Decrease the setting<br />

value<br />

Decrease the setting<br />

value<br />

Whether to adjust SP001 (PGM) or SP002 (PGE) depends on the orientation method.<br />

SP006 (CSP) is adjusted after adjusting SP001 (PGM)/SP002 (PGE).<br />

To adjust the orientation time quickly for each gear, adjust SP107(CSP2) to SP109(CSP4) in the<br />

same manner.<br />

Similarly, when using the coil changeover motor, adjust SP119 (MPGH) to SP122 (MPCSL) to<br />

adjust the orientation time quickly for each coil.<br />

If the excessive error alarm (52) occurs at a gear ratio of 1:10 or more, and the state cannot be<br />

improved with the adjustments above, adjust SP005 (OSP).<br />

If the motor hunts during orientation stop, review the values set in SP001 (PGM) or SP002 (PGE).<br />

5 - 45


5. Adjustment<br />

(3) Adjusting the servo rigidity<br />

The cutting precision can be increased by raising the servo rigidity during orientation stop.<br />

1. Increase the SP001 (PGM) or SP002 (PGE) value to the degree that overtravel does not occur<br />

during orientation stop.<br />

2. Increase SP0098 (VGOP) and SP099 (VGOI) by the same amount to the degree that vibration<br />

does not occur.<br />

3. The servo rigidity can be increased momentarily by increasing the SP100 (VGOD) value.<br />

Increasing the SP100 (VGOD) value: Adverse effects may occur such as a drop in the torque<br />

in respect to the position deflection, or an inconsistency in the stopping position.<br />

Setting the SP100 (VGOD) value to 0: PI control will be applied. The servo rigidity will drop<br />

momentarily, but the stopping position precision will increase.<br />

Note 1) Delay/advance control and PI control<br />

When stopping orientation for a normal tool change, etc., select delay/advance control.<br />

(SP100=0)<br />

However, if the spindle's frictional torque is large, and a precise stopping position is<br />

required, select PI control. (SP100=0).<br />

Examples of using PI control<br />

1. Positioning a workpiece with a lathe.<br />

2. Orientation of a machine which indexes a 5-plane machining attachment.<br />

Note 2) If the gear ratio between the spindle and motor is large, it may not be possible to set the<br />

SP001 (PGM), SP002 (PGE) and SP006 (CSP) values as required, and the values may<br />

be limited.<br />

In this case, the setting value will change, but the value will be clamped internally, so the<br />

changes will not be visible.<br />

Note 3) If the forward run and reverse run stop positions differ even when using PI control, the<br />

machine's backlash may be large. In this case, the stopping precision may be improved<br />

by fixing the orientation rotation direction to one direction. (Set with SP097 (SPECO) bit-0,<br />

1.)<br />

Note 4) If the spindle is mechanically locked during orientation stop, always input a torque limit so<br />

that the motor's output torque is restricted. (Recommended torque limit: 10% or less)<br />

(4) Troubleshooting<br />

1) Orientation does not take place (motor keeps rotating)<br />

Cause Investigation item Remedy Remarks<br />

Parameter setting<br />

values are<br />

incorrect<br />

The specification<br />

are not correct<br />

Incorrect wiring<br />

The orientation detector and<br />

parameter do not match.<br />

SP037 (SFNC5)<br />

Motor built-in encoder<br />

orientation.......................... 4<br />

Encoder orientation .............. 1<br />

Magnetic sensor orientation . 2<br />

Motor built-in encoder orientation<br />

is attempted with standard motor<br />

instead of motor with Z phase.<br />

The connector pin numbers are<br />

incorrect,<br />

The inserted connector number is<br />

incorrect, or<br />

The cable is disconnected.<br />

Correctly set SP037 (SFNC5).<br />

Change to a motor having a<br />

motor-built-in encoder with Z<br />

phase.<br />

Correct the wiring.<br />

Replace the cable.<br />

For motor built-in<br />

encoder<br />

orientation<br />

5 - 46


5. Adjustment<br />

2) The motor overtravels and stops. (The motor sways when stopping.)<br />

Cause Investigation item Remedy Remarks<br />

Parameter setting<br />

values are<br />

incorrect<br />

The gear ratio parameters SP025<br />

(GRA1) to SP032 (GRB4) are<br />

incorrect.<br />

The phenomenon is improved<br />

when the deceleration rate for<br />

orientation parameter SP006<br />

(CSP) is halved.<br />

The phenomenon is improved<br />

when the position loop gain<br />

parameters SP001 (PGM) and<br />

SP002 (PGE) are halved.<br />

3) The stopping position deviates.<br />

The orientation stop direction is<br />

set to one direction (CCW or CW).<br />

Correctly set SP025 (GRA1) to<br />

SP032 (GRB4).<br />

Readjust SP006 (CSP)<br />

Readjust SP001 (PGM),<br />

SP002 (PGE).<br />

Set the SP097 (SPECO) bit 0,<br />

1 to "0" (pre).<br />

This also applies<br />

to:<br />

SP107 (CSP2)<br />

SP108 (CSP3)<br />

SP109 (CSP4)<br />

SP121 (MPCSH)<br />

SP122 (MPCSL)<br />

This also applies<br />

to:<br />

SP119 (MPGH)<br />

SP120 (MPGL)<br />

Cause Investigation item Remedy Remarks<br />

Mechanical cause<br />

Noise<br />

The magnetic<br />

sensor installation<br />

direction is<br />

incorrect<br />

The stopping position is not<br />

deviated with the encoder axis.<br />

The position detector's cable is<br />

relayed with a terminal block<br />

(connector), etc.<br />

The position detector cable's<br />

shield is not treated properly.<br />

The peeled section of signal wire<br />

at the position detector cable's<br />

connector section is large. (A large<br />

section is not covered by the<br />

shield.)<br />

Check the relation of the magnet<br />

and sensor installation following<br />

section 6-37.<br />

There is backlash or slipping,<br />

etc., between the spindle and<br />

encoder.<br />

The gear ratio between the<br />

spindle and encoder is not 1:1<br />

or 1:2.<br />

There is backlash or slipping<br />

between the spindle and<br />

motor.<br />

The gear ratio between the<br />

spindle and motor is not 1:1.<br />

Do not relay the cable.<br />

Properly treat the shield.<br />

Keep the peeled section to<br />

3cm or less when possible.<br />

Keep the peeled section as far<br />

away from the power cable as<br />

possible.<br />

Correct the relation of the<br />

magnet and sensor<br />

installation.<br />

For encoder<br />

orientation<br />

For motor built-in<br />

encoder<br />

orientation<br />

For magnetic<br />

sensor<br />

orientation.<br />

4) The stopping position does not change even when the position shift parameter is changed.<br />

Cause Investigation item Remedy Remarks<br />

Parameter setting<br />

values are<br />

incorrect<br />

The position shift was changed to<br />

2048 when the gear ratio between<br />

the spindle and encoder was 1:2<br />

(one encoder rotation at two<br />

spindle rotations).<br />

If the gear ratio on the left is<br />

established between the<br />

spindle and encoder, the<br />

position shift amount for one<br />

spindle rotation is 2048 instead<br />

of 4096.<br />

5 - 47


5. Adjustment<br />

5) The machine vibrates when stopping.<br />

Cause Investigation item Remedy Remarks<br />

Parameter setting<br />

values are<br />

incorrect<br />

The orientation<br />

adjustment is faulty<br />

The gear ratio parameters SP025<br />

(GRA1) to SP032 (GRB4) are<br />

incorrect.<br />

The vibration frequency is several<br />

Hz.<br />

The vibration frequency is 10Hz or<br />

more.<br />

6) The orientation complete signal is not output<br />

Correctly set SP025 (GRA1) to<br />

SP032 (GRB4).<br />

Decrease the position loop<br />

gain parameters SP001 (PGM)<br />

and SP002 (PGE).<br />

Increase the current loop gain<br />

for orientation parameters<br />

SP105 (IQGO) and SP106<br />

(IDGO).<br />

Decrease the speed loop gain<br />

for orientation parameters<br />

SP098 (VGOP) and SP099<br />

(VGOI).<br />

Decrease the current loop gain<br />

for orientation parameters<br />

SP105 (IQGO) and SP106<br />

(IDGO).<br />

Cause Investigation item Remedy Remarks<br />

Refer to section (1) Orientation does not take place.<br />

The machine's load<br />

is heavy<br />

The in-position parameter SP004<br />

(OINP) is too small.<br />

Phenomenon is improved if the<br />

control for orientation stopping is<br />

changed from delay/advance to PI<br />

control.<br />

Review the in-position range,<br />

and increase SP004 (OINP).<br />

Review the values set for the<br />

speed loop gain for orientation<br />

parameters SP098 (VGOP),<br />

SP099 (VGOI) and SP100<br />

(VGOD).<br />

5 - 48


5. Adjustment<br />

5-7-5 Synchronous tap adjustment<br />

Always adjust the synchronous tap after adjusting the operation following the speed command and the<br />

acceleration/deceleration time, and after adjusting the servo axis synchronized with the spindle during<br />

synchronous tap.<br />

(1) Preparation for adjustment<br />

Check the input spindle parameters again.<br />

1) Base specification parameters (NC parameter)<br />

The numbers may differ or the meaning may differ according to the NC, so refer to the NC<br />

Maintenance Manual for details.<br />

No. Abbr. bit Details<br />

1229 set01 4 Always set this bit to "1" when carrying out synchronous tap in the G74, G84 tap cycle.<br />

mpar1 3 Determine the inclination of the command time constant for synchronous tap.<br />

When "0" is set, constant time constants will be applied and when "1" is set, inclined constants will<br />

be applied.<br />

When "1" is set, set the time constants in the spindle specification parameters stapt1 to 4.<br />

tap-t1 – Set the time constants for when "0" is set in mpar1 bit-3.<br />

2) Spindle specification parameters (NC parameters)<br />

Refer to section 4-3-4(1) for details.<br />

No. Abbr. Details<br />

13 stap1 Set the maximum spindle speed for synchronous tap at gear 00.<br />

14 stap2 Set the maximum spindle speed for synchronous tap at gear 01.<br />

15 stap3 Set the maximum spindle speed for synchronous tap at gear 10.<br />

16 stap4 Set the maximum spindle speed for synchronous tap at gear 11.<br />

17 stapt1 Set the time constant up to the maximum speed for synchronous tap at gear 00.<br />

18 stapt2 Set the time constant up to the maximum speed for synchronous tap at gear 01.<br />

19 stapt3 Set the time constant up to the maximum speed for synchronous tap at gear 10.<br />

20 stapt4 Set the time constant up to the maximum speed for synchronous tap at gear 11.<br />

3) Servo and spindle parameters.<br />

Refer to section 4-2 and 4-3 for details.<br />

No. Abbr. Details<br />

SV049 PGN1sp Set the position loop gain of the axis that moves in synchronization with the spindle during synchronous<br />

tap. Always set the same value as the spindle parameter SP009 (PGT).<br />

SP009 PGT Set the position loop gain for the spindle during synchronous tap. Always set the same value as the<br />

servo parameter SP049 (PGN1sp) of the axis that moves in synchronization with the spindle.<br />

SP060 MKT2 Set the time to limit the current after coil changeover when using the coil changeover motor.<br />

SP193 SPECT Set the synchronous tap specifications. Refer to the explanation of parameters in the previous section<br />

for details.<br />

SP194 VGTP Set the speed loop gain proportional item for synchronous tap.<br />

SP195 VGTI Set the speed loop gain integral item for synchronous tap.<br />

SP196 VGTD Set the speed loop gain delay/advance item for synchronous tap.<br />

Caution 1) When using a belt drive, highly accurate synchronous tap may not be possible due to slipping or elongation.<br />

In this case, use a spindle encoder and carry out encoder method orientation with the closed method.<br />

If the belt rigidity is weak, the gain may not rise and the synchronous tap accuracy may not be attained.<br />

Caution 2) Set the spindle parameter SP096 (EGEAR) and spindle specification parameter #22 (sgear) to "1" when using<br />

the spindle encoder and closed method with a deceleration ratio of 1:2.<br />

5 - 49


5. Adjustment<br />

(2) Confirmation and adjustment of operation<br />

Normal operation<br />

1 Accelerate and decelerate to each gear's<br />

maximum tap speed.<br />

Ta<br />

Td<br />

Confirmation items<br />

1) When base specification parameter mpar1-bit3=1:<br />

Set a value obtained by multiplying Ta or Td, whichever is<br />

longer, by 1.2-fold for each gear into the corresponding #17<br />

(stapt1) to #20 (stapt4).<br />

2) When base specification parameter mpar1-bit3=0:<br />

Set a value obtained by multiplying Ta or Td, whichever is<br />

longer, by 1.2-fold for each gear into the corresponding tap-t1.<br />

2 Without workpiece installed<br />

G84 Z-10 F1.0 P1000 S50<br />

Forward tap<br />

10-rotations<br />

1s stop<br />

Reverse tap<br />

10-rotations<br />

50r/min<br />

3 Carry out test cutting with a floating tap chuck<br />

installed.<br />

4 Carry out test cutting without a floating tap<br />

chuck.<br />

1) If the rotation direction is the reverse tap direction, reverse the<br />

SP193 (SPECT) bit 4 settings.<br />

2) If the motor does not rotate ten rotations past the spindle<br />

speed, review the gear ratio setting SP025 (GRA1) to SP032<br />

(GRB4).<br />

3) In all other cases, refer to the Troubleshooting section.<br />

1) The tapper must not elongate or contract.<br />

2) Highly accurate tapping must be possible.<br />

3) In all other cases, refer to the Troubleshooting section.<br />

1) Highly accurate tapping must be possible.<br />

2) In all other cases, refer to the Troubleshooting section.<br />

(3) Troubleshooting<br />

Phenomenon Cause of occurrence Investigation method Remedy<br />

Excessive error alarm<br />

(52)<br />

Incorrect parameter setting<br />

Incorrect parameter setting<br />

Check the SP193 (SPECT) detector<br />

polarity<br />

The tap time constant is too short.<br />

Set the S command startup time × 1.2<br />

or more.<br />

Set correctly<br />

Set correctly<br />

Overcurrent alarm (32) Incorrect parameter setting The tap time constant is too short.<br />

Set the S command startup time × 1.2<br />

or more.<br />

The spindle rotation<br />

movement amount<br />

does not match the<br />

command value<br />

The tap breaks<br />

The tap cutting<br />

accuracy is poor<br />

The spindle stops<br />

during tap cutting.<br />

The tap accuracy drops<br />

when the speed<br />

increases<br />

The accuracy drops if<br />

synchronous tapping is<br />

carried out immediately<br />

after changing the coil.<br />

Incorrect parameter setting<br />

Incorrect parameter setting<br />

Correct the program<br />

Check the machine<br />

Machine load is heavy<br />

The position loop gain is<br />

incorrect<br />

The current is limited for a<br />

set time immediately after<br />

the coil is changed, so the<br />

acceleration/deceleration<br />

time increases and tracking<br />

as set in the constants is<br />

not possible.<br />

Check the SP193 (STPECT) bit0<br />

setting value.<br />

The SP025 (GRA1) to SP032 (GRB4)<br />

settings do not match the machine's<br />

gear ratio.<br />

PGNISP and SP001 are not the same<br />

The tap time constant is short<br />

The tap hole is shallow and the cutting<br />

chips cannot be discharged.<br />

The tap slips at the chuck<br />

Check the tap depth and tap diameter<br />

Check the tap cutting edge<br />

Set SP193 (SPECT) bit 3 to "1".<br />

Increase the speed loop gain SP194<br />

(VGTP) and SP195 (VGTI) setting<br />

values.<br />

The tap time constant value is short,<br />

and there is no allowance to the<br />

output.<br />

Try adjusting again<br />

Change the SP060 (MKT2) value.<br />

Set correctly<br />

Set correctly<br />

Set correctly<br />

Set correctly<br />

Increase the time<br />

constant<br />

Deepen the tap hole<br />

Adjust to the correct<br />

state<br />

Replace with a new<br />

part<br />

Set<br />

Readjust<br />

Increase the time<br />

constant<br />

Readjust<br />

Decrease the setting<br />

value, but note that<br />

caution is required.<br />

Refer to the Coil<br />

Changeover<br />

Specifications for<br />

details.<br />

5 - 50


5. Adjustment<br />

5-7-6 Z-phase (magnetic) automatic adjustment (Only when using IPM spindle motor)<br />

Z-phase automatic adjustment is a function that automatically adjusts the relative position of the motor<br />

magnetic pole and the PLG Z-phase pulse signal input into the spindle drive unit, and then saves and<br />

validates the adjustment data.<br />

This function is used to increase the output torque accuracy, and must always be carried out when the<br />

machine is started. Execute this function with the following procedures.<br />

CAUTION<br />

1. The mechanical adjustments (gear - sensor gap, etc.) must already be<br />

completed.<br />

2. When using this function, set the spindle load inertia (max.: approx. 5-fold of<br />

the motor inertia) and the frictional load as low as possible.<br />

3. The motor will automatically rotate at the adjustment speed during the<br />

Z-phase automatic adjustment. Do not touch the rotating sections, as these<br />

are hazardous.<br />

4. If START (ON) is executed before the adjustment is completed, alarm 16 will<br />

occur, and the protection function will activate.<br />

(1) Change SP205 from 0 to 1, and start forward run operation. (The power does not need to be turned<br />

OFF and ON.)<br />

The control output 4H bit "D" will be set to 1 until the unit power is turned ON again.<br />

1) The spindle motor will automatically rotate at the adjustment speed (two steps for Z-phase pulse<br />

detection and magnetic pole position detection).<br />

2) The adjustment results will be calculated approximately 90 seconds after forward run is started<br />

(this time will differ slightly according to the magnetic pole position). Then operation will stop<br />

automatically.<br />

(2) Confirm that the motor has automatically stopped. Leave parameter SP205 set to 1, turn START<br />

OFF, and turn the power OFF and ON. (When SP205 is set to 1, the adjustment data saved in SPm<br />

will be used.)<br />

1) If START is turned OFF during automatic rotation, reset SP205 to 0, and turn the power OFF<br />

and ON. Then, repeat the procedure from step (1).<br />

2) If the drive unit or motor is replaced, if the PLG is reinstalled, or if the signals are readjusted, etc.,<br />

always reset SP205 to 0, and turn the power OFF and ON. Then, repeat the procedure from<br />

step (1). Failure to observe this will prevent correct operation due to invalid adjustment data.<br />

5-7-7 PLG automatic adjustment<br />

PLG automatic adjustment is a function that automatically adjusts the PLG A and B-phase sine wave<br />

signals input into the SPM unit. (Adjusts the offset and gain, etc.) The adjustment data is then saved and<br />

validated.<br />

This function is used to improve the position data accuracy, and must always be carried out when the<br />

machine is started up.<br />

CAUTION<br />

1. As a condition, the Z-phase automatic adjustment described in (1) above<br />

must be completed.<br />

2. The motor will automatically rotate at the adjustment speed during the PLG<br />

automatic adjustment. Do not touch the rotating sections of the spindle motor<br />

or spindle shaft, as these are hazardous.<br />

(1) Change parameter (SP245) from 0 to 1, and start forward run operation.<br />

The control output 4H bit "D" will be set to 1 from when the power is changed to when the power is<br />

turned ON again.<br />

1) The spindle motor will automatically rotate at the adjustment speed (two steps for offset<br />

adjustment and gain adjustment).<br />

2) The adjustment results will be calculated within several seconds after forward run is started.<br />

Then operation will stop automatically.<br />

(2) Leave parameter (SP245) set to 1, turn START OFF, and turn the drive unit OFF and ON.<br />

1) When SP245 is set to 1, the adjustment data saved in SP will be used.<br />

2) If SP245 is set to 0, the adjustment data will be invalidated.<br />

When the unit h or the PLG has replaced, reset parameter (SP245) to 0, and then repeat the procedure<br />

from (1) above to readjust the signals.<br />

5 - 51


5. Adjustment<br />

5-7-8 Calculating the theoretical acceleration/deceleration<br />

(1) Calculating the theoretical acceleration/deceleration time<br />

Each theoretical acceleration/deceleration time is calculated<br />

for each output range based on the spindle motor output<br />

characteristics as shown on the right. Note that the load<br />

torque (friction torque, etc.) is 0 in this calculation expression,<br />

so the acceleration/deceleration time can be known as a<br />

rough guide, but this calculation result differs from the<br />

acceleration/deceleration time of the actual machine.<br />

(a) Maximum motor output during<br />

acceleration/deceleration: Po<br />

During acceleration/deceleration operation, the motor can<br />

output at 120% of the short-time rating. Thus, the motor<br />

output Po in the constant output range during<br />

acceleration/deceleration follows the expression below.<br />

Po = (Short-time rated output) × 1.2 [W]<br />

Output [W]<br />

Po<br />

Constant output range<br />

Constant<br />

output range<br />

Deceleration<br />

range<br />

Short-time rating × 1.2<br />

0<br />

0 N1 N2<br />

Rotation speed [r/min]<br />

Output characteristics for<br />

acceleration/deceleration<br />

N3<br />

(b) Total load inertia: J all<br />

The inertia of the total load which is accelerated and decelerated follows the expression below.<br />

J all = (Motor inertia) + (motor shaft conversion load inertia) [kg•m 2 ] (Caution 1)<br />

The acceleration/deceleration time until the rotation speed "N" to be required is calculated for<br />

each motor output range as shown below, using the values obtained in (a) and (b).<br />

(c) Acceleration/deceleration time for constant torque range: t1···0 to N [r/min] (0≤N≤N1)<br />

(For N>N1, apply N=N1 and also calculate t2 or t3.)<br />

t1 =<br />

1.097 x 10 -2 x J all x N1 x N<br />

Po<br />

[s] (Caution 1)<br />

(d) Acceleration/deceleration time for constant output range: t2···N1 to N [r/min] (N1N2, apply N=N2 and also calculate t3.)<br />

t2 =<br />

1.097 x 10 -2 x J all x (N 2 - N1 2 )<br />

2 x Po<br />

[s] (Caution 1)<br />

(e) Acceleration/deceleration time in deceleration output range: t3···N2 to N [r/min]<br />

(N2


5. Adjustment<br />

[Calculation example]<br />

Calculate the acceleration/deceleration time from 0 to<br />

10000[r/min] for an spindle motor having the output<br />

characteristics shown on the right when the motor inertia is<br />

0.059 [kg・m 2 ], and when the motor shaft conversion load<br />

inertia is 0.2 [kg•m 2 ].<br />

Po = (Short-time rated output) x 1.2<br />

= 5500 x 1.2 = 6600 [W]<br />

J all = (Motor inertia) + (load inertia)<br />

= 0.0148 + 0.05 =0.0648 [kg・m 2 ]<br />

t1 =<br />

1.097 x 10 -2 x J all x N1 2 1.097 x 10 -2 x 0.0648 x 1500 2<br />

=<br />

Po<br />

6600<br />

Output [kW]<br />

8.0<br />

6.0<br />

5.5<br />

4.0<br />

3.7<br />

2.0<br />

0<br />

= 0.242 [s]<br />

15-minute<br />

rating<br />

Continuous<br />

rating<br />

0 1500 6000<br />

4.1<br />

2.8<br />

10000<br />

Rotation speed [r/min]<br />

Spindle motor characteristics<br />

t2 =<br />

t3 =<br />

1.097 x 10 -2 x J all x (N2 2 - N1 2 ) 1.097 x 10 -2 x 0.0648 x (6000 2 - 1500 2 )<br />

=<br />

2×Po<br />

2×6600<br />

1.097 x 10 -2 x J all x (N3 3 - N2 3 ) 1.097 x 10 -2 x 0.0648 x (10000 3 - 6000 3 )<br />

=<br />

3 x Po x N2<br />

3 x 6600 x 6000<br />

= 1.818 [s]<br />

= 4.691 [s]<br />

Thus,<br />

t = t1 + t2 + t3 = 0.242 + 1.818 + 4.691 = 6.751 [s]<br />

5 - 53


5. Adjustment<br />

5-8 Spindle specifications<br />

5-8-1 Spindle coil changeover<br />

The coil changeover control enables constant output characteristics over a wide range from low speed<br />

to high speed regions by changing the spindle motor coil in the following manner:<br />

1) connection (low-speed coil) connection (high-speed coil)<br />

2) 1st connection (low-speed coil) 2nd connection (high-speed coil). By electrically<br />

carrying out the changeover of the speed ranges, conventionally charred out with mechanical<br />

means such as gear, pulleys or belts, etc., the machine structure can be simplified, and the spindle<br />

rigidity can be improved. When varying the speed between the low-speed regions and high-speed<br />

regions using the conventional mechanical methods, the spindle motor had to be stopped, the<br />

gears changed and then the motor accelerated again. By using this coil changeover, the motor<br />

does not need to be stopped, and the speed can be varied directly. This is effective in shortening<br />

the work time.<br />

The following types of spindle motors can be used.<br />

1) connection (low-speed coil) connection (high-speed coil) changeover method<br />

The coil changeover specification motor (type: SJ-K◦◦◦, SJ-◦B◦◦◦◦K◦) is used with the<br />

built-in type as the target.<br />

2) 1st connection (low-speed coil) 2nd connection (high-speed coil)<br />

The coil changeover specifications motor (type: SJ-◦B◦◦◦◦W◦) is used with the built-in type as<br />

the target.<br />

(1) Coil changeover wiring diagram<br />

1) connection connection method<br />

Coil changeover motor<br />

R,S,T<br />

~<br />

400VAC<br />

50/60Hz<br />

MDS-CH-CV<br />

MDS-CH-SP/SPH<br />

U<br />

V<br />

W<br />

MC2<br />

U<br />

V<br />

W<br />

IM<br />

X<br />

Y<br />

Z<br />

CN5<br />

MC1<br />

PLG<br />

OHS1<br />

OHS2<br />

CN9-8<br />

400VAC<br />

S<br />

T<br />

BU<br />

BV<br />

FM<br />

RA<br />

RA<br />

RA<br />

CN9-10<br />

MC2<br />

MC1<br />

CN1A<br />

CN1B<br />

To final axis<br />

MC1<br />

SK<br />

MC2<br />

SK<br />

CN1B<br />

MDS-CH-Vx<br />

CN1A<br />

NC (PC)<br />

MC1: 3-phase contactor for establishing low-speed coil ( connection).<br />

MC2: 3-phase contactor for establishing high-speed coil ( connection).<br />

(Note 1) The contactors and relays, etc., shown above must be prepared by the machine maker.<br />

(Note 2) A flywheel diode is connected to relay (RA), and a CR surge absorber (SK) is connected in parallel with the contactors<br />

(MC1, CM2).<br />

(Note 3) When using the built-in motor, the fan's BU and BV wirings are not required.<br />

When using the complete type motor, BU, BV and BW must be connected when using the 3-phase wire. Connect BU, BV<br />

and BW to the R, S and T phases.<br />

5 - 54


5. Adjustment<br />

2) 1st connection 2nd connection method<br />

Coil changeover motor<br />

~<br />

400VAC<br />

50/60Hz<br />

R,S,T<br />

MDS-CH-CV<br />

MDS-CH-SP/SPH<br />

U<br />

V<br />

W<br />

MC1<br />

U1<br />

V1<br />

W1<br />

IM<br />

MC2<br />

U2<br />

V2<br />

W2<br />

CN5<br />

OHS1<br />

OHS2<br />

PLG<br />

CN9-8<br />

400VAC<br />

S<br />

T<br />

RA<br />

RA<br />

RA<br />

CN9-10<br />

MC2<br />

MC1<br />

CN1A<br />

CN1B<br />

To final axis<br />

MC1<br />

SK<br />

MC2<br />

SK<br />

CN1B<br />

MDS-CH-Vx<br />

CN1A<br />

NC (PC)<br />

MC1: 3-phase contactor for establishing low-speed coil (1st<br />

MC2: 3-phase contactor for establishing high-speed coil (2nd<br />

connection).<br />

connection).<br />

(Note 1) The contactors and relays, etc., shown above must be prepared by the machine maker.<br />

(Note 2) A flywheel diode is connected to relay (RA), and a CR surge absorber (SK) is connected in parallel with the contactors<br />

(MC1, CM2).<br />

(Note 3) When using the built-in motor, the fan's BU and BV wirings are not required.<br />

When using the complete type motor, BU, BV and BW must be connected when using the 3-phase wire. Connect BU, BV<br />

and BW to the R, S and T phases.<br />

(2) Control signals<br />

1) Input/output signals<br />

NC<br />

MDS-CH-SP / SPH<br />

• L coil selection command signal<br />

(LCS = control input 3-bit D)<br />

• L coil selected signal<br />

(LCSA = control output 3-bit D)<br />

• Coil changed signal<br />

(MKC = control output 4-bit 6)<br />

CN9-8<br />

RA<br />

Contactor<br />

changeover<br />

signal<br />

CN9-1<br />

5 - 55


5. Adjustment<br />

<br />

Input signal<br />

Output signal<br />

L coil selected signal Contactor changeover signal<br />

Selected coil<br />

0 (OFF) 0 (OFF = relay open) High-speed coil<br />

1 (ON) 1 (ON = relay closed) Low-speed coil<br />

Note 1) The default coil when the spindle amplifier power is turned ON is the high-speed coil.<br />

<br />

Control input signal<br />

Signal name Signal address Explanation of function<br />

L coil selection<br />

command signal<br />

(LCS)<br />

Control input 3 -bitD<br />

(LCS)<br />

PLC device<br />

Y◦◦◦<br />

• This changeover command signal selects the high-speed<br />

coil or low-speed coil.<br />

1 ON : Select low-speed coil<br />

0 OFF : Select high-speed coil<br />

• The coil can be changed while the motor is rotating, but if<br />

position control such as orientation, spindle/C-axis control,<br />

synchronous tap or spindle synchronization is being carried<br />

out, the coil will not change even if this L coil selection signal<br />

is input. Position control will be executed with the coil<br />

selected when position control was started. (Refer to section<br />

6-1-4.)<br />

• Once the L coil selection signal is input, the base will remain<br />

cut off until the coil changeover operation is completed.<br />

Control output signal<br />

Open emitter output<br />

L coil selected<br />

signal (LCSA)<br />

Coil selected signal<br />

(MKC)<br />

Contactor<br />

changeover signal<br />

(WCO)<br />

Control output 3 -bitD<br />

(LCSA)<br />

PLC device<br />

X◦◦◦<br />

Control output 4 -bit6<br />

(MKC)<br />

PLC device<br />

X◦◦◦<br />

• This is the answer signal in respect to the input signal LCS<br />

above. It can be confirmed whether the spindle amplifier has<br />

received the LCS signal.<br />

• This signal turns ON while the base is cut off for changeover<br />

when changing from the high-speed coil to the low-speed<br />

coil and vice versa. This signal is OFF in all other cases.<br />

• No other input commands are accepted while this signal is<br />

ON. Change the input signal while this signal is OFF.<br />

– • This is the relay drive's open emitter output for changing the<br />

high-speed coil and low-speed coil.<br />

ON 24V output : Low-speed coil is selected<br />

OFF 0V output : High-speed coil is selected<br />

• Refer to section 3-1, and wire the relay and contactor so that<br />

the low-speed coil is selected at the 24V output and the<br />

high-speed coil is selected at the 0V output.<br />

• The contactor's ON/OFF state is changed when the L coil<br />

selection command is input and the base is cut off.<br />

Note) Refer to the PLC Interface Manual for the NC in use for details on the numbers of the above PLC devices.<br />

Note that the coil changed signal cannot be viewed with some NC units.<br />

5 - 56


5. Adjustment<br />

2) Coil changeover operation<br />

ON<br />

NC→SP/SPH<br />

L coil selection command signal<br />

(LCS)<br />

OFF<br />

OFF<br />

ON<br />

SP/SPH→NC<br />

L coil selected signal (LCSA)<br />

OFF<br />

OFF<br />

ON<br />

SP/SPH<br />

Contactor changeover signal (WCO)<br />

OFF<br />

OFF<br />

ON<br />

ON<br />

SP/SPH<br />

Base cutoff holed<br />

OFF<br />

OFF<br />

OFF<br />

ON<br />

ON<br />

SP/SPH→NC<br />

Coil selected signal (MKC)<br />

OFF<br />

OFF<br />

OFF<br />

ON<br />

NC→SP/SPH<br />

Forward run (SRN), reverse run (SRI)<br />

signal<br />

OFF<br />

ON<br />

ON<br />

SP/SPH<br />

Base ON<br />

OFF<br />

OFF<br />

SP/SPH<br />

Motor constants changeover<br />

(parameter)<br />

High-speed<br />

coil<br />

Low-speed<br />

coil<br />

High-speed<br />

coil<br />

SP/SPH<br />

Output current waveform (approx.)<br />

T1<br />

T1<br />

T1: Base cutoff hold time (SP059: MKT setting value Unit: ms)<br />

Precautions<br />

1) The spindle will accept none of the input signals (forward run command, reverse run command, orientation<br />

command, servo ON signal with position loop) during T1 (base cutoff interval) shown above. Input the signals to<br />

the spindle controller after changing the L coil selected signal (LCS) and establishing a timer of T M (= T1 + 50ms)<br />

or more as shown below. Instead of using a timer, the signal can be input after the coil changed signal (MKC)<br />

changes from the ON to OFF state. Note that the coil changed signal cannot be viewed with some NC units.<br />

2) The base cutoff time T1 is determined with the parameter SP059 (MKT) setting value. However, due to the relation<br />

with the contactor operation, the standard value is 150ms. Normally set T M to 200ms or more.<br />

Using a timer<br />

L coil selection command<br />

signal (LCS)<br />

Coil changeover timer<br />

Each input signal<br />

TM<br />

TM ≥ 200ms<br />

5 - 57


5. Adjustment<br />

3) Changing the coil in the spindle mode<br />

When the motor's output characteristics listed on the <strong>Mitsubishi</strong> motor rating table are as<br />

follows, N2 is the coil changeover speed, and the following expression is established.<br />

0 ≤ N ≤ N2 is the low-speed coil usage range<br />

N2 < N is the high-speed coil usage range<br />

The method for inputting the L coil selection signal (LCS) to change from the low-speed coil<br />

range N1 to the high-speed coil range speed N3 is explained in this section.<br />

Output<br />

0<br />

Speed N<br />

N1 N2 N3<br />

Changeover<br />

speed<br />

Low-speed coil range<br />

High-speed coil<br />

range<br />

Stopping the spindle motor and changing the coil<br />

With this method, the high-speed coil and low-speed coils are viewed as electronic gears that are<br />

handled in the same manner as the mechanical gears.<br />

<br />

Speed command<br />

N3<br />

Motor rotation speed<br />

N1<br />

0<br />

N3<br />

0<br />

N1<br />

Start signal (SRN or SRI)<br />

ON ON ON<br />

OFF<br />

OFF<br />

Zero speed output signal<br />

(ZS)<br />

OFF<br />

ON<br />

OFF<br />

ON<br />

OFF<br />

Note<br />

ON<br />

Note<br />

L coil selection command<br />

signal (LCS)<br />

OFF<br />

OFF<br />

ON<br />

Contactor changeover<br />

signal (WCO)<br />

OFF<br />

High-speed coil selection<br />

Low-speed coil selection<br />

OFF<br />

High-speed coil selection<br />

5 - 58


5. Adjustment<br />

If the speed command changes to N1 while the motor is rotating at N3 (high-speed coil range), the<br />

motor is stopped once by the user's sequence. After confirming that the zero speed output signal<br />

(ZS) has turned ON, the L coil selection command signal (LCS) is turned ON. After changing from<br />

the low-speed coil to the high-speed coil, the start signal (SRN or SRI) is turned ON again, and the<br />

motor is accelerated to N1.<br />

In the same manner, when changing the speed command from N1 to N3, the motor is stopped once.<br />

After confirming that the zero speed output signal (ZS) has turned ON, the L coil selection<br />

command signal is turned OFF. After changing from the high-speed coil to the low-speed coil, the<br />

start signal is turned ON, and the motor is rotated at the N3 speed.<br />

Note 1) Provide a time longer than T M after the L coil selection command signal (LCS) is input to<br />

when the start signal turns ON. Instead of using a timer, set the sequence so that the start<br />

signal turns ON after the coil changed signal (MKC) changes from ON to OF. Note that<br />

the coil changed signal cannot be viewed with some NC units.<br />

Changing the coil during spindle motor rotation<br />

This method uses the characteristics of coil changeover to change the coil during motor rotation,<br />

and changing directly from the low-speed coil to the high-speed coil. The transition time is shorter<br />

compared to the method explained in 6-1-3(1). The speed detection signal (SD) is used with this<br />

method, and the L coil selection command signal (LCS) is input in the following manner.<br />

To accelerate from a stopped state (To accelerate after zero speed output signal turns ON)<br />

(i) First, judge the high-speed/low-speed coil range with the speed command, and select the coil.<br />

(Input the L coil selection command signal (LCS.)<br />

(ii) Next, turn the start signal ON and accelerate the motor.<br />

(iii) Hold the L coil selection command signal (LCS) in the state of (i).<br />

When varying the speed, turn the L coil selection command signal (LCS) ON and OFF as shown in the<br />

following table.<br />

Current coil<br />

When low-speed coil is selected When high-speed coil is selected<br />

state<br />

Next speed<br />

command<br />

Low-speed coil<br />

range<br />

High-speed coil<br />

range<br />

Low-speed coil<br />

range<br />

High-speed coil<br />

range<br />

Does not change<br />

(LCS: ON)<br />

Judge state of SD<br />

signal<br />

1) SD: ON<br />

→LCS: ON<br />

2) SD: OFF<br />

→LCS: OFF<br />

Judge state of SD<br />

signal<br />

1) SD: ON<br />

→LCS: ON<br />

2) SD: OFF<br />

→LCS: OFF<br />

Does not change<br />

(LCS: OFF)<br />

Operation<br />

mode<br />

2) - A 2) - B 2) - C 2) - D<br />

Note 1) The conditions in item 1) are applied to prevent the contactor from turning ON/OFF<br />

needlessly during acceleration/deceleration.<br />

Since the speed detection signal (SD) has a hysteresis, the conditions in item 2) apply to<br />

prevent the contactor from turning ON/OFF needlessly (inconsistently) when operating<br />

near the coil change speed and continuously varying the speed.<br />

5 - 59


5. Adjustment<br />

(Reference) The generation of the signals in item 1) and 2) are shown in the following flow chart.<br />

START<br />

ZS:ON ?<br />

NO<br />

YES<br />

LCS:ON ?<br />

NO (High-speed coil selected)<br />

Speed command<br />

≤ N2?<br />

NO<br />

YES<br />

(Low-speed coil selected)<br />

Speed command<br />

≤ N2?<br />

NO (High-speed coil<br />

range command)<br />

LCS=ON<br />

YES<br />

LCS=OFF<br />

YES<br />

(Low-speed coil<br />

range command)<br />

Speed command<br />

≤ N2?<br />

NO (High-speed coil<br />

range command)<br />

Check TM timer or<br />

coil changed signal<br />

SD:ON ?<br />

NO<br />

(High-speed<br />

coil range)<br />

SD:ON ?<br />

NO<br />

(High-speed<br />

coil range)<br />

SRN/SRI:ON<br />

YES<br />

(Low-speed<br />

coil range<br />

command)<br />

YES<br />

(Low-speed<br />

coil range)<br />

LCS=OFF<br />

YES<br />

(Low-speed<br />

coil range)<br />

LCS=ON<br />

Was speed<br />

command changed?<br />

NO<br />

YES<br />

1)<br />

2) –A 2) –B 2) –C 2) –D<br />

5 - 60


5. Adjustment<br />

<br />

N3<br />

N3<br />

Speed command<br />

t3<br />

N1<br />

N3<br />

t6<br />

N3<br />

N2<br />

N1<br />

Motor rotation speed<br />

t4<br />

t5<br />

t7<br />

t8<br />

ON<br />

Start signal<br />

(SRN or SRI)<br />

Speed detection signal<br />

(SD)<br />

ON<br />

t2<br />

ON<br />

t9<br />

ON<br />

t10<br />

Zero speed signal<br />

(ZS)<br />

ON<br />

ON<br />

L coil selection<br />

command signal (LCS)<br />

ON<br />

Note<br />

ON<br />

Contactor changeover<br />

signal (WCO)<br />

ON<br />

t1<br />

ON<br />

High-speed coil selection<br />

Low-speed coil selection<br />

High-speed coil selection<br />

1. When the speed command reaches N3 (high-speed coil range) at t1, the system confirms that the zero<br />

speed signal (ZS) is ON, and then turns the L coil selection command signal (LCS) OFF (high-speed coil<br />

selection). The start signal (SRN or SRI) is turned ON at t2, and the motor accelerates.<br />

2. Next when the speed command is changed to N1 (low-speed coil range) at t3, the motor starts decelerating<br />

toward N1. However, when it reaches the coil changeover speed N2 at t4, the speed detection signal (SD)<br />

changes from OFF to ON. The system confirms that this speed detection signal (SD) has turned ON, and<br />

then changes the L coil selection command signal (LCS) from OFF (High-speed coil selection) to ON<br />

(low-speed coil selection). This changes the coil, and when completed (t5), the motor continues to decelerate<br />

to N1.<br />

3. When the speed command is changed to N3 (high-speed coil range) at t6, the motor starts to decelerate<br />

toward N3. However, when changeover speed N2 is reached at t4, the speed detection signal (SD) changes<br />

from ON to OFF.<br />

The system confirms that this speed detection signal (SD) is OFF, and then changes the L coil selection<br />

command signal (LCS) from ON (low-speed coil selection) to OFF (high-speed coil selection). The coil<br />

changeover is executed with this, and when completed (t6), the motor continues to accelerate to N3.<br />

4. When the start signal (SRN or SRI) turns OFF at t9, the motor decelerates to a stop. The speed detection<br />

signal will change from OFF to ON at t10, but this applies when stopping. Since the speed command does<br />

not change, there is no need to change the L coil selection command signal (LCS), and the motor will<br />

continue to decelerate to a stop with the high-speed coil.<br />

Note 1)<br />

Note 2)<br />

The speed detection signal (SD) detection level is set with the parameters.<br />

Turn the start signal ON after T M or longer has elapsed from the input of the L coil selection command<br />

signal (LCS) or after the coil changed signal has changed from ON to OFF. Note that viewing of the<br />

coil changed signal depends on the NC Series specifications.<br />

5 - 61


5. Adjustment<br />

Changing the coil in the spindle mode ⇔ position control mode<br />

The position control mode refers to controlling the position loop for orientation control,<br />

spindle/C-axis control, synchronous tap control or spindle synchronous control. (Note that when<br />

using SPA, only orientation control is the position control mode.)<br />

The following caution is required when inputting the L coil selection command signal (LCS) in the<br />

position control mode.<br />

Precaution<br />

The L coil selection command signal (LCS) will not be accepted if input<br />

after the position loop control has started.<br />

• State with orientation command (ORC) ON.... For orientation control<br />

• State with servo ON signal ON ....................... Spindle/C-axis control, synchronous tap<br />

control, spindle synchronous control, etc.<br />

In other words, position control will be executed with the coil state active when the position loop<br />

control was started. Conversely, when the position loop control is canceled, the L coil selection<br />

signal (LCS) input will be valid. If the coil state during position loop control execution and the L coil<br />

selection signal (LCS) input after the position loop is canceled differ, the coil may be changed<br />

unintentionally when the position loop control is canceled. Thus, before starting position loop<br />

control, select the required coil beforehand (input the LCS signal). Then, start position loop<br />

control, and hold the L coil selection signal (LCS).<br />

Servo ON signal<br />

ON<br />

L coil selection<br />

command signal<br />

(LCS)<br />

Contactor changeover<br />

signal (WCO)<br />

t1 t2 t3<br />

ON<br />

ON<br />

[Coil is not changed]<br />

[Coil is changed even if LCS does not change.]<br />

Each input signal must be input after the T M or longer time has elapsed from the input of the L coil<br />

selection signal (LCS) and the coil selected signal (MKC) has changed from ON to OFF. Note that<br />

the coil changed signal cannot be viewed with some NC units.<br />

(1) Orientation control<br />

1) If the orientation command (ORC) is turned ON during spindle operation, orientation will be<br />

completed with the currently selected coil. (Same as conventional mechanical gears.)<br />

2) If orientation is to be carried out with the low-speed coil even when operating with the<br />

high-speed coil as a means to increase the servo rigidity during orientation, use the following<br />

procedure to orient with the low-speed coil without stopping the motor once from the<br />

high-speed coil state.<br />

(i) First turn the start signal (SRN or SRI) OFF and decelerate the motor.<br />

(ii) Using the speed detection signal (SD), change the L coil selection command signal<br />

(LCS) from the high-speed coil to the low-speed coil.<br />

(iii) After the T M or longer timing, or after the coil selected signal turns ON and OFF using<br />

SPA, the orientation command (ORC) turns ON.<br />

5 - 62


5. Adjustment<br />

Changing to the low-speed coil and orienting during operation with high-speed coil<br />

Motor rotation speed<br />

ON<br />

Orientation command<br />

(ex., M19)<br />

Start signal (SRN or SRI)<br />

ON<br />

Speed detection signal<br />

(SD)<br />

ON<br />

L coil selection<br />

command signal (LCS)<br />

ON<br />

Orientation command<br />

signal (ORC)<br />

TM<br />

ON<br />

Orientation complete signal<br />

(ORFIN)<br />

ON<br />

2) Spindle/C-axis control<br />

When changing from the spindle mode to the C-axis mode, following the procedures in section<br />

3-2, and change to the low-speed coil. Then, input the servo ON signal. If the servo ON signal<br />

is input in the high-speed coil state, C-axis control will be executed with the high-speed coil.<br />

The C-axis servo torque will be small, and the required C-axis servo torque will not be attained.<br />

If the L coil selection command signal (LCS) is not held when the C-axis mode is canceled, the<br />

coil may be changed needlessly.<br />

3) Synchronous tap control<br />

The coil used must be fixed according to the target speed for synchronous tapping. If the state<br />

of the coil before synchronous tapping is started and the coil to be used for synchronous<br />

tapping differ, stop the spindle once, and change to the coil to be used for synchronous tapping<br />

before turning the synchronous tap servo ON signal.<br />

4) Spindle synchronous control<br />

Use the same procedures as for synchronous tap control.<br />

Note)<br />

After coil changeover is completed, the current will be limited for the amount of time<br />

(Standard setting value 500ms) set in SP060. Thus, the output normally required will not<br />

be attained. This may result in faults such as a faulty accuracy or spindle overshooting in<br />

the position loop. Therefore, to carry out position loop operation after changing the coil,<br />

input the position command after the time set in SP060 has passed.<br />

5 - 63


5. Adjustment<br />

(3) Explanation of parameters for coil changeover function<br />

Only the parameters related to the coil changeover specifications are explained in this section.<br />

Name Abbr. Details TYP<br />

SP034 SFNC2 Spindle function 2<br />

F E D C B A 9 8 7 6 5 4 3 2 1 0<br />

mkch mtsl<br />

HEX<br />

bit Abbr. Details Set 0 Set 1 Supplement<br />

0 mtsl Motor constant Standard Special<br />

1 mkch Coil changeover motor Not used Used<br />

Set both Bit0 and 1 to "1".<br />

SP035 SFNC3 Spindle function 3<br />

F E D C B A 9 8 7 6 5 4 3 2 1 0<br />

lbsd hbsd lwid hwid<br />

HEX<br />

bit Abbr. Details Set 0 Set 1 Supplement<br />

0 hwid<br />

High-speed coil wide range constant<br />

output<br />

Invalid<br />

Valid<br />

1 lwid Low-coil wide range constant output Invalid Valid<br />

2 hbsd High-speed coil base sliding Invalid Valid<br />

3 lbsd Low-speed coil base sliding Invalid Valid<br />

SP020 SDTS Speed detection set value<br />

This parameter determines the changeover speed for inputting the L coil selection command input (LCS)<br />

using the speed detection signal (SD).<br />

The relation of the setting value and speed detection output is as shown in SP047 on the next page.<br />

Standard setting value : Follows motor rating table<br />

Setting range : 0 to 32767 (r/min)<br />

DEC<br />

Note) If the coil is changed without turning the NC power OFF after the parameters are changed, the changed parameters will not<br />

be validated. Validate the parameters by turning the NC power OFF once after changing the settings, and then change the<br />

coil.<br />

5 - 64


5. Adjustment<br />

Name Abbr. Details TYP<br />

SP047 SDTR Speed detection reset value<br />

Determine the hysteresis value for the speed detection signal (SD).<br />

The relation of the setting value and speed detection output is as shown below.<br />

DEC<br />

Motor rotation<br />

speed<br />

SP020(SDTS)<br />

SP047(SDTR)<br />

Speed detection<br />

signal (SD)<br />

ON<br />

OFF<br />

ON<br />

Standard setting value : 300 (Lathe application)<br />

150 (Machining application)<br />

Setting range : 0 to 1000 (r/min)<br />

SP059 MKT Coil changeover base cutoff time timer<br />

Set the base cutoff time for changing the contactor during coil changeover.<br />

If the setting value is small, the power will be turned ON before the contactor is changed, and may result<br />

in contactor burning. Do not change this setting unless there is a particular problem.<br />

Standard setting value : 150<br />

Setting range : 0 to 1000 (ms)<br />

SP060 MKT2 Coil changeover current limit timer<br />

Set the time to limit the current value after the base is cut off and then turned ON during coil changeover.<br />

When the position command is input immediately after the coil is changed during synchronous tapping,<br />

the cutting accuracy may deteriorate if this value is not small enough. When decreasing the value, make<br />

sure that the coil is changed after the motor stops even in the modes other than synchronous tap.<br />

Standard setting value : 500<br />

Setting range : 0 to 1000 (ms)<br />

SP061 MKIL Coil changeover current limit value<br />

Set the current limit value for limiting the current value for the time set in SP060 when the base is cut off<br />

and then turned ON during coil changeover.<br />

Standard setting value : 75<br />

Setting range : 0 to 120 (%)<br />

DEC<br />

DEC<br />

DEC<br />

SP0257<br />

to<br />

SP320<br />

RPM to<br />

BDS<br />

H coil motor constants<br />

Set the motor constants for the high-speed coil selection.<br />

HEX<br />

SP0321<br />

to<br />

SP384<br />

RPML to<br />

BDSL<br />

L coil motor constants<br />

Set the motor constants for the low-speed coil selection.<br />

HEX<br />

5 - 65


5. Adjustment<br />

(4) Coil changeover contactor (magnetic contact)<br />

1) Selection<br />

The coil changeover contactor is selected according to the applicable spindle drive unit's<br />

capacity as shown below.<br />

Use a contactor with an operation coil voltage that matches the power specifications in use.<br />

Refer to section "7-2-3 Selecting the contactor" for details on the contactor specifications.<br />

Spindle drive unit type<br />

MDS-CH-SP/SPH-55<br />

MDS-CH-SP/SPH-75<br />

MDS-CH-SP/SPH-110<br />

MDS-CH-SP/SPH-150<br />

MDS-CH-SP/SPH-185<br />

MDS-CH-SP/SPH-220<br />

MDS-CH-SP/SPH-260<br />

MDS-CH-SP/SPH-300<br />

MDS-CH-SP/SPH-370<br />

MDS-CH-SP/SPH-450<br />

MDS-CH-SP/SPH-550<br />

MDS-CH-SP/SPH-750<br />

Applicable contactor type<br />

S-N10<br />

S-N10<br />

S-N20<br />

S-N25<br />

S-N25<br />

S-N25<br />

S-N35<br />

S-N50<br />

S-N65<br />

S-N80<br />

S-N80<br />

S-N150<br />

5 - 66


6. Dedicated Options<br />

6-1 Dynamic brake unit ............................................................................................................................ 6-2<br />

6-1-1 Combination with servo drive unit ............................................................................................... 6-2<br />

6-1-2 Outline dimension drawings of dynamic brake unit..................................................................... 6-3<br />

6-2 Battery option ..................................................................................................................................... 6-4<br />

6-2-1 Battery unit .................................................................................................................................. 6-4<br />

6-2-2 Connection .................................................................................................................................. 6-8<br />

6-2-3 Dedicated battery cable drawing................................................................................................. 6-8<br />

6-3 Cables and connectors ...................................................................................................................... 6-9<br />

6-3-1 Cable option list......................................................................................................................... 6-10<br />

6-3-2 Connector outline dimension drawings ..................................................................................... 6-14<br />

6-3-3 Flexible conduits........................................................................................................................ 6-21<br />

6-3-4 Cable wire and assembly .......................................................................................................... 6-23<br />

6-3-5 Option cable connection diagram.............................................................................................. 6-25<br />

6-3-6 Main circuit cable connection drawing ...................................................................................... 6-28<br />

6-4 Scale I/F unit .................................................................................................................................... 6-29<br />

6-4-1 Outline ....................................................................................................................................... 6-29<br />

6-4-2 Model configuration ................................................................................................................... 6-29<br />

6-4-3 List of specifications .................................................................................................................. 6-29<br />

6-4-4 Unit outline dimension drawing ................................................................................................. 6-30<br />

6-4-5 Description of connector............................................................................................................ 6-30<br />

6-4-6 Example of detector conversion unit connection ...................................................................... 6-31<br />

6-4-7 Cables ....................................................................................................................................... 6-32<br />

6-5 Magnetic pole detection unit ............................................................................................................ 6-36<br />

6-5-1 Outline ....................................................................................................................................... 6-36<br />

6-5-2 Model configuration ................................................................................................................... 6-36<br />

6-5-3 List of specifications .................................................................................................................. 6-36<br />

6-5-4 Outline dimensions.................................................................................................................... 6-36<br />

6-5-5 Assignment of connector pins ................................................................................................... 6-37<br />

6-5-6 Installing onto the linear servomotor ......................................................................................... 6-37<br />

6-6 Detectors .......................................................................................................................................... 6-38<br />

6-6-1 List of detector specifications .................................................................................................... 6-38<br />

6-6-2 Outline dimension drawings ...................................................................................................... 6-39<br />

6-6-3 Cable connection diagram ........................................................................................................ 6-41<br />

6-6-4 Maintenance.............................................................................................................................. 6-42<br />

6-7 Spindle option specification parts .................................................................................................... 6-43<br />

6-7-1 Magnetic sensor orientation (one-point orientation).................................................................. 6-44<br />

6-7-2 Multi-point orientation using encoder (4096-point orientation).................................................. 6-48<br />

6-7-3 Multi-point orientation using motor built-in encoder (4096-point orientation)............................ 6-51<br />

6-7-4 Contour control (C axis control) encoder .................................................................................. 6-53<br />

6-7-5 Integrated rotary encoder (Special order part).......................................................................... 6-56<br />

6-8 AC reactor ........................................................................................................................................ 6-57<br />

6-8-1 Combination with power supply unit.......................................................................................... 6-57<br />

6-8-2 Outline dimension drawings ...................................................................................................... 6-57<br />

6 - 1


6. Dedicated Options<br />

WARNING<br />

CAUTION<br />

Always wait at least 15 minutes after turning the power OFF, confirm that the<br />

CHARGE lamp has turned OFF, and check the voltage with a tester, etc., before<br />

connecting the option or peripheral device. Failure to observe this could lead to<br />

electric shocks.<br />

1. Use the designated peripheral device and options. Failure to observe this<br />

could lead to faults or fires.<br />

2. Pay attention to the installation environment so that cutting chips or oil, etc.,<br />

do not come in contact with the dynamic brake unit. There is a risk of<br />

short-circuit accidents at the resistor terminal block, or the burning of oil<br />

adhered on the resistor. These can lead to fires.<br />

The ordered dedicated options are explained in this section.<br />

(Note that parts indicated as non-ordered parts are excluded.)<br />

6-1 Dynamic brake unit<br />

6-1-1 Combination with servo drive unit<br />

The 11kW and larger servo drive unit does not have built-in dynamic brakes. Always install a dynamic<br />

brake unit.<br />

The 9kW and smaller servo drive unit has built-in dynamic brakes.<br />

Brake connector<br />

1-178128-3<br />

Tyco Electronics<br />

Pin<br />

1<br />

2<br />

3<br />

Name<br />

24VDC<br />

DBU<br />

MBR<br />

CN20<br />

External<br />

power supply<br />

24VDC GND<br />

CN20 cable<br />

1<br />

2<br />

3<br />

Twist wire<br />

Motor with a brake<br />

Control terminal<br />

block<br />

Terminal: M3<br />

Pin<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

Name<br />

NC<br />

a<br />

b<br />

13<br />

14<br />

U V W<br />

a<br />

b<br />

Dynamic brake unit<br />

(MDS-B-DBU-150)<br />

Servomotor<br />

Drive terminal<br />

block<br />

Terminal: M3<br />

Pin<br />

1<br />

2<br />

3<br />

Name<br />

U<br />

V<br />

W<br />

CAUTION<br />

POINT<br />

Correct wire the dynamic brake unit to the servo drive unit.<br />

Do not use for applications other than emergencies (normal braking, etc.). The<br />

internal resistor could heat up, and lead to fires or faults.<br />

When you use a servomotor with a brake, please wire (between 1 and 3) of<br />

CN20 connector.<br />

6 - 2


6. Dedicated Options<br />

6-1-2 Outline dimension drawings of dynamic brake unit<br />

<br />

20<br />

[Unit: mm]<br />

200<br />

190<br />

MITSUBISHI<br />

Type: MDS-B-DBU-150<br />

180 10<br />

FG a b 13 14<br />

U V W<br />

5<br />

5<br />

5<br />

200<br />

20<br />

20<br />

140<br />

Model Corresponding unit Weight (kg)<br />

MDS-B-DBU-150<br />

MDS-CH-V1-110<br />

MDS-CH-V1-150<br />

MDS-CH-V1-185<br />

Inside wiring<br />

2<br />

R (0.2Ω)<br />

V<br />

W<br />

U<br />

14<br />

13<br />

MC<br />

SK<br />

b<br />

a<br />

6 - 3


6. Dedicated Options<br />

6-2 Battery option<br />

6-2-1 Battery unit<br />

This battery option may be required to establish absolute position system. Select a battery option from<br />

the table below depending on the servo system.<br />

Type MDS-A-BT-□□ FCU6-BTBOX-36<br />

Installation type Unit and battery integration type Unit and battery integration type<br />

Hazard class Class9 (excluding MDS-A-BT-2) Not applicable<br />

Number of<br />

connectable axes<br />

2 to 8 axes Up to 6 axes<br />

Battery change Not possible Possible<br />

Appearance (1) (2)<br />

6 - 4


6. Dedicated Options<br />

(1) Battery unit (MDS-A-BT-□)<br />

< Specifications ><br />

Battery option type<br />

Lithium battery series<br />

Battery unit<br />

MDS-A-BT-2 MDS-A-BT-4 MDS-A-BT-6 MDS-A-BT-8<br />

ER6V<br />

Nominal voltage 3.6V<br />

Nominal capacity 4000mAh 8000mAh 12000mAh 16000mAh<br />

Battery Hazard class Class 9<br />

safety Battery shape Set battery<br />

Number of batteries<br />

used<br />

ER6V x 2 ER6V x 4 ER6V x 6 ER6V x 8<br />

Lithium alloy content 1.3g 2.6g 3.9g 5.2g<br />

Mercury content<br />

1g or less<br />

Number of connectable axes Up to 2 axes Up to 4 axes Up to 6 axes Up to 8 axes<br />

Battery continuous backup time<br />

Approx. 30000 hours<br />

Battery useful life (From date of<br />

unit manufacture)<br />

7 years<br />

Data save time in battery<br />

replacement<br />

HC-H series: approx. 20 hours at time of delivery, approx. 10 hours after 5 years<br />

Back up time from battery<br />

warning to alarm occurrence<br />

Approx. 100 hours<br />

(Note)<br />

Weight<br />

600g<br />

(Note) This time is a guideline, so does not guarantee the back up time. Replace the battery with a new battery as soon as a battery<br />

warning occurs.<br />

< Outline dimension drawings ><br />

• MDS-A-BT-2/-4/-6/-8<br />

15<br />

Use an M5 screw for the ø6 mounting hole<br />

160<br />

145<br />

135<br />

52<br />

17<br />

R3<br />

6<br />

100<br />

30<br />

[Unit: mm]<br />

6 - 5


6. Dedicated Options<br />

(2) Battery unit ( FCU6-BTBOX-36 )<br />

< Specifications ><br />

Battery option type<br />

Lithium battery series<br />

Nominal voltage<br />

Nominal capacity<br />

Battery unit<br />

FCU6-BTBOX-36(Note1)<br />

2CR5<br />

6.0V (Lithium battery), 3.6V (Output)<br />

2600mAh<br />

Battery Hazard class -<br />

safety Battery shape Single battery<br />

Number of<br />

batteries used<br />

2CR5×2<br />

Lithium alloy<br />

content<br />

1.96g<br />

Mercury content<br />

1g or less<br />

Number of connectable axes<br />

Up to 6 axes<br />

Battery continuous backup time<br />

Approx. 5000 hours (when 6 axes are connected)<br />

Battery useful life<br />

(From date of unit manufacture)<br />

5 years Note2<br />

Data save time in battery<br />

replacement<br />

HC-H series: approx. 20 hours at time of delivery, approx. 10 hours after 5 years<br />

Back up time from battery<br />

warning to alarm occurrence<br />

Approx. 30 hours (when 6 axes are connected)<br />

(Note3)<br />

Weight<br />

(Note1) A lithium battery in FCU6-BTBOX-36 is commercially available. The battery for replacement has to be prepared by the user.<br />

(Note2) Use new batteries (nominal capacity 1300mAh or more) within five years from the date of manufacture. The batteries should<br />

be replaced once a year.<br />

(Note3) This time is a guideline, so does not guarantee the back up time. Replace the battery with a new battery as soon as a battery<br />

warning occurs.<br />

200g<br />

< Outline dimension drawings ><br />

• FCU6-BTBOX-36<br />

75<br />

4<br />

12.5<br />

57.5<br />

Plus (+) terminal<br />

Minus (-) terminal<br />

65 75<br />

50<br />

50<br />

Square<br />

hole<br />

2CR5<br />

2CR5<br />

Packing area<br />

Panel cut drawing<br />

2-M4 screw<br />

[Unit: mm]<br />

6 - 6


6. Dedicated Options<br />

CAUTION<br />

1. On January 1, 2003, new United Nations requirements, "United Nations<br />

Dangerous Goods Regulations Article 12", became effective regarding the<br />

transportation of lithium batteries. The lithium batteries are classified as<br />

hazardous materials (Class 9) depending on the unit. (Refer to Appendix 4.)<br />

2. The lithium battery must be transported according to the rules set forth by the<br />

International Civil Aviation Organization (ICAO), International Air<br />

Transportation Association (IATA), International Maritime Organization<br />

(IMO), and United States Department of Transportation (DOT), etc. The<br />

packaging methods, correct transportation methods, and special regulations<br />

are specified according to the quantity of lithium alloys. The battery unit<br />

exported from <strong>Mitsubishi</strong> is packaged in a container (UN approved part)<br />

satisfying the standards set forth in this UN Advisory.<br />

3. To protect the absolute value, do not shut off the servo drive unit control<br />

power supply if the battery voltage becomes low (warning 9F).<br />

4. Contact the Service Center when replacing the MDS-A-BT Series and cell<br />

battery.<br />

5. Replace the FCU6-BTBOX-36 battery with a new battery (2CR5) within the<br />

recommended service period. This battery is commercially available for use<br />

in cameras, etc.<br />

6. The battery life (backup time) is greatly affected by the working ambient<br />

temperature. The above data is the theoretical value for when the battery is<br />

used 8 hours a day/240 days a year at an ambient temperature of 25°C.<br />

Generally, if the ambient temperature increases, the backup time and useful<br />

life will both decrease.<br />

6 - 7


6. Dedicated Options<br />

6-2-2 Connection<br />

A terminal connector is built-in, so set as the final connection of the NC and communication cable.<br />

MDS-CH-V1<br />

MDS-CH-SP<br />

NC<br />

SH21 cable<br />

SH21 cable<br />

SH21 cable<br />

Select one<br />

Battery unit<br />

MDS-A-BT-2<br />

MDS-A-BT-4<br />

MDS-A-BT-6<br />

MDS-A-BT-8<br />

BTBOX cable<br />

Battery unit<br />

FCU6-BTBOX<br />

6-2-3 Dedicated battery cable drawing<br />

Refer to the following cable drawing, and manufacture the cable connected to the FCU6-BTBAT.<br />

Cable type: BTBOX cable<br />

Application: Battery cable for detector backup<br />

CN1A<br />

BTBOX side<br />

CN1A<br />

Shell<br />

10320-52F0-008 *Sumitomo 3M<br />

Plug<br />

10120-3000VE *Sumitomo 3M<br />

BT 9<br />

GND 1<br />

GND 11<br />

GND 5<br />

GND 15<br />

RD 2<br />

RD* 12<br />

SD 4<br />

SD* 14<br />

AL 3<br />

EMG 7<br />

AL* 13<br />

EMG* 17<br />

FG<br />

150Ω/0.25W<br />

150Ω/0.25W<br />

Enlarged<br />

view<br />

5mm<br />

Peel the wire 5mm<br />

6 - 8


6. Dedicated Options<br />

6-3 Cables and connectors<br />

The cables and connectors that can be ordered from <strong>Mitsubishi</strong> Electric Corp. as option parts are shown<br />

below. Cables can only be ordered in the designated lengths shown on the following pages. Purchase a<br />

connector set, etc., to create special length cables.<br />

MDS-CH-V1/V2/SP<br />

MDS-CH-V1/V2/SP<br />

NC<br />

<br />

NC communication<br />

cable connector set<br />

Terminal<br />

connector<br />

<br />

Battery unit<br />

HC-H Series<br />

Power connector<br />

Brake connector<br />

Detector cable<br />

connector set<br />

SJ Series<br />

(Spindle motor)<br />

Detector cable<br />

connector set<br />

6 - 9


6. Dedicated Options<br />

6-3-1 Cable option list<br />

(1) Cables<br />

For<br />

CN1A,<br />

CN1B<br />

Item Model Contents<br />

Communication cable<br />

for<br />

CNC - Drive unit<br />

Drive unit - Drive unit<br />

SH21<br />

Length:<br />

0.35, 0.5, 0.7, 1, 1.5, 2, 2.5, 3,<br />

3.5, 4, 4.5, 5, 6, 7, 8, 9, 10, 15,<br />

20, 30m<br />

Servo drive unit side<br />

connector (3M)<br />

Connector : 10120-6000EL<br />

Shell kit : 10320-3210-000<br />

Servo drive unit side<br />

connector (3M)<br />

Connector : 10120-6000EL<br />

Shell kit : 10320-3210-000<br />

FCUA-R000 and<br />

MR-J2HBUS[ ]M can also be<br />

used.<br />

Terminal connector A-TM<br />

FCUA-A-TM can also be used.<br />

Terminal connector<br />

For<br />

CN2<br />

Detector cable for<br />

HC-H [ ]-A51/E51,<br />

HC-H [ ]-A42/E42<br />

CNV12-0- - <br />

Drive unit side connector<br />

Blank: One-touch lock<br />

S: Screw lock<br />

Environment<br />

Blank: For general<br />

environment<br />

P: IP65 compatible<br />

Detector side connector<br />

2: Straight cannon<br />

3: Angle cannon<br />

Servo drive unit side<br />

connector (3M)<br />

• Detector connector straight<br />

specification<br />

Connector : 10120-3000VE<br />

Shell kit : 10320-52F0-008<br />

(One-touch type lock)<br />

Shell kit: 10320-52A0-008<br />

(Screw-type lock)<br />

Servomotor detector side<br />

connector (DDK)<br />

For general environment<br />

Straight connector :<br />

MS3106B22-14S<br />

Clamp: MS3057-12A<br />

IP65 compatible<br />

Connector :<br />

MS3106A22-14S (D190)<br />

Straight back shell:<br />

CE02-22BS-S<br />

Clamp: CE3057-12A-3<br />

Length:<br />

1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6, 7,<br />

8, 9, 10, 11, 12, 13, 14, 15, 20,<br />

30m<br />

FCUA-R080 (straight cannon)<br />

and FCUA-R084 (angle<br />

cannon) can also be used.<br />

• Detector connector angle<br />

specification<br />

Connector : 10120-3000VE<br />

Shell kit : 10320-52F0-008<br />

(One-touch type lock)<br />

Shell kit; 10320-52A0-008<br />

(Screw-type lock)<br />

For general environment<br />

Angle connector :<br />

MS3108B22-14S<br />

Clamp: MS3057-12A<br />

IP65 compatible<br />

Connector :<br />

MS3106A22-14S (D190)<br />

Angle back shell:<br />

CE-22BA-S<br />

Clamp: CE3057-12A-3<br />

(Note) The connector maker may change without notice.<br />

6 - 10


6. Dedicated Options<br />

For<br />

CN5<br />

Item Model Contents<br />

PLG detector cable<br />

for SJ spindle<br />

CNP5S - <br />

Connector type<br />

2: Connector<br />

E: Crimped terminal<br />

Length:<br />

1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6, 7, 8,<br />

9, 10, 11, 12, 13, 14, 15, 20, 30m<br />

Spindle drive unit side<br />

connector (3M)<br />

Connector: 10120-3000VE<br />

Shell kit: 10320-52F0-008<br />

Spindle motor side connector<br />

For 2-type (Tyco Electronics)<br />

Housing: 178289-6<br />

Pin: 1-175217-2<br />

For E-type (J.S.T.)<br />

Crimped terminal: V1.25-4<br />

2-type<br />

E-type<br />

For<br />

CN6<br />

For SJ spindle<br />

Magnetic sensor<br />

orientation cable<br />

Encoder orientation<br />

cable<br />

CNP6 - <br />

Connector type<br />

2: Connector<br />

E: Crimped terminal<br />

Type<br />

A: Encoder<br />

M: Magnetic sensor<br />

Spindle drive unit side<br />

connector (3M)<br />

Connector: 10120-3000VE<br />

Shell kit: 10320-52F0-008<br />

Spindle motor side connector<br />

For M-2- type (Tajimi Musen)<br />

Connector:<br />

TRC116-12A10-7F10.5<br />

For A-2-type (DDK)<br />

Connector: MS3106B20-29S<br />

For E-type (J.S.T.)<br />

Crimped terminal: V1.25-4<br />

Length:<br />

1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6, 7, 8,<br />

9, 10, 11, 12, 13, 14, 15, 20, 30m<br />

2-type<br />

E-type<br />

For<br />

CN7<br />

C-axis control cable<br />

for SJ spindle<br />

CNP7 A - <br />

Connector type<br />

2: Connector (Straight)<br />

3: Connector (Right angle)<br />

E: Crimped terminal<br />

Spindle drive unit side<br />

connector (3M)<br />

Connector: 10120-3000VE<br />

Shell kit: 10320-52F0-008<br />

Spindle motor side connector<br />

For A-2-type (DDK)<br />

Connector: MS3106B20-29S<br />

For A-3-type (DDK)<br />

Connector: MS3108B20-29S<br />

Clamp: MS3057-12A<br />

Type<br />

A: OSE90K + 1024<br />

For E-type (J.S.T)<br />

Crimped terminal: V1.25-4<br />

Other connections<br />

Black: None<br />

1: Connect with NC<br />

6: Connect with CN6<br />

2-type<br />

Length:<br />

1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6, 7, 8,<br />

9, 10, 11, 12, 13, 14, 15, 20, 30m<br />

3-type<br />

E-type<br />

(Note) The connector maker may change without notice.<br />

6 - 11


6. Dedicated Options<br />

For<br />

CN1A,<br />

CN1B<br />

(2) Connector sets<br />

Item Model Contents<br />

FCUA-CS000 Servo drive unit side<br />

connector (3M)<br />

Connector : 10120-3000VE<br />

Shell kit : 10320-52F0-008<br />

Communication connector set for<br />

CNC - Drive unit<br />

Drive unit - Drive unit<br />

Servo drive unit side<br />

connector (3M)<br />

Connector : 10120-3000VE<br />

Shell kit : 10320-52F0-008<br />

For<br />

CN2<br />

Detector cable<br />

connector set for<br />

HC-H[_]-A51/A42<br />

HC-H[_]-E51/E42<br />

IP65 and<br />

EN<br />

standard<br />

compatible<br />

Straight<br />

ENCP22-14S3<br />

Compliant cable<br />

range<br />

ø6.8 to ø10<br />

(when using<br />

A14B2343)<br />

Refer to section<br />

"6-4-4".<br />

Servo drive unit side<br />

connector (3M)<br />

Connector : 10120-3000VE<br />

Shell kit : 10320-52F0-008<br />

Servomotor detector side<br />

connector (DDK)<br />

Connector :<br />

MS3106A22-14S (D190)<br />

Straight back shell:<br />

CE02-22BS-S<br />

Clamp: CE3057-12A-3<br />

ENCP22-14S2<br />

Compliant cable<br />

range<br />

ø9.5 to ø13<br />

Servo drive unit side<br />

connector (3M)<br />

Connector : 10120-3000VE<br />

Shell kit : 10320-52F0-008<br />

Servomotor detector side<br />

connector (DDK)<br />

Connector :<br />

MS3106A22-14S (D190)<br />

Straight back shell:<br />

CE02-22BS-S<br />

Clamp: CE3057-12A-2<br />

Angle<br />

ENCP22-14L3<br />

Compliant cable<br />

range<br />

ø6.8 to ø10<br />

(when using<br />

A14B2343)<br />

Refer to section<br />

"6-4-4".<br />

Servo drive unit side<br />

connector (3M)<br />

Connector : 10120-3000VE<br />

Shell kit : 10320-52F0-008<br />

Servomotor detector side<br />

connector (DDK)<br />

Connector :<br />

MS3106A22-14S (D190)<br />

Angle back shell:<br />

CE-22BA-S<br />

Clamp: CE3057-12A-3<br />

ENCP22-14L2<br />

Compliant cable<br />

range<br />

ø9.5 to ø13<br />

Servo drive unit side<br />

connector (3M)<br />

Connector : 10120-3000VE<br />

Shell kit : 10320-52F0-008<br />

Servomotor detector side<br />

connector (DDK)<br />

Connector :<br />

MS3106A22-14S (D190)<br />

Angle back shell:<br />

CE-22BA-S<br />

Clamp: CE3057-12A-2<br />

For<br />

general<br />

environment<br />

Straight<br />

FCUA-CS080<br />

Servo drive unit side<br />

connector (3M)<br />

Connector : 10120-3000VE<br />

Shell kit : 10320-52F0-008<br />

Servomotor detector side<br />

connector (DDK)<br />

Connector :<br />

MS3106B22-14S<br />

Clamp: MS3057-12A<br />

Angle<br />

FCUA-CS084<br />

Servo drive unit side<br />

connector (3M)<br />

Connector : 10120-3000VE<br />

Shell kit : 10320-52F0-008<br />

Servomotor detector side<br />

connector (DDK)<br />

Connector :<br />

MS3108B22-14S<br />

Clamp: MS3057-12A<br />

For CN5, SJ spindle detector<br />

CN6, cable connector set<br />

CN7<br />

(Note) The connector maker may change without notice.<br />

A dedicated connector set is not prepared.<br />

The FCUA-CS000 set can be used on the drive unit side.<br />

6 - 12


6. Dedicated Options<br />

For<br />

motor<br />

power<br />

Item Model Contents<br />

Power connector IP67 and Straight Special order part<br />

Servomotor side power connector<br />

for<br />

EN<br />

(JAE)<br />

HC-H52 to 352, standard<br />

Plug: JL04V-6A22-22SE-EB<br />

HC-H53 to 353 compatible<br />

Clamp: JL04-2022CK (14)<br />

Angle<br />

Special order part Servomotor side power connector<br />

(JAE)<br />

Plug: JL04V-8A22-22SE-EB<br />

Clamp: JL04-2022CK (14)<br />

Power connector<br />

for<br />

HC-H452 to 1102,<br />

HC-H453 to 1103<br />

IP67 and<br />

EN<br />

standard<br />

compatible<br />

Straight<br />

PWCE32-17S<br />

Compliant cable<br />

range<br />

ø22 to ø23.8<br />

Servomotor side power connector<br />

(DDK)<br />

Connector: CE05-6A32-17SD-B-BSS<br />

Clamp: CE3057-20A-1 (D265)<br />

Angle<br />

PWCE24-10L<br />

Compliant cable<br />

range<br />

Ø13 to ø15.5<br />

Servomotor side power connector<br />

(DDK)<br />

Connector: CE05-8A32-17SD-B-BAS<br />

Clamp: CE3057-20A-1 (D265)<br />

For<br />

general<br />

environment<br />

Straight<br />

FCUA-CN811<br />

Servomotor side power connector<br />

(DDK)<br />

Connector: MS3106B32-17S<br />

Clamp: MS3057-20A<br />

Angle<br />

FCUA-CN815<br />

Servomotor side power connector<br />

(DDK)<br />

Connector: MS3108B32-17S<br />

Clamp: MS3057-20A<br />

For<br />

motor<br />

brake<br />

Brake connector<br />

for<br />

HC-H52B to 1102B,<br />

HC-H53B to 1103B<br />

IP67 and<br />

EN<br />

standard<br />

compatible<br />

Straight<br />

Angle<br />

BPKP10SL-4S<br />

Compliant cable<br />

range<br />

ø5 to ø8.3<br />

MR-BKCN can<br />

also be used.<br />

BRKP10SL-4L<br />

Compliant cable<br />

range<br />

ø5 to ø8.3<br />

Servomotor side brake connector<br />

Connector: MS3106A10SL-4S (D190)<br />

(DDK)<br />

Clamp: YSO10-5-8 (DAIWA DENGYO)<br />

Servomotor side brake connector<br />

Connector: MS3106A10SL-4S (D190)<br />

(DDK)<br />

Clamp: YLO10-5-8 (DAIWA DENGYO)<br />

For<br />

general<br />

environment<br />

Straight<br />

FCUA-CN804<br />

Servomotor side brake connector<br />

(Japan Aviation Electronics)<br />

Connector: MS3106B10SL-4S<br />

Clamp: MS3057-4A<br />

Angle<br />

FCUA-CN808<br />

Servomotor side brake connector<br />

(Japan Aviation Electronics)<br />

Connector: MS3108B10SL-4S<br />

Clamp: MS3057-4A<br />

(Note) The connector maker may change without notice.<br />

6 - 13


6. Dedicated Options<br />

6-3-2 Connector outline dimension drawings<br />

Connector for CN1A, CN1B, CN2, CN3, CN4, CN5, CN6, CN9<br />

Maker: 3M (Ltd.)<br />

<br />

Connector: 10120-3000VE<br />

Shell kit: 10320-52F0-008<br />

12.0<br />

[Unit: mm]<br />

22.0<br />

14.0<br />

23.8<br />

39.0<br />

10.0<br />

33.3 12.7<br />

Maker: 3M (Ltd.)<br />

<br />

Connector: 10120-6000EL<br />

Shell kit: 10320-3210-000<br />

11.5<br />

[Unit: mm]<br />

Because this connector is an<br />

integrated molding part of the<br />

cable, it is not an option<br />

setting in the connector set.<br />

The terminal connector<br />

(A-TM) also has the same<br />

outline.<br />

42.0<br />

33.0<br />

20.9<br />

29.7<br />

6 - 14


6. Dedicated Options<br />

Connectors for detector and motor power (IP67 and EN standard compatible)<br />

Straight plug<br />

Maker : DDK (Ltd.)<br />

W<br />

D or less<br />

7.85 or more<br />

A<br />

øC± 0.8<br />

-0.38 øB +0<br />

[Unit: mm]<br />

Model A B C D W<br />

CE05-6A18-12SD-B-BSS 1 1 / 8 -18UNEF-2B 34.13 32.1 57 1-20UNEF-2A<br />

CE05-6A22-23SD-B-BSS 1 3 / 8 -18UNEF-2B 40.48 38.3 61 1 3 / 16 -18UNEF-2A<br />

CE05-6A32-17SD-B-BSS 2-18UNS-2B 56.33 54.2 79 1 3 / 4 -18UNS-2A<br />

Angle plug<br />

Maker : DDK (Ltd.)<br />

D or less<br />

A<br />

(S)±1<br />

U ±0.7<br />

R ± 0.7<br />

Y or more<br />

-0.38 øB +0<br />

W<br />

[Unit: mm]<br />

Model A B D W R U S Y<br />

CE05-8A18-12SD-B-BAS 1 1 / 8 -18UNEF-2B 34.13 69.5 1-20UNEF-2A 13.2 30.2 43.4 7.5<br />

CE05-8A22-23SD-B-BAS 1 3 / 8 -18UNEF-2B 40.48 75.5 1 3 / 16 -18UNEF-2A 16.3 33.3 49.6 7.5<br />

CE05-8A32-17SD-B-BAS 2-18UNS-2B 56.33 93.5 1 3 / 4 -18UNS-2A 24.6 44.5 61.9 8.5<br />

Cable clamp<br />

Maker : DDK (Ltd.)<br />

1.6<br />

V screw<br />

C<br />

(D)<br />

A<br />

B ± 0.7<br />

øF<br />

Bushing (inside<br />

diameter)<br />

G ± 0.7<br />

H<br />

(Moveable range of one side)<br />

øE<br />

(Cable clamp inside<br />

diameter)<br />

Model<br />

Shell<br />

size<br />

Effective<br />

Total Outside<br />

screw<br />

length dia.<br />

length<br />

A B C D E F G H<br />

Installation<br />

screw (V)<br />

Bushing<br />

[Unit: mm]<br />

Compliant<br />

cable<br />

CE3057-10A-2 (D265) 18 23.8 30.1 10.3 41.3 15.9 11 31.7 3.2 1-20UNEF-2B CE3420-10-2 ø8.5 to ø11<br />

CE3057-12A-2 (D265) 20,<br />

13 1 3 / CE3420-12-2 ø9.5 to ø13<br />

23.8 35 10.3 41.3 19 37.3 4 16 -18UNEF-2<br />

CE3057-12A-3 (D265) 22<br />

10<br />

B<br />

CE3420-12-3 ø6.8 to ø10<br />

CE3057-20A-1 (D265) 32 27.8 51.6 11.9 43.0 31.7 23.8 51.6 6.3 1 3 / 4 -18UNS-2B CE3420-20-1 ø22 to ø23.8<br />

6 - 15


6. Dedicated Options<br />

Connectors for motor power (IP67 and EN standard compatible)<br />

Straight plug<br />

Maker : Japan Aviation Electronics (Ltd.)<br />

Polarizing<br />

Groove<br />

L<br />

øA<br />

øB<br />

1-3/16-18UNEF-2A<br />

F<br />

[Unit: mm]<br />

Contact configuration<br />

øA øB L F øG<br />

V<br />

Model<br />

Layout Size × No.<br />

±0.8 ±0.2 ±0.8 ±0.5 ±0.5 screw<br />

symbol of cores<br />

JL04V-6A22-22SE-EB 22-22 #8 × 4 40.5 30.05 67.63 35 17 1-3/16-18UNEF-2A<br />

Right angle plug<br />

Maker : Japan Aviation Electronics (Ltd.)<br />

Polarizing<br />

Groove<br />

øG<br />

øA<br />

10<br />

±0.5<br />

V<br />

D<br />

B<br />

C<br />

[Unit: mm]<br />

Contact configuration<br />

øA øB C D øG<br />

V<br />

Model<br />

Layout Size × No.<br />

±0.8 ±0.8 ±0.8 ±0.8 ±0.5 screw<br />

symbol of cores<br />

JL04V-8A22-22SE-EB 22-22 #8 × 4 40.5 60.23 73.93 32 17 1-3/16-18UNEF-2A<br />

Cable clamp<br />

Maker : Japan Aviation Electronics (Ltd.)<br />

D<br />

C<br />

V screw<br />

A<br />

øF<br />

Bushing (inside<br />

diameter)<br />

(Moveable range of one side)<br />

[Unit: mm]<br />

A B C D øE F<br />

W<br />

Applicable cable<br />

Model<br />

±0.8 ±0.8 ±0.8 ±0.8 ±0.8 ±0.8 screw<br />

diameter<br />

JL04V-2022CK (14) 37.3 34.9 24.3 53.8 15.9 4 1-3/16-18UNEF-2A ø 12.9 to ø15.9<br />

B<br />

F<br />

øE<br />

(Cable clamp inside diameter)<br />

6 - 16


6. Dedicated Options<br />

Connectors for detector, motor power and brake (IP67 and EN standard compatible)<br />

Straight plug<br />

Maker : DDK (Ltd.)<br />

Gasket<br />

J ± 0.12<br />

A<br />

-0.25 øG +0.05<br />

-0.38 øB +0<br />

D<br />

E±0.3<br />

H or less<br />

C±0.5<br />

[Unit: mm]<br />

Model A B C D E G J<br />

MS3106A10SL-4S (D190)<br />

5 / 8 -24UNEF-2B 22.22 23.3<br />

9 / 16 -24UNEF-2A 7.5 12.5 13.49<br />

MS3106A22-14S (D190) 1 3 / 8 -18UNEF-2B 40.48 34.11 1 1 / 4 -18UNEF-2A 12.15 29.9 18.26<br />

Straight plug<br />

Maker : DDK (Ltd.)<br />

Model : CE05-6A14S-2SD-B<br />

3<br />

4<br />

-20UNEF-2A screw<br />

7<br />

8<br />

-20UNEF-2B screw<br />

[Unit: mm]<br />

D terminal<br />

-0.38 ø28.57 +0<br />

5.6±0.8 24±1<br />

Straight back shell<br />

Maker : DDK (Ltd.)<br />

B<br />

L<br />

W screw<br />

V screw<br />

øA<br />

O-ring<br />

øC<br />

7.85 or more<br />

(Effective screw length)<br />

D<br />

(Spanner grip)<br />

[Unit: mm]<br />

Model L A B C D V W<br />

CE02-22BS-S 35 36.5 10.9 17.8 32.4 1 1 / 4 -18UNEF-2B 1 3 / 16 -18UNEF-2A<br />

Angle back shell<br />

Maker : DDK (Ltd.)<br />

Model : CE-22BA-S<br />

50.5 or less<br />

39.6 or less<br />

[Unit: mm]<br />

1 1 / 4-18UNEF-2B screw<br />

(49.6)<br />

16.3<br />

33.3<br />

7.5 or more<br />

O-ring<br />

ø38.6<br />

1 3 / 16-18UNEF-2A screw<br />

6 - 17


6. Dedicated Options<br />

Connectors for motor power and brake (IP67 and EN standard compatible)<br />

Cable clamp<br />

Maker : DAIWA DENGYO (CO., LTD.)<br />

YSO<br />

O-ring<br />

A0<br />

YLO<br />

L1<br />

D (D1)<br />

L2<br />

L<br />

D2<br />

O-ring<br />

A0<br />

Model<br />

YSO10-5 to 8,<br />

YLO10-5 to 8<br />

Accommodating<br />

outside<br />

diameter<br />

ø5 to 8.3<br />

YSO14-9 to 11 ø8.3 to 11.3<br />

[Unit: mm]<br />

American<br />

standard screw<br />

Length before<br />

tightening<br />

Side to<br />

side<br />

Corner to<br />

corner<br />

A0 L L1 L2 D D1 D2<br />

9<br />

/ 16 -24UNEF-2B 43 39 42.5 24 26 26<br />

3<br />

/ 4 -20UNEF-2B 44 43.5 44.5 26 28 35<br />

6 - 18


6. Dedicated Options<br />

Connectors for detector, motor power and brake (for general environment)<br />

Straight plug<br />

Maker : DDK (Ltd.)<br />

W or<br />

more<br />

L or less<br />

J ±0.12<br />

Y or less<br />

A<br />

-0.38 øQ +0<br />

Model<br />

Coupling<br />

screw<br />

Length of<br />

coupling section<br />

Total<br />

length<br />

V<br />

Connection nut<br />

outside diameter<br />

Cable clamp<br />

installation<br />

screw<br />

[Unit: mm]<br />

Effective<br />

screw<br />

length<br />

A J L Q V W Y<br />

MS3106B18-12S 1 1 / 8 -18UNEF 18.26 52.37 34.13 1-20UNEF 9.53 42<br />

MS3106B20-29S 1 1 / 4 -18UNEF 18.26 55.57 37.28 1 3 / 16 -18UNEF 9.53 47<br />

MS3106B22-14S<br />

MS3106B22-23S<br />

1 3 / 8 -18UNEF 18.26 55.57 40.48 1 3 / 16 -18UNEF 9.53 50<br />

MS3106B32-17S 2-18UNEF 18.26 61.92 56.33 1 3 / 4 -18UNS 11.13 66<br />

Max.<br />

width<br />

Angle plug<br />

Maker : DDK (Ltd.)<br />

L or less<br />

J±0.12<br />

R±0.5<br />

A<br />

-0.38 øQ +0<br />

U±0.5<br />

V<br />

W or<br />

more<br />

Model<br />

Coupling<br />

screw<br />

Length of<br />

coupling<br />

section<br />

Total<br />

length<br />

Connection<br />

nut outside<br />

diameter<br />

Cable clamp<br />

installation<br />

screw<br />

[Unit: mm]<br />

Effective<br />

screw<br />

length<br />

A J L Q R U V W<br />

MS3108B18-12S 1 1 / 8 -18UNEF 18.26 68.27 34.13 20.5 30.2 1-20UNEF 9.53<br />

MS3108B22-14S<br />

MS3108B22-23S<br />

1 3 / 8 -18UNEF 18.26 76.98 40.48 24.1 33.3 1 3 / 16 -18UNEF 9.53<br />

MS3108B32-17S 2-18UNEF 18.26 95.25 56.33 32.8 44.4 1 3 / 4 -18UNS 11.13<br />

Straight plug<br />

Maker : Japan Aviation<br />

Electronics (Ltd.)<br />

Model: MS3106B10SL-4S<br />

Effective screw<br />

length<br />

(Including relief<br />

of 2.77 or less)<br />

5 / 8-24UNEF-2A13.5±0.3 5 / 8-24UNEF-2B<br />

9.5<br />

or more<br />

38.9<br />

or less<br />

ø 22.2±0.8<br />

[Unit: mm]<br />

6 - 19


6. Dedicated Options<br />

Connectors for detector, motor power and brake (for general environment)<br />

Angle plug<br />

Maker : Japan Aviation<br />

Electronics (Ltd.)<br />

Model: MS3108B10SL-4S<br />

13.5±0.3<br />

5 / 8-24UNEF-2B<br />

ø22.2±0.8<br />

[Unit: mm]<br />

9.5 or more<br />

ø25.0±0.8<br />

5 / 8-24UNEF-2A 36.9±0.8<br />

46.0 or less<br />

Cable clamp<br />

Maker : DDK (Ltd.)<br />

1.6<br />

C<br />

A±0.7<br />

ØE (Bushing inside diameter)<br />

V<br />

ØD (Cable clamp inside diameter)<br />

øB±0.7<br />

G±0.7<br />

F (Moveable range)<br />

Total<br />

length<br />

Outside<br />

diamete<br />

r<br />

Effective<br />

screw<br />

length<br />

Installation<br />

screw<br />

[Unit: mm]<br />

Model Shell size<br />

Bushing<br />

A B C D E F G V<br />

MS3057-4A 10SL, 12S 20.6 20.6 10.3 7.9 5.6 1.6 22.2<br />

5 / 8 -24UNEF AN3420-4<br />

MS3057-10A 18 23.8 30.1 10.3 15.9 14.3 3.2 31.7 1-20UNEF AN3420-10<br />

MS3057-12A 20, 22 23.8 35.0 10.3 19.0 15.9 4.0 37.3 1 3 / 16 -18UNEF AN3420-12<br />

MS3057-16A 24, 28 26.2 42.1 10.3 23.8 19.1 4.8 42.9 1 7 / 16 -18UNEF AN3420-16<br />

6 - 20


6. Dedicated Options<br />

6-3-3 Flexible conduits<br />

Basically, splash proofing can be ensured if cab-tire cable and connectors with IP65 or higher<br />

specifications are used. However, to further improve the oil resistance (chemical resistance to oil),<br />

weather resistance (resistance to the environment when used outdoors, etc.), durability, tensile strength,<br />

flattening strength, etc., run the cable through a flexible conduit when wiring.<br />

The following shows an example of a flexible conduit. Contact the connector maker for more<br />

information.<br />

(1) Method for connecting to a connector with back shell<br />

Connector with<br />

back shell<br />

Connector<br />

for conduit<br />

Flexible conduit<br />

Cable<br />

Application<br />

For<br />

power<br />

Applicable<br />

motors<br />

HC-H52 to 102<br />

HC-H53 to 103<br />

HC-H152 to 452<br />

HC-H203 to 353<br />

HC-H702 to 1102<br />

HC-H453 to 1103<br />

Connector (straight)<br />

CE05-6A22-23SD-B-<br />

BSS<br />

CE05-6A24-10SD-B-<br />

BSS<br />

CE05-6A32-17SD-B-<br />

BSS<br />

DDK<br />

Connector (angle)<br />

CE05-8A22-23SD-B-<br />

BAS<br />

CE05-8A24-10SD-B-<br />

BAS<br />

CE05-8A32-17SD-B-<br />

BAS<br />

Model<br />

(Note) None of the parts in this table can be ordered from <strong>Mitsubishi</strong> Electric Corp.<br />

Connector for<br />

conduit<br />

RCC-104CA2022<br />

RCC-106CA2022<br />

RCC-106CA2428<br />

RCC-108CA2428<br />

RCC108CA32<br />

RCC110CA32<br />

Nippon Flex<br />

Flexible conduit<br />

VF-04<br />

(Min. inside diameter: 14)<br />

VF-06<br />

(Min. inside diameter: 19)<br />

VF-06<br />

(Min. inside diameter: 19)<br />

VF-08<br />

(Min. inside diameter: 24.4)<br />

VF-08<br />

(Min. inside diameter: 24.4)<br />

VF-10<br />

(Min. inside diameter: 33.0)<br />

Back shell<br />

Connector<br />

for conduit<br />

Flexible conduit<br />

Cable<br />

Connector<br />

Application<br />

For<br />

brake<br />

For<br />

detector<br />

Applicable<br />

motors<br />

HC-H202B to<br />

H1102B<br />

HC-H203B to<br />

H1103B<br />

HC-H52 to<br />

H1102<br />

HC-H53 to<br />

H1103<br />

Connector/back<br />

shell (straight)<br />

DDK<br />

Connector/back<br />

shell (angle)<br />

6 - 21<br />

Model<br />

Connector for<br />

conduit<br />

Nippon Flex<br />

Select according to section "(2) Method for connecting to the connector main body".<br />

Connector<br />

MS3106A22-14S<br />

(D190)<br />

Back shell<br />

CE02-22BS-S<br />

Connector<br />

MS3106A22-14S<br />

(D190)<br />

Back shell<br />

CE-22BA-S<br />

RCC-104CA2022<br />

RCC-106CA2022<br />

Flexible conduit<br />

VF-04<br />

(Min. Inside diameter: 14)<br />

VF-06<br />

(Min. Inside diameter: 19)


6. Dedicated Options<br />

(Note) None of the parts in this table can be ordered from <strong>Mitsubishi</strong> Electric Corp.<br />

(2) Method for connecting to the connector main body<br />

Connector<br />

for conduit<br />

Flexible conduit<br />

Cable<br />

Connector<br />

Application<br />

For<br />

power<br />

Applicable motors<br />

HC-H52 to 352<br />

HC-H53 to 353<br />

HC-H452 to H1102<br />

HC-H453 to H1103<br />

Model<br />

DDK<br />

DAIWA DENGYO<br />

Connector (straight) Connector for conduit Flexible conduit<br />

CE05-6A22-23SD-B<br />

CE05-6A32-17SD-B<br />

MSA-16-22<br />

MAA-16-22<br />

MSA-22-22<br />

MAA-22-22<br />

Please contact to a<br />

maker.<br />

(Straight)<br />

(Angle)<br />

(Straight)<br />

(Angle)<br />

FCV16<br />

(Min. inside diameter: 15.8)<br />

FCV22<br />

(Min. inside diameter: 20.8)<br />

FCV36<br />

(Min. inside diameter: 35.0)<br />

For brake<br />

For<br />

detector<br />

HC-H202B to H1102B<br />

HC-H203B to H1103B<br />

OSA104, 105<br />

OSE104, 105<br />

MS3106A10SL-4S (D190)<br />

MS3106A22-14S (D190)<br />

MSA-10-10<br />

MAA-10-10<br />

MSA-16-22<br />

MAA-16-22<br />

MSA-22-22<br />

MAA-22-22<br />

(Note) None of the parts in this table can be ordered from <strong>Mitsubishi</strong> Electric Corp.<br />

(Straight)<br />

(Angle)<br />

(Straight)<br />

(Angle)<br />

(Straight)<br />

(Angle)<br />

FCV10<br />

(Min. inside diameter: 10.0)<br />

FCV16<br />

(Min. inside diameter: 15.8)<br />

FCV22<br />

(Min. inside diameter: 20.8)<br />

6 - 22


6. Dedicated Options<br />

6-3-4 Cable wire and assembly<br />

(1) Cable wire<br />

The following shows the specifications and processing of the wire used in each cable. Manufacture<br />

the cable using the following recommended wire or equivalent parts.<br />

Recommended<br />

wire model<br />

(Cannot be<br />

directly ordered<br />

from <strong>Mitsubishi</strong><br />

Electric Corp.)<br />

UL20276 AWG28<br />

10pair<br />

Finished<br />

outside<br />

diameter<br />

Sheath<br />

material<br />

No. of<br />

pairs<br />

6.1mm PVC 10<br />

A14B2343 (Note 1) 7.2mm PVC 6<br />

TS-91026 (Note 2) 11.6mm PVC<br />

2<br />

(0.3<br />

mm 2 )<br />

10<br />

(0.2<br />

mm 2 )<br />

Configuration<br />

7 strands/<br />

0.13mm<br />

40<br />

strands/<br />

0.08mm<br />

60<br />

strands/<br />

0.08mm<br />

40<br />

strands/<br />

0.08mm<br />

(Note 1) Junko Co. (Dealer: Toa Denki)<br />

(Note 2) BANDO ELECTRIC WIRE (http: //www.bew.co.jp)<br />

Conductor<br />

resistance<br />

222Ω/km<br />

or less<br />

105Ω/km<br />

or less<br />

63Ω/km<br />

or less<br />

95Ω/km<br />

or less<br />

Wire characteristics<br />

Withstand<br />

voltage<br />

AC350/ 1min<br />

Heat<br />

Insulation<br />

resistant<br />

resistance<br />

temperature<br />

1MΩ/km<br />

or more<br />

AC500/ 1min 1500MΩ/k<br />

m or more<br />

AC750V/<br />

1min<br />

60MΩ/km<br />

or more<br />

80°C<br />

Application<br />

NC unit<br />

communication<br />

cable<br />

105°C Detector cable<br />

60°C<br />

Detector cable<br />

(Cable length:<br />

20m or more)<br />

(2) Cable assembly<br />

Assemble the cable as shown in the following drawing, with the cable shield wire securely<br />

connected to the ground plate of the connector.<br />

Core wire<br />

Core wire<br />

Shield (external conductor)<br />

Sheath<br />

Shield<br />

(external conductor) Sheath<br />

Ground plate<br />

6 - 23


6. Dedicated Options<br />

(3) Cable protection tube (noise countermeasure)<br />

If influence from noise is unavoidable, or further noise resistance is required, selecting a flexible<br />

tube and running the signal cable through this tube is effective. This is also an effective<br />

countermeasure for preventing the cable sheath from being cut or becoming worn.<br />

A cable clamp (MS3057) is not installed on the detector side, so be particularly careful of broken<br />

wires in applications involving bending and vibration.<br />

Supplier<br />

Nippon Flex<br />

Control Corp.<br />

DAIWA DENGYO<br />

CO., LTD<br />

Sankei Works<br />

Tube<br />

FBA-4<br />

(FePb wire braid sheath)<br />

Hi-flex<br />

PT #17 (FePb sheath)<br />

Purika Tube<br />

PA-2 #17 (FePb sheath)<br />

Connector<br />

Drive unit side Installation screws Motor detector side<br />

RBC-104 (straight)<br />

RBC-204 (45°)<br />

RBC-304 (90°)<br />

PSG-104 (straight)<br />

PLG-17 (90°)<br />

PS-17 (straight)<br />

G16<br />

G16<br />

G16<br />

Screw diameter ø26.4<br />

Screw diameter ø26.4<br />

PF1/2<br />

RCC-104-CA2022<br />

PDC20-17<br />

BC-17 (straight) Wire tube screws : 15 PDC20-17<br />

(Note) None of the parts in this table can be ordered from <strong>Mitsubishi</strong> Electric Corp.<br />

6 - 24


6. Dedicated Options<br />

6-3-5 Option cable connection diagram<br />

CAUTION<br />

Do not mistake the connection when manufacturing the detector cable. Failure to<br />

observe this could lead to faults, runaway or fires.<br />

(1) NC unit communication cable<br />

< SH21 cable connection diagram ><br />

This is an actual connection diagram for the SH21 cable supplied by <strong>Mitsubishi</strong>.<br />

Manufacture the cable as shown below. The cable can be up to 30m long. Refer to section "6-4-4<br />

Cable wire and assembly" for details on wire.<br />

1<br />

11<br />

2<br />

12<br />

3<br />

13<br />

4<br />

14<br />

5<br />

15<br />

6<br />

16<br />

7<br />

17<br />

8<br />

18<br />

9<br />

19<br />

10<br />

20<br />

FG<br />

1<br />

11<br />

2<br />

12<br />

3<br />

13<br />

4<br />

14<br />

5<br />

15<br />

6<br />

16<br />

7<br />

17<br />

8<br />

18<br />

9<br />

19<br />

10<br />

20<br />

FG<br />

Plate<br />

(2) Detector cable for HC-H [_]-A51/42, -E51/42<br />

<br />

This is an actual connection diagram for the CNV12 cable supplied by <strong>Mitsubishi</strong>. The connection<br />

differs according to the cable length.<br />

(20m or less) (20 to 30m)<br />

Drive unit side<br />

Detector side<br />

Drive unit side<br />

Detector side<br />

6<br />

16<br />

7<br />

17<br />

9<br />

19<br />

10<br />

20<br />

H<br />

J<br />

K<br />

L<br />

E<br />

S<br />

SD<br />

SD*<br />

RQ<br />

RQ*<br />

BAT<br />

P5(+5V)<br />

6<br />

16<br />

7<br />

17<br />

9<br />

19<br />

10<br />

20<br />

0.3mm 2<br />

H<br />

J<br />

K<br />

L<br />

E<br />

S<br />

SD<br />

SD*<br />

RQ<br />

RQ*<br />

BAT<br />

P5(+5V)<br />

1<br />

11<br />

R<br />

LG(GND)<br />

1<br />

R<br />

LG(GND)<br />

FG<br />

N<br />

Plate (FG)<br />

11<br />

0.3mm 2<br />

FG<br />

N<br />

Plate (FG)<br />

CAUTION<br />

Do not connect anything to pins unless particularly specified when<br />

manufacturing a cable.<br />

6 - 25


6. Dedicated Options<br />

(3) PLG detector cable for SJ spindle<br />

<br />

This is an actual connection diagram for the CNP5S cable supplied by <strong>Mitsubishi</strong>.<br />

<br />

Manufacture the cable as shown below. The cable can be manufactured to 30m. Refer to section<br />

"6-3-4 Cable wire and assembly" for details on wire.<br />

Drive unit side<br />

PLG<br />

detector side<br />

6<br />

16<br />

7<br />

17<br />

8<br />

18<br />

10<br />

1<br />

20<br />

11<br />

3<br />

13<br />

A2<br />

B2<br />

A3<br />

B3<br />

A4<br />

B4<br />

A1<br />

B5<br />

A6<br />

B6<br />

PA<br />

RA<br />

PB<br />

RB<br />

PZ<br />

RZ<br />

P5<br />

GND<br />

MOH<br />

RG<br />

FG<br />

A5<br />

FG<br />

CAUTION<br />

The CNP5S cable is dedicated for the 400V compatible spindle PLG detector.<br />

<br />

This is an actual connection diagram for the CNP6M or CNP6A cable supplied by <strong>Mitsubishi</strong>.<br />

<br />

Manufacture the cable as shown below. The cable can be manufactured to 30m. Refer to section<br />

"6-3-4 Cable wire and assembly" for details on wire.<br />

CNP6M cable<br />

Drive unit side<br />

PLG<br />

detector side<br />

CNP6A cable<br />

Drive unit side<br />

PLG<br />

detector side<br />

6<br />

16<br />

7<br />

17<br />

5<br />

15<br />

A<br />

D<br />

F<br />

E<br />

C<br />

B<br />

2<br />

12<br />

3<br />

13<br />

4<br />

14<br />

10<br />

1<br />

19<br />

11<br />

20<br />

15<br />

A<br />

N<br />

C<br />

R<br />

B<br />

P<br />

H<br />

K<br />

A<br />

A<br />

B<br />

B<br />

Z<br />

Z<br />

+5V<br />

0V<br />

FG<br />

FG<br />

FG<br />

CAUTION<br />

When manufacturing the cable, do not connect anything to the pins having no<br />

description.<br />

6 - 26


6. Dedicated Options<br />

<br />

This is an actual connection diagram for the cable supplied by <strong>Mitsubishi</strong>.<br />

<br />

Manufacture the cable as shown below. The cable can be manufactured to 30m. Refer to section<br />

"6-3-4 Cable wire and assembly" for details on wire.<br />

CNP7A cable<br />

CNP76A cable<br />

Drive unit side<br />

PLG<br />

detector side<br />

Drive unit side (CN7)<br />

PLG<br />

detector side<br />

CA<br />

CA*<br />

CB<br />

CB*<br />

CZ<br />

CZ*<br />

P5<br />

GND<br />

P5<br />

GND<br />

P5<br />

GND<br />

2<br />

12<br />

3<br />

13<br />

4<br />

14<br />

10<br />

1<br />

19<br />

11<br />

20<br />

15<br />

F<br />

L<br />

G<br />

M<br />

S<br />

T<br />

H<br />

K<br />

CA<br />

CA*<br />

CB<br />

CB*<br />

CZ<br />

CZ*<br />

P5<br />

GND<br />

P5<br />

GND<br />

P5<br />

GND<br />

2<br />

12<br />

3<br />

13<br />

4<br />

14<br />

10<br />

1<br />

19<br />

11<br />

20<br />

15<br />

F<br />

L<br />

G<br />

M<br />

S<br />

T<br />

H<br />

K<br />

C<br />

C<br />

D<br />

D<br />

Y<br />

Y<br />

+5V<br />

0V<br />

Flame<br />

FG<br />

E<br />

Flame<br />

FG<br />

E<br />

Drive unit side (CN6)<br />

2<br />

12<br />

3<br />

13<br />

4<br />

14<br />

10<br />

1<br />

19<br />

11<br />

20<br />

15<br />

FG<br />

A<br />

N<br />

C<br />

R<br />

B<br />

P<br />

E<br />

A<br />

A<br />

B<br />

B<br />

Z<br />

Z<br />

6 - 27


6. Dedicated Options<br />

6-3-6 Main circuit cable connection drawing<br />

The methods for wiring to the main spindle are explained in this section.<br />

CAUTION<br />

1. The main circuit cable must be manufactured by the user.<br />

2. Refer to Chapter 7 "Selection of peripheral devices" or Appendix 4 "UL/c-UL<br />

Standard Compatible Unit Instruction Manual" for details on selecting the<br />

wire material.<br />

3. Lay out the terminal block on the drive unit as explained in section "2-2 Main<br />

circuit terminal block and control circuit connector".<br />

4. Refer to section "10-2-4 Outline dimension drawings" for details on the<br />

servomotor connectors and terminal block. Refer to the Spindle Motor<br />

Specifications for details on the spindle motor terminal block.<br />

(1) DRSV1 cable and DRSV2 cable<br />

These cables connect the TE1 terminal on the servo drive unit with the HC-H motor.<br />

• DRSV1 cable : Power cable for L axis in 1-axis unit (MDS-CH-V1-) and 2-axis integrated unit<br />

(MDS-CH-V2).<br />

• DRSV2 cable : Power cable for M axis in 2-axis integrated unit (MDS-CH-V2-).<br />

<br />

Example of general wiring<br />

Drive unit side<br />

Motor side<br />

Example of EMC Directive compliant wiring<br />

Drive unit side<br />

Motor side<br />

L1<br />

L2<br />

L3<br />

FG<br />

A<br />

B<br />

C<br />

D<br />

U<br />

V<br />

W<br />

FG<br />

L1<br />

L2<br />

L3<br />

FG<br />

A<br />

B<br />

C<br />

D<br />

U<br />

V<br />

W<br />

FG<br />

Shield or conduit<br />

D<br />

C<br />

A<br />

B<br />

Motor connector<br />

JL04HV-2E22-22PE-B<br />

JL04V-2E32-17PE-B<br />

(2) DRSP cable<br />

This cable connects the TE1 terminal on the spindle drive unit with the SJ-4 spindle motor.<br />

<br />

Example of general wiring<br />

Example of EMC Directive compliant wiring<br />

Drive unit side Motor side Drive unit side Motor side<br />

L1<br />

L2<br />

L3<br />

FG<br />

U<br />

V<br />

W<br />

FG<br />

U<br />

V<br />

W<br />

FG<br />

L1<br />

L2<br />

L3<br />

FG<br />

U<br />

V<br />

W<br />

FG<br />

U<br />

V<br />

W<br />

FG<br />

Shield or conduit<br />

Connect to terminal block<br />

Example of connection terminal box<br />

layout on spindle motor side<br />

6 - 28


6. Dedicated Options<br />

6-4 Scale I/F unit<br />

6-4-1 Outline<br />

MDS-B-HR outline<br />

(1) The unit interpolates the original wave of scale analog output to create high-resolution position data.<br />

Increasing the detector resolution is effective for obtaining high gain of the servo.<br />

(2) 1-scale, 2-drive operation will be possible with the signal distribution function (model division<br />

available).<br />

6-4-2 Model configuration<br />

Scale I/F unit model configuration<br />

MDS-B-HR-<br />

Protective degree<br />

No-mark: IP65<br />

P: IP67<br />

Availability of magnetic pole detection unit<br />

No-mark: None<br />

M: Available<br />

Used for linear servo system<br />

Signal distribution function<br />

1: Output number 1<br />

2: Output number 2 (Distribution available)<br />

Scale output voltage<br />

1: Scale output voltage 1V p-p specifications<br />

2: Scale output voltage 2V p-p specifications<br />

6-4-3 List of specifications<br />

Scale I/F unit model<br />

Unit MDS-B-HR- MDS-B-HR- MDS-B-HR- MDS-B-HR-<br />

11 12 11P 12P 21 22 21P 22P<br />

Corresponding scale<br />

(Example)<br />

LS186/LIDA181/LIF181<br />

(HEIDENHAIN product)<br />

AT342 special<br />

(Mitsutoyo product)<br />

Signal 2-distribution function × ◦ × ◦ × ◦ × ◦<br />

Analog signal input specification<br />

A-phase, B-phase and Z-phase<br />

2.5V reference<br />

Amplitude 1Vp-p<br />

A-phase, B-phase and Z-phase<br />

2.5V reference<br />

Amplitude 2Vp-p<br />

Applicable frequency<br />

Analog original waveform 200 kHz max.<br />

Scale resolution<br />

Analog original waveform/512 div.<br />

Input/output communication form<br />

High-speed serial communication I/F, equivalent to RS485<br />

Availability of magnetic pole<br />

detector<br />

Compatible parts are indicated with an M after the type<br />

Tolerable ambient temperature °C 0 to 55°C<br />

Tolerable ambient relative humidity % 90% or less (no condensing)<br />

Atmosphere<br />

With no poisonous gas<br />

Tolerable vibration<br />

m/s2<br />

(G)<br />

98.0m/s2 (10G)<br />

Tolerable impact (shock)<br />

m/s2<br />

(G)<br />

294.0m/s2 (30G)<br />

Tolerable power voltage V 5VDC±5%<br />

Maximum heat generation W 2W<br />

Weight kg 0.5kg or less<br />

Protective degree IP65 IP67 IP65 IP67<br />

6 - 29


6. Dedicated Options<br />

6-4-4 Unit outline dimension drawing<br />

6.5 152 6.5 46<br />

5<br />

RM15WTR-10S<br />

70<br />

CON2 CON1<br />

5<br />

CON3<br />

CON4<br />

RM15WTR-8P × 2<br />

4-ø5 hole<br />

RM15WTR-12S<br />

165<br />

6-4-5 Description of connector<br />

Connector name Application Remarks<br />

CON1 For connection with servo drive unit (2nd part system) None for 1st part system specifications<br />

CON2 For connection with servo drive unit<br />

CON3 For connection with scale<br />

CON4 For connection with magnetic pole detection unit (MDS-B-MD) Only for linear servo motor specifications<br />

Assignment of connector pins<br />

CON1 CON2 CON3 CON4<br />

Pin No. Function Pin No. Function Pin No. Function Pin No. Function<br />

1 RQ+ signal 1 RQ+ signal 1 A+ phase signal 1 A-phase signal<br />

2 RQ− signal 2 RQ− signal 2 A− phase signal 2 REF signal<br />

3 SD+ signal 3 SD+ signal 3 B+ phase signal 3 B-phase signal<br />

4 SD− signal 4 SD− signal 4 B− phase signal 4 REF signal<br />

5 P5 5 P5 5 Z+ phase signal 5 P24<br />

6 P5 6 P5 6 Z− phase signal 6 MOH signal<br />

7 GND 7 GND 7 RQ+ signal 7 P5<br />

8 GND 8 GND 8 RQ− signal 8 P5<br />

9 SD+ signal 9 TH signal<br />

10 SD− signal 10 GND<br />

11 P5<br />

12 GND<br />

Connector: RM15WTR – 8P (Hirose Electric) ….. CON1, CON2<br />

RM15WTR – 12S (Hirose Electric) … CON3<br />

RM15WTR – 10S (Hirose Electric) ….. CON4<br />

2<br />

1<br />

3<br />

8<br />

4<br />

7<br />

5<br />

6<br />

7<br />

6<br />

8 9 1<br />

12<br />

11 10<br />

5 4<br />

2<br />

3<br />

7<br />

6<br />

8<br />

5<br />

9<br />

10<br />

1<br />

4<br />

2<br />

3<br />

CON1<br />

CON2<br />

CON3<br />

6 - 30<br />

CON4


6. Dedicated Options<br />

6-4-6 Example of detector conversion unit connection<br />

Cable Structure<br />

MDS-CH-V1<br />

MDS-CH-V1<br />

C N L 2 H2 – S – [Cable length]<br />

CN2 or<br />

CN3<br />

CN2 or<br />

CN3<br />

Connector Lock Type<br />

Non: One touch type<br />

S: Screw lock type<br />

Connection destination<br />

S: Directly connect to scale<br />

MD: Connect magnetic pole detection unit<br />

None: Connect between scales<br />

MDS-B-HR side Connector<br />

H1: CON1 H3: CON3<br />

H2: CON2 H4: CON4<br />

Drive unit side connector<br />

2:CN2, CN2L, CN2M (Motor side connection)<br />

3:CN3, CN3L, CN3M (Machine side connection)<br />

Non: No connect (Drive unit side)<br />

Abs. position linear scale<br />

(2) CNL2H2<br />

or CNL2H2-S<br />

(1) CNL2 or CNL2-S<br />

CON2<br />

Scale I/F unit<br />

MDS-B-HR<br />

CON4 (4) CNLH4MD<br />

CON3<br />

(3) CNLH3-S<br />

Abs. position linear scale (AT342)<br />

Inc. linear scale<br />

The <strong>Mitsubishi</strong> NC compatible linear scale (serial part) can be directly connected to the drive unit.<br />

Refer to section "6-6-1 List of detector specifications".<br />

6 - 31


6. Dedicated Options<br />

6-4-7 Cables<br />

For<br />

CN2<br />

CN3<br />

(1) Cable list<br />

Item Model name Content<br />

Cable for direct CNL - <br />

Servo drive unit side connector<br />

connection of<br />

(3M or the equivalent)<br />

scale<br />

Unit side connector shape<br />

Blank: One-touch type<br />

S: Screw type lock<br />

Connector : 10120-3000VE<br />

Shell kit<br />

: 10320-52F0-008 (One-touch type)<br />

: 10320-52A0-008 (Screw type)<br />

Connection destination<br />

2: CN2<br />

3: CN3<br />

Length:<br />

1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5,<br />

6, 7, 8, 9, 10, 11, 12, 13, 14,<br />

15, 20, 30m<br />

This cable must be manufactured by the user according to the<br />

scale being used.<br />

Cable between<br />

drive unit and<br />

HR unit<br />

CNL - <br />

Unit side connector shape<br />

Blank: One-touch type<br />

S: Screw type lock<br />

Connection destination<br />

2: CN2<br />

3: CN3<br />

Servo drive unit side<br />

connector<br />

(3M or the equivalent)<br />

Connector :10120-3000VE<br />

Shell kit:10320-52F0-008<br />

(One-touch type)<br />

:10320-52A0-008<br />

(Screw type)<br />

MDS-B-HR unit side connector<br />

(Hirose Electric)<br />

Connector : RM15WTP-8S<br />

Clamp : RM15WTP-CP (10)<br />

Length:<br />

2, 5, 10, 20, 30m<br />

For<br />

MDS-B-<br />

HR unit<br />

Cable between<br />

HR unit and<br />

scale<br />

CNLH3S<br />

Length<br />

Max. 30m<br />

MDS-B-HR unit side connector<br />

(Hirose Electric)<br />

Connector : RM15WTP-12P<br />

Clamp : RM15WTP-CP (10)<br />

This cable must be manufactured by the user according to the<br />

scale being used.<br />

For CN4<br />

Magnetic pole<br />

detection unit<br />

connection<br />

cable<br />

CNLH4MD<br />

Length<br />

2, 5, 10, 20, 30m<br />

MDS-B-HR unit side<br />

connector<br />

(Hirose Electric)<br />

Connector: RM15WTP-10P<br />

Clamp: RM15WTP-CP (10)<br />

MDS-B-MD unit side<br />

connector<br />

(Hirose Electric)<br />

Connector: RM15WTP-8S<br />

Clamp: RM15WTP-CP (10)<br />

6 - 32


6. Dedicated Options<br />

(2) Manufacturing drawings for each cable<br />

1) Cable for direct connection of scale (CNL2S cable, etc.)<br />

Amplifier side CN2, 3<br />

10120-3000VE<br />

Scale side<br />

(Reference)<br />

LM191M<br />

Relay section<br />

(Reference)<br />

AT342<br />

Relay section<br />

6<br />

16<br />

7<br />

17<br />

SD<br />

SD*<br />

RQ<br />

RQ*<br />

14<br />

17<br />

8<br />

9<br />

5<br />

6<br />

7<br />

8<br />

19<br />

10<br />

P5(+5V)<br />

7<br />

11<br />

1<br />

2<br />

20<br />

1<br />

11<br />

LG<br />

4<br />

10<br />

3<br />

4<br />

FG<br />

FG plate<br />

FG<br />

FG<br />

Note) Only the absolute position scale can be connected directly to the drive unit.<br />

2) Cable between drive unit and scale I/F unit (CNL2H2 cable, etc.)<br />

Scale<br />

Drive unit side CN2, 3 I/F unit side CON1, 2<br />

10120-3000VE<br />

RM15WTP-8S<br />

6<br />

16<br />

7<br />

17<br />

3<br />

4<br />

1<br />

2<br />

SD<br />

SD*<br />

RQ<br />

RQ*<br />

19<br />

10<br />

20<br />

5<br />

6<br />

P5(+5V)<br />

P5(+5V)<br />

1<br />

11<br />

7<br />

8<br />

LG<br />

LG<br />

FG<br />

FG<br />

Case grounding<br />

CAUTION<br />

When manufacturing the cable, do not connect anything to the pins having no<br />

description.<br />

6 - 33


6. Dedicated Options<br />

3) Cable between scale I/F unit and scale (CNLH3 cable, etc.)<br />

Scale<br />

I/F unit side CON3<br />

RM15WTP-12S<br />

Scale side<br />

(Reference)<br />

AT342<br />

9<br />

10<br />

7<br />

8<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

11<br />

SD<br />

SD*<br />

RQ<br />

RQ*<br />

A+<br />

B+<br />

Vref<br />

R+<br />

R-<br />

P5(+5V)<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

1<br />

2<br />

3<br />

12<br />

LG<br />

4<br />

FG<br />

Case<br />

grounding<br />

FG<br />

For Hirose round connector<br />

RM21WTR20S<br />

4) Cable between scale I/F unit and magnetic pole detection unit (CNLH4MD cable)<br />

Scale<br />

I/F unit side CON4<br />

RM15WTP-10P<br />

Magnetic pole detection unit side<br />

RM15WTP-8S<br />

1<br />

2<br />

3<br />

4<br />

9<br />

7<br />

8<br />

10<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

MA+<br />

MA-<br />

MB+<br />

MB-<br />

TH<br />

P5(+5V)<br />

P5(+5V)<br />

LG<br />

PE<br />

Scale<br />

I/F unit side CON4<br />

RM15WTP-10P<br />

PE<br />

Case<br />

grounding<br />

Motor side<br />

5<br />

6<br />

24V<br />

MOH<br />

G1<br />

G2<br />

External power supply<br />

24V<br />

GND<br />

Refer to section "6-3-4 Cable wire and assembly" for details on the wire materials.<br />

Recommended wire type: A14B2343 (Junkosha, Inc.)<br />

CAUTION<br />

When manufacturing the cable, do not connect anything to the pins having no<br />

description.<br />

6 - 34


6. Dedicated Options<br />

(3) Cable connectors<br />

Maker: Hirose Electric<br />

[Unit: mm]<br />

Scale I/F unit side connectors<br />

CON1 RM15WTP - 8S<br />

CON2 RM15WTP - CP ()<br />

RM15WTP - 12P<br />

CON3<br />

RM15WTP - CP ()<br />

RM15WTP - 10P<br />

CON4<br />

RM15WTP - CP ()<br />

Plug<br />

RM15WTP- M19×1 M16×0.75<br />

ø23<br />

ø 15.2<br />

Magnetic pole detection unit<br />

connectors<br />

36.8<br />

RM15WTP - 8S<br />

CNM1<br />

RM15WTP - CP ()<br />

Caution:<br />

indicates the cable diameter.<br />

Cord clamp<br />

RM15WTP-CP ()<br />

M16×0.75<br />

8.5 20<br />

ø19<br />

ø A<br />

Product name ø A Applicable cable diameter<br />

RM15WTP - CP (5) 6.5 5<br />

RM15WTP - CP (6) 6.5 6<br />

RM15WTP - CP (7) 8 7<br />

RM15WTP - CP (8) 10.5 8<br />

RM15WTP - CP (9) 10.5 9<br />

RM15WTP - CP (10) 10.5 10<br />

6 - 35


6. Dedicated Options<br />

6-5 Magnetic pole detection unit<br />

6-5-1 Outline<br />

This unit detects the magnetic pole of the linear servomotor's secondary magnet, and outputs the<br />

results as an analog voltage. (Only linear servomotor)<br />

When using the relative value specifications, always install this unit as the magnetic poles do not need<br />

to be positioned when the power is turned ON.<br />

6-5-2 Model configuration<br />

MDS–B-MD– [ ][ ][ ]<br />

Protective degree No-mark: IP65, P: IP67<br />

Applicable motor 0: 200V Class linear servomotor<br />

1: 400V Class linear servomotor<br />

Compatible pole pitch class 60: Pole 60mm pitch<br />

6-5-3 List of specifications<br />

Specification<br />

Unit<br />

Magnetic pole detection unit model<br />

MDS-B-MD60[_] MDS-B-MD60[_]P<br />

Tolerable ambient temperature °C 0 to 55°C<br />

Tolerable ambient relative<br />

humidity<br />

% 90% (RH) or less (no condensing)<br />

Atmosphere<br />

With no poisonous gas<br />

Tolerable vibration m/s 2 98 m/s 2<br />

Tolerable impact (shock) m/s 2 294 m/s 2<br />

Tolerable power voltage V 5VDC ± 5%<br />

Maximum heat generation W 1W or less<br />

Weight Kg 0.1kg or less<br />

Protective degree IP65 IP67<br />

Either "1" or "0" is indicated in [_].<br />

6-5-4 Outline dimensions<br />

6 - 36


6. Dedicated Options<br />

6-5-5 Assignment of connector pins<br />

Connector name Application Remarks<br />

CON1<br />

Detects magnetic pole of linear servomotor's<br />

secondary magnet, and outputs an analog voltage<br />

Connect with scale I/F unit<br />

(MDS-B-HR)<br />

CON1<br />

Pin No. Function<br />

1 A-phase signal<br />

2 REF signal<br />

3 B-phase signal<br />

4 REF signal<br />

5 TH signal<br />

6 P5 (5VDC)<br />

7 P5 (5VDC)<br />

8 GND<br />

2<br />

3<br />

1<br />

8<br />

4<br />

Applicable connector<br />

RM15WTR-8P (Hirose Electric)<br />

7<br />

5<br />

6<br />

6-5-6 Installing onto the linear servomotor<br />

(1) For LM-NP4<br />

2-M5 screw<br />

(2) For other motors<br />

Refer to each Linear Servomotor Specifications for details on installing onto other linear<br />

servomotors.<br />

6 - 37


6. Dedicated Options<br />

6-6 Detectors<br />

CAUTION<br />

The MDS-CH Series servo drive units use the serial encoders only as the motor<br />

side detectors.<br />

6-6-1 List of detector specifications<br />

Motor side<br />

detector<br />

Class Type Model<br />

Ball screw side<br />

detector<br />

Machine side<br />

detector<br />

(Note)<br />

Purchase from a<br />

manufacturer.<br />

Relative<br />

position<br />

detector<br />

Absolute<br />

position<br />

detector<br />

Relative<br />

position<br />

detector<br />

Absolute<br />

position<br />

detector<br />

Relative<br />

position<br />

detector<br />

Absolute<br />

position<br />

detector<br />

OSE104, OSE104S,<br />

OSE104S1, OSE104S2<br />

OSE105, OSE105S,<br />

OSE105S1, OSE105S2<br />

Max. rotation<br />

speed<br />

3000r/min<br />

3000r/min<br />

Detector output<br />

Serial data<br />

Serial data<br />

Output signal usage class<br />

Motor position detection<br />

100000p/rev<br />

Motor position detection<br />

1000000p/rev<br />

OHE25K-ET<br />

3000r/min<br />

A, B-phase<br />

25000p/rev<br />

Ball screw side position detection<br />

100000p/rev after multiplying by four<br />

Z-phase 1p/rev Zero point indexing<br />

OSE104-ET 3000r/min Serial data<br />

Ball screw side position detection<br />

100000p/rev<br />

OSE105-ET 3000r/min Serial data<br />

Ball screw side position detection<br />

1000000p/rev<br />

A, B-phase<br />

Ball screw side position detection<br />

OHA25K-ET<br />

3000r/min 25000p/rev<br />

100000p/rev after multiplying by four<br />

Z-phase 1p/rev Zero point indexing<br />

OSA104-ET 3000r/min Serial data<br />

Ball screw side position detection<br />

100000p/rev<br />

OSA105-ET 3000r/min Serial data<br />

Ball screw side position detection<br />

1000000p/rev<br />

(1) When linear scale I/F unit (MDS-B-HR) is not used<br />

· Use a scale with an A/B phase difference and Z-phase width of 0.1µs or<br />

more at the maximum feedrate.<br />

· Use an A, B, Z-phase signal with differential output (RS-422 standard<br />

product) for the output signal.<br />

Use an incremental scale for<br />

the machine side that satisfies<br />

the conditions on the right.<br />

AT41<br />

(Mitsutoyo product)<br />

FME, FML<br />

(FUTABA product)<br />

MP scale<br />

(<strong>Mitsubishi</strong> Heavy Industries<br />

product)<br />

∗ Motor side detector also<br />

needs an absolute position<br />

encoder.<br />

AT342<br />

(Mitsutoyo product)<br />

AT343<br />

(Mitsutoyo product)<br />

LC191M<br />

(HEIDENHAIN product)<br />

LC491M<br />

(HEIDENHAIN product)<br />

Phase difference Output circuit Z-phase<br />

A-phase<br />

A, B,<br />

Z-phase<br />

0.1µs or<br />

more<br />

B-phase<br />

A, B,<br />

0.1µs or more<br />

Z-phase<br />

Integer mm<br />

For a scale having multiple Z phases, select<br />

the one for which the distance between<br />

neighboring Z phases is an integral mm.<br />

(2) ∗ When linear scale I/F unit (MDS-B-HR) is used<br />

(Output signal)<br />

(a) 2.5V reference 1V p-p analog A-phase, B-phase, Z-phase<br />

differential output<br />

(b) 2.5V reference 2V p-p analog A-phase, B-phase, Z-phase<br />

differential output<br />

(Output signal frequency)<br />

Max. 200kHz<br />

Machine side position detection<br />

A, B-phase<br />

1µm/p after multiplying by four<br />

50m/min<br />

Zero point indexing<br />

Z-phase<br />

10mm spacing<br />

Serial data Absolute position 1µm/p<br />

5.1 to 120m/min<br />

Differs according to the<br />

resolution.<br />

30m/min<br />

110m/min<br />

120m/min<br />

120m/min<br />

120m/min<br />

A, B-phase<br />

Serial data<br />

A, B-phase<br />

Z-phase<br />

Serial data<br />

Serial data<br />

Serial data<br />

Serial data<br />

Machine side position detection<br />

0.1 to 10µm/p after multiplying by<br />

four<br />

Machine side position detection<br />

1µm/p after multiplying by four<br />

Zero point indexing<br />

2mm spacing<br />

Machine side position detection<br />

0.5µm/p<br />

Machine side position detection<br />

0.05µm/p<br />

Machine side position detection<br />

0.1µm/p, 0.05µm/p<br />

Machine side position detection<br />

0.05µm/p<br />

CAUTION<br />

Confirm each maker specifications before using the machine side detector.<br />

6 - 38


6. Dedicated Options<br />

6-6-2 Outline dimension drawings<br />

(1) Standalone encoder (OSAET/OSEET Series) outline drawing<br />

4-ø 4.8<br />

Notch for<br />

ET1<br />

ø110<br />

Cross section A-A<br />

Key<br />

position<br />

MS3102A22-14 (19 pins)<br />

(2) Outline drawings of OHE/OHA type ball screw side detector<br />

• OHE 25K-ET<br />

4-ø5.5 slot<br />

hole uniform<br />

PCD 100<br />

Blue<br />

Blue<br />

Caution<br />

plate<br />

Key<br />

position<br />

The designated outer dimension<br />

Connector: 97F3102E22-14P (DDK)<br />

tolerance is ± 0.5mm.<br />

Cross section B-B Pin No. Function Pin No. Function<br />

A A-phase signal K V-phase signal<br />

B<br />

Weight 1.0 [kg] or less<br />

A -phase signal L V -phase signal<br />

Moment of<br />

C B-phase signal M W-phase signal<br />

0.2 × 10 –4 [kg·m 2 ] or less<br />

inertia<br />

D B -phase signal N Case grounding<br />

Friction<br />

0.0196 [N·m] or less<br />

E NC P NC<br />

torque<br />

F Z-phase signal R GND<br />

Thermal<br />

Functions at 85 ± 5 [°C]<br />

G Z -phase signal S +5VDC<br />

relay<br />

H U-phase signal U W -phase signal<br />

J U-phase signal T Thermal relay<br />

(Note 1) This is an incremental encoder for the ball screw side.<br />

V Thermal relay<br />

(Note 2) The outline dimensions are the same as for the absolute encoder, and only the nameplate<br />

color differs.<br />

6 - 39


6. Dedicated Options<br />

• OHA 25K-ET<br />

4-ø5.5 slot<br />

hole uniform<br />

PCD 100<br />

Orange<br />

Orange<br />

Caution<br />

plate<br />

Key<br />

position<br />

The designated outer dimension<br />

tolerance is ± 0.5mm.<br />

Cross section B-B<br />

Weight<br />

Moment<br />

of inertia<br />

Friction<br />

torque<br />

Thermal<br />

relay<br />

1.0 [kg] or less<br />

0.2 × 10 –4 [kg·m 2 ] or less<br />

0.0196 [N·m] or less<br />

Functions at 85 ± 5 [°C]<br />

Connector: 97F3102E22-14P (DDK)<br />

Pin<br />

No.<br />

A<br />

B<br />

C<br />

D<br />

Function<br />

A-phase signal<br />

A -phase signal<br />

B-phase signal<br />

B -phase signal<br />

Pin<br />

No.<br />

K<br />

L<br />

Function<br />

RQ signal<br />

RQ signal<br />

E VB (Battery) M NC<br />

F Z-phase signal N Case grounding<br />

G Z -phase signal P NC<br />

H<br />

J<br />

RX signal<br />

RX signal<br />

R<br />

S<br />

T<br />

U<br />

V<br />

GND<br />

+5VDC<br />

Thermal relay<br />

NC<br />

Thermal relay<br />

(Note 1) This is an incremental encoder for the ball screw side.<br />

(Note 2) The outline dimensions are the same as for the absolute encoder, and only the nameplate<br />

color differs.<br />

6 - 40


6. Dedicated Options<br />

6-6-3 Cable connection diagram<br />

CAUTION<br />

Do not mistake the connection when manufacturing the detector cable. Failure to<br />

observe this could lead to runaway.<br />

CNV2 and CNV3 cables for MDS-B/C1 Series can be used.<br />

(1) CNV12, CNV13 cable (L ≤ 20m)<br />

Drive unit connector<br />

Detector connector<br />

Pin No.<br />

6P × 0.3SQ<br />

Pin No.<br />

Signal name<br />

SD (Serial signal)<br />

SD<br />

RQ (Request signal)<br />

RQ<br />

BT (Battery)<br />

+5V<br />

5G<br />

Shield to connector<br />

B24-9<br />

Case grounding<br />

(2) CNV12, CNV13 cable (20 < L ≤ 30m)<br />

Drive unit connector<br />

Detector connector<br />

Pin No.<br />

8P × 0.3SQ<br />

Pin No.<br />

Signal name<br />

SD (Serial signal)<br />

SD<br />

RQ (Request signal)<br />

RQ<br />

BT (Battery)<br />

+5V<br />

5G<br />

Shield to connector<br />

B24-9<br />

Case grounding<br />

The drive unit side connector or the detector connector is same connector as the conventional<br />

CNV2 or CNV3.<br />

6 - 41


6. Dedicated Options<br />

6-6-4 Maintenance<br />

WARNING<br />

1. Wait at least 15 minutes after turning the power OFF before starting<br />

maintenance or inspections. Failure to observe this could lead to electric<br />

shocks.<br />

2. Only qualified persons must carry out the maintenance or inspections.<br />

Failure to observe this could lead to electric shocks. Contact Service Center<br />

or Service Station for repairs or part replacements.<br />

If any fault occurs in the configuration components, carry out service with the following procedures.<br />

(1) Encoder<br />

As a rule, replace the detector with the same type as the detector before exchanging it.<br />

If changes are to be made, always confirm the compatibility and usable combination.<br />

• Confirmation of encoder model<br />

Confirm the encoder model on the nameplate attached to the motor cover, or displayed on the<br />

Servo Monitor screen.<br />

Servo Monitor (SERVO DIAGNOSIS) Screen<br />

[SERVO DIAGNOSIS] 3/3<br />

<br />

UNIT TYP<br />

UNIT NO<br />

S/W VER<br />

CNTROL<br />

MOT DT<br />

MAC DT<br />

MOTOR<br />

WORK TIME<br />

ALM HIST<br />

Displays motor side detector model<br />

Displays machine side detector model<br />

If a fault occurs in the motor unit, replace the motor and encoder as a set.<br />

6 - 42


6. Dedicated Options<br />

6-7 Spindle option specification parts<br />

When the orientation specifications or C-axis specifications, etc., are selected as spindle options, the<br />

magnetic sensor (one-point orientation), external encoder (multi-point orientation, C-axis control), and<br />

motor built-in PLG detector can be designated with the spindle delivery specifications.<br />

The Heidenhain detector (special order part) can be used for C-axis control in the same manner as the<br />

motor built-in PLG detector.<br />

The C-axis detector (MBE90K, MHE90K) used with the 200V Class drive unit (MDS-B/C1 Series)<br />

cannot be used.<br />

Correspondence of spindle functions and applicable detectors<br />

Spindle Orientation<br />

C-axis<br />

specifications<br />

Thread Spindle<br />

control Synchronous<br />

cutting synchronous<br />

One-point 4096 points (contour tap control<br />

control control<br />

control)<br />

Detector<br />

Magnetic sensor X – – – – –<br />

External detector<br />

(OSE/RFH-1024)<br />

– X – X X X<br />

External detector<br />

(OSE90K+1024)<br />

– X X X X X<br />

Heidenhain detector – X X Note 2 X Note 2 X X<br />

Motor built-in PLG<br />

detector<br />

Note 1) Simple C-axis.<br />

Note 2) Zero point return valid only for 1:1 gear ratio.<br />

– X X Note 1, 2 X Note 2 X X<br />

CN5<br />

Connect the motor built-in PLG<br />

detector. (Motor side detector)<br />

CN7<br />

Connect the C-axis<br />

(contour) OSE90K+1024<br />

control detector.<br />

(Machine side detector)<br />

CN6<br />

Connect the magnetic sensor or<br />

external OSE/RFH-1024 detector<br />

when using the orientation function.<br />

(Machine side detector)<br />

CN8<br />

Outputs the differential output's short<br />

waveform (ABZ phase) to the NC. The<br />

thread cutting applications or spindle<br />

speed can be viewed with the NC.<br />

Outputs the PLG detector or external<br />

detector signals depending on the<br />

orientation type. Designate with SP037<br />

(spindle function 5).<br />

6 - 43


6. Dedicated Options<br />

6-7-1 Magnetic sensor orientation (one-point orientation)<br />

Prepare the magnetic sensor orientation parts with the following types. When purchasing independently,<br />

always prepare with the required configuration part types.<br />

(1) Preparation type<br />

Type<br />

Model<br />

Tolerable<br />

Combination<br />

speed [r/min] Amplifier Sensor Magnet<br />

Standard MAGSENSOR BKO-C1810H01-3 0 to 6000 H01 H02 H03<br />

High-speed standard MAGSENSOR BKO-C1730H01.2.6 0 to 12000 H01 H02 H06<br />

High-speed small MAGSENSOR BKO-C1730H01.2.9 0 to 12000 H01 H02 H09<br />

MAGSENSOR BKO-C1730H01.2.41 0 to 25000 H01 H02 H41<br />

MAGSENSOR BKO-C1730H01.2.42 0 to 25000 H01 H02 H42<br />

High-speed ring<br />

MAGSENSOR BKO-C1730H01.2.43 0 to 30000 H01 H02 H43<br />

MAGSENSOR BKO-C1730H01.2.44 0 to 30000 H01 H02 H44<br />

Caution) When preparing with independent types, replace the section following the H in the<br />

prepared type with the independent type.<br />

Example: When preparing only the standard magnetic sensor's sensor section, the<br />

type will be MAGSENSOR BKO-C1810H02.<br />

Outline dimensions:<br />

• Amplifier H01<br />

2-ø5.5 hole<br />

Connector (sensor side)<br />

For BKO-C1810H01, R04-R-8F is used.<br />

For BKO-C1730H01, TRC116-21A10-7F is used.<br />

Connector (controller cable side)<br />

Unit side : TRC116-21A10-7M<br />

Cable side : TRC116-12A10-7F10.5<br />

• Sensor H02<br />

Reference notch<br />

+100<br />

Cable length 500 –0<br />

Connector<br />

For BKO-C1810H02, R04-R-8M is used.<br />

For BKO-C1730H02, TRC116-12A10-7M is used.<br />

6 - 44


6. Dedicated Options<br />

• Magnet<br />

Part<br />

No.<br />

Tolerable<br />

speed [r/min]<br />

Outline drawings<br />

Weight: 40 ± 1.5g<br />

H03 0 to 6000<br />

Reference hole<br />

H06 0 to 12000<br />

4-ø4.3 hole<br />

Installation screw: M4<br />

Weight: 14.8 ± 0.7g<br />

2-ø4.3 hole<br />

H09 0 to 12000<br />

H41 0 to 25000<br />

N.P<br />

Case<br />

Cover<br />

Spun ring<br />

RINGFEDER<br />

RFN8006 J×K<br />

Installation screw: M4<br />

4-F screw<br />

Stainless case<br />

SUS-303<br />

H42 0 to 25000<br />

Gap 1±0.1<br />

Sensor<br />

head<br />

Stop position scale<br />

N<br />

2-øG±0.15øH<br />

On circumference<br />

Reference<br />

notch<br />

∗ Polarity (N,S) is indicated on the side wall of cover.<br />

Detection head should be installed so that the reference notch of sensor<br />

head comes on the case side.<br />

H43 0 to 30000<br />

H44<br />

0 to 30000<br />

Magnet<br />

Reference notch<br />

Gap L<br />

G hole<br />

h6<br />

Installation of magnet<br />

Spindle<br />

Case<br />

Cover<br />

Spindle clamping screw<br />

Dimensions<br />

Model A B C D E F G H J × X L<br />

BKO-C1730H41 105 70H7+0.030<br />

–0<br />

BKO-C1730H42 94<br />

60H7+0.030<br />

–0<br />

BKO-C1730H43 78<br />

50H7+0.025<br />

–0<br />

BKO-C1730H44 66<br />

40H7+0.025<br />

–0<br />

DIM IN mm<br />

Weight<br />

(g)<br />

90 28 19 M6×1.0 5 90 70×79 1 1024±4<br />

79 25 17 M5×0.8 5 79 60×68 1 768±4<br />

66 23 15 M5×0.8 5 66 50×57 1 478±4<br />

54 20 13 M4×0.7 5 54 40×45 1 322±4<br />

Caution on installation of H41 to H44<br />

1. Tolerance to shaft dimension should be "h6" on the<br />

part for installing a magnet.<br />

2. 2-øG hole can be used for positioning of spindle and<br />

magnet.<br />

3. Magnet shall be installed as shown to the left.<br />

4. Misalignment between sensor head and magnetic<br />

center line shall be within ±2mm.<br />

5. There is an NS indication on the side of the cover.<br />

Install so that the reference notch on the sensor<br />

head comes to the case side.<br />

6 - 45


6. Dedicated Options<br />

(2) Gap between magnet and sensor<br />

Circumference installation<br />

Horizontal installation<br />

Spindle<br />

Magnet<br />

Face A<br />

Reference<br />

hole<br />

Reference<br />

notch<br />

Min. gap<br />

Direction of<br />

rotation<br />

R<br />

Face A<br />

S<br />

N<br />

Max. gap<br />

Mounting plate<br />

Reference<br />

hole<br />

Reference<br />

notch<br />

Face B<br />

Gap<br />

Spindle<br />

Magnet<br />

Reference<br />

notch<br />

Direction of<br />

rotation<br />

Face B<br />

S<br />

N<br />

R<br />

Reference<br />

hole<br />

Magnet<br />

model<br />

Installation<br />

direction<br />

BKO-C1810H03 BKO-C1730H06 BKO-C1730H09<br />

Circumference<br />

installation<br />

Horizontal<br />

installation<br />

Circumference<br />

installation<br />

Horizontal<br />

installation<br />

Circumference<br />

installation<br />

R (Radius)<br />

Gap mm Gap mm Gap mm<br />

mm Max. value Min. value Max. value Min. value Max. value Min. value<br />

40 11.5±0.5 2.7±0.5 6.0±0.5 10.0±0.5 1.22±0.5 5.0±0.5 6.25±0.5 3.30±0.5<br />

50 9.5±0.5 2.8±0.5 6.0±0.5 8.0±0.5 1.31±0.5 5.0±0.5 6.00±0.5 3.70±0.5<br />

60 8.5±0.5 3.0±0.5 6.0±0.5 7.0±0.5 1.50±0.5 5.0±0.5 5.75±0.5 3.85±0.5<br />

70 8.0±0.5 3.4±0.5 7.0±0.5 2.38±0.5 5.50±0.5 3.87±0.5<br />

(3) Magnet and sensor installation directions<br />

• Install so that the magnet's reference hole and sensor's reference notch are aligned.<br />

(Standard/high-speed standards)<br />

• Install so that the magnet's N pole comes to the left side when the sensor's reference notch is<br />

faced downward. (High-speed compact/high-speed ring)<br />

N<br />

Sensor<br />

S<br />

S<br />

Sensor<br />

N<br />

Magnet<br />

|<br />

Reference notch<br />

Magnet<br />

|<br />

Reference notch<br />

(4) Cautions<br />

(a) Do not apply impacts on the magnet. Do not install strong magnets near the magnet.<br />

(b) Sufficiently clean the surrounding area so that iron chips and cutting chips do not adhere to the<br />

magnet. Demagnetize the round disk before installing.<br />

(c) Securely install the magnet onto the spindle with an M4 screw. Take measures to prevent<br />

screw loosening as required.<br />

(d) Balance the entire spindle rotation with the magnet installed.<br />

(e) Install a magnet that matches the spindle's rotation speed.<br />

(f) When installing the magnet onto a rotating body's plane, set the speed to 6,000r/min or less.<br />

(g) Install so that the center line at the end of the head matches the center of the magnet.<br />

(h) The BKO-C1730 is not an oil-proof product. Make sure that oil does not come in contact with<br />

BNO-C1730 or BKO-C1810.<br />

(i) When connecting to the spindle drive unit, wire so that the effect of noise is suppressed.<br />

6 - 46


6. Dedicated Options<br />

(5) Connecting a magnetic sensor and a drive unit<br />

MDS-CH-SP <br />

Option cable: CNP5S<br />

(Refer to Chapter 6 for details on the cable treatment.)<br />

CN5<br />

CN6<br />

Power cable<br />

U V W<br />

U V W<br />

Option cable: CNP6M<br />

(Refer to Chapter 6 for details on the cable treatment.)<br />

Spindle motor<br />

Magnetic<br />

sensor<br />

Spindle<br />

6 - 47


6. Dedicated Options<br />

6-7-2 Multi-point orientation using encoder (4096-point orientation)<br />

Prepare the encoder orientation parts with the following types. When purchasing independently, always<br />

prepare with the required configuration part types. The encoder is capable of 4096-point multi-point<br />

orientation by multiplying 1024p/rev by four.<br />

(1) Preparation type<br />

Preparation type Tolerable rotation Preparation type Tolerable rotation<br />

OSE1024-3-15-68 6000r/min OSE1024-3-15-68-8 8000 r/min<br />

RFH-1024-22-1M-68 6000r/min RFH-1024-22-1M-68-8 8000 r/min<br />

(2) Encoder specifications<br />

Item Feature OSE1024-3-<br />

15-68<br />

Mechanical<br />

characteristics<br />

for rotation<br />

Mechanical<br />

configuration<br />

Working<br />

conditions<br />

RFH-1024-22-<br />

1M-68<br />

OSE1024-3-<br />

15-68-8<br />

RFH-1024-22-<br />

1M-68-8<br />

Inertia 0.1 × 10 -4 kgm 2 or less 0.1 × 10 -4 kgm 2 or less<br />

Shaft friction torque 0.98Nm or less 0.98Nm or less<br />

Shaft angle acceleration 10 4 rad/s 2 or less 10 4 rad/s 2 or less<br />

Tolerable continuous<br />

rotation speed<br />

Bearing maximum<br />

non-lubrication time<br />

Shaft amplitude<br />

(position 15mm from end)<br />

Tolerable load<br />

(thrust direction/radial direction)<br />

6000r/min<br />

20000Hr / 6000r/min<br />

0.02mm or less<br />

10kg/20kg; Half of value<br />

during operation<br />

8000r/min<br />

20000Hr / 8000r/min<br />

0.02mm or less<br />

10kg/20kg; Half of value<br />

during operation<br />

Weight 1.5kg 1.5kg<br />

Squareness of flange to shaft<br />

Flange matching eccentricity<br />

Working temperature range<br />

Storage temperature range<br />

Humidity range<br />

Vibration resistance<br />

Impact resistance<br />

0.05mm or less<br />

0.05mm or less<br />

–5°C to +55°C<br />

–20°C to +85°C<br />

95%PH<br />

5 to 50Hz, total vibration width 1.5mm, each shaft for 30 min.<br />

294.20m/s 2 (30G)<br />

Use of a flexible coupling is recommended for the coupling of the encoder and spindle shaft.<br />

The following maker's flexible coupling is<br />

recommended.<br />

Manufacturer<br />

Tokushu<br />

Seiko<br />

Eagle<br />

Model Model M1 FCS38A<br />

Encoder<br />

Resonance frequency 1374Hz 3515Hz<br />

Flexible coupling<br />

Opposite encoder<br />

shaft side<br />

Position detection error 0.8×10-3° 1.2×10-3°<br />

Tolerable speed 20000r/min 10000r/min<br />

Core<br />

Mis- deviation<br />

0.7mm 0.16mm<br />

alignment Angle<br />

displacement<br />

1.5° 1.5°<br />

Outline<br />

dimensions<br />

Max. length 74.5mm 33mm<br />

Max.<br />

diameter<br />

ø57mm ø38mm<br />

6 - 48


6. Dedicated Options<br />

(3) Outline dimensions<br />

OSE-1024-3-15-68<br />

Name plate<br />

Detector (1024 pulse/rev)<br />

4-ø5.4 hole<br />

Synchronous feed encoder side<br />

97F3102E20-29P (or equivalent)<br />

A 1chA K 0V<br />

B 1chZ L<br />

C 1chB M<br />

D N 1chA*<br />

E<br />

Case<br />

grounding<br />

P<br />

1chZ*<br />

F R 1chB*<br />

G<br />

S<br />

H +5V T<br />

J<br />

Cross-section BB<br />

Effective depth of key way is 21mm<br />

RFH-1024-22-1M-68<br />

Name plate<br />

Enlarged view of key<br />

1.15 +0.14<br />

–0 2<br />

4-ø5.4 hole<br />

Ø68<br />

Ø16<br />

68<br />

56<br />

5 +0.012<br />

0<br />

Encoder side<br />

MS3102A20-29P<br />

Cable side<br />

MS3106A20-29S<br />

19.5<br />

102<br />

135<br />

20<br />

28<br />

3<br />

33<br />

Ø14.3 0<br />

–0.11<br />

–0.006<br />

Ø15g6 –0.017<br />

Ø50g6 –0.009<br />

–0.025<br />

56<br />

68<br />

Encoder side pin assignment<br />

Pin Name Pin Name<br />

A<br />

C<br />

B<br />

H<br />

A<br />

B<br />

Z<br />

+5V<br />

N<br />

R<br />

P<br />

K<br />

A<br />

B<br />

Z<br />

0V<br />

3 –0.05<br />

–0<br />

Key way dimensions<br />

6 - 49


6. Dedicated Options<br />

(4) Connecting an encoder and a spindle drive unit<br />

MDS-CH-SP<br />

Option cable: CNP5S<br />

(Refer to Chapter 6 for details on the cable treatment.)<br />

CN5<br />

CN6<br />

Power cable<br />

U V W<br />

U V W<br />

Option cable: CNP6A<br />

(Refer to Chapter 6 for details on the cable treatment.)<br />

Orientation<br />

detector<br />

Spindle motor<br />

6 - 50


6. Dedicated Options<br />

6-7-3 Multi-point orientation using motor built-in encoder (4096-point orientation)<br />

A spindle motor with motor built-in encoder with Z phase and PLG detector is required for these<br />

specifications. Zero point return is possible only when the motor and spindle are connected with a<br />

reduction gear ratio of 1:1.<br />

(1) Preparation type<br />

Preparation type<br />

Cable length (Refer to outline drawing)<br />

A<br />

B<br />

TS5276N1170H01 200 ± 10mm 270 ± 10mm<br />

TS5276N1171H02 200 ± 10mm 400 ± 10mm<br />

TS5276N1173H03 200 ± 10mm 600 ± 10mm<br />

TS5276N1174H06 200 ± 10mm 800 ± 20mm<br />

TS5276N1175H05 200 ± 10mm 1500 ± 30mm<br />

TS5276N1179H04 200 ± 10mm 1100 ± 20mm<br />

(2) Encoder specifications<br />

Item Specification Supplement<br />

Power voltage 5VDC ± 5%<br />

Power current Max. 100mA At 25°C<br />

Operation temperature -10 to 80°C<br />

Storage temperature -20 to 110°C Both sensor section and PCB<br />

Humidity (operation/storage) 5 to 95% RH With no dew condensation<br />

Vibration resistance<br />

9.8m/s 2 or less<br />

Item<br />

Output wave number<br />

Output voltage pulse<br />

height value<br />

Vp-p<br />

A, B phase<br />

specifications<br />

Output wave number<br />

Z phase<br />

specifications<br />

0 to 200 Hz<br />

(0 to 12000 r/min)<br />

Supplement<br />

0.54V ± 0.1V Note 1 0.5V ± 0.1V Note 2 25°C, 7.68kHz with 120Ω load resistor<br />

Note 2<br />

Note 1<br />

25°C, 30kHz with 120Ω load resistor<br />

(3) Outline dimensions<br />

Adjustment potentiometer<br />

position display plate<br />

PCB protective cover<br />

Serial No. indicated<br />

on back side<br />

Sensor<br />

Pan head screw<br />

with SW-PW<br />

M5 × 0.8 × 25<br />

Serial No. indicated<br />

Relay connector<br />

Round crimp terminal<br />

for thermal<br />

JST to VD1.25-4<br />

(for 4M screw size)<br />

Protective cover (accessory) 1 pc.<br />

Pan head screw with SW-PW<br />

M5 × 0.8 × 12<br />

Output contactor (Japan AMP)<br />

Housing 178964-6<br />

Pin 175288-2<br />

Accessories<br />

Housing 1782689-6 1 pc.<br />

Contact 1-175217-2 11 pcs.<br />

Relay connector<br />

Detailed drawing of sensor section<br />

(This drawing shows the state before<br />

potting)<br />

Mounting washer<br />

dimensions<br />

Appearance from View C<br />

The combined gears differ according to the spindle motor specifications.<br />

The details must be discussed separately and determined to attain the optimum product specifications.<br />

6 - 51


6. Dedicated Options<br />

(4) Connection of motor built-in PLG detector and spindle drive unit<br />

MDS-CH-SP<br />

Option cable: CNP5S<br />

(Refer to Chapter 6 for details on the cable treatment.)<br />

CN5<br />

Power cable<br />

U V W<br />

U V W<br />

Spindle motor<br />

6 - 52


6. Dedicated Options<br />

6-7-4 Contour control (C axis control) encoder<br />

Prepare the following type of shaft type encoder part for contour control (C axis control).<br />

A 1/1000 degree resolution (multiplied by four inside the unit) can be attained by connecting the<br />

90,000p/rev signal for the C-axis control to the CN7 connector. A 1024p/rev function is also available for<br />

encoder multi-point orientation.<br />

(1) Preparation type<br />

Preparation type<br />

OSE90K+1024 BKO-NC6336H01<br />

(2) Encoder specifications<br />

Tolerable rotation<br />

6000r/min<br />

Item Features OSE90K+1024 BKO-NC6336H01<br />

Mechanical Inertia<br />

0.1 × 10 -4 kgm 2 or less<br />

characteristics Shaft friction torque<br />

0.98Nm or less<br />

for rotation<br />

Shaft angle acceleration<br />

10 5 rad/s 2 or less<br />

Tolerable speed<br />

7.030r/min<br />

Mechanical<br />

configuration<br />

Working<br />

conditions<br />

Bearing maximum non-lubrication<br />

time<br />

Shaft amplitude<br />

(position 15mm from end)<br />

Tolerable load<br />

(thrust direction/radial direction)<br />

Weight<br />

Squareness of flange to shaft<br />

Flange matching eccentricity<br />

Working temperature range<br />

Storage temperature range<br />

Humidity range<br />

Vibration resistance<br />

Impact resistance<br />

20000Hr / 6000r/min<br />

0.02mm or less<br />

10kg/20kg Half of value during operation<br />

2.0kg<br />

0.05mm or less<br />

0.05mm or less<br />

–5°C to +55°C<br />

–20°C to +85°C<br />

95%PH<br />

5 to 50Hz, total vibration width 1.5mm, each shaft for 30 min.<br />

294.20m/s 2 (30G)<br />

Use of a flexible coupling is recommended for the coupling of the encoder and spindle shaft.<br />

The following maker's flexible coupling is recommended.<br />

Encoder<br />

Flexible coupling<br />

Opposite encoder<br />

shaft side<br />

Manufacturer<br />

Tokushu<br />

Seiko<br />

Eagle<br />

Model Model M1 FCS38A<br />

Resonance frequency 1374Hz 3515Hz<br />

Position detection error 0.8×10-3° 1.2×10-3°<br />

Tolerable speed 20000r/min 10000r/min<br />

Core<br />

Mis- deviation<br />

0.7mm 0.16mm<br />

alignment Angle<br />

displacement<br />

1.5° 1.5°<br />

Outline<br />

dimensions<br />

Max. length 74.5mm 33mm<br />

Max.<br />

diameter<br />

ø57mm ø38mm<br />

6 - 53


6. Dedicated Options<br />

(3) Outline drawings<br />

• Encoder OSE90K+1024 BKO-NC6336H01<br />

4-M4 depth 6<br />

Caution plate<br />

Connector<br />

Connector key<br />

Main unit side : MS3102A20-29P<br />

Controller cable side : MS3102A20-29S (The connector on the controller cable side must be<br />

prepared by the user.)<br />

Note 1. The max. encoder speed must be 6000r/min or less.<br />

Note 2. The dimensional tolerance that is not specified is<br />

±0.5mm.<br />

Signal<br />

Generated signals<br />

Remarks<br />

1ch 1024 C/T A • B-phase, A •B -phase<br />

2ch 1 C/T Z-phase • Z -phase<br />

Connect to NC or CN6.<br />

3ch 90000 C/T C • D-phase, C •D -phase<br />

4ch 1 C/T Y-phase • Y •B-phase<br />

Connect to CN7.<br />

Connector pin assignment<br />

Pin Function<br />

A 1ch A-phase<br />

B 2ch Z-phase<br />

C 1ch B-phase<br />

D ——<br />

E Case grounding<br />

F 3ch C-phase<br />

G 3ch D-phase<br />

H +5V DC +5%<br />

–10%<br />

J<br />

0V<br />

Pin<br />

K<br />

L<br />

M<br />

N<br />

P<br />

R<br />

S<br />

T<br />

Function<br />

0V<br />

3ch C -phase<br />

3ch D -phase<br />

1ch A -phase<br />

2ch Z -phase<br />

1ch B -phase<br />

4ch Y-phase<br />

4ch Y-phase<br />

6 - 54


6. Dedicated Options<br />

(4) Connecting an encoder and a spindle drive unit<br />

MDS-CH-SP<br />

Option cable: CNP5S<br />

(Refer to Chapter 6 for details on the cable treatment.)<br />

CN5<br />

CN6<br />

Option cable:<br />

CNP7A<br />

CN7<br />

90000p/rev<br />

Power cable<br />

U V W<br />

U V W<br />

Option cable: CNP76A<br />

1024p/rev<br />

NC-side connection to ENC connector<br />

Option cable: CNP71A<br />

1024p/rev<br />

Encoder for<br />

controlling<br />

C axis<br />

Spindle motor<br />

Supplement<br />

1. The C-axis control function is connected to the CN7 connector.<br />

2. When using both the C-axis control function and orientation function, connect two cables<br />

(two-way cable) from the detector.<br />

3. The orientation signal connected to CN5 or CN6 can be connected to the NC as a differential<br />

output from CN8.<br />

(5) Cable name<br />

CN7 cable<br />

A: Shaft type encoder (OSE90K+1024)<br />

None: No other connection destinations (CN7 only)<br />

1: Connect to CNC encoder connector (two-way cable)<br />

6: Connected to CN6 connector (two-way cable)<br />

6 - 55


6. Dedicated Options<br />

6-7-5 Integrated rotary encoder (Special order part)<br />

Contour (C-axis) control can be carried out using the Heidenhain integrated rotary encoder ERM280<br />

Series. The magnetic memory drum and nonmagnetic sensor are combined in this encoder. This type<br />

can be installed only on the built-in type spindle motor, so the motor specifications must also be<br />

considered. Prepare this rotary encoder after setting the spindle motor specifications.<br />

(1) Preparation type<br />

This rotary encoder is not available from <strong>Mitsubishi</strong>, and must be directly purchased from<br />

Heidenhain.<br />

(2) Encoder specifications<br />

Type<br />

Output signal<br />

ERM280<br />

1Vp-p<br />

Number of scale lines 1024 1200 2048<br />

Mechanical tolerable speed 18000 r/min 12000 r/min 8000 r/min<br />

Drum Inner diameter D1<br />

ø80mm ø120mm ø180mm<br />

Outer diameter D2 ø128.75mm ø150.88mm ø257.5mm<br />

Contact the encoder maker for details as the specifications are subject to change.<br />

(3) Outline dimensions<br />

Contact: Heidenhain Corporation Japan : http://www.heidenhain.co.,jp<br />

Germany : http://www.heidenhain.de<br />

6 - 56


6. Dedicated Options<br />

6-8 AC reactor<br />

An AC reactor must be installed for each power supply unit. Refer to section "2-6 Connection of AC<br />

reactor" for details on the wiring methods.<br />

6-8-1 Combination with power supply unit<br />

Use the AC reactor and power supply unit with the following combination.<br />

Power supply unit<br />

model<br />

AC reactor model<br />

CH- AL-K<br />

MDS-CH- 7.5k 11k 18.5k 30k 37k 45k 55k 75k<br />

~ CV-75 X<br />

CV-110<br />

CV-150<br />

CV-185<br />

CV-220<br />

CV-260<br />

CV-300<br />

CV-370<br />

CV-450<br />

CV-550<br />

CV-750<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

Caution) The X mark indicates the compatible combinations.<br />

X<br />

X<br />

X<br />

6-8-2 Outline dimension drawings<br />

AC reactor<br />

model<br />

A B C D E G H J K<br />

Weight<br />

[kg]<br />

CH-AL-7.5K 82 --- --- --- --- --- --- --- --- 3.8<br />

CH-AL-11K 75 --- --- --- --- --- --- --- --- 3.3<br />

CH-AL-18.5K 105 155 55 165 130 --- --- --- --- 5.2<br />

CH-AL-30K 110 155 55 165 140 --- --- --- --- 6.0<br />

CH-AL-37K 110 175 70 215 150 --- --- --- --- 9.5<br />

CH-AL-45K 120 175 70 215 160 --- --- --- --- 10.5<br />

CH-AL-55K --- --- --- --- --- 210 200 220 120 11.5<br />

CH-AL-75K --- --- --- --- --- 215 230 250 143 14.0<br />

Terminal screw (M6)<br />

Terminal screw (M6)<br />

Terminal screw (M8)<br />

Name plate<br />

Name plate<br />

Name plate<br />

Groundin<br />

g terminal<br />

4-M6<br />

Installation hole<br />

Protection cover<br />

Groundin<br />

g terminal<br />

4-M6<br />

Installation hole<br />

4-M8<br />

Installation hole<br />

Protection cover<br />

Grounding<br />

terminal<br />

Protection cover<br />

Name plate<br />

Name plate<br />

Name plate<br />

CH-AL-7.5K / CH-AL-11K<br />

CH-AL-18.5K / CH-AL-30K<br />

CH-AL-37K / CH-AL-45K<br />

CH-AL-55K / CH-AL-75K<br />

6 - 57


7. Peripheral Devices<br />

7-1 Selection of wire ................................................................................................................................. 7-2<br />

7-1-1 Example of wires by unit ............................................................................................................. 7-2<br />

7-2 Selection of main circuit breaker and contactor ................................................................................. 7-5<br />

7-2-1 Selection of earth leakage breaker.............................................................................................. 7-5<br />

7-2-2 Selection of no-fuse breaker ....................................................................................................... 7-6<br />

7-2-3 Selection of contactor.................................................................................................................. 7-7<br />

7-3 Control circuit related ......................................................................................................................... 7-8<br />

7-3-1 Circuit protector ........................................................................................................................... 7-8<br />

7-3-2 Fuse protection............................................................................................................................ 7-9<br />

7-3-3 Relays........................................................................................................................................ 7-10<br />

7-3-4 Surge absorber.......................................................................................................................... 7-11<br />

7 - 1


7. Peripheral Devices<br />

7-1 Selection of wire<br />

7-1-1 Example of wires by unit<br />

Selected wires must be able to tolerate rated current of the unit’s terminal to which the wire is connected.<br />

How to calculate tolerable current of an insulated wire or cable is shown in “Tolerable current of electric<br />

cable” (1) of Japanese Cable Makers’ Association Standard (JCS)-168-E (1995), its electric equipment<br />

technical standards or JEAC regulates tolerable current, etc. wire.<br />

When exporting wires, select them according to the related standards of the country or area to export. In<br />

the UL standards, certification conditions are to use wires of 60 o C and 75 o C product. (UL508C)<br />

Wire’s tolerable current is different depending on conditions such as its material, structure, ambient<br />

temperature, etc. Check the tolerable current described in the specification of the wire to use.<br />

Example of wire selections according to each standard is as follows.<br />

(1) 600V vinyl insulated wire (IV wire) 60 o C product<br />

(Example according to IEC/EN60204-1, UL508C)<br />

Terminal<br />

name<br />

TE1<br />

(L1, L2, L3, )<br />

TE2<br />

(L+, L-)<br />

TE3<br />

(L11, L21, L12, L22, MC1)<br />

Unit type mm 2 AWG mm 2 AWG mm 2 AWG<br />

Power MDS-CH-CV-37 2 14<br />

supply MDS-CH-CV-55 2 14<br />

unit MDS-CH-CV-75 2 14<br />

MDS-CH-CV-110 3.5 12<br />

MDS-CH-CV-150 5.5 10<br />

MDS-CH-CV-185 8 8<br />

Same as TE1<br />

MDS-CH-CV-220 14 6<br />

2 14<br />

MDS-CH-CV-260 14 6<br />

MDS-CH-CV-300 22 4<br />

MDS-CH-CV-370 38 2<br />

MDS-CH-CV-450 38 2 TE2-1: Bar enclosed<br />

MDS-CH-CV-550 60 - TE2-2: Same as TE1<br />

MDS-CH-CV-750 --- --- Bar enclosed<br />

Spindle<br />

drive unit<br />

Servo<br />

drive<br />

unit<br />

Servo<br />

drive<br />

unit<br />

(2-axis)<br />

MDS-CH-SP-15 2 14<br />

MDS-CH-SP-37 2 14<br />

MDS-CH-SP-55 2 14<br />

MDS-CH-SP-75 2 14<br />

MDS-CH-SP-110 5.5 10<br />

MDS-CH-SP-150 5.5 10<br />

MDS-CH-SP-185 8 8<br />

MDS-CH-SP-220 8 8<br />

MDS-CH-SP-260 14 6<br />

MDS-CH-SP-300 22 4<br />

MDS-CH-SP-370 38 2<br />

Match with TE2 of<br />

selected power supply unit<br />

MDS-CH-SP-450 38 2 TE2-1: Bar enclosed<br />

MDS-CH-SP-550 38 --- TE2-2: Same as TE1<br />

MDS-CH-SP-750 --- --- Bar enclosed<br />

MDS-CH-V1-05 2 14<br />

MDS-CH-V1-10 2 14<br />

MDS-CH-V1-20 2 14<br />

MDS-CH-V1-35 2 14<br />

MDS-CH-V1-45 2 14<br />

Match with TE2 of<br />

MDS-CH-V1-70 5.5 10 selected power supply unit<br />

MDS-CH-V1-90 5.5 10<br />

MDS-CH-V1-110 5.5 10<br />

MDS-CH-V1-150 5.5 10<br />

MDS-CH-V1-185 8 8<br />

MDS-CH-V2-0505 2 14<br />

MDS-CH-V2-1005 2 14<br />

MDS-CH-V2-1010 2 14<br />

MDS-CH-V2-2010 2 14<br />

MDS-CH-V2-2020 2 14<br />

MDS-CH-V2-3510 2 14<br />

MDS-CH-V2-3520 2 14<br />

MDS-CH-V2-3535 2 14<br />

MDS-CH-V2-4520 2 14<br />

MDS-CH-V2-4535 2 14<br />

Match with TE2 of<br />

selected power supply unit<br />

2 14<br />

2 14<br />

2 14<br />

7 - 2


7. Peripheral Devices<br />

(2) 600V double (heat proof) vinyl insulated wire (HIV wire) 75 o C product<br />

(Example according to IEC/EN60204-1, UL508C)<br />

Terminal<br />

name<br />

TE1<br />

(L1, L2, L3, )<br />

TE2<br />

(L+, L-)<br />

TE3<br />

(L11, L21, L12, L22, MC1)<br />

Unit type mm 2 AWG mm 2 AWG mm 2 AWG<br />

Power MDS-CH-CV-37 2 14<br />

supply MDS-CH-CV-55 2 14<br />

unit MDS-CH-CV-75 2 14<br />

MDS-CH-CV-110 3.5 12<br />

MDS-CH-CV-150 5.5 10<br />

MDS-CH-CV-185 8 8<br />

Same as TE1<br />

MDS-CH-CV-220 8 8<br />

2 14<br />

MDS-CH-CV-260 14 6<br />

MDS-CH-CV-300 14 6<br />

MDS-CH-CV-370 22 4<br />

MDS-CH-CV-450 22 4 TE2-1: Bar enclosed<br />

MDS-CH-CV-550 38 2 TE2-2: Same as TE1<br />

MDS-CH-CV-750 60 - Bar enclosed<br />

Spindle<br />

drive unit<br />

Servo<br />

drive<br />

unit<br />

Servo<br />

drive<br />

unit<br />

(2-axis)<br />

MDS-CH-SP-15 2 14<br />

MDS-CH-SP-37 2 14<br />

MDS-CH-SP-55 2 14<br />

MDS-CH-SP-75 2 14<br />

MDS-CH-SP-110 5.5 10<br />

MDS-CH-SP-150 5.5 10<br />

MDS-CH-SP-185 8 8<br />

MDS-CH-SP-220 8 8<br />

MDS-CH-SP-260 14 6<br />

MDS-CH-SP-300 22 4<br />

MDS-CH-SP-370 22 4<br />

Match with TE2 of<br />

selected power supply unit<br />

MDS-CH-SP-450 38 2 TE2-1: Bar enclosed<br />

MDS-CH-SP-550 38 2 TE2-2: Same as TE1<br />

MDS-CH-SP-750 60 - Bar enclosed<br />

MDS-CH-V1-05 2 14<br />

MDS-CH-V1-10 2 14<br />

MDS-CH-V1-20 2 14<br />

MDS-CH-V1-35 2 14<br />

MDS-CH-V1-45 2 14<br />

Match with TE2 of<br />

MDS-CH-V1-70 5.5 10 selected power supply unit<br />

MDS-CH-V1-90 5.5 10<br />

MDS-CH-V1-110 5.5 10<br />

MDS-CH-V1-150 5.5 10<br />

MDS-CH-V1-185 8 8<br />

MDS-CH-V2-0505 2 14<br />

MDS-CH-V2-1005 2 14<br />

MDS-CH-V2-1010 2 14<br />

MDS-CH-V2-2010 2 14<br />

MDS-CH-V2-2020 2 14<br />

MDS-CH-V2-3510 2 14<br />

MDS-CH-V2-3520 2 14<br />

MDS-CH-V2-3535 2 14<br />

MDS-CH-V2-4520 2 14<br />

MDS-CH-V2-4535 2 14<br />

Match with TE2 of<br />

selected power supply unit<br />

2 14<br />

2 14<br />

2 14<br />

7 - 3


7. Peripheral Devices<br />

(3) 600V bridge polyethylene insulated wire (IC) 105 o C product<br />

(Example according to JEAC8001)<br />

Terminal<br />

name<br />

TE1<br />

(L1, L2, L3, )<br />

TE2<br />

(L+, L-)<br />

TE3<br />

(L11, L21, L12, L22, MC1)<br />

Unit type mm 2 AWG mm 2 AWG mm 2 AWG<br />

Power MDS-CH-CV-37 2 14<br />

supply MDS-CH-CV-55 2 14<br />

unit MDS-CH-CV-75 2 14<br />

MDS-CH-CV-110 2 14<br />

MDS-CH-CV-150 3.5 12<br />

MDS-CH-CV-185 5.5 10<br />

Same as TE1<br />

MDS-CH-CV-220 8 8<br />

1.25~2 16 ~14<br />

MDS-CH-CV-260 14 6<br />

MDS-CH-CV-300 14 6<br />

MDS-CH-CV-370 22 4<br />

MDS-CH-CV-450 22 4 TE2-1: Bar enclosed<br />

MDS-CH-CV-550 38 2 TE2-2: Same as TE1<br />

Spindle<br />

drive unit<br />

Servo<br />

drive<br />

unit<br />

Servo<br />

drive<br />

unit<br />

(2-axis)<br />

MDS-CH-CV-750 38 2 Bar enclosed<br />

MDS-CH-SP-15 2 14<br />

MDS-CH-SP-37 2 14<br />

MDS-CH-SP-55 2 14<br />

MDS-CH-SP-75 2 14<br />

MDS-CH-SP-110 2 14<br />

Match with TE2 of<br />

MDS-CH-SP-150 3.5 12<br />

selected power supply unit<br />

MDS-CH-SP-185 5.5 10<br />

MDS-CH-SP-220 8 8<br />

MDS-CH-SP-260 14 6<br />

MDS-CH-SP-300 14 6<br />

MDS-CH-SP-370 22 4<br />

MDS-CH-SP-450 22 4 TE2-1: Bar enclosed<br />

MDS-CH-SP-550 38 2 TE2-2: Same as TE1<br />

MDS-CH-SP-750 50 - Bar enclosed<br />

MDS-CH-V1-05 2 14<br />

MDS-CH-V1-10 2 14<br />

MDS-CH-V1-20 2 14<br />

MDS-CH-V1-35 2 14<br />

MDS-CH-V1-45 2 14<br />

MDS-CH-V1-70 2 14<br />

MDS-CH-V1-90 3.5 12<br />

MDS-CH-V1-110 5.5 10<br />

MDS-CH-V1-150 5.5 10<br />

MDS-CH-V1-185 8 8<br />

MDS-CH-V2-0505 2 14<br />

MDS-CH-V2-1005 2 14<br />

MDS-CH-V2-1010 2 14<br />

MDS-CH-V2-2010 2 14<br />

MDS-CH-V2-2020 2 14<br />

MDS-CH-V2-3510 2 14<br />

MDS-CH-V2-3520 2 14<br />

MDS-CH-V2-3535 2 14<br />

MDS-CH-V2-4520 2 14<br />

MDS-CH-V2-4535 2 14<br />

Match with TE2 of<br />

selected power supply unit<br />

Match with TE2 of<br />

selected power supply unit<br />

1.25~2 16 ~14<br />

1.25~2 16 ~14<br />

1.25~2 16 ~14<br />

CAUTION<br />

1. Selection conditions follow IEC/EN60204-1, UL508C, JEAC8001.<br />

• Ambient temperature is maximum 40°C.<br />

• Cable installed on walls without ducts or conduits.<br />

To use the wire under conditions other than above, check the standards you<br />

are supposed to follow.<br />

2. The maximum wiring length to the motor is 30m.<br />

If the wiring distance between the drive unit and motor is 20m or longer, use a<br />

thick wire so that the cable voltage drop is 2% or less.<br />

3. Always wire the grounding wire.<br />

7 - 4


7. Peripheral Devices<br />

7-2 Selection of main circuit breaker and contactor<br />

The methods for selecting the breaker and contactor connected to the power supply unit are explained in<br />

this section. Note that the breaker (wiring breaker) must be installed for each power supply unit.<br />

Circuit protection<br />

breaker<br />

Earth leakage<br />

breaker<br />

If an error occurs in the circuit, the power circuit is cut (shut off) immediately to<br />

prevent abnormal overheating or burning of the wiring.<br />

This is also called a no-fuse breaker.<br />

Shuts off the breaker before an earth leakage accident (protects human life) or<br />

fire occurs due to an earth leakage.<br />

7-2-1 Selection of earth leakage breaker<br />

When installing an earth leakage breaker, select the breaker on the following basis to prevent the<br />

breaker from malfunctioning by the higher frequency earth leakage current generated in the servo or<br />

spindle drive unit.<br />

(1) Selection<br />

Obtaining the earth leakage current for all drive units referring to the following table, select an earth<br />

leakage breaker within the “rated non-operation sensitivity current”.<br />

Usually use an earth leakage breaker for inverter products that function at a leakage current within<br />

the commercial frequency range (50 to 60Hz).<br />

If a product sensitive to higher frequencies is used, the breaker could malfunction at a level less<br />

than the maximum earth leakage current value.<br />

Earth leakage current for each unit<br />

Unit Earth leakage current Maximum earth leakage current<br />

MDS- CH -SP-15 to 750 6mA 15mA<br />

MDS- CH -V1-05 to 185 1mA 2mA<br />

MDS- CH -V2-0505 to 4535 1mA 4mA (for two axes)<br />

(Note1) Maximum earth leakage current: Value that considers wiring length and grounding, etc.<br />

(Commercial frequency 50/60Hz)<br />

(Note2) The earth leakage current in the power supply unit side is included in the drive unit side.<br />

(2) Measurement of earth leakage current<br />

When actually measuring the earth leakage current, use a product that is not easily affected by the<br />

higher frequency earth leakage current. The measurement range should be 50 to 60Hz.<br />

POINT<br />

1. The earth leakage current tends to increase as the motor capacity increases.<br />

2. A higher frequency earth leakage current will always be generated because the<br />

inverter circuit in the drive unit switches the transistor at high speed. Always<br />

ground to reduce the higher frequency earth leakage current as much as<br />

possible.<br />

3. An earth leakage current containing higher frequency may reach approx. several<br />

hundreds of mA. According to IEC479-2, this level is not hazardous to the<br />

human body.<br />

7 - 5


7. Peripheral Devices<br />

7-2-2 Selection of no-fuse breaker<br />

Select the breaker selection current that is calculated from the rated output and the nominal input<br />

voltage as in the expression below. And then select the minimum capacity no-fuse breaker whose rated<br />

current meets the breaker selection current.<br />

Breaker selection current [A] =<br />

No-fuse breaker selection current for 380V input [A]<br />

Nominal input voltage [V]<br />

× 380 [V]<br />

Unit type<br />

MDS-DH-CV-<br />

Selection of no-fuse breaker for 380V input [A]<br />

37 55 75 110 150 185 220 260 300 370 450 550 750<br />

Rated output 3.7kW 5.5kW 7.5kW 11kW 15kW 18.5kW 22kW 26kW 30kW 37kW 45kW 55kW 75kW<br />

Breaker selection<br />

8A 12A 16A 24A 33A 40A 48A 56A 65A 80A 98A 119A 163A<br />

current<br />

Recommended<br />

NF50- NF50- NF50- NF50- NF50- NF50- NF50- NF100- NF100- NF100- NF100- NF225- NF225-<br />

breaker<br />

CW3P- CW3P- CW3P- CW3P- CW3P- CW3P- CW3P- CW3P- CW3P- CW3P- CW3P- CW3P- CW3P-<br />

(<strong>Mitsubishi</strong> Electric<br />

10A 15A 20A 30A 40A 40A 50A 60A 75A 100A 100A 125A 200A<br />

Corp.: option part)<br />

Rated current of the<br />

10A 15A 20A 30A 40A 40A 50A 60A 75A 100A 100A 125A 200A<br />

recommended breaker<br />

Option part: A breaker is not prepared as an NC unit accessory, so purchase the part from your dealer, etc.<br />

(Example)<br />

Select a no-fuse breaker for using the MDS-DH-CV-450 with a 480V nominal input voltage.<br />

Breaker selection current =98/480 x 380 = 77.6 [A]<br />

According to the table above, select “NF100-CW3P-100”.<br />

CAUTION<br />

1. It is dangerous to share a no-fuse breaker for multiple power supply units, so<br />

do not share it. Always install the breakers for each power supply unit.<br />

2. If the control power (L11, L21) must be protected, select according to the<br />

section "7-3-1 Circuit protection".<br />

7 - 6


7. Peripheral Devices<br />

7-2-3 Selection of contactor<br />

Select the contactor selection current that is calculated from the rated output and the nominal input<br />

voltage as in the expression below. And then select the contactor whose conventional free-air thermal<br />

current meets the contactor selection current.<br />

Contactor selection current [A] =<br />

Contactor selection current for 380V input [A]<br />

Nominal input voltage [V]<br />

× 380 [V]<br />

Selection of contactor for 380V input [A]<br />

Unit type<br />

MDS-CH-CV-<br />

37 55 75 110 150 185 220 260 300 370 450 550 750<br />

Rated output 3.7kW 5.5kW 7.5kW 11kW 15kW 18.5kW 22kW 26kW 30kW 37kW 45kW 55kW 75kW<br />

Contactor selection<br />

current 8A 12A 16A 24A 33A 40A 48A 56A 65A 80A 98A 119A 163A<br />

Recommended<br />

contactor<br />

(<strong>Mitsubishi</strong> Electric<br />

Corp.: option part)<br />

Conventional free-air<br />

thermal current of<br />

the recommended<br />

contactor<br />

S-N12-<br />

AC400V<br />

S-N12-<br />

AC400V<br />

S-N12-<br />

AC400V<br />

S-N21-<br />

AC400V<br />

S-N25-<br />

AC400V<br />

S-N25-<br />

AC400V<br />

S-N25-<br />

AC400V<br />

S-N35-<br />

AC400V<br />

S-N50-<br />

AC400V<br />

S-N50-<br />

AC400V<br />

S-N65- S-N80- S-N150-<br />

AC400V AC400V AC400V<br />

20A 20A 20A 32A 50A 50A 50A 60A 80A 80A 100A 135A 200A<br />

Option part: A breaker is not prepared as an NC unit accessory, so purchase the part from your dealer, etc.<br />

(Example)<br />

Select a contactor for using the MDS-CH-CV-450 with a 480V nominal input voltage.<br />

Contactor selection current = 98/480×380 = 77.6 [A]<br />

According to the table above, select “S-N50-AC400V”.<br />

POINT<br />

1. If the contactor selection current is 20A or less, select the S-N12 product for<br />

the contactor.<br />

2. Select a contactor whose excitation coil does not operate at 15mA or less.<br />

7 - 7


7. Peripheral Devices<br />

7-3 Control circuit related<br />

7-3-1 Circuit protector<br />

This breaker is used to switch the power and to provide overload and short-circuit protection at the<br />

control circuit.<br />

When connecting a circuit protector or breaker to the power input (TE3 terminals L11 and L21) for the<br />

control circuit, use a product that does not trip (incorrectly activate) by a rush current when the power is<br />

turned ON. A circuit protector with inertial delay and an operation delayed type breaker are available to<br />

prevent unnecessary tripping. Select the product to be used according to the machine specifications.<br />

The rush current and rush conductivity time differ according to the power impedance and power ON<br />

timing, so select a product that does not trip even under the conditions listed in the following table.<br />

Rush current: Ip = 18A<br />

Note1)<br />

36.8%<br />

I [A]<br />

Rush conductivity time:<br />

Time to reach 36.8% of rush current; equivalent to breaker<br />

operation characteristics operation time.<br />

t [ms]<br />

Time constant: T =6ms Note2)<br />

Note1) When using MDS-CH-CV-450 to 750, the rush current is selected with rush current in contactor ON (45A).<br />

Note2) When using MDS-CH-CV-450 to 750, the time constant is selected with rush current conductivity time in contactor ON<br />

(450/550: 200ms, 750: 260ms).<br />

POINT<br />

When collectively protecting the control circuit power for multiple units, select a<br />

circuit protector or breaker that satisfies the total sum of the rush current IP. The<br />

largest value is used for the rush conductivity time T.<br />

(Example 1)<br />

Selecting a breaker to be connected to the power supply for the<br />

MDS-CH-CV-550, SP-370, V2-3535 and V1-35 control circuit<br />

Rush current Ip [A] = 45 + 18 + 18 + 18 = 99 [A]<br />

(CV, SP, V2, V1)<br />

Rush conductivity time T [s] = 200 [ms]<br />

← (CV-550 is the maximum)<br />

Refer to the breaker operation characteristics diagram, and select<br />

a breaker with a rated current that does not trip even at the<br />

minimum operation time.<br />

In this case, a current 7-fold the breaker's rated current can be<br />

tolerated at the operation time 0.2[s]. According to the table on the<br />

right, the following applies.<br />

Rated current= 15 [A] × 7-fold = 105 [A].<br />

The breaker's rated current is larger than the rush current 99 [A], so<br />

a breaker with 15[A] rated current can be used.<br />

Select the "NF-30CS-2P-15A" breaker in this case.<br />

Example of breaker (cost efficient model)<br />

Operation time<br />

Operation characteristics<br />

[s]<br />

(NF-30CS)<br />

2.0<br />

1.0<br />

0.5<br />

Maximum<br />

0.2<br />

0.1<br />

Minimum<br />

0.05<br />

500 700 1500 3000 [%]<br />

600 1000 2000<br />

% in respect to rated current<br />

Type<br />

NF-30CP-2P<br />

[Rated current] A<br />

Rated current 3, 5, 10, 15, 20, 30<br />

7 - 8


7. Peripheral Devices<br />

7-3-2 Fuse protection<br />

The fuse of branch-circuit protection must use UL class CC, J or T. In the selection, please consider rush<br />

current and rush conductive time.<br />

Connected total of unit<br />

Selection of branch-circuit protection fuse<br />

Fuse (Class CC)<br />

Wire Size<br />

Rated [V] Current [A] AWG<br />

1 – 4<br />

600<br />

20<br />

5 – 8<br />

35<br />

16 to 14<br />

CAUTION<br />

For continued protection against risk of fire, replace only with same type 600<br />

V, 20 or 35 A (UL CLASS CC) fuse.<br />

7 - 9


7. Peripheral Devices<br />

7-3-3 Relays<br />

Use the following relays for the input/output interface (power supply, external emergency stop function:<br />

CN23 or CN9.)<br />

Interface name<br />

For digital input signal (CN23, etc.)<br />

For digital output signal (CN9)<br />

Input circuit<br />

Selection example<br />

Use a minute signal relay (Example: twin contact) to prevent a contact defect.<br />

OMRON: G2A, G6B type, MY type, LY type<br />

Use a compact relay with rating of 24VDC, 50mA or less.<br />

OMROM: G6B type, MY type<br />

Output circuit<br />

24V<br />

10k<br />

Drive unit<br />

CN9 connector<br />

MPI1<br />

20<br />

33.3k<br />

8<br />

CN9 connector<br />

MPO1 Relay, etc.<br />

Switch<br />

24G<br />

10<br />

Drive unit<br />

18<br />

MPO2<br />

24V<br />

CN23<br />

connector<br />

Switch<br />

3<br />

2k<br />

16<br />

10<br />

Note 1)<br />

MPO3<br />

24G<br />

1<br />

Power supply unit<br />

Note 1) MPO3 is not provided with the MDS-CH-V1/V2.<br />

External contact<br />

ON conditions<br />

External contact<br />

OFF conditions<br />

18VDC to 25.2VDC<br />

9mA or more<br />

4VDC or less<br />

2mA or less<br />

Output voltage 24VDC ±5%<br />

Tolerable output<br />

current Io<br />

50mA or less<br />

7 - 10


7. Peripheral Devices<br />

7-3-4 Surge absorber<br />

When using magnetic brakes, a surge absorber must be installed to protect the relay contact and brakes.<br />

Commonly a varistor is used.<br />

(1) Necessity of surge absorber<br />

When the state of the motor's magnetic brakes changes from energized (brakes open) to nonenergized<br />

(brakes applied), a large voltage (electromotive voltage) is generated in the coil. This can<br />

cause the power unit to fail, and can shorten the life of the relay contacts, etc. A surge absorber<br />

must be installed to suppress this electromotive voltage.<br />

Without surge absorber<br />

With varistor installed<br />

Current<br />

Current<br />

Voltage<br />

24Vdc<br />

t<br />

Voltage<br />

24Vdc<br />

t<br />

t<br />

t<br />

Several<br />

hundred V<br />

Electromotive<br />

voltage<br />

Brake operation<br />

delay<br />

Varistor voltage<br />

Caution<br />

A voltage is applied on he coils while<br />

the surge absorber (varistor) is<br />

adsorbing the energy, so the brake<br />

operation time will be delayed.<br />

(2) Selection of varistor<br />

When a varistor is installed in parallel with the coil, the surge voltage can be adsorbed as heat and<br />

the electromotive voltage can be suppressed to approximately the same level as the varistor<br />

voltage. If the varistor voltage is low, the energy consumed as heat increases, so allow for the<br />

current passed to the coil during braking and the contact open/close frequency when selecting the<br />

varistor. When using a relay for motor breaking, the brake operation time will be delayed if the<br />

varistor voltage is extremely low. Always confirm the operation with an actual machine.<br />

Servo drive unit<br />

CN20<br />

3<br />

External emergency stop<br />

1<br />

Power<br />

Varistor<br />

Brake coil<br />

7 - 11


7. Peripheral Devices<br />

Select a varistor with the following or equivalent specifications. To prevent short-circuiting, attach a<br />

flame resistant insulation tube, etc., onto the leads as shown in the following outline dimension drawing.<br />

Applying a 24VDC voltage onto the coil with CN20 connector<br />

Tolerable circuit<br />

voltage<br />

V 1mA<br />

Rating<br />

Surge current<br />

withstand level<br />

@8/20us (A)<br />

Energy withstand<br />

level<br />

(J)<br />

Maximum<br />

average<br />

pulse<br />

power<br />

Max. limit<br />

voltage<br />

V 20A<br />

Electrostatic<br />

capacity<br />

(reference<br />

value)<br />

Varistor<br />

voltage<br />

rating<br />

(range)<br />

AC (V) DC (V) 1 time 2 times 10/1000us 2ms (W) (V) (pF) (V)<br />

75 100 3500 2500 20 14.5 0.4 200 1400<br />

120<br />

(108 to 132)<br />

140 180 3500 2500 39 27.5 0.4 360 410<br />

220<br />

(198 to 242)<br />

Selection condition : When ON/OFF frequency is 10 times/min or less, and exciting current is 2A or less<br />

Supplement : Normally use a product with 120V varistor voltage. If there is no allowance for the brake<br />

operation time, use the 220V product.<br />

If the varistor voltage exceeds 200V, the specifications of the relay in the unit will be<br />

exceeded, and the contact life will be shortened.<br />

(These parts cannot be directly ordered from <strong>Mitsubishi</strong> Electric Corp.)<br />

• ERZV10D121, ERZV10D221 (Matsushita Electric Industrial Co., Ltd.)<br />

• TNR10V121K, TNR-12G221K (MARCON Electronics Co., Ltd.)<br />

ERZV10D121, ERZV10D221<br />

11.5<br />

[Unit: mm]<br />

20.0<br />

Insulation tube<br />

7 - 12


8. Troubleshooting<br />

8-1 Points of caution and confirmation..................................................................................................... 8-2<br />

8-2 Troubleshooting at start up ................................................................................................................ 8-3<br />

8-3 Protective functions list of units.......................................................................................................... 8-4<br />

8-3-1 List of alarms ............................................................................................................................... 8-4<br />

8-3-2 List of warnings ......................................................................................................................... 8-16<br />

8-3-3 Protection functions and resetting methods.............................................................................. 8-17<br />

8-3-4 Parameter numbers during initial parameter error.................................................................... 8-19<br />

8-3-5 Troubleshooting......................................................................................................................... 8-20<br />

8-4 Spindle system troubleshooting ....................................................................................................... 8-39<br />

8-4-1 Introduction................................................................................................................................ 8-39<br />

8-4-2 First step.................................................................................................................................... 8-39<br />

8-4-3 Second step .............................................................................................................................. 8-40<br />

8-4-4 When there is no alarm or warning ........................................................................................... 8-41<br />

8 - 1


8. Troubleshooting<br />

8-1 Points of caution and confirmation<br />

If an error occurs in the servo drive unit or spindle drive unit, the warning or alarm will occur. When a<br />

warning or alarm occurs, check the state while observing the following points, and inspect or remedy the<br />

unit according to the details given in this section.<br />

<br />

1. What is the alarm code display?<br />

2. Can the error or trouble be repeated? (Check alarm history)<br />

3. Is the motor and servo drive unit temperature and ambient temperature normal?<br />

4. Are the servo drive unit, control unit and motor grounded?<br />

5. Was the unit accelerating, decelerating or running at a set speed? What was the speed?<br />

6. Is there any difference during forward and backward run?<br />

7. Was there a momentary power failure?<br />

8. Did the trouble occur during a specific operation or command?<br />

9. At what frequency does the trouble occur?<br />

10. Is a load applied or removed?<br />

11. Has the drive unit been replaced, parts replaced or emergency measures taken?<br />

12. How many years has the unit been operating?<br />

13. Is the power supply voltage normal? Does the state change greatly according to the time band?<br />

F1 (flicker)<br />

F + axis No.<br />

37 (flicker)<br />

Alarm No.<br />

F1 (flicker)<br />

F + axis No.<br />

37 (flicker)<br />

Alarm No.<br />

Not lit<br />

LED display during servo alarm or spindle alarm<br />

F1<br />

F + axis No.<br />

9F<br />

Warning No.<br />

F1<br />

F + axis No.<br />

9F<br />

Warning No.<br />

Not lit<br />

LED display during servo warning or spindle warning<br />

CAUTION<br />

1. This power supply unit uses a large capacity electrolytic capacitor. When the<br />

CHARGE lamp on the front of the power supply unit is lit, voltage is still<br />

present at the PN terminal (TE2). Do not touch the terminal block in this state.<br />

2. Before replacing the unit, etc., always confirm that there is no voltage at the<br />

PN terminal (TE2) with a tester or wait at least 15 minutes after turning the<br />

main power OFF.<br />

3. The conductivity in the unit cannot be checked.<br />

4. Do not carry out a megger test as the unit could be damaged.<br />

8 - 2


8. Troubleshooting<br />

8-2 Troubleshooting at start up<br />

If the CNC system does not start up correctly and a system error occurs when the CNC power is turned<br />

ON, the servo drive unit or spindle drive unit may not have been started up correctly.<br />

Confirm the LED display on each unit, and take measures according to this section.<br />

LED<br />

display<br />

AA<br />

Ab<br />

AC<br />

Ad<br />

AE<br />

Symptom Cause of occurrence Investigation method Remedy<br />

Initial communication with<br />

the CNC was not<br />

completed correctly.<br />

Initial communication with<br />

the CNC was not carried<br />

out.<br />

During parameter<br />

transmission request<br />

During parameter<br />

conversion request<br />

The drive unit axis No. setting<br />

is incorrect.<br />

Is there any other drive unit that has the<br />

same axis No. set?<br />

The CNC setting is incorrect. Is the No. of CNC controlled axes<br />

correct?<br />

Communication with CNC is<br />

incorrect.<br />

The axis is not used, the<br />

setting is for use inhibiting.<br />

Communication with CNC is<br />

incorrect.<br />

Communication with CNC is<br />

incorrect.<br />

Communication with CNC is<br />

incorrect.<br />

Unit initialization standby Communication with CNC is<br />

incorrect.<br />

b[ ] READY OFF<br />

C[ ] SERVO OFF<br />

Is the connector (CN1A, CN1B)<br />

disconnected?<br />

Is the cable broken?<br />

Check the conductivity with a tester.<br />

Is the axis setting rotary switch set to "7"<br />

to "F"?<br />

Is the connector (CN1A, CN1B)<br />

disconnected?<br />

Is the cable broken?<br />

Check the conductivity with a tester<br />

Refer to the remedies for "Ab"<br />

d[ ] SERVO ON Drive operation preparation completed (The drive unit is normal)<br />

9[ ] WARNING Drive unit is incorrect.<br />

E[ ] WARNING Drive unit is incorrect.<br />

F[ ] Control axis No.<br />

(n = axis No.)<br />

Set correctly.<br />

Set correctly.<br />

Connect correctly.<br />

Replace the cable.<br />

Set correctly.<br />

Connect correctly.<br />

Replace the cable.<br />

Check with the warning No. for the target unit.<br />

E6: Control axis being removed<br />

E7: CNC emergency stop Remove the cause<br />

8 - 3


8. Troubleshooting<br />

8-3 Protective functions list of units<br />

8-3-1 List of alarms<br />

When an alarm occurs, the servo drive unit will make the motor stop by the deceleration control or<br />

dynamic brake. The spindle drive unit will coast to a stop or will decelerate to a stop. At the same time,<br />

the alarm No. will appear on the NC monitor screen and with the LEDs on the front of the drive unit.<br />

Check the alarm No., and remove the cause of the alarm by following this list.<br />

No. Name Details<br />

11 Axis selection<br />

error<br />

The rotary switches are set<br />

to the same value.<br />

Otherwise, the switches<br />

are set to an illegal value.<br />

Cause of<br />

occurrence<br />

Axis No. setting is<br />

incorrect.<br />

Investigation method<br />

Check the axis-No. setting for each unit.<br />

Remedy<br />

Set correctly.<br />

12 Memory error 1 An error was detected in a<br />

memory IC or feedback IC<br />

by self-check to be made<br />

during the unit power ON.<br />

13 Software<br />

processing<br />

error 1<br />

14 Software<br />

processing<br />

error 2<br />

16 Magnetic pole<br />

position<br />

detection error<br />

17 A/D converter<br />

error<br />

Software operation<br />

sequence error or<br />

operation timing error<br />

[Also detected while the<br />

control axis is removed.]<br />

An error was detected in<br />

the current processing<br />

circuit.<br />

Starting of the IPM spindle<br />

was commanded before<br />

positioning the magnetic<br />

poles.<br />

CPU peripheral<br />

circuit error<br />

CPU peripheral<br />

circuit error<br />

CPU peripheral<br />

circuit error<br />

Automatic<br />

adjustment has not<br />

been completed.<br />

An error was detected in CPU peripheral<br />

the A/D converter for circuit error<br />

current detection.<br />

[Detected at power ON and<br />

7s after ready OFF]<br />

18 Motor side Initial communication with<br />

detector, initial the detector was not<br />

communication possible.<br />

error<br />

[Also detected when the<br />

control axis is installed.]<br />

1A Machine side<br />

detector, initial<br />

communication<br />

error<br />

1B Machine side<br />

detector,<br />

CPU error 1<br />

Initial communication with<br />

the detector cannot be<br />

performed in the system<br />

that uses OHA25K-ET or<br />

high-speed serial detector<br />

as the machine side<br />

detector. (Refer to the<br />

detector alarms list.)<br />

In the high-speed serial<br />

detector connected with<br />

the machine side, an error<br />

was detected in the data<br />

stored in an EEPROM.<br />

(Refer to the detector<br />

alarms list.)<br />

The detector input<br />

connector is<br />

disconnected.<br />

The detector cable<br />

is broken.<br />

Detector fault<br />

Drive unit input<br />

circuit fault<br />

The detector input<br />

connector is<br />

disconnected.<br />

The detector cable<br />

is broken.<br />

Detector fault<br />

The unit input<br />

circuit is broken.<br />

The parameters are<br />

set incorrectly.<br />

Check the repeatability.<br />

Check the grounding state and ambient<br />

temperature.<br />

Check the repeatability.<br />

Check the grounding state and ambient<br />

temperature.<br />

Check the repeatability.<br />

Check the grounding state and ambient<br />

temperature.<br />

Check SP205 = 0: Incomplete/<br />

1: Completed<br />

Replace the unit.<br />

Improve the ambient<br />

environment.<br />

Replace the unit.<br />

Improve the ambient<br />

environment.<br />

Replace the unit.<br />

Improve the ambient<br />

environment.<br />

Carry out automatic<br />

adjustment<br />

Check whether the unit has been replaced. Carry out automatic<br />

adjustment<br />

Check the repeatability.<br />

Replace the unit.<br />

(Occurs each time the power is turned ON)<br />

Check the grounding state and ambient<br />

temperature.<br />

Check the connector (CN2) connection.<br />

Check the cable connection.<br />

Replace with the cable for another axis and<br />

check the repeatability.<br />

Exchange the detector and drive unit for<br />

those of another axis and check the<br />

repeatability. (Pinpoint the cause)<br />

Check the connector (CN3) connection.<br />

Check the cable connection.<br />

Replace with the cable for another axis and<br />

check the repeatability.<br />

Exchange the detector and drive unit for<br />

those of another axis and check the<br />

repeatability. (Pinpoint the cause)<br />

Improve the ambient<br />

environment.<br />

Connect correctly.<br />

Replace the detector<br />

cable.<br />

Replace the parts on<br />

the side that caused<br />

the alarm.<br />

Connect correctly.<br />

Replace the detector<br />

cable.<br />

Replace the parts on<br />

the side that caused<br />

the alarm.<br />

The serial detector bit (SP034/bit8 =1) is Set correctly.<br />

valid even through the serial detector is not<br />

connected.<br />

Refer to No. "1A".<br />

8 - 4


8. Troubleshooting<br />

No. Name Details<br />

1C Machine side<br />

detector,<br />

EEPROM/LED<br />

abnormality<br />

1D Machine side<br />

detector, data<br />

error<br />

1E Machine side<br />

detector,<br />

memory error<br />

In the linear scale<br />

connected with the<br />

machine side, an error in<br />

an EEPROM was detected.<br />

Otherwise, in the<br />

high-speed serial detector<br />

connected with the<br />

machine side, a<br />

deteriorated LED was<br />

detected.<br />

In the high-speed serial<br />

detector connected with<br />

the machine side, an error<br />

(a position error within one<br />

rotation) was detected.<br />

In the linear scale<br />

connected with the<br />

machine side, an error on<br />

ROM or RAM was<br />

detected.<br />

Otherwise, in the<br />

high-speed serial detector<br />

connected with the<br />

machine side, the built-in<br />

thermal protector<br />

functioned.<br />

1F Machine side In the high-speed serial<br />

detector, detector connected with<br />

communication the machine side,<br />

error<br />

communication with the<br />

detector stopped.<br />

20 Motor side<br />

detector, No<br />

signal 1<br />

21 Machine side<br />

detector, No<br />

signal 2<br />

An error was detected in A,<br />

B, Z-phase of the motor<br />

side detector, or U, V,<br />

W-phase.<br />

An error was detected in<br />

the A, B, Z-phase in a servo<br />

closed-loop system.<br />

Otherwise, an error was<br />

detected in the A, B,<br />

Z-phase in the spindle<br />

encoder.<br />

22 LSI error LSI operation error<br />

[Also detected while the<br />

control axis is removed.]<br />

Cause of<br />

occurrence<br />

The detector input<br />

connector is<br />

disconnected.<br />

The detector cable<br />

is broken.<br />

Detector fault<br />

Drive unit input<br />

circuit fault<br />

Z phase is not input<br />

(Only spindle)<br />

The spindle<br />

parameter setting<br />

is incorrect.<br />

The detector input<br />

connector is<br />

disconnected.<br />

The detector cable<br />

is broken.<br />

Detector fault<br />

Drive unit input<br />

circuit fault<br />

The spindle<br />

parameter setting<br />

is incorrect.<br />

Unit fault<br />

Investigation method<br />

Refer to No. "1A".<br />

Check the connector (CN2) connection.<br />

Check the cable connection.<br />

Replace with the cable for another axis and<br />

check the repeatability.<br />

Exchange the detector and drive unit for<br />

those of another axis and check the<br />

repeatability. (Pinpoint the cause)<br />

Check whether the Z phase is output within<br />

3 rotations after orientation is started<br />

Check that SP037 bit-8 is set to "1".<br />

Check the connector connected with the<br />

detector.<br />

Check the cable connection.<br />

Replace with the cable for another axis and<br />

check the repeatability.<br />

Exchange the detector and drive unit for<br />

those of another axis and check the<br />

repeatability. (Pinpoint the cause)<br />

Check that SP037 bit-8 is set to "0".<br />

Check the repeatability.<br />

Check the grounding state and ambient<br />

temperature.<br />

Remedy<br />

Connect correctly.<br />

Replace the detector<br />

cable.<br />

Replace the parts on<br />

the side that caused<br />

the alarm.<br />

Replace the PLG.<br />

Set correctly.<br />

Connect correctly.<br />

Replace the detector<br />

cable.<br />

Replace the parts on<br />

the side that caused<br />

the alarm.<br />

Set correctly.<br />

Replace the unit.<br />

Improve the ambient<br />

environment.<br />

8 - 5


8. Troubleshooting<br />

No. Name Details<br />

23 Excessive<br />

speed<br />

deflection 1<br />

Occurs when the difference<br />

between the speed<br />

command and motor speed<br />

is large.<br />

Occurs during acceleration/<br />

deceleration.<br />

Occurs during cutting.<br />

Cause of<br />

occurrence<br />

The detector cable<br />

is broken.<br />

The spindle<br />

parameter setting<br />

is incorrect.<br />

Measure the<br />

forward run →<br />

reverse run time,<br />

and reset SP055.<br />

Check the load<br />

rate.<br />

24 Ground fault A motor cable ground fault Drive unit fault<br />

was detected.<br />

Motor fault<br />

(Detected after emergency<br />

stop have been released.)<br />

25 Absolute<br />

position lost<br />

26 Unusable axis<br />

error<br />

27 Machine side<br />

detector, CPU<br />

error 2<br />

28 Machine side<br />

detector,<br />

overspeed<br />

29 Machine side<br />

detector,<br />

absolute<br />

position data<br />

error<br />

2A Machine side<br />

detector,<br />

incremental<br />

position data<br />

error<br />

2B Motor side<br />

detector, CPU<br />

error 1<br />

2C Motor side<br />

detector,<br />

EEPROM/LED<br />

error<br />

The absolute position in the<br />

detector was lost.<br />

A power module error<br />

occurred in the axis set as<br />

the unusable axis "F".<br />

Battery voltage<br />

drop<br />

The communication<br />

cable is incorrectly<br />

connected or is<br />

disconnected.<br />

The battery line in<br />

the detector cable<br />

or communication<br />

cable is broken.<br />

The detector cable<br />

was disconnected<br />

when the power<br />

was turned OFF.<br />

2-axis unit<br />

dedicated alarm<br />

An error was detected in The detector is<br />

the CPU for the linear scale faulty.<br />

or serial detector.<br />

The linear scale speed<br />

became to 45m/s or more<br />

at the power ON.<br />

A frequency signal<br />

exceeding the tolerable<br />

speed was detected.<br />

In the absolute position<br />

linear scale, an error was<br />

detected in the circuit.<br />

In the incremental position<br />

linear scale, an error was<br />

detected in the circuit.<br />

Detector internal circuit<br />

error<br />

EEPROM error was<br />

detected in the motor side<br />

linear scale. Also, the LED<br />

in the detector has<br />

deteriorated.<br />

The detector is<br />

faulty.<br />

Linear scale fault<br />

Linear scale fault<br />

Detector fault<br />

Detector fault (life)<br />

Investigation method<br />

Replace with the cable for another axis and<br />

check the repeatability.<br />

Check SP034, 040, 055, 257 and<br />

following.<br />

If higher than 12 seconds, increase the<br />

value.<br />

If less than 12 seconds, check the load<br />

rate.<br />

If higher than 120%, reduce the load.<br />

Is the cable sheath damaged?<br />

Check the battery voltage with a test.<br />

(Occurs at 3 V or less)<br />

Check that the wiring between the unit and<br />

battery unit is correct.<br />

Check the conductivity with a tester.<br />

After alarm 18 has occurred, correctly<br />

connect the detector cable and turn the<br />

power ON again.<br />

Check the repeatability.<br />

Check the grounding state and ambient<br />

temperature.<br />

Check the repeatability.<br />

Check the grounding state and ambient<br />

temperature.<br />

Check the repeatability.<br />

Check the grounding state and ambient<br />

temperature.<br />

Check the repeatability.<br />

Check the grounding state and ambient<br />

temperature.<br />

Check the repeatability.<br />

Check the grounding state and ambient<br />

temperature.<br />

Check the repeatability.<br />

Check the ambient environment.<br />

Check the repeatability.<br />

Check the ambient environment.<br />

Remedy<br />

Replace the detector<br />

cable.<br />

Set correctly.<br />

Set correctly.<br />

Reduce the load.<br />

Reduce the load.<br />

Replace the unit.<br />

Replace the motor.<br />

Replace the battery<br />

Connect correctly.<br />

Replace or correctly<br />

wire the cable.<br />

Replace the unit.<br />

Improve the ambient<br />

environment.<br />

Replace the detector.<br />

Improve the ambient<br />

environment.<br />

Replace the detector.<br />

Improve the ambient<br />

environment.<br />

Replace the detector.<br />

Improve the ambient<br />

environment.<br />

Replace the detector.<br />

Improve the ambient<br />

environment.<br />

Replace the detector.<br />

Review the ambient<br />

environment.<br />

Replace the detector.<br />

Review the ambient<br />

environment.<br />

CAUTION<br />

Contact your nearest Service Center when an alarm not shown above occurs.<br />

8 - 6


8. Troubleshooting<br />

No. Name Details<br />

2D Motor side<br />

detector, data<br />

error<br />

2E Motor side<br />

detector,<br />

memory error<br />

Cause of<br />

occurrence<br />

Detector position data error Detector fault<br />

ROM/RAM error was<br />

detected in the motor side<br />

linear scale.<br />

2F Motor side Communication with the<br />

detector, detector was cut off or<br />

communication there was an error in the<br />

error<br />

received data.<br />

31 Overspeed The motor speed exceeded<br />

the tolerable value.<br />

32 Power module<br />

overcurrent<br />

The power module<br />

overcurrent protection<br />

function activated.<br />

The detector input<br />

connector is<br />

disconnected.<br />

The detector cable<br />

is broken.<br />

Detector fault<br />

Drive unit input<br />

circuit fault<br />

Cable noise<br />

Investigation method<br />

Check the repeatability.<br />

Check the ambient environment.<br />

Alarm 18 occurs when the power is turned<br />

ON.<br />

Check the connector (CN2) connection.<br />

Alarm 18 occurs when the power is turned<br />

ON.<br />

Exchange the detector and drive unit for<br />

those of another axis and check the<br />

repeatability. (Pinpoint the cause)<br />

Is the cable shielded?<br />

Is the cable wired in the same conduit as<br />

the motor power line?<br />

Incorrect grounding Are the motor grounding and drive unit<br />

grounding grounded separately?<br />

The axis<br />

specification<br />

parameter (rapid)<br />

setting is incorrect.<br />

The parameter<br />

setting is incorrect.<br />

The speed is<br />

overshooting.<br />

Detector fault<br />

The motor power<br />

line (U, V, W<br />

phase) has a short<br />

circuit or ground<br />

fault.<br />

Drive unit fault<br />

Motor fault<br />

The parameter<br />

setting is incorrect.<br />

The power voltage<br />

is low.<br />

Occurs during<br />

cutting.<br />

Occurs before<br />

movement.<br />

Check the machine specifications.<br />

Check SV001 (PC1), SV002 (PC2), SV018<br />

(PIT), SV025 (MTYP)<br />

SP017 (TSP) or SP193 (SPECT)<br />

Maximum speed: (SP017) × 1.15<br />

Check Slimit.<br />

Is the speed loop gain too low?<br />

Is the acceleration/deceleration time<br />

constant too short causing the current to<br />

be limited?<br />

Is the current limit value too low?<br />

Does the alarm occur when the power is<br />

turned ON?<br />

Change with another axis and check the<br />

repeatability.<br />

Does the alarm occur simultaneously with<br />

ready ON?<br />

Check the motor cable and connection.<br />

Check the conductivity between the<br />

cables.<br />

Check the setting of SP034, SP040,<br />

SP055 and SP257 and following.<br />

Is the power voltage 323V or less during<br />

the acceleration/deceleration?<br />

If higher than 120%, reduce the load.<br />

Occurs before READY ON.<br />

Remedy<br />

Replace the<br />

detector.<br />

Review the ambient<br />

environment.<br />

Connect correctly.<br />

Replace the detector<br />

cable.<br />

Replace the parts on<br />

the side that caused<br />

the alarm.<br />

Review the cable<br />

wiring and shield.<br />

Ground the motor<br />

and drive unit at one<br />

point.<br />

Set correctly.<br />

Set correctly.<br />

Adjust the gain.<br />

Increase the<br />

acceleration/decele-r<br />

ation time constant.<br />

Adjust the limit value.<br />

Replace the<br />

detector.<br />

• Replace the cable<br />

• Correct the<br />

connection<br />

Replace the unit.<br />

Replace the motor.<br />

Set correctly.<br />

Review the power<br />

supply capacity.<br />

Reduce the load.<br />

Replace the unit.<br />

CAUTION<br />

Contact your nearest Service Center when an alarm not shown above occurs.<br />

8 - 7


8. Troubleshooting<br />

No. Name Details<br />

33 Overvoltage The PN bus voltage<br />

exceeded 630V.<br />

[Also detected while<br />

the control axis is<br />

removed.]<br />

34 Communication<br />

or CRC error<br />

between NC and<br />

drive unit<br />

35 NC command<br />

error<br />

There was an error in<br />

the communication<br />

data from the CNC.<br />

[Also detected while<br />

the control axis is<br />

removed.]<br />

This alarm occurs if<br />

the CRC error is<br />

detected 20 or more<br />

times within 910ms<br />

while the error<br />

detection is valid.<br />

The movement<br />

command data sent<br />

from the CNC was<br />

excessive.<br />

36 Communication The communication<br />

or transmission from the CNC was cut<br />

error between NC off.<br />

and drive unit [Also detected while<br />

the control axis is<br />

removed.]<br />

37 Initial parameter<br />

error<br />

The parameter setting<br />

is incorrect.<br />

Check the error<br />

parameter No. If there<br />

are several error<br />

parameters, the most<br />

recent No. is output.<br />

[Also detected when<br />

the control axis is<br />

installed.]<br />

Cause of<br />

occurrence<br />

The power voltage is<br />

high. (550V or more)<br />

Broken wire to the<br />

terminal block.<br />

The power voltage<br />

waveform distortion<br />

is great.<br />

The communication<br />

cable is broken.<br />

The communication<br />

cable connection is<br />

incorrect.<br />

The terminal<br />

connector fault<br />

Battery unit fault<br />

The grounding is<br />

incomplete.<br />

Investigation method<br />

Occurs at power ON.<br />

Check the power voltage with a tester.<br />

The TE2 (L+/L–) wiring is faulty or<br />

disconnected.<br />

Using a synchroscope, check for<br />

abnormalities in the power voltage.<br />

Check the conductivity with a tester.<br />

Are the communication pair cables<br />

connected in reverse?<br />

Is the terminal connector dislocated?<br />

Replace the terminal connector.<br />

Is the battery unit dislocated?<br />

Replace the battery unit.<br />

Check the grounding state.<br />

The communication Check the connectors (CN1A, CN1B)<br />

cable is disconnected (Including other axes)<br />

Incorrect grounding<br />

Drive unit fault<br />

CNC unit fault<br />

NC program is<br />

incorrect.<br />

The parameter is not<br />

within the setting<br />

range.<br />

The HEX setting<br />

parameter setting is<br />

incorrect.<br />

The electronic gears’<br />

constant is<br />

overflowing.<br />

ABS was set for an<br />

INC detector<br />

connected axis.<br />

The drive unit and<br />

motor capacities do<br />

not match.<br />

The SHG control<br />

option setting is not<br />

provided.<br />

The adaptive filter<br />

option setting is not<br />

provided.<br />

Are the motor grounding and drive unit<br />

grounding grounded separately?<br />

Change the connection with that for<br />

another drive unit and find the cause.<br />

Check the program and CNC specifications.<br />

Also refer to No. "34".<br />

Also refer to No. "34".<br />

Check the setting range of the parameter<br />

that the error No. have been displayed.<br />

Check SV025, SV027 and SV036.<br />

Check parameters SV001, SV002 and<br />

SV018.<br />

Check parameters SV017.<br />

Check the corresponding drive unit model<br />

for each servomotor in “10. Specifications”.<br />

Check parameters SV057 and SV058.<br />

Check parameter SV027 bit F.<br />

Remedy<br />

Review the power<br />

supply.<br />

Rewire.<br />

Review the power,<br />

and suppress the<br />

waveform distortion.<br />

Replace the cable.<br />

Check the<br />

connection.<br />

Replace the<br />

connector.<br />

Check the<br />

connection.<br />

Replace the battery.<br />

Correctly ground.<br />

Connect correctly.<br />

Ground the motor<br />

and drive unit at one<br />

point.<br />

Replace the unit.<br />

Replace the CNC<br />

unit.<br />

Check CNC unit.<br />

Set correctly.<br />

Set correctly.<br />

If the settings are<br />

OK, consult with<br />

<strong>Mitsubishi</strong>.<br />

Set correctly or<br />

replace the detector.<br />

Replace with the<br />

correct combination.<br />

Set correctly.<br />

Set correctly.<br />

8 - 8


8. Troubleshooting<br />

No. Name Details<br />

38 Communication<br />

or protocol error 1<br />

between NC and<br />

drive unit<br />

39 Communication<br />

or protocol error 2<br />

between NC and<br />

drive unit<br />

3A Overcurrent<br />

There was an error in<br />

the communication data<br />

from the CNC.<br />

[Also detected while the<br />

control axis is removed.]<br />

There was an error in<br />

the communication data<br />

from the CNC.<br />

[Also detected while the<br />

control axis is removed.]<br />

The servomotor drive<br />

current is excessive.<br />

The spindle unit's output<br />

current was excessive<br />

(during motor rotation<br />

command).<br />

An excessive current<br />

flowed during the initial<br />

magnetic pole<br />

estimation for the IPM<br />

spindle motor. (When<br />

emergency stop was<br />

released after power<br />

ON.)<br />

Cause of<br />

occurrence<br />

The communication<br />

cable is broken.<br />

The communication<br />

cable connection is<br />

incorrect.<br />

The grounding is<br />

incomplete.<br />

Drive unit fault<br />

CNC unit fault<br />

The communication<br />

cable is broken.<br />

The communication<br />

cable connection is<br />

incorrect.<br />

The grounding is<br />

incomplete.<br />

Drive unit fault.<br />

CNC unit fault<br />

The speed loop<br />

gain (VGN1) is<br />

excessive.<br />

The current loop<br />

gain setting is<br />

incorrect.<br />

The inductive<br />

voltage<br />

compensation gain<br />

is high.<br />

The motor power<br />

line connection is<br />

incorrect.<br />

The detector cable<br />

connection is<br />

incorrect.<br />

The grounding is<br />

incomplete.<br />

Drive unit fault<br />

Detector fault<br />

The spindle unit's<br />

capacity is<br />

insufficient.<br />

An excessive motor<br />

load continued<br />

The motor power<br />

line connection is<br />

incorrect.<br />

The spindle unit's<br />

capacity is<br />

insufficient.<br />

The motor power<br />

line connection is<br />

incorrect.<br />

The parameter<br />

setting is incorrect.<br />

Investigation method<br />

Check the conductivity with a tester.<br />

Are the communication pair cables<br />

connected in reverse?<br />

Check the grounding state.<br />

Change the connection with that for<br />

another drive unit and find the cause.<br />

Check the conductivity with a tester.<br />

Are the communication pair cables<br />

connected in reverse?<br />

Check the grounding state.<br />

Change the connection with that for<br />

another drive unit and find the cause.<br />

Is VGN1 higher than the standard value in<br />

respect to the load inertia?<br />

(The standard VGN1 differs according to<br />

the motor. Check “Chapter 4” again.)<br />

Is vibration occurring?<br />

Check the current loop gain.<br />

Is the current FB exceeding the current<br />

command during<br />

acceleration/deceleration?<br />

Remedy<br />

Replace the cable.<br />

Correctly ground.<br />

Replace the unit.<br />

Replace the CNC<br />

unit.<br />

Replace the cable<br />

Correctly ground.<br />

Replace the unit.<br />

Replace the CNC<br />

unit.<br />

Lower VGN1.<br />

Set the standard<br />

value.<br />

Lower EC.<br />

Is the U, V, W phase connection incorrect? Connect correctly.<br />

The line is connected to the motor of<br />

another axis.<br />

The detector cable is connected to another<br />

axis.<br />

Measure the resistance value between<br />

drive unit FG and the ground, or the<br />

potential difference during operation.<br />

Check the repeatability.<br />

Check parameter SP039 and the unit<br />

capacity.<br />

View the load meter to see whether the<br />

motor's maximum output is exceeded.<br />

Connect correctly.<br />

Securely ground.<br />

Replace the unit.<br />

Replace the<br />

detector.<br />

Set correctly.<br />

Reduce the motor<br />

load.<br />

Is the U, V, W phase connection incorrect? Connect correctly.<br />

The low-speed and high-speed coils are<br />

interchanged.<br />

Check parameter SP039 and the unit<br />

capacity.<br />

Set correctly.<br />

Is the U, V, W phase connection incorrect? Connect correctly.<br />

The low-speed and high-speed coils are<br />

interchanged.<br />

Check parameter SP268.<br />

Consult with<br />

<strong>Mitsubishi</strong> if the<br />

setting is correct.<br />

8 - 9


8. Troubleshooting<br />

No. Name Details Cause of occurrence Investigation method Remedy<br />

3B Power module<br />

overheat<br />

3C Regenerative<br />

circuit error<br />

3D Spindle speed<br />

lock<br />

3E Spindle speed<br />

overrun<br />

3F Speed excessive<br />

deflection 2<br />

40 Detector<br />

changeover unit,<br />

changeover error<br />

41 Detector<br />

changeover unit,<br />

communication<br />

error<br />

The power module's<br />

temperature<br />

protection function<br />

activated.<br />

An error was detected<br />

in the regenerative<br />

transistor or resistor.<br />

Check the time when<br />

the unit power is<br />

turned ON again.<br />

Check the innerpanel<br />

temperature.<br />

The cooling fan is<br />

stopped.<br />

Check the operation<br />

state.<br />

Regenerative resistor<br />

error<br />

The regenerative<br />

transistor is damaged<br />

by a short circuit.<br />

The power supply<br />

voltage is high.<br />

(260V or more)<br />

Assuring more than 10 seconds for the If the fan is rotating,<br />

time from when the power is turned OFF continue to use.<br />

till when it is turned ON, turn the unit<br />

power ON again, and check the rotation<br />

speed of the fan.<br />

Check whether the inner-panel<br />

temperature exceeds 55°C.<br />

Check whether the cooling fan at the<br />

back of the unit is stopped.<br />

Lower the innerpanel<br />

temperature.<br />

Replace the unit or<br />

fan.<br />

Change the program.<br />

Check whether continuous operation<br />

exceeding the rating is being carried out. Review the pattern.<br />

Also refer to No. "32".<br />

Check the resistance value of the<br />

regenerative resistor.<br />

(Refer to “Chapter 6” for the resistance<br />

values.)<br />

Is the regenerative resistor burned?<br />

Check the power supply voltage that<br />

occurs at ready OFF with a tester.<br />

The motor maximum The parameter setting Check the parameters.<br />

torque command is incorrect.<br />

continued for longer<br />

than the time set with<br />

sp239 while rotating at<br />

45 or higher.<br />

The motor rotated The parameter setting Check the parameters.<br />

more than 10° when a is incorrect.<br />

stop command was<br />

issued while<br />

continuously rotating,<br />

exceeding 112.5% of<br />

the designated value.<br />

A state exceeding the The parameter setting Check the parameters.<br />

deflection detection is incorrect.<br />

range (sp238)<br />

continued for longer<br />

than the detection time<br />

(sp239).<br />

The changeover<br />

signal order is<br />

incorrect.<br />

Communication with<br />

the TK unit is not<br />

correct.<br />

42 Feedback error 1 A feedback pulse skip<br />

or Z-phase error was<br />

detected in the<br />

detector.<br />

The detector's number<br />

of pulses and the<br />

parameter setting<br />

value did not match<br />

when positioning the<br />

IPM spindle motor's<br />

magnetic poles.<br />

Check TK unit wiring. Is the connector or wire loose?<br />

The communication<br />

cable is broken.<br />

Detector fault<br />

Check the continuity with a tester.<br />

Check the repeatability.<br />

Check the ambient environment.<br />

Replace the<br />

regenerative resistor.<br />

Replace the amplifier.<br />

Review the power<br />

supply.<br />

Set correctly.<br />

Set correctly.<br />

Set correctly.<br />

Connect correctly.<br />

Replace the cable.<br />

Replace the detector.<br />

The cable is broken. Check for broken wires, and check A, B, Replace the cable.<br />

Z phase waveform.<br />

The detector is<br />

incorrect.<br />

The parameter setting<br />

is incorrect.<br />

43 Feedback error 2 Excessive difference Detector fault<br />

was detected in the<br />

feedback amount<br />

between the motor<br />

side detector and the<br />

machine side detector.<br />

Otherwise a feedback<br />

IC error was detected.<br />

Check the detector's number of pulses. Replace the detector.<br />

Check parameter SP263/327.<br />

Check the repeatability.<br />

Check the ambient environment.<br />

Set correctly.<br />

Replace the detector.<br />

Review the ambient<br />

environment.<br />

8 - 10


8. Troubleshooting<br />

No. Name Details Cause of occurrence Investigation method Remedy<br />

44 C-axis<br />

When using a coil Check the wiring.<br />

changeover alarm changeover motor, the<br />

C-axis was controlled<br />

with the H coil.<br />

46 Motor overheat Overheating of the The ambient<br />

motor was detected. temperature is high.<br />

The detector or The motor load is<br />

motor's built-in thermal large.<br />

protector activated.<br />

(Activated at 100°C)<br />

48 Scale CPU error The CPU in the<br />

absolute position<br />

linear scale is not<br />

operating correctly.<br />

49 Scale overspeed A speed exceeding<br />

45m/s was detected<br />

when the power was<br />

turned ON.<br />

4A Absolute position<br />

detection circuit<br />

error<br />

An error was detected<br />

in the scale or scale's<br />

circuit.<br />

4B Incremental An error was detected<br />

position detection in the scale or scale's<br />

circuit error circuit.<br />

4C Current error<br />

during magnetic<br />

pole detection<br />

A current was not<br />

detected during initial<br />

magnetic pole<br />

estimation of the IPM<br />

spindle motor.<br />

(When emergency<br />

stop was released<br />

after power ON.)<br />

Detector fault<br />

Is the connector or connection<br />

disconnected?<br />

Check the ambient temperature.<br />

Has the power of the drive unit turned<br />

OFF and performed the forced reset to<br />

release the overload alarm (50)?<br />

Is the load too large?<br />

Check the repeatability.<br />

Check the ambient environment.<br />

Correctly connect.<br />

Improve the ambient<br />

environment.<br />

Review the operation<br />

pattern.<br />

Replace the detector.<br />

The cable is broken. Check the connection Replace the cable.<br />

Detector fault<br />

Detector fault<br />

Detector fault<br />

Check the repeatability.<br />

Check the ambient environment.<br />

Check the repeatability.<br />

Check the ambient environment.<br />

Check the repeatability.<br />

Check the ambient environment.<br />

The spindle unit's Check parameter SP039 and the unit<br />

capacity is insufficient. capacity.<br />

The motor power line<br />

connection is<br />

incorrect.<br />

The parameter setting<br />

is incorrect.<br />

Is the U, V, W phase connection<br />

incorrect?<br />

The low-speed and high-speed coils are<br />

interchanged.<br />

The motor power line is cut off<br />

Check parameter SP268.<br />

50 Overload 1 An excessive load was The motor capacity is Review the motor capacity selection.<br />

applied for longer than insufficient.<br />

the set time.<br />

The brake cannot be<br />

released.<br />

An excessive force is<br />

being applied from the<br />

machine.<br />

The parameter setting<br />

is incorrect.<br />

Check the brake operation.<br />

• Check the brake relay.<br />

• Check the connector (CN3)<br />

connection.<br />

Check the load current on the NC servo<br />

monitor and find the machine load.<br />

Is the ball screw bent?<br />

Has the load exceeded the rating?<br />

Is there interference?<br />

Are SV021 and SV022 set to the<br />

standard values?<br />

Check the setting of SP034, SP040,<br />

SP055, SP063, SP064, SP257 and<br />

following.<br />

The spindle is locked. Check whether the load meter is<br />

exceeding the motor's maximum output<br />

in the locked state.<br />

Replace the detector.<br />

Replace the detector.<br />

Replace the detector.<br />

Set correctly.<br />

Connect correctly.<br />

Consult with<br />

<strong>Mitsubishi</strong> if the<br />

setting is correct.<br />

Change the motor or<br />

drive unit capacity.<br />

Repair the faulty<br />

section.<br />

Replace the faulty<br />

section in the<br />

machine.<br />

Check the structure.<br />

Set the standard<br />

values.<br />

Unlock the spindle.<br />

CAUTION<br />

Contact your nearest Service Center when an alarm not shown above occurs.<br />

8 - 11


8. Troubleshooting<br />

Cause of<br />

No. Name Details<br />

occurrence<br />

51 Overload 2 An excessive load The machine was<br />

was applied for longer collided with.<br />

than the set time.<br />

52 Excessive error 1 The actual motor<br />

position and model<br />

position difference<br />

was excessive.<br />

The position tracking<br />

error exceeds the<br />

specified value.<br />

53 Excessive error 2 The actual motor<br />

position and model<br />

position difference<br />

was excessive.<br />

The motor cable<br />

connection is<br />

incorrect.<br />

Detector fault<br />

The detector<br />

connection is<br />

incorrect.<br />

The speed loop gain<br />

(VGN1) is small.<br />

The motor load is too<br />

large.<br />

The motor is<br />

demagnetized.<br />

The excessive error<br />

detection width is too<br />

small.<br />

Occurs during<br />

orientation.<br />

Occurs during spindle<br />

synchronization.<br />

Occurs during<br />

synchronous tapping.<br />

The input voltage is<br />

low.<br />

The motor cable<br />

connection is<br />

incorrect.<br />

Detector fault<br />

The detector<br />

connection is<br />

incorrect.<br />

The excessive error<br />

detection width is too<br />

small.<br />

54 Excessive error 3 When an excessive Excessive error 1<br />

error 1 is detected, no<br />

motor current flows.<br />

55 External<br />

emergency stop<br />

error<br />

There is no contactor<br />

shutoff command<br />

even after 30sec.<br />

Have elapsed from<br />

the input of the<br />

external emergency<br />

stop.<br />

[Also detected while<br />

the control axis is<br />

removed.]<br />

Investigation method<br />

Visually check whether there was a<br />

collision with the machine.<br />

Is there interference?<br />

Remedy<br />

Check the cause of<br />

the collision.<br />

Check the structure.<br />

Check the motor power line (U, V, W). Connect correctly.<br />

• Is the U, V, W phase order correct?<br />

• The power line is not connected.<br />

• Is the cable connected to the motor for<br />

another axis?<br />

Change the detector for that of another<br />

axis and check the repeatability.<br />

Check the connection.<br />

Is the motor speed fluctuating?<br />

Is the acceleration/deceleration time<br />

constant too short?<br />

The current limit value is too low and a<br />

sufficient torque is not output.<br />

The motor brake cannot be released?<br />

Remove the motor, and check that it<br />

rotates smoothly. (CNC motor)<br />

Replace the detector.<br />

Connect correctly.<br />

Adjust the gain.<br />

Adjust the<br />

parameters.<br />

Repair the brake<br />

circuit.<br />

Replace the motor.<br />

Check the SV023 (SV053) setting value. Adjust the<br />

parameters.<br />

Check SP097 (SPECO), and double the<br />

SP001 and SP00 values, or half the<br />

SP006 value.<br />

Check SP177 (SPECS) bit 5.<br />

Check SP010 (PGS).<br />

Check SP193 (SPECT) bit 5.<br />

Check SP009 (PGT).<br />

Is the input voltage 323V or less, or near<br />

323V?<br />

Is the input voltage unstable?<br />

Set correctly.<br />

Set correctly.<br />

Set correctly.<br />

Check the power<br />

supply.<br />

Increase the acceleration/deceleration<br />

time constant.<br />

Check the motor power line (U, V, W). Connect correctly.<br />

• Is the U, V, W phase order correct?<br />

• Is the cable connected to the motor for<br />

another axis?<br />

Change the detector for that of another<br />

axis and check the repeatability.<br />

Check the connection.<br />

Check the SV026 setting value.<br />

The CNC has stopped Check the NC parameters.<br />

the follow up function.<br />

Reinvestigate the causes of excessive<br />

error 1.<br />

Main emergency stop Check the emergency stop input and<br />

(sequence input) error sequence program.<br />

The parameter setting<br />

is incorrect.<br />

Check the setting of the SV036 external<br />

emergency stop selection.<br />

Replace the detector.<br />

Connect correctly.<br />

Adjust the parameter.<br />

Set correctly.<br />

Improve the<br />

emergency stop<br />

sequence.<br />

Set correctly.<br />

8 - 12


8. Troubleshooting<br />

No. Name Details<br />

58 Collision<br />

detection 1<br />

G00<br />

59 Collision<br />

detection 1<br />

G01<br />

5A Collision<br />

detection 2<br />

5C Orientation<br />

feedback error<br />

5D Speed monitor/<br />

input mismatch<br />

5E Speed monitor/<br />

feedback error<br />

61 Power module<br />

overcurrent<br />

During rapid traverse<br />

(G0), the disturbance<br />

torque exceeded the<br />

collision detection<br />

level.<br />

Cause of<br />

occurrence<br />

Investigation method<br />

The machine collided. Check the machine and workpiece<br />

state.<br />

The machine friction<br />

increased.<br />

The detection level is<br />

too low.<br />

The machine was stopped for a long<br />

time.<br />

This can occur easily in the morning<br />

during the winter.<br />

Set the detection level to approx. 1.5<br />

times the maximum disturbance torque,<br />

and provide an allowance.<br />

During cutting The machine collided. Check the machine and workpiece<br />

traverse (G1), the<br />

state.<br />

disturbance torque The detection level is Check the maximum cutting load.<br />

exceeded the collision too low.<br />

detection level.<br />

The command torque<br />

reached the motor’s<br />

maximum torque.<br />

The machine collided. Check the machine and workpiece<br />

state.<br />

The machine friction<br />

increased.<br />

The acceleration/<br />

deceleration time<br />

constant is too small.<br />

The machine was stopped for a long<br />

time.<br />

This can occur easily in the morning<br />

during the winter.<br />

Check the current during acceleration.<br />

Remedy<br />

Check the program.<br />

Check the overtravel<br />

setting.<br />

Check the<br />

repeatability.<br />

Readjust the<br />

detection level.<br />

Same as ALM58.<br />

Set to above the<br />

maximum cutting<br />

load.<br />

Same as ALM58.<br />

Check the<br />

repeatability.<br />

Increase the<br />

acceleration/deceleration<br />

time constant.<br />

The time constant cannot be increased. Set to detection<br />

ignoral.<br />

The pulse miss value Checking of the<br />

during orientation stop parameters failed.<br />

Check the SP114 (OPER) setting. Set correctly.<br />

exceeded the<br />

parameter setting<br />

The cable is broken. Check the encoder cable and shield. Change the wiring.<br />

value.<br />

The DI input for speed<br />

monitor differs from<br />

the state from the NC.<br />

The specified speed<br />

was exceeded while<br />

monitoring the speed.<br />

The power supply unit<br />

IPM detected an<br />

overcurrent.<br />

62 Frequency error The input power The input power is<br />

frequency is not within faulty.<br />

the specifications.<br />

67 Phase failure A fault occurred in the The input power is<br />

3-phase input voltage. faulty.<br />

The cable is broken. Check the DI input wiring. Correctly wire.<br />

The unit is faulty. Check the repeatability. Replace the unit.<br />

Check the investigation items for No. "2F".<br />

The unit is faulty. Check the repeatability. Replace the unit.<br />

Check the frequency input to the power<br />

supply unit.<br />

Check the voltage input to the power<br />

supply unit.<br />

Improve the power<br />

related matters.<br />

Improve the power<br />

related matters.<br />

68 Watch dog The power supply unit The unit is faulty. Check the repeatability. Replace the unit.<br />

cannot operate The grounding is<br />

correctly.<br />

incomplete.<br />

Check the grounding state.<br />

Correctly ground.<br />

69 Ground fault There is a ground fault<br />

in the motor or unit<br />

6A External<br />

contactor melting<br />

The external<br />

contactor has melted.<br />

The motor is faulty.<br />

Oil entered the motor<br />

The unit is faulty.<br />

The contactor has<br />

melted.<br />

The parameter setting<br />

is incorrect.<br />

The unit is faulty.<br />

The insulation across the motor UVW<br />

terminals and ground is 100kΩ or less<br />

A large amount of oil has contacted the<br />

motor or cannon connector<br />

Replace the motor<br />

and cable.<br />

Clean the connector,<br />

and study measures<br />

to prevent oil<br />

adhesion<br />

The insulation across the unit UVW Replace the drive unit.<br />

terminals and ground is less than 100kΩ<br />

The insulation across the motor UVW<br />

terminals and ground is 100kΩ or more<br />

Check the contactor contact melting.<br />

Replace the power<br />

supply unit.<br />

Replace the<br />

contactor.<br />

Check SV036 (PTYP)<br />

Correct the parameter<br />

(Set only for the axis actually controlling setting.<br />

the contactor.)<br />

A short-circuit or infinite value was<br />

detected when measured across P(N)-<br />

L1, 2, 3 with a tester.<br />

Replace the unit.<br />

8 - 13


8. Troubleshooting<br />

No. Name Details<br />

6C Main circuit error Main circuit capacitor<br />

charging error<br />

6E Memory error<br />

6F Power supply<br />

error<br />

71 Instantaneous<br />

power failure/<br />

external<br />

emergency stop<br />

An error was detected<br />

in the power supply<br />

unit’s internal circuit.<br />

An error was found in<br />

the power supply<br />

unit’s A/D converter,<br />

or emergency stop<br />

from the NC cannot<br />

be detected.<br />

75 Overvoltage The voltage across<br />

L+/L– exceeded<br />

820VDC.<br />

76 External<br />

emergency stop<br />

setting error<br />

77 Power module<br />

overheat<br />

7F Power reboot<br />

request<br />

80 HR unit,<br />

connection error<br />

81 HR unit, HSS<br />

error<br />

83 HR unit, scale<br />

judgment error<br />

84 HR unit, CPU<br />

error<br />

Cause of<br />

occurrence<br />

Investigation method<br />

Remedy<br />

The unit is faulty. Check the repeatability. Replace the unit.<br />

The unit is faulty.<br />

The power failed The power supply<br />

instantly for 55ms or connection is poor.<br />

more.<br />

The power supply<br />

The external contactor state is poor.<br />

turned OFF.<br />

Check the repeatability.<br />

Check the working environment.<br />

Replace the unit.<br />

The unit is faulty. Check the repeatability. Replace the unit.<br />

Is the connector or connection<br />

disconnected?<br />

Has lightning struck (the weather<br />

changed)?<br />

The power related matters are poor in<br />

the working area.<br />

The drive unit is faulty. Check the repeatability.<br />

The grounding is<br />

incomplete.<br />

Check the grounding state.<br />

Correctly connect.<br />

Improve the power<br />

related matters.<br />

Replace the unit.<br />

Correctly ground.<br />

The power supply The parameter setting Check SW1 and SV036/SP041 (PTYP). Set correctly.<br />

unit’s setting rotary is incorrect.<br />

switch and parameters<br />

do not match.<br />

The power module's Check the time when<br />

temperature protection the unit power is<br />

function activated. turned ON again.<br />

Start software<br />

selection error<br />

E 2 ROM data error<br />

The connection to the<br />

MDS-B-HR unit is<br />

incorrect.<br />

An error occurred in<br />

the communication<br />

between the MDS-B-<br />

HR unit and scale.<br />

The MDS-B-HR unit<br />

could not judge the<br />

connected linear<br />

scale.<br />

The MDS-B-HR unit<br />

CPU is faulty.<br />

Check the inner-panel<br />

temperature.<br />

The cooling fan is<br />

stopped.<br />

Check the operation<br />

state.<br />

The power supply<br />

connection is poor.<br />

The power supply<br />

connection is poor.<br />

HR unit is faulty.<br />

The grounding is<br />

incomplete.<br />

The power supply<br />

connection is poor.<br />

Assuring more than 10 seconds for the If the fan is rotating,<br />

time from when the power is turned OFF continue to use.<br />

till when it is turned ON, turn the unit<br />

power ON again, and check the rotation<br />

speed of the fan.<br />

Check whether the inner-panel<br />

temperature exceeds 55°C.<br />

Check whether the cooling fan at the<br />

back of the unit is stopped.<br />

Lower the inner-panel<br />

temperature.<br />

Replace the unit or<br />

fan.<br />

Check whether continuous operation Change the program.<br />

exceeding the rating is being carried out.<br />

Refer to the investigation methods for alarm No. "75"<br />

Is the connector or connection<br />

disconnected?<br />

Is the connector or connection<br />

disconnected?<br />

The error is not eliminated even when<br />

the wiring is changed with that for<br />

another unit.<br />

Check the grounding state.<br />

Is the connector or connection<br />

disconnected?<br />

Correctly connect.<br />

Correctly connect.<br />

Replace the HR unit.<br />

Correctly ground.<br />

Correctly connect.<br />

Detector fault Check the repeatability. Replace the detector.<br />

HR unit is faulty.<br />

Drive unit fault<br />

The grounding is<br />

incomplete.<br />

Check the repeatability.<br />

The error is not eliminated even when<br />

the wiring is changed with that for<br />

another unit.<br />

The error is eliminated when the wiring<br />

is changed with that for another unit.<br />

Check the grounding state.<br />

Replace the HR unit.<br />

Replace the HR unit.<br />

Replace the drive unit.<br />

Correctly ground.<br />

8 - 14


8. Troubleshooting<br />

No. Name Details<br />

85 HR unit, data<br />

error<br />

86 HR unit, magnetic<br />

pole error<br />

Cause of<br />

occurrence<br />

An error was found in HR unit is faulty.<br />

the MDS-B-HR unit's<br />

analog interpolation<br />

data.<br />

The grounding is<br />

incomplete.<br />

An error was found in<br />

the magnetic pole<br />

data for the MDS-B-<br />

HR unit.<br />

88 Watch dog The drive unit did not<br />

operate correctly.<br />

[Also detected while<br />

the control axis is<br />

removed.]<br />

89 HR unit,<br />

connection error<br />

(SUB)<br />

Investigation method<br />

Check the repeatability.<br />

The error is not eliminated even when<br />

the wiring is changed with that for<br />

another unit.<br />

Check the grounding state.<br />

Remedy<br />

Replace the HR unit.<br />

Replace the HR unit.<br />

Correctly ground.<br />

HR unit is faulty. Check the repeatability. Replace the HR unit.<br />

The grounding is<br />

incomplete.<br />

Check the grounding state.<br />

Correctly ground.<br />

Drive unit fault Check the repeatability. Replace the unit.<br />

The grounding is<br />

incomplete.<br />

The connection to the The power supply<br />

MDS-B-HR unit on the connection is poor.<br />

SUB side is incorrect.<br />

Check the grounding state.<br />

Is the connector or connection<br />

disconnected?<br />

Ground correctly.<br />

Correctly connect.<br />

8A HR unit, HSS<br />

connection error<br />

(SUB)<br />

8C HR unit, scale<br />

recognition error<br />

(SUB)<br />

8D HR unit, CPU<br />

error (SUB)<br />

8E HR unit, data<br />

error (SUB)<br />

A communication error The power supply<br />

was detected between connection is poor.<br />

the MDS-B-HR unit on<br />

the SUB side and<br />

scale.<br />

HR unit is faulty.<br />

The MDS-B-HR unit<br />

on the SUB side did<br />

not recognized the<br />

connected linear<br />

scale.<br />

The CPU of MDS-B-<br />

HR unit on the SUB<br />

side does not operate<br />

properly.<br />

The grounding is<br />

incomplete.<br />

The power supply<br />

connection is poor.<br />

Is the connector or connection<br />

disconnected?<br />

The error is not eliminated even when<br />

the wiring is changed with that for<br />

another unit.<br />

Check the grounding state.<br />

Is the connector or connection<br />

disconnected?<br />

Correctly connect.<br />

Replace the HR unit.<br />

Correctly ground.<br />

Correctly connect.<br />

Detector fault Check the repeatability. Replace the detector.<br />

HR unit is faulty.<br />

Drive unit is faulty.<br />

The grounding is<br />

incomplete.<br />

Check the repeatability.<br />

The error is not eliminated even when<br />

the wiring is changed with that for<br />

another unit.<br />

The error is eliminated when the wiring<br />

is changed with that for another unit.<br />

Check the grounding state.<br />

Replace the HR unit.<br />

Replace the HR unit.<br />

Replace the drive unit.<br />

Correctly ground.<br />

In MDS-B-HR unit on HR unit is faulty. Check the repeatability. Replace the HR unit.<br />

the SUB side, an error<br />

was detected in the<br />

analog data. The grounding is<br />

incomplete.<br />

Check the grounding state.<br />

Correctly ground.<br />

8F HR unit, magnetic<br />

polarity error<br />

(SUB)<br />

In MDS-B-HR unit on<br />

the SUB side, an error<br />

was detected in the<br />

magnetic polarity The grounding is<br />

data.<br />

incomplete.<br />

HR unit is faulty. Check the repeatability. Replace the HR unit.<br />

Check the grounding state.<br />

Correctly ground.<br />

8 - 15


8. Troubleshooting<br />

8-3-2 List of warnings<br />

When a warning occurs, a warning No. will appear on the NC monitor screen and with the LEDs on the<br />

front of the drive unit. Check the warning No., and remove the cause of the warning by following this list.<br />

No. Name Details Cause of occurrence Investigation method Remedy<br />

90 Detector, initial<br />

communication<br />

error<br />

91 Detector,<br />

communication<br />

error<br />

92 Detector,<br />

protocol error<br />

93 Initial absolute<br />

position<br />

fluctuation<br />

96 MP scale<br />

feedback error<br />

97 MP scale offset<br />

error<br />

9E Absolute position<br />

detector, multirotation<br />

counter<br />

error<br />

9F Battery voltage<br />

drop<br />

E1 Overload<br />

warning<br />

E3 Absolute position<br />

counter warning<br />

E4 Parameter error<br />

warning<br />

E6 Control axis<br />

removal warning<br />

E7 CNC emergency<br />

stop<br />

E9 Instantaneous<br />

power failure<br />

warning<br />

EA External<br />

emergency stop<br />

Initial communication with the Detector error<br />

absolute position linear scale<br />

cannot be performed.<br />

The absolute position data could<br />

not be transmitted correctly from<br />

the OHA type detector or lowspeed<br />

absolute position linear<br />

scale.<br />

There was an illegal format data<br />

in the serial data.<br />

The position data fluctuated The vertical axis or slant axis<br />

when creating the initial absolute dropped when the CNC<br />

position.<br />

power was turned ON.<br />

There is an excessive difference<br />

in the feedback amount between<br />

the motor side detector and the<br />

MP scale.<br />

An error was detected in the data<br />

to be read by CNC power ON.<br />

There was an error in the data of<br />

the multi-rotation counter in the<br />

detector.<br />

The battery voltage dropped.<br />

The axis moved due to an<br />

external force when the CNC<br />

power was turned ON.<br />

Refer to the MP scale specifications.<br />

Check the repeatability<br />

Check the installation and<br />

wiring lead-in methods.<br />

Check the state of the axis<br />

when the CNC power was<br />

turned ON.<br />

Replace the<br />

detector.<br />

Change the<br />

wiring path.<br />

Repair the fault<br />

section.<br />

Detector fault Check the repeatability. Replace the<br />

detector.<br />

Battery life The battery life is approx. 5<br />

years. (This will change<br />

according to the usage<br />

state.)<br />

To protect the absolute position<br />

data, do not turn OFF the control<br />

power (L11, L21) to the servo The battery connector (in the<br />

drive unit when this warning is drive unit) is disconnected.<br />

detected.<br />

The battery line in the<br />

detector cable is broken.<br />

The load level reached 80% or<br />

more.<br />

A deviation was detected in the<br />

absolute position data and<br />

relative position data<br />

A parameter exceeding the<br />

setting range was set.<br />

Control axis removal was<br />

commanded.<br />

(Status display)<br />

Emergency stop was input from<br />

the CNC. (Status display)<br />

The power was shut off for 25ms<br />

or more, 50ms or less<br />

External emergency stop (CN23<br />

connector input) was input.<br />

Refer to the alarm No. 50 "Overload 1".<br />

There is an error in the<br />

detector's multi-rotation data<br />

The parameter setting range<br />

is not within the range.<br />

Control axis removal was<br />

input from the CNC unit<br />

sequence.<br />

The CNC emergency stop<br />

has been input.<br />

An alarm has occurred with<br />

another axis.<br />

The terminal resistor or<br />

battery unit connector is<br />

disconnected.<br />

Open the panel at the top of<br />

the drive unit and check.<br />

Check the conductivity with<br />

a tester.<br />

Replace the<br />

battery.<br />

Connect<br />

correctly.<br />

Replace the<br />

cable.<br />

Check the movement of the Replace the<br />

multi-rotation data (Rn) from detector.<br />

the NC monitor screen.<br />

Check the parameter<br />

setting conditions.<br />

Set correctly.<br />

The control axis removal has been input<br />

correctly.<br />

The CNC emergency stop has been input<br />

correctly.<br />

Has an alarm occurred with<br />

another axis?<br />

Check the connection of<br />

the CNC communication<br />

line cable (CN1A, CN1B).<br />

Refer to the alarm No. 71 "Instantaneous power failure".<br />

Reset the alarm<br />

in the other axis<br />

to cancel this<br />

warning.<br />

Connect<br />

correctly.<br />

Only CN23 of the power supply unit was input without inputting the CNC unit<br />

emergency stop.<br />

8 - 16


8. Troubleshooting<br />

8-3-3 Protection functions and resetting methods<br />

The following alarm and warning indications are provided as functions to protect the unit.<br />

The methods for resetting the alarms and warnings include turning the power OFF and ON, and using<br />

resetting operations.<br />

No.<br />

Name<br />

Deceleration<br />

method<br />

Reset<br />

method<br />

11 Axis selection error Dynamic AR<br />

12 Memory error 1 AR<br />

13 Software processing error 1 Dynamic PR<br />

14 Software processing error 2 Dynamic PR<br />

15 Memory error 2 Initial error AR<br />

16 Magnetic pole position detection error PR<br />

17 A/D converter error Dynamic PR<br />

18<br />

Motor side detector, initial<br />

communication error<br />

Initial error<br />

PR<br />

1A<br />

Machine side detector, initial<br />

communication error<br />

PR<br />

1B Machine side detector, CPU error 1<br />

PR<br />

1C<br />

Machine side detector, EEPROM/LED<br />

abnormality<br />

PR<br />

1D Machine side detector, data error<br />

PR<br />

1E Machine side detector, memory error<br />

PR<br />

1F<br />

Machine side detector, communication<br />

error<br />

PR<br />

20 Motor side detector, No signal 1 PR<br />

21 Machine side detector, No signal 2 PR<br />

22 LSI error Dynamic AR<br />

23 Excessive speed deflection 1 PR<br />

24 Ground fault Dynamic PR<br />

25 Absolute position lost Initial error AR<br />

26 Unusable axis error PR<br />

27 Machine side detector, CPU error 2 PR<br />

28 Machine side detector, overspeed PR<br />

29<br />

Machine side detector, absolute<br />

position error<br />

PR<br />

2A<br />

Machine side detector, incremental<br />

position error<br />

PR<br />

2B Motor side detector, CPU error 1 Initial error AR<br />

2C<br />

Motor side detector, EEPROM/LED<br />

error<br />

Deceleration control PR<br />

2D Motor side detector, data error Dynamic PR<br />

2F<br />

Motor side detector, serial detector<br />

communication error<br />

Dynamic<br />

PR<br />

31 Overspeed Deceleration control PR<br />

32 Power module overcurrent Dynamic PR<br />

33 Overvoltage Dynamic PR<br />

34<br />

Communication or CRC error between<br />

NC and drive unit<br />

Deceleration control PR<br />

35 NC command error Deceleration control PR<br />

36<br />

Communication or transmission error<br />

between NC and drive unit<br />

Deceleration control PR<br />

37 Initial parameter error Initial error PR<br />

38<br />

Communication or protocol error 1<br />

between NC and drive unit<br />

Deceleration control PR<br />

39<br />

Communication or protocol error 2<br />

between NC and drive unit<br />

Deceleration control PR<br />

3A Overcurrent Dynamic PR<br />

3B Power module overheat<br />

PR<br />

3C Regeneration circuit error Dynamic AR<br />

3D Spindle speed Lock<br />

PR<br />

3E Spindle speed overrun<br />

PR<br />

3F Speed excessive deflection 2<br />

PR<br />

40<br />

Detector changeover unit, changeover<br />

error<br />

PR<br />

41<br />

Detector changeover unit,<br />

communication error<br />

PR<br />

42 Feedback error 1 PR<br />

Explanation<br />

8 - 17


8. Troubleshooting<br />

No.<br />

Name<br />

Deceleration<br />

method<br />

Reset<br />

method<br />

43 Feedback error 2 PR<br />

44 C-axis changeover alarm NR<br />

46<br />

Motor overheat<br />

Thermal error<br />

Deceleration control NR<br />

4C Initial magnetic pole detection<br />

NR<br />

4E NC command mode error<br />

NR<br />

Explanation<br />

NR and PR reset cannot be carried out when the motor is<br />

overheated.<br />

50 Overload 1 Deceleration control NR<br />

NR or PR reset is not possible when the load level is 50%<br />

or more. Do not reset (AR) forcibly by turning off the drive<br />

unit. If AR is carried out at 50% or more, 80% will be set at<br />

the next time the power is turned ON.<br />

51 Overload 2 Dynamic NR<br />

52 Excessive error 1 NR<br />

53 Excessive error 2 Dynamic NR<br />

54 Excessive error 3 NR<br />

55 External emergency stop error Dynamic NR Forcibly turn the contactor OFF.<br />

58 Collision detection 1 G00 Deceleration control NR<br />

59 Collision detection 1 G01 Deceleration control NR<br />

5A Collision detection 2 Deceleration control NR<br />

5C Orientation feedback error<br />

NR<br />

5D Speed monitor/input mismatch<br />

PR<br />

5E Speed monitor/feedback error<br />

PR<br />

After detecting a collision, the axis will decelerate and<br />

stop at 80% of the motor's maximum torque or the servo<br />

parameter current limit value (torque limit value),<br />

whichever is smaller.<br />

5F External contactor melting At ready ON NR Detected at the rising edge of ready ON<br />

61 Power module overcurrent PR<br />

62 Frequency error PR<br />

67 Phase failure PR<br />

68 Watch dog AR<br />

69 Ground fault PR<br />

6A External contactor melting<br />

PR<br />

6C Main circuit error<br />

PR<br />

6E Memory error<br />

AR<br />

6F Power supply error<br />

AR<br />

71<br />

Instantaneous power failure/external<br />

emergency stop<br />

NR<br />

75 Overvoltage NR<br />

Reset the alarm after the L+/L– voltage has dropped<br />

below the power voltage (after five or more minutes have<br />

elapsed).<br />

76 External emergency stop setting error AR<br />

77 Power module overheat AR<br />

7F Power reboot request<br />

AR<br />

88 Watch dog Dynamic AR<br />

90 Detector, initial communication error PR<br />

91 Detector, communication error ∗<br />

92 Detector, protocol error ∗<br />

93 Initial absolute position fluctuation PR<br />

96 MP scale feedback error ∗<br />

97 MP scale offset error<br />

The motor will not<br />

PR<br />

9E<br />

Absolute position detector, multirotation<br />

counter error<br />

stop.<br />

∗<br />

9F Battery voltage drop<br />

∗<br />

E0 Over-regeneration warning<br />

∗<br />

E1 Overload warning<br />

∗<br />

E3 Absolute position counter warning<br />

∗<br />

E4 Parameter error warning<br />

∗<br />

E7 CNC emergency stop Dynamic ∗<br />

E9 Instantaneous power failure warning<br />

NR<br />

When the instantaneous warning occur, use NR reset.<br />

The motor will not<br />

The state will also be reset automatically after 5 minutes.<br />

stop.<br />

EA External emergency stop<br />

∗<br />

• Deceleration method<br />

Deceleration control : The motor will be decelerated and controlled with the time constant set in the servo parameter (SV056).<br />

Dynamic<br />

: If dynamic brake stop is selected with the servo parameters (SV055, 056), the motor will stop with the dynamic brakes.<br />

• Reset method ∗ : The unit will be automatically reset when the state in which the warning occurred is canceled.<br />

NR : Reset with the CNC reset button. Resetting is also possible with the PR or AR resetting conditions.<br />

PR : Reset by turning the CNC power ON again. Resetting is also possible with the AR resetting conditions.<br />

Resetting while the control axis is removed is possible with the CNC unit reset button. (Note that alarm 32, 37 and warning 93<br />

are excluded.)<br />

AR : Reset by turning the power supply unit on servo/spindle drive unit power ON again.<br />

8 - 18


8. Troubleshooting<br />

8-3-4 Parameter numbers during initial parameter error<br />

If an initial parameter error (alarm 37) occurs, the alarm and the number of the parameter that may be<br />

set incorrectly will appear on the CNC Diagnosis screen. The method of displaying this information on<br />

the CNC differs according to the CNC Series and screen size, so refer to the Instruction Manual and<br />

Operation Manual for each Series.<br />

S02 Initial parameter error [ ] [ ] [ ] [ ] [ ]<br />

Axis name display<br />

Parameter number<br />

If a number larger than the parameter number is displayed for the servo drive unit, the alarm is occurring<br />

for several related parameters. Refer to the following table, and correctly set the parameters.<br />

No.<br />

Details<br />

69 The CNC setting maximum rapid traverse rate value is incorrect.<br />

The CNC system software may be illegal. Turn the power ON again.<br />

71 The CNC setting maximum cutting speed setting value is incorrect.<br />

The CNC system software may be illegal. Turn the power ON again.<br />

101 The following settings are overflowing.<br />

• Electronic gears<br />

• Position loop gain<br />

• Speed feedback<br />

102 The absolute position detection parameter is valid when OSE104 and<br />

OSE105 are connected.<br />

103 The servo option is not available.<br />

The closed loop or dual feedback control function is set.<br />

Related<br />

parameter<br />

NC setting<br />

rapid<br />

NC setting<br />

clamp<br />

SV001, SV002<br />

SV003, SV018<br />

SV019, SV020<br />

SV049<br />

SV017, SV025<br />

SV025, SV017<br />

104 The servo option is not available. The SHG control function is set. SV057, SV058<br />

105 The servo option is not available. The adaptive filter function is set. SV027<br />

106 The servo option is not available. The MP scale absolute position SV017<br />

function is set.<br />

107 The dual-axis control is executed. Or, the rotary motor setting is SV017<br />

applied. The high-speed processing mode function is dedicated for the<br />

linear motor single-axis control.<br />

108 The valid/invalid setting of the 4th or 5th notch filter is changed from<br />

the initial setting.<br />

SV087, SV088<br />

8 - 19


8. Troubleshooting<br />

8-3-5 Troubleshooting<br />

Follow this section to troubleshoot the main alarms that occur during start up or while the machine is<br />

operating. Also, refer to the explanations in section "8-3-1 List of alarms".<br />

[Alarm/warning check timing]<br />

f1: When servo drive unit power is turned ON<br />

f2: When CNC power supply is turned ON (emergency stop ON)<br />

f3: During normal operation (servo ON)<br />

f4: During axis removal (ready ON, servo OFF)<br />

(Note) Note that warning "93" could occur even when the axis is reinstalled after removal.<br />

Alarm No.<br />

12<br />

Memory error:<br />

Error in drive unit memory IC (SRAM, FROM)<br />

Investigation details Investigation results Remedies<br />

1 Check the repeatability.<br />

2 Check if there is any abnormality in the<br />

unit's ambient environment.<br />

(Ex. Ambient temperature, noise,<br />

grounding)<br />

Alarm No.<br />

13<br />

The error is always repeated.<br />

The state returns to normal once, but<br />

occurs sometimes thereafter.<br />

No abnormality is found in particular.<br />

An abnormality was found in the ambient<br />

environment.<br />

Replace the drive unit.<br />

Investigate item 2.<br />

Software process error:<br />

The driver's software processing time did not end within the specified time, or an illegal<br />

IT process was carried out.<br />

Alarm check timing<br />

f1 f2 f3 f4<br />

◦ – – –<br />

Replace the drive unit.<br />

Take remedies according to the causes of<br />

the abnormality.<br />

Ex. High temperature : Check the<br />

cooling fan.<br />

Incomplete grounding : Additionally<br />

ground.<br />

Investigation details Investigation results Remedies<br />

1 Check whether the servo software<br />

version was changed recently.<br />

2 Check the repeatability.<br />

3 Check if there is any abnormality in the<br />

unit's ambient environment.<br />

(Ex. Ambient temperature, noise,<br />

grounding)<br />

Alarm No.<br />

14<br />

Alarm check timing<br />

f1 f2 f3 f4<br />

– ◦ ◦ ◦<br />

The version was changed.<br />

Try replacing with the drive unit containing<br />

the original software version.<br />

The version was not changed. Investigate item 2.<br />

The error is always repeated.<br />

Replace the drive unit.<br />

The state returns to normal once, but Investigate item 3.<br />

occurs sometimes thereafter.<br />

No abnormality is found in particular.<br />

An abnormality was found in the ambient<br />

environment.<br />

Software processing error 2:<br />

The current loop process, of the driver software processing times, did not end within<br />

the specified time.<br />

Replace the drive unit.<br />

Take remedies according to the causes of<br />

the abnormality.<br />

Ex. High temperature : Check the<br />

cooling fan.<br />

Incomplete grounding : Additionally<br />

ground.<br />

Investigation details Investigation results Remedies<br />

1 Check whether the servo software<br />

version was changed recently.<br />

2 Check the repeatability.<br />

3 Check if there is any abnormality in the<br />

unit's ambient environment.<br />

(Ex. Ambient temperature, noise,<br />

grounding)<br />

Alarm check timing<br />

f1 f2 f3 f4<br />

– ◦ ◦ ◦<br />

The version was changed.<br />

Try replacing with the drive unit containing<br />

the original software version.<br />

The version was not changed. Investigate item 2.<br />

The error is always repeated.<br />

Replace the drive unit.<br />

The state returns to normal once, but Investigate item 3.<br />

occurs sometimes thereafter.<br />

No abnormality is found in particular.<br />

An abnormality was found in the ambient<br />

environment.<br />

Replace the drive unit.<br />

Take remedies according to the causes of<br />

the abnormality.<br />

Ex. High temperature : Check the<br />

cooling fan.<br />

Incomplete grounding : Additionally<br />

ground.<br />

8 - 20


8. Troubleshooting<br />

Alarm No.<br />

17<br />

A/D converter error:<br />

There is an error in the drive unit's A/D converter.<br />

Investigation details Investigation results Remedies<br />

1 Check the repeatability.<br />

2 Check if there is any abnormality in the<br />

unit's ambient environment.<br />

(Ex. Ambient temperature, noise,<br />

grounding)<br />

Alarm No.<br />

18<br />

The error is always repeated.<br />

The state returns to normal once, but<br />

occurs sometimes thereafter.<br />

No abnormality is found in particular.<br />

An abnormality was found in the ambient<br />

environment.<br />

Replace the drive unit.<br />

Investigate item 2.<br />

Initial communication error:<br />

Initial communication was not possible with the detector in the system using a highspeed<br />

serial detector for the motor side.<br />

Alarm check timing<br />

f1 f2 f3 f4<br />

– ◦ – –<br />

Replace the drive unit.<br />

Take remedies according to the causes of<br />

the abnormality.<br />

Ex. High temperature : Check the<br />

cooling fan.<br />

Incomplete grounding : Additionally<br />

ground.<br />

Investigation details Investigation results Remedies<br />

1 Check the servo parameter (SV025) The value is not set correctly.<br />

Correctly set VO205.<br />

setting value. The value is set correctly. Investigate item 2.<br />

2 Wiggle the connectors by hand to check<br />

whether the detector connectors (drive<br />

unit side and detector side) are<br />

disconnected.<br />

The connector is disconnected (or loose).<br />

Correctly install.<br />

The connector is not disconnected. Investigate item 3.<br />

3 Turn the power OFF, and check the There is a connection fault.<br />

Replace the detector cable.<br />

detector cable connection with a tester. The connection is normal. Investigate item 4.<br />

4 Connect to another normal axis driver,<br />

and check whether the fault is on the<br />

driver side or detector side.<br />

5 Check if there is any abnormality in the<br />

unit's ambient environment.<br />

(Ex. Ambient temperature, noise,<br />

grounding)<br />

Alarm No.<br />

1A<br />

The alarm is on the driver side.<br />

Replace the drive unit.<br />

The alarm is on the detector side. Investigate item 5.<br />

No abnormality is found in particular.<br />

An abnormality was found in the ambient<br />

environment.<br />

Serial detector initial communication error (SUB):<br />

Initial communication was not possible with the detector in the system using a<br />

high-speed serial detector for the machine side.<br />

Alarm check timing<br />

f1 f2 f3 f4<br />

– ◦ – –<br />

Replace the detector.<br />

Take remedies according to the causes of<br />

the abnormality.<br />

Ex. High temperature : Check the<br />

cooling fan.<br />

Incomplete grounding : Additionally<br />

ground.<br />

Investigation details Investigation results Remedies<br />

1 Check the alarm No. "18" items.<br />

Alarm No.<br />

1B<br />

CPU error (SUB):<br />

An error was detected in the data stored in the EEPROM of an absolute position linear<br />

scale connected to the machine side.<br />

Investigation details Investigation results Remedies<br />

1 Check whether the connector on the<br />

drive unit side or scale side is<br />

disconnected.<br />

The connector is disconnected (or loose).<br />

Correctly install.<br />

The connector is not disconnected. Investigate item 2.<br />

2 Turn the power OFF, and check the There is a connection fault.<br />

Replace the detector cable.<br />

detector cable connection with a tester. The connection is normal. Investigate item 3.<br />

3 Connect to another normal axis driver,<br />

and check whether the fault is on the<br />

drive unit side or scale side.<br />

4 Check if there is any abnormality in the<br />

unit's ambient environment.<br />

(Ex. Ambient temperature, noise,<br />

grounding)<br />

The alarm is on the driver side.<br />

The alarm is on the absolute position<br />

linear scale side.<br />

No abnormality is found in particular.<br />

An abnormality was found in the ambient<br />

environment.<br />

Replace the drive unit.<br />

Investigate item 4.<br />

Alarm check timing<br />

f1 f2 f3 f4<br />

– ◦ – –<br />

Alarm check timing<br />

f1 f2 f3 f4<br />

– ◦ ◦ ◦<br />

Replace the absolute position linear scale.<br />

Take remedies according to the causes of<br />

the abnormality.<br />

Ex. High temperature : Check the<br />

cooling fan.<br />

Incomplete grounding : Additionally<br />

ground.<br />

8 - 21


8. Troubleshooting<br />

Alarm No.<br />

1C<br />

EEPROM/LED error (SUB):<br />

An error was detected in the EEPROM of an absolute position linear position linear<br />

scale connected to the machine side.<br />

Investigation details Investigation results Remedies<br />

1 Check the alarm No. "1B" items.<br />

Alarm check timing<br />

f1 f2 f3 f4<br />

– ◦ ◦ ◦<br />

Alarm No.<br />

1D<br />

Data error (SUB):<br />

An error was detected within one rotation position of an absolute position linear<br />

position linear scale connected to the machine side.<br />

Investigation details Investigation results Remedies<br />

1 Check the alarm No. "1B" items.<br />

Alarm check timing<br />

f1 f2 f3 f4<br />

– ◦ ◦ ◦<br />

Alarm No.<br />

1E<br />

ROM, RAM/thermal error (SUB):<br />

A ROM/RAM error was detected in the absolute position linear scale connected to the<br />

machine side.<br />

Investigation details Investigation results Remedies<br />

1 Check the alarm No. "1B" items.<br />

Alarm check timing<br />

f1 f2 f3 f4<br />

– ◦ ◦ ◦<br />

Alarm No.<br />

1F<br />

Serial detector communication error (SUB)<br />

Communication was cut off with the detector in the absolute position scale connected<br />

to the machine side.<br />

Investigation details Investigation results Remedies<br />

1 Check items 2 and following for alarm<br />

No. "18".<br />

Alarm check timing<br />

f1 f2 f3 f4<br />

– ◦ ◦ ◦<br />

Alarm No.<br />

27<br />

Scale CPU error (SUB):<br />

The CPU of the absolute position linear scale connected to the machine side is not<br />

operating correctly.<br />

Investigation details Investigation results Remedies<br />

1 Wiggle the connectors by hand to check<br />

whether the absolute position linear<br />

scale connectors (unit side and scale<br />

side) are disconnected.<br />

The connector is disconnected (or loose).<br />

Correctly install.<br />

The connector is not disconnected. Investigate item 2.<br />

2 Turn the power OFF, and check the There is a connection fault.<br />

Replace the detector cable.<br />

detector cable connection with a tester. The connection is normal. Investigate item 3.<br />

3 Connect to another normal axis unit, and<br />

check whether the fault is on the unit side<br />

or scale side.<br />

4 Check if there is any abnormality in the<br />

unit's ambient environment.<br />

(Ex. Ambient temperature, noise,<br />

grounding)<br />

The alarm is on the unit side.<br />

The alarm is on the absolute position<br />

linear scale side.<br />

No abnormality is found in particular.<br />

An abnormality was found in the ambient<br />

environment.<br />

Replace the drive unit.<br />

Investigate item 4.<br />

Alarm check timing<br />

f1 f2 f3 f4<br />

– ◦ ◦ ◦<br />

Replace the absolute position linear scale.<br />

Take remedies according to the causes of<br />

the abnormality.<br />

Ex. High temperature : Check the<br />

cooling fan.<br />

Incomplete grounding : Additionally<br />

ground.<br />

CAUTION<br />

Do not drive the motor with a drive unit having a capacity exceeding the motor<br />

capacity. The motor could be demagnetized.<br />

8 - 22


8. Troubleshooting<br />

Alarm No.<br />

28<br />

Scale overspeed (SUB):<br />

The absolute position liner scale connected to the machine side detected a speed of<br />

45m/sec or more when the CNC power was turned ON.<br />

Investigation details Investigation results Remedies<br />

1 Check that the system is an absolute<br />

position linear scale specification<br />

system.<br />

2 Check whether the machine was<br />

operating when the alarm occurred.<br />

3 Wiggle the connectors by hand to check<br />

whether the absolute position linear<br />

scale connectors (unit side and scale<br />

side) are disconnected.<br />

The system is not the absolute position<br />

linear scale specifications.<br />

The system is the absolute position<br />

linear scale specifications.<br />

Alarm check timing<br />

f1 f2 f3 f4<br />

– ◦ – –<br />

Correctly set the SV025: MTYP parameter.<br />

Investigate item 2.<br />

The machine was operating.<br />

Check the motor's mechanical brakes and<br />

machine system.<br />

The machine was not operating. Investigate item 3.<br />

The connector is disconnected (or loose). Correctly install.<br />

The connector is not disconnected. Investigate item 4.<br />

4 Turn the power OFF, and check the There is a connection fault.<br />

Replace the detector cable.<br />

detector cable connection with a tester. The connection is normal. Investigate item 5.<br />

5 Connect to another normal axis unit, and<br />

check whether the fault is on the unit side<br />

or detector side.<br />

6 Check if there is any abnormality in the<br />

unit's ambient environment.<br />

(Ex. Ambient temperature, noise,<br />

grounding)<br />

Alarm No.<br />

29<br />

The alarm is on the unit side.<br />

The alarm is on the absolute position<br />

linear scale side.<br />

No abnormality is found in particular.<br />

An abnormality was found in the ambient<br />

environment.<br />

Replace the drive unit.<br />

Investigate item 6.<br />

Absolute position detection circuit error (SUB):<br />

An error was detected in the scale or scale side circuit of the absolute position linear<br />

scale connected to the machine side.<br />

Replace the absolute position linear scale.<br />

Take remedies according to the causes of<br />

the abnormality.<br />

Ex. High temperature : Check the<br />

cooling fan.<br />

Incomplete grounding : Additionally<br />

ground.<br />

Investigation details Investigation results Remedies<br />

1 Check the alarm No. "28" items.<br />

Alarm check timing<br />

f1 f2 f3 f4<br />

– ◦ ◦ ◦<br />

Alarm No.<br />

2A<br />

Incremental position detection circuit error (SUB):<br />

A speed exceeding the max. movement speed of the absolute position linear scale<br />

connected to the machine side was detected.<br />

Investigation details Investigation results Remedies<br />

1 Check whether the machine was The machine was operating. Investigate item 3.<br />

operating when the alarm occurred. The machine was not operating. Investigate item 2.<br />

Alarm check timing<br />

f1 f2 f3 f4<br />

– ◦ ◦ ◦<br />

2 Check whether the operation is normal at The machine was operating. Investigate item 3.<br />

low-speeds. The machine was not operating. Check the precautions for turning the<br />

power ON.<br />

• Wiring check<br />

• Parameter check<br />

3 Wiggle the connectors by hand to check The connector is disconnected (or loose). Correctly install.<br />

whether the absolute position linear<br />

scale connectors (unit side and scale<br />

side) are disconnected.<br />

The connector is not disconnected. Investigate item 4.<br />

4 Turn the power OFF, and check the There is a connection fault.<br />

Replace the detector cable.<br />

detector cable connection with a tester. The connection is normal. Investigate item 5.<br />

5 Connect to another normal axis unit, and<br />

check whether the fault is on the unit side<br />

or detector side.<br />

6 Check if there is any abnormality in the<br />

unit's ambient environment.<br />

(Ex. Ambient temperature, noise,<br />

grounding)<br />

The alarm is on the unit side.<br />

The alarm is on the absolute position<br />

linear scale side.<br />

No abnormality is found in particular.<br />

An abnormality was found in the ambient<br />

environment.<br />

Replace the drive unit.<br />

Investigate item 6.<br />

Replace the motor (the absolute position<br />

linear scale).<br />

Take remedies according to the causes of<br />

the abnormality.<br />

Ex. High temperature : Check the<br />

cooling fan.<br />

Incomplete grounding : Additionally<br />

ground.<br />

8 - 23


8. Troubleshooting<br />

Alarm No.<br />

2B<br />

CPU error:<br />

An error was detected in the data stored in the EEPROM of an absolute position linear<br />

scale connected to the motor side.<br />

Investigation details Investigation results Remedies<br />

1 Check items 3 and following for alarm<br />

No. "2A".<br />

Alarm check timing<br />

f1 f2 f3 f4<br />

– ◦ ◦ ◦<br />

Alarm No.<br />

2C<br />

EEPROM/LED error:<br />

An error was detected in the EEPROM of an absolute position linear position linear<br />

scale connected to the motor side.<br />

Investigation details Investigation results Remedies<br />

1 Check items 3 and following for alarm<br />

No. "2A".<br />

Alarm check timing<br />

f1 f2 f3 f4<br />

– ◦ ◦ ◦<br />

Alarm No.<br />

2D<br />

Date error:<br />

An error was detected within one rotation position of an absolute position linear<br />

position linear scale connected to the motor side.<br />

Investigation details Investigation results Remedies<br />

1 Check items 3 and following for alarm<br />

No. "2A".<br />

Alarm check timing<br />

f1 f2 f3 f4<br />

– ◦ ◦ ◦<br />

Alarm No.<br />

2E<br />

ROM/RAM error:<br />

A ROM/RAM error was detected in the absolute position linear scale connected to the<br />

motor side.<br />

Investigation details Investigation results Remedies<br />

1 Check items 3 and following for alarm<br />

No. "2A".<br />

Alarm check timing<br />

f1 f2 f3 f4<br />

– ◦ ◦ ◦<br />

Alarm No.<br />

2F<br />

Serial detector communication error:<br />

Communication was cut off with detector of the absolute position linear scale connected<br />

to the motor side.<br />

Investigation details Investigation results Remedies<br />

1 Check items 2 and following for alarm<br />

No. "18".<br />

Alarm check timing<br />

f1 f2 f3 f4<br />

– ◦ ◦ ◦<br />

Alarm No.<br />

31<br />

Overspeed:<br />

Movement was carried out at a speed exceeding the linear motor's tolerable speed.<br />

Investigation details Investigation results Remedies<br />

1 Check whether the machine was The machine was operating. Investigate item 4.<br />

operating when the alarm occurred. The machine was not operating. Investigate item 2.<br />

Alarm check timing<br />

f1 f2 f3 f4<br />

– ◦ ◦ ◦<br />

2 Check whether the operation is normal at The machine was operating. Investigate item 3.<br />

low-speeds. The machine was not operating. Check the wiring and the parameters at<br />

power ON.<br />

3 Check whether the rapid traverse speed The speed is too high.<br />

Lower the speed to below the rated speed.<br />

is too high. The speed is set below the rated speed. Investigate item 4.<br />

4 Check whether the acceleration/<br />

deceleration constant is too small.<br />

• Check the current value display on the<br />

Servo Monitor screen.<br />

5 Check items 2 and following for alarm<br />

No. "18".<br />

A value that is 80% or more of the max.<br />

value is displayed.<br />

The value is 80% or less of the max.<br />

value.<br />

Reduce the rapid traverse time constant so<br />

that the current value on the Servo Monitor<br />

screen is 80% or less of the max. value<br />

during rapid traverse<br />

acceleration/deceleration.<br />

Investigate item 5.<br />

CAUTION<br />

Do not drive the motor with a drive unit having a capacity exceeding the motor<br />

capacity. The motor could be demagnetized.<br />

8 - 24


8. Troubleshooting<br />

Alarm No.<br />

32<br />

Power module error (Overcurrent):<br />

The IPM used for the inverter detected an overcurrent.<br />

Investigation details Investigation results Remedies<br />

1 Check for a short-circuit in the UWV<br />

phases of the unit output.<br />

• Disconnect the U V W connection<br />

from the terminal block and the<br />

motor's cannon plug, and check with a<br />

tester.<br />

2 Check whether there is a ground fault in<br />

the UVW wires.<br />

• Check between the UVW wires and<br />

ground with a tester in the state given<br />

in item 1.<br />

3 Check whether there is a ground fault in<br />

the motor.<br />

• Check between the motor's wires and<br />

ground with a tester (megger) in the<br />

state given in item 1.<br />

The phases are short circuited or there is<br />

no continuity.<br />

Replace the UVW wires.<br />

The phases are normal. Investigate item 2.<br />

The phases are short circuited or there is<br />

no continuity.<br />

Replace the UVW wires.<br />

The phases are normal. Investigate item 3.<br />

The phases are short circuited or there is<br />

no continuity.<br />

The phases are normal.<br />

(same level as other axes)<br />

Replace the motor.<br />

Investigate item 4.<br />

4 Check the parameter setting values. The settings are incorrect.<br />

Correctly set.<br />

• Refer to the adjustment procedures. The settings are correct. Investigate item 5.<br />

5 Wiggle the connectors by hand to check<br />

whether the detector connectors (unit<br />

side and detector side) are<br />

disconnected.<br />

The connector is disconnected (or<br />

loose).<br />

Correctly install.<br />

The connector is not disconnected. Investigate item 6.<br />

6 Turn the power OFF, and check the There is a connection fault.<br />

Replace the detector cable.<br />

detector cable connection with a tester. The connection is normal. Investigate item 7.<br />

7 Check the repeatability.<br />

8 Connect to another normal axis driver,<br />

and check whether the fault is on the unit<br />

side or scale side.<br />

9 Check if there is any abnormality in the<br />

unit's ambient environment.<br />

(Ex. Ambient temperature, noise,<br />

grounding)<br />

The alarm is not repeated.<br />

Investigate item 9.<br />

The alarm is repeated sometimes.<br />

The alarm is always repeated. Investigate item 8.<br />

The alarm is on the unit side.<br />

The alarm is on the detector.<br />

No abnormality is found in particular.<br />

An abnormality was found in the ambient<br />

environment.<br />

Replace the drive unit.<br />

Alarm check timing<br />

f1 f2 f3 f4<br />

– ◦ ◦ ◦<br />

Replace the motor (the detector).<br />

Monitor the state for a while.<br />

Take remedies according to the causes of<br />

the abnormality.<br />

Ex. High temperature : Check the<br />

cooling fan.<br />

Incomplete grounding : Additionally<br />

ground.<br />

8 - 25


8. Troubleshooting<br />

Alarm No.<br />

34<br />

CNC communication CRC error:<br />

An error was detected in the data sent from the CNC to the driver.<br />

Investigation details Investigation results Remedies<br />

1 Wiggle the connection cables by hand<br />

between the CNC and drive unit,<br />

between the battery unit and drive unit,<br />

and between the drive units to see if any<br />

of the connectors are loose.<br />

Check whether any force is being<br />

applied on the connectors.<br />

2 Turn the power OFF, and check the<br />

connection of the communication cables<br />

listed in item 1.<br />

Try replacing the cables with normal<br />

ones.<br />

3 Check whether the CNC and drive unit<br />

software versions have been changed<br />

recently.<br />

4 Try replacing with another unit to<br />

determine whether the fault is on the<br />

CNC side or units side.<br />

5 Check if there is any abnormality in the<br />

unit's ambient environment.<br />

(Ex. Ambient temperature, noise,<br />

grounding)<br />

Alarm No.<br />

35<br />

The connector is disconnected (or<br />

loose).<br />

Correctly install.<br />

The connector is not disconnected. Investigate item 2.<br />

There is a connection fault.<br />

Alarm check timing<br />

f1 F2 f3 f4<br />

– ◦ ◦ ◦<br />

Replace the communication cable.<br />

The connection is normal. Investigate item 3.<br />

The version was changed.<br />

The version was not changed. Investigate item 4.<br />

The alarm is on the unit side.<br />

Replace with the original software version.<br />

Replace the drive unit.<br />

The driver is not the cause. Investigate item 5.<br />

No abnormality is found in particular.<br />

An abnormality was found in the ambient<br />

environment.<br />

CNC communication data error:<br />

An error was detected in the movement command data from the CNC.<br />

Replace the MCP card on the CNC side.<br />

Take remedies according to the causes of<br />

the abnormality.<br />

Ex. High temperature : Check the<br />

cooling fan.<br />

Incomplete grounding : Additionally<br />

ground.<br />

Investigation details Investigation results Remedies<br />

1 Check the alarm No. "34" items.<br />

Alarm check timing<br />

f1 f2 f3 f4<br />

– ◦ ◦ –<br />

Alarm No.<br />

36<br />

CNC communication, communication error:<br />

The communication from the CNC was cut off.<br />

Investigation details Investigation results Remedies<br />

1 Check the alarm No. "34" items.<br />

Alarm No.<br />

37<br />

Initial parameter error:<br />

An illegal parameter was detected in the parameters sent when the CNC power was<br />

turned ON.<br />

Investigation details Investigation results Remedies<br />

1 The illegal parameter No. will appear on<br />

the CNC Diagnosis screen, so check that<br />

servo parameter with the parameter<br />

adjustment procedures.<br />

The parameter is incorrect.<br />

Set to the correct parameter.<br />

The parameter is correct. Investigate item 3.<br />

The parameter No. is not 1 to 64.<br />

Alarm check timing<br />

f1 f2 f3 f4<br />

– ◦ ◦ –<br />

Alarm check timing<br />

f1 f2 f3 f4<br />

– ◦ – ◦<br />

If the No. is 101, check investigation item<br />

2.<br />

2 Check whether the servo parameter<br />

(PIT) (RNG1) (RNG2) (PC1) and (PC2)<br />

combination is illegal, or whether the<br />

setting range is exceeded.<br />

The combination is illegal, or the setting<br />

range is exceeded.<br />

The parameter is correct.<br />

Refer to the parameter settings in the<br />

specifications and to the supplements, and<br />

set to the correct values.<br />

Investigate item 3.<br />

3 Check the alarm No. "34" items.<br />

8 - 26


8. Troubleshooting<br />

Alarm No.<br />

38<br />

CNC communication protocol error 1:<br />

An error was detected in the communication frame sent from the CNC.<br />

Investigation details Investigation results Remedies<br />

1 Check the alarm No. "34" items.<br />

Alarm check timing<br />

f1 f2 f3 f4<br />

– ◦ ◦ ◦<br />

Alarm No.<br />

39<br />

CNC communication protocol error 2<br />

An error was detected in the axis information data sent from the CNC.<br />

Investigation details Investigation results Remedies<br />

1 Check the alarm No. "34" items.<br />

Alarm check timing<br />

f1 f2 f3 f4<br />

– ◦ ◦ ◦<br />

Alarm No.<br />

3A<br />

Overcurrent:<br />

An excessive current was detected in the motor drive current.<br />

Investigation details Investigation results Remedies<br />

1 Check the alarm No. "32" items.<br />

Alarm check timing<br />

f1 f2 f3 f4<br />

– ◦ ◦ ◦<br />

Alarm No.<br />

3B<br />

Power module overheat:<br />

The power module's temperature protection function activated.<br />

Investigation details Investigation results Remedies<br />

1 Turn the unit power ON again, and<br />

confirm the rotation of the fan.<br />

Note) Assure more than 10 seconds for<br />

the time from when the power is turned<br />

OFF till when it is turned ON. For the fan<br />

used for the drive unit, assuring more<br />

than 10 seconds for the time from when<br />

the power is turned OFF till when it is<br />

turned ON is required.<br />

The fan is rotating, and an alarm did not<br />

occur again.<br />

The fan did not rotate. Or, an alarm<br />

occurred again.<br />

Alarm check timing<br />

f1 f2 f3 f4<br />

– ◦ ◦ ◦<br />

Continue to use.<br />

The power may be turned ON without<br />

assuring more than 10 seconds for the<br />

time from when the power is turned OFF till<br />

when it is turned ON.<br />

Leave for more than 10 seconds or more,<br />

and turn the power ON again.<br />

Investigate item 2.<br />

2 Confirm adhesion of cutting oil or cutting Large amounts of cutting oil or cutting Clean or replace the fan.<br />

chips, etc. at the fan. Or check if there is chips, etc., are adhered, or the<br />

any abnormality such as low rotation<br />

speed.<br />

rotation is slow.<br />

The fan is rotating properly. Investigate item 3.<br />

3 Check whether the heat dissipating fins<br />

are dirty.<br />

Cutting oil or cutting chips, etc., are<br />

adhered, and the fins are clogged.<br />

Clean the fins.<br />

4 Measure the drive unit's ambient<br />

temperature.<br />

5 Check if there is any abnormality in the<br />

unit's ambient environment.<br />

(Ex. Ambient temperature, noise,<br />

grounding)<br />

Alarm No.<br />

43<br />

The fins are normal. Investigate item 4.<br />

55°C or more Improve the ventilation and cooling for the<br />

power distribution panel.<br />

Less than 55°C. Investigate item 5.<br />

No abnormality is found in particular. If the alarm occurs even after the unit<br />

temperature has dropped, replace the unit.<br />

An abnormality was found in the ambient<br />

environment.<br />

Feedback error 2:<br />

An excessive deviation of the feedback amount for the motor side detector and<br />

machine side detector was detected in the 2-scale 2-motor (2-amplifier) control.<br />

Take remedies according to the causes of<br />

the abnormality.<br />

Ex. High temperature:<br />

Check the cooling fan.<br />

Incomplete grounding:<br />

Additionally ground.<br />

Investigation details Investigation results Remedies<br />

1 Check items 3 and following for alarm<br />

No. "2A".<br />

Alarm check timing<br />

f1 f2 f3 f4<br />

– ◦ ◦ –<br />

8 - 27


8. Troubleshooting<br />

Alarm No.<br />

46<br />

Motor overheat:<br />

A temperature error was detected in the motor being driven. (°C)<br />

(Temperature exceeded 100°C)<br />

Investigation details Investigation results Remedies<br />

1 Check whether the specifications provide<br />

the motor thermal.<br />

The specifications do not provide the<br />

motor thermal.<br />

The specifications provide the motor<br />

thermal.<br />

Investigate item 2.<br />

Investigate item 3.<br />

2 Check the servo parameter (SV034) The parameter is not set correctly. Correctly set SV034/mohm<br />

setting value. The parameter is set correctly. Investigate item 3.<br />

3 Check the repeatability.<br />

4 Check the motor temperature when the<br />

alarm occurs.<br />

5 Wiggle the connectors by hand to check<br />

whether the detector connectors (unit<br />

side and motor side cannon) are<br />

disconnected.<br />

The alarm is repeated within one minute<br />

after startup.<br />

The alarm is repeated sometimes after<br />

operating for a while.<br />

The motor is hot.<br />

Investigate item 5.<br />

Investigate item 4.<br />

Alarm check timing<br />

f1 f2 f3 f4<br />

– ◦ ◦ –<br />

Ease the operation pattern.<br />

↓<br />

If the problem is not solved, check<br />

investigation item 5.<br />

The motor is not high. Investigate item 5.<br />

The connector is disconnected (or loose).<br />

Correctly install.<br />

The connector is not disconnected. Investigate item 6.<br />

6 Turn the power OFF, and check the There is a connection fault.<br />

Replace the detector cable.<br />

detector cable connection with a tester. The connection is normal. Investigate item 7.<br />

7 Connect to another normal axis unit, and<br />

check whether the fault is on the unit<br />

side.<br />

8 Check if there is any abnormality in the<br />

unit's ambient environment.<br />

(Ex. Ambient temperature, noise,<br />

grounding)<br />

Alarm No.<br />

48<br />

The alarm is on the unit side.<br />

The alarm occurs even when the unit is<br />

replaced.<br />

No abnormality is found in particular.<br />

An abnormality was found in the ambient<br />

environment.<br />

Replace the drive unit.<br />

Investigate item 8.<br />

Scale CPU error:<br />

The CPU of the absolute position linear scale connected to the motor side is not<br />

operating correctly.<br />

Replace the motor.<br />

Take remedies according to the causes of<br />

the abnormality.<br />

Ex. High temperature : Check the<br />

cooling fan.<br />

Incomplete grounding : Additionally<br />

ground.<br />

Investigation details Investigation results Remedies<br />

1 Wiggle the connectors by hand to check<br />

whether the absolute position linear<br />

scale connectors (unit side and scale<br />

side) are disconnected.<br />

The connector is disconnected (or loose).<br />

Correctly install.<br />

The connector is not disconnected. Investigate item 2.<br />

2 Turn the power OFF, and check the There is a connection fault.<br />

Replace the detector cable.<br />

detector cable connection with a tester. The connection is normal. Investigate item 3.<br />

3 Connect to another normal axis unit, and<br />

check whether the fault is on the unit side<br />

or scale side.<br />

4 Check if there is any abnormality in the<br />

unit's ambient environment.<br />

(Ex. Ambient temperature, noise,<br />

grounding)<br />

The alarm is on the unit side.<br />

The alarm is on the absolute position<br />

linear scale side.<br />

No abnormality is found in particular.<br />

An abnormality was found in the ambient<br />

environment.<br />

Replace the drive unit.<br />

Investigate item 4.<br />

Alarm check timing<br />

f1 f2 f3 f4<br />

– ◦ ◦ ◦<br />

Replace the absolute position linear scale.<br />

Take remedies according to the causes of<br />

the abnormality.<br />

Ex. High temperature : Check the<br />

cooling fan.<br />

Incomplete grounding : Additionally<br />

ground.<br />

8 - 28


8. Troubleshooting<br />

Alarm No.<br />

49<br />

Scale overspeed:<br />

The absolute position liner scale connected to the motor side detected a speed of<br />

45m/sec or more when the CNC power was turned ON.<br />

Investigation details Investigation results Remedies<br />

1 Check that the system is an absolute<br />

position linear scale specification<br />

system.<br />

2 Check whether the machine was<br />

operating when the alarm occurred.<br />

3 Wiggle the connectors by hand to check<br />

whether the absolute position linear<br />

scale connectors (unit side and scale<br />

side) are disconnected.<br />

The system is not the absolute position<br />

linear scale specifications.<br />

The system is the absolute position<br />

linear scale specifications.<br />

Alarm check timing<br />

f1 f2 f3 f4<br />

– ◦ – –<br />

Correctly set the SV025: MTYP parameter.<br />

Investigate item 2.<br />

The machine was operating.<br />

Check the motor's mechanical brakes and<br />

machine system.<br />

The machine was not operating. Investigate item 3.<br />

The connector is disconnected (or loose). Correctly install.<br />

The connector is not disconnected. Investigate item 4.<br />

4 Turn the power OFF, and check the There is a connection fault.<br />

Replace the detector cable.<br />

detector cable connection with a tester. The connection is normal. Investigate item 5.<br />

5 Connect to another normal axis unit, and<br />

check whether the fault is on the unit side<br />

or detector side.<br />

6 Check if there is any abnormality in the<br />

unit's ambient environment.<br />

(Ex. Ambient temperature, noise,<br />

grounding)<br />

Alarm No.<br />

4A<br />

The alarm is on the unit side.<br />

The alarm is on the absolute position<br />

linear scale side.<br />

No abnormality is found in particular.<br />

An abnormality was found in the ambient<br />

environment.<br />

Replace the drive unit.<br />

Investigate item 6.<br />

Absolute position detection circuit error:<br />

An error was detected in the scale or scale side circuit of the absolute position linear<br />

scale connected to the motor side.<br />

Replace the absolute position linear scale.<br />

Take remedies according to the causes of<br />

the abnormality.<br />

Ex. High temperature : Check the<br />

cooling fan.<br />

Incomplete grounding : Additionally<br />

ground.<br />

Investigation details Investigation results Remedies<br />

1 Check the alarm No. "49" items.<br />

Alarm No.<br />

4B<br />

Incremental position detection circuit error:<br />

A speed exceeding the max. movement speed of the absolute position linear scale<br />

connected to the motor side was detected.<br />

Investigation details Investigation results Remedies<br />

1 Check whether the machine was The machine was operating. Investigate item 3.<br />

operating when the alarm occurred. The machine was not operating. Investigate item 2.<br />

Alarm check timing<br />

f1 f2 f3 f4<br />

– ◦ ◦ ◦<br />

Alarm check timing<br />

f1 f2 f3 f4<br />

– ◦ ◦ ◦<br />

2 Check whether the operation is normal at The machine was operating. Investigate item 3.<br />

low-speeds. The machine was not operating. Check the wiring and the parameters at<br />

power ON.<br />

3 Check whether the connector is The connector is disconnected (or loose). Correctly install.<br />

disconnected from the unit side or scale<br />

side.<br />

The connector is not disconnected. Investigate item 4.<br />

4 Turn the power OFF, and check the There is a connection fault.<br />

Replace the detector cable.<br />

detector cable connection with a tester. The connection is normal. Investigate item 5.<br />

5 Connect to another normal axis unit, and<br />

check whether the fault is on the unit side<br />

or detector side.<br />

6 Check if there is any abnormality in the<br />

unit's ambient environment.<br />

(Ex. Ambient temperature, noise,<br />

grounding)<br />

The alarm is on the unit side.<br />

The alarm is on the absolute position<br />

linear scale side.<br />

No abnormality is found in particular.<br />

An abnormality was found in the ambient<br />

environment.<br />

Replace the drive unit.<br />

Investigate item 6.<br />

Replace the motor (the linear scale).<br />

Take remedies according to the causes of<br />

the abnormality.<br />

Ex. High temperature : Check the<br />

cooling fan.<br />

Incomplete grounding : Additionally<br />

ground.<br />

CAUTION<br />

Do not drive the motor with a drive unit having a capacity exceeding the motor<br />

capacity. The motor could be demagnetized.<br />

8 - 29


8. Troubleshooting<br />

Alarm No.<br />

50<br />

Overload 1:<br />

The servomotor or servo drive unit load level obtained from the motor current reached<br />

the overload level set with the overload detection level (SV022:OLL).<br />

Alarm check timing<br />

f1 f2 f3 f4<br />

– ◦ ◦ ◦<br />

Investigation details Investigation results Remedies<br />

1 Check the servo parameter (OLL) setting The value differs from the standard When not using special specifications, set<br />

value.<br />

Standard setting value OLL: 150.<br />

setting value.<br />

The value is the standard setting value.<br />

the value to the standard setting value.<br />

Investigate item 2.<br />

2 Check the motor temperature when the<br />

alarm occurs.<br />

3 Check whether the motor is hunting.<br />

4 Connect to another normal axis unit, and<br />

check whether the fault is on the unit<br />

side.<br />

5 Check whether the current value on the<br />

CNC Servo Monitor screen is an<br />

abnormally large value when stopped<br />

and operating.<br />

6 Check if there is any abnormality in the<br />

unit's ambient environment.<br />

(Ex. Ambient temperature, noise,<br />

grounding)<br />

Alarm No.<br />

51<br />

The motor is hot.<br />

Ease the operation pattern.<br />

↓<br />

If the problem is not solved, check<br />

investigation item 3.<br />

The motor is not high. Investigate item 3.<br />

The motor is hunting.<br />

The motor is not hunting. Investigate item 4.<br />

The alarm is on the unit side.<br />

The alarm occurs even when the unit is<br />

replaced.<br />

An abnormal value is displayed.<br />

Refer to the adjustment procedures and<br />

readjust.<br />

• Check the cable wiring and connector<br />

connection.<br />

• Check for incorrect parameter settings.<br />

• Adjust the gain.<br />

↓<br />

If the problem is not resolved, check<br />

investigation item 4.<br />

Replace the drive unit.<br />

Investigate item 5.<br />

Check the machine system.<br />

A correct value is displayed. Investigate item 6.<br />

No abnormality is found in particular.<br />

An abnormality was found in the ambient<br />

environment.<br />

Overload 2:<br />

A current command exceeding 95% of the drive units max. capacity continued for 1<br />

sec. or more.<br />

Replace the motor (the detector).<br />

Take remedies according to the causes of<br />

the abnormality.<br />

Ex. High temperature : Check the<br />

cooling fan.<br />

Incomplete grounding : Additionally<br />

ground.<br />

Alarm check timing<br />

f1 f2 f3 f4<br />

– – ◦ –<br />

Investigation details Investigation results Remedies<br />

1 Check whether the PN power is supplied The voltage is being supplied. Investigate item 3.<br />

to the drive unit.<br />

• Check the axis for which the alarm is<br />

The voltage is not being supplied. Investigate item 2.<br />

occurring and the axis farthest from<br />

the power supply.<br />

2 Check whether the power supply unit's There is no voltage at the PN terminal. Check the power supply unit.<br />

CHARGE lamp is lit, and the PN terminal (The lamp is not lit.)<br />

voltage. There is voltage at the PN terminal. Check the PN wiring between the units.<br />

3 Check whether the current value on the<br />

CNC Servo Monitor screen is an<br />

abnormally large value during acceleration/deceleration.<br />

The max. value is exceeding the x level<br />

given on the previous page.<br />

A correct value is displayed.<br />

Increase the acceleration/deceleration<br />

time constant to lower to approx. 80% of<br />

the limit value.<br />

Investigate item 4.<br />

4 Check items 3 and following for alarm<br />

No. "50".<br />

8 - 30


8. Troubleshooting<br />

Alarm No.<br />

52<br />

Excessive error 1:<br />

The difference of the ideal position and actual position exceeded the parameter<br />

SV023:OD1 (or SV053:OD3) at servo ON.<br />

Investigation details Investigation results Remedies<br />

1 Check whether the PN power is supplied<br />

to the drive unit.<br />

• Check the axis for which the alarm is<br />

occurring and the axis farthest from<br />

the power supply.<br />

The voltage is being supplied. Investigate item 3.<br />

The voltage is not being supplied. Investigate item 2.<br />

Alarm check timing<br />

f1 f2 f3 f4<br />

– – ◦ –<br />

2 Check whether the power supply unit's There is no voltage at the PN terminal. Check the power supply unit.<br />

CHARGE lamp is lit, and the PN terminal (The lamp is not lit.)<br />

voltage. There is voltage at the PN terminal. Check the PN wiring between the units.<br />

3 Check the servo parameter (OD1)<br />

setting value.<br />

4 Check items 3 and following for alarm<br />

No. "50".<br />

The value differs from the standard<br />

setting value.<br />

The value is the standard setting value. Investigate item 4.<br />

When not using special specifications, set<br />

the value to the standard setting value.<br />

Supplement<br />

Depending on the ideal machine position in respect to the command position, the actual machine<br />

position could enter the actual shaded section shown below, which is separated more than the<br />

distance set in OD1.<br />

Position<br />

Command position<br />

OD1<br />

Ideal machine position<br />

OD2<br />

OD2<br />

Servo OFF<br />

OD1<br />

Servo ON<br />

Time<br />

CAUTION<br />

Do not drive the motor with a drive unit having a capacity exceeding the motor<br />

capacity. The motor could be demagnetized.<br />

8 - 31


8. Troubleshooting<br />

Alarm No.<br />

53<br />

Excessive error 2:<br />

The difference of the ideal position and actual position exceeded parameter<br />

SV026:OD2 at servo OFF.<br />

Investigation details Investigation results Remedies<br />

1 Check the servo parameter (OD2)<br />

setting value.<br />

2 Check whether the machine is moving<br />

during servo OFF.<br />

3 Wiggle the communication cable<br />

between the CNC and final connector by<br />

hand to check whether the detector<br />

connectors (unit side and CNC side) are<br />

disconnected.<br />

4 Turn the power OFF, and check the<br />

communication cable connection with a<br />

tester.<br />

Try replacing with normal cables.<br />

The value differs from the standard<br />

setting value.<br />

Alarm check timing<br />

f1 f2 f3 f4<br />

– ◦ – –<br />

When not using special specifications, set<br />

the value to the standard setting value.<br />

The value is the standard setting value. Investigate item 2.<br />

The machine was operating.<br />

Check the machine and mechanical<br />

brakes.<br />

The machine was not operating. Investigate item 3.<br />

The connector is disconnected (or loose). Correctly install.<br />

The connector is not disconnected. Investigate item 4.<br />

There is a connection fault.<br />

Replace the communication cable.<br />

The connection is normal. Investigate item 5.<br />

5 Replace with another normal axis unit, The alarm is on the unit side.<br />

and check whether the fault is in the unit. The alarm occurs even when the unit is<br />

replaced.<br />

6 Wiggle the connectors by hand to check<br />

whether the detector connectors (unit<br />

side and motor side) are disconnected.<br />

The connector is disconnected (or loose).<br />

Replace the drive unit.<br />

Replace the MCP card on the CNC side.<br />

↓<br />

If the problem is not resolved, check<br />

investigation item 6.<br />

Correctly install.<br />

The connector is not disconnected. Investigate item 7.<br />

7 Turn the power OFF, and check the There is a connection fault.<br />

Replace the detector cable.<br />

detector cable connection with a tester. The connection is normal. Investigate item 8.<br />

8 Check if there is any abnormality in the<br />

unit's ambient environment.<br />

(Ex. Ambient temperature, noise,<br />

grounding)<br />

Alarm No.<br />

54<br />

No abnormality is found in particular.<br />

An abnormality was found in the ambient<br />

environment.<br />

Excessive error 3:<br />

The motor current is not flowing when the excessive error alarm 1 was detected.<br />

Replace the motor.<br />

Take remedies according to the causes of<br />

the abnormality.<br />

Ex. High temperature : Check the<br />

cooling fan.<br />

Incomplete grounding : Additionally<br />

ground.<br />

Investigation details Investigation results Remedies<br />

1 Check whether the PN power is supplied<br />

to the driver.<br />

• Check the axis for which the alarm is<br />

occurring and the axis farthest from<br />

the power supply.<br />

The voltage is being supplied. Investigate item 3.<br />

The voltage is not being supplied. Investigate item 2.<br />

Alarm check timing<br />

f1 f2 f3 f4<br />

– ◦ ◦ –<br />

2 Check whether the power supply unit's There is no voltage at the PN terminal. Check the power supply unit.<br />

CHARGE lamp is lit, and the PN terminal (The lamp is not lit.)<br />

voltage. There is voltage at the PN terminal. Check the PN wiring between the units.<br />

3 Check whether the motor power line is<br />

connected to the motor.<br />

• Disconnect the power line from the<br />

terminal block, and check between<br />

UVW with a tester.<br />

The power line is not connected or is<br />

disconnected.<br />

The power line is correctly connected. Investigate item 4.<br />

Increase the acceleration/deceleration<br />

time constant to lower to approx. 80% of<br />

the limit value.<br />

4 Replace with another normal unit, and The alarm is on the unit side.<br />

Replace the drive unit.<br />

check whether the fault is in the unit. The alarm is on the motor side. Replace the motor.<br />

CAUTION<br />

Do not drive the motor with a drive unit having a capacity exceeding the motor<br />

capacity. The motor could be demagnetized.<br />

8 - 32


8. Troubleshooting<br />

Alarm No.<br />

58<br />

Collision detection 0:<br />

A collision detection method 1 error was detected during the G0 modal (rapid traverse).<br />

(A disturbance torque exceeding the tolerable disturbance torque was detected.)<br />

Investigation details Investigation results Remedies<br />

1 Check whether the collision detection<br />

function is being used.<br />

Check whether the machine is colliding.<br />

2 Check the parameter.<br />

Is SV060 (TLTM) set to "0"?<br />

3 Check whether the current during normal<br />

rapid traverse acceleration/ deceleration<br />

has reached the current limit value, or<br />

whether it is 90% or more of the limit<br />

value.<br />

4 Readjust the collision detection function,<br />

and then operate. (Refer to the separate<br />

collision detection function<br />

specifications.)<br />

5 Is the machine or current vibrating?<br />

6 Raise the detection level.<br />

Alarm No.<br />

59<br />

The collision detection function is not<br />

being used.<br />

Investigate item 2.<br />

Alarm check timing<br />

f1 f2 f3 f4<br />

– – ◦ –<br />

The motor is colliding.<br />

Improve so that the machine does not<br />

collide.<br />

The collision detection is being used, but Investigate item 3.<br />

the machine is not colliding.<br />

The setting is incorrect. Set SV060 (TLMT) to "0".<br />

The current is 90% or more of the current<br />

limit value.<br />

The current is less than 90% of the<br />

current limit value.<br />

The alarm does not occur.<br />

Lengthen the time constant, and check<br />

investigation item 4.<br />

Investigate item 4.<br />

The alarm occurs. Investigate item 5.<br />

They are vibrating.<br />

Eliminate the vibration by adjusting the<br />

gain, and check investigation item 4.<br />

They are not vibrating. Investigate item 6.<br />

The alarm does not occur.<br />

If the problem is not resolved even after<br />

replacing the drive unit, raise the level.<br />

The alarm occurs.<br />

Replace the drive unit.<br />

Collision detection 1:<br />

A collision detection method 1 error was detected during the G1 modal (cutting feed).<br />

(A disturbance torque exceeding the tolerable disturbance torque was detected.)<br />

Investigation details Investigation results Remedies<br />

1 Check whether the collision detection<br />

function is being used.<br />

Check whether the machine is colliding.<br />

2 Check the parameter.<br />

Is SV060 (TLTM) set to "0"?<br />

3 Check whether the current during normal<br />

rapid traverse acceleration/ deceleration<br />

has reached the current limit value, or<br />

whether it is 90% or more of the limit<br />

value.<br />

4 Readjust the collision detection function,<br />

and then operate. (Refer to the separate<br />

collision detection function<br />

specifications.)<br />

5 Is the machine or current vibrating?<br />

6 Raise the detection level.<br />

The collision detection function is not<br />

being used.<br />

Investigate item 2.<br />

Alarm check timing<br />

f1 f2 f3 f4<br />

– – ◦ –<br />

The motor is colliding.<br />

Improve so that the machine does not<br />

collide.<br />

The collision detection is being used, but Investigate item 2.<br />

the machine is not colliding.<br />

The setting is incorrect. Set SV060 (TLMT) to "0".<br />

The current is 90% or more of the current<br />

limit value.<br />

The current is less than 90% of the<br />

current limit value.<br />

The alarm does not occur.<br />

Lengthen the time constant, and check<br />

investigation item 4.<br />

Investigate item 4.<br />

The alarm occurs. Investigate item 5.<br />

They are vibrating.<br />

Eliminate the vibration by adjusting the<br />

gain, and check investigation item 4.<br />

They are not vibrating. Investigate item 6.<br />

The alarm does not occur.<br />

If the problem is not resolved even after<br />

replacing the drive unit, raise the level.<br />

The alarm occurs.<br />

Replace the drive unit.<br />

Alarm No.<br />

5A<br />

Collision detection 2:<br />

A collision detection method 2 error was detected.<br />

Investigation details Investigation results Remedies<br />

1 Check the alarm No. "58" items.<br />

Alarm check timing<br />

f1 f2 f3 f4<br />

– – ◦ –<br />

8 - 33


8. Troubleshooting<br />

Alarm No.<br />

80<br />

HR unit connection error:<br />

An incorrect connection or cable breakage was detected in the MDS-B-HR connected<br />

to the motor side.<br />

Investigation details Investigation results Remedies<br />

1 Wiggle the connectors by hand to check<br />

whether the MDS-B-HR connectors (unit<br />

side, HR side and linear scale side) are<br />

disconnected.<br />

2 Turn the power OFF, and check the<br />

connection of the detector cables<br />

(between driver I/F units and between I/F<br />

unit and scale) with a tester.<br />

3 Connect with another normal axis unit (or<br />

MDS-B-HR) and check whether the fault<br />

is on the unit side or MDS-B-HR (linear<br />

scale) side.<br />

4 Check if there is any abnormality in the<br />

unit's ambient environment.<br />

(Ex. Ambient temperature, noise,<br />

grounding)<br />

Alarm No.<br />

81<br />

The connector is disconnected (or loose).<br />

Correctly install.<br />

The connector is not disconnected. Investigate item 2.<br />

There is a connection fault.<br />

Alarm check timing<br />

f1 f2 f3 f4<br />

– ◦ ◦ ◦<br />

Replace the communication cable.<br />

The connection is normal. Investigate item 3.<br />

The alarm is on the unit side.<br />

The alarm is on the MDS-B-HR (linear<br />

scale) side.<br />

No abnormality is found in particular.<br />

An abnormality was found in the ambient<br />

environment.<br />

Replace the drive unit.<br />

Investigate item 4.<br />

HR unit HSS communication error:<br />

The MDS-B-HR connected to the motor side detected an error in the communication<br />

with the absolute position linear scale.<br />

Replace MDS-B-HR (linear scale).<br />

Take remedies according to the causes of<br />

the abnormality.<br />

Ex. High temperature : Check the<br />

cooling fan.<br />

Incomplete grounding : Additionally<br />

ground.<br />

Investigation details Investigation results Remedies<br />

1 Check the alarm No. "80" items.<br />

Alarm No.<br />

83<br />

HR unit scale judgment error:<br />

The MDS-B-HR connected to the motor side could not judge the analog frequency of<br />

the connected linear scale.<br />

Investigation details Investigation results Remedies<br />

1 Wiggle the connectors by hand to check<br />

whether the MDS-B-HR connectors (unit<br />

side, HR side, linear scale side and MD<br />

side) are disconnected.<br />

2 Turn the power OFF, and check the<br />

connection of the detector cables<br />

(between driver and I/F units, between<br />

I/F unit and scale and between I/F unit<br />

and pole detector) with a tester.<br />

3 Connect with another normal axis unit (or<br />

MDS-B-HR) and check whether the fault<br />

is on the unit side or MDS-B-HR (linear<br />

scale or MDS-B-MD) side.<br />

4 Check if there is any abnormality in the<br />

unit's ambient environment.<br />

(Ex. Ambient temperature, noise,<br />

grounding)<br />

The connector is disconnected (or loose).<br />

Correctly install.<br />

The connector is not disconnected. Investigate item 2.<br />

There is a connection fault.<br />

Alarm check timing<br />

f1 f2 f3 f4<br />

– ◦ ◦ ◦<br />

Alarm check timing<br />

f1 f2 f3 f4<br />

– ◦ ◦ ◦<br />

Replace the communication cable.<br />

The connection is normal. Investigate item 3.<br />

The alarm is on the unit side.<br />

The alarm is on the MDS-B-HR (linear<br />

scale or MDS-B-MD) side.<br />

No abnormality is found in particular.<br />

An abnormality was found in the ambient<br />

environment.<br />

Replace the drive unit.<br />

Investigate item 4.<br />

Replace MDS-B-HR (linear scale or<br />

MDS-B-MD).<br />

Take remedies according to the causes of<br />

the abnormality.<br />

Ex. High temperature : Check the<br />

cooling fan.<br />

Incomplete grounding : Additionally<br />

ground.<br />

CAUTION<br />

Do not drive the motor with a drive unit having a capacity exceeding the motor<br />

capacity. The motor could be demagnetized.<br />

8 - 34


8. Troubleshooting<br />

Alarm No.<br />

84<br />

HR unit CPU error:<br />

The CPU of the MDS-B-HR connected to the motor side is not operating correctly.<br />

Investigation details Investigation results Remedies<br />

1 Wiggle the connectors by hand to check<br />

whether the MDS-B-HR connectors (unit<br />

side and HR side) are disconnected.<br />

2 Turn the power OFF, and check the<br />

connection of the detector cables<br />

(between drive unit and I/F units) with a<br />

tester.<br />

3 Connect with another normal axis unit<br />

and check whether the fault is on the unit<br />

side or MDS-B-HR side.<br />

4 Check if there is any abnormality in the<br />

unit's ambient environment.<br />

(Ex. Ambient temperature, noise,<br />

grounding)<br />

Alarm No.<br />

85<br />

The connector is disconnected (or loose).<br />

Correctly install.<br />

The connector is not disconnected. Investigate item 2.<br />

There is a connection fault.<br />

Alarm check timing<br />

f1 f2 f3 f4<br />

◦ – – –<br />

Replace the communication cable.<br />

The connection is normal. Investigate item 3.<br />

The alarm is on the unit side.<br />

Replace the drive unit.<br />

The alarm is on the MDS-B-HR side. Investigate item 4.<br />

No abnormality is found in particular.<br />

An abnormality was found in the ambient<br />

environment.<br />

HR unit data error:<br />

An error was detected in the analog interpolation data of the MDS-B-HR connected to<br />

the motor side.<br />

Replace MDS-B-HR.<br />

Take remedies according to the causes of<br />

the abnormality.<br />

Ex. High temperature : Check the<br />

cooling fan.<br />

Incomplete grounding : Additionally<br />

ground.<br />

Investigation details Investigation results Remedies<br />

1 Check the alarm No. "80" items.<br />

Alarm No.<br />

86<br />

HR unit pole error:<br />

An error was detected in the pole data of the MDS-B-HR connected to the motor side.<br />

Investigation details Investigation results Remedies<br />

1 Wiggle the connectors by hand to check<br />

whether the MDS-B-HR connectors (unit<br />

side, HR side and MD side) are<br />

disconnected.<br />

2 Turn the power OFF, and check the<br />

connection of the detector cables<br />

(between drive unit and I/F units and<br />

between I/F unit and pole detector) with<br />

a tester.<br />

3 Connect with another normal axis unit (or<br />

MDS-B-HR) and check whether the fault<br />

is on the unit side or MDS-B-HR<br />

(MDS-B-MD) side.<br />

4 Check if there is any abnormality in the<br />

unit's ambient environment.<br />

(Ex. Ambient temperature, noise,<br />

grounding)<br />

The connector is disconnected (or loose).<br />

Correctly install.<br />

The connector is not disconnected. Investigate item 2.<br />

There is a connection fault.<br />

Alarm check timing<br />

f1 f2 f3 f4<br />

– ◦ ◦ ◦<br />

Alarm check timing<br />

f1 f2 f3 f4<br />

– ◦ ◦ ◦<br />

Replace the communication cable.<br />

The connection is normal. Investigate item 3.<br />

The alarm is on the unit side.<br />

The alarm is on the MDS-B-HR<br />

(MDS-B-MD) side.<br />

No abnormality is found in particular.<br />

An abnormality was found in the ambient<br />

environment.<br />

Replace the drive unit.<br />

Investigate item 4.<br />

Replace MDS-B-HR (MDS-B-MD).<br />

Take remedies according to the causes of<br />

the abnormality.<br />

Ex. High temperature : Check the<br />

cooling fan.<br />

Incomplete grounding : Additionally<br />

ground.<br />

8 - 35


8. Troubleshooting<br />

Alarm No.<br />

88<br />

Watch dog:<br />

The servo drive software processing time did not end within the specified time.<br />

Investigation details Investigation results Remedies<br />

Alarm check timing<br />

f1 f2 f3 f4<br />

◦ ◦ ◦ ◦<br />

1 Check whether the servo software The version was changed.<br />

Replace with the original software version.<br />

version has been changed recently. The version was not changed. Investigate item 2.<br />

2 Check if there is any abnormality in the<br />

unit's ambient environment.<br />

(Ex. Ambient temperature, noise,<br />

grounding)<br />

Alarm No.<br />

89<br />

No abnormality is found in particular.<br />

An abnormality was found in the ambient<br />

environment.<br />

HR unit connection error (SUB):<br />

An incorrect connection or cable breakage was detected in the MDS-B-HR connected<br />

to the machine side.<br />

Replace the drive unit.<br />

Take remedies according to the causes of<br />

the abnormality.<br />

Ex. High temperature : Check the<br />

cooling fan.<br />

Incomplete grounding : Additionally<br />

ground.<br />

Investigation details Investigation results Remedies<br />

1 Check the alarm No. "80" items.<br />

Alarm No.<br />

8A<br />

HR unit HSS communication error (SUB):<br />

The MDS-B-HR connected to the machine side detected an error in the<br />

communication with the absolute position linear scale.<br />

Investigation details Investigation results Remedies<br />

1 Check the alarm No. "80" items.<br />

Alarm check timing<br />

f1 f2 f3 f4<br />

– ◦ ◦ ◦<br />

Alarm check timing<br />

f1 f2 f3 f4<br />

– ◦ ◦ ◦<br />

Alarm No.<br />

8C<br />

HR unit scale judgment error (SUB):<br />

The MDS-B-HR connected to the machine side could not judge the analog frequency<br />

of the connected linear scale.<br />

Investigation details Investigation results Remedies<br />

1 Check the alarm No. "83" items.<br />

Alarm check timing<br />

f1 f2 f3 f4<br />

– ◦ ◦ ◦<br />

Alarm No.<br />

8D<br />

HR unit CPU error (SUB):<br />

The CPU of the MDS-B-HR connected to the machine side is not operating correctly.<br />

Investigation details Investigation results Remedies<br />

1 Check the alarm No. "84" items.<br />

Alarm check timing<br />

f1 f2 f3 f4<br />

◦ – – –<br />

Alarm No.<br />

8E<br />

HR unit data error (SUB):<br />

An error was detected in the analog interpolation data of the MDS-B-HR connected to<br />

the machine side.<br />

Investigation details Investigation results Remedies<br />

1 Check the alarm No. "80" items.<br />

Alarm check timing<br />

f1 f2 f3 f4<br />

– ◦ ◦ ◦<br />

Alarm No.<br />

8F<br />

HR unit pole error (SUB):<br />

An error was detected in the pole data of the MDS-B-HR connected to the machine<br />

side.<br />

Investigation details Investigation results Remedies<br />

1 Check the alarm No. "86" items.<br />

Alarm check timing<br />

f1 f2 f3 f4<br />

– ◦ ◦ ◦<br />

8 - 36


8. Troubleshooting<br />

Alarm No.<br />

93<br />

Absolute position fluctuation:<br />

A fluctuation exceeding the tolerable value was detected in the absolute position<br />

detected when the CNC power is turned ON.<br />

Investigation details Investigation results Remedies<br />

1 Check whether the connector is<br />

disconnected from the unit side or<br />

detector side.<br />

The connector is disconnected (or loose).<br />

Correctly install.<br />

The connector is not disconnected. Investigate item 2.<br />

2 Turn the power OFF, and check the There is a connection fault.<br />

connection of the detector cables with a<br />

tester.<br />

3 Check the repeatability.<br />

The alarm is not repeated.<br />

Carry out zero point return again.<br />

The alarm is always repeated.<br />

Or, the state returns to normal once, but<br />

then is repeated sometimes.<br />

4 Connect with another normal axis unit<br />

and check whether the fault is on the unit<br />

side.<br />

5 Check if there is any abnormality in the<br />

unit's ambient environment.<br />

(Ex. Ambient temperature, noise,<br />

grounding)<br />

Alarm No.<br />

9B<br />

Alarm check timing<br />

f1 f2 f3 f4<br />

– ◦ – –<br />

Replace the communication cable.<br />

The connection is normal. Investigate item 3.<br />

The alarm is on the unit side.<br />

The alarm occurs even when the unit is<br />

replaced.<br />

No abnormality is found in particular.<br />

An abnormality was found in the ambient<br />

environment.<br />

If no abnormality is found with investigation<br />

item 5, continue use.<br />

Investigate item 4.<br />

Replace the drive unit.<br />

Investigate item 5.<br />

Pole shift warning:<br />

An error was detected in the pole shift amount set in servo parameter SV028.<br />

Replace the motor (detector).<br />

Take remedies according to the causes of<br />

the abnormality.<br />

Ex. High temperature : Check the<br />

cooling fan.<br />

Incomplete grounding : Additionally<br />

ground.<br />

Investigation details Investigation results Remedies<br />

1 Check whether the MDS-B-MD system is The system is not MDS-B-MD. Investigate item 4.<br />

being used. The system is MDS-B-MD. Investigate item 2.<br />

2 Check whether the warning occurred at<br />

the first movement after setting the servo<br />

parameter (SV028).<br />

3 Carry out DC excitation again, and check<br />

the servo parameter (SV028) setting<br />

value.<br />

4 Wiggle the connectors by hand to check<br />

whether the MDS-B-HR connectors (unit<br />

side, HR side and MD side) are<br />

disconnected.<br />

5 Turn the power OFF, and check the<br />

connection of the detector cables<br />

(between drive unit I/F units and<br />

between I/F unit and pole detector) with<br />

a tester.<br />

6 Connect with another normal axis unit (or<br />

MDS-B-HR) and check whether the fault<br />

is on the unit side or MDS-B-HR<br />

(MDS-B-MD) side.<br />

7 Check if there is any abnormality in the<br />

unit's ambient environment.<br />

(Ex. Ambient temperature, noise,<br />

grounding)<br />

Movement is possible several times<br />

without a warning.<br />

The warning occurred at the first<br />

movement.<br />

The SV028 setting value is the same with<br />

the previous and current DC excitation.<br />

The SV028 setting value is different with<br />

the previous and current DC excitation.<br />

The connector is disconnected (or loose).<br />

Investigate item 4.<br />

Investigate item 3.<br />

Investigate item 4.<br />

Alarm check timing<br />

f1 f2 f3 f4<br />

– – ◦ –<br />

Set SV028 to the current DC excitation<br />

value.<br />

↓<br />

If the problem is not resolved, check<br />

investigation item 4.<br />

Correctly install.<br />

The connector is not disconnected. Investigate item 5.<br />

There is a connection fault.<br />

Replace the communication cable.<br />

The connection is normal. Investigate item 6.<br />

The alarm is on the unit side.<br />

The alarm is on the MDS-B-HR<br />

(MDS-B-MD) side.<br />

No abnormality is found in particular.<br />

An abnormality was found in the ambient<br />

environment.<br />

Replace the drive unit.<br />

Investigate item 7.<br />

Replace MDS-B-HR (linear scale or<br />

MDS-B-MD).<br />

Take remedies according to the causes of<br />

the abnormality.<br />

Ex. High temperature : Check the<br />

cooling fan.<br />

Incomplete grounding : Additionally<br />

ground.<br />

8 - 37


8. Troubleshooting<br />

Alarm No.<br />

9C<br />

HR unit pole warning:<br />

An error was detected in the pole position data of the MDS-B-HR connected to the<br />

MAIN side after passing the Z phase.<br />

Investigation details Investigation results Remedies<br />

1 Check the alarm No. "86" items.<br />

Alarm check timing<br />

f1 f2 f3 f4<br />

– ◦ ◦ ◦<br />

Alarm No.<br />

9D<br />

HR unit pole warning (SUB):<br />

An error was detected in the pole position data of the MDS-B-HR connected to the<br />

SUB side after passing the Z phase.<br />

Investigation details Investigation results Remedies<br />

1 Check the alarm No. "86" items.<br />

Alarm No.<br />

E1<br />

Overload warning:<br />

An level 80% of the overload alarm 1 was detected.<br />

Investigation details Investigation results Remedies<br />

1 Check whether the motor is hot.<br />

2 Check whether there is a problem during<br />

acceleration/deceleration operation.<br />

Alarm check timing<br />

f1 f2 f3 f4<br />

– ◦ ◦ ◦<br />

Alarm check timing<br />

f1 f2 f3 f4<br />

– ◦ ◦ ◦<br />

The motor is not hot.<br />

Check the alarm No. "50" items.<br />

The motor is hot. Investigate item 2.<br />

Operation is possible without problem. 1. If possible, ease the operation pattern.<br />

2. If an alarm does not occur with<br />

continued operation, continue in this<br />

state.<br />

There is a problem in the operation.<br />

Check investigation items 3 and following<br />

of alarm No. "50".<br />

Alarm No.<br />

E4<br />

Parameter error warning:<br />

A parameter exceeding the setting range was set.<br />

Investigation details Investigation results Remedies<br />

1 Set the correct values following the<br />

parameter adjustment procedures.<br />

Alarm check timing<br />

f1 f2 f3 f4<br />

– ◦ ◦ –<br />

Alarm No.<br />

E7<br />

CNC emergency stop:<br />

An emergency stop signal is being sent from the CNC, or an alarm is occurring in<br />

another axis.<br />

Investigation details Investigation results Remedies<br />

1 Check whether the CNC side emergency The emergency stop state is entered. Investigate item 2.<br />

stop switch has been applied. Emergency stop has been canceled. Investigate item 3.<br />

2 Cancel the emergency stop.<br />

3 Check whether the terminator or battery<br />

unit is connected, or whether these are<br />

loose.<br />

Operation starts normally.<br />

Normal<br />

"E7" remains displayed. Investigate item 3.<br />

Pinpoint the cause of the fault.<br />

Correct the fault.<br />

Normal<br />

Alarm check timing<br />

f1 f2 f3 f4<br />

– ◦ ◦ ◦<br />

Check the alarm No. "34" items.<br />

CAUTION<br />

Do not drive the motor with a drive unit having a capacity exceeding the motor<br />

capacity. The motor could be demagnetized.<br />

8 - 38


8. Troubleshooting<br />

8-4 Spindle system troubleshooting<br />

Use the following explanation to diagnose faults (symptoms) not described in "8-3 Protective functions<br />

list of units" when using a spindle drive unit and spindle motor combination.<br />

8-4-1 Introduction<br />

If any trouble occurs in the control unit, first check as many of the following matters as possible. Then,<br />

inspect and repair the unit following the explanations in this section.<br />

These following matters are also helpful information when contacting the <strong>Mitsubishi</strong> Service Center.<br />

NOTICE<br />

Do not perform a megger test (insulation resistance measurement) on the drive unit's<br />

control circuit.<br />

Matters to confirm when trouble occurs<br />

1. Check the unit's 7-segment display or CNC Diagnosis screen to find the displayed alarm and<br />

the alarms that have occurred in the past. (Refer to section "8-3 Protective functions list of<br />

units".)<br />

2. Can the fault or error be repeated?<br />

3. Is the ambient temperature and inner-panel temperature normal?<br />

4. Was the unit accelerating, decelerating or in constant speed operation? What was the speed?<br />

5. Does the symptom change during forward run or reverse run?<br />

6. Was there an instantaneous power failure?<br />

7. Does the fault occur during specific operations or at a specific command?<br />

8. How often does the fault occur?<br />

9. Does the fault occur when a load is applied or removed?<br />

10. Were remedial measures, etc., taken?<br />

11. How many years has the system been operating?<br />

12. Is the power voltage correct?<br />

13. Do the symptoms change greatly depending on the time zone?<br />

8-4-2 First step<br />

Check the following matters as the first step of troubleshooting.<br />

(1) Check the power voltage. The voltage drop must be within the specified value.<br />

(Example) • The voltage drops at a set time each day.<br />

• The voltage drops when starting a specific machine.<br />

(2) Are the unit's peripheral control functions normal?<br />

(Example) • Are the NC and sequence circuits, etc., normal?<br />

• Visually check the wiring, etc., for abnormalities.<br />

(3) Is the control unit's peripheral temperature (inner-panel temperature) 55°C or less?<br />

(4) Are there any abnormalities on the outside of the unit?<br />

(Example) • Loose connection connectors, damage, entry of foreign matter, etc.<br />

By sufficiently checking the above state, a general idea on the faulty section can be grasped.<br />

8 - 39


8. Troubleshooting<br />

The MDS-CH-SP[ ] Series errors are largely categorized into the following groups.<br />

The control unit power was turned ON for the first time, but normal operation was not<br />

possible. (I)<br />

Fault class A<br />

The control unit operated normally but suddenly became inoperable. (II)<br />

The unit does not operate normally some times. The orientation stop position is<br />

deviated. An alarm is displayed. (III)<br />

Unit fault<br />

Regenerative resistance unit/regenerative resistance error<br />

Spindle drive unit error<br />

Fault class B Detector error Speed detection encoder error<br />

1024p/rev encoder error<br />

Error in parameters or transmission data from NC<br />

Power supply error<br />

Motor error<br />

Other errors (incorrect input signal conditions, broken cables)<br />

8-4-3 Second step<br />

Fault class I Investigation items Remedies<br />

The control unit power<br />

was turned ON for the<br />

first time, but normal<br />

operation was not<br />

possible.<br />

The control unit is tested before shipment. Normal operation when the<br />

power is turned ON for the first time may not be possible due to:<br />

1<br />

2<br />

The unit was bumped against<br />

something and damaged during<br />

operation or installation.<br />

Incorrect or broken external wiring or<br />

sequence.<br />

Is the cable broken?<br />

Is the ground wire correctly wired?<br />

Note that the power phase order is<br />

irrelevant.<br />

Investigate and remedy<br />

according to (2).<br />

Check that the unit's LED is ON.<br />

Check the operation sequence.<br />

3 Are the parameter settings correct? Check the parameters.<br />

Check the UVW wiring.<br />

4 The motor speed does not increase. Check the detector output<br />

waveform for the built-in type.<br />

Operation is normal when motor is run<br />

5 Is the load too heavy?<br />

as a single unit.<br />

Orientation stop is incorrect (over-<br />

6 Adjust the orientation.<br />

travels, etc.)<br />

7<br />

The C-axis, synchronous tap and<br />

spindle synchronization are incorrect.<br />

Adjust and check the detector<br />

waveform.<br />

8 The unit's LED is displayed. Check section "8-3".<br />

8 - 40


8. Troubleshooting<br />

8-4-4 When there is no alarm or warning<br />

(1) No abnormality is displayed, but the motor does not rotate.<br />

1<br />

Investigation item Investigation results Remedies<br />

Check the wiring around the<br />

spindle drive unit.<br />

Also check for loosening in the<br />

terminal screws and disconnections,<br />

etc.<br />

2 Check the input voltage.<br />

3<br />

4<br />

Check all of the spindle<br />

parameters.<br />

The wiring is incorrect, the<br />

screws are loose, or the cables<br />

are disconnected.<br />

No particular problems found.<br />

The voltage is exceeding the<br />

specification value.<br />

The voltage is within the<br />

specification value.<br />

The correct values are not set.<br />

The correct values are set.<br />

Check the input signals. The signals are not input or the<br />

• Are the READY, forward run sequence is incorrect.<br />

and reverse run signals input? The orientation command is<br />

• In particular, the forward run input.<br />

and reverse run signals must be<br />

input at least one second after<br />

READY is turned ON.<br />

No particular problems found.<br />

• Check whether the forward run<br />

and reverse run signals are<br />

turned ON simultaneously.<br />

5 Check the speed command.<br />

The speed command is not input<br />

correctly.<br />

The speed command is input<br />

correctly.<br />

Correctly wire. Correctly tighten<br />

the screws. Replace the<br />

cables.<br />

Investigate investigation item 2<br />

and remedy.<br />

Restore the power to the<br />

correct state.<br />

Investigate investigation item 3<br />

and remedy.<br />

Set the correct values.<br />

Investigate investigation item 4<br />

and remedy.<br />

Correct the input signals.<br />

Investigate investigation item 5<br />

and remedy.<br />

Input the correct speed<br />

command.<br />

Replace the unit.<br />

(2) No fault is displayed, but the motor only rotates slowly, or a large noise is heard from the motor.<br />

1<br />

Investigation item Investigation results Remedies<br />

Check the U, V and W wiring<br />

between the spindle drive unit<br />

and motor.<br />

2 Check the input voltage.<br />

3 Check the speed command.<br />

4<br />

Tug on the connector by hand to<br />

check whether the speed detector<br />

connector (spindle drive unit side<br />

and speed detector side) is loose.<br />

The wires are not connected<br />

correctly.<br />

The wires are connected<br />

correctly.<br />

One of the three phases is not<br />

within the specification value.<br />

No particular problems found.<br />

The speed command is not input<br />

correctly.<br />

The speed command is input<br />

correctly.<br />

The connector is disconnected<br />

(or loose).<br />

The connector is not<br />

disconnected (or loose).<br />

Correctly connect.<br />

Investigate investigation item 2<br />

and remedy.<br />

Restore the power to the<br />

correct state.<br />

Investigate investigation item 3<br />

and remedy.<br />

Investigate investigation item 4<br />

and remedy.<br />

Correctly connect the<br />

connector.<br />

Investigate investigation item 5<br />

and remedy.<br />

Replace the detector cable.<br />

Correct the connection.<br />

Turn the power OFF, and check The connection is faulty or<br />

5 the connection of the speed disconnected.<br />

detector cable with a tester. The connection is normal. Replace the unit.<br />

8 - 41


8. Troubleshooting<br />

(3) The rotation speed command and actual rotation speed do not match.<br />

Investigation item Investigation results Remedies<br />

1 Check the speed command.<br />

2<br />

3<br />

Check whether there is slipping<br />

between the motor and spindle.<br />

(When connected with a belt or<br />

clutch.)<br />

Check the spindle parameters<br />

(SP034, SP040, SP017, SP257<br />

and following).<br />

The speed command is not input<br />

correctly.<br />

The speed command is correct.<br />

There is slipping.<br />

No particular problems found.<br />

The correct values are not set.<br />

The correct values are set.<br />

(4) The starting time is long or has increased in length.<br />

Input the correct speed<br />

command.<br />

Investigate investigation item 2<br />

and remedy.<br />

Repair the machine side.<br />

Investigate investigation item 3<br />

and remedy.<br />

Set the correct values.<br />

Replace the spindle drive unit.<br />

1<br />

2<br />

3<br />

Investigation item Investigation results Remedies<br />

Check whether the friction torque<br />

has increased.<br />

Manually rotate the motor<br />

bearings and check the<br />

movement.<br />

The friction torque has increased. Repair the machine side.<br />

Investigate investigation item 2<br />

No particular problems found.<br />

and remedy.<br />

The bearings do not rotate<br />

smoothly.<br />

The bearings rotate smoothly.<br />

Replace the spindle motor.<br />

Investigate investigation item 3<br />

and remedy.<br />

Do not input this signal.<br />

Check whether the torque limit The signal has been input.<br />

signal has been input. The signal is not input. Replace the unit.<br />

(5) The motor stops during cutting.<br />

1<br />

2<br />

Investigation item Investigation results Remedies<br />

Check the load rate during<br />

cutting.<br />

Investigate the same matters as<br />

item (4), and remedy.<br />

The load meter sways past<br />

120% during cutting.<br />

No particular problems found.<br />

Reduce the load.<br />

Investigate investigation item 2<br />

and remedy.<br />

8 - 42


8. Troubleshooting<br />

(6) The vibration and noise (gear noise), etc., are large.<br />

1<br />

2<br />

Investigation item Investigation results Remedies<br />

Check the machine's dynamic<br />

balance. (Coast from the<br />

maximum speed.)<br />

Check whether there is a<br />

resonance point in the machine.<br />

(Coast from the maximum<br />

speed.)<br />

3 Check the machine's backlash.<br />

4<br />

5<br />

The same noise is heard during<br />

coasting.<br />

No particular problems found.<br />

Vibration and noise increase at a<br />

set rotation speed during<br />

coasting.<br />

No particular problems found.<br />

The backlash is great.<br />

No particular problems found.<br />

Symptoms decrease when<br />

setting value is set to approx.<br />

Check the spindle parameter half.<br />

SP022 (VGNP1), SP023<br />

(VGNI1), SP056 (PYVR) settings. The symptoms do not change<br />

even when the above value is<br />

set.<br />

Tug on the connector by hand to<br />

check whether the speed detector<br />

connector (spindle drive unit side<br />

and speed detector side) is loose.<br />

The connector is disconnected<br />

(or loose).<br />

The connector is not<br />

disconnected (or loose).<br />

Repair the machine side.<br />

Investigate investigation item 2<br />

and remedy.<br />

Repair the machine side.<br />

Investigate investigation item 3<br />

and remedy.<br />

Repair the machine side.<br />

Investigate investigation item 4<br />

and remedy.<br />

Change the setting value.<br />

Note that the impact response<br />

will drop.<br />

Return the setting values to the<br />

original values.<br />

Investigate investigation item 5<br />

and remedy.<br />

Correctly connect the<br />

connector.<br />

Investigate investigation item 6<br />

and remedy.<br />

Replace the detector cable.<br />

Correct the connection.<br />

Turn the power OFF, and check The connection is faulty or<br />

6 the connection of the speed disconnected.<br />

detector cable with a tester. The connection is normal. Replace the unit.<br />

(7) The spindle coasts during deceleration.<br />

1<br />

Investigation item Investigation results Remedies<br />

Check whether there is slipping<br />

between the motor and spindle.<br />

(When connected with a belt or<br />

clutch.)<br />

There is slipping.<br />

No particular problems found.<br />

Repair the machine side.<br />

Replace the unit.<br />

8 - 43


8. Troubleshooting<br />

(8) The rotation does not stabilize.<br />

Investigation item Investigation results Remedies<br />

1<br />

2<br />

3<br />

4<br />

The rotation stabilizes when the<br />

settings values are both set to<br />

Check the spindle parameter approx. double.<br />

SP022 (VGNP1), SP023 (VGNI1)<br />

settings.<br />

The symptoms do not change<br />

even when the above value is<br />

set.<br />

Tug on the connector by hand to<br />

check whether the speed detector<br />

connector (spindle drive unit side<br />

and speed detector side) is loose.<br />

Turn the power OFF, and check<br />

the connection of the speed<br />

detector cable with a tester.<br />

(Especially check the shield<br />

wiring.)<br />

Investigate the wiring and<br />

installation environment.<br />

1) Is the ground correctly<br />

connected?<br />

2) Are there any noise-generating<br />

devices near the unit?<br />

The connector is disconnected<br />

(or loose).<br />

The connector is not<br />

disconnected (or loose).<br />

The connection is faulty or<br />

disconnected.<br />

The connection is normal.<br />

Change the setting value.<br />

Note that the gear noise may<br />

increase.<br />

Return the setting values to the<br />

original values.<br />

Investigate investigation item 2<br />

and remedy.<br />

Correctly connect the<br />

connector.<br />

Investigate investigation item 3<br />

and remedy.<br />

Replace the detector cable.<br />

Correct the connection.<br />

Investigate investigation item 4<br />

and remedy.<br />

1) The grounding is incomplete. Correctly ground.<br />

2) The alarm occurs easily<br />

when a specific device<br />

operates.<br />

No particular problems found.<br />

Use noise measures on the<br />

device described on the left.<br />

Replace the spindle drive unit.<br />

(9) The speed does not rise above a set level.<br />

Investigation item Investigation results Remedies<br />

1<br />

2<br />

3<br />

4<br />

5<br />

Check the speed command.<br />

Check whether the override input<br />

is input from the machine<br />

operation panel.<br />

Check whether the load has<br />

suddenly become heavier.<br />

Manually rotate the motor<br />

bearings and check the<br />

movement.<br />

Tug on the connector by hand to<br />

check whether the speed detector<br />

connector (spindle drive unit side<br />

and speed detector side) is loose.<br />

Turn the power OFF, and check<br />

the connection of the speed<br />

detector cable with a tester.<br />

(Especially check the shield<br />

wiring.)<br />

The speed command is not input<br />

correctly.<br />

The speed command is input<br />

correctly.<br />

The load has become heavier.<br />

No particular problems found.<br />

The bearings do not rotate<br />

smoothly.<br />

The bearings rotate smoothly.<br />

The connector is disconnected<br />

(or loose).<br />

The connector is not<br />

disconnected (or loose).<br />

The connection is faulty or<br />

disconnected.<br />

The waveform is normal.<br />

Input the correct speed<br />

command.<br />

Investigate investigation item 2<br />

and remedy.<br />

Repair the machine side.<br />

Investigate investigation item 3<br />

and remedy.<br />

Replace the spindle motor.<br />

Investigate investigation item 4<br />

and remedy.<br />

Correctly connect the<br />

connector.<br />

Investigate investigation item 5<br />

and remedy.<br />

Replace the detector cable.<br />

Correct the connection.<br />

Replace the spindle drive unit.<br />

8 - 44


9. Characteristics<br />

9-1 Overload protection characteristics.................................................................................................... 9-2<br />

9-1-1 Servomotor (HC-H series)........................................................................................................... 9-2<br />

9-1-2 Linear servomotor (LM-NP Series).............................................................................................. 9-9<br />

9-2 Duty characteristics.......................................................................................................................... 9-10<br />

9-3 Magnetic brake characteristics......................................................................................................... 9-14<br />

9-4 Dynamic brake characteristics ......................................................................................................... 9-17<br />

9-4-1 Deceleration torque ................................................................................................................... 9-17<br />

9-4-2 Determining the coasting amount with emergency stop ........................................................... 9-18<br />

9-5 Vibration class .................................................................................................................................. 9-20<br />

9 - 1


9. Characteristics<br />

9-1 Overload protection characteristics<br />

The servo drive unit has an electronic thermal relay to protect the servomotor and servo drive unit from<br />

overloads. The operation characteristics of the electronic thermal relay are shown below when standard<br />

parameters (SV021=60, SV022=150) are set.<br />

If overload operation over the electronic thermal relay protection curve shown below is carried out,<br />

overload 1 (alarm 50) will occur. If the maximum current is commanded at 95% or higher continuously<br />

for one second or more due to a machine collision, etc., overload 2 (alarm 51) will occur.<br />

9-1-1 Servomotor (HC-H series)<br />

(1) Motor HC-H52<br />

10000<br />

1000<br />

"Overload 1" when rotating :<br />

"Overload 1" when stopped :<br />

Maximum stall :<br />

Operation time (s)<br />

100<br />

10<br />

1<br />

Overload 2<br />

0.1<br />

0 50 100 150 200 250 300 350 400 450 500<br />

Motor current (stall rated current ratio)<br />

(2) Motor HC-H53<br />

10000<br />

1000<br />

"Overload 1" when rotating :<br />

"Overload 1" when stopped :<br />

Maximum stall :<br />

Operation time (s)<br />

100<br />

10<br />

1<br />

Overload 2<br />

0.1<br />

0 50 100 150 200 250 300 350 400 450 500<br />

Motor current (stall rated current ratio)<br />

9 - 2


9. Characteristics<br />

(3) Motor HC-H102<br />

10000<br />

1000<br />

"Overload 1" when rotating :<br />

"Overload 1" when stopped :<br />

Maximum stall :<br />

Operation time (s)<br />

100<br />

10<br />

1<br />

Overload 2<br />

0.1<br />

0 50 100 150 200 250 300 350 400 450 500<br />

Motor current (stall rated current ratio)<br />

(4) Motor HC-H103<br />

10000<br />

1000<br />

"Overload 1" when rotating :<br />

"Overload 1" when stopped :<br />

Maximum stall :<br />

Operation time (s)<br />

100<br />

10<br />

1<br />

Overload 2<br />

0.1<br />

0 50 100 150 200 250 300 350 400 450 500<br />

Motor current (stall rated current ratio)<br />

(5) Motor HC-H152<br />

10000<br />

1000<br />

"Overload 1" when rotating :<br />

"Overload 1" when stopped :<br />

Maximum stall :<br />

Operation time (s)<br />

100<br />

10<br />

1<br />

Overload 2<br />

0.1<br />

0 50 100 150 200 250 300 350 400 450 500<br />

Motor current (stall rated current ratio)<br />

9 - 3


9. Characteristics<br />

(6) Motor HC-H153<br />

10000<br />

1000<br />

"Overload 1" when rotating :<br />

"Overload 1" when stopped :<br />

Maximum stall :<br />

Operation time (s)<br />

100<br />

10<br />

1<br />

Overload 2<br />

0.1<br />

0 50 100 150 200 250 300 350 400 450 500<br />

Motor current (stall rated current ratio)<br />

(7) Motor HC-H202<br />

10000<br />

1000<br />

"Overload 1" when rotating :<br />

"Overload 1" when stopped :<br />

Maximum stall :<br />

Operation time (s)<br />

100<br />

10<br />

1<br />

Overload 2<br />

0.1<br />

0 50 100 150 200 250 300 350 400 450 500<br />

Motor current (stall rated current ratio)<br />

(8) Motor HC-H203<br />

10000<br />

1000<br />

"Overload 1" when rotating :<br />

"Overload 1" when stopped :<br />

Maximum stall :<br />

Operation time (s)<br />

100<br />

10<br />

1<br />

Overload 2<br />

0.1<br />

0 50 100 150 200 250 300 350 400 450 500<br />

Motor current (stall rated current ratio)<br />

9 - 4


9. Characteristics<br />

(9) Motor HC-H352<br />

10000<br />

1000<br />

"Overload 1" when rotating :<br />

"Overload 1" when stopped :<br />

Maximum stall :<br />

Operation time (s)<br />

100<br />

10<br />

1<br />

Overload 2<br />

0.1<br />

0 50 100 150 200 250 300 350 400 450 500<br />

Motor current (stall rated current ratio)<br />

(10) Motor HC-H353<br />

10000<br />

1000<br />

"Overload 1" when rotating :<br />

"Overload 1" when stopped :<br />

Maximum stall :<br />

Operation time (s)<br />

100<br />

10<br />

1<br />

Overload 2<br />

0.1<br />

0 50 100 150 200 250 300 350 400 450 500<br />

Motor current (stall rated current ratio)<br />

(11) Motor HC-H452<br />

10000<br />

1000<br />

"Overload 1" when rotating :<br />

"Overload 1" when stopped :<br />

Maximum stall :<br />

Operation time (s)<br />

100<br />

10<br />

1<br />

Overload 2<br />

0.1<br />

0 50 100 150 200 250 300 350 400 450 500<br />

Motor current (stall rated current ratio)<br />

9 - 5


9. Characteristics<br />

(12) Motor HC-H453<br />

10000<br />

1000<br />

"Overload 1" when rotating :<br />

"Overload 1" when stopped :<br />

Maximum stall :<br />

Operation time (s)<br />

100<br />

10<br />

1<br />

Overload 2<br />

0.1<br />

0 50 100 150 200 250 300 350 400 450 500<br />

Motor current (stall rated current ratio)<br />

(13) Motor HC-H702<br />

10000<br />

1000<br />

"Overload 1" when rotating :<br />

"Overload 1" when stopped :<br />

Maximum stall :<br />

Operation time (s)<br />

100<br />

10<br />

1<br />

Overload 2<br />

0.1<br />

0 50 100 150 200 250 300 350 400 450 500<br />

Motor current (stall rated current ratio)<br />

(14) Motor HC-H703<br />

10000<br />

Operation time (s)<br />

1000<br />

100<br />

10<br />

1<br />

Overload 2<br />

"Overload 1" when rotating :<br />

"Overload 1" when stopped :<br />

Maximum stall :<br />

0.1<br />

0 50 100 150 200 250 300 350 400 450 500<br />

Motor current (stall rated current ratio)<br />

9 - 6


9. Characteristics<br />

(15) Motor HC-H902<br />

10000<br />

1000<br />

"Overload 1" when rotating :<br />

"Overload 1" when stopped :<br />

Maximum stall :<br />

Operation time (s)<br />

100<br />

10<br />

1<br />

Overload 2<br />

0.1<br />

0 50 100 150 200 250 300 350 400 450 500<br />

Motor current (stall rated current ratio)<br />

(16) Motor HC-H903<br />

10000<br />

1000<br />

"Overload 1" when rotating :<br />

"Overload 1" when stopped :<br />

Maximum stall :<br />

Operation time (s)<br />

100<br />

10<br />

1<br />

Overload 2<br />

0.1<br />

0 50 100 150 200 250 300 350 400 450 500<br />

Motor current (stall rated current ratio)<br />

(17) Motor HC-H1102<br />

10000<br />

1000<br />

"Overload 1" when rotating :<br />

"Overload 1" when stopped :<br />

Maximum stall :<br />

Operation time (s)<br />

100<br />

10<br />

1<br />

Overload 2<br />

0.1<br />

0 50 100 150 200 250 300 350 400 450 500<br />

Motor current (stall rated current ratio)<br />

9 - 7


9. Characteristics<br />

(18) Motor HC-H1103<br />

10000<br />

1000<br />

"Overload 1" when rotating :<br />

"Overload 1" when stopped :<br />

Maximum stall :<br />

Operation time (s)<br />

100<br />

10<br />

1<br />

Overload 2<br />

0.1<br />

0 50 100 150 200 250 300 350 400 450 500<br />

Motor current (stall rated current ratio)<br />

(19) Motor HC-H1502<br />

10000<br />

1000<br />

"Overload 1" when rotating :<br />

"Overload 1" when stopped :<br />

Maximum stall :<br />

Operation time (s)<br />

100<br />

10<br />

1<br />

Overload 2<br />

0.1<br />

0 50 100 150 200 250 300 350 400 450 500<br />

Motor current (stall rated current ratio)<br />

9 - 8


9. Characteristics<br />

9-1-2 Linear servomotor (LM-NP Series)<br />

(1) LM-NP5G60P (Natural-cooled type)<br />

10000<br />

1000<br />

"Overload 1" when rotating :<br />

"Overload 1" when stopped :<br />

Maximum stall :<br />

Operation time (s)<br />

100<br />

10<br />

1<br />

0.1<br />

0 50 100 150 200 250 300 350 400 450 500<br />

Motor current (stall rated current ratio)<br />

The maximum stall current is 732.<br />

(2) LM-NP5G60P (Oil-cooled type)<br />

10000<br />

1000<br />

100<br />

"Overload 1" when rotating :<br />

"Overload 1" when stopped :<br />

Maximum stall :<br />

Operation time (s)<br />

10<br />

1<br />

0.1<br />

0 50 100 150 200 250 300 350 400 450 500<br />

Motor current (stall rated current ratio)<br />

9 - 9


9. Characteristics<br />

9-2 Duty characteristics<br />

The duty drive characteristics are calculated from the motor's armature winding temperature rise<br />

element and heat time constant. These characteristics express the output limit characteristics for an<br />

independently rotating motor. The motor's thermal protection will activate and a motor overheat (ALM46)<br />

will be detected if this limit is exceeded.<br />

In the actual servo system, the electronic thermal protection is also controlled with software operations<br />

in the servo amplifier. Thus, these characteristics may be limited by the servo amplifier.<br />

Torque percent<br />

t1<br />

t0<br />

t1 : ON time<br />

Duty percent = t1<br />

t0<br />

× 100 (%)<br />

(1) Servomotor (HC-H series)<br />

100<br />

80<br />

HC-H52<br />

Torque トルクパーセント( percent (current 電 流 パーセント) percent)<br />

105%<br />

Reference<br />

110%<br />

characteristics data<br />

100<br />

80<br />

HC-H53<br />

Torque トルクパーセント( percent 電 (current 流 パーセント) percent)<br />

105%<br />

Reference<br />

110%<br />

characteristics data<br />

デューティーパーセント [%]<br />

Duty percent [%]<br />

60<br />

40<br />

20<br />

180%<br />

200%<br />

250%<br />

120%<br />

130%<br />

140%<br />

160%<br />

デューティーパーセント [%]<br />

Duty percent [%]<br />

60<br />

40<br />

20<br />

180%<br />

200%<br />

250%<br />

120%<br />

130%<br />

140%<br />

160%<br />

300%<br />

0<br />

0.1 1. 10. 100.<br />

ON time オン 時 間 [min]<br />

100<br />

80<br />

HC-H102<br />

Torque percent (current percent)<br />

トルクパーセント( 電 流 パーセント)<br />

105%<br />

Reference<br />

characteristics data<br />

110%<br />

300%<br />

0<br />

0.1 1. 10. 100.<br />

ON オン time 時 間 [min]<br />

100<br />

80<br />

HC-H103<br />

Torque percent (current percent)<br />

トルクパーセント( 電 流 パーセント)<br />

105%<br />

Reference<br />

characteristics data<br />

110%<br />

デューティーパーセント [%]<br />

Duty percent [%]<br />

60<br />

40<br />

20<br />

180%<br />

200%<br />

250%<br />

120%<br />

130%<br />

140%<br />

160%<br />

デューティーパーセント [%]<br />

Duty percent [%]<br />

60<br />

40<br />

20<br />

180%<br />

200%<br />

250%<br />

120%<br />

130%<br />

140%<br />

160%<br />

300%<br />

0<br />

0.1 1. 10. 100.<br />

ON time オン 時 間 [min]<br />

300%<br />

0<br />

0.1 1. ON time [min] 10. 100.<br />

オン 時 間 [min]<br />

9 - 10


9. Characteristics<br />

100<br />

HC-H152<br />

Torque percent トルクパーセント( (current 電 流 パーセント) percent)<br />

100<br />

HC-H153<br />

Torque トルクパーセント( percent (current 電 流 パーセント) percent)<br />

80<br />

105%<br />

110%<br />

Reference<br />

characteristics data<br />

80<br />

105%<br />

110%<br />

Reference<br />

characteristics data<br />

デューティーパーセント [%]<br />

Duty percent [%]<br />

60<br />

40<br />

20<br />

180%<br />

200%<br />

250%<br />

120%<br />

130%<br />

140%<br />

160%<br />

デューティーパーセント [%]<br />

Duty percent [%]<br />

60<br />

40<br />

20<br />

180%<br />

200%<br />

250%<br />

120%<br />

130%<br />

140%<br />

160%<br />

300%<br />

0<br />

0.1 1. 10. 100.<br />

ON time オン 時 間 [min]<br />

300%<br />

0<br />

0.1 1. 10. 100.<br />

ON time オン 時 間 [min]<br />

100<br />

80<br />

HC-H202<br />

Torque トルクパーセント( percent (current 電 流 パーセント) percent)<br />

105%<br />

Reference<br />

characteristics data<br />

110%<br />

100<br />

80<br />

HC-H203<br />

Torque トルクパーセント( percent (current 電 流 パーセント) percent)<br />

105%<br />

Reference<br />

characteristics data<br />

110%<br />

デューティーパーセント [%]<br />

Duty percent [%]<br />

60<br />

40<br />

20<br />

180%<br />

200%<br />

250%<br />

120%<br />

130%<br />

140%<br />

160%<br />

デューティーパーセント [%]<br />

Duty percent [%]<br />

60<br />

40<br />

20<br />

180%<br />

200%<br />

250%<br />

120%<br />

130%<br />

140%<br />

160%<br />

300%<br />

0<br />

0.1 1. 10. 100.<br />

ON time オン 時 間 [min]<br />

300%<br />

0<br />

0.1 1. 10. 100.<br />

ON time オン 時 間 [min]<br />

100<br />

80<br />

105%<br />

110%<br />

HC-H352<br />

Torque トルクパーセント( percent (current 電 流 パーセント) percent)<br />

Reference<br />

characteristics data<br />

100<br />

80<br />

HC-H353<br />

Torque トルクパーセント( percent (current 電 流 パーセント) percent)<br />

105%<br />

Reference<br />

characteristics data<br />

110%<br />

デューティーパーセント [%]<br />

Duty percent [%]<br />

60<br />

40<br />

180%<br />

120%<br />

130%<br />

140%<br />

160%<br />

デューティーパーセント [%]<br />

Duty percent [%]<br />

60<br />

40<br />

180%<br />

120%<br />

130%<br />

140%<br />

160%<br />

20<br />

200%<br />

250%<br />

20<br />

200%<br />

250%<br />

300%<br />

0<br />

0.1 1. 10. 100.<br />

ON time オン 時 間 [min]<br />

300%<br />

0<br />

0.1 1. 10. 100.<br />

ON time オン 時 間 [min] [min]<br />

9 - 11


9. Characteristics<br />

100<br />

80<br />

HC-H452<br />

Torque トルクパーセント( percent (current 電 流 パーセント) percent)<br />

105%<br />

Reference<br />

characteristics data<br />

110%<br />

100<br />

80<br />

HC-H453<br />

Torque percent トルクパーセント( (current 電 流 パーセント) percent)<br />

105%<br />

Reference<br />

characteristics data<br />

110%<br />

デューティーパーセント [%]<br />

Duty percent [%]<br />

60<br />

40<br />

20<br />

180%<br />

200%<br />

250%<br />

120%<br />

130%<br />

140%<br />

160%<br />

デューティーパーセント [%]<br />

Duty percent [%]<br />

60<br />

40<br />

20<br />

180%<br />

200%<br />

250%<br />

120%<br />

130%<br />

140%<br />

160%<br />

300%<br />

0<br />

0.1 1. 10. 100.<br />

ON time オン 時 間 [min]<br />

300%<br />

0<br />

0.1 1. 10. 100.<br />

ON time オン 時 間 [min]<br />

100<br />

80<br />

HC-H702<br />

Torque トルクパーセント( percent (current 電 流 パーセント) percent)<br />

105%<br />

Reference<br />

characteristics data<br />

110%<br />

100<br />

80<br />

HC-H703<br />

Torque トルクパーセント( percent (current 電 流 パーセント) percent)<br />

105%<br />

Reference<br />

characteristics data<br />

110%<br />

デューティーパーセント [%]<br />

Duty percent [%]<br />

60<br />

40<br />

20<br />

180%<br />

200%<br />

250%<br />

120%<br />

130%<br />

140%<br />

160%<br />

デューティーパーセント [%]<br />

Duty percent [%]<br />

60<br />

40<br />

20<br />

180%<br />

200%<br />

250%<br />

120%<br />

130%<br />

140%<br />

160%<br />

300%<br />

0<br />

0.1 1. 10. 100.<br />

ON time オン 時 間 [min]<br />

300%<br />

0<br />

0.1 1. 10. 100.<br />

ON time オン 時 間 [min]<br />

100<br />

80<br />

HC-H902<br />

Torque percent トルクパーセント( (current 電 流 パーセント) percent)<br />

105%<br />

Reference<br />

characteristics data<br />

110%<br />

100<br />

80<br />

HC-H903<br />

Torque percent トルクパーセント( (current 電 流 パーセント) percent)<br />

105%<br />

Reference<br />

characteristics data<br />

110%<br />

デューティーパーセント [%]<br />

Duty percent [%]<br />

60<br />

40<br />

180%<br />

120%<br />

130%<br />

140%<br />

160%<br />

デューティーパーセント [%]<br />

Duty percent [%]<br />

60<br />

40<br />

180%<br />

120%<br />

130%<br />

140%<br />

160%<br />

20<br />

200%<br />

250%<br />

20<br />

200%<br />

250%<br />

300%<br />

0<br />

0.1 1. 10. 100.<br />

ON time オン 時 間 [min]<br />

300%<br />

0<br />

0.1 1. 10. 100.<br />

ON time オン 時 間 [min]<br />

9 - 12


9. Characteristics<br />

100<br />

80<br />

HC-H1102<br />

Torque トルクパーセント( percent 電 (current 流 パーセント) percent)<br />

105%<br />

Reference<br />

characteristics data<br />

110%<br />

100<br />

80<br />

HC-H1103<br />

Torque percent トルクパーセント( (current 電 流 パーセント) percent)<br />

105%<br />

Reference<br />

characteristics data<br />

110%<br />

デューティーパーセント [%]<br />

Duty percent [%]<br />

60<br />

40<br />

20<br />

180%<br />

200%<br />

250%<br />

120%<br />

130%<br />

140%<br />

160%<br />

デューティーパーセント [%]<br />

Duty percent [%]<br />

60<br />

40<br />

20<br />

180%<br />

200%<br />

250%<br />

120%<br />

130%<br />

140%<br />

160%<br />

300%<br />

0<br />

0.1 1. 10. 100.<br />

ON オン time 時 間 [min]<br />

300%<br />

0<br />

0.1 1. 10. 100.<br />

ON time オン 時 間 [min]<br />

(2) Linear servomotor (LM-NP series)<br />

100<br />

LM-NP5G<br />

80<br />

Duty percent (%)<br />

60<br />

40<br />

20<br />

0<br />

LM-NP4G<br />

0.1 1 10 100<br />

ON time (min)<br />

9 - 13


9. Characteristics<br />

9-3 Magnetic brake characteristics<br />

CAUTION<br />

1. The axis will not be mechanically held even when the dynamic brakes are<br />

used. If the machine could drop when the power fails, use a servomotor with<br />

magnetic brakes or provide an external brake mechanism as holding means<br />

to prevent dropping.<br />

2. The magnetic brakes are used for holding, and must not be used for normal<br />

braking. There may be cases when holding is not possible due to the life or<br />

machine structure (when ball screw and servomotor are coupled with a timing<br />

belt, etc.). Provide a stop device on the machine side to ensure safety.<br />

3. When operating the brakes, always turn the servo OFF (or ready OFF). When<br />

releasing the brakes, always confirm that the servo is ON first. Sequence<br />

control considering this condition is possible by using the brake contact<br />

connection terminal (CN20) on the servo drive unit.<br />

4. When the vertical axis drop prevention function is used, the drop of the<br />

vertical axis during an emergency stop can be suppressed to the minimum.<br />

(1) Motor with magnetic brake<br />

(a) Types<br />

The motor with a magnetic brake is set for each motor. The "B" following the standard motor<br />

model stands for the motor with a brake.<br />

(b) Applications<br />

When this type of motor is used for the vertical feed axis in a machining center, etc., slipping<br />

and dropping of the spindle head can be prevented even when the hydraulic balancer's<br />

hydraulic pressure reaches zero when the power turns OFF. When used with a robot, deviation<br />

of the posture when the power is turned OFF can be prevented.<br />

When used for the feed axis of a grinding machine, a double safety measures is formed with<br />

the deceleration stop (dynamic brake stop) during emergency stop, and the risks of colliding<br />

with the grinding stone and scattering can be prevented.<br />

This motor cannot be used for the purposes other than holding and braking during a power<br />

failure (emergency stop). (This cannot be used for normal deceleration, etc.)<br />

(c) Features<br />

1) The magnetic brakes use a DC excitation method, thus:<br />

• The brake mechanism is simple and the reliability is high.<br />

• There is no need to change the brake tap between 50Hz and 60Hz.<br />

• There is no rush current when the excitation occurs, and shock does not occur.<br />

• The brake section is not larger than the motor section.<br />

2) The magnetic brake is built into the motor, and the installation dimensions are the same as<br />

the motor without brake. (Note that the L dimension will be longer in comparison with the<br />

motor with no break. For details, refer to the outline dimension.)<br />

(d) Considerations to safety<br />

1) Using a timing belt<br />

Connecting the motor with magnetic brakes and the load (ball screw, etc.) with a timing<br />

belt as shown on the left below could pose a hazard if the belt snaps. Even if the belt's<br />

safety coefficient is increased, the belt could snap if the tension is too high or if cutting<br />

chips get imbedded. Safety can be maintained by using the method shown on the right<br />

below.<br />

Dangerous!<br />

Safe!<br />

Motor<br />

Brake<br />

Load<br />

Top<br />

Load<br />

Top<br />

Timing belt<br />

Bottom<br />

Ball screw<br />

Motor<br />

(No brakes)<br />

Timing belt<br />

Bottom<br />

Ball screw<br />

Brake<br />

9 - 14


9. Characteristics<br />

(2) Magnetic brake characteristics<br />

Item<br />

Motor type<br />

HC-H<br />

52B<br />

53B<br />

102B 152B<br />

103B 153B<br />

202B<br />

203B<br />

352B 452B<br />

353B 453B<br />

702B<br />

703B<br />

902B 1102B<br />

903B 1103B<br />

Type (Note 1)<br />

Spring closed non-exciting operation magnetic brakes<br />

(for maintenance and emergency braking)<br />

Rated voltage<br />

24VDC<br />

Rated current at 20°C (A) 0.91 0.86 1.0 1.4 1.4 1.7<br />

Capacity (W) 22 21 24 34 34 41<br />

Static friction torque (N•m) 3.5 9 12 32 54.9 90<br />

Inertia (Note 2) (kg•cm 2 ) 0.5 0.5 0.5 3.4 4.5 24<br />

Release delay time (Note 3) (s) 0.1 0.1 0.1 0.12 0.3 0.3<br />

Braking delay time (DC OFF)<br />

(Note 3)<br />

(s) 0.1 0.1 0.1 0.1 0.1 0.1<br />

Tolerable Per braking (J) 700 700 700 4,500 4,500 4,500<br />

braking work<br />

amount Per hour (J) 7,000 7,000 7,000 45,000 45,000 45,000<br />

Brake play at motor axis (degree) 0.2 to 0.6 0.2 to 0.6 0.2 to 0.6 0.2 to 0.6 0.2 to 0.6 0.2 to 0.6<br />

No. of braking<br />

Brake life operations<br />

(Note 4) Work amount<br />

per braking<br />

(times) 20,000 20,000 20,000 20,000 20,000 20,000<br />

(J) 200 200 200 1,000 1,000 1,000<br />

(Note 1) There is no manual release mechanism. If handling is required such as during the machine core alignment work,<br />

prepare a separate 24VDC power supply, and electrically release a brake.<br />

(Note 2) These are the values added to the servomotor without a brake.<br />

(Note 3) This is the representative value for the initial attraction gap at 20°C.<br />

(Note 4) The brake gap will widen through brake lining wear caused by braking. However, the gap cannot be adjusted. Thus,<br />

the brake life is considered to be reached when adjustments are required.<br />

(Note 5) A leakage flux will be generated at the shaft end of the servomotor with a magnetic brake.<br />

(Note 6) When operating in low speed regions, the sound of loose brake lining may be heard. However, this is not a problem in<br />

terms of function.<br />

9 - 15


9. Characteristics<br />

(3) Magnetic brake power supply<br />

CAUTION<br />

1. Always install a surge absorber on the brake terminal when using DC OFF.<br />

2. Do not pull out the cannon plug while the brake power is ON. The cannon plug<br />

pins could be damaged by sparks.<br />

(a) Brake excitation power supply<br />

1) Prepare a brake excitation power supply that can accurately ensure the attraction current<br />

in consideration of the voltage fluctuation and excitation coil temperature.<br />

2) The brake terminal polarity is random. Make sure not to mistake the terminals with other<br />

circuits.<br />

(b) Brake excitation circuit<br />

1) When turning OFF the brake excitation power supply (to apply the brake), DC OFF is used to<br />

shorten the braking delay time. A surge absorber will be required. Pay attention to the relay<br />

cut off capacity.<br />

<br />

• Provide sufficient DC cut off capacity at the contact.<br />

• Always use a surge absorber.<br />

• When using the cannon plug type, the surge absorber will be further away, so use<br />

shielded wires between the motor and surge absorber.<br />

24VDC<br />

100VAC or<br />

200VAC<br />

PS<br />

SW1<br />

ZD1<br />

VAR1<br />

ZD2<br />

Magnetic brake 1<br />

SW2<br />

VAR2<br />

Magnetic brake 2<br />

(b) Example of DC OFF<br />

PS : 24VDC stabilized power supply<br />

ZD1, ZD2 : Zener diode for power supply protection (1W, 24V)<br />

VAR1, VAR2 : Surge absorber<br />

Magnetic brake circuits<br />

9 - 16


9. Characteristics<br />

9-4 Dynamic brake characteristics<br />

If a servo alarm that cannot control the motor occurs or emergency stop is input from NC, the dynamic<br />

brake stop the servomotor.<br />

9-4-1 Deceleration torque<br />

The dynamic brake use the motor as a generator, and obtains the deceleration torque by consuming that<br />

energy with the dynamic brake resistance. The characteristics of this deceleration torque have a<br />

maximum deceleration torque (Tdp) regarding the motor speed as shown in the following drawing. The<br />

torque for each motor is shown in the following table.<br />

Tdp<br />

Deceleration<br />

torque<br />

0<br />

Ndp<br />

Motor speed<br />

Fig. 9-2 Deceleration torque characteristics of a dynamic brake<br />

Motor model<br />

Stall torque<br />

(N.m)<br />

Table 9-3 Max. deceleration torque of a dynamic brake<br />

Tdp (N.m) Ndp (r/min) Motor model<br />

Rated torque<br />

(N.m)<br />

Tdp (N.m)<br />

Ndp (r/min)<br />

HC-H52 3.0 2.96 284 HC-H53 3.0 2.95 326<br />

HC-H102 6.0 7.30 286 HC-H103 5.8 7.36 334<br />

HC-H152 9.0 12.53 281 HC-H153 9.0 12.53 345<br />

HC-H202 12.0 14.16 210 HC-H203 12.0 14.23 313<br />

HC-H352 22.0 25.92 272 HC-H353 22.0 25.78 458<br />

HC-H452 31.9 39.56 333 HC-H453 31.9 38.82 617<br />

HC-H702 49.0 71.42 402 HC-H703 49.0 70.69 765<br />

HC-H902 70.0 172.40 966 HC-H903 70.0 98.94 1178<br />

HC-H1102 110.0 182.16 1165 HC-H1103 110.0 182.16 1165<br />

HC-H1502 146.0 237.80 1828<br />

9 - 17


9. Characteristics<br />

9-4-2 Determining the coasting amount with emergency stop<br />

(1) HC-H servomotor<br />

The motor coasting amount when stopped by a dynamic brake can be approximated using the<br />

following expression.<br />

LMAX = F G0 x 10 3<br />

JL<br />

▪ {te + (1 +<br />

60<br />

JM ) ▪ (A ▪ N2 + B) ▪ 1.1}<br />

LMAX : Coasting amount of machine (mm)<br />

F G0 : Feedrate (rapid traverse) (r/m)<br />

N : Motor speed (Maximum speed) (r/m)<br />

JM : Motor inertia (kg . cm 2 )<br />

JL : Motor shaft conversion load inertia (kg . cm 2 )<br />

te : Brake drive relay delay time (s) (Normally, 0.03s)<br />

A : Coefficient A (Refer to the table below)<br />

B : Coefficient B (Refer to the table below)<br />

1.1 : Margin<br />

Emergency stop (EMG)<br />

Dynamic brake control output<br />

Actual dynamic brake operation<br />

OFF<br />

ON<br />

OFF<br />

ON<br />

OFF<br />

ON<br />

Motor speed<br />

Initial speed: No<br />

Coasting amount<br />

Motor<br />

model<br />

Fig. 9-3 Dynamic brake braking diagram<br />

Table 9-4 Coasting amount calculation coefficients (HC-H Motor)<br />

JM<br />

(kg·cm 2 )<br />

A<br />

B<br />

Motor<br />

model<br />

JM<br />

(kg·cm 2 )<br />

HC-H52 4.6 9.57×10 -9 2.31×10 -3 HC-H53 4.6 8.35×10 -9 2.67×10 -3<br />

HC-H102 7.4 6.20×10 -9 1.52×10 -3 HC-H103 7.4 5.25×10 -9 1.76×10 -3<br />

HC-H152 10.1 5.00×10 -9 1.19×10 -3 HC-H153 10.1 4.08×10 -9 1.46×10 -3<br />

HC-H202 30.2 17.70×10 -9 2.35×10 -3 HC-H203 30.2 11.82×10 -9 3.48×10 -3<br />

HC-H352 42.9 10.64×10 -9 2.35×10 -3 HC-H353 42.9 6.35×10 -9 3.99×10 -3<br />

HC-H452 57.0 7.55×10 -9 2.51×10 -3 HC-H453 57.0 4.15×10 -9 4.74×10 -3<br />

HC-H702 95.0 5.78×10 -9 2.80×10 -3 HC-H703 87.0 2.81×10 -9 4.93×10 -3<br />

HC-H902 205.0 2.25×10 -9 6.31×10 -3 HC-H903 205.0 3.22×10 -9 13.41×10 -3<br />

HC-H1102 270.0 2.22×10 -9 9.04×10 -3 HC-H1103 270.0 2.22×10 -9 9.04×10 -3<br />

HC-H1502 550.0 2.21×10 -9 22.14×10 -3<br />

te<br />

A<br />

Time<br />

B<br />

HC-H52B 5.9 0.13×10 -9 3.19×10 -3 HC-H53B 5.1 9.29×10 -9 2.97×10 -3<br />

HC-H102B 8.9 7.44×10 -9 1.82×10 -3 HC-H103B 7.9 6.02×10 -9 2.01×10 -3<br />

HC-H152B 11.6 6.83×10 -9 1.62×10 -3 HC-H153B 10.6 4.67×10 -9 1.67×10 -3<br />

HC-H202B 32.1 19.00×10 -9 2.50×10 -3 HC-H203B 30.7 12.00×10 -9 3.54×10 -3<br />

HC-H352B 47.9 12.00×10 -9 2.64×10 -3 HC-H353B 46.3 6.85×10 -9 4.31×10 -3<br />

HC-H452B 62.0 7.79×10 -9 2.89×10 -3 HC-H453B 60.4 4.38×10 -9 5.01×10 -3<br />

HC-H702B 101.0 6.13×10 -9 2.97×10 -3 HC-H703B 91.5 2.94×10 -9 5.18×10 -3<br />

HC-H902B 239.0 2.17×10 -9 6.09×10 -3 HC-H903B 215.0 2.94×10 -9 12.71×10 -3<br />

HC-H1102B 294.0 2.27×10 -9 10.48×10 -3 HC-H1103B 314.0 2.57×10 -9 10.56×10 -3<br />

9 - 18


9. Characteristics<br />

(2) Linear servomotor<br />

The motor coasting amount when stopped by a dynamic brake can be approximated using the<br />

following expression.<br />

LMAX =<br />

F0<br />

60 ▪ {te + M ▪ (A + B ▪ F 0<br />

2 ) ▪ 1.1}<br />

LMAX : Coasting amount of machine (m)<br />

F 0 : Speed during brake operation (m/min)<br />

M : Total weight of moving section (kg)<br />

te : Brake drive relay delay time (s) (Normally, 0.03s)<br />

A : Coefficient A (Refer to the table below)<br />

B : Coefficient B (Refer to the table below)<br />

1.1 : Margin<br />

Table 9-5 Coasting amount calculation coefficients (Linear servomotor)<br />

Motor model A B<br />

LN-NP5G-60P 1.31×10 -4 5.38×10 -9<br />

9 - 19


9. Characteristics<br />

9-5 Vibration class<br />

The vibration class of the servomotor is V-10 at the rated speed. The servomotor installation posture and<br />

measurement position to be used when measuring the vibration are shown below.<br />

Servomotor<br />

Top<br />

Measurement<br />

position<br />

Bottom<br />

Fig. 9-4 Servomotor vibration measurement conditions<br />

The vibration class of the spindle motor is V-5 or V10. The posture for installing the spindle motor for<br />

measurements is shown below. The vibration class will differ according to the motor, so refer to each<br />

corresponding motor specifications.<br />

Top<br />

Spindle motor<br />

Bottom<br />

Fig. 9-5 Spindle motor vibration measurement conditions<br />

9 - 20


10. Specifications<br />

10-1 Power supply unit/drive unit ........................................................................................................... 10-2<br />

10-1-1 Installation environment conditions ......................................................................................... 10-2<br />

10-1-2 Servo drive unit........................................................................................................................ 10-2<br />

10-1-3 Spindle drive unit..................................................................................................................... 10-3<br />

10-1-4 Power supply unit .................................................................................................................... 10-3<br />

10-1-5 Outline dimension drawings .................................................................................................... 10-4<br />

10-1-6 Terminal layout........................................................................................................................ 10-8<br />

10-1-7 The combination of servo drive unit and a motor .................................................................... 10-9<br />

10-2 Servomotor................................................................................................................................... 10-10<br />

10-2-1 Specifications list................................................................................................................... 10-10<br />

10-2-2 Torque characteristics ........................................................................................................... 10-12<br />

10-2-3 Model configuration ............................................................................................................... 10-14<br />

10-2-4 Outline dimension drawings .................................................................................................. 10-15<br />

10-3 Linear servomotor ........................................................................................................................ 10-21<br />

10-3-1 List of specifications .............................................................................................................. 10-21<br />

10-3-2 Outline dimension drawings .................................................................................................. 10-22<br />

10 - 1


10. Specifications<br />

10-1 Power supply unit/drive unit<br />

10-1-1 Installation environment conditions<br />

Common installation environment conditions for servo, spindle and power supply unit are shown below.<br />

Environment<br />

Ambient temperature<br />

Ambient humidity<br />

Atmosphere<br />

Altitude<br />

Vibration/impact<br />

0 to 55°C (with no freezing), Storage: -15°C to 70°C (with no freezing)<br />

90%RH or less (with no dew condensation) Storage: 90%RH or less (with no dew condensation)<br />

Indoors (no direct sunlight)<br />

With no corrosive gas, inflammable gas, oil mist, dust or conductive fine particles<br />

Operation/Storage: 1000 meters or less above sea level, Transportation: 13000 meters or less above sea level<br />

4.9m/s 2 (0.5G) / 49m/s 2 (5G)<br />

10-1-2 Servo drive unit<br />

(1) 1-axis servo drive unit<br />

1-axis servo drive unit MDS-CH-V1 Series<br />

Servo drive unit<br />

type<br />

MDS-CH-V1- 05 10 20 35 45 70 90 110 150 185<br />

Rated output [kW] 0.5 1.0 2.0 3.5 4.5 7.0 9.0 11.0 150 18.5<br />

Rated voltage [V]<br />

456VAC<br />

Output Note Rated current [A] 1.7 2.6 5.0 8.4 11.0 16 18 17 29 39<br />

Input<br />

Rated voltage [V]<br />

513 to 648VDC<br />

Rated current [A] 1.4 2.4 4.6 8.0 10 15 19 20 30 39<br />

Voltage [V] 380 to 440VAC (50Hz) /380 to 480VAC (60Hz) Power fluctuation rate within +6%/-10%<br />

Frequency [Hz] 50/60Hz Frequency fluctuation within ±3%<br />

Control Current [A] Max. 0.1<br />

power Rush current [A] Max. 18<br />

Rush<br />

conductivity [ms] Max. 6<br />

time<br />

Earth leakage current [A] 1 (Max.2)<br />

Control method<br />

Sine wave PWM control method<br />

Braking<br />

Regenerative braking and dynamic brakes<br />

Dynamic brakes Built-in External (MDS-B-DBU-150)<br />

Structure<br />

Open (Protection method: IP00)<br />

Weight [kg] 5.5 6.0 7.0 10.0 15.0<br />

Maximum radiated heat [W] 40 65 105 150 210 320 370 400 550 800<br />

Noise<br />

Less than 55dB<br />

(2) 2-axis servo drive unit<br />

2-axis servo drive unit MDS-CH-V2 Series<br />

Servo drive unit<br />

type<br />

MDS-CH-V2- 0505 1005 1010 2010 2020 3510 3520 3535 4520 4535<br />

Rated output [kW] 0.5+0.5 1.0+0.5 1.0+1.0 2.0+1.0 2.0+2.0 3.5+1.0 3.5+2.0 3.5+3.5 4.5+2.0 4.5+3.5<br />

Rated voltage [V] 456VAC<br />

Output Note Rated current [A] 1.7 / 1.7 2.6 / 1.7 2.6 / 2.6 5.0 / 2.6 5.0/ 5.0 8.4 / 2.6 8.4 / 5.0 8.4/ 8 .4 11.0 / 5.0 11.0 / 8.4<br />

Input<br />

Rated voltage [V] 513 to 648VDC<br />

Rated current [A] 2.8 3.8 4.8 7 9.2 10.4 12.6 16 14.7 18.1<br />

Voltage [V] 380 to 440VAC (50Hz) / 380 to 480VAC (60Hz) Power fluctuation rate within +6%/-10%<br />

Frequency [Hz] 50/60Hz Frequency fluctuation within ±3%<br />

Control<br />

Current [A] Max. 0.1<br />

power Rush current [A] Max. 18<br />

Rush<br />

conductivity [ms] Max. 6<br />

time<br />

Earth leakage current [A] 1 (Max.4 For 2axes)<br />

Control method<br />

Sine wave PWM control method Current control method<br />

Braking<br />

Regenerative braking and dynamic brakes<br />

Dynamic brakes<br />

Built-in<br />

Structure<br />

Open (Protection method: IP00)<br />

Cooling method<br />

Forced wind cooling<br />

Weight [kg] 5.5 6.0<br />

Maximum heating value [W] 80 105 120 180 200 215 240 295 300 345<br />

Noise<br />

Less than 55dB<br />

Note) The listed voltage in the output characteristics is the maximum value, and the current is the motor's continuous rated current<br />

value.<br />

10 - 2


10. Specifications<br />

10-1-3 Spindle drive unit<br />

Spindle drive<br />

unit type<br />

Spindle drive unit MDS-CH-SP[ ] Series<br />

MDS-CH-SP[ ]- 15 37 55 75 110 150 185 220 260 300 370 450 550 750<br />

Continuous rated output [kW] 0.75 2.2 3.7 5.5 7.5 11 15 18.5 22 26 30 37 45 55<br />

Output<br />

Note3<br />

Input<br />

Control<br />

power<br />

Rated voltage [V] 340VAC<br />

Rated current [A] 2.3 7.5 9.0 13 19 25 32 40 49 65 73 87 103 132<br />

Rated voltage [V] 513 to 648VDC<br />

Rated current [A] 2.3 7.1 10 15 21 29 38 47 57 72 82 99 119 150<br />

Voltage [V] 380 to 440VAC (50Hz) / 380 to 480VAC (60Hz) Power fluctuation rate within +6%/-10%<br />

Frequency [Hz] 50 / 60Hz Frequency fluctuation within ±3%<br />

Current [A] Max.0.1A<br />

Rush current [A] Max. 18<br />

Rush<br />

conductivity [ms] Max. 6<br />

time<br />

Earth leakage current<br />

Control method<br />

Braking<br />

Structure<br />

Cooling method<br />

6 (MAX.15)<br />

Sine wave PWM control method<br />

Power supply regeneration braking<br />

Open (Protection method: IP00)<br />

Forced air cooling<br />

Weight [kg] 6.5 6.5 8.5 10.0 15.0 20.0 47.0<br />

Maximum heating value [W] 70 105 145 180 240 315 455 490 645 825 1105 1300 1560 2145<br />

Noise<br />

Less than 55dB<br />

Note1) [ ] is either blank, or a combination of H and M<br />

Note2) C-axis detector [model: MBE90K and MHE90K] cannot be used with MDS-CH-SP[ ] series.<br />

Note3) The listed voltage in the output characteristics is the maximum value, and the current is the motor's continuous rated current<br />

value.<br />

10-1-4 Power supply unit<br />

Power supply<br />

unit type<br />

Power supply unit MDS-CH-CV Series<br />

MDS-CH-CV- 37 55 75 110 150 185 220 260 300 370 450 550 750<br />

Rated output [kW] 3.7 5.5 7.5 11.0 15.0 18.5 22.0 26.0 30.0 37.0 45.0 55.0 75.0<br />

Power capacity [KVA] 5.3 8.0 11.0 16.0 21.0 28.0 32.0 37.0 43.0 53.0 64.0 78.0 107.0<br />

Rated voltage [V] 380 to 440VAC (50Hz) / 380 to 480VAC (60Hz) Power fluctuation rate within +6%/-10%<br />

Input<br />

Output<br />

Frequency [Hz] 50 / 60Hz Frequency fluctuation within ±3%<br />

Rated current [A] 5.2 8.7 13 18 26 35 44 52 61 71 87 106 130<br />

Rated voltage [V] 513 to 648VDC<br />

Rated current [A] 7.1 10 15 21 29 38 47 57 72 82 99 119 150<br />

Control<br />

power<br />

Voltage [V] 380 to 440VAC (50Hz) / 380-480VAC (60Hz) Power fluctuation rate within +6%/-10%<br />

Frequency [Hz] 50 / 60Hz Frequency fluctuation within ±3%<br />

Current [A] Max. 0.1<br />

Rush current<br />

(in contactor ON) [A] Max. 18 Max. 18 Note<br />

(Max. 45)<br />

Max. 6 Note<br />

Rush<br />

conductivity<br />

time<br />

[ms] Max. 6<br />

(in contactor ON)<br />

(Max. 200)<br />

Protective function<br />

Regeneration overvoltage shutdown, overload shutdown,<br />

regeneration fault protection, undervoltage/sudden power outage protection, etc<br />

Structure<br />

Open (Protection method: IP00)<br />

Cooling method<br />

Forced air cooling<br />

Weight [kg] 8.5 10.5 12.5 15.0 20.0 24.0<br />

Maximum heating value [W] 55 65 80 125 155 195 210 260 320 400 500 600 850<br />

Noise<br />

Less than 55dB<br />

Note) The value in the table is rush current and rush current conductivity time when the unit control power is turned ON.<br />

When the contactor is turned ON, rush current for charging flows.<br />

(Max.<br />

260)<br />

10 - 3


10. Specifications<br />

10-1-5 Outline dimension drawings<br />

• MDS-CH-CV-37 to 370<br />

[Unit: mm]<br />

2- 6<br />

2- 6 4- 6<br />

10<br />

15<br />

195<br />

350<br />

FAN<br />

10<br />

15<br />

45<br />

45<br />

60<br />

60<br />

45 60<br />

45<br />

20 180 120<br />

90<br />

120<br />

150<br />

320<br />

CV-37 to 110 CV-150 to 185 CV-220 to 370<br />

• MDS-CH-SP[ ]-15 to 300/MDS-CH-V1-10 to 150/MDS-CH-V2-0505 to 4535<br />

2- 6 2- 6 2- 6 4- 6<br />

10<br />

15<br />

[Unit: mm]<br />

195<br />

350<br />

FAN<br />

30<br />

(Note 1)<br />

30 45 45<br />

60 60<br />

45 60 45<br />

20 180 120<br />

10<br />

15<br />

60<br />

90<br />

120<br />

150<br />

320<br />

V1-05 to 35<br />

V2-0505 to 2020<br />

SP[ ]-15 to 110<br />

V1-45<br />

V2-3510 to 4535<br />

SP[ ]-150 to 185 SP[ ]-220 to 300<br />

V1-70 to 90 V1-110 to 150<br />

10 - 4


10. Specifications<br />

• MDS-CH-SP[ ]-370/MDS-CH-V1-185/MDS-CH-CV-450<br />

11 218<br />

11<br />

[Unit: mm]<br />

10<br />

2- 6 hole 2- 6 hole<br />

20<br />

180<br />

20<br />

178.5<br />

27<br />

26.5<br />

22<br />

380 360<br />

340<br />

37 24<br />

117.5<br />

124.5<br />

10<br />

6<br />

60 120<br />

60<br />

240<br />

20<br />

6<br />

60 120<br />

60<br />

240<br />

63 146<br />

209 114<br />

SP[ ]-370<br />

CV-450<br />

Note) DC connection bar is required. Always install a large capacity drive unit in the left side of power supply unit,<br />

and connect with DC connection bar.<br />

20<br />

• MDS-CH-SP[ ]-450,550/MDS-CH-CV-550<br />

11 278<br />

11<br />

[Unit: mm]<br />

10<br />

2- 6 hole 2- 6 hole<br />

180<br />

20<br />

20<br />

178.5<br />

380 360<br />

27<br />

26.5<br />

22<br />

340<br />

37 24<br />

117.5<br />

124.5<br />

20<br />

20<br />

10<br />

6<br />

60 180<br />

60<br />

300<br />

6<br />

60 180<br />

60<br />

300<br />

63 146<br />

209 120<br />

SP[ ]-450,550<br />

CV-550<br />

Note) DC connection bar is required. Always install a large capacity drive unit in the left side of power supply unit,<br />

and connect with DC connection bar.<br />

10 - 5


10. Specifications<br />

• MDS-CH-CV-750<br />

[Unit: mm]<br />

11 278<br />

11<br />

2- 6 hole<br />

10<br />

2.5<br />

500<br />

480<br />

60 180<br />

300<br />

6<br />

60<br />

10<br />

177 123<br />

300<br />

Note) DC connection bar is required. Always install a large capacity drive unit in the left side of power supply unit,<br />

and connect with DC connection bar.<br />

10 - 6


10. Specifications<br />

• MDS-CH-SP[]-750<br />

[Unit: mm]<br />

450<br />

45 360<br />

45 4-M10 screw<br />

10<br />

30<br />

480<br />

500<br />

440<br />

30<br />

12<br />

45 360<br />

45<br />

10<br />

450<br />

175<br />

350<br />

3.2<br />

175<br />

430<br />

Note) DC connection bar is required. Always install a large capacity drive unit in the left side of power supply unit,<br />

and connect with DC connection bar.<br />

10 - 7


10. Specifications<br />

10-1-6 Terminal layout<br />

When manufacturing the bar connected between units, refer to the following positional relation of the<br />

TE2 and TE3 terminal blocks.<br />

[Unit: mm]<br />

15.8<br />

66.72<br />

40.64<br />

24<br />

32.5<br />

11<br />

27<br />

77<br />

15<br />

16<br />

16<br />

46<br />

46<br />

22<br />

22<br />

52<br />

52<br />

60<br />

90<br />

120<br />

150<br />

66.72<br />

40.64<br />

46.05<br />

46.05<br />

66.05<br />

24<br />

11<br />

43.5<br />

11<br />

27<br />

66<br />

15<br />

16<br />

22<br />

16<br />

22<br />

36<br />

42<br />

10 - 8


10. Specifications<br />

10-1-7 The combination of servo drive unit and a motor<br />

Middle<br />

inertia<br />

Motor<br />

Type<br />

HC-H[_]<br />

2000 r/min<br />

HC-H[_]<br />

3000 r/min<br />

Drive unit<br />

MDS-CH-V1-[_]<br />

05 10 20 35 45 70 90 110 150 185<br />

52 X<br />

102 X<br />

152 X<br />

202 X<br />

352 X<br />

452 X<br />

702 X<br />

902 X<br />

1102 X<br />

1502 X<br />

53 X<br />

103 X<br />

153 X<br />

203 X<br />

353 X<br />

453 X<br />

703 X<br />

903 X<br />

1103 X<br />

Caution 1) "X" indicates the combination of the corresponding motor and unit.<br />

Caution 2) 2-axis integrated servo drive unit (MDS-CH-V2) is the same as the combination of the capacity<br />

of MDS-CH-V1.<br />

10 - 9


10. Specifications<br />

10-2 Servomotor<br />

10-2-1 Specifications list<br />

Servomotor series<br />

Medium inertia HC Series (Rated speed 2000r/min)<br />

INC specification: HC∗∗-E51/-E42, ABS specification: HC∗∗-A51/-A42<br />

Model Servomotor HC- H52 H102 H152 H202 H352 H452 H702 H902 J1102 J1502<br />

Specifications<br />

Drive unit MDS-CH-V1/2- 05 10 20 20 35 45 70 90 150 185<br />

Rated output [kW] 0.5 1.0 1.5 2.0 3.5 4.5 7.0 9.0 11.0 15.0<br />

Continuous Rated current [A] 1.6 2.5 3.8 5.0 8.4 10.6 15.5 18.0 26.6 38.8<br />

charac- Stall current [A] 1.9 3.0 4.3 6.3 10.9 15.8 20.2 29.4 55.8 76.8<br />

teristics Rated torque [N·m] 2.39 4.78 7.16 9.55 16.7 21.5 33.4 43.0 42.0 71.6<br />

Stall torque [N·m] 3.0 6.0 9.0 12.0 22.0 31.9 49.0 70.0 110.0 146.0<br />

Rated rotation speed [r/min] 2000 2500 2000<br />

Maximum rotation speed [r/min] 2000 2500<br />

Maximum current [A] 8.4 11.4 23.8 23.8 31.8 47.7 63.6 71.0 124.0 160.0<br />

Maximum torque [N·m] 10.0 19.0 35.3 41.7 58.0 87.5 120 170.0 230.0 280.0<br />

Power rate at continuous<br />

rated torque<br />

[kW/s] 13.6 33.8 54.2 30.0 67.0 81.0 117.0 89.8 100.0 104.5<br />

Instantaneous angle<br />

acceleration<br />

[rad/s 2 ] 29500 33600 40200 15900 16000 17700 14500 9500 8700 5860<br />

Motor inertia [×10 -4 kg·m 2 ] 4.6 7.4 10.1 30.2 42.9 57.0 95.0 215.0 270.0 550<br />

Motor inertia with brake [×10 -4 kg·m 2 ] 5.1 7.9 10.6 30.7 46.3 60.4 99.5 239.0 194.0 –<br />

High-speed, high-accuracy machine : 3 times or less of motor inertia<br />

Maximum motor shaft conversion<br />

General machine tool<br />

: 5 times or less of motor inertia<br />

load inertia rate<br />

General machine<br />

:10 times or less of motor inertia<br />

Armature resistance<br />

(phase 20°C)<br />

[Ω] 5.8 3.4 2.09 0.68 0.49 0.24 0.173 0.087 0.032 0.0381<br />

Armature inductance<br />

(phase 20°C)<br />

[mH] 53.0 32.6 22.0 13.4 8.7 5.3 4.0 1.45 1.09 0.7026<br />

Inductive voltage constant<br />

(phase 20°C, ±10%)<br />

[mV/r/min] 67.7 83.4 89.8 74.5 81.2 78.3 91.4 85.5 76.2 69.9<br />

Torque constant (±10%) [N·m/A] 1.80 2.39 2.16 2.13 2.32 2.24 2.62 2.82 2.18 1.95<br />

Electrical time constant [ms] 9.1 9.6 10.5 20.0 18.0 22.0 23.0 34.0 34.0 18.4<br />

Mechanical time constant [ms] 2.1 1.82 1.0 1.4 1.2 0.8 0.72 0.7 0.54 1.65<br />

Thermal time constant [min] 15 20 25 35 45 50 55 65 70 26.4<br />

Armature coil temperature<br />

upper limit degree<br />

[°C] 100<br />

Motor side detector<br />

Resolution per motor rotation<br />

E51/A51: 1,000,000 pulse/rev, E42/A42: 100,000 pulse/rev<br />

Structure<br />

Fully closed, self-cooling (protective degree: IP65, IP67)<br />

Environment<br />

Ambient temperature<br />

Ambient humidity<br />

Atmosphere<br />

Elevation<br />

Vibration<br />

Weight Without/with brake<br />

Armature insulation class<br />

[kg]<br />

Operation: 0 to 40°C (non freezing),<br />

Storage/transportation: –15 to 70°C (non freezing)<br />

Operation: 20% to 90%RH (non condensing),<br />

Storage/transportation: 90%RH max. (non condensing)<br />

Indoors (no direct sunlight); no corrosive gas, inflammable gas, oil mist, or dust<br />

5.1/<br />

6.4<br />

7.0/<br />

8.5<br />

Operation/storage: 1000 meters or less above sea level,<br />

Transportation: 10000 meters or less above sea level<br />

8.2/<br />

9.7<br />

15/<br />

16.9<br />

X: 19.6m/s 2 (2G)<br />

Y: 19.6m/s 2 (2G)<br />

19.1/<br />

24.1<br />

Class F<br />

(Note) The above characteristics values are representative values. The maximum current and maximum torque are the values when<br />

combined with the drive unit.<br />

The HC-H1502 motor does not have brakes.<br />

Use HC-H motor with the 200V input-compliant MDS-CH-V1/V2 Unit. It cannot be used with the conventional MDS-B/C1-V1/V2<br />

Unit.<br />

23.2/<br />

28.2<br />

38.5/<br />

44.5<br />

55.4/<br />

65.8<br />

78.7/<br />

89.1<br />

160/–<br />

10 - 10


10. Specifications<br />

Specifications<br />

Servomotor series<br />

Model<br />

Medium inertia HC Series (Rated speed 3000r/min)<br />

INC specification: HC∗∗-E51/-E42, ABS specification: HC∗∗-A51/-A42<br />

Servomotor HC- H53 H103 H153 H203 H353 H453 H703 H903 H1103<br />

Drive unit<br />

MDS-CH-<br />

V1/2-<br />

05 10 20 35 45 70 90 110 150<br />

Rated output [kW] 0.5 1.0 1.5 2.0 3.5 4.5 7.0 9.0 11.0<br />

Rated current [A] 1.7 2.6 3.4 4.8 9.8 10.6 15.0 17.4 28.5<br />

Continuous<br />

characteristics<br />

Stall current [A] 2.6 4.6 6.1 9.0 17.7 23.6 33.0 41.8 59.6<br />

Rated torque [N·m] 1.6 3.3 5.0 6.4 11.2 14.3 22.3 29.1 35.6<br />

Stall torque [N·m] 3.0 5.8 9.0 12.0 22.0 31.9 49.0 70.0 110.0<br />

Rated rotation speed [r/min] 3000<br />

Maximum rotation speed [r/min] 3000<br />

Maximum current [A] 8.4 14.1 23.8 31.8 47.7 63.6 71.0 106.0 124.0<br />

Maximum torque [N·m] 8.0 16.7 28.4 36.0 55.9 79.8 105.0 153.0 210.0<br />

Power rate at continuous rated<br />

torque<br />

[kW/s] 8.7 14.7 24.8 30.0 67.0 81.0 129.0 86.0 100.0<br />

Instantaneous angle acceleration [rad/s 2 ] 22000 26000 32300 15300 15000 16100 13900 8600 7900<br />

Motor inertia [× 10 -4 kg·m 2 ] 4.6 7.4 10.1 30.2 42.9 57.0 87.0 215.0 270.0<br />

Motor inertia with brake [× 10 -4 kg·m 2 ] 5.1 7.9 10.6 30.7 46.3 60.4 91.5 239.0 294.0<br />

High-speed, high-accuracy machine : 3 times or less of motor inertia<br />

Maximum motor shaft conversion<br />

General machine tool<br />

: 5 times or less of motor inertia<br />

load inertia rate<br />

General machine<br />

:10 times or less of motor inertia<br />

Armature resistance<br />

(phase 20°C)<br />

[Ω] 2.7 1.29 1.06 0.34 0.19 0.12 0.077 0.033 0.032<br />

Armature inductance<br />

(phase 20°C)<br />

[mH] 23.4 12.8 10.8 6.4 3.6 2.4 1.8 1.08 1.09<br />

Inductive voltage constant<br />

(phase 20°C, ±10%)<br />

[mV/r/min] 44.9 52.5 62.9 51.6 52.1 52.2 61.0 55.9 76.2<br />

Torque constant (±10%) [N·m/A] 1.28 1.40 1.65 1.48 1.49 1.50 1.75 1.72 2.18<br />

Electrical time constant [ms] 8.7 5.0 10.2 19.0 19.0 20.0 23.0 33.0 34.0<br />

Mechanical time constant [ms] 2.3 2.54 1.0 1.4 1.1 0.9 0.7 0.77 0.54<br />

Thermal time constant [min] 15 20 25 35 45 50 55 65 70<br />

Static friction torque<br />

Armature coil temperature upper<br />

limit degree<br />

Motor side detector<br />

Structure<br />

Environment<br />

[N·m]<br />

Ambient temperature<br />

Ambient humidity<br />

Atmosphere<br />

Elevation<br />

Vibration<br />

Weight Without/with brake<br />

Armature insulation class<br />

[°C] 100<br />

[kg]<br />

Resolution per motor rotation<br />

E51/A51: 1,000,000 pulse/rev, E42/A42: 100,000 pulse/rev<br />

Fully closed, self-cooling (protective degree: IP65, IP67)<br />

Operation: 0 to 40°C (non freezing),<br />

Storage/transportation: –15 to 70°C (non freezing)<br />

Operation: 20% to 90%RH (non condensing),<br />

Storage/transportation: 90%RH max. (non condensing)<br />

Indoors (no direct sunlight); no corrosive gas, inflammable gas, oil mist, or dust<br />

5.1/<br />

6.4<br />

Operation/storage: 1000 meters or less above sea level,<br />

Transportation: 10000 meters or less above sea level<br />

7.0/<br />

8.5<br />

8.2/<br />

9.7<br />

15.0/<br />

16.9<br />

X: 19.6m/s 2 (2G)<br />

Y: 19.6m/s 2 (2G)<br />

19.1/<br />

24.1<br />

Class F<br />

(Note) The above characteristics values are representative values. The maximum current and maximum torque are the values when<br />

combined with the drive unit.<br />

A HC-H motor is only for MDS-CH-V1/V2 Unit. It cannot be used for MDS-B/C1-V1/V2 Unit.<br />

23.2/<br />

28.2<br />

38.5/<br />

44.5<br />

55.4/<br />

65.8<br />

78.7/<br />

89.1<br />

10 - 11


10. Specifications<br />

10-2-2 Torque characteristics<br />

(1) HC-H Series<br />

20<br />

[HC-H52]<br />

40<br />

[HC-H102]<br />

40<br />

[HC-H152]<br />

15<br />

30<br />

30<br />

Torque [N . m]<br />

10<br />

5<br />

Short time<br />

operation range<br />

Torque [N . m]<br />

20<br />

10<br />

Short time<br />

operation range<br />

Torque [N . m]<br />

20<br />

10<br />

Short time<br />

operation range<br />

Continuous<br />

operation range<br />

0<br />

0 1000 2000<br />

Continuous<br />

operation range<br />

0<br />

0 1000 2000<br />

0<br />

Continuous<br />

operation range<br />

0 1000 2000<br />

Rotation speed [r/min]<br />

Rotation speed [r/min]<br />

Rotation speed [r/min]<br />

50<br />

[HC-H202]<br />

75<br />

[HC-H352]<br />

100<br />

[HC-H452]<br />

40<br />

60<br />

80<br />

Torque [N . m]<br />

30<br />

20<br />

Short time<br />

operation range<br />

Torque [N . m]<br />

45<br />

30<br />

Short time<br />

operation range<br />

Torque [N . m]<br />

60<br />

40<br />

Short time<br />

operation range<br />

10<br />

0<br />

Continuous<br />

operation range<br />

0 1000 2000<br />

15<br />

0<br />

Continuous<br />

operation range<br />

0 1000 2000<br />

20<br />

0<br />

Continuous<br />

operation range<br />

0 1000 2000<br />

Rotation speed [r/min]<br />

Rotation speed [r/min]<br />

Rotation speed [r/min]<br />

150<br />

[HC-H702]<br />

250<br />

[HC-H902]<br />

250<br />

[HC-H1102]<br />

120<br />

200<br />

200<br />

Torque [N . m]<br />

90<br />

60<br />

Short time<br />

operation range<br />

Torque [N . m]<br />

150<br />

100<br />

Short time<br />

operation range<br />

Torque [N . m]<br />

150<br />

100<br />

Short time<br />

operation range<br />

30<br />

0<br />

400<br />

Continuous<br />

operation range<br />

0 1000 2000<br />

Rotation speed [r/min]<br />

[ HC-H1502 ]<br />

50<br />

0<br />

Continuous<br />

operation range<br />

0 1000 2000<br />

Rotation speed [r/min]<br />

50<br />

0<br />

Continuous<br />

operation range<br />

0 1000 2000<br />

Rotation speed [r/min]<br />

2500<br />

Torque [N . m]<br />

300<br />

200<br />

100<br />

Short time<br />

operation range<br />

(Note 1)<br />

The above graphs show the data for<br />

the input voltage of 380VAC.<br />

When the input voltage is 380VAC or<br />

less, the short time operation range is<br />

limited.<br />

0<br />

Continuous<br />

operation range<br />

0 1000 2000 2500<br />

Rotation speed [r/min]<br />

10 - 12


10. Specifications<br />

10<br />

[HC-H53]<br />

20<br />

[HC-H103]<br />

40<br />

[HC-H153]<br />

8<br />

15<br />

30<br />

Torque [N . m]<br />

6<br />

4<br />

2<br />

Short time<br />

operation range<br />

Continuous<br />

operation range<br />

0<br />

0 1000 2000 3000<br />

Torque [N . m]<br />

10<br />

5<br />

0<br />

0<br />

Short time<br />

operation range<br />

Continuous<br />

operation range<br />

1000<br />

2000<br />

3000<br />

Torque [N . m]<br />

20<br />

10<br />

0<br />

Short time<br />

operation range<br />

Continuous<br />

operation range<br />

0 1000 2000 3000<br />

Rotation speed [r/min]<br />

Rotation speed [r/min]<br />

Rotation speed [r/min]<br />

60<br />

[HC-H203]<br />

60<br />

[HC-H353]<br />

100<br />

[HC-H453]<br />

45<br />

45<br />

75<br />

Torque [N . m]<br />

30<br />

15<br />

0<br />

Short time<br />

operation range<br />

Continuous<br />

operation range<br />

0 1000 2000 3000<br />

Torque [N . m]<br />

30<br />

15<br />

0<br />

Short time<br />

operation range<br />

Continuous<br />

operation range<br />

0 1000 2000 3000<br />

Torque [N . m]<br />

50<br />

25<br />

0<br />

Short time<br />

operation range<br />

Continuous<br />

operation range<br />

0 1000 2000 3000<br />

Rotation speed [r/min]<br />

Rotation speed [r/min]<br />

Rotation speed [r/min]<br />

120<br />

[HC-H703]<br />

200<br />

[HC-H903]<br />

250<br />

[HC-H1103]<br />

Torque [N . m]<br />

90<br />

60<br />

Short time<br />

operation range<br />

Torque [N . m]<br />

150<br />

100<br />

Short time<br />

operation range<br />

Torque [N . m]<br />

200<br />

150<br />

100<br />

Short time<br />

operation range<br />

30<br />

0<br />

Continuous<br />

operation range<br />

0 1000 2000 3000<br />

50<br />

0<br />

0<br />

Continuous<br />

operation range<br />

1000<br />

2000<br />

3000<br />

50<br />

0<br />

0<br />

Continuous<br />

operation range<br />

1000<br />

2000<br />

3000<br />

Rotation speed [r/min]<br />

Rotation speed [r/min]<br />

Rotation speed [r/min]<br />

(Note 1) The above graphs show the data for the input voltage of 380VAC.<br />

When the input voltage is 380VAC or less, the short time operation range is limited.<br />

10 - 13


10. Specifications<br />

10-2-3 Model configuration<br />

HC-H 20 3 B S - A51<br />

Series name<br />

Rated ouput<br />

Symbol<br />

[kW]<br />

5 0.5<br />

10 1.0<br />

15 1.5<br />

20 2.0<br />

35 3.5<br />

45 4.5<br />

70 7.0<br />

90 9.0<br />

110 11.0<br />

150 15.0<br />

Symbol<br />

B<br />

Magnetic<br />

brakes<br />

Available<br />

Not available<br />

Max. speed<br />

Symbol<br />

[r/min.]<br />

2 2000<br />

3 3000<br />

Symbol<br />

Symbol<br />

S<br />

T<br />

Protective<br />

structure<br />

IP65<br />

Axis end<br />

shape<br />

Straight axis<br />

Tapered<br />

shaft<br />

Detector<br />

Symbol specifications<br />

[p/rev]<br />

A42 ABS: 100,000<br />

A51 ABS: 1,000,000<br />

E42 INC: 100,000<br />

E51 INC: 1,000,000<br />

10 - 14


10. Specifications<br />

10-2-4 Outline dimension drawings<br />

• HC-H52S • HC-H53S<br />

• HC-H102S • HC-H103S<br />

• HC-H152S • HC-H153S<br />

130<br />

45°<br />

2-M6<br />

Motor pulling<br />

55<br />

4<br />

12<br />

L<br />

44<br />

4-ø9 installation hole<br />

Use hexagon socket head bolts.<br />

[Unit: mm]<br />

ø165<br />

ø145<br />

ø110h7<br />

ø24h6<br />

50<br />

41<br />

112<br />

C1<br />

Oil seal<br />

S30457B<br />

KL<br />

21.5<br />

81.5<br />

Detector connector<br />

MS3102A22-14P<br />

Power connector<br />

JL04HV-2E22-22PE-B<br />

• HC-H52T<br />

• HC-H102T<br />

• HC-H152T<br />

130<br />

• HC-H53T<br />

• HC-H103T<br />

• HC-H153T<br />

45°<br />

2-M6<br />

Motor pulling tap<br />

12<br />

4<br />

28 18<br />

12<br />

L<br />

44<br />

4-ø9 installation hole<br />

Use hexagon socket head bolts.<br />

[Unit: mm]<br />

ø165<br />

ø145<br />

ø110h7<br />

ø22<br />

A’<br />

A<br />

112<br />

Plain washer 10<br />

81.5<br />

41<br />

Detector connector<br />

J<br />

MS3102A22-14P<br />

K<br />

H<br />

L<br />

S<br />

N<br />

R<br />

Pin CH-V1/V2<br />

A<br />

B<br />

C<br />

D<br />

E<br />

BT<br />

F<br />

G<br />

H<br />

SD<br />

J<br />

SD<br />

K<br />

RQ<br />

L<br />

RQ<br />

M<br />

N<br />

SD<br />

P<br />

R<br />

5G<br />

S +5V<br />

T<br />

U<br />

V<br />

E<br />

U nut M10×1.2<br />

Tightening torque<br />

23 to 30N•m<br />

Cross-section A-A'<br />

58<br />

0<br />

5 -0.03 25<br />

5<br />

0<br />

4.3 -0.1<br />

Taper 1/10<br />

Oil seal<br />

ø16<br />

KL<br />

10 - 15<br />

21.5<br />

Detector connector<br />

MS3102A22-14P<br />

Power connector<br />

JL04HV-2E22-22PE-B<br />

Power connector<br />

JL04HV-2E22-22PE-B<br />

Servomotor model<br />

2000 r/min 3000 r/min<br />

L<br />

KL<br />

HC-H52 HC-H53 139 59<br />

HC-H102 HC-H103 158 78<br />

HC-H152 HC-H153 179 97<br />

Pin<br />

A<br />

B<br />

C<br />

D<br />

Name<br />

U<br />

V<br />

W<br />

Ground<br />

Note 1. Use a friction coupling (Spun ring, etc.) to connect with the load.<br />

Note 2. The detector connector pin assignments are common for all HC-H motors.<br />

D<br />

C<br />

A<br />

B<br />

(JAE)


10. Specifications<br />

• HC-H52BS<br />

• HC-H102BS<br />

• HC-H152BS<br />

• HC-H53BS<br />

• HC-H103BS<br />

• HC-H153BS<br />

130<br />

45°<br />

2-M6<br />

Motor pulling tap<br />

55<br />

4 12<br />

L<br />

44<br />

[Unit: mm]<br />

4-ø9 installation hole<br />

Use hexagon socket head bolts.<br />

ø165<br />

ø145<br />

ø110h7<br />

ø24h6<br />

50<br />

C1<br />

Oil seal<br />

112<br />

81.5<br />

41<br />

KL 73.0<br />

21.5<br />

Detector connector<br />

MS3102A22-14P<br />

Power connector<br />

JL04HV-2E22-22PE-B<br />

Brake connector<br />

MS3102A10SL-4P<br />

• HC-H52BT<br />

• HC-H102BT<br />

• HC-H152BT<br />

130<br />

• HC-H53BT<br />

• HC-H103BT<br />

• HC-H153BT<br />

45° 2-M6<br />

Motor pulling tap<br />

4 12<br />

L<br />

44<br />

[Unit: mm]<br />

4-ø9 installation hole<br />

Use hexagon socket head bolts.<br />

ø165<br />

41<br />

ø145<br />

112<br />

5<br />

4.3<br />

ø110h7<br />

5<br />

ø22<br />

Cross-section A-A'<br />

12<br />

28 18<br />

A’<br />

A<br />

Plain washer<br />

10<br />

U nut M10×1.2<br />

Tightening torque<br />

23 to 30N•m<br />

58<br />

25<br />

ø16<br />

Oil seal<br />

Taper 1/10<br />

21.5<br />

KL 73.0<br />

Servomotor model<br />

2000 r/min 3000 r/min<br />

L<br />

KL<br />

HC-H52B HC-H53B 171 59<br />

HC-H102B HC-H103B 190 78<br />

HC-H152B HC-H153B 209 97<br />

Note: Use a friction coupling (Spun ring, etc.) to connect with the load.<br />

81.5<br />

Detector connector<br />

MS3102A22-14P<br />

Power connector<br />

JL04HV-2E22-22PE-B<br />

Brake connector<br />

MS3102A10SL-4P<br />

A<br />

B<br />

Pin<br />

A<br />

B<br />

Brake connector<br />

MS3102A10SL-4P<br />

Name<br />

B1<br />

B2<br />

There is no need for concern<br />

regarding the polarity when<br />

supplying 24VDC.<br />

Power connector<br />

JL04HV-2E22-22PE-B<br />

(JAE)<br />

D<br />

C<br />

A<br />

B<br />

Pin<br />

A<br />

B<br />

C<br />

D<br />

Name<br />

U<br />

V<br />

W<br />

Ground<br />

10 - 16


10. Specifications<br />

• HC-H202S<br />

• HC-H203S<br />

• HC-H352S<br />

• HC-H353S<br />

180<br />

45°<br />

2-M8<br />

Motor pulling tap<br />

79<br />

3<br />

16<br />

BL<br />

L<br />

44<br />

[Unit: mm]<br />

4-ø13.5 installation hole<br />

Use hexagon socket head bolts.<br />

ø230<br />

ø200±0.23<br />

0<br />

-0.025<br />

ø114.3<br />

ø35 +0.010<br />

0<br />

75<br />

C1<br />

81.5<br />

135<br />

Oil seal<br />

46<br />

100<br />

Eye bolt 2-M8<br />

AL<br />

KL<br />

21.5<br />

Detector connector<br />

MS3102A22-14P<br />

Power connector<br />

JL04HV-2E22-22PE-B<br />

Servomotor model<br />

2000 r/min 3000 r/min<br />

L KL AL BL<br />

HC-H202S HC-H203S 180 96 64 20<br />

HC-H352S HC-H353S 203 119 62 45<br />

Note 1. Use a friction coupling (Spun ring, etc.) to connect with the load.<br />

Note 2. Screw holes for hanging bolt (M8).<br />

Power connector<br />

JL04HV-2E22-22PE-B<br />

D<br />

C<br />

A<br />

B<br />

Pin<br />

A<br />

B<br />

C<br />

D<br />

(JAE)<br />

Name<br />

U<br />

V<br />

W<br />

Ground<br />

• HC-H202BS<br />

• HC-H203BS<br />

• HC-H352BS<br />

• HC-H353BS<br />

180<br />

2-M8<br />

45° Motor pulling tap<br />

79<br />

3<br />

16<br />

BL<br />

L<br />

44<br />

4-ø13.5 installation hole<br />

Use hexagon socket head bolts.<br />

[Unit: mm]<br />

ø230<br />

ø200±0.23<br />

0<br />

-0.025<br />

ø114.3<br />

+0.010<br />

-0.000<br />

ø35<br />

75<br />

C1<br />

81.5<br />

135<br />

Oil seal<br />

AL<br />

21.5<br />

Detector connector<br />

MS3102A22-14P<br />

46<br />

100<br />

Eye bolt 2-M8<br />

KL<br />

Brake connector<br />

MS3102A10SL-4P<br />

A<br />

B<br />

Pin<br />

A<br />

B<br />

77.0<br />

Name<br />

B1<br />

B2<br />

There is no need for concern<br />

regarding the polarity when<br />

supplying 24VDC.<br />

Power connector<br />

JL04HV-2E22-22PE-B<br />

Brake connector<br />

MS3102A10SL-4P<br />

Power connector<br />

JL04HV-2E22-22PE-B<br />

D<br />

C<br />

A<br />

B<br />

Pin<br />

A<br />

B<br />

C<br />

D<br />

(JAE)<br />

Name<br />

U<br />

V<br />

W<br />

Ground<br />

Servomotor model<br />

2000 r/min 3000 r/min<br />

L KL AL BL<br />

HC-H202BS HC-H203BS 216 96 64 20<br />

HC-H352BS HC-H353BS 239 119 62 45<br />

Note 1. Use a friction coupling (Spun ring, etc.) to connect with the load.<br />

Note 2. Screw holes for hanging bolt (M8).<br />

10 - 17


10. Specifications<br />

• HC-H452S<br />

• HC-H453S<br />

180<br />

• HC-H702S<br />

• HC-H703S<br />

45°<br />

2-M8<br />

Motor pulling tap<br />

79<br />

3<br />

(19)<br />

16<br />

7kW<br />

BL<br />

L<br />

44<br />

[Unit: mm]<br />

4-ø13.5 installation hole<br />

Use hexagon socket head bolts.<br />

ø230<br />

ø200±0.23<br />

0<br />

+0.025<br />

ø114.3<br />

ø35 +0.010<br />

-0.000<br />

C1<br />

75<br />

81.5<br />

124<br />

166<br />

Oil seal<br />

58<br />

100<br />

M8-1.25<br />

Depth 25<br />

Servomotor model<br />

2000 r/min 3000 r/min<br />

L KL AL BL<br />

HC-H452S HC-H453S 234 140 56 39<br />

HC-H702S HC-H703S 314 220 60 115<br />

Note 1. Use a friction coupling (Spun ring, etc.) to connect with the load.<br />

Note 2. Screw holes for hanging bolt (M8).<br />

AL<br />

KL<br />

21.5<br />

Detector connector<br />

MS3102A22-14P<br />

Power connector<br />

JL04HV-2E32-17PE-B<br />

Power connector<br />

JL04V-2E32-17PE-B<br />

D<br />

C<br />

A<br />

B<br />

Pin<br />

A<br />

B<br />

C<br />

D<br />

Eye bolt 2-M8<br />

(JAE)<br />

Name<br />

U<br />

V<br />

W<br />

Ground<br />

• HC-H452BS<br />

• HC-H453BS<br />

180<br />

• HC-H702BS<br />

• HC-H703BS<br />

45º 2-M8<br />

Motor pulling tap<br />

79<br />

3<br />

(19) 7kW<br />

16 BL<br />

L<br />

44<br />

[Unit: mm]<br />

4-ø13.5 installation hole<br />

Use hexagon socket head bolts.<br />

ø230<br />

ø200±0.23<br />

0<br />

+0.025<br />

+0.010<br />

-0.000<br />

75<br />

ø114.3<br />

ø35<br />

C1<br />

81.5<br />

130<br />

58<br />

100<br />

166<br />

M8-1.25<br />

Depth 25<br />

Oil seal<br />

Servomotor model<br />

2000 r/min 3000 r/min<br />

L KL AL BL<br />

HC-H452BS HC-H453BS 270 140 56 39<br />

HC-H702BS HC-H703BS 362 220 60 115<br />

AL<br />

KL<br />

Brake connector<br />

MS3102A10SL-4P<br />

A<br />

B<br />

Pin<br />

A<br />

B<br />

77.0<br />

21.5<br />

Name<br />

B1<br />

B2<br />

There is no need for concern<br />

regarding the polarity when<br />

supplying 24VDC.<br />

Detector<br />

connector<br />

MS3102A22-14P<br />

Brake connector<br />

MS3102A10SL-14P<br />

Power connector<br />

JL04HV-2E32-17PE-B<br />

Power connector<br />

JL04V-2E32-17PE-B<br />

D<br />

C<br />

A<br />

B<br />

Pin<br />

A<br />

B<br />

C<br />

D<br />

Eye bolt 2-M8<br />

(JAE)<br />

Name<br />

U<br />

V<br />

W<br />

Ground<br />

Note 1. Use a friction coupling (Spun ring, etc.) to connect with the load.<br />

Note 2. Screw holes for hanging bolt (M8).<br />

10 - 18


10. Specifications<br />

• HC-H902S<br />

• HC-H903S<br />

220<br />

• HC-H1102S<br />

• HC-H1103S<br />

79±1<br />

4<br />

19<br />

BL<br />

L±3<br />

44<br />

4-ø13.5 installation hole<br />

Use hexagon socket head bolts.<br />

45°<br />

ø270<br />

ø235±0.23<br />

0<br />

ø200 -0.046<br />

ø55 -0.019<br />

0<br />

C1<br />

75<br />

162<br />

81.5<br />

2-M10<br />

Motor pulling tap<br />

M10x1.5<br />

Depth 25<br />

AL<br />

KL<br />

21.5<br />

Power connector<br />

JL04V-2E32-17PE-B<br />

22<br />

Detector connector<br />

MS3102A22-14P<br />

60<br />

Eyebolt<br />

2-M8<br />

Power connector<br />

JL04V-2E32-17PE-B<br />

(JAE)<br />

Servomotor model<br />

2000 r/min 3000 r/min<br />

L KL AL BL<br />

HC-H902S HC-H903S 352 256 69 130<br />

HC-H1102S HC-H1103S 425 329 69 200<br />

Note 1. Use a friction coupling (Spun ring, etc.) to connect with the load.<br />

Note 2. Screw holes for hanging bolt (M8).<br />

D<br />

C<br />

A<br />

B<br />

Pin<br />

A<br />

B<br />

C<br />

D<br />

Name<br />

U<br />

V<br />

W<br />

Ground<br />

• HC-H902BS<br />

• HC-H903BS<br />

220<br />

• HC-H1102BS<br />

• HC-H1103BS<br />

79±1<br />

4<br />

45°<br />

19<br />

BL<br />

L±3<br />

44<br />

4-ø13.5 installation hole<br />

Use hexagon socket head bolts.<br />

ø270<br />

ø235±0.23<br />

0<br />

-0.046<br />

ø200<br />

0<br />

ø55 -0.019<br />

C1<br />

75<br />

162<br />

81.5<br />

2-M10<br />

Motor pulling tap<br />

M10x1.5<br />

Depth 25<br />

AL<br />

KL<br />

Power connector<br />

JL04V-2E32-17PE-B<br />

59<br />

22<br />

21.5 Detector connector<br />

86<br />

MS3102A22-14P<br />

Brake connector<br />

MS3102A10SL-4P<br />

60<br />

Eyebolt<br />

2-M8<br />

Servomotor model<br />

2000 r/min 3000 r/min<br />

L KL AL BL<br />

HC-H902BS HC-H903BS 401 256 69 130<br />

HC-H1102BS HC-H1103BS 474 329 69 200<br />

Note 1. Use a friction coupling (Spun ring, etc.) to connect with the load.<br />

Note 2. Screw holes for hanging bolt (M8).<br />

Brake connector<br />

MS3102A10SL-4P<br />

A<br />

B<br />

Pin<br />

A<br />

B<br />

Name<br />

B1<br />

B2<br />

There is no need for concern<br />

regarding the polarity when<br />

supplying 24VDC.<br />

Power connector<br />

JL04V-2E32-17PE-B<br />

D<br />

C<br />

A<br />

B<br />

Pin<br />

A<br />

B<br />

C<br />

D<br />

(JAE)<br />

Name<br />

U<br />

V<br />

W<br />

Ground<br />

10 - 19


10. Specifications<br />

• HC-H1502S<br />

6 286<br />

6<br />

11 220<br />

27<br />

128<br />

51<br />

605<br />

426<br />

386<br />

Encoder connector<br />

MS3102A20-29P<br />

25<br />

5<br />

140<br />

280<br />

45<br />

Use hexagon<br />

socket head bolts.<br />

4- 19<br />

350<br />

300<br />

179<br />

230<br />

152<br />

140<br />

60m6<br />

Intake<br />

250h7<br />

25 8<br />

M12<br />

160 -0.5<br />

0<br />

Rotation Direction<br />

105 105<br />

260<br />

108<br />

Oil seal<br />

S659013B<br />

55<br />

127 127<br />

310<br />

20<br />

10 - 20


10. Specifications<br />

10-3 Linear servomotor<br />

10-3-1 List of specifications<br />

Primary side LM-NS5G-60P-X0 Insulation class Class F<br />

Type<br />

LM-NS50-360-X0<br />

1.22 [Ω at 20°C]<br />

Secondary side<br />

Coil resistance<br />

LM-NS50-540-X0<br />

(U-V, V-W, W-U)<br />

Electromotive voltage<br />

51.3 [Vrms/(m/s)/phase] Working ambient temperature 0 to 40 [°C]<br />

constant (at 20°C)<br />

Thrust/<br />

current<br />

(at 20°C)<br />

Speed (maximum) 3.0 [m/s] Installation place Indoors<br />

Continuous rating<br />

(natural-cooling<br />

type)<br />

Continuous rating<br />

(oil-cooling type)<br />

Maximum rating<br />

2,000 [N] / 14.0 [Arms]<br />

6,060[N] / 43.0 [Arms]<br />

15,000 [N] / 124 [Arms]<br />

Thrust/speed<br />

characteristics<br />

*2<br />

Thrust<br />

[N]<br />

15,000<br />

Short-term<br />

rating<br />

Magnet attraction force 42,000 [N] *1<br />

6,060<br />

Drive unit type MDS-CH-V1-150 Continuous<br />

(Oil- cooled)<br />

2,000 rating<br />

Required cooling capacity 5.0 [L/min]<br />

0 Continuous (Natural<br />

Primary side 70.0 [kg]<br />

rating cooling)<br />

Mass Secondary side 15.0 [kg/unit] 0 1.5 3.0<br />

(LM-NS-40-) 22.0 [kg/unit]<br />

Speed [m/s]<br />

*1) The magnet attraction force is a reference value and<br />

is not the specified value.<br />

*2) The continuous thrust when the oil-cooled type is<br />

completed stopped is max. 5,000[N].<br />

The linear servomotor protection method is IP00.<br />

Use explosion-proof oil, etc., as necessary.<br />

Thermal<br />

protector<br />

Type<br />

Operation<br />

temperature<br />

Rated voltage/<br />

current<br />

T145AR3U1 (Matsushita)<br />

145 ± 5 [°C]<br />

6 [Vdc] / 0.15 [A]<br />

125 [Vac] / 3 [A]<br />

250 [Vac] / 2 [A]<br />

CAUTION<br />

To ensure correct use, always carefully read the instruction manual and<br />

materials enclosed with the motor before starting installation, operation,<br />

maintenance or inspections.<br />

10 - 21


10. Specifications<br />

10-3-2 Outline dimension drawings<br />

(1) LM-NP5G-60P-X00 (Primary side type)<br />

11×4 -M8 screw depth 12<br />

Grounding<br />

A<br />

U-phase<br />

B<br />

G1, G2<br />

W-phase<br />

D<br />

C<br />

A<br />

B<br />

V-phase<br />

A<br />

B<br />

MS3106A22-22PD(D190)<br />

MS3106A12S-3P(D190)<br />

CAUTION<br />

1. The cable enclosed with the motor is not a movable cable, so fix the cable to<br />

the machine side to prevent it from moving. For the moving sections, select a<br />

cable that matches the operation speed and bending radius, etc.<br />

2. Use hexagon socket bolts (material SCM435, lower yield point 900[N/mm 2 ] or<br />

more) for installation.<br />

(2) LM-NS50-[_]-X0 (Secondary side type)<br />

n-9 drill<br />

(for secondary side installation)<br />

Nameplate<br />

(type)<br />

Nameplate<br />

(serial No.)<br />

2×2-M8 screw<br />

(for suspension)<br />

Type<br />

Changed dimensions<br />

L K M n<br />

LM-NS50-360-X0 360 3 x 90 (=270) 320 4 x 2<br />

LM-NS50-540-X0 540 5 x 90 (=450) 500 6 x 2<br />

CAUTION<br />

Use hexagon socket bolts (material SCM435, lower yield point 900[N/mm 2 ] or<br />

more) for installation.<br />

10 - 22


11. Selection<br />

11-1 Selection of servomotor ................................................................................................................. 11-2<br />

11-1-1 Servomotor.............................................................................................................................. 11-2<br />

11-1-2 Regeneration methods............................................................................................................ 11-3<br />

11-1-3 Motor series characteristics .................................................................................................... 11-4<br />

11-1-4 Servomotor precision .............................................................................................................. 11-4<br />

11-1-5 Selection of servomotor capacity ............................................................................................ 11-6<br />

11-1-6 Example of servo selection ................................................................................................... 11-10<br />

11-1-7 Motor shaft conversion load torque....................................................................................... 11-13<br />

11-1-8 Expressions for load inertia calculation................................................................................. 11-14<br />

11-1-9 Other precautions.................................................................................................................. 11-15<br />

11-2 Selection of linear servomotor...................................................................................................... 11-16<br />

11-2-1 Maximum feedrate................................................................................................................. 11-16<br />

11-2-2 Maximum thrust..................................................................................................................... 11-16<br />

11-2-3 Continuous thrust .................................................................................................................. 11-18<br />

11-3 Selection of the power supply unit ............................................................................................... 11-20<br />

11-3-1 Selection of the power supply unit capacity .......................................................................... 11-20<br />

11-3-2 Selection with continuous rated capacity .............................................................................. 11-20<br />

11-3-3 Selection with maximum momentary rated capacity............................................................. 11-22<br />

11 - 1


11. Selection<br />

11-1 Selection of servomotor<br />

The methods of selecting the HC-H servomotor are explained in this section.<br />

Refer to section 11-2. Selection of linear servomotor for details on selecting the linear servomotor.<br />

11-1-1 Servomotor<br />

It is important to select a servomotor matched to the purpose of the machine that will be installed. If the<br />

servomotor and machine to be installed do not match, the motor performance cannot be fully realized,<br />

and it will also be difficult to adjust the parameters. Be sure to understand the servomotor characteristics<br />

in this chapter to select the correct motor.<br />

(1) Motor inertia<br />

The servomotor series is mainly categorized according to the motor inertia size.<br />

Select a medium inertia motor when interpolation precision is required, or for machines having a<br />

large load inertia. In general, use HC-H Series motors for the control axis.<br />

The servomotor has an optimum load inertia scale. If the load inertia exceeds the optimum range,<br />

the control becomes unstable and the servo parameters become difficult to adjust. When the load<br />

inertia is too large, decelerate with the gears (The motor axis conversion load inertia is proportional<br />

to the square of the deceleration ratio.), or change to a motor with a large inertia.<br />

Motor shaft conversion recommended load inertia ratio<br />

High-speed, High-accuracy Standards: 3-times or less of motor inertia<br />

General machine tool (interpolation axis): 5-times or less of motor inertia<br />

General machine (non-interpolation): 10-times or less of motor inertia<br />

(2) Rated speed<br />

The motor's rated output is designed to be generated at the rated speed, and the output P (W) is<br />

expressed with expression (11-1). Thus, even when the motors have the same capacity, the rated<br />

torque will differ according to the rated speed.<br />

P = 2πNT (W) .................................................. (11-1)<br />

N : Motor speed (1/s)<br />

T : Output torque (N⋅m)<br />

In other words, even with motors having the same capacities, the one with the lower rated speed will<br />

generate a larger torque. When actually mounted on the machine, if the positioning distance is short and<br />

the motor cannot reach the maximum speed, the motor with the lower rated speed will have a shorter<br />

positioning time. When selecting the motor, consider the axis stroke and usage methods, and select the<br />

motor with the optimum rated speed.<br />

11 - 2


11. Selection<br />

11-1-2 Regeneration methods<br />

When the servomotor decelerates, rotating load inertia or the operation energy of the moving object is<br />

returned to the servo drive unit through the servomotor as electrical power. This is called "regeneration".<br />

The three general methods of processing regeneration energy are shown below.<br />

Table 11-2 Servo drive unit regeneration methods<br />

Regeneration method<br />

1. Capacitor regeneration<br />

method<br />

2. Resistance regeneration<br />

method<br />

3. Power supply<br />

regeneration method<br />

Explanation<br />

This is a regeneration method for small-capacity drive units. The<br />

regeneration energy is charged to the capacitor in the drive unit, and<br />

this energy is used during the next acceleration.<br />

The regeneration capacity decreases as the power supply voltage<br />

becomes higher.<br />

If the capacitor voltage rises too high when regenerating with the<br />

capacitor only, the regenerative electrical power is consumed using<br />

the resistance. If the regeneration energy is small, it will only be<br />

charged to the capacitor. Because regeneration energy becomes<br />

heat due to resistance, heat radiation must be considered.<br />

In large capacity servo drive units the regenerative resistance<br />

becomes large and this is not practical.<br />

This is a method to return the regeneration energy to the power<br />

supply. The regeneration energy is not converted into heat by the<br />

resistor. (Some heat is generated due to the regeneration efficiency<br />

to the power supply.)<br />

Regeneration control is complicated, but there is no need to install a<br />

resistor regeneration unit.<br />

The "3. Power regeneration method" is used for the MDS-CH Series.<br />

POINT<br />

The MDS-CH Series uses a power regeneration method. Connect the<br />

regeneration energy to the power line via an AC reactor. If the AC reactor<br />

connection is improper, the other peripheral devices may not function correctly.<br />

11 - 3


11. Selection<br />

11-1-3 Motor series characteristics<br />

The HC-H Series servomotor is a medium-inertia compact motor for the MDS-CH Series (400V series<br />

input) basic feed axis.<br />

Table 11-3 Motor series characteristics<br />

Motor<br />

series<br />

HC-H<br />

Capacity<br />

(rated speed)<br />

0.5 to 11kW<br />

(2000r/min)<br />

0.5 to 11kW<br />

(3000r/min)<br />

Detector<br />

resolution<br />

1,000,000p/rev/<br />

100,000p/rev<br />

Features<br />

This is a motor for NC unit machine tool feed axes. It has<br />

smooth torque characteristics and is compatible to high<br />

resolution detectors. It has the same shaft shape and<br />

flange size as conventional 200V type HC motors and an<br />

easier to use design. It is drip-proofed against cutting oil<br />

entering the unit, and it clears IP65 specifications for<br />

environmental resistance performance as a standard.<br />

11-1-4 Servomotor precision<br />

The control precision of the servomotor is determined by the detector resolution, motor characteristics<br />

and parameter adjustment. This section examines the following four types of servomotor control<br />

precision when the servo parameters are adjusted. When selecting a servo, confirm that these types of<br />

precision satisfy the machine specifications before determining the servomotor series.<br />

(1) Theoretic precision: ∆ε<br />

This value is determined by the motor detector precision, and is the value obtained by dividing the<br />

movement amount (∆S) per motor rotation by the detector resolution (RNG).<br />

(2) Positioning precision : ∆εp<br />

This is the precision outline that affects the machine targeted for positioning, and expresses the<br />

machine's positioning precision.<br />

When the motor is a single unit, this is determined by the detector resolution and matches with the<br />

theoretic precision ∆εp. When the motor is actually installed on a machine, the positioning precision<br />

∆εp becomes 1 to 2 times the theoretic precision ∆ε. This is due to the effect on the motor control by<br />

the machine rigidity, etc. Furthermore, the value to which the error from the motor shaft to the<br />

machine is added becomes the actual machine positioning precision. For machines requiring<br />

accurate positioning precision at the machine, the scale feedback input can be performed.<br />

(3) Surface precision during machining : ∆εv<br />

This is the precision outline that affects the machine tools, etc., which are important factors in the<br />

machine operation path and interpolation functions. It also affects the surface roughness of the<br />

machining surface. The machining surface roughness is affected by elements caused by the<br />

detector resolution, the motor's electrical characteristics (torque ripple, etc.) and mechanical<br />

characteristics (cogging torque, etc.). In the NC unit feed axis motor (HC-H) those torque<br />

characteristics are excellent, and higher precision machining is possible than that of other motors.<br />

Because the effects of torque ripple and cogging torque are relatively smaller in motors with large<br />

amounts of inertia, the motor with the larger inertia of two identical capacity motors will be more<br />

advantageous for surface precision. Due to the effects of differences in characteristics of the motor<br />

itself, the surface precision during machining will differ greatly according to the motor series.<br />

(4) Absolute position repeatability : ∆εa<br />

This is the precision outline that affects the absolute position system machine, and expresses the<br />

repeatability of the position before the power was shut off and the position when the power is turned<br />

on again.<br />

With the single motor unit, the precision is 1 to 2 times the theoretic precision ∆ε. Note that the<br />

absolute position repeatability ∆εa is the difference from when the power was turned off last and<br />

returned on. This error is not cumulated.<br />

11 - 4


11. Selection<br />

Table 11-4 shows the approximate precision at the motor of each motor series. Obtain the precision at<br />

the machine during actual operating by adding the machine precision to the value in the table.<br />

Table 11-4 Precision by motor series<br />

Motor series<br />

Control<br />

resolution RNG<br />

(p/rev)<br />

HC-H[ ]-A42/E42 (OSA104S2, OSE104S2) 100,000<br />

HC-H[ ]-A51/E51 (OSA253S2, OSE253S2) 1,000,000<br />

Theoretic<br />

precision<br />

∆ε<br />

∆S<br />

RNG<br />

Positioning<br />

precision<br />

∆εp<br />

Surface<br />

precision<br />

∆εv<br />

Absolute<br />

position<br />

repeatability<br />

∆εa<br />

∆ε to 2∆ε 10∆ε to 20∆ε ∆ε to 2∆ε<br />

Table 11-5 Example of precision when movement amount is ∆s = 10mm per motor rotation<br />

(Unit: µm)<br />

Motor series<br />

Theoretic<br />

precision<br />

∆ε<br />

Positioning<br />

precision<br />

∆εp<br />

Surface<br />

precision<br />

∆εv<br />

Absolute<br />

position<br />

repeatability ∆εa<br />

HC-H[ ]-A42/E42 0.1 0.1 to 0.2 1 to 2 0.1 to 0.2<br />

HC-H[ ]-A51/E51 0.1 0.1 to 0.2 1 to 2 0.1 to 0.2<br />

11 - 5


11. Selection<br />

11-1-5 Selection of servomotor capacity<br />

The following three elements are used to determine the servomotor capacity.<br />

1. Load inertia ratio<br />

2. Short time characteristics (acceleration/deceleration torque)<br />

3. Continuous characteristics (continuous effective load torque)<br />

Carry out appropriate measures, such as changing the motor series or increasing the motor capacity, if<br />

any of the above conditions is not fulfilled.<br />

(1) Load inertia ratio<br />

Each servomotor has an appropriate load inertia ratio (load inertia/motor inertia). The control<br />

becomes unstable when the load inertia ratio is too large, and the servo parameter adjustment<br />

becomes difficult. It becomes difficult to improve the surface precision in the feed axis, and the<br />

positioning time cannot be shortened in the position axis because the settling time is longer.<br />

If the load inertia ratio exceeds the recommended value in the servomotor specifications list,<br />

increase the motor capacity or change to a motor series with a large inertia. Note that the<br />

recommended value for the load inertia ratio is strictly one guideline. This does not mean that<br />

controlling a load with inertia exceeding the recommended value is impossible.<br />

POINT<br />

When selecting feed axis servomotors for NC unit machine tools, place<br />

importance on the surface precision during machining. To do this, always select<br />

a servomotor with a load inertia ratio within the recommended value. Select the<br />

lowest value possible within that range.<br />

(2) Short time characteristics<br />

In addition to the continuous operation range, the servomotor has the short time operation range<br />

that can only be used for short times such as acceleration/deceleration. This range is expressed at<br />

the maximum torque. The maximum torque differs for each motor even at the same capacity, so<br />

confirm the specifications in section "10-2 Servomotor".<br />

The maximum torque affects the acceleration/deceleration time constant that can be driven. The<br />

linear acceleration/deceleration time constant ta can be approximated from the machine<br />

specifications using expression (11-2). Determine the maximum motor torque required from this<br />

expression, and select the motor capacity. The same selection can also be made by using the<br />

simple motor capacity selection diagrams on the last pages of this section (11-3).<br />

ta =<br />

(JL + JM) × N<br />

95.5 × (0.8 × TMAX − TL)<br />

(ms) .................................................. (11-2)<br />

N : Motor reach speed (r/min)<br />

JL : Motor shaft conversion load inertia (kg.cm 2 )<br />

JM : Motor inertia (kg.cm 2 )<br />

TMAX : Maximum motor torque<br />

(N.m)<br />

TL : Motor shaft conversion load (friction, unbalance) torque (N.m)<br />

11 - 6


11. Selection<br />

(3) Continuous characteristics<br />

A typical operation pattern is assumed, and the motor's continuous effective load torque (Trms) is<br />

calculated from the motor shaft conversion and load torque. If numbers to in the following<br />

drawing were considered a one cycle operation pattern, the continuous effective load torque is<br />

obtained from the root mean square of the torque during each operation, as shown in the<br />

expression (11-3).<br />

<br />

Motor<br />

speed 0<br />

T1<br />

T7<br />

Motor<br />

torque<br />

0<br />

T2<br />

T3<br />

T4<br />

T5<br />

T6<br />

T8<br />

Time<br />

t1 t2 t3 t4<br />

t5 t6 t7 t8<br />

t0<br />

Fig. 11-1 Continuous operation pattern<br />

Trms = T1 2·t1 + T2 2·t2 + T3 2·t3 + T4 2·t4 + T5 2·t5 + T6 2·t6 + T7 2·t7 + T8 2·t8<br />

t0<br />

.................... (11-3)<br />

Select a motor so that the continuous effective load torque Trms is 80% or less of the motor stall<br />

torque Tst.<br />

Trms ≤ 0.8 . Tst .................................................. (11-4)<br />

The amount of acceleration torque (Ta) shown in tables 11-6 and 11-7 is the torque to accelerate<br />

the load inertia in a frictionless state. It can be calculated by the expression (11-5). (For linear<br />

acceleration/ deceleration)<br />

Ta =<br />

(JL + JM) × N<br />

95.5 × ta<br />

(N.m) .................................................. (11-5)<br />

N : Motor reach speed (r/min)<br />

JL : Motor shaft conversion load inertia (kg.cm 2 )<br />

JM : Motor inertia (kg.cm 2 )<br />

ta : Linear acceleration/deceleration time constant (ms)<br />

11 - 7


11. Selection<br />

(3-1) Horizontal axis load torque<br />

When operations to are for a horizontal axis, calculate so that the following torques are<br />

required in each period.<br />

Table 11-6 Load torques of horizontal axes<br />

Period Load torque calculation method Explanation<br />

<br />

(Amount of acceleration torque) +<br />

(Kinetic friction torque)<br />

Normally the acceleration/deceleration time constant is<br />

calculated so that this torque is 80% of the maximum torque of<br />

the motor.<br />

(Kinetic friction torque) –<br />

<br />

(Amount of deceleration torque) +<br />

(Kinetic friction torque)<br />

(Static friction torque)<br />

<br />

− (Amount of acceleration torque) −<br />

(Kinetic friction torque)<br />

− (Kinetic friction torque)<br />

<br />

− (Amount of deceleration torque) −<br />

(Kinetic friction torque)<br />

− (Static friction torque)<br />

The absolute value of the acceleration torque amount is same<br />

as one of the deceleration torque amount. The signs for the<br />

amount of acceleration torque and amount of deceleration<br />

torque are reversed.<br />

Calculate so that the static friction torque is always required<br />

during a stop.<br />

The signs are reversed with period when the kinetic friction<br />

does not change according to movement direction.<br />

The signs are reversed with period when the kinetic friction<br />

does not change according to movement direction.<br />

The signs are reversed with period when the kinetic friction<br />

does not change according to movement direction.<br />

Calculate so that the static friction torque is always required<br />

during a stop.<br />

(3-2) Unbalance axis load torque<br />

When operations to are for an unbalance axis, calculate so that the following torques are<br />

required in each period. Note that the forward speed shall be an upward movement.<br />

The torque while the unbalance axis is stopped should be 50% or less than the stall torque (40% or<br />

less for V1-185).<br />

Table 11-7 Load torques of unbalance axes<br />

Period Load torque calculation method Explanation<br />

<br />

(Amount of acceleration torque) + (Kinetic<br />

friction torque) + (Unbalance torque)<br />

Normally the acceleration/deceleration time constant is<br />

calculated so that this torque is 80% of the maximum<br />

torque of the motor.<br />

(Kinetic friction torque) + (Unbalance torque) –<br />

<br />

(Amount of deceleration torque) + (Kinetic<br />

friction torque) + (Unbalance torque)<br />

(Static friction torque) + (Unbalance torque)<br />

<br />

− (Amount of acceleration torque) − (Kinetic<br />

friction torque) + (Unbalance torque)<br />

− (Kinetic friction torque) + (Unbalance torque)<br />

<br />

− (Amount of deceleration torque) − (Kinetic<br />

friction torque) + (Unbalance torque)<br />

− (Static friction torque) + (Unbalance torque)<br />

The absolute value of the acceleration torque amount<br />

is same as one of the deceleration torque amount. The<br />

signs for the amount of acceleration torque and<br />

amount of deceleration torque are reversed.<br />

The holding torque during a stop becomes fairly large.<br />

(Upward stop)<br />

The generated torque may be in the reverse of the<br />

movement direction, depending on the size of the<br />

unbalance torque.<br />

–<br />

–<br />

The holding torque becomes smaller than the upward<br />

stop. (Downward stop)<br />

POINT<br />

During a stop, the static friction torque may constantly be applied. The static<br />

friction torque and unbalance torque may be applied during an unbalance axis<br />

upward stop, and the torque during a stop may become extremely large.<br />

Therefore, caution is advised.<br />

11 - 8


11. Selection<br />

< Acceleration/deceleration time constant 1 for servomotors ><br />

When No = Rated speed and PGN1 = 33.<br />

<br />

100ms<br />

150ms<br />

H1102<br />

H902<br />

H702<br />

H452<br />

H202<br />

H352<br />

H102<br />

H152<br />

H52<br />

30 50 70ms<br />

1 10 100 1000 10000<br />

<br />

150<br />

200 300msec<br />

H1103<br />

H903<br />

H703<br />

H453<br />

H203<br />

H353<br />

H153<br />

H103<br />

H53<br />

50 70<br />

100msec<br />

1 10 100 1000 10000<br />

Motor shaft conversion load inertia (kg.cm 2 )<br />

Fig. 11-2 Simple motor capacity selection diagram<br />

CAUTION<br />

The friction torque and unbalanced torque are not considered in the<br />

acceleration/<br />

deceleration time constants given in Fig. 11-2.<br />

11 - 9


11. Selection<br />

11-1-6 Example of servo selection<br />

A servomotor is selected using a machining center with the following specifications as an example.<br />

Specification item Unit X axis Y axis Z axis<br />

Axis type Linear Linear Linear<br />

Movement direction Horizontal Horizontal Vertical<br />

Table support method Rolling Rolling Rolling<br />

Table movement friction coefficient % 5 5 2<br />

Ball screw diameter mm 40 40 40<br />

Ball screw length mm 900 800 1000<br />

Ball screw lead mm 10 10 10<br />

Deceleration ratio 1 1 2/3<br />

Primary side gear inertia kg.cm 2 − − 1.6<br />

Secondary side gear inertia kg.cm 2 − − 8.1<br />

Motor/ball screw connection section inertia kg.cm 2 2.0 2.0 −<br />

Weight of moving object installed on the<br />

machine (table, etc.)<br />

kg 500 400 400<br />

Weight of standard-added-moving object<br />

(workpiece, etc.)<br />

kg 100 100 10<br />

Rapid traverse rate mm/min 30000 30000 20000<br />

Target acceleration/deceleration time constant ms 120 120 120<br />

Rapid traverse positioning frequency times/min 20 20 20<br />

Motor brake Without Without With<br />

(1) Motor selection calculation<br />

The selection calculation is carried out in order using the Z<br />

axis as an example.<br />

1) Determine the maximum rotation speed<br />

Select the motor from the 2000r/min system or 3000r/min<br />

system<br />

2) Obtaining the load inertia<br />

Calculate the motor shaft conversion load inertia separately<br />

for the rotation load and linear movement load. Furthermore,<br />

calculate the rotation load inertia separately for the primary<br />

and secondary side.<br />

• Primary side rotation load inertia: JR1<br />

This is the primary side gear inertia.<br />

JR1 = 1.6 (kg.cm 2 )<br />

Secondary<br />

side gear<br />

8.1kg·cm 2<br />

10kg<br />

Deceleration ratio = 2/3<br />

400kg<br />

Servomotor<br />

Primary side<br />

gear<br />

1.6kg·cm 2<br />

Ball screw<br />

ø40, 1000mm<br />

Fig. 11-3 Z axis configuration<br />

• Secondary side rotation load inertia: JR2<br />

This is the sum of the ball screw inertia JB and secondary side gear inertia.<br />

The ball screw is generally calculated as a cylinder made of steel.<br />

Refer to section "11-1-8 Expressions for load inertia calculation".<br />

JR2<br />

= JB + 8.1 = π · ρ · L<br />

32<br />

D 4 + 8.1 =<br />

π × 7.80 × 10 −3 × 100<br />

32<br />

× 4 4 + 8.1<br />

= 19.6 + 8.1 = 27.7 (kg.cm 2 )<br />

• Total rotation load inertia: JR<br />

This is the sum of the primary side load inertia and secondary side load inertia. To convert the<br />

secondary side load inertia to the motor shaft (primary side), multiply by the square of the<br />

deceleration ratio.<br />

JR = JR1 + ( 2 3 )2 × JR2 = 1.6 + 4 9 × 27.7 = 1.6 + 12.3 = 13.9 (kg .cm 2 )<br />

• Linear movement load inertia: JT<br />

The inertia is calculated when a standard workpiece, tool, etc., is attached. The conversion to the<br />

motor shaft by the deceleration ratio is included in the movement increment per motor rotation.<br />

Refer to section "11-1-8 Expressions for load inertia calculation".<br />

JT = W . (<br />

∆S<br />

20π<br />

) 2 = (400 + 10) . (<br />

10 × 2<br />

20π × 3 )2 = 4.6 (kg.cm 2 )<br />

11 - 10


11. Selection<br />

• Load inertia: JL<br />

This is the sum of the total rotation load inertia and the linear movement inertia.<br />

JL = 13.9 + 4.6 = 18.5 (kg.cm 2 )<br />

When looking at the load inertia components, the linear movement weight tends to increase.<br />

However, the rotation load generally accounts for most of the inertia. The load inertia does not<br />

change much even if the workpiece weight changes greatly in the table axis.<br />

3) Obtaining unbalance torque<br />

The unbalance torque is obtained from the moving object weight. Here, the drive system efficiency<br />

is calculated as 1.<br />

Refer to section "11-1-7 Motor shaft conversion load torque".<br />

(W 1 − W 2 ) · g · ∆S (410 − 0) × 9.8 × 10 × 2<br />

TU =<br />

2 × 10 3 =<br />

π · η<br />

2 × 10 3 = 4.3 (N.m)<br />

π × 1 × 3<br />

4) Obtaining friction torque<br />

The friction torque is obtained from the moving object weight and friction coefficient. Here, the drive<br />

system efficiency is calculated as 1. Refer to section "11-1-7 Motor shaft conversion load torque".<br />

F · ∆S<br />

TF =<br />

2 × 10 3 π · η = µ · W · g · ∆S 0.02 × 410 × 9.8 × 10 × 2<br />

2 × 10 3 =<br />

π · η 2 × 10 3 = 0.09 (N.m)<br />

π × 1 × 3<br />

5) Selecting the appropriate motor from the load inertia ratio<br />

Because it is a machine tool, the HC-H Motor Series is required for the control precision, and a<br />

motor maximum speed of 3000r/min. or more is required because of the rapid traverse speed and<br />

gear ratio. Furthermore, the motor to be selected is limited to HC-H[ ]B Series because a motor with<br />

a brake is required. The load inertia for all the HC-H53B to HC-H153B motors in the table below is<br />

judged to be appropriate if the load inertia is within 5-fold of the recommended load inertia ratio.<br />

Motor type<br />

Motor inertia Load inertia Load inertia<br />

(kg.cm 2 ) (kg.cm 2 ) magnification<br />

Judgment<br />

HC-H53B 8.6 18.5 2.15 ◦<br />

HC-H103B 15.7 18.5 1.18 ◦<br />

HC-H153B 22.0 18.5 0.84 ◦<br />

6) Selecting the appropriate motor from the short time characteristics<br />

(acceleration/deceleration time constant)<br />

The acceleration/deceleration time constant is calculated using expression (11-2), and it is judged<br />

whether it satisfies the target acceleration/deceleration time constant of 120ms.<br />

HC53B : ta =<br />

HC103B : ta =<br />

HC153B : ta =<br />

(JL + JM) × N<br />

95.5 × (0.8 × TMAX − TU − TF) = (18.5 + 8.6) × 3000<br />

95.5 × (0.8 × 8.82 − 4.3 − 0.09)<br />

(JL + JM) × N<br />

95.5 × (0.8 × TMAX − TU − TF) = (18.5 + 15.7) × 3000<br />

95.5 × (0.8 × 16.7 − 4.3 − 0.09)<br />

(JL + JM) × N<br />

95.5 × (0.8 × TMAX − TU − TF) = (18.5 + 22.0) × 3000<br />

95.5 × (0.8 × 28.4 − 4.3 − 0.09)<br />

11 - 11<br />

= 320.5 (ms)<br />

= 119.9 (ms)<br />

= 69.4 (ms)<br />

The motors that satisfy the conditions from the calculation results above are the HC-H103B and<br />

HC-H153B as shown below.<br />

Motor type<br />

Maximum<br />

torque (N. m)<br />

Total inertia<br />

(kg. cm 2 )<br />

Acceleration/<br />

deceleration time<br />

constant<br />

[ms]<br />

Judgment<br />

HC-H53B 8.82 27.1 320.5 ×<br />

HC-H103B 16.7 34.2 119.9 ◦<br />

HC-H153B 28.4 40.5 69.4 ◦


11. Selection<br />

7) Selecting the appropriate motor from the continuous characteristics<br />

Generally, the expressions (11-3) and (11-4) are calculated following the typical operation pattern,<br />

and the motor is judged from the continuous characteristics. Because the Z axis is the vertical axis<br />

here, the motor will be judged by the stopped torque during an upward stop.<br />

The unbalance axis torque during a stop should be 50% or less of the stall torque. This is one of the<br />

references for motor selection. As shown in the following table, the only motor that satisfies this<br />

reference is HC-H153B. From the judgment in steps (4) to (6) it is the appropriate motor with Z axis.<br />

Motor<br />

type<br />

Stall<br />

torque<br />

(N.m)<br />

Torque during stop<br />

T U +T F (kg.cm 2 )<br />

Load rate<br />

(%)<br />

11 - 12<br />

Judgment<br />

Explanation<br />

HC-H53B 2.9 4.39 151.4 × An overload alarm occurs from just holding.<br />

HC-H103B 5.8 4.39 75.7 ×<br />

There is no allowance for an acceleration/<br />

deceleration operation.<br />

HC-H153B 9.0 4.39 48.8 ◦ The torque during stop should be 50% or less.<br />

(2) Servo selection results<br />

As a result of calculating the servo selection, the servo specifications for the Z axis of this<br />

machining center have been determined.<br />

Item<br />

Type<br />

Servo drive unit<br />

MDS-CH-V1-20<br />

Servomotor HC-H153B[ ]<br />

The [ ] in the motor model will be decided based on separate machine specifications such as motor<br />

shaft shape and absolute position system.<br />

The following table shows the servo selections for all axes.<br />

Item Unit X axis Y axis Z axis<br />

Axis type Linear Linear Linear<br />

Movement direction Horizontal Horizontal Vertical<br />

Table support method Rolling Rolling Rolling<br />

Table movement friction coefficient % 5 5 2<br />

Ball screw diameter mm 40 40 40<br />

Ball screw length mm 900 800 1000<br />

Ball screw lead mm 10 10 10<br />

Deceleration ratio 1 1 2/3<br />

Primary side gear inertia kg.cm 2 − − 1.6<br />

Secondary side gear inertia kg.cm 2 − − 8.1<br />

Motor/ball screw connection section inertia kg.cm 2 2.0 2.0 −<br />

Weight of moving object installed on the machine<br />

(table, etc.)<br />

kg 500 400 400<br />

Weight of standard-added-moving object<br />

(workpiece, etc.)<br />

kg 100 100 10<br />

Rapid traverse rate mm/min 30000 30000 20000<br />

Target acceleration/deceleration time constant ms 120 120 120<br />

Rapid traverse positioning frequency times/min 20 20 20<br />

Motor brake Without Without With<br />

Motor shaft conversion rotation load inertia kg.cm 2 19.6 17.7 13.9<br />

Motor shaft conversion linear movement load<br />

inertia<br />

kg.cm 2 15.2 12.7 4.6<br />

Motor shaft conversion total load inertia kg.cm 2 34.8 30.3 18.5<br />

Motor inertia kg.cm 2 13.7 13.7 22.0<br />

Motor shaft conversion load inertia magnification -fold 2.54 2.22 0.84<br />

Motor shaft conversion unbalance torque N.m 0.0 0.0 4.3<br />

Motor shaft conversion friction torque N.m 0.47 0.39 0.09<br />

Motor shaft conversion total load torque N.m 0.47 0.39 4.39<br />

Motor speed during rapid traverse r/min 3000 3000 3000<br />

Rapid traverse acceleration/deceleration time<br />

constant<br />

ms 118.3 106.7 69.4<br />

Maximum torque during motor stop N.m 0.47 0.39 4.39<br />

Maximum load rate during motor stop % 8.0 6.6 49.8<br />

Servo drive unit model MDS-CH-V1-10 MDS-CH-V1-10 MDS-CH-V1-20<br />

Servomotor model HC-H103[ ] HC-H103[ ] HC-H153B[ ]


11. Selection<br />

11-1-7 Motor shaft conversion load torque<br />

The main load torque calculation expressions are shown below.<br />

Type Mechanism Calculation expression<br />

Linear<br />

movement<br />

Z2<br />

Z1<br />

η<br />

W<br />

F0<br />

FC<br />

TL =<br />

F V<br />

2×10 3 πη . ( N<br />

) =<br />

F.∆S<br />

2×10 3 πη<br />

TL : Load torque (N.m)<br />

F : Force in axial direction of the machine<br />

that moves linearly<br />

(N)<br />

η : Drive system efficiency<br />

V : Speed of object that moves linearly (mm/min)<br />

N : Motor speed (r/min)<br />

∆S : Object movement amount per motor<br />

rotation<br />

(mm)<br />

Z1, Z2 : Deceleration ratio<br />

F in the above expression is obtained from the lower expression<br />

when the table is moved as shown on the left.<br />

F = Fc + µ (W . g + F0)<br />

Fc : Force applied on axial direction of moving section (N)<br />

F0 : Tightening force on inner surface of table guide (N)<br />

W : Total weight of moving section<br />

(kg)<br />

g : Gravitational acceleration = 9.8 (m/s 2 )<br />

µ : Friction coefficient<br />

Rotary<br />

movement<br />

Z1<br />

TLO<br />

Z2<br />

Servomotor<br />

Z 1<br />

1<br />

TL = · η<br />

1 1<br />

Z 2 · TLO + TF = · · TLO + TF<br />

n η<br />

TL : Load torque (N.m)<br />

TLO : Load torque on load shaft (N.m)<br />

TF : Motor shaft conversion load friction torque (N.m)<br />

η : Drive system efficiency<br />

Z 1 , Z 2 : Deceleration ratio<br />

n : Deceleration rate<br />

When rising<br />

TL = TU + TF<br />

Servomotor<br />

When lowering<br />

TL = –TU · η 2 TL : Load + TF torque<br />

TU : Unbalanced torque<br />

TF : Friction torque on moving section<br />

(N.m)<br />

(N.m)<br />

(N.m)<br />

Vertical<br />

movement<br />

1/n<br />

Guide<br />

W1<br />

W2<br />

Load<br />

Counterweight<br />

(W 1 − W 2 ) · g V<br />

TU = · (<br />

N<br />

) =<br />

2 × 10 3 πη<br />

TF =<br />

(W 1 – W 2 ) · g · ∆S<br />

2 × 10 3 πη<br />

W 1<br />

µ · (W 1 + W 2 ) · g · ∆S<br />

2 × 10 3 πη<br />

: Load weight (kg)<br />

W 2 : Counterweight weight (kg)<br />

η : Drive system efficiency<br />

g : Gravitational acceleration = 9.8 (m/s 2 )<br />

V : Speed of object that moves linearly (mm/min)<br />

N : Motor speed (r/min)<br />

∆S : Object movement amount per motor rotation (mm)<br />

µ : Friction coefficient<br />

11 - 13


11. Selection<br />

11-1-8 Expressions for load inertia calculation<br />

The calculation method for a representative load inertia is shown.<br />

Type Mechanism Calculation expression<br />

Cylinder<br />

Rotary<br />

shaft is<br />

cylinder<br />

center<br />

Rotary<br />

ØD1.<br />

π·ρ·L<br />

ØD2. JL = . (D 4 1 – D 4 W<br />

2 ) =<br />

32<br />

8<br />

. (D 2 1 – D 2 2 )<br />

JL : Load inertia [kg.cm 2 Reference data<br />

]<br />

ρ : Density of cylinder material [kg.cm 3 Material densities Iron<br />

] ..... 7.80×10 –3 [kg/cm 3 ]<br />

L : Length of cylinder [cm] Aluminum<br />

D 1 : Outer diameter of cylinder [cm] ..... 2.70×10 –3 [kg/cm 3 ]<br />

D 2 : Inner diameter of cylinder [cm] Copper<br />

W : Weight of cylinder [kg] ..... 8.96×10 –3 [kg/cm 3 ]<br />

shaft<br />

When rotary shaft and cylinder<br />

shaft are deviated<br />

R<br />

JL = W . (D 2 + 8R 2 )<br />

8<br />

Rotary shaft<br />

R<br />

D<br />

JL : Load inertia [kg.cm 2 ]<br />

W : Weight of cylinder<br />

[kg]<br />

D : Outer diameter of cylinder [cm]<br />

R : Distance between rotary axis and<br />

cylinder axis<br />

[cm]<br />

a 2 + b 2<br />

JL = W ( 3 + R 2 )<br />

Column<br />

a<br />

a<br />

b<br />

b<br />

JL : Load inertia [kg.cm 2 ]<br />

W : Weight of cylinder [kg]<br />

a.b.R : Left diagram<br />

[cm]<br />

Rotary shaft<br />

V<br />

1 V<br />

∆S<br />

JL = W (<br />

2πN<br />

·<br />

10<br />

) 2 = W ( 20π ) 2<br />

Object that<br />

moves<br />

linearly<br />

Servomotor<br />

N<br />

W<br />

JL : Load inertia<br />

[kg.cm 2 ]<br />

W : Weight of object that moves linearly [kg]<br />

N : Motor speed<br />

[r/min]<br />

D<br />

JL = W (<br />

D<br />

2<br />

) 2 + JP<br />

Suspended<br />

object<br />

W<br />

JL : Load inertia [kg.cm 2 ]<br />

W : Object weight<br />

[kg]<br />

D : Diameter of pulley<br />

[cm]<br />

JP : Inertia of pulley [kg.cm 2 ]<br />

N3<br />

Load B<br />

JB<br />

J31<br />

N 2<br />

N 1<br />

N 3<br />

N 1<br />

JL = J 11 + (J 21 + J 22 + J A ) ·( ) 2 + (J 31 + J B ) · ( ) 2<br />

Converted<br />

load<br />

J21<br />

Servomotor<br />

J22<br />

N1<br />

N1<br />

Load A<br />

JA<br />

N2<br />

JL : Load inertia [kg.cm 2 ]<br />

JA,JB : Inertia of load A, B [kg.cm 2 ]<br />

J 11 ~J 31 : Inertia [kg.cm 2 ]<br />

N 1 ~N 3 : Each shaft’s speed [r/min]<br />

J11<br />

11 - 14


11. Selection<br />

11-1-9 Other precautions<br />

The following precautions apply when selecting the servomotor.<br />

CAUTION<br />

• The maximum torque that can be used with the motor is limited.<br />

Select a torque at 80% of each motor's specifications.<br />

• For the parallel drive axis calculate the maximum load inertia with the<br />

conditions establishing the maximum load for each axis.<br />

(If the load inertia fluctuates by 30% or more between the parallel driven axes,<br />

the position and speed gain may be limited.)<br />

• The unbalanced torque caused by gravity is calculated with the (unbalanced<br />

torque element when stopped) + (frictional torque).<br />

Select a torque within 50% of the motor stall torque in this case.<br />

A different load is applied on the master and slave axes due to the movement of the<br />

workpiece mounted on the X axis.<br />

Workpiece<br />

X axis<br />

Master axis<br />

Slave axis<br />

Fig.: For parallel drive system (Example)<br />

11 - 15


11. Selection<br />

11-2 Selection of linear servomotor<br />

The linear servomotor must be selected according to the purpose of the machine in which it is installed.<br />

If the installed machine and linear servomotor do not match, the motor's performance will not be utilized<br />

to the fullest, and it will be difficult to adjust the servo parameter. Read through this section to fully<br />

understand the characteristics of the linear servomotor, and select the correct motor.<br />

11-2-1 Maximum feedrate<br />

The maximum feedrate for the LM-N Series linear servomotor is 120m/min. However, there are systems<br />

that cannot reach the maximum speed 120m/min because of the linear scale being used. Refer to the<br />

section "10-3 Linear servomotor" for the main systems and possible maximum feedrates.<br />

11-2-2 Maximum thrust<br />

The linear servomotor has an output range for the continuous thrust that can be used only for short<br />

times such as acceleration/deceleration. If the motor is a natural-cooled type motor, a thrust that is<br />

approx. 6-fold can be output. For an oil-cooled type motor, a thrust that is approx. 3-fold can be output.<br />

The maximum linear motor thrust required for acceleration/deceleration can be approximated using the<br />

machine specifications and expression (3-1). Select the linear servomotor based on these results.<br />

Fmax = (M × a + Ff ) × 1.2 .................................................. (3-1)<br />

Fmax : Maximum motor thrust<br />

(N)<br />

M : Movable mass (including motor's moving sections) (kg)<br />

a : Acceleration during acceleration/deceleration (m/s 2 )<br />

Ff : Load force (including cutting force, friction and unbalance force) (N)<br />

Note that there is a servo response delay as shown on<br />

the right in respect to the acceleration in the<br />

acceleration/ deceleration command set with the NC.<br />

Thus, the acceleration characteristics (thrust<br />

characteristics required for acceleration/deceleration<br />

when movable mass is applied) in respect to the speed<br />

required for the linear servomotor will be as shown on<br />

the next page. (Conditions: Indicates the<br />

characteristics using the position loop gain during SHG<br />

control using a linear acceleration/deceleration<br />

command pattern.) Thus, when selecting the linear<br />

motor, refer to the speed - acceleration (thrust)<br />

characteristics on the next page, and confirm the<br />

speed - thrust characteristics (4-4 Torque<br />

characteristics drawing) for the linear motor.<br />

Speed<br />

Command speed<br />

Servo response<br />

Time<br />

(Note) The speed - acceleration characteristics on the next page are reference values at a specific<br />

condition, so if the position loop gain differs when an S-character acceleration/deceleration filter<br />

is applied on the command, the characteristics will also differ.<br />

11 - 16


11. Selection<br />

[During acceleration: Speed - acceleration<br />

Servo response characteristics]<br />

Maximum speed 120m/min, PGN1=47 (SHG)<br />

F=120m/min,PGN1=47(SHG)<br />

40<br />

35<br />

30<br />

During<br />

acceleration<br />

Command 29.4m/s 2<br />

[During deceleration: Speed - acceleration<br />

Servo response characteristics]<br />

Maximum speed 120m/min, PGN1=47 (SHG)<br />

40<br />

35<br />

30<br />

During<br />

deceleration<br />

F=120m/min,PGN1=47(SHG)<br />

Command 29.4m/s 2<br />

Acceleration(m/s2)<br />

25<br />

20<br />

15<br />

10<br />

Command19.6m/s 2<br />

Command 9.8m/s 2<br />

Acceleration(m/s2)<br />

25<br />

20<br />

15<br />

10<br />

Command19.6m/s 2<br />

Command 9.8m/s 2<br />

5<br />

5<br />

0<br />

0 20 40 60 80 100 120<br />

Velocity(m/min)<br />

Maximum speed 80m/min, PGN1=47 (SHG)<br />

F=80m/min,PGN1=47(SHG)<br />

40<br />

35<br />

30<br />

During<br />

acceleration<br />

Command 29.4m/s 2<br />

0<br />

0 20 40 60 80 100 120<br />

Velocity(m/min)<br />

40<br />

35<br />

30<br />

Maximum speed 80m/min, PGN1=47 (SHG)<br />

F=80m/min,PGN1=47(SHG)<br />

During<br />

deceleration<br />

Command 29.4m/s 2<br />

Acceleration(m/s2)<br />

25<br />

20<br />

15<br />

10<br />

Command19.6m/s 2<br />

Command 9.8m/s 2<br />

Acceleration(m/s2)<br />

25<br />

20<br />

15<br />

10<br />

Command19.6m/s 2<br />

Command 9.8m/s 2<br />

5<br />

5<br />

0<br />

0 20 40 60 80 100 120<br />

Velocity(m/min)<br />

40<br />

35<br />

30<br />

Maximum speed 120m/min, PGN1=100 (SHG)<br />

F=120m/min,PGN1=100(SHG)<br />

During<br />

acceleration<br />

Command 29.4m/s 2<br />

0<br />

0 20 40 60 80 100 120<br />

Velocity(m/min)<br />

Maximum speed 120m/min, PGN1=100 (SHG)<br />

F=120m/min,PGN1=100(SHG)<br />

40<br />

During<br />

35 deceleration<br />

Command 29.4m/s 2<br />

30<br />

Acceleration(m/s2)<br />

25<br />

20<br />

15<br />

10<br />

Command19.6m/s 2<br />

Command 9.8m/s 2<br />

Acceleration(m/s2)<br />

25<br />

20<br />

15<br />

10<br />

Command19.6m/s 2<br />

Command 9.8m/s 2<br />

5<br />

5<br />

Maximum speed 80m/min, PGN1=100 (SHG)<br />

Maximum speed 80m/min, PGN1=100 (SHG)<br />

During<br />

acceleration<br />

Command 29.4m/s 2<br />

During<br />

deceleration<br />

Command 29.4m/s 2<br />

Command19.6m/s 2<br />

Command19.6m/s 2<br />

Command 9.8m/s 2<br />

Command 9.8m/s 2<br />

11 - 17


11. Selection<br />

11-2-3 Continuous thrust<br />

The continuous effective thrust Frms is calculated from the load force using a typical operation pattern.<br />

If the operation pattern consists of the one cycle of to , as shown below, the continuous effective<br />

load thrust can be obtained from the square mean of the thrust for each operation as shown in<br />

expression (3-2).<br />

<br />

Motor<br />

speed<br />

0<br />

F1<br />

F7<br />

Motor<br />

thrust<br />

0<br />

F2<br />

F3<br />

F4<br />

F5<br />

F6<br />

F8<br />

Time<br />

t1 t2 t3 t4<br />

t5 t6 t7 t8<br />

t0<br />

Fig. 3-1 Continuous operation pattern<br />

Frms = F1 2·t1 + F2 2·t2 + F3 2·t3 + F4 2·t4 + F5 2·t5 + F6 2·t6 + F7 2·t7 + F8 2·t8<br />

t0<br />

.................... (3-2)<br />

Select the motor so that the continuous effective load thrust Frms is 80% or less of the motor's<br />

continuous thrust Fs.<br />

Frms ≤ 0.8 × Fs .................................................. (3-3)<br />

(1) Load thrust for horizontal axis<br />

If a horizontal axis is used for steps to , calculate so that the following thrust is attained<br />

between each interval.<br />

Table 3-1 Load thrusts for horizontal axis<br />

Interval Load torque calculation expression Explanation<br />

(Acceleration thrust) + (kinetic friction force)<br />

Usually, calculate the acceleration/deceleration time<br />

constant so that this thrust is 80% of the motor's<br />

maximum thrust.<br />

(Kinetic friction force) + (cutting force) –<br />

(Deceleration thrust) + (kinetic friction force)<br />

(Static friction force)<br />

– (Acceleration thrust) – (kinetic friction force)<br />

– (Kinetic friction force) – (cutting force)<br />

– (Deceleration thrust) – (kinetic friction force)<br />

– (Static friction force)<br />

The acceleration thrust and the deceleration thrust<br />

are the same absolute value with reversed signs.<br />

Calculate as a static friction force is always required<br />

when stopped.<br />

If the kinetic friction does not change according to<br />

the moving direction, the sign is the opposite of .<br />

If the kinetic friction does not change according to<br />

the moving direction, the sign is the opposite of .<br />

If the kinetic friction does not change according to<br />

the moving direction, the sign is the opposite of .<br />

Calculate as a static friction force is always required<br />

when stopped.<br />

11 - 18


11. Selection<br />

(2) Load thrust for unbalanced axis<br />

If the operation in steps to is unbalanced, calculate so that the following thrust is attained<br />

between each interval. Note that the forward speed is an upward movement.<br />

Table 3-2 Load thrusts for unbalanced axis<br />

Interval Load torque calculation expression Explanation<br />

<br />

<br />

<br />

(Acceleration thrust) + (kinetic friction force)<br />

+ (unbalance force)<br />

(Kinetic friction force) + (unbalance force)<br />

+ (cutting force)<br />

(Deceleration thrust) + (kinetic friction force)<br />

+ (unbalance force)<br />

(Static friction force) + (unbalance force)<br />

<br />

<br />

<br />

– (Acceleration thrust) – (kinetic friction force)<br />

+ (unbalance force)<br />

– (Kinetic friction force) + (unbalance force)<br />

– (cutting force)<br />

– (Deceleration thrust) – (kinetic friction force)<br />

+ (unbalance force)<br />

– (Static friction force) + (unbalance force)<br />

Usually, calculate the acceleration/deceleration time<br />

constant so that this thrust is 80% of the motor's<br />

maximum thrust.<br />

The acceleration thrust and the deceleration thrust<br />

are the same absolute value with reversed signs.<br />

The holding force when stopped increases greatly.<br />

(Upward stop)<br />

Depending on the size of the unbalanced force, the<br />

generated force may be the opposite of the<br />

movement direction.<br />

The holding force is smaller than the upward stop.<br />

(Downward stop)<br />

–<br />

–<br />

–<br />

POINT<br />

The static friction force may be constantly applied when stopped. During the<br />

upward stop of an unbalanced axis, the static friction force and unbalanced force<br />

are applied, and the thrust increases greatly when stopped.<br />

(3) Maximum cutting force and maximum cutting duty<br />

If the maximum cutting force and maximum duty (%) are known, the selection conditions can be<br />

obtained easily with the following expression.<br />

0.8 × Fs ≥ Fc × D<br />

100<br />

.................................................. (3-4)<br />

Fs : Motor continuous thrust [N]<br />

Fc : Maximum cutting force during operation [N]<br />

D : Maximum cutting duty [%]<br />

(4) Unbalance force<br />

CAUTION<br />

For an unbalanced axis, such as a gravity axis, basically balance it with a device<br />

such as a counterbalance. With the linear motor, the continuous thrust is lower<br />

than the rotary motor, so if the axis is unbalanced the motor's heating amount will<br />

increase. If an error should occur, the axis will drop naturally. This is hazardous<br />

as the dropping distance and dropping speed are large.<br />

11 - 19


11. Selection<br />

11-3 Selection of the power supply unit<br />

11-3-1 Selection of the power supply unit capacity<br />

In addition to "selection following the rated capacity (continuous rated capacity)", select the power<br />

supply unit so that "selection under the maximum momentary rated capacity" are simultaneously<br />

satisfied.<br />

11-3-2 Selection with continuous rated capacity<br />

The rated output used in selection is 30-minute rated output.<br />

(1) When using 1-axis servomotor<br />

Power supply unit rated capacity > Σ (Spindle motor output) + (Servomotor output)<br />

(2) When using 2 or more axes servomotor<br />

Power supply unit rated capacity > Σ (Spindle motor output) + 0.7 × Σ (Servomotor output)<br />

(Note 1) Σ (Spindle motor output) is the total of the spindle motor's short time rated output (kW).<br />

If the output characteristics during acceleration/deceleration differ from the output<br />

characteristics at the constant state, set the larger output in "spindle motor output".<br />

If the short time output characteristics of the spindle motor are less than 10 minutes, multiply<br />

the characteristics with the following coefficient, and set as the "spindle motor output".<br />

Short time output rating time Coefficient Short time output rating time Coefficient<br />

1 minute 0.2 5 minutes 0.7<br />

2 minutes 0.4 6 to 7 minutes 0.8<br />

3 minutes 0.5 8 to 9 minutes 0.9<br />

4 minutes 0.6 10 minutes or more 1.0<br />

To limit the spindle motor's output, set the output multiplied by the limit rate in "spindle motor<br />

output".<br />

Σ (Servomotor output) is the total of the servomotor rated output (kW).<br />

(Note 2) Please check having satisfied the following conditions.<br />

Power supply unit capacity<br />

MDS-CH-CV-185 or less<br />

MDS-CH-CV-220 or more<br />

Motor Output Capacity (Total)<br />

Use is possible to 0.5 [kW] over.<br />

Use is possible to 1.0 [kW] over.<br />

(Note 3) If the selected power supply unit exceeds 55[kW], reduce the number of motors connected to<br />

one power supply unit, and select again using a combination of two or more power supply<br />

units.<br />

11 - 20


11. Selection<br />

(Note 4) For the spindle drive unit, the drive unit capacity may become large depending on the spindle<br />

motor such as high-troupe motor. Make sure that the capacity limit of drive unit which can be<br />

connected is provided depending on the power supply.<br />

Power supply drive unit<br />

Spindle drive unit<br />

MDS-CH-CV- 37 MDS-CH-SP□-15 to 75<br />

55 MDS-CH-SP□-15 to 110<br />

75 MDS-CH-SP□-15 to 150<br />

110 MDS-CH-SP□-15 to 185<br />

150 MDS-CH-SP□-15 to 220<br />

185 MDS-CH-SP□-15 to 260<br />

220 MDS-CH-SP□-15 to 300<br />

260 MDS-CH-SP□-15 to 370<br />

300 MDS-CH-SP□-15 to 450<br />

370 MDS-CH-SP□-15 to 550<br />

450 MDS-CH-SP□-15 to 550<br />

Note that it must be used in combination including MDS-SP□-370 to 550.<br />

550 MDS-CH-SP□-370 to 550<br />

Note that it must be used in combination including MDS-SP□-370 to 550.<br />

750 It can be used in combination with MDS-CH-SP□-750.<br />

11 - 21


11. Selection<br />

11-3-3 Selection with maximum momentary rated capacity<br />

Select the capacity so that the total value of the two outputs "total sum of maximum momentary output<br />

during spindle motor acceleration" and "total sum of maximum momentary output during acceleration of<br />

servomotor that is accelerating and decelerating simultaneously" is not more than the maximum<br />

momentary rated capacity of the power supply unit.<br />

Maximum momentary rated capacity of power supply unit<br />

≥ Σ (Maximum momentary output of spindle motor)<br />

+ Σ (Maximum momentary output of servomotor accelerating/decelerating simultaneously)<br />

If the total value of the right side exceeds 55kW, divide the capacity in two power supply units.<br />

Maximum momentary output of spindle motor<br />

Maximum momentary output of spindle motor<br />

= Spindle motor acceleration/deceleration output × 1.2<br />

Spindle motor acceleration/deceleration output means the maximum output (kW) specified in the<br />

acceleration/deceleration output characteristics, or the maximum output (kW) of the short time rated<br />

output specified at a time of 30 minutes or less.<br />

If there are no specifications other than the 30-minute rated output, the 30-minute rated output will be<br />

the spindle motor acceleration/deceleration output.<br />

Selection data<br />

The maximum momentary output in this table is reference data for selecting the power supply unit<br />

and does not guarantee the maximum output.<br />

Motor model HC-H 52 102 152 202 352 452 702 902 1102<br />

Unit model MDS-CH- V1-05 V1-10 V1-20 V1-20 V1-35 V1-45 V1-70 V1-90 V1-150<br />

Rated output (kW) 0.5 1.0 1.5 2.0 3.5 4.5 7.0 9.0 11.0<br />

Maximum momentary<br />

output (kW)<br />

1.5 2.7 4.5 5.3 7.4 10.6 15 19.5 37.0<br />

Motor model HC-H 53 103 153 203 353 453 703 903 1103<br />

Unit model MDS-CH- V1-05 V1-10 V1-20 V1-35 V1-45 V1-70 V1-90 V1-90 V1-150<br />

Rated output (kW) 0.5 1.0 1.5 2.0 3.5 4.5 7.0 9.0 11.0<br />

Maximum momentary<br />

output (kW)<br />

1.6 3.2 5.4 7.6 10.6 13.7 20.1 29.0 40.0<br />

Unit model MDS-CH-CV- 37 55 75 110 150 185 220 260 300 370 450 550 750<br />

Rated output (kW) 3.7 5.5 7.5 11 15 18.5 22 26 30 37 45 55 75<br />

Maximum momentary<br />

output (kW)<br />

14 19 21 28 41 42 53 54 55 75 91 125 150<br />

CAUTION<br />

When the large capacity drive unit (MDS-CH-V1-185, MDS-CH-SP-370 to<br />

750) is connected to the power supply unit, always install the drive unit<br />

proximally in the left side of the power supply unit and connect PN terminal<br />

with the dedicated DC connection bar.<br />

11 - 22


11. Selection<br />

(1) Selection example<br />

(Example 1) Spindle motor<br />

Servomotor<br />

: 30-minute rated output 22kW × 1 unit<br />

: HC-H352 (V1-35) × 3 units<br />

.... The three units are simultaneously accelerated/decelerated.<br />

(a) Selection with rated capacity<br />

22kW + 0.7 × (3.5kW × 3) = 29.35kW<br />

→ Rated capacity 30kW:<br />

• MDS-CH-CV-300 or more is required.<br />

(b) Selection with maximum momentary rated capacity<br />

22kW × 1.2 + 7.4kW × 3 = 48.6kW<br />

→ Maximum momentary rated capacity 53kW:<br />

• MDS-CH-CV-220 or more is required.<br />

Power supply unit that satisfy conditions (1) and (2):<br />

• Select MDS-CH-CV-300.<br />

(Example 2) Spindle motor<br />

Servomotor<br />

: 30-minute rated output 22kW × 1 unit<br />

: HC-H353 (V1-45) × 1 units<br />

HC-H453 (V1-70) × 2 units<br />

.... The three units are simultaneously accelerated/decelerated.<br />

(a) Selection with rated capacity<br />

22kW + 0.7 × (3.5kW + 4.5kW × 2) = 30.75kW<br />

→ Rated capacity 30kW:<br />

• MDS-CH-CV-300 or more is required.<br />

(b) Selection with maximum momentary rated capacity<br />

22kW × 1.2 + 10.6kW + 13.7kW × 2 = 64.4kW<br />

→ Maximum momentary rated capacity 75kW:<br />

• MDS-CH-CV-370 or more is required.<br />

Power supply unit that satisfy conditions (1) and (2):<br />

• Select MDS-CH-CV-370.<br />

11 - 23


12. Inspection<br />

12-1 Inspections ..................................................................................................................................... 12-2<br />

12-2 Service parts .................................................................................................................................. 12-2<br />

12-3 Daily inspections ............................................................................................................................ 12-3<br />

12-3-1 Maintenance tools ................................................................................................................... 12-3<br />

12-3-2 Inspection positions................................................................................................................. 12-3<br />

12-4. Replacement methods of units and parts....................................................................................... 12-4<br />

12-4-1 Drive unit and power supply unit replacements ....................................................................... 12-4<br />

12-4-2 Battery unit replacements......................................................................................................... 12-4<br />

12-4-3 Cooling fan replacements......................................................................................................... 12-4<br />

12 - 1


12. Inspection<br />

WARNING<br />

CAUTION<br />

1. Turn the main circuit power and control power both OFF before starting<br />

maintenance and inspection. It will take approx. 15 minutes for the main<br />

circuit's capacitor to discharge. After the CHARGE LAMP goes out, use a<br />

tester to confirm that the input and output voltages are zero.<br />

2. Inspections must be carried out by a qualified technician. Failure to observe<br />

this could lead to electric shocks. Contact the Service Center for repairs and<br />

part replacements.<br />

1. Never perform a megger test (measure the insulation resistance) of the servo<br />

drive unit. Failure to observe this could lead to faults.<br />

2. The user must never disassemble or modify this product.<br />

12-1 Inspections<br />

Periodic inspection of the following items is recommended.<br />

Are any of the screws on the terminal block loose? If loose, tighten them.<br />

Is any abnormal noise heard from the servomotor bearings or brake section?<br />

Are any of the cables damaged or cracked? If the cables move with the machine, periodically<br />

inspect the cables according to the working conditions.<br />

Is the core of the load coupling shaft deviated?<br />

12-2 Service parts<br />

A guide to the part replacement cycle is shown below. Note that these will differ according to the working<br />

conditions or environmental conditions, so replace the parts if any abnormality is found. Contact<br />

<strong>Mitsubishi</strong> branch or your dealer for repairs or part replacements.<br />

Servo drive<br />

Spindle drive<br />

Power supply<br />

Part name Standard replacement time Remarks<br />

Smoothing capacitor<br />

10 years<br />

Unit built-in relay<br />

100,000 times<br />

Cooling fan<br />

10,000 to 30,000 hours<br />

(2 to 3 years)<br />

20,000 to 30,000 hours<br />

20,000 to 30,000 hours<br />

5,000 hours<br />

20,000 to 30,000 hours<br />

Bearings<br />

Servomotor<br />

Detector<br />

Spindle motor<br />

Note 1 Oil seal, V-ring<br />

Cooling fan<br />

Battery unit MDS-A-BT-[ ] 45,000 hours (7 years)<br />

AC reactor CH-AL-[_]K At fault<br />

Note 1: The details will differ according to the motor, so refer to the respective motor specifications.<br />

12 - 2<br />

The standard replacement time<br />

is a reference. Even if the<br />

standard replacement time is<br />

not reached, the part must be<br />

replaced if any abnormality is<br />

found.<br />

Power smoothing capacitor : The characteristics of the power smoothing capacitor will deteriorate<br />

due to the effect of ripple currents, etc. The capacitor life is greatly<br />

affected by the ambient temperature and working conditions.<br />

However, when used continuously in a normal air-conditioned<br />

environment, the service life will be ten years.<br />

Relays : Contact faults will occur due to contact wear caused by the switching<br />

current. The service life will be reached after 100,000 cumulative<br />

switches (switching life).<br />

Motor bearings : The motor bearings should be replaced after 20,000 to 30,000 hours<br />

of rated load operation at the rated speed. This will be affected by the<br />

operation state, but the bearings must be replaced when any<br />

abnormal noise or vibration is found in the inspections.<br />

Motor oil seal, V-ring : These parts should be replaced after 5,000 hours of operation at the<br />

rated speed. This will be affected by the operation state, but these<br />

parts must be replaced if oil leaks, etc., are found in the inspections.


12. Inspection<br />

12-3 Daily inspections<br />

12-3-1 Maintenance tools<br />

Prepare the following measuring instruments to check the unit power wiring, etc.<br />

Instrument<br />

Application<br />

Tester<br />

Use this to check that the wiring to the unit is correct before turning the power ON.<br />

Oscilloscope Use this for general measurement and troubleshooting.<br />

AC voltmeter Use this to measure the AC power voltage.<br />

DC voltmeter Use this to measure the DC power voltage. (Relays and I/O, etc.)<br />

AC/DC ammeter Use this to measure the alternating current supplied to the motor.<br />

Driver tool<br />

Use this to remove the unit and to set the rotary switches.<br />

12-3-2 Inspection positions<br />

(1) Unit inspection<br />

Inspection item Inspection<br />

cycle<br />

Points<br />

Remedies<br />

1<br />

2<br />

3<br />

Cooling fan Monthly (1) Rotate by hand to check that the fan rotates smoothly.<br />

(AC fan)<br />

(2) Turn the power ON to check that the fan rotates with force.<br />

(3) Is there any abnormal noise from the bearings?<br />

Contamination/<br />

screw loosening<br />

Wiring<br />

As<br />

required<br />

As<br />

required<br />

Periodically clean the areas outside the unit, particularly the<br />

cooling fan section. Tighten the input/output terminals and<br />

connections.<br />

Check that the wires are not connected to other conductive<br />

sections, and that they are not caught.<br />

Replace the unit<br />

(2) Motor inspection<br />

Inspection item Inspection<br />

cycle<br />

Points<br />

Remedies<br />

1<br />

2<br />

3<br />

4<br />

Noise/vibration Monthly • Check whether any noise or vibration, previously unnoticed, is<br />

occurring.<br />

Check the following items when abnormal.<br />

(1) Check the foundation and installation.<br />

(2) Check the coupling core alignment accuracy.<br />

(3) Check whether vibration is being conveyed from the<br />

coupler.<br />

(4) Check whether the bearings are damaged or are generating<br />

abnormal noise.<br />

(5) Check for vibration or noise at the reduction gears or belt.<br />

(6) Check for abnormalities at the control unit.<br />

(7) Check for abnormalities at the cooling fan.<br />

(8) Check the belt tension.<br />

Temperature<br />

rise<br />

Insulation<br />

resistance value<br />

Cooling fan<br />

Monthly<br />

• Is the bearing temperature abnormal?<br />

(Normally, the temperature should be the ambient temperature<br />

+10 to 40°C.)<br />

• Is the motor frame temperature abnormal?<br />

Check the following items when abnormal.<br />

(1) Is the cooling fan rotating correctly?<br />

(2) Is the cooling fan wind path (between the frame and cover)<br />

obstructed with foreign matter?<br />

(3) Is the load abnormally high?<br />

Clean<br />

(4) Check for abnormalities at the control unit. Refer to<br />

Troubleshooting.<br />

Six months • Is the insulation resistance value abnormally low?<br />

Disconnect the wiring with the spindle drive unit, and perform a<br />

megger test between the circuit batch and ground.<br />

(No problem if the value is 1MΩ or more with a 500V megger.)<br />

If the insulation resistance is 1MΩ or less, the inside of the<br />

motor must be cleaned and dried. To dry, disassemble the<br />

motor, and dry it in a drying furnace set at 90°C or less.<br />

Weekly,<br />

monthly<br />

• Check that the fan is rotating correctly and feeding air, and that<br />

there is no abnormal noise or vibration.<br />

12 - 3


12. Inspection<br />

12-4. Replacement methods of units and parts<br />

CAUTION<br />

Please do not do replacement work except an expertise person.<br />

12-4-1 Drive unit and power supply unit replacements<br />

Replacement<br />

(1) Power off of a cabinet.<br />

(2) All terminal blocks are disconnected with wire.<br />

(3) A fixed screw is loosened and a unit is removed.<br />

Install<br />

(1) Type of a unit is checked and it installs in a cabinet.<br />

(2) Wire is connected correctly.<br />

(3) Connection and installation are reconfirmed.<br />

(4) Power of a cabinet is turned on. It checks whether a machine runs by MDI etc.<br />

12-4-2 Battery unit replacements<br />

Replacement<br />

(1) Power off of a NC system. All connecter is disconnected with wire.<br />

(2) A fixed screw is loosened and a battery unit is removed.<br />

(3) Complete the battery replacement work within the approx. 10 hours that the detector position<br />

information is held.<br />

Install<br />

(1) Type of a battery unit is checked and it installs in a cabinet.<br />

(2) Wire is connected correctly.<br />

(3) Power of a NC system is turned on. It checks whether an alarm etc. Confirm that no alarms, such as<br />

the absolute position illegal alarm, are occurring.<br />

12-4-3 Cooling fan replacements<br />

(1) Remove the screws fixing the cooling fan at the bottom of the unit.<br />

(The mounting position and number of fans differ according to the unit.)<br />

(2) Disconnect the fan power cable.<br />

(The position may differ according to the unit, but the procedure is the same.)<br />

(3) Exchange with the new fan.<br />

Screw<br />

Remove the<br />

connector<br />

12 - 4


Appendix 1. Compliance to EC Directives<br />

1. European EC Directives ......................................................................................................................A1-2<br />

2. Cautions for EC Directive compliance.................................................................................................A1-2<br />

A1 - 1


Appendix 1 Compliance to EC Directives<br />

Appendix 1. Compliance to EC Directives<br />

1. European EC Directives<br />

In the EU Community, the attachment of a CE mark (CE marking) is mandatory to indicate that the basic<br />

safety conditions of the Machine Directives (issued Jan. 1995), EMC Directives (issued Jan. 1996) and<br />

the Low-voltage Directives (issued Jan. 1997) are satisfied. The machines and devices in which the<br />

servo and spindle drive are assembled are the targets for CE marking.<br />

(1) Compliance to EMC Directives<br />

The servo and spindle drive are components designed to be used in combination with a machine or<br />

device. These are not directly targeted by the Directives, but a CE mark must be attached to<br />

machines and devices in which these components are assembled. The next section "EMC<br />

Installation Guidelines", which explains the unit installation and control panel manufacturing method,<br />

etc., has been prepared to make compliance to the EMC Directives easier.<br />

(2) Compliance to Low-voltage Directives<br />

The MDS-CH Series units are targeted for the Low-voltage Directives. An excerpt of the<br />

precautions given in this specification is given below. Please read this section thoroughly before<br />

starting use.<br />

A Self-Declaration Document has been prepared for the EMC Directives and Low-voltage<br />

Directives. Contact <strong>Mitsubishi</strong> or your dealer when required.<br />

2. Cautions for EC Directive compliance<br />

Use the Low-voltage Directive compatible parts for the servo/spindle drive and servo/spindle motor. In<br />

addition to the items described in this instruction manual, observe the items described below.<br />

(1) Configuration<br />

Isolating<br />

transformer<br />

Drive unit<br />

Electromagnetic<br />

Circuit breaker<br />

contactor<br />

AC reactor<br />

CB MC M<br />

Use a type B (AC/DC detectable type) breaker<br />

(2) Environment<br />

Use the units under an Overvoltage Category III and Pollution Class of 2 or less environment as<br />

stipulated in IEC60664.<br />

These units do not provide protection against electric shock and fire sufficient for the requirements<br />

of the Low-voltage Directive and relevant European standards by themselves, so provide additional<br />

protection (refer to 5.2.4 and 7.1.6.1 of EN50178)<br />

Drive unit<br />

During<br />

operation<br />

Storage<br />

During<br />

transportation<br />

Motor<br />

During<br />

operation<br />

Storage<br />

During<br />

transportatio<br />

n<br />

Ambient<br />

temperature<br />

Humidity<br />

Altitude<br />

0°C to 55°C -15°C to 70°C -15°C to 70°C<br />

90%RH or<br />

less<br />

1000m or<br />

less<br />

90%RH or<br />

less<br />

1000m or<br />

less<br />

90%RH or less<br />

13000m or<br />

less<br />

Ambient<br />

temperature<br />

Humidity<br />

Altitude<br />

0°C to 40°C<br />

80%RH or<br />

less<br />

1000m or<br />

less<br />

-15°C to<br />

70°C<br />

90%RH or<br />

less<br />

1000m or<br />

less<br />

-15°C to 70°C<br />

90%RH or<br />

less<br />

13000m or<br />

less<br />

A1 - 2


Appendix 1 Compliance to EC Directives<br />

(3) Power supply<br />

[1] Use the power supply and servo/spindle drive unit under an Overvoltage Category III as<br />

stipulated in IEC60664.<br />

[2] In case of Overvoltage Category III, connect the PE terminal of the units to the earthed-neutral<br />

of the star-connection power supply system.<br />

[3] Do not omit the circuit breaker and electromagnetic contactor.<br />

(4) Earthing<br />

[1] To prevent electric shocks, always connect the servo/spindle drive unit protective earth (PE)<br />

terminal (terminal with mark) to the protective earth (PE) on the control panel.<br />

[2] When connecting the earthing wire to the protective earth (PE) terminal, do not tighten the wire<br />

terminals together. Always connect one wire to one terminal.<br />

PE terminal<br />

PE terminal<br />

[3] Select the earthing wire size in accordance with Table 1 of EN60204-1.<br />

(5) Wiring<br />

[1] Always use crimp terminals with insulation tubes so that the connected wire does not contact<br />

the neighboring terminals.<br />

Crimp terminal<br />

Insulation tube<br />

[2] Do not connect the wires directly.<br />

Wire<br />

[3] Select the size of the wires for input power supply to Power Supply unit in accordance with<br />

Table 4 and 5 of EN60204-1.<br />

A1 - 3


Appendix 1 Compliance to EC Directives<br />

(6) Peripheral devices<br />

[1] Use EN/IEC Standards compliant parts for the circuit breaker and contactor.<br />

[2] Select circuit breaker with instantaneous trip function. (Trip within 30 second when over<br />

current of 600%). Apply Annex C of EN60204-1 for sizing of the circuit breaker.<br />

(7) Miscellaneous<br />

[1] Refer to the next section "EMC Installation Guidelines" for methods on complying with the<br />

EMC Directives.<br />

[2] Ground the facility according to each country's requirements.<br />

[3] The control circuit connector (◦) is safely separated from the main circuit ( ).<br />

[4] Inspect the appearance before installing the unit. Carry out a performance inspection of the<br />

final unit, and save the inspection records.<br />

<strong>Mitsubishi</strong> CNC<br />

SV1,2<br />

(CSH21)<br />

SH21 cable<br />

Power supply unit<br />

Spindle drive unit<br />

CN1A CN1B<br />

SH21 cable<br />

Battery unit<br />

CN1A<br />

Servo drive unit<br />

CN1A CN1B<br />

CN4<br />

CN4<br />

CN8<br />

CN4<br />

CN3M<br />

Tool end detector<br />

CN9<br />

CN9<br />

CN7<br />

CN9<br />

CN3L<br />

Tool end detector<br />

External emergency<br />

stop input<br />

CN23<br />

CN6<br />

CN20<br />

CN2L<br />

CN5<br />

CN2M<br />

No-fuse<br />

breaker<br />

AC<br />

reactor<br />

Contactor<br />

U<br />

MU<br />

R<br />

S<br />

T<br />

Ground<br />

Breaker<br />

MC<br />

L1<br />

L2<br />

L3<br />

MC1<br />

L11<br />

L21<br />

TE1<br />

TE3<br />

TE2<br />

L+<br />

L-<br />

L+<br />

L-<br />

L11<br />

L21<br />

TE1<br />

TE2<br />

TE3<br />

V<br />

W<br />

Spindle<br />

motor<br />

PLG<br />

L+<br />

L-<br />

L11<br />

L21<br />

TE1<br />

TE2<br />

TE3<br />

MV<br />

MW<br />

LU<br />

LV<br />

LW<br />

Servo<br />

motor<br />

Motor end<br />

detector<br />

Servo<br />

motor<br />

Motor end<br />

detector<br />

: Main circuit<br />

: Control circuit<br />

Ground<br />

Ground<br />

Ground<br />

A1 - 4


Appendix 2. EMC Installation Guidelines<br />

1. Introduction..........................................................................................................................................A2-2<br />

2. EMC Instructions .................................................................................................................................A2-2<br />

3. EMC Measures....................................................................................................................................A2-3<br />

4. Measures for panel structure...............................................................................................................A2-3<br />

4.1 Measures for control box unit .......................................................................................................A2-3<br />

4.2 Measures for door.........................................................................................................................A2-4<br />

4.3 Measures for operation board panel.............................................................................................A2-4<br />

4.4 Shielding of the power supply input section .................................................................................A2-4<br />

5. Measures for various cables ...............................................................................................................A2-5<br />

5.1 Measures for wiring in box............................................................................................................A2-5<br />

5.2 Measures for shield treatment ......................................................................................................A2-5<br />

5.3 Servomotor power cable...............................................................................................................A2-6<br />

5.4 Servomotor feedback cable ..........................................................................................................A2-6<br />

5.5 Spindle motor power cable ...........................................................................................................A2-7<br />

5.6 Cable between control box and operation board panel................................................................A2-7<br />

6. EMC Countermeasure Parts ...............................................................................................................A2-8<br />

6.1 Shield clamp fitting........................................................................................................................A2-8<br />

6.2 Ferrite core....................................................................................................................................A2-9<br />

6.3 Power line filter ...........................................................................................................................A2-10<br />

6.4 Surge protector ...........................................................................................................................A2-12<br />

A2 - 1


Appendix 2 EMC Installation Guidelines<br />

Appendix 2 EMC Installation Guidelines<br />

1. Introduction<br />

EMC Instructions became mandatory as of January 1, 1996. The subject products must have a CE mark<br />

attached indicating that the product complies with the Instructions. As the NC unit is a component<br />

designed to control machine tools, it is believed that it is not a direct EMC Instruction subject. However,<br />

we would like to introduce the following measure plans to backup EMC Instruction compliance of the<br />

machine tool as the NC unit is a major component of the machine tools.<br />

(1) Methods for installation in control/operation panel<br />

(2) Methods of wiring cable outside of panel<br />

(3) Introduction of countermeasure parts<br />

<strong>Mitsubishi</strong> is carrying out tests to confirm the compliance to the EMC Standards under the environment<br />

described in this manual. However, the level of the noise will differ according to the equipment type and<br />

layout, control panel structure and wiring lead-in, etc. Thus, we ask that the final noise level be<br />

confirmed by the machine manufacturer.<br />

These contents are the same as the EMC INSTALLATION GUIDELINES (BNP-B8582-45).<br />

For measures for CNC, refer to "EMC INSTALLATION GUIDELINES" (BNP-B2230).<br />

2. EMC Instructions<br />

The EMC Instructions largely regulate the following two withstand levels.<br />

(1) Emission....... Capacity to prevent output of obstructive noise that adversely affects external<br />

sources.<br />

(2) Immunity....... Capacity not to malfunction due to obstructive noise from external sources.<br />

The details of each level are classified as Table 1. It is assumed that the Standards and test details<br />

required for a machine are the same as these.<br />

Table 1<br />

Class Name Details<br />

Emission<br />

Immunity<br />

Radiated noise<br />

Conductive noise<br />

Static electricity<br />

electrical discharge<br />

Radiated magnetic<br />

field<br />

Burst immunity<br />

Conductive<br />

immunity<br />

Power supply<br />

frequency field<br />

Power dip<br />

(fluctuation)<br />

Surge<br />

Electromagnetic noise radiated through the air<br />

Electromagnetic noise discharged from power line<br />

Example) Withstand level of static electricity<br />

discharge from a charged human body<br />

Example) Simulation of immunity from digital<br />

wireless transmitters<br />

Example) Withstand level of noise from relays or<br />

connecting/disconnecting live wires<br />

Example) Withstand level of noise entering<br />

through power line, etc.<br />

Example) 50/60Hz power frequency noise<br />

Example) Power voltage drop withstand level<br />

Example) Withstand level of noise caused by<br />

lightning<br />

Generic<br />

Standard<br />

EN50081-2<br />

EN61800-3<br />

(Industrial<br />

environment)<br />

EN61000-6-2<br />

EN61800-3<br />

(Industrial<br />

environment)<br />

Standards for<br />

determining test<br />

and measurement<br />

EN55011<br />

IEC61000-4-2<br />

IEC61000-4-3<br />

IEC61000-4-4<br />

IEC61000-4-6<br />

IEC61000-4-8<br />

IEC61000-4-11<br />

IEC61000-4-5<br />

A2 - 2


Appendix 2 EMC Installation Guidelines<br />

3. EMC Measures<br />

The main items relating to EMC measures include the following.<br />

(1) Store the device in an electrically sealed metal panel.<br />

(2) Earth all conductors that are floating electrically. (Lower the impedance.)<br />

(3) Wire the power line away from the signal wire.<br />

(4) Use shielded wires for the cables wired outside of the panel.<br />

(5) Install a noise filter.<br />

Take caution to the following items to suppress noise radiated outside of the panel.<br />

(1) Securely install the devices.<br />

(2) Use shielded wires.<br />

(3) Increase the panel's electrical seal. Reduce the gap and hole size.<br />

Note that the electromagnetic noise radiated in the air is greatly affected by the clearance of the panel<br />

and the quality of the cable shield.<br />

4. Measures for panel structure<br />

The design of the panel is a very important factor for the EMC measures, so take the following measures<br />

into consideration.<br />

Operation board panel<br />

Door<br />

Control box<br />

4.1 Measures for control box unit<br />

(1) Use metal for all materials configuring the panel.<br />

(2) For the joining of the top plate and side plates, etc., mask the contact surface with paint, and fix with<br />

welding or screws.<br />

In either case, keeping the joining clearance to a max. of 20cm for a better effect.<br />

(3) Note that if the plate warps due to the screw fixing, etc., creating a clearance, noise could leak from<br />

that place.<br />

(4) Plate the metal plate surface (with nickel, tin) at the earthing section, such as the earthing plate.<br />

(5) The max. tolerable hole diameter of the openings on the panel surface, such as the ventilation holes,<br />

must be 3cm to 5cm. If the opening exceeds this tolerance, use a measure to cover it. Note that<br />

even when the clearance is less than 3cm to 5cm, noise may still leak if the clearance is long.<br />

Example)<br />

Painting mask<br />

Hole exceeding<br />

3cm to 5cm<br />

Painting mask<br />

Max. joining<br />

clearance 20cm<br />

∗ Provide electrical conductance<br />

A2 - 3


Appendix 2 EMC Installation Guidelines<br />

4.2 Measures for door<br />

(1) Use metal for all materials configuring the door.<br />

(2) Use an EMI gasket or conductive packing for the contact between the door and control box unit.<br />

(3) The EMI gasket or conductive packing must contact at a uniform and correct position of the metal<br />

surface of the control box unit.<br />

(4) The surface of the control box unit contacted with the EMI gasket or conductive packing must have<br />

conductance treatment.<br />

Example) Weld (or screw) a welded plate that is plated (with nickel, tin).<br />

EMI gasket<br />

Control box<br />

Packing<br />

Door<br />

Carry out conductance treatment on<br />

sections that the EMI gasket contacts.<br />

(5) As a method other than the above, the control box unit and door can be connected with a plain<br />

braided wire. In this case, the box and door should be contacted at as many points as possible.<br />

4.3 Measures for operation board panel<br />

(1) Always connect the operation board and indicator with an earthing wire.<br />

(2) If the operation board panel has a door, use an EMI gasket or conductive packing between the door<br />

and panel to provide electrical conductance in the same manner as the control box.<br />

(3) Connect the operation board panel and control box with a sufficiently thick and short earthing wire.<br />

Refer to the "EMC INSTALLATION GUIDELINES" BNP-B2230 for the NC for more details.<br />

4.4 Shielding of the power supply input section<br />

(1) Separate the input power supply section from other parts of the control box so that the input power<br />

supply cable will not be contaminated by radiated noise.<br />

(2) Do not lead the power line through the panel without passing it through a filter.<br />

Drive unit<br />

Control unit<br />

Drive unit<br />

Control unit<br />

Radiated<br />

noise<br />

Shielding<br />

plate<br />

Radiated<br />

noise<br />

Power<br />

line filter<br />

Breaker<br />

AC input<br />

Power<br />

line filter<br />

Breaker<br />

AC input<br />

The power supply line noise is eliminated<br />

by the filter, but cable contains noise again<br />

because of the noise radiated in the control<br />

box.<br />

Use a metal plate, etc., for the shielding<br />

partition. Make sure not to create a<br />

clearance.<br />

A2 - 4


Appendix 2 EMC Installation Guidelines<br />

5. Measures for various cables<br />

The various cables act as antennas for the noise and discharge the noise externally. Thus appropriate<br />

treatment is required to avoid the noise. The wiring between the drive unit and motor act as an extremely<br />

powerful noise source, so apply the following measures.<br />

5.1 Measures for wiring in box<br />

(1) If the cables are led unnecessarily in the box, they will easily pick up the radiated noise. Thus, keep<br />

the wiring length as short as possible.<br />

Noise<br />

Noise<br />

Device Device Device Device Device Device<br />

(2) The noise from other devices will enter the cable and be discharged externally, so avoid internal<br />

wiring near the openings.<br />

Control box<br />

Control box<br />

Device Device Device Device<br />

Noise<br />

(3) Connect the control device earthing terminal and earthing plate with a thick wire. Take care to the<br />

leading of the wire.<br />

5.2 Measures for shield treatment<br />

Use of shield clamp fittings is recommended for treating the shields. The fittings are available as options,<br />

so order as required. (Refer to section "6.1 Shield clamp fitting".)<br />

Clamp the shield at a position within 10cm from the panel lead out port.<br />

POINT<br />

1. When leading the cables, including the grounding wire (FG), outside of the<br />

panel, clamp the cables near the panel outlet (recommendation: within<br />

10cm).<br />

2. When using a metal duct or conduit, the cables do not need to be clamped<br />

near the panel outlet.<br />

3. When leading cables not having shields outside the panel, follow the<br />

instructions given for each cable. (Installation of a ferrite core, etc., may be<br />

required.)<br />

A2 - 5


Appendix 2 EMC Installation Guidelines<br />

5.3 Servomotor power cable<br />

Control box<br />

Control box<br />

Earth with paint mask<br />

Conduit connector<br />

To drive unit<br />

Earth with P or U clip<br />

Cannon connector<br />

Servomotor<br />

To drive unit<br />

Conduit<br />

Cannon<br />

connector<br />

Servomotor<br />

Shield cable<br />

Cabtyre cable<br />

Using shield cable<br />

Using conduit<br />

(1) Use four wires (3-phase + earthing) for the power cable that are completely shielded and free from<br />

breaks.<br />

(2) Earth the shield on both the control box side and motor chassis side.<br />

(3) Earth the shield with a metal P clip or U clip.<br />

(A cable clamp fitting can be used depending on the wire size.)<br />

(4) Directly earth the shield. Do not solder the braided shield onto a wire and earth the end of the wire.<br />

Solder<br />

(5) When not using a shield cable for the power cable, use a conventional cabtyre cable. Use a metal<br />

conduit outside the cable.<br />

(6) Earth the power cable on the control box side at the contact surface of the conduit connector and<br />

control box. (Mask the side wall of the control box with paint.)<br />

(7) Follow the treatment shown in the example for the conduit connector to earth the power cable on<br />

the motor side. (Example: Use a clamp fitting, etc.)<br />

Clamp fitting<br />

To earthing<br />

Conduit<br />

Conduit connector<br />

Cannon connector<br />

5.4 Servomotor feedback cable<br />

Control box<br />

To drive unit<br />

Cannon connector<br />

Use a pair shield cable for the<br />

servomotor and spindle motor<br />

feedback cables, and ground them in<br />

the control panel.<br />

Directly mounting a ferrite core onto<br />

the unit connector is also effective in<br />

suppressing noise.<br />

Batch shield pair cable<br />

A2 - 6


Appendix 2 EMC Installation Guidelines<br />

5.5 Spindle motor power cable<br />

Control box<br />

Control box<br />

Earth with paint mask<br />

To drive unit<br />

Earth with<br />

P or U clip<br />

Terminal<br />

box<br />

To drive unit<br />

Conduit<br />

connector<br />

Terminal<br />

box<br />

Spindle motor<br />

Shield cable<br />

Conduit<br />

Cabtyre cable<br />

Using shield cable<br />

Using conduit<br />

(1) Use four wires (3-phase + earthing) for the power cable, that are completely shielded and free from<br />

breaks.<br />

(2) Earth the shield with the same manner as the servomotor power cable.<br />

(3) When not using a shield cable for the power cable, use a conventional cabtyre cable. Use a metal<br />

conduit outside the cable.<br />

(4) Earth the power cable on the control box side at the contact surface of the conduit connector and<br />

control box side wall in the same manner as the servomotor power cable. (Mask the side wall of the<br />

control box with paint.)<br />

(5) Earth at the conduit connector section in the same manner as the servomotor drive cable.<br />

5.6 Cable between control box and operation board panel<br />

SH11 cable (signal cable)<br />

Ferrite core (Within 10cm from device)<br />

Control box<br />

Clamp fitting<br />

enclosed with NC<br />

Operation board box<br />

Board<br />

(1) Use a shield cable for the cable between the<br />

control box and operation board.<br />

(2) Earth the shield in the same manner as the<br />

other cables.<br />

(3) Insert a ferrite core in the SH11 cable at a<br />

position within 10cm from the device.<br />

(This provides a better effect.)<br />

Earth with P or U clip<br />

PD05 cable (power supply cable)<br />

Control box<br />

Operation board box<br />

Board<br />

The PD05 cable is used with the MELDAS500<br />

Series.<br />

Refer to the EMC INSTALLATION GUIDELINES<br />

for each NC for details.<br />

Clamp fitting<br />

enclosed with NC<br />

Earth with P or U clip<br />

A2 - 7


Appendix 2 EMC Installation Guidelines<br />

6. EMC Countermeasure Parts<br />

6.1 Shield clamp fitting<br />

The effect can be enhanced by connecting the cable directly to the earthing plate.<br />

Install an earthing plate near each panel's outlet (within 10cm), and press the cable against the earthing<br />

plate with the clamp fitting.<br />

If the cables are thin, several can be bundled and clamped together.<br />

Securely earth the earthing plate with the frame ground. Install directly on the cabinet or connect with an<br />

earthing wire.<br />

Contact <strong>Mitsubishi</strong> if the earthing plate and clamp fitting set (AERSBAN-[ ]SET) is required.<br />

View of clamp section<br />

• Outline drawing<br />

Note 1) Screw hole for wiring to earthing plate in cabinet.<br />

Note 2) The earthing plate thickness is 1.6mm.<br />

A B C Enclosed fittings L<br />

AERSBAN-DSET 100 86 30 Two clamp fittings A Clamp fitting A 70<br />

AERSBAN-ESET 70 56 – One clamp fitting B Clamp fitting B 45<br />

A2 - 8


Appendix 2 EMC Installation Guidelines<br />

6.2 Ferrite core<br />

A ferrite core is integrated and mounted on the plastic case.<br />

Quick installation is possible without cutting the interface cable or power cable.<br />

This ferrite core is effective against common mode noise, allowing measures against noise to be taken<br />

without affecting the signal quality.<br />

Recommended ferrite core<br />

TDK ZCAT Series<br />

Shape and dimensions<br />

ZCAT type<br />

ZCAT-A type<br />

A<br />

D<br />

A<br />

E<br />

B<br />

C<br />

B<br />

C<br />

D<br />

Fig. 1 Fig. 2<br />

ZCAT-B type<br />

A<br />

E<br />

ZCAT-C type<br />

A<br />

B<br />

C<br />

D<br />

D<br />

C<br />

B<br />

Fig. 3 Fig. 4<br />

Recommended ferrite core<br />

Unit [mm]<br />

<br />

Part name Fig. A B C D E<br />

Applicable cable<br />

outline<br />

ZCAT3035-1330 (-BK)* 1 1 39 34 13 30 --- 13 max. 63<br />

ZCAT2035-0930-M (-BK) 2 35 29 13 23.5 22 10 to 13 29<br />

ZCAT2017-0930B-M (-BK) 3 21 17 9 20 28.5 9 max. 12<br />

ZCAT2749-0430-M (-BK) 4 49 27 4.5 19.5 --- 4.5 max. 26<br />

Weight<br />

*1 A fixing band is enclosed when shipped.<br />

ZCAT-B type: Cabinet fixed type, installation hole ø4.8 to 4.9mm, plate thickness 0.5 to 2mm<br />

ZCAT-C type: Structured so that it cannot be opened easily by hand once closed.<br />

A2 - 9


Appendix 2 EMC Installation Guidelines<br />

6.3 Power line filter<br />

The low leakage current 3-phase inverter and power drive system filter is recommended for the power<br />

line filter. EMC Measures have been confirmed by <strong>Mitsubishi</strong> using the following filter.<br />

Install on the primary side (factory power side) of the AC reactor.<br />

OKAYA Electric Industries Co., Ltd. 3SUP-HL-ER-6B Series<br />

• 3-phase, 3-wire type high attenuation type<br />

• CE marking compatible<br />

• Rated current value 30A to 200A<br />

• For EN55011 Class A, B measures<br />

• Application: Primary side of inverter power supply,<br />

UPS, CNC machine tool, etc.<br />

1. Technical specifications<br />

Type<br />

3SUP-HL30-ER-<br />

6B<br />

3SUP-HL50-ER-<br />

6B<br />

3SUP-HL75-ER-<br />

6B<br />

3SUP-HL100-ER<br />

-6B<br />

3SUP-HL150-ER<br />

-6B<br />

Rated current 30A (50°C) 50A (50°C) 75A (50°C) 100A (50°C) 150A (50°C)<br />

Maximum working<br />

voltage<br />

Working<br />

frequency<br />

Leakage current<br />

Connection<br />

terminal<br />

500Vrms (50°C)<br />

50 / 60Hz<br />

8mA (at 500Vrms 60Hz)<br />

[A leakage current will not flow if there is no phase failure in a power supply grounded at a neutral point.]<br />

M4 M6 M6 M6 M8<br />

Weight 5.2kg 6.5kg 12.0kg 12.5kg 23.5kg<br />

Nominal<br />

inductance<br />

Safety standards<br />

6×1.4mH 6×1.4mH 6×1.0mH 6×0.56mH 6×0.6mH<br />

EN133200 (compliant)<br />

These specifications are for reference. Contact the filter maker for detailed data.<br />

Notes:<br />

• If the leakage current is limited, use 3SUP-HL[_]-ER-6B-4 (leakage current 4mA product).<br />

• Please use 3SUP-HL[_]-ER-6 series, when high specification is required.<br />

2. Mechanical data<br />

[unit: mm]<br />

Tolerance: ±1.5mm<br />

A B C D E F G H I J K L<br />

3SUP-HL30-ER-6B 246 230 215 200 100 85 13 18 140 4.5x7 4.5 M4<br />

3SUP-HL50-ER-6B 286 270 255 240 120 90 13 18 150 5.5x7 5.5 M6<br />

3SUP-HL75-ER-6B 396 370 350 330 170 140 18 23 155 6.5x8 6.5 M6<br />

3SUP-HL100-ER-6B 396 370 350 330 170 140 18 23 155 6.5x8 6.5 M6<br />

3SUP-HL150-ER-6B 484 440 420 400 200 170 30 25 200 6.5x8 6.5 M8<br />

3SUP-HL200-ER-6B 484 440 420 400 200 170 30 25 200 6.5x8 6.5 M8<br />

I<br />

2-øJ<br />

L<br />

L<br />

A +1.5/-1.5<br />

B<br />

C +1.5/-1.5<br />

D<br />

2-øK<br />

(G)<br />

Label<br />

(H)<br />

E +4.0/-4.0<br />

F<br />

A2 - 10


Appendix 2 EMC Installation Guidelines<br />

SOHIN ELECTRIC Co., Ltd. HF3000C-TMA series<br />

• 3-phase, 3-wire type high attenuation type<br />

1. Technical specifications<br />

Type HF3030C-TMA HF3050C-TMA HF3060C-TMA HF3080C-TMA HF3100C-TMA HF3150C-TMA HF3200C-TMA<br />

Rated<br />

current<br />

Maximum<br />

working<br />

voltage<br />

Working<br />

frequency<br />

Leakage<br />

current<br />

Rated<br />

current<br />

Connection<br />

terminal<br />

30A 50A 60A 80A 100A 150A 200A<br />

460VAC (50°C)<br />

For Natural grounding<br />

50 / 60Hz<br />

5.3mA (at 460Vrms 60Hz)<br />

[A leakage current will not flow if there is no phase failure in a power supply grounded at a neutral point.]<br />

Rated current x 150% 1min<br />

M5 / M4(E) M6 / M4(E) M6 / M4(E) M8 / M6(E) M8 / M6(E) M10 / M8(E) M10 / M8(E)<br />

Weight 3.2kg 6.7kg 10.0kg 13.0kg 14.5kg 23.0kg 23.5kg<br />

Safety<br />

standards<br />

EN133200 (compliant)<br />

These specifications are for reference. Contact the filter maker for detailed data.<br />

[unit: mm]<br />

Tolerance: ±1.5mm<br />

A B C D E F G H J K L M N<br />

HF3030C-TMA 260 210 85 155 140 125 44 140 70 R3.25 / L8 M5 M4 ---<br />

HF3050C-TMA 290 240 100 190 175 160 44 170 100 R3.25 / L8 M6 M4 ---<br />

HF3060C-TMA 290 240 100 190 175 160 44 230 160 R3.25 / L8 M6 M4 ---<br />

HF3080C-TMA 405 350 100 220 200 180 56 210 135 R4.25 / L12 M8 M6 ---<br />

HF3100C-TMA 405 350 100 220 200 180 56 210 135 R4.25 / L12 M8 M6 ---<br />

HF3150C-TMA 570 550 530 230 190 100 15 210 140 100 M10 M8 33<br />

HF3200C-TMA 570 550 530 230 190 100 15 210 140 100 M10 M8 33<br />

30A to 60A<br />

80A, 100A<br />

150A, 200A<br />

A2 - 11


Appendix 2 EMC Installation Guidelines<br />

6.4 Surge protector<br />

Insert a surge protector in the power input section to prevent damage to the control unit or power supply<br />

unit, etc. caused by the surge (lightning or sparks, etc.) applied on the AC power line.<br />

Use a surge protector that satisfies the following electrical specifications.<br />

(1) Surge protector R, A, V Series Okaya Electric Co., Ltd.<br />

Part name<br />

Circuit<br />

voltage<br />

50/60Hz Vrms<br />

Maximum<br />

tolerable<br />

circuit<br />

voltage<br />

Clamp<br />

voltage<br />

(V) ± 10%<br />

Surge<br />

withstand level<br />

8/20 µS (A)<br />

Surge withstand<br />

voltage<br />

1.2/50 µS (V)<br />

Electrostatic<br />

capacity<br />

Service<br />

temperature<br />

RAV-152BYZ-2A 3AC 430V 500V 1476V 2500A 20kV 35pF -20 to 70°C<br />

Outline dimension drawings<br />

Unit: mm<br />

Tolerance: ±10<br />

Circuit diagram<br />

(1) (2) (3)<br />

Black Black Black<br />

28.5<br />

28<br />

4.5<br />

Refer to the maker's catalog for details on the surge<br />

protector's characteristics and specifications, etc.<br />

41<br />

(2) Surge protector RCM Series Okaya Electric Co., Ltd.<br />

Part name<br />

Rated voltage<br />

AC discharge<br />

start voltage<br />

(V) ± 20%<br />

Surge<br />

withstand level<br />

8/20 µS (A)<br />

Surge withstand<br />

voltage<br />

1.25/50 µS (V)<br />

RCM-781BUZ-4 3AC 250/430V 700VAC 2500A 2kV<br />

RCM-801BUZ-4 3AC 290/500V 800VAC 2500A 2.32kV<br />

For neutral point<br />

grounding<br />

Outline dimension drawings<br />

Unit: mm<br />

Tolerance: ±10<br />

Voltage across three phases is<br />

500Vrms or less<br />

Resin<br />

Treatment<br />

Circuit diagram<br />

Leads<br />

Wire<br />

Case<br />

A2 - 12


Appendix 2 EMC Installation Guidelines<br />

Example of surge protector installation<br />

An example of installing the surge protector in the machine control panel is shown below.<br />

A short-circuit fault will occur in the surge protector if a surge exceeding the tolerance is applied.<br />

Thus, install a circuit protection breaker in the stage before the surge protector. Note that almost no<br />

current flows to the surge protector during normal use, so a breaker installed as the circuit<br />

protection for another device can be used for the surge protector.<br />

Transformer<br />

Breaker<br />

NC unit<br />

Factory<br />

power<br />

Input<br />

380 to<br />

480VAC<br />

Panel earth<br />

leakage<br />

breaker<br />

Breaker<br />

Contactor<br />

MC<br />

AC reactor<br />

Other device<br />

(panel power<br />

supply, etc.)<br />

Power supply<br />

unit and<br />

drive unit<br />

Control panel<br />

(relay panel,<br />

etc.)<br />

A<br />

Other device<br />

(panel power<br />

supply, etc.)<br />

Breaker<br />

(1) Surge protector<br />

(Protection across phases)<br />

B<br />

(2) Surge protector<br />

(Protection across each phase's grounding)<br />

Grounding<br />

Grounding plate<br />

Installing the surge absorber<br />

CAUTION<br />

1. The wires from the surge protector should be connected without extensions.<br />

2. If the surge protector cannot be installed just with the enclosed wires, keep<br />

the wiring length of A and B to 2m or less. If the wires are long, the surge<br />

protector's performance may drop and inhibit protection of the devices in the<br />

panel.<br />

A2 - 13


Appendix 3. EC Declaration of conformity<br />

1. Low voltage equipment........................................................................................................................A3-2<br />

2. Electromagnetic compatibility............................................................................................................A3-12<br />

A3 - 1


Appendix 3 EC Declaration of conformity<br />

Appendix 3 EC Declaration of conformity<br />

MDS-CH Series can respond to LVD and EMC directive.<br />

Approval from a third party certification organization has been acquired for the Low Voltage Directive.<br />

The declaration of conformity of each unit is shown below.<br />

1. Low voltage equipment<br />

MDS-CH-CV-37 to 370<br />

A3 - 2


Appendix 3 EC Declaration of conformity<br />

Supplement: Refer to "Chapter 10 Specifications" for the rated values indicated in (See Appendix 1).<br />

A3 - 3


Appendix 3 EC Declaration of conformity<br />

MDS-CH-CV-450 to 750<br />

A3 - 4


Appendix 3 EC Declaration of conformity<br />

Supplement: Refer to "Chapter 10 Specifications" for the rated values indicated in (See Appendix 1).<br />

A3 - 5


Appendix 3 EC Declaration of conformity<br />

MDS-CH-V1-05 to 150<br />

MDS-CH-V2-0505 to 4535<br />

A3 - 6


Appendix 3 EC Declaration of conformity<br />

Supplement: Refer to "Chapter 10 Specifications" for the rated values indicated in (See Appendix 1).<br />

A3 - 7


Appendix 3 EC Declaration of conformity<br />

MDS-CH-SP[_]-04 to 300<br />

A3 - 8


Appendix 3 EC Declaration of conformity<br />

Supplement: Refer to "Chapter 10 Specifications" for the rated values indicated in (See Appendix 1).<br />

A3 - 9


Appendix 3 EC Declaration of conformity<br />

MDS-CH-SP[_]-370 to 750<br />

A3 - 10


Appendix 3 EC Declaration of conformity<br />

Supplement: Refer to "Chapter 10 Specifications" for the rated values indicated in (See Appendix 1).<br />

A3 - 11


Appendix 3 EC Declaration of conformity<br />

2. Electromagnetic compatibility<br />

MDS-CH-CV-37 to 370<br />

A3 - 12


Appendix 3 EC Declaration of conformity<br />

MDS-CH-V1-05 to 150<br />

MDS-CH-V2-0505 to 4535<br />

A3 - 13


Appendix 3 EC Declaration of conformity<br />

MDS-CH-SP[_]-04 to 750<br />

A3 - 14


Appendix 4. Instruction Manual for Compliance with<br />

UL/c-UL Standard<br />

1. UL/c-UL listed products .......................................................................................................................A4-2<br />

2. Operation surrounding air ambient temperature .................................................................................A4-3<br />

3. Notes for AC servo/spindle system .....................................................................................................A4-3<br />

3.1 General Precaution.......................................................................................................................A4-3<br />

3.2 Installation.....................................................................................................................................A4-3<br />

3.3 Short-circuit ratings.......................................................................................................................A4-3<br />

3.4 Peripheral devices ........................................................................................................................A4-3<br />

3.5 Field Wiring Reference Table for Input and Output ......................................................................A4-4<br />

3.5.1 Power Supply Unit (MDS-CH-CV) ..........................................................................................A4-4<br />

3.5.2 Spindle Drive Unit (MDS-CH-SP) ...........................................................................................A4-5<br />

3.5.3 Servo Drive Unit (MDS-CH-V1/V2).........................................................................................A4-6<br />

3.6 Motor Over Load Protection..........................................................................................................A4-6<br />

3.6.1 MDS-CH-SP............................................................................................................................A4-7<br />

3.6.2 MDS-CH-V1/V2.......................................................................................................................A4-7<br />

3.7 Flange of servomotor....................................................................................................................A4-7<br />

3.8 Spindle Drive / Motor Combinations .............................................................................................A4-7<br />

4. AC Servo/Spindle System Connection................................................................................................A4-8<br />

A4 - 1


Appendix 4 Instruction Manual for Compliance with UL/c-UL Standard<br />

Appendix 4 Instruction Manual for Compliance with UL/c-UL Standard<br />

The instruction of UL/c-UL listed products is described in this manual.<br />

The descriptions of this manual are conditions to meet the UL/c-UL standard for the UL/c-UL listed<br />

products. To obtain the best performance, be sure to read this manual carefully before use.<br />

To ensure proper use, be sure to read specification manual, connection manual and maintenance<br />

manual carefully for each product before use.<br />

1. UL/c-UL listed products<br />

[AC servo/spindle system]<br />

Unit name<br />

Unit part number<br />

Power supply unit Note 1 MDS-CH-CV- [*1]<br />

Servo drive unit MDS-CH-V1- [*2], MDS-CH-V2- [*3]<br />

Spindle drive unit MDS-CH-SP [*4]-[*5]<br />

Option unit<br />

MDS-B-PJEX<br />

Battery unit<br />

FCU6-BT[*6], MDS-A-BT-[*7]<br />

Servo motor HC-H [*10][*11][*12][*13]-[*14][*15]<br />

Spindle Motor<br />

SJ-4- [*20][*21][*22]-[*23][*24][*25][*26]-[*27]<br />

SJ-4- [*28][*29][*30][*31][*32][*33][*34]<br />

Suffixes listed below may be attached to the above part numbers at portions marked with [*]. For<br />

details regarding specifications, see the specification manuals.<br />

[*1] 37, 55, 75, 110, 150, 185, 220, 260, 300, 370, 450, 550, 750<br />

[*2] 10, 20, 35, 45, 70, 90, 110, 150<br />

[*3] 2010, 2020, 3510, 3520, 3535, 4520, 4535<br />

[*4] None, H, M<br />

[*5] 22, 37, 55, 75, 110, 150, 185, 220, 260, 300, 370, 450, 550, 750<br />

[*6] 4D1, BOX [*7] 2, 4, 6, 8<br />

[*10] 10, 15, 20, 35, 45, 70, 90, 110 [*11] 2, 3<br />

[*12] None, B [*13] S, T<br />

[*14] A, E [*15] 42, 51<br />

[*20] V, VL, PMF [*18] None, K<br />

[*22] None, S [*23] Two digits decimal two digits<br />

[*24] 01~99 [*25] None, F, G, Y, Z<br />

[*26] None, M [*27] None, S01~S99<br />

[*28] None, K [*29] Two digits decimal two digits<br />

[*30] A, B, L, M, N, X [*31] None, W, Hex<br />

[*32] None, D, H, P, Z [*33] None, B, C, F, G, R<br />

[*34] None, M<br />

Note 1) AC reactor (CH-AL-75 ~ 750) is included in the power supply unit.<br />

A4 - 2


Appendix 4 Instruction Manual for Compliance with UL/c-UL Standard<br />

2. Operation surrounding air ambient temperature<br />

The recognized operation ambient temperature of each units are as shown in the table below. The<br />

recognized operation ambient temperatures are the same as an original product specification for all of<br />

the units.<br />

Classification<br />

AC Servo/Spindle<br />

System<br />

Unit name<br />

Operation ambient<br />

temperature<br />

Power supply unit 0 to 55°C<br />

Servo, Spindle drive unit 0 to 55°C<br />

Option unit, Battery unit 0 to 55°C<br />

Servo, Spindle motor 0 to 40°C<br />

3. Notes for AC servo/spindle system<br />

3.1 General Precaution<br />

It takes 15 minutes to discharge the bus capacitor.<br />

When starting wiring or inspection, shut the power off and wait for more than 15 minutes to avoid a<br />

hazard of electrical shock.<br />

3.2 Installation<br />

MDS-CH Series have been approved as the products which have been installed in the electrical<br />

enclosure. The minimum enclosure size is based on 150 percent of each MDS-CH Series combination.<br />

And also, design the enclosure so that the ambient temperature in the enclosure is 55°C (131°F) or less,<br />

refer to the specifications manual.<br />

3.3 Short-circuit ratings<br />

Suitable for use in a circuit capable of delivering, not more than 5kA rms symmetrical amperes.<br />

3.4 Peripheral devices<br />

To comply with UL/c-UL Standard, use the peripheral devices which conform to the corresponding<br />

standard.<br />

- Circuit Breaker, Fuses, Magnetic Contactor and AC Reactor<br />

Applicable power<br />

Fuse Magnetic contactor<br />

Circuit Breaker<br />

supply unit<br />

Class K5 (AC3)<br />

AC Reactor<br />

MDS-CH-CV-37 NF50 10A 20A S-N21 CH-AL-7.5K<br />

MDS-CH-CV-55 NF50 20A 40A S-N21 CH-AL-7.5K<br />

MDS-CH-CV-75 NF50 20A 40A S-N21 CH-AL-7.5K<br />

MDS-CH-CV-110 NF50 30A 60A S-N21 CH-AL-11K<br />

MDS-CH-CV-150 NF50 40A 80A S-N25 CH-AL-18.5K<br />

MDS-CH-CV-185 NF50 50A 100A S-N25 CH-AL-18.5K<br />

MDS-CH-CV-220 NF100 60A 125A S-N35 CH-AL-30K<br />

MDS-CH-CV-260 NF100 75A 150A S-N50 CH-AL-30K<br />

MDS-CH-CV-300 NF100 75A 150A S-N50 CH-AL-30K<br />

MDS-CH-CV-370 NF100 100A 200A S-N65 CH-AL-37K<br />

MDS-CH-CV-450 NF150 125A 250A S-N80 CH-AL-45K<br />

MDS-CH-CV-550 NF150 150A 300A S-N95 CH-AL-55K<br />

MDS-CH-CV-750 NF225 200A 400A S-N150 CH-AL-75K<br />

A4 - 3


Appendix 4 Instruction Manual for Compliance with UL/c-UL Standard<br />

- Circuit Breaker for of spindle motor Fan<br />

Select the Circuit Breaker by doubling the spindle motor fan rated.<br />

A rush current that is approximately double the rated current will flow, when the fan is started<br />

<br />

- For installation in United States, branch circuit protection must be provided, in accordance with<br />

the National Electrical Code and any applicable local codes.<br />

- For installation in Canada, branch circuit protection must be provided, in accordance with the<br />

Canadian Electrical Code and any applicable provincial codes.<br />

3.5 Field Wiring Reference Table for Input and Output<br />

Use the UL-approved Round Crimping Terminals to wire the input and output terminals of MDS-CH<br />

Series. Crimp the terminals with the crimping tool recommended by the terminal manufacturer.<br />

Following described crimping terminals and tools type are examples of Japan Solderless Terminal Mfg.<br />

Co., Ltd.<br />

This wire size is each unit maximum rating. The selection method is indicated in each specification<br />

manual. (See Manual: No. BNP-C3016 or BNP-A2993-77)<br />

3.5.1 Power Supply Unit (MDS-CH-CV)<br />

Unit Type 37 to 185 220 to 370 450 550 750<br />

L+, L- M6 M6, M10 M10<br />

Screw Torque<br />

[lb in/ N m]<br />

26.6/3.0 26.6/3.0, 177/20 177/20<br />

Terminal L11, L21, MC1 M4 M4<br />

Screw Screw Torque<br />

Size [lb in/ N m]<br />

10.6/1.2 10.6/1.2<br />

L1, L2, L3, M5 M8 M8 M10<br />

Screw Torque<br />

[lb in/ N m]<br />

17.7/2.0 53.1/6.0 53.1/6.0 234.3/26.5<br />

TE2 (L+, L-)<br />

Unit Type 37, 55, 75 110 150 185 220<br />

Wire Size (AWG) #14/60°C #10/60°C #10/60°C #8/60°C #6/60°C<br />

/Temp Rating Note 1 #14/75°C #10/75°C #10/75°C #8/75°C #8/75°C<br />

Crimping Terminals Type 2-6 5.5-6 5.5-6 8-6<br />

14-6<br />

8-6<br />

Crimping Tools Type YHT-2210 YPT-60-21<br />

Unit Type 260 300 370 450,550 750<br />

Wire Size (AWG) #4/60°C #2/60°C #2/60°C The bus-bar is attached<br />

/Temp Rating Note 1 #6/75°C #4/75°C #4/75°C to the product.<br />

Crimping Terminals Type<br />

22-6 38-S6 38-S6<br />

14-6 22-6 22-6<br />

Crimping Tools Type<br />

YPT-60-21<br />

TE3 (L11, L21, MC1)<br />

Unit Type 37 to 750<br />

Wire Size (AWG) #16/ 60°C<br />

/Temp Rating Note 1 #16/ 75°C<br />

Crimping Terminals Type 1.25-4<br />

Crimping Tools Type YHT-2210<br />

A4 - 4


Appendix 4 Instruction Manual for Compliance with UL/c-UL Standard<br />

TE1 (L1, L2, L3)<br />

Unit Type 37,55,75 110 150 185 220<br />

Wire Size (AWG) #14/60°C #12/60°C #10/60°C #8/60°C #8/60°C<br />

/Temp Rating Note 1 #14/75°C #12/75°C #10/75°C #8/75°C #8/75°C<br />

Crimping Terminals Type 2-4 5.5-S4 5.5-5 8-5 8-8<br />

Crimping Tools Type YHT-2210 YPT-60-21<br />

Earth Wire Size (AWG)<br />

#14/60°C #12/60°C #10/60°C #8/60°C #8/60°C<br />

#14/75°C #12/75°C #10/75°C #8/75°C #8/75°C<br />

Unit Type 260 300 370 450 550 750<br />

#6/60°C #4/60°C #2/60°C #2/60°C --- ---<br />

Wire Size (AWG)<br />

/Temp Rating Note 1 #1/0 /<br />

#6/75°C #6/75°C #4/75°C #2/75°C #2/75°C<br />

75°C<br />

Crimping Terminals Type<br />

14-8 22-8 38-8 38-10 --- ---<br />

14-8 14-8 22-8 38-10 38-10 60-10<br />

Crimping Tools Type<br />

YPT-60-21<br />

#6/60°C #4/60°C #2/60°C #2/60°C --- ---<br />

Earth Wire Size (AWG)<br />

#1/0<br />

#6/75°C #6/75°C #4/75°C #2/75°C #2/75°C<br />

/75°C<br />

3.5.2 Spindle Drive Unit (MDS-CH-SP)<br />

Terminal<br />

Screw<br />

Size<br />

Unit Type 15 to 37 55 to 185 220 to 300 370 450 to 750<br />

L+, L- M6 M10<br />

Screw Torque 26.6[lbf.in] / 3.0[Nm] 177[lb in] / 20[Nm]<br />

L11, L21 M4 M4<br />

Screw Torque 10.6[lbf.in] / 1.2[Nm] 10.6[lbf.in] /1.2[Nm]<br />

U, V, W, M4 M5 M8 M8 M10<br />

Screw Torque<br />

[lb in/ N m]<br />

10.6/1.2 17.7/2.0 53.1/6.0 53.1/6.0 234.3/26.5<br />

TE2 (L+, L-)<br />

Wire size depends on the Power Supply Unit (MDS-CH-CV Series).<br />

TE3 (L11, L21) (The clamping terminal is not used for 750.)<br />

Unit Type 15~550 750<br />

Wire Size (AWG) #16/ 60°C #16/ 60°C<br />

/Temp Rating Note 1 #16/ 75°C #16/ 75°C<br />

Crimping Terminals Type 1.25-4<br />

Crimping Tools Type YHT-2210<br />

TE1 (U, V, W)<br />

Unit Type 15 to 37 55 110 150 185 220<br />

Wire Size (AWG) #14/60°C #12/60°C #10/60°C #8/60°C<br />

/Temp Rating Note 1 #14/75°C #12/75°C #10/75°C #8/75°C<br />

Crimping Terminals Type<br />

R2-4 5.5-S5 5.5-5 8-5 8-8<br />

R2-4 5.5-S5 5.5-5 8-5 8-8<br />

Crimping Tools Type YHT-2210 YPT-60-21<br />

Earth Wire Size (AWG)<br />

#14/60°C #14/60°C #12/60°C #10/60°C #8/60°C #8/60°C<br />

#14/75°C #14/75°C #12/75°C #10/75°C #8/75°C #8/75°C<br />

A4 - 5


Appendix 4 Instruction Manual for Compliance with UL/c-UL Standard<br />

Unit Type 260 300 370 450 550 750<br />

Wire Size (AWG) #6/60°C #4/60°C #2/60°C #2/60°C ---<br />

/Temp Rating Note 1 #8/75°C #6/75°C #4/75°C #2/75°C #2/75°C #1/0/75°C<br />

Crimping Terminals R14-8 22-8 38-8 38-10 ---<br />

Type R8-8 14-8 22-8 38-10 38-10 60-10<br />

Tools Type<br />

YPT-60-21<br />

Earth Wire Size (AWG)<br />

#6/60°C #4/60°C #2/60°C #2/60°C ---<br />

#8/75°C #6/75°C #4/75°C #2/75°C #2/75°C #1/0/75°C<br />

Note 1: 60°C: Polyvinyl chloride insulated wires (IV)<br />

75°C: Grade heat-resistant polyvinyl chloride insulated wires (HIV).<br />

Use copper wire only.<br />

Above listed wire are for use in the electric cabinet on machine or equipment.<br />

3.5.3 Servo Drive Unit (MDS-CH-V1/V2)<br />

Terminal<br />

Screw<br />

Size<br />

Axis 1-axis (V1) 2-axes (V2)<br />

Unit Type 10 to 35 45 to 90 110,150 2010,2020 3510 to 4535<br />

L+, L- M6 M6<br />

Screw Torque 26.6[lbf.in] / 3.0[Nm] 26.6[lb in] / 3.0[Nm]<br />

L11, L21 M4 M4<br />

Screw Torque 10.6[lb in] / 1.2[Nm] 10.6[lb in] / 1.2[Nm]<br />

U, V, W, M4 M5 M8 M4 M5<br />

Screw Torque<br />

[lb in/ N m]<br />

10.6<br />

/1.2<br />

17.7<br />

/2.0<br />

53.1<br />

/6.0<br />

10.6<br />

/1.2<br />

TE2 (L+, L-)<br />

Wire size depends on the Power Supply Unit (MDS-CH-CV Series).<br />

TE3 (L11, L21)<br />

Unit Type 10 to 15<br />

Wire Size (AWG)<br />

#16/ 60°C<br />

/Temp Rating Note 1 #16/ 75°C<br />

Crimping Terminals Type 1.25-4<br />

Crimping Tools Type YHT-2210<br />

TE1 (U, V, W)<br />

Unit Type 10 20 35 45 70 90 110 150<br />

Wire Size (AWG) #14/60°C #14/60°C #12/60°C #12/60°C #10/60°C<br />

/Temp Rating Note 1 #14/75°C #14/75°C #12/75°C #12/75°C #12/75°C #10/75°C<br />

Crimping Terminals Type 2-4 5-5-5 5-5-8 8-8<br />

Crimping Tools Type<br />

YHT-2210<br />

Earth wire Size (AWG)<br />

#14/60°C #14/60°C #12/60°C #12/60°C #10/60°C<br />

#14/75°C #14/75°C #12/75°C #12/75°C #12/75°C #10/75°C<br />

3.6 Motor Over Load Protection<br />

Spindle drive unit MDS-CH-SP and V1/V2 series have each solid-state motor over load protection.<br />

When adjusting the level of motor over load, set the parameter as follows.<br />

17.7<br />

/2.0<br />

A4 - 6


Appendix 4 Instruction Manual for Compliance with UL/c-UL Standard<br />

3.6.1 MDS-CH-SP<br />

Parameter<br />

No.<br />

SP063<br />

SP064<br />

Parameter<br />

Abbr.<br />

OLT<br />

OLL<br />

Parameter<br />

Name<br />

Overload<br />

Time<br />

constant<br />

Overload<br />

Detection<br />

level<br />

Setting<br />

Procedure<br />

Set the time constant for<br />

overload detection. (Unit: 1<br />

second.)<br />

Set the overload current<br />

detection level with a<br />

percentage (%) of the<br />

rating.<br />

Standard<br />

Setting Value<br />

60s<br />

Setting<br />

Range<br />

0 to 1000s<br />

110% 1 to 200%<br />

3.6.2 MDS-CH-V1/V2<br />

Parameter<br />

No.<br />

SV021<br />

SV022<br />

Parameter<br />

Abbr.<br />

OLT<br />

OLL<br />

Parameter<br />

Name<br />

Overload<br />

Time<br />

constant<br />

Overload<br />

Detection<br />

level<br />

Setting<br />

Procedure<br />

Set the time constant for<br />

overload detection.<br />

(Unit: 1 second.)<br />

Set the overload current<br />

detection level with a<br />

percentage (%) of the stall<br />

rating.<br />

Standard<br />

Setting Value<br />

60s<br />

Setting<br />

Range<br />

1 to 300s<br />

150% 1 to 500%<br />

3.7 Flange of servomotor<br />

Mount the servomotor on a flange which has the following size or produces an equivalent or higher heat<br />

dissipation effect:<br />

Servo Motor<br />

Flange size (mm)<br />

HC-H<br />

250×250×12 1.0 to 1.5kW<br />

300×300×20 2.0 to 7.0kW<br />

800×800×35 9.0 to 11.0kW<br />

3.8 Spindle Drive / Motor Combinations<br />

Following combinations are the Standard combinations<br />

Rating Output (kW) of Applicable Spindle Motor<br />

Drive Unit Note: 2 SJ-4 Series Note: 1<br />

MDS-CH-SP[_]-15 1.5<br />

MDS-CH-SP[_]-22 2.2<br />

MDS-CH-SP[_]-37 3.7<br />

MDS-CH-SP[_]-55 5.5<br />

MSD-CH-SP[_]-75 5.5, 7.5<br />

MDS-CH-SP[_]-110 5.5, 7.5, 11<br />

MDS-CH-SP[_]-150 7.5, 11, 15<br />

MDS-CH-SP[_]-185 11, 15, 18.5<br />

MDS-CH-SP[_]-220 11, 15, 18.5, 22<br />

MDS-CH-SP[_]-260 11, 15, 18.5, 22, 26<br />

MDS-CH-SP[_]-300 15, 18.5, 22, 26, 30<br />

MDS-CH-SP[_]-370 15, 18.5, 22, 26, 30, 37<br />

MDS-CH-SP[_]-450 22, 26, 30, 37, 45<br />

MDS-CH-SP[_]-550 30, 37, 45, 55<br />

MDS-CH-SP[_]-750 45, 55, 75<br />

Note 1: Applicable unit depends on the range of power constant of motor.<br />

Inquire of <strong>Mitsubishi</strong> about the detail of the combinations.<br />

Note 2: [_] can be H, M or blank.<br />

A4 - 7


Appendix 4 Instruction Manual for Compliance with UL/c-UL Standard<br />

4. AC Servo/Spindle System Connection<br />

MDS-CH-V1/V2 Series MDS-CH-SP[_] Series MDS-CH-CV Series<br />

From NC<br />

CN1A CN1B<br />

CN1A CN1B<br />

Regarding the connection of NC,<br />

see the NC manual book.<br />

CN9<br />

CN4<br />

CN9<br />

CN4<br />

CN4<br />

CN2L CN3L<br />

CN2 CN3<br />

CN5<br />

CN7<br />

CN6<br />

CN8<br />

CN9<br />

Battery Unit<br />

or<br />

Terminator A-TM<br />

L+/L-<br />

L11/L21<br />

Note<br />

CB<br />

: It recommends installing.<br />

MU/MV/MW<br />

MC1<br />

LU/LV/LW<br />

U/V/W<br />

CN23<br />

L1/L2/L3<br />

External Emergency Stop<br />

Refer to specification manual<br />

BNP-C3016<br />

MC<br />

Contactor<br />

Fuse or<br />

Circuit Breaker<br />

AC Reactor<br />

3 phase<br />

380~480VAC<br />

CB<br />

Enclosure Side<br />

Machine Side<br />

Servo Motor<br />

Spindle Motor<br />

Encoder<br />

Servo Motor<br />

FAN<br />

Encoder and<br />

Thermal Protection<br />

Encoder<br />

A4 - 8


Appendix 5. Higher Harmonic Suppression Measure<br />

Guidelines<br />

1. Calculating the equivalent capacity of the higher harmonic generator ...............................................A5-3<br />

1.1 Calculating the total equivalent capacity (Step 1).........................................................................A5-3<br />

1.2 Calculating the higher harmonic current flow (Step 2)..................................................................A5-4<br />

A5 - 1


Appendix 5 Higher Harmonic Suppression Measure Guidelines<br />

Appendix 5 Higher Harmonic Suppression Measure Guidelines<br />

These guidelines apply to users for which the 6-pulse equivalent capacity total of the installed higher<br />

harmonic generator exceeds the reference in the following table. (Note that household appliances and<br />

general-purpose products having a rated current of 20A/phase or less connected to a 300V or less<br />

commercial power supply are excluded from the generators.)<br />

Use the following flow chart to confirm whether the total exceeds the reference.<br />

New installation, expansion or upgrading of facility<br />

Calculation of total equivalent capacity<br />

Reference capacity or less<br />

Total equivalent capacity<br />

Step 1<br />

Reference capacity exceeded<br />

Calculation of higher harmonic current flow<br />

Higher harmonic current<br />

Step 2<br />

Upper limit<br />

value or less<br />

Higher harmonic suppression measures not required<br />

Upper limit value exceeded<br />

Higher harmonic<br />

suppression measures<br />

Higher Harmonic Suppression Guidelines were set in September 1994 by the Ministry of International<br />

Trade and Industry's Agency of Natural Resources and Energy.<br />

• Higher Harmonic Suppression Measure Guidelines for Household Appliances and General-purpose<br />

Products<br />

• Higher Harmonic Suppression Measure Guidelines for Consumers Receiving High Voltage or<br />

Special High Voltage Power<br />

A5 - 2


Appendix 5 Higher Harmonic Suppression Measure Guidelines<br />

1. Calculating the equivalent capacity of the higher harmonic generator<br />

As a principle, the must be met by the consumer.<br />

1.1 Calculating the total equivalent capacity (Step 1)<br />

Calculate the total equivalent capacity with the following expression.<br />

Total equivalent circuit: Po = Σ • Ki • Pi<br />

Ki : Conversion coefficient (Refer to following table)<br />

Pi : Rated input capacity of each device<br />

Unit type<br />

Rated input<br />

capacity<br />

Pi [kVA]<br />

(Table 1) Rated capacity of each unit<br />

Unit type<br />

Rated input<br />

capacity<br />

Pi [kVA]<br />

Unit type<br />

Rated input<br />

capacity<br />

Pi [kVA]<br />

MDS-A/B/C1/CH-SP-37 4.61 MDS-A/B/C1-V1-03 0.6 MDS-A/B/C1-V2-0503 1.6<br />

MDS-A/B/C1/CH-SP-55 6.77 MDS-A/B/C1-V1-05 1.0 MDS-A/B/C1-V2-0505 2.0<br />

MDS-A/B/C1/CH-SP-75 9.07 MDS-A/B/C1/CH-V1-10 1.6 MDS-B/C1-V2-1003 2.2<br />

MDS-A/B/C1/CH-SP-110 13.1 MDS-A/B/C1/CH-V1-20 2.7 MDS-A/B/C1-V2-1005 2.6<br />

MDS-A/B/C1/CH-SP-150 17.6 MDS-A/B/C1/CH-V1-35 4.7 MDS-A/B/C1-V2-1010 3.2<br />

MDS-A/B/C1/CH-SP-185 21.8 MDS-A/B/C1/CH-V1-45 5.9 MDS-A/B/C1-V2-2010 4.3<br />

MDS-A/B/C1/CH-SP-220 25.9 MDS-A/B/C1/CH-V1-70 9.0 MDS-A/B/C1-V2-2020 5.4<br />

MDS-A/B/C1/CH-SP-260 30.0 MDS-A/B/C1/CH-V1-90 11.5 MDS-A/B/C1-V2-3510 6.3<br />

MDS-A/B/C1/CH-SP-300 34.7 MDS-A/B/C1/CH-V1-110 13.1 MDS-A/B/C1-V2-3520 7.4<br />

MDS-B/CH-SP-370 42.8 MDS-A/B/C1/CH-V1-150 17.6 MDS-A/B/C1-V2-3535 9.4<br />

MDS-B/CH-SP-450 52.1 MDS-CH-V1-185 21.8 MDS-A/B/C1-V2-4520 8.6<br />

MDS-B/CH-SP-550 63.7 MDS-A/B/C1-V2-4535 10.6<br />

MDS-CH-SP-750 86.8 MDS-C1-V2-4545 11.8<br />

MDS-C1-V2-7070 18.0<br />

SP: Includes SPA, SPH, SPM and SPX V1: Includes V14 V2: Includes V24<br />

Caution) The rated capacity Pi above, is the value used to calculate whether the product corresponds to the higher harmonic<br />

guidelines. Thus, the value will differ from the actual power facility's capacity. (The power supply unit is not included.)<br />

(Table 2) Circuit class and conversion coefficient for each unit<br />

Name<br />

Model<br />

Circuit<br />

class<br />

Circuit type<br />

Conversion<br />

coefficient Ki<br />

AC servo drive<br />

unit<br />

MDS-A-SVJ<br />

MDS-B-SVJ2<br />

MR-J2-CT Series<br />

3<br />

3-phase bridge (with smoothing capacitor)<br />

Without reactor<br />

K31=3.4<br />

MDS-A-V1/V2<br />

MDS-B-V1/V14/V2/V24<br />

MDS-C1-V1/V2 Series<br />

3<br />

3-phase bridge (with smoothing capacitor)<br />

With AC reactor Note 1<br />

K32=1.8<br />

MDS-CH-V1/V2 Series<br />

3<br />

3-phase bridge (with smoothing capacitor)<br />

With AC reactor Note 1<br />

K32=1.8<br />

AC spindle drive<br />

unit<br />

MDS-A-SPJ<br />

MDS-B-SPJ2 Series<br />

3<br />

3-phase bridge (with smoothing capacitor)<br />

Without reactor<br />

K31=3.4<br />

MDS-A-SP/SPA<br />

MDS-B-SP/SPA/SPH/SPM/SPX<br />

MDS-C1-SP/SPH/SPM/SPX Series<br />

3<br />

3-phase bridge (with smoothing capacitor)<br />

With AC reactor Note 1<br />

K32=1.8<br />

MDS-CH-SP Series<br />

3<br />

3-phase bridge (with smoothing capacitor)<br />

With AC reactor Note 1<br />

K32=1.8<br />

Note 1: This applies when an AC reactor is installed on the power supply unit.<br />

(Table 3) Limit values for total equivalent capacity<br />

Incoming voltage<br />

6.6kV<br />

22/33kV<br />

66kV<br />

Total of 6-pulse equivalent capacity<br />

50kVA<br />

300kVA<br />

2,000kVA<br />

A5 - 3


Appendix 5 Higher Harmonic Suppression Measure Guidelines<br />

If the total equivalent capacity Po exceeds the limit value given in (Table 3), proceed to "1.2 Calculating<br />

the higher harmonic current flow" below.<br />

Measures are not required if the value is not exceeded.<br />

(Example 1)<br />

When using MDS-CH-SP-220/MDS-CH-CV-220 for incoming power voltage<br />

Po = 1.8 × 25.9 = 46.6kVA<br />

Following (Table 3), the limit value 50kVA for 6.6kV is not exceeded, so higher harmonic<br />

measures are not required.<br />

When two sets are used, the value will be 93.2kVA, and the current must be confirmed with Step 2.<br />

1.2 Calculating the higher harmonic current flow (Step 2)<br />

To calculate the higher harmonic current flow, calculate the rated current for the incoming power voltage<br />

conversion.<br />

Rated current for incoming power voltage conversion (mA) = a • Pi<br />

(Table 4)<br />

Incoming power voltage<br />

(Table 5) Upper limit of higher harmonic current flow (mA/kW)<br />

conversion coefficient a<br />

Incoming Coefficient<br />

power voltage a<br />

Conversion<br />

coefficient<br />

5thorder<br />

7thorder<br />

A5 - 4<br />

11thorder<br />

13thorder<br />

17thorder<br />

19thorder<br />

23rdorder<br />

25thorder<br />

6.6kV 87.5 6.6kV 3.5 2.5 1.6 1.3 1.0 0.9 0.76 0.70<br />

22 kV 26.2 22kV 1.8 1.3 0.82 0.69 0.53 0.47 0.39 0.36<br />

33 kV 17.5 33kV 1.2 0.86 0.55 0.46 0.35 0.32 0.26 0.24<br />

66 kV 8.75 66kV 0.59 0.42 0.27 0.23 0.17 0.16 0.13 0.12<br />

77 kV 7.5 77kV 0.50 0.36 0.23 0.19 0.15 0.13 0.11 0.10<br />

Obtain the upper limit of the higher harmonic current flow (judgment value) for each order.<br />

(The contracted electricity must be known for this.)<br />

Upper limit of higher harmonic current flow (mA) = Contracted electricity, flow upper limit value<br />

Flow upper limit value : Insert a value from Table 5 according to the higher harmonic order to<br />

be calculated.<br />

Obtain the higher harmonic current flow for each order using the following expression.<br />

Higher harmonic current flow (mA) = (a • Pi), Device's maximum operation rate, target order<br />

Device's maximum operation rate : The user must set the operation rate.<br />

Target order<br />

: Insert a value from Table 6 according to the higher<br />

harmonic order to be calculated.<br />

Conversion<br />

coefficient<br />

(Table 6) Higher harmonic current generation rate %<br />

5thorder<br />

7thorder<br />

11thorder<br />

13thorder<br />

17thorder<br />

19thorder<br />

23rdorder<br />

25thorder<br />

K32 = 1.8 38.0 14.5 7.4 3.4 3.2 1.9 1.7 1.3<br />

K31 = 3.4 65.0 41.0 8.5 7.7 4.3 3.1 2.6 1.8<br />

Values when basic wave current is 100%.<br />

Check whether the calculated results exceed the limit value.<br />

If the limit value for the higher harmonic current flow is exceeded, consider the higher harmonic<br />

measures shown below.<br />

Examples of higher harmonic measures<br />

Item<br />

Power-factor improving capacitor<br />

Installation of AC line filter<br />

Details<br />

Higher harmonics are suppressed by adding a leading capacitor for improving the power<br />

factor.<br />

A reactor and capacitor are combined to reduce the impedance for specific frequencies.


Appendix 5 Higher Harmonic Suppression Measure Guidelines<br />

1.3 Higher harmonic current flow calculation form<br />

A higher harmonic current flow calculation form is shown below for reference.<br />

User<br />

name<br />

Higher harmonic generating device's higher harmonic current flow calculation form (Part 1)<br />

Industry<br />

Incoming<br />

power voltage<br />

kV Contracted<br />

electricity<br />

kW<br />

Date of application<br />

Application No.<br />

Date of acceptance<br />

<br />

No.<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

Higher harmonic generating<br />

device<br />

Device name Maker Type<br />

Step 1: Details of higher harmonic generating device Step 2: Calculation of higher harmonic current flow rate<br />

Rated<br />

capacity<br />

(kVA)<br />

Qty. of<br />

devices<br />

Total<br />

capacity<br />

Pi (kVA)<br />

Circuit<br />

type classification<br />

No.<br />

6-pulse<br />

calculation<br />

coefficient<br />

Ki<br />

6-pulse<br />

equivalent<br />

capacity<br />

[Ki×Pi](kVA)<br />

Rated current<br />

value for<br />

incoming<br />

power voltage<br />

conversion<br />

[a×Pi] (mA)<br />

Device's<br />

maximum<br />

operation<br />

rate (%)<br />

5thorder<br />

Higher harmonic current flow per order<br />

7thorder<br />

11thorder<br />

13thorder<br />

17thorder<br />

19thorder<br />

23rdorder<br />

25thorder<br />

6-pulse equivalent capacity total P. Total<br />

Necessity of measures<br />

<br />

Step 1<br />

Indicate the details of the higher harmonic generating device.<br />

Refer to the reference and indicate the circuit type classification No., etc.<br />

If the device's circuit type classification No. is 10, complete the application shown in<br />

.<br />

If P, > 50kVA (6kV incoming power), 300kVA (22, 33kV incoming power), 2000kVA<br />

(66kV or higher incoming power), proceed to Step 2. (Step 2 does not need to be<br />

completed in all other cases.)<br />

Step 2<br />

If the current flow > current flow upper limit value at each order, then<br />

Higher harmonic current flow upper limit value (Higher harmonic current flow upper limit per<br />

contracted kW x contracted electricity)<br />

Order<br />

Current upper limit value<br />

(mA)<br />

◦ If there is a facility that lowers the higher harmonics in the factory, or when suppression measures are implemented, proceed to Calculation Form (Part 2)<br />

◦ In all other cases, separate measures must be taken<br />

5thorder<br />

7thorder<br />

11thorder<br />

13thorder<br />

17thorder<br />

19thorder<br />

23rdorder<br />

25thorder<br />

A5 - 5


Appendix 6. Transportation Restrictions for Lithium<br />

Batteries<br />

Appendix 6-1 Transportation restrictions for lithium batteries..................................................................A6-2<br />

Appendix 6-1-1 Restriction for packing...............................................................................................A6-2<br />

1. Target products.............................................................................................................................A6-2<br />

2. Handling by user ...........................................................................................................................A6-3<br />

3. Reference......................................................................................................................................A6-4<br />

Appendix 6-1-2 Issuing domestic law of the United State for primary lithium battery transportation .A6-5<br />

1. Outline of regulation......................................................................................................................A6-5<br />

2. Target products.............................................................................................................................A6-5<br />

3. Handling by user ...........................................................................................................................A6-5<br />

4. Reference......................................................................................................................................A6-5<br />

A6 - 1


Appendix 6 Transportation Restrictions for Lithium Batteries<br />

Appendix 6-1 Transportation restrictions for lithium batteries<br />

Appendix 6-1-1 Restriction for packing<br />

The United Nations Dangerous Goods Regulations "Article 12" became effective from 2003. When<br />

transporting lithium batteries with means subject to the UN Regulations, such as by air transport,<br />

measures corresponding to the Regulations must be taken. The UN Regulations classify the batteries as<br />

dangerous goods (Class 9) or not dangerous goods according to the lithium content.<br />

To ensure safety during transportation, lithium batteries (battery unit) directly exported from <strong>Mitsubishi</strong><br />

are packaged in a dedicated container (UN package) for which safety has been confirmed. When the<br />

customer is transporting these products with means subject to the UN Regulations, such as air transport,<br />

the shipper must follow the details explained in section 2. .<br />

1. Target products<br />

The following <strong>Mitsubishi</strong> NC products use lithium batteries. The UN Regulations classify the<br />

batteries as dangerous goods (Class 9) or not dangerous goods according to the lithium content.<br />

(Refer to the battery unit's rating nameplate or section "4-1-2 Battery option" for details on the<br />

lithium content.) If the batteries subjected to hazardous materials are incorporated in a device and<br />

shipped, a dedicated packaging (UN packaging) is not required. However, the item must be packed<br />

and shipped following the Packing Instruction 912 specified in the IATA DGR (Dangerous Goods<br />

Regulation) book.<br />

Also, all lithium battery products incorporated in a machinery or device must be fixed securely in<br />

accordance with the Packing Instruction 900 and shipped with protection in a way as to prevent<br />

damage or short-circuits.<br />

(a) Products requiring dedicated packaging (Materials falling under Class 9)<br />

<strong>Mitsubishi</strong> type<br />

Battery type<br />

Lithium metal<br />

content<br />

MDS-A-BT-4 ER6-B4-11 2.6g<br />

MDS-A-BT-6 ER6-B6-11 3.9g<br />

MDS-A-BT-8 ER6-B8-11 5.2g<br />

Battery<br />

manufacturer<br />

Toshiba Battery<br />

Battery class<br />

Battery<br />

FCU6-BT4-D1<br />

Combination of<br />

ER6-B4D-11 and ER6<br />

2.6g+0.65g<br />

(built-in battery) CR23500SE-CJ5 1.52g Sanyo Battery Battery cell<br />

(b) Products not requiring dedicated packaging (Materials not falling under Class 9)<br />

<strong>Mitsubishi</strong> type<br />

Battery type<br />

Lithium metal<br />

content<br />

MDS-A-BT-2 ER6-B2-12 1.3g<br />

FCU6-BTBOX 2CR5 1.96g<br />

(built-in battery) CR2032 0.067g<br />

(built-in battery) CR2450 0.173g<br />

(built-in battery) ER6, ER6V 0.7g<br />

MR-BAT MR-BAT 0.48g<br />

Q6BAT Q6BAT 0.49g<br />

Battery<br />

manufacturer<br />

Toshiba Battery<br />

<strong>Mitsubishi</strong> Electric<br />

Battery<br />

Battery class<br />

Battery<br />

Battery cell<br />

Note 1) Dedicated packaging is required if the shipment exceeds 12 batteries/24 battery cells.<br />

Package the batteries so that this limit is not exceeded.<br />

Note 2) The battery units labeled as "FCUA-" instead of "MDS-A-" also use the same battery.<br />

Note 3) Always use the cell battery (MR-BAT) in combination with the dedicated case (MDS-BTCASE).<br />

Maximum 8 (either 2, 4, 6 or 8) cell batteries can be installed to the dedicated case<br />

(MDS-BTCASE).<br />

Example) Rating nameplate<br />

for battery units<br />

<strong>Mitsubishi</strong> type<br />

Safety class<br />

Battery manufacturer type<br />

Lithium metal content<br />

A6 - 2


Appendix 6 Transportation Restrictions for Lithium Batteries<br />

2. Handling by user<br />

The following technical opinion is solely <strong>Mitsubishi</strong>'s opinion. The shipper must confirm the latest<br />

IATA Dangerous Goods Regulations, IMDG Codes and laws and orders of the corresponding<br />

export country. These should be checked by the company commissioned for the actual<br />

transportation.<br />

IATA<br />

IMDG Code<br />

: International Air Transport Association<br />

: A uniform international code for the transport of dangerous goods by seas<br />

determined by IMO (International Maritime Organization).<br />

(a) When shipping isolated lithium battery products (Packing Instruction 903)<br />

1) Reshipping in <strong>Mitsubishi</strong> UN packaging<br />

The isolated battery's safety test and packaging specifications comply with the UN Regulations<br />

(Packing Instruction 903). Thus, the user only needs to add the following details before shipping.<br />

(Consult with the shipping company for details.)<br />

i) Indication of container usage mark on exterior box (Label with following details recorded.)<br />

• Proper shipping name (Lithium batteries)<br />

• UN NO. (UN3090 for isolated battery, UN3091 for battery incorporated in a device or included)<br />

• Shipper and consignee's address and name<br />

Example of completing form<br />

Shipper information<br />

Consignee information<br />

ii) Preparation of shipping documents (Declaration of dangerous goods)<br />

2) When packaged by user<br />

The user must follow UN Regulations when packing, preparing for shipping and preparing the<br />

indications, etc.<br />

i) Packing a lithium battery falling under Class 9<br />

• Consult with The Ship Equipment Inspection Society of Japan for details on packaging.<br />

• Prepare for shipping as explained in "1) Reshipping in <strong>Mitsubishi</strong> UN packaging".<br />

The Ship Equipment Inspection Society of Japan<br />

Headquarters Telephone: 03-3261-6611 Fax: 03-3261-6979<br />

ii) Packing a lithium battery not falling under Class 9<br />

• Cells and batteries are separated so as to prevent short circuits and are stored in a strong outer<br />

packaging. (12 or less batteries, 24 or less cells.)<br />

• Certificates or test results showing compliance to battery safety test.<br />

The safety test results have been obtained from the battery manufacturer. (Consult with<br />

<strong>Mitsubishi</strong> when the safety test results are required.)<br />

• Prepare for shipping as explained in "1) Reshipping in <strong>Mitsubishi</strong> UN packaging".<br />

A6 - 3


Appendix 6 Transportation Restrictions for Lithium Batteries<br />

(b) When shipping lithium batteries upon incorporating in a machinery or device<br />

(Packing Instruction 900)<br />

Pack and prepare for shipping the item in accordance with the Packing Instruction 900 specified in<br />

the IATA DGR (Dangerous Goods Regulation) book. (Securely fix the batteries that comply with the<br />

UN Manual of Tests and Criteria to a machinery or device, and protect in a way as to prevent<br />

damage or short-circuit.)<br />

Note that all the lithium batteries provided by <strong>Mitsubishi</strong> have cleared the UN recommended safety<br />

test; fixing the battery units or cable wirings securely to the machinery or device will be the user’s<br />

responsibility.<br />

Check with your shipping company for details on packing and transportation.<br />

(c) When shipping a device with lithium batteries incorporated (Packing Instruction 912)<br />

A device incorporating lithium batteries does not require a dedicated packaging (UN packaging).<br />

However, the item must be packed, prepared for shipping and labeled following the Packing<br />

Instruction 912 specified in the IATA DGR (Dangerous Goods Regulation) book.<br />

Check with your shipping company for details on packing and transportation.<br />

The outline of the Packing Instruction 912 is as follows:<br />

• All the items in the packing instructions for shipping the isolated lithium battery products<br />

(Packing Instruction 903) must be satisfied, except for the items related to container,<br />

short-circuit, and fixation.<br />

• A device incorporating lithium batteries has to be stored in a strong water-proofed outer<br />

packaging.<br />

• To prevent an accidental movement during shipment, securely store the item in an outer<br />

packaging.<br />

• Lithium content per device should be not more than 12g for cell and 500g for battery.<br />

• Lithium battery mass per device should be not more than 5kg.<br />

3. Reference<br />

Refer to the following materials for details on the regulations and responses.<br />

Guidelines regarding transportation of lithium batteries and lithium ion batteries (Edition 2)<br />

.......................................................... Battery Association of Japan<br />

A6 - 4


Appendix 6 Transportation Restrictions for Lithium Batteries<br />

Appendix 6-1-2 Issuing domestic law of the United State for primary lithium battery<br />

transportation<br />

Federal Aviation Administration (FAA) and Research and Special Programs Administration (RSPA)<br />

announced an additional regulation (interim final rule) for the primary lithium batteries transportation<br />

restrictions item in "Federal Register" on Dec.15 2004. This regulation became effective from Dec.29,<br />

2004.<br />

This law is a domestic law of the United States, however if also applies to the domestic flight and<br />

international flight departing from or arriving in the United States. Therefore, when transporting lithium<br />

batteries to the United State, or within the United State, the shipper must take measures required to<br />

transport lithium batteries.<br />

Refer to the Federal Register and the code of Federal Regulation ("(a), (b) and (c) in the item 4."<br />

described below) for details.<br />

1. Outline of regulation<br />

(a) Transporting primary lithium battery by passenger aircraft is forbidden.<br />

• Excluding primary lithium battery for personal use in a carry-on or checked luggage<br />

(Lithium metal content should be not more than 5g for cell and 25g for battery. For details on the<br />

lithium metal content, refer to "(a) and (b) in the section 4-1-1 item 1.".)<br />

(b) When transporting primary lithium battery by cargo aircraft, indicate that transportation by<br />

passenger aircraft is forbidden on the exterior box.<br />

2. Target products<br />

All NC products for which the lithium batteries are used are subject to the regulation.<br />

(Refer to the table "(a) and (b) in the section 4-1-1 item 1.".)<br />

3. Handling by user<br />

The "1. Outline of regulation" described above is solely <strong>Mitsubishi</strong>'s opinion. The shipper must<br />

confirm orders of "(a), (b) and (c) in the item 4." described below for transportation method<br />

corresponding the regulation. Actually, these should be checked by the company commissioned for<br />

the actual lithium buttery transportation.<br />

(a) Indication of exterior box<br />

When transporting primary lithium battery by cargo aircraft, indicate that transportation by<br />

passenger aircraft is forbidden on the exterior box.<br />

Display example<br />

PRIMARY LITHIUM BATTERIES<br />

FORBIDDEN FOR TRANSPORT ABOARD PASSENGER AIRCRAFT.<br />

• The character color must be displayed with contrast. (black characters against white background,<br />

black characters against yellow background, etc.)<br />

• The height (size) of characters to be displayed is prescribed depending on the packaging weight.<br />

When the total weight is over 30kg: at least 12mm<br />

When the total weight is less than 30kg: at least 6mm<br />

4. Reference<br />

(a) Federal Register (Docket No. RSPA-2004-19884 (HM-224E) ) PDF format<br />

http://www.regulations.gov/fredpdfs/05-11765.pdf<br />

(b) 49CFR (Code of Federal Regulation, Title49) (173.185 Lithium batteries and cells.)<br />

http://www.access.gpo.gov/nara/cfr/waisidx_00/49cfr173_00.html<br />

(c) DOT regulation body (Department of Transportation)<br />

http://hazmat.dot.gov/regs/rules/final/69fr/docs/69fr-75207.pdf<br />

A6 - 5


Appendix 7. Compliance with China Compulsory<br />

Product Certification (CCC Certification)<br />

System<br />

Appendix 7-1 Outline of China Compulsory Product Certification System ............................................A7-2<br />

Appendix 7-2 First Catalogue of Products subject to Compulsory Product Certification.......................A7-2<br />

Appendix 7-3 Precautions for Shipping Products...................................................................................A7-3<br />

Appendix 7-4 Application for Exemption ................................................................................................A7-4<br />

Appendix 7-5 <strong>Mitsubishi</strong> NC Product Subject to/Not Subject to CCC Certification................................A7-5<br />

A7 - 1


Appendix 7. Compliance with China Compulsory Product Certification (CCC Certification) System<br />

Appendix 7-1 Outline of China Compulsory Product Certification System<br />

The Safety Certification enforced in China included the "CCIB Certification (certification system based<br />

on the "Law of the People’s Republic of China on Import and Export Commodity Inspection" and<br />

"Regulations on Implementation of the Import Commodities Subject to the Safety and Quality Licensing<br />

System" enforced by the State Administration of Import and Export Commodity Inspection (SACI) on<br />

import/export commodities, and the "CCEE Certification" (certification system based on "Product<br />

Quality Certification Management Ordinance" set forth by the China Commission for Conformity<br />

Certification of Electrical Equipment (CCEE) on commodities distributed through China.<br />

CCIB Certification and CCEE Certification were merged when China joined WTO (November 2001),<br />

and were replaced by the "China Compulsory Product Certification" (hereinafter, CCC Certification)<br />

monitored by the State General Administration of Quality Supervision, Inspection and Quarantine<br />

(AQSIQ) of the People's Republic of China.<br />

The CCC Certification system was partially enforced from May 2002, and was fully enforced from May<br />

2003. Target commodities which do not have CCC Certification cannot be imported to China or sold in<br />

China. (Indication of the CCIB or CCEE mark has been eliminated from May 1, 2003.)<br />

CCIB : China Commodity Inspection Bureau<br />

CCEE : China Commission for Conformity Certification of Electrical Equipment<br />

CCC : China Compulsory Certification<br />

Appendix 7-2 First Catalogue of Products subject to Compulsory Product<br />

Certification<br />

The First Catalogue of Products subject to Compulsory Product Certification, covering 132 items (19<br />

categories) based on the CCIB products (104 items), CCEE products (107 items) and CEMC products<br />

(Compulsory EMC Certification products) was designated on December 3, 2001.<br />

Class Product catalogue Class Product catalogue<br />

1 Electric Wires and Cables (5 items) 5 Electric tools (16 items)<br />

2 Switches, Installation protective and connection devices (6 items) 6 Welding machines (15 items)<br />

3<br />

Low-voltage Electrical Apparatus (9 items)<br />

Compulsory Certification<br />

Regulations<br />

A7 - 2<br />

7 Household and similar<br />

electrical appliances<br />

(18 items)<br />

Circuit-breakers (including RCCB, RCBO, MCB) 8 Audio and video equipment (16 items)<br />

Low-voltage switchers<br />

9 Information technology (12 items)<br />

(disconnectors, switch-disconnectors, and<br />

fuse-combination devices.<br />

10<br />

equipment<br />

Lighting apparatus (2 items)<br />

11 Telecommunication terminal (9 items)<br />

equipment<br />

Other protective equipment for circuits<br />

12 Motor vehicles and Safety (4 items)<br />

(Current limiting devices, circuits protective<br />

Parts<br />

devices, over current protective devices,<br />

13 Tyres (4 items)<br />

thermal protectors, over load relays,<br />

14 Safety Glasses (3 items)<br />

low-voltage electromechanical contactors and<br />

motor starters) 15 Agricultural Machinery (1 item)<br />

CNCA -01C -011: 2001<br />

Relays (36V < Voltage ≤ 1000V) 16 Latex Products (1 item)<br />

(Switch and Control<br />

Equipment)<br />

17 Medical Devices (7 items)<br />

CNCA -01C -012: 2001 18 Fire Fighting Equipment (3 items)<br />

(Installation Protective 19 Detectors for Intruder Alarm (1 item)<br />

Equipment)<br />

Systems<br />

Other switches<br />

(Switches for appliances, vacuum switches,<br />

pressure switches, proximity switches, foot<br />

switches, thermal sensitive switches, hydraulic<br />

switches, push-button switches, position limit<br />

switches, micro-gap switches, temperature<br />

sensitive switches, travel switches,<br />

change-over switches, auto-change-over<br />

switches, knife switches)<br />

Other devices<br />

(contactors, motor starters, indicator lights,<br />

auxiliary contact assemblies, master<br />

controllers, A.C. Semiconductor motor<br />

controllers and starters)<br />

Earth leakage protectors<br />

Fuses<br />

Low-voltage switchgear<br />

4 Small power motors (1 item)<br />

(Note)<br />

CNCA-01C-010:2001<br />

(Low-voltage<br />

switchgear)<br />

CNCA-01C-013:2001<br />

(Small power motors)<br />

(Note) When the servomotor or the spindle motor of which output is 1.1kW or less (at 1500 r/min) is used,<br />

NC could have been considered as a small power motor. However, CQC (China Quality<br />

Certification Center) judged it is not.


Appendix 7. Compliance with China Compulsory Product Certification (CCC Certification) System<br />

Appendix 7-3 Precautions for Shipping Products<br />

As indicated in Appendix 7-2, NC products are not included in the First Catalogue of Products subject to<br />

Compulsory Product Certification. However, the Customs Officer in China may judge that the product is<br />

subject to CCC Certification just based on the HS Code. Note 2<br />

NC cannot be imported if its HS code is used for the product subject to CCC Certification. Thus, the<br />

importer must apply for a "Certification of Exemption" with CNCA. Note 3 Refer to Appendix 7-4.<br />

Application for Exemption for details on applying for an exemption.<br />

(Note 1) The First Catalogue of Products subject to Compulsory Product Certification (Target HS<br />

Codes) can be confirmed at http://www.cqc.com.cn/Center/html/60gonggao.htm.<br />

(Note 2) HS Code: Internationally unified code (up to 6 digits) assigned to each product and used for<br />

customs.<br />

(Note 3) CNCA: Certification and Accreditation Administration of People's Republic of China<br />

(Management and monitoring of certification duties)<br />

A7 - 3


Appendix 7. Compliance with China Compulsory Product Certification (CCC Certification) System<br />

Appendix 7-4 Application for Exemption<br />

Following "Announcement 8" issued by the Certification and Accreditation Administration of the<br />

People's Republic of China (CNCA) in May 2002, a range of products for which application for CCC<br />

Certification is not required or which are exempt from CCC marking has been approved for special<br />

circumstances in production, export and management activities.<br />

An application must be submitted together with materials which prove that the corresponding product<br />

complies with the exemption conditions. Upon approval, a "Certification of Exemption" shall be issued.<br />

<br />

Range of products not<br />

requiring application<br />

Range of products for<br />

which application is<br />

exempted<br />

(a) Items brought into China for the personal use by the foreign embassies, consulates, business<br />

agencies and visitors<br />

(Excluding products purchased from Service Company for Exporters)<br />

(b) Products presented on a government-to-government basis, presents<br />

(c) Exhibition products (products not for sale)<br />

(d) Special purpose products (e.g., for military use)<br />

Products not requiring application for CCC Certification are not required to be CCC marked or<br />

certified.<br />

(e) Products imported or manufactured for research and development and testing purposes<br />

(f) Products shipped into China for integration into other equipment destined for 100% re-export to a<br />

destination outside of China<br />

(g) Products for 100% export according to a foreign trade contract (Excluding when selling partially in<br />

China or re-importing into China for sales)<br />

(h) Components used for the evaluation of an imported product line<br />

(i) The products imported or manufactured for the service (service and repairs) to the end-user. Or the<br />

spare parts for the service (service and repairs) of discontinued products.<br />

(j) Products imported or manufactured for research and development, testing or measurements<br />

(k) Other special situations<br />

The following documents must be prepared to apply for an exemption of the "Import Commodity Safety<br />

and Quality License" and "CCC Certification".<br />

(1) Formal Application<br />

(a) Relevant introduction and description of the company.<br />

(b) The characteristics of the products to be exempted.<br />

(c) The reason for exemption and its evidence (ex. customs handbook).<br />

(d) The name, trademark, quantity, model and specification of the products to be exempted.<br />

(Attach a detail listing of these items for a large quantity of products. When importing materials<br />

for processing and repair equipments, submit a list of the importing materials for each month<br />

and repair equipments.)<br />

(e) Guarantee for the safety of the products; self-declaration to be responsible for the safety during<br />

the manufacturing and use.<br />

(f) To be responsible for the authenticity and legitimacy of the submitted documents. Commitment<br />

to assist CNCA to investigate on the authenticity of the documents (When CNCA finds it<br />

necessary to investigate on the authenticity of the documents.)<br />

(2) Business license of the company (Copy)<br />

(3) Product compliance declaration<br />

Indicate which standard’s requirements the products comply with or submit a test report (Copy is<br />

acceptable. The report can be prepared in a manufacturer’s laboratory either at home or overseas.)<br />

(4) Import license (Only if an import license is needed for this product. Copy is acceptable.)<br />

(5) Quota certificate (Only if a quota certificate is needed for this product. Copy is acceptable.)<br />

(6) Commercial contract (Copy is acceptable.)<br />

(7) If one of item (4), (5) or (6) cannot be provided, alternative documents, such as bill of lading, the<br />

invoice, and other evidential documents must be submitted.<br />

A7 - 4


Appendix 7. Compliance with China Compulsory Product Certification (CCC Certification) System<br />

Appendix 7-5 <strong>Mitsubishi</strong> NC Product Subject to/Not Subject to CCC Certification<br />

The state whether or not <strong>Mitsubishi</strong> NC products are subject to the CCC Certification is indicated below,<br />

based on the "First Catalogue of Products subject to Compulsory Product Certification" issued by the<br />

State General Administration of Quality Supervision, Inspection and Quarantine (AQSIQ) of the<br />

People's Republic of China and the Certification and Accreditation Administration of the People's<br />

Republic of China (CNCA) on July 1, 2002.<br />

Power supply unit<br />

Servo/spindle drive unit<br />

Servo/spindle<br />

Model China HS Code (Note 1)<br />

85044090<br />

85371010<br />

85015100<br />

85015200<br />

Judgment on whether or not subject to<br />

CCC Certification<br />

Not subject to CCC Certification<br />

Not subject to CCC Certification<br />

NC – Not subject to CCC Certification<br />

Display unit – Not subject to CCC Certification<br />

(Note 1) The China HS Code is determined by the customs officer when importing to China. The<br />

above HS Codes are set based on the HS Codes used normally when exporting from Japan.<br />

(Note 2) Reference IEC Standards are used as the actual IEC Standards may not match the GB<br />

Standards in part depending on the model.<br />

Whether or not the NC products are subject to CCC Certification was judged based on the following five<br />

items.<br />

(a) Announcement 33 (Issued by AQSIQ and CNCA in December 2001)<br />

(b) HS Codes for the products subject to CCC Certification (Export Customs Codes)<br />

* HS Codes are supplementary materials used to determine the applicable range. The applicable<br />

range may not be determined only by these HS Codes.<br />

(c) GB Standards (This is based on the IEC Conformity, so check the IEC. Note that some parts are<br />

deviated.)<br />

(d) Enforcement regulations, and products specified in applicable range of applicable standards within<br />

(e) "Products Excluded from Compulsory Certification Catalogue" (Issued by CNCA, November 2003)<br />

Reference<br />

• Outline of China's New Certification System (CCC Mark for Electric Products), Japan Electrical<br />

Manufacturers' Association<br />

• Outline of China's New Certification System (CCC Mark for Electric Products) and Electric<br />

Control Equipment, Nippon Electric Control Equipment Industries Association<br />

A7 - 5


Revision History<br />

Date of revision Manual No. Revision details<br />

Mar. 2002 BNP-C3016A First edition created.<br />

Jul. 2003 BNP-C3016C • The MDS-CH-V1-185 specifications were added.<br />

• Battery unit "FCU6-BTBOX" was added.<br />

• Spindle specifications were added.<br />

•"Magnetic pole detection unit" was added.<br />

• The HC-H1502 motor specifications were added.<br />

• The linear servomotor specifications were added.<br />

• "UL/c-UL Standard Compatible Unit Instruction Manual" was added.<br />

• Miswrite is corrected.<br />

Apr. 2004 BNP-C3016D • LM491M (Heidenhain) was added to machine side detector.<br />

• Units scheduled for development, SP-15, V1-05, V1-10 and V2-0505 to 1010<br />

were produced, and production of SP-04 to 075 and SP-22 was<br />

discontinued.<br />

• HC-H52, -H53 and -H102 were produced.<br />

• Miswrite is corrected.<br />

Sep. 2005 BNP-C3016E • DC connection bar specifications were added.<br />

• Drive unit specifications list was revised.<br />

• Selection of wire was revised.<br />

• Protection fuse specifications were added.<br />

• Motor outline drawings of HC-H1102 and HC-C1103S were revised.<br />

• The section of "Compliance with China Compulsory Product Certification<br />

(CCC Certification) System " was added.<br />

• Miswrite is corrected.<br />

Feb. 2006 BNP-C3016F • Servo parameters SV081 to SV100 were added.<br />

• Alarm "3B" and "77" were revised.<br />

• Troubleshooting "3B" and "77" were revised.<br />

• Calculating the theoretical acceleration/deceleration was revised.<br />

• Magnetic brake characteristic was revised.<br />

• Miswrite is corrected.


Global service network<br />

NORTH AMERICA FA Center<br />

EUROPEAN FA Center<br />

CHINA FA Center<br />

KOREAN FA Center<br />

ASEAN FA Center<br />

HONG KONG FA Center<br />

TAIWAN FA Center<br />

North America FA Center (MITSUBISHI ELECTRIC AUTOMATION INC.)<br />

Illinois CNC Service Center<br />

500 CORPORATE WOODS PARKWAY, VERNON HILLS, IL. 60061, U.S.A.<br />

TEL: +1-847-478-2500 (Se<br />

FAX: +1-847-478-2650 (Se<br />

California CNC Service Center<br />

5665 PLAZA DRIVE, CYPRESS, CA. 90630, U.S.A.<br />

TEL: +1-714-220-4796 FAX: +1-714-229-3818<br />

Georgia CNC Service Center<br />

2810 PREMIERE PARKWAY SUITE 400, DULUTH, GA., 30097, U.S.A.<br />

TEL: +1-678-258-4500 FAX: +1-678-258-4519<br />

New Jersey CNC Service Center<br />

200 COTTONTAIL LANE SOMERSET, NJ. 08873, U.S.A.<br />

TEL: +1-732-560-4500 FAX: +1-732-560-4531<br />

Michigan CNC Service Satellite<br />

2545 38TH STREET, ALLEGAN, MI., 49010, U.S.A.<br />

TEL: +1-847-478-2500 FAX: +1-269-673-4092<br />

Ohio CNC Service Satellite<br />

62 W. 500 S., ANDERSON, IN., 46013, U.S.A.<br />

TEL: +1-847-478-2608 FAX: +1-847-478-2690<br />

Texas CNC Service Satellite<br />

1000, NOLEN DRIVE SUITE 200, GRAPEVINE, TX. 76051, U.S.A.<br />

TEL: +1-817-251-7468 FAX: +1-817-416-1439<br />

Canada CNC Service Center<br />

4299 14TH AVENUE MARKHAM, ON. L3R OJ2, CANADA<br />

TEL: +1-905-475-7728 FAX: +1-905-475-7935<br />

Mexico CNC Service Center<br />

MARIANO ESCOBEDO 69 TLALNEPANTLA, 54030 EDO. DE MEXICO<br />

TEL: +52-55-9171-7662 FAX: +52-55-9171-7698<br />

Monterrey CNC Service Satellite<br />

ARGENTINA 3900, FRACC. LAS TORRES, MONTERREY, N.L., 64720, MEXICO<br />

TEL: +52-81-8365-4171 FAX: +52-81-8365-4171<br />

Brazil MITSUBISHI CNC Agent Service Center<br />

(AUTOMOTION IND. COM. IMP. E EXP. LTDA.)<br />

ACESSO JOSE SARTORELLI, KM 2.1 18550-000 BOITUVA – SP, BRAZIL<br />

TEL: +55-15-3363-9900 FAX: +55-15-3363-9911<br />

European FA Center (MITSUBISHI ELECTRIC EUROPE B.V.)<br />

Germany CNC Service Center<br />

GOTHAER STRASSE 8, 40880 RATINGEN, GERMANY<br />

TEL: +49-2102-486-0<br />

FAX:+49-2102486-591<br />

South Germany CNC Service Center<br />

KURZE STRASSE. 40, 70794 FILDERSTADT-BONLANDEN, GERMANY<br />

TEL: +49-711-3270-010 FAX: +49-711-3270-0141<br />

France CNC Service Center<br />

25, BOULEVARD DES BOUVETS, 92741 NANTERRE CEDEX FRANCE<br />

TEL: +33-1-41-02-83-13 FAX: +33-1-49-01-07-25<br />

Lyon CNC Service Satellite<br />

U.K CNC Service Center<br />

TRAVELLERS LANE, HATFIELD, HERTFORDSHIRE, AL10 8XB, U.K.<br />

TEL: +44-1707-282-846<br />

FAX:-44-1707-278-992<br />

Italy CNC Service Center<br />

ZONA INDUSTRIALE VIA ARCHIMEDE 35 20041 AGRATE BRIANZA, MILANO ITALY<br />

TEL: +39-039-60531-342 FAX: +39-039-6053-206<br />

Spain CNC Service Satellite<br />

CTRA. DE RUBI, 76-80 -APDO.420 08190 SAINT CUGAT DEL VALLES, BARCELONA SPAIN<br />

TEL: +34-935-65-2236<br />

FAX:<br />

Turkey MITSUBISHI CNC Agent Service Center<br />

(GENEL TEKNIK SISTEMLER LTD. STI.)<br />

DARULACEZE CAD. FAMAS IS MERKEZI A BLOCK NO.43 KAT2 80270 OKMEYDANI ISTANBUL,<br />

TURKEY<br />

TEL: +90-212-320-1640 FAX: +90-212-320-1649<br />

Poland MITSUBISHI CNC Agent Service Center (MPL Technology Sp. z. o. o)<br />

UL SLICZNA 34, 31-444 KRAKOW, POLAND<br />

TEL: +48-12-632-28-85<br />

FAX:<br />

Wroclaw MITSUBISHI CNC Agent Service Satellite (MPL Technology Sp. z. o. o)<br />

UL KOBIERZYCKA 23, 52-315 WROCLAW, POLAND<br />

TEL: +48-71-333-77-53 FAX: +48-71-333-77-53<br />

Czech MITSUBISHI CNC Agent Service Center<br />

(AUTOCONT CONTROL SYSTEM S.R.O. )<br />

NEMOCNICNI 12, 702 00 OSTRAVA 2 CZECH REPUBLIC<br />

TEL: +420-596-152-426 FAX: +420-596-152-112<br />

ASEAN FA Center (MITSUBISHI ELECTRIC ASIA PTE. LTD.)<br />

Singapore CNC Service Center<br />

307 ALEXANDRA ROAD #05-01/02 MITSUBISHI ELECTRIC BUILDING SINGAPORE 159943<br />

TEL: +65-6473-2308 FAX: +65-6476-7439<br />

Thailand MITSUBISHI CNC Agent Service Center (F. A. TECH CO., LTD)<br />

898/19,20,21,22 S.V. CITY BUILDING OFFICE TOWER 1 FLOOR 12,14 RAMA III RD BANGPONGPANG,<br />

YANNAWA, BANGKOK 10120. THAILAND<br />

TEL: +66-2-682-6522 FAX: +66-2-682-6020<br />

Malaysia MITSUBISHI CNC Agent Service Center<br />

(FLEXIBLE AUTOMATION SYSTEM SDN. BHD.)<br />

60, JALAN USJ 10/1B 47620 UEP SUBANG JAYA SELANGOR DARUL EHSAN MALAYSIA<br />

TEL: +60-3-5631-7605 FAX: +60-3-5631-7636<br />

JOHOR MITSUBISHI CNC Agent Service Satellite<br />

(FLEXIBLE AUTOMATION SYSTEM SDN. BHD.)<br />

NO. 16, JALAN SHAHBANDAR 1, TAMAN UNGKU TUN AMINAH, 81300 SKUDAI, JOHOR MALAYSIA<br />

TEL: +60-7-557-8218 FAX: +60-7-557-3404<br />

Indonesia MITSUBISHI CNC Agent Service Center<br />

(PT. AUTOTEKNINDO SUMBER MAKMUR)<br />

WISMA NUSANTARA 14TH FLOOR JL. M.H. THAMRIN 59, JAKARTA 10350 INDONESIA<br />

TEL: +62-21-3917-144 FAX: +62-21-3917-164<br />

India MITSUBISHI CNC Agent Service Center (MESSUNG SALES & SERVICES PVT. LTD.)<br />

B-36FF, PAVANA INDUSTRIAL PREMISES M.I.D.C., BHOASRI PUNE 411026, INDIA<br />

TEL: +91-20-2711-9484 FAX: +91-20-2712-8115<br />

BANGALORE MITSUBISHI CNC Agent Service Satellite<br />

(MESSUNG SALES & SERVICES PVT. LTD.)<br />

S 615, 6TH FLOOR, MANIPAL CENTER, BANGALORE 560001, INDIA<br />

TEL: +91-80-509-2119 FAX: +91-80-532-0480<br />

Delhi MITSUBISHI CNC Agent Parts Center (MESSUNG SALES & SERVICES PVT. LTD.)<br />

1197, SECTOR 15 PART-2, OFF DELHI-JAIPUR HIGHWAY BEHIND 32ND MILESTONE GURGAON<br />

122001, INDIA<br />

TEL: +91-98-1024-8895<br />

FAX:<br />

Philippines MITSUBISHI CNC Agent Service Center<br />

(FLEXIBLE AUTOMATION SYSTEM CORPORATION)<br />

UNIT No.411, ALABAMG CORPORATE CENTER KM 25. WEST SERVICE ROAD SOUTH SUPERHIGHWAY,<br />

ALABAMG MUNTINLUPA METRO MANILA, PHILIPPINES 1771<br />

TEL: +63-2-807-2416 FAX: +63-2-807-2417<br />

Vietnam MITSUBISHI CNC Agent Service Center (SA GIANG TECHNO CO., LTD)<br />

47-49 HOANG SA ST. DAKAO WARD, DIST.1 HO CHI MINH CITY, VIETNAM<br />

TEL: +84-8-910-4763 FAX: +84-8-910-<strong>259</strong>3<br />

China FA Center (MITSUBISHI ELECTRIC AUTOMATION (SHANGHAI) LTD.)<br />

China CNC Service Center<br />

2/F., BLOCK 5 BLDG.AUTOMATION INSTRUMENTATION PLAZA, 103 CAOBAO RD. SHANGHAI 200233,<br />

CHINA<br />

TEL: +86-21-6120-0808 FAX: +86-21-6494-0178<br />

Shenyang CNC Service Center<br />

TEL: +86-24-2397-0184 FAX: +86-24-2397-0185<br />

Beijing CNC Service Satellite<br />

9/F, OFFICE TOWER1, HENDERSON CENTER, 18 JIANGUOMENNEI DAJIE, DONGCHENG DISTRICT,<br />

BEIJING 100005, CHINA<br />

TEL: +86-10-6518-8830 FAX: +86-10-6518-8030<br />

China MITSUBISHI CNC Agent Service Center<br />

(BEIJING JIAYOU HIGHTECH TECHNOLOGY DEVELOPMENT CO.)<br />

RM 709, HIGH TECHNOLOGY BUILDING NO.229 NORTH SI HUAN ZHONG ROAD, HAIDIAN DISTRICT ,<br />

BEIJING 100083, CHINA<br />

TEL: +86-10-8288-3030 FAX: +86-10-6518-8030<br />

Tianjin CNC Service Satellite<br />

RM909, TAIHONG TOWER, NO220 SHIZILIN STREET, HEBEI DISTRICT, TIANJIN, CHINA 300143<br />

TEL: -86-22-2653-9090 FAX: +86-22-2635-9050<br />

Shenzhen CNC Service Satellite<br />

RM02, UNIT A, 13/F, TIANAN NATIONAL TOWER, RENMING SOUTH ROAD, SHENZHEN, CHINA 518005<br />

TEL: +86-755-2515-6691 FAX: +86-755-8218-4776<br />

Changchun Service Satellite<br />

TEL: +86-431-50214546 FAX: +86-431-5021690<br />

Hong Kong CNC Service Center<br />

UNIT A, 25/F RYODEN INDUSTRIAL CENTRE, 26-38 TA CHUEN PING STREET, KWAI CHUNG, NEW<br />

TERRITORIES, HONG KONG<br />

TEL: +852-2619-8588 FAX: +852-2784-1323<br />

Taiwan FA Center (MITSUBISHI ELECTRIC TAIWAN CO., LTD.)<br />

Taichung CNC Service Center<br />

NO.8-1, GONG YEH 16TH RD., TAICHUNG INDUSTIAL PARK TAICHUNG CITY, TAIWAN R.O.C.<br />

TEL: +886-4-2359-0688 FAX: +886-4-2359-0689<br />

Taipei CNC Service Satellite<br />

TEL: +886-4-2359-0688 FAX: +886-4-2359-0689<br />

Tainan CNC Service Satellite<br />

TEL: +886-4-2359-0688 FAX: +886-4-2359-0689<br />

Korean FA Center (MITSUBISHI ELECTRIC AUTOMATION KOREA CO., LTD.)<br />

Korea CNC Service Center<br />

DONGSEO GAME CHANNEL BLDG. 2F. 660-11, DEUNGCHON-DONG KANGSEO-KU SEOUL, 157-030<br />

KOREA<br />

TEL: +82-2-3660-9607 FAX: +82-2-3663-0475


Notice<br />

Every effort has been made to keep up with software and hardware revisions in the<br />

contents described in this manual. However, please understand that in some<br />

unavoidable cases simultaneous revision is not possible.<br />

Please contact your <strong>Mitsubishi</strong> Electric dealer with any questions or comments<br />

regarding the use of this product.<br />

Duplication Prohibited<br />

This instruction manual may not be reproduced in any form, in part or in whole, without<br />

written permission from <strong>Mitsubishi</strong> Electric Corporation.<br />

© 2003-2006 MITSUBISHI ELECTRIC CORPORATION<br />

ALL RIGHTS RESERVED

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!