07.12.2012 Views

A comparative study and evaluation of methodologies used for ...

A comparative study and evaluation of methodologies used for ...

A comparative study and evaluation of methodologies used for ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

A <strong>comparative</strong> <strong>study</strong> <strong>and</strong><br />

<strong>evaluation</strong> <strong>of</strong> <strong>methodologies</strong> <strong>used</strong><br />

<strong>for</strong> determining wood<br />

preservative penetration<br />

Radu Craciun, Ralf Moeller, Joachim Wittenzellner, Thomas Jakob,<br />

<strong>and</strong> Joerg Habicht<br />

Dr. Wolman GmbH / BASF Group,<br />

Sinzheim, Germany<br />

IRG 42-nd Annual Meeting<br />

Queenstown, New Zeel<strong>and</strong><br />

May 08-12, 2011<br />

18.03.2009 INTERN 1


18.03.2009<br />

Key steps <strong>for</strong> evaluating new wood<br />

preservative systems<br />

Treatment<br />

Process<br />

Environment/<br />

exposure<br />

conditions<br />

Chemical<br />

stability<br />

Efficacy - wood protection<br />

Biostability/<br />

bio<br />

degradation<br />

Fixation/<br />

Leaching<br />

INTERN<br />

Penetration<br />

UV stability/<br />

weathering<br />

2


18.03.2009<br />

Overview – why penetration studies ?<br />

� Review various method to determine the wood<br />

preservative/product penetration into the core part <strong>of</strong> the<br />

wood:<br />

- Indirect color indicator/tracers,<br />

- Direct treating solution uptake<br />

- Gradient analysis: solvent<br />

extraction/chromatography analysis<br />

- Laboratory microbiology methods/what really works!<br />

� Correlation studies between various methods <strong>used</strong> in<br />

penetration studies (color vs. gradient vs. microbiology)<br />

� Concluding remarks/what the industry needs !?<br />

INTERN<br />

3


18.03.2009<br />

Indirect penetration color indicator<br />

- copper/quat/other additives/traces pr<strong>of</strong>iles -<br />

(A) <strong>for</strong> -a Br-phenol quat-based <strong>for</strong> system, quats (a) <strong>and</strong> Cr-azurol (B) <strong>for</strong> <strong>for</strong>acopper copper (b); based <strong>and</strong> other system,<br />

indicators <strong>for</strong> Cu-modified systems (c - other type <strong>of</strong> matrix)<br />

(a)<br />

(b)<br />

INTERN<br />

4


Direct gradient analysis<br />

- Solvent extraction/chromatography at various depths -<br />

18.03.2009<br />

(a) Scots pine wood blocks <strong>used</strong> in this penetration <strong>study</strong>.<br />

(b) Cross sections <strong>of</strong> the wood blocks showing the marked<br />

analytical zones (A, C) <strong>and</strong> the sealed cross section (B).<br />

(a) (b)<br />

- Wood grinding corresponding to each zone followed by solvent<br />

extraction or acid digestion<br />

- AAS/ICP <strong>for</strong> metal analysis (Cu, B, As) or HPLC/GC <strong>for</strong> organic<br />

biocides (e.g. tri-azoles) in metal-organic systems<br />

INTERN<br />

5


Test set up: wafers taken <strong>for</strong> ende sealed pine boards samples (20 x 4<br />

x 4 cm³) DV or VPT impregnated. Wafer cut out from the centre <strong>of</strong> the<br />

treated wood (as shown in the picture below).<br />

•<br />

18.03.2009<br />

Direct microbiology penetration method<br />

- methodology setup/test design -<br />

40 mm<br />

40 mm<br />

Samples <strong>for</strong> EN 113<br />

Petri dish<br />

fungal mycelium<br />

growth medium<br />

200 mm<br />

EN113 EN113<br />

fungi fungi<br />

analytics<br />

wood<br />

section<br />

sample holder<br />

INTERN<br />

Cross sections sealed<br />

Samples <strong>for</strong> screening II<br />

6


Microbiology penetration method<br />

- results from various types <strong>of</strong> fungi <strong>used</strong> in the test -<br />

18.03.2009<br />

(a) P.p. exposed treated wafers with Cu-based <strong>and</strong> organic systems<br />

(b) Exposed untreated control wafer<br />

(c) Exposed <strong>and</strong> dreid untreated control wafer<br />

(a)<br />

(b)<br />

(c)<br />

INTERN<br />

7


18.03.2009<br />

Indirect penetration color indicator<br />

- copper pr<strong>of</strong>ile in modified systems -<br />

(A) <strong>for</strong> a- quat-based Cr-azurol <strong>for</strong>system, copper; <strong>and</strong> penetration (B) <strong>for</strong> apr<strong>of</strong>iles copper<strong>for</strong> based Cu-amine system,<br />

modified systems – matrix effect<br />

(a) – no penetration enhancement additive<br />

(b) – with penetration enhancement additive<br />

(a) (b)<br />

INTERN<br />

8


Direct microbiology penetration method<br />

- copper depth pr<strong>of</strong>ile with 2 different fungi (Cp/Gt) -<br />

18.03.2009<br />

- Cu penetration pr<strong>of</strong>iles <strong>for</strong> Cu-amine systems – matrix effect,<br />

(where Coniophora puteana, Cp – top/Gloeophyllum trabeum, Gt – bottom)<br />

(a) – no penetration enhancement additive<br />

(b) – with penetration enhancement additive<br />

(A) <strong>for</strong> a quat-based system, <strong>and</strong> (B) <strong>for</strong> a copper based system,<br />

(a) (b)<br />

INTERN<br />

9


Correlation between the direct analytical<br />

gradient <strong>and</strong> microbiology pr<strong>of</strong>ile methods<br />

- <strong>for</strong> VPT using organic-based systems -<br />

(A)<br />

(a)<br />

(A) <strong>for</strong> a quat-based system, <strong>and</strong> (B) <strong>for</strong> a copper based system,<br />

18.03.2009<br />

(b)<br />

Organic a.i. retention [mg/g wood]<br />

600<br />

400<br />

200<br />

Gradient <strong>of</strong> organic a.i. in the vacuum-treated wood blocks<br />

- penetration data <strong>for</strong> Organic - I versus Organic - I + Penetration Enhancement Additive -<br />

0<br />

0 2 4 6 8 10 12 14<br />

Penetration depth [mm]<br />

Organic - I<br />

Organic - I + Additive C1<br />

Organic - I + Additive C2<br />

(B)<br />

INTERN<br />

10


Double vacuum/envelop penetration studies<br />

- microbiology penetration pr<strong>of</strong>ile method -<br />

18.03.2009<br />

(A) (B)<br />

(A) - experimental exposure<br />

conditions - initial<br />

(B) - various application procedures -<br />

after exposure<br />

(C) - Effect <strong>of</strong> DV pressure pr<strong>of</strong>ile -<br />

after exposure<br />

- Blue stain <strong>used</strong>:<br />

Aureobasidium pullulans<br />

<strong>and</strong> Sydowia polyspora<br />

INTERN<br />

11


18.03.2009<br />

Conclusions<br />

� The key parameter to be monitored = distribution <strong>of</strong> active<br />

ingredients in the treated wood/penetration gradient<br />

� Penetration gradient depends directly <strong>of</strong> matrix/product composition,<br />

wood species, type <strong>of</strong> treatment, pressure pr<strong>of</strong>ile, concentration<br />

� Even if laborious, the direct solvent extraction/chromatography the<br />

most reliable (when interferences from wood components solved)<br />

� Microbiology method – proven to be a direct, quick <strong>and</strong> useful R&D<br />

tool <strong>for</strong> evaluating product penetration in new <strong>for</strong>mulation development<br />

� Industry needs: simple, easy to use, reliable, preferable directed<br />

toward the active component; <strong>for</strong> indirect methods data should be<br />

generated to pro<strong>of</strong> or correlate penetration <strong>of</strong> product/actives with the<br />

direct methods<br />

INTERN<br />

12


18.03.2009<br />

Questions ????<br />

INTERN<br />

13

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!