28.04.2016 Views

Optical studies of nano-structured La-doped ZnO prepared by combustion method

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Materials Science in Semiconductor Processing 15 (2012) 308–313<br />

Contents lists available at SciVerse ScienceDirect<br />

Materials Science in Semiconductor Processing<br />

journal homepage: www.elsevier.com/locate/mssp<br />

<strong>Optical</strong> <strong>studies</strong> <strong>of</strong> <strong>nano</strong>-<strong>structured</strong> <strong>La</strong>-<strong>doped</strong> <strong>ZnO</strong> <strong>prepared</strong> <strong>by</strong><br />

<strong>combustion</strong> <strong>method</strong><br />

L. Arun Jose a , J. Mary Linet a , V. Sivasubramanian b , Akhilesh K. Arora c , C. Justin Raj d ,<br />

T. Maiyalagan e , S. Jerome Das a,n<br />

a Department <strong>of</strong> Physics, Loyola College, Chennai 600034, India<br />

b Light Scattering Studies Section, IGCAR, Kalpakkam 603102, India<br />

c Condensed Matter Physics Division, IGCAR, Kalpakkam 603102, India<br />

d Pusan National University, Jangjeon, Geumjeong, Busan 609 735, South Korea<br />

e School <strong>of</strong> Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 639 798, Singapore<br />

article info<br />

Article history:<br />

Received 4 August 2011<br />

Received in revised form<br />

13 March 2012<br />

Accepted 14 March 2012<br />

Available online 21 April 2012<br />

Keywords:<br />

Doping<br />

Semiconducting II–VI materials<br />

Nano-structures<br />

<strong>combustion</strong><br />

X-ray diffraction spectra<br />

Zinc compounds<br />

Rare earth compounds<br />

abstract<br />

Coral-shaped <strong>nano</strong>-<strong>structured</strong> zinc oxide (<strong>ZnO</strong>) was successfully synthesized and <strong>La</strong><strong>doped</strong><br />

via a facile <strong>combustion</strong> process using glycine as a fuel. The auto-ignition<br />

(at 185 1C) <strong>of</strong> viscous reactants zinc nitrate and glycine resulted in <strong>ZnO</strong> powders.<br />

Hexagonal wurtzite structure <strong>of</strong> pure and <strong>doped</strong> <strong>ZnO</strong> powder was confirmed <strong>by</strong> X-ray<br />

powder diffraction analysis. The transmission electron micrograph shows that the<br />

<strong>nano</strong>-<strong>structured</strong> <strong>ZnO</strong> is coral-shaped and possess maximal pore (10–50 nm pore size)<br />

density in it and the grain size is approximately about 15 nm. Addition <strong>of</strong> dopants<br />

subsequently alters the structural and optical properties which were confirmed <strong>by</strong><br />

UV–VIS <strong>studies</strong>.<br />

& 2012 Elsevier Ltd. All rights reserved.<br />

1. Introduction<br />

Nano-<strong>structured</strong> metal oxide semiconductors are gaining<br />

attention due to their wide band-gap and related<br />

properties [1]. Recent decades are witnessed with<br />

researchers paying much interest in synthesis and characterization<br />

<strong>of</strong> II–VI group semiconducting materials at<br />

<strong>nano</strong>- [2] and bulk [3] levels. Zinc oxide (<strong>ZnO</strong>) is a widely<br />

exploited, due to its excellent physical and chemical<br />

properties. Numerous researchers proposed the solution<br />

<strong>combustion</strong> <strong>method</strong> to synthesize simple and mixed<br />

metal oxides [4–9]. Normally <strong>ZnO</strong> is <strong>doped</strong> with different<br />

n Corresponding author. Tel.: þ91 44 2817 5662;<br />

fax: þ91 44 2817 5566.<br />

E-mail addresses: sjeromedas2004@yahoo.com,<br />

jerome@loyolacollege.edu (S. Jerome Das).<br />

types <strong>of</strong> metallic ions in order to enhance the optical and<br />

conducting properties [10–14]. The exceptional interest<br />

on <strong>ZnO</strong> may be seen in the recent literatures. The<br />

modified <strong>ZnO</strong> may be used as a base material for diluted<br />

magnetic semiconductors [15–18], gas sensors [19],<br />

photocatalysts [20], field-effect transistors [21,22], lightemitting<br />

materials [23–25], solar cells [26,27] and biological<br />

systems (drug delivery, bio-imaging, etc.) [28,29]. In<br />

the recent times, rare earth metal-<strong>doped</strong> <strong>ZnO</strong> (e.g., Tb, Er,<br />

Eu, Dy and Sm) has been broadly researched and concentrated<br />

on luminescence properties [24,30–33]. <strong>La</strong>nthanum<br />

(<strong>La</strong>)-<strong>doped</strong> <strong>ZnO</strong> <strong>nano</strong>-structures exhibit excellent<br />

photocatalytic activity and gas sensitivity [20,34–36].<br />

Nano-sized <strong>ZnO</strong> has been synthesized <strong>by</strong> the solution<br />

<strong>combustion</strong> <strong>method</strong> and there are no literature references<br />

for <strong>La</strong>-<strong>doped</strong> <strong>ZnO</strong> using this <strong>method</strong>. Current work is focused<br />

on investigating the result <strong>of</strong> <strong>La</strong> doping concentration on the<br />

1369-8001/$ - see front matter & 2012 Elsevier Ltd. All rights reserved.<br />

http://dx.doi.org/10.1016/j.mssp.2012.03.011


L. Arun Jose et al. / Materials Science in Semiconductor Processing 15 (2012) 308–313 309<br />

Glycine (NH 2 CH 2 COOH) Zinc Nitrate (Zn(NO 3 ) 2 •6H 2 O) <strong>La</strong>nthanum Nitrate (<strong>La</strong>(NO 3 ) 2 •6H 2 O)<br />

Mixed with (1-x): x molar ratio<br />

where x = 0.01, 0.02. 0.03 and 0.05 <strong>of</strong> (<strong>La</strong>(NO 3 ) 2 •6H 2 O)<br />

Directly mixed with desired (1:09) molar<br />

ti<br />

Heating / Development <strong>of</strong> precursor<br />

Ignition / Combustion / Burning<br />

Synthesized Material (powder)<br />

Fig. 1. Procedural flow chart for preparation <strong>of</strong> <strong>ZnO</strong> with/without <strong>La</strong>-dopant.<br />

Fig. 2. TEM Images: (a) bright field, (b) dark field, (c) detailed view, (d) diffraction pattern and (e) EDS pattern <strong>of</strong> pure <strong>ZnO</strong>.


310<br />

L. Arun Jose et al. / Materials Science in Semiconductor Processing 15 (2012) 308–313<br />

microstructure and optical properties <strong>of</strong> <strong>ZnO</strong> <strong>nano</strong>-structure<br />

<strong>prepared</strong> <strong>by</strong> the <strong>combustion</strong> <strong>method</strong>.<br />

2. Experimental details<br />

Distinct from usual thermal evaporation, <strong>ZnO</strong> <strong>nano</strong>structures<br />

were <strong>prepared</strong> <strong>by</strong> the <strong>combustion</strong> <strong>method</strong>, which<br />

allows efficient synthesis <strong>of</strong> <strong>nano</strong>-size materials. This process<br />

involves a self-sustained reaction in homogeneous<br />

solution <strong>of</strong> different oxidizers (e.g., metal nitrates) and fuels<br />

(e.g., urea, glycine, citric acid, hydrazides). Depending on the<br />

type <strong>of</strong> precursors, and the suitable conditions for chemical<br />

reaction to take place, zinc nitrate (Zn(NO 3 ) 2 6H 2 O) was<br />

chosen as an oxidizer and glycine (NH 2 CH 2 COOH) as a fuel,<br />

since its <strong>combustion</strong> heat ( 3.24 kcal/g) is more negative<br />

when compared with urea ( 2.98 kcal/g) or citric acid<br />

( 2.76 kcal/g) [36]. <strong>La</strong>nthanum nitrate (<strong>La</strong>(NO 3 ) 2 6H 2 O) is<br />

added to zinc nitrate with required molar ratio and glycine<br />

is also added along with it, in a molar ratio <strong>of</strong> 0.9:1 (zinc<br />

nitrateþlanthanum nitrate:glycine) and stirred well for 1 h<br />

in 100 ml double distilled water. The obtained solution is<br />

heated (185 1C) till <strong>combustion</strong> reaction occurs. Procedural<br />

flow chart diagram for the preparation <strong>of</strong> precursors<br />

and the formation <strong>of</strong> <strong>nano</strong>-structures is shown in Fig. 1.<br />

Crystallinity <strong>of</strong> pure <strong>ZnO</strong> and <strong>La</strong>-<strong>doped</strong> <strong>ZnO</strong> catalysts were<br />

analyzed <strong>by</strong> Philips CM 20 Transmission Electron Microscope<br />

which was operated between 20 and 200 kV. Composition<br />

<strong>of</strong> the samples were analyzed <strong>by</strong> energy dispersive<br />

X-ray spectroscopy (EDS) attached to the TEM instrument.<br />

X-ray diffraction patterns <strong>of</strong> the synthesized samples were<br />

Fig. 3. TEM images: (a) bright field, (b) dark field, (c) detailed view, (d) diffraction pattern and (e) EDS pattern <strong>of</strong> 5 mol % <strong>La</strong>-<strong>doped</strong> <strong>ZnO</strong>.


L. Arun Jose et al. / Materials Science in Semiconductor Processing 15 (2012) 308–313 311<br />

recorded using PAN analytical X-ray diffractometer with Cu<br />

Ka (1.5405 Å) radiation in the scan range 2y between 301<br />

and 701 with a scan speed <strong>of</strong> 21/min. UV–VIS spectra <strong>of</strong> pure<br />

<strong>ZnO</strong> and <strong>La</strong>-<strong>doped</strong> <strong>ZnO</strong> catalysts were recorded using Varian<br />

CARY 5E UV–VIS–NIR Spectrophotometer. The absorbance<br />

spectra were then recorded in the range 200–700 nm.<br />

Photoluminescence <strong>of</strong> pure <strong>ZnO</strong> and <strong>La</strong>-<strong>doped</strong> <strong>ZnO</strong> were<br />

measured <strong>by</strong> Jobin Yvon Fluorolog spectr<strong>of</strong>luorometer and<br />

the results are discussed in detail.<br />

3. Results and discussion<br />

TEM analysis shows that the <strong>nano</strong>-structures which<br />

had been synthesized using <strong>combustion</strong> processing are<br />

coral-shaped and porous as shown in Fig. 2. This shape<br />

may be attributed to the thermal fluctuations while<br />

synthesizing the samples. Grain size is found to be<br />

10–20 nm both in the case <strong>of</strong> pure and <strong>doped</strong> <strong>ZnO</strong>.<br />

Porous nature <strong>of</strong> the <strong>nano</strong>-structures significantly increases<br />

as the <strong>La</strong>-dopant concentration increases as shown in Fig. 3.<br />

Each individual <strong>nano</strong>-structure is about 450–1000 nm<br />

formed <strong>by</strong> tiny spherical <strong>ZnO</strong> <strong>nano</strong>particles. We can also<br />

notice that the pores are 10–50 nm in diameter which<br />

considerably increase the surface to volume ratio. Selected<br />

area diffraction patterns match very well with wurtzite<br />

<strong>ZnO</strong> in both pure and <strong>doped</strong> <strong>ZnO</strong>. EDS analysis shows that<br />

some <strong>La</strong> 3þ ions have been incorporated into the <strong>ZnO</strong> lattice<br />

<strong>by</strong> substituting zinc ions as shown in Fig. 3(e) and in<br />

Table 1. When <strong>La</strong> is present the composition <strong>of</strong> oxygen<br />

seems to be nearly constant. This may be due to the<br />

addition <strong>of</strong> oxygen atoms in the <strong>La</strong>-<strong>doped</strong> <strong>ZnO</strong> which was<br />

accommodated <strong>by</strong> the additional vacancy in the <strong>La</strong> 3þ ion.<br />

Copper peak in the EDS measurement originates from the<br />

TEM supporting carbon coated copper grid.<br />

XRD pr<strong>of</strong>iles <strong>of</strong> synthesized pure and <strong>doped</strong> materials<br />

in appropriate ratio are shown in Fig. 4. The diffraction<br />

peaks and their relative intensities match with the JCPDS<br />

card no. 36-1451. Hence the observed patterns can be<br />

clearly endorsed to the presence <strong>of</strong> hexagonal wurzite<br />

structure. XRD peak <strong>of</strong> lanthanum oxide was not observed<br />

Table 1<br />

Composition <strong>of</strong> elements in <strong>La</strong>-<strong>doped</strong> <strong>ZnO</strong> samples.<br />

<strong>La</strong> concentration (mol%) Element weight (%) Atomic (%)<br />

0 O 13.30 38.50<br />

Zn 86.70 61.50<br />

1 O 20.30 51.73<br />

<strong>La</strong> 04.34 01.27<br />

Zn 75.36 47.00<br />

2 O 19.60 51.32<br />

<strong>La</strong> 08.38 02.53<br />

Zn 72.02 46.15<br />

3 O 18.94 50.92<br />

<strong>La</strong> 12.15 03.76<br />

Zn 68.91 45.32<br />

5 O 18.30 50.80<br />

<strong>La</strong> 17.20 05.50<br />

Zn 64.50 43.70<br />

Fig. 4. Powder XRD spectra <strong>of</strong> samples pure–<strong>doped</strong> <strong>prepared</strong> at different<br />

mol percent <strong>of</strong> <strong>La</strong>.<br />

even for the <strong>La</strong>-<strong>doped</strong> sample with a high <strong>La</strong> concentration,<br />

suggesting that lanthanum oxide is uniformly dispersed<br />

in the <strong>ZnO</strong> and no second phase such as <strong>La</strong> 2 O 3 and<br />

<strong>La</strong>(OH) 3 appears. It is evident that the introduction <strong>of</strong> <strong>La</strong><br />

ions does not alter the structure <strong>of</strong> <strong>ZnO</strong> and dopant<br />

disperses homogeneously in the <strong>ZnO</strong> matrix as previously<br />

reported [37]. Using the Scherrer equations the crystallite<br />

sizes were estimated to be around 450 nm from the fullwidth<br />

at half-maximum (FWHM) <strong>of</strong> diffraction peaks. The<br />

diffraction pattern <strong>of</strong> <strong>ZnO</strong> is observed between the 2y<br />

values <strong>of</strong> 301 and 701. The peak intensities <strong>of</strong> <strong>doped</strong> <strong>ZnO</strong><br />

increases with dopant concentration. Therefore, the crystalline<br />

nature <strong>of</strong> <strong>ZnO</strong> <strong>nano</strong>structure increases with <strong>La</strong>dopant<br />

in the same manner as previously reported in the<br />

case <strong>of</strong> Fe <strong>doped</strong> <strong>ZnO</strong> [38]. Doping <strong>of</strong> <strong>La</strong> ions restrains the<br />

growth <strong>of</strong> <strong>ZnO</strong> grains and dopant with smaller ionic<br />

radius has a constructive effect on diffusivity which<br />

promotes orientation growth and good crystal [39]. The<br />

lattice parameters and the unit cell volume were determined<br />

using s<strong>of</strong>tware program UnitCell <strong>method</strong> <strong>of</strong> TJB<br />

Holland & SAT Redfern [40]. The determined unit cell<br />

parameters, volume and c/a were plotted as a function <strong>of</strong><br />

<strong>La</strong> concentrations and are shown in Figs. 5 and 6 respectively.<br />

The lattice constant gradually increases with<br />

increase in concentration <strong>of</strong> <strong>La</strong> 3 þ ions. Consequently, cell<br />

volume and c/a ratio changed, agreeing with the fact that<br />

ionic radii <strong>of</strong> <strong>La</strong> 3 þ is higher than the Zn 2 þ ion (0.106 nm<br />

for <strong>La</strong> and 0.074 nm for Zn) [41,42] but there is a small<br />

variation in c-axis compared with the results <strong>of</strong> Chen et al.<br />

[37]. This distortion in the lattice parameters confirms the<br />

incorporation <strong>of</strong> <strong>La</strong> 3 þ ions up to 5 mol% in <strong>ZnO</strong> wurzite<br />

structure.<br />

UV–VIS spectrum shows that the absorbance is high<br />

below 380 nm for pure <strong>ZnO</strong> and as the <strong>La</strong>-dopant concentration<br />

increases the absorbance <strong>of</strong> <strong>ZnO</strong> decreases<br />

considerably below this region as shown in Fig. 7. The<br />

corresponding band gap values <strong>of</strong> pure and <strong>doped</strong> <strong>ZnO</strong> are


312<br />

L. Arun Jose et al. / Materials Science in Semiconductor Processing 15 (2012) 308–313<br />

Fig. 5. Unit cell parameters a and c were plotted as a function <strong>of</strong> <strong>La</strong><br />

concentration.<br />

Fig. 8. Calculated band gap <strong>of</strong> pure and <strong>La</strong>-<strong>doped</strong> <strong>ZnO</strong>.<br />

Fig. 6. Unit cell volume and c/a were plotted as a function <strong>of</strong> <strong>La</strong><br />

concentration.<br />

Fig. 9. Room temperature PL emission spectra <strong>of</strong> <strong>ZnO</strong> with/without<br />

<strong>La</strong>-dopant.<br />

Fig. 7. UV–VIS spectra <strong>ZnO</strong> with/without dopant.<br />

presented in Fig. 8. It can be clearly seen that the band gap<br />

<strong>of</strong> <strong>La</strong>-<strong>doped</strong> <strong>ZnO</strong> also increases gradually with increase in<br />

<strong>La</strong> concentration. After 380 nm, absorbance <strong>of</strong> pure <strong>ZnO</strong> is<br />

less compared with <strong>La</strong>-<strong>doped</strong> <strong>ZnO</strong> and absorbance<br />

increases with increase in dopant concentration.<br />

Photoluminescence (PL) spectra <strong>of</strong> <strong>La</strong>-<strong>doped</strong> <strong>ZnO</strong><br />

<strong>nano</strong>-structures were measured with an excitation wavelength<br />

<strong>of</strong> 285 nm and is shown in Fig. 9. The intensity <strong>of</strong><br />

PL emission is found to increase with increase in <strong>La</strong>dopant,<br />

but the intensity <strong>of</strong> <strong>doped</strong> <strong>ZnO</strong> decreases in<br />

comparison with pure <strong>ZnO</strong> between 3.2 and 3.3 eV. The<br />

PL spectrum shows the <strong>La</strong> characteristic emission band at<br />

2.9 eV and near UV emission between 3.27 and 3.30 eV.<br />

There is a shift in the emission spectra for pure and <strong>doped</strong><br />

<strong>ZnO</strong>. This may be attributed due to the strain created in<br />

the crystal lattice to accommodate larger <strong>La</strong> atoms.<br />

Spectra in the range <strong>of</strong> 340–460 nm (2.7–3.6 eV) shows<br />

that a violet peak at about 420 nm (2.95 eV) and the<br />

intensity <strong>of</strong> emission are found to be strongly reliant on<br />

the <strong>La</strong> concentration. Traps on the grain surface per unit<br />

volume increases with the increase <strong>of</strong> specific surface<br />

area. Cordaro et al. [43] assumed that interface traps lie in


L. Arun Jose et al. / Materials Science in Semiconductor Processing 15 (2012) 308–313 313<br />

the depletion regions and locate at the <strong>ZnO</strong>–<strong>ZnO</strong> grain<br />

boundaries when a polycrystalline varistor forms, and the<br />

level <strong>of</strong> interface trap was found to be about 0.33 eV<br />

below the conduction band edge. So violet emission is<br />

possibly attributed to the recombination centers linked<br />

with interface traps existing at the grain boundaries, and<br />

radiative transition occurs between the level <strong>of</strong> interface<br />

traps and the valence band.<br />

4. Conclusions<br />

<strong>La</strong>-<strong>doped</strong> <strong>ZnO</strong> was <strong>prepared</strong> <strong>by</strong> <strong>combustion</strong> processing;<br />

doping levels included un<strong>doped</strong>, 1, 2, 3 and 5 molar<br />

percentage. Significant transformation was observed upon<br />

different doping concentrations. Transmission electron<br />

micrograph shows an enhancement <strong>of</strong> pore density for<br />

<strong>doped</strong> <strong>ZnO</strong>. <strong>La</strong>ttice parameters and unit cell volume were<br />

determined from the XRD data and it confirms the entry<br />

<strong>of</strong> <strong>La</strong>-dopant inside <strong>ZnO</strong> crystal lattice <strong>by</strong> the increase in<br />

lattice constants. It is evident that the absorbance near UV<br />

region decreases with increase in dopant concentration.<br />

The bandgap is found to increase with addition <strong>of</strong> <strong>La</strong>. The<br />

<strong>La</strong>-<strong>doped</strong> <strong>ZnO</strong> <strong>nano</strong>-structures <strong>prepared</strong> at low temperatures<br />

are more suitable for applications such as chemical<br />

and biological sensors, optoelectronic devices, and<br />

solar cells.<br />

Acknowledgments<br />

The authors gratefully acknowledge BRNS (Board <strong>of</strong><br />

Research in Nuclear Sciences—Government <strong>of</strong> India, Project<br />

no. 2008/37/12/BRNS/1513) for providing financial<br />

assistance. They are also thankful to authorities <strong>of</strong> Indian<br />

Institute <strong>of</strong> Technology, Chennai 36, for providing TEM,<br />

UV–VIS, PL and powder XRD facility.<br />

References<br />

[1] J.B. Varley, A. Janotti, C. Franchini, C.G. Van de Walle, Physical<br />

Review B 85 (2012) 081109. R.<br />

[2] P.K. Sharma, R.K. Dutta, M. Kumar, P.K. Singh, A.C. Pandey, Journal<br />

<strong>of</strong> Luminescence 129 (2009) 605–610.<br />

[3] J. Kennedy, D.A. Carder, A. Markwitz, R.J. Reeves, Journal <strong>of</strong> Applied<br />

Physics 107 (2010) 103518.<br />

[4] H.-C. Shin, K.-R. Lee, S. Park, C.-H. Jung, S.-J. Kim, Japanese Journal <strong>of</strong><br />

Applied Physics 35 (1996) L996–L998.<br />

[5] F. Li, K. Hu, J. Li, D. Zhang, G. Chen, Journal <strong>of</strong> Nuclear Materials 300<br />

(2002) 82–88.<br />

[6] L.E. Shea, J. McKittrick, O.A. Lopez, E. Sluzky, Journal <strong>of</strong> the<br />

American Ceramic Society 79 (1996) 3257–3265.<br />

[7] L. Chick, L. Pederson, G. Maupin, J. Bates, L. Thomas, G. Exarhos,<br />

Materials Letters 10 (1990) 6–12.<br />

[8] T. Mimani, K.C. Patil, Materials Physics and Mechanics 4 (2001)<br />

134–137.<br />

[9] R.D. Purohit, B.P. Sharma, K.T. Pillai, A.K. Tyagi, Materials Research<br />

Bulletin 36 (2001) 2711–2721.<br />

[10] B.D. Ahn, S.H. Oh, C.H. Lee, G.H. Kim, H.J. Kim, S.Y. Lee, Journal <strong>of</strong><br />

Crystal Growth 309 (2007) 128–133.<br />

[11] H. Huang, Y. Ou, S. Xu, G. Fang, M. Li, X. Zhao, Applied Surface<br />

Science 254 (2008) 2013–2016.<br />

[12] V. Zhitomirsky, E. Cetinorgu, R. Boxman, S. Goldsmith, Thin Solid<br />

Films 516 (2008) 5079–5086.<br />

[13] T. Moriga, Y. Hayashi, K. Kondo, Y. Nishimura, K.-i. Murai,<br />

I. Nakabayashi, H. Fukumoto, K. Tominaga, Journal <strong>of</strong> Vacuum<br />

Science and Technology A 22 (2004) 1705.<br />

[14] S. Saha, V. Gupta, AIP Advances 1 (2011) 042112.<br />

[15] T.S. Herng, S.P. <strong>La</strong>u, S.F. Yu, H.Y. Yang, K.S. Teng, J.S. Chen, Journal <strong>of</strong><br />

Physics: Condensed Matter 19 (2007) 356214.<br />

[16] N.H. Hong, J. Sakai, V. Brizé, Journal <strong>of</strong> Physics: Condensed Matter<br />

19 (2007) 036219.<br />

[17] J. Zhang, X.Z. Li, J. Shi, Y.F. Lu, D.J. Sellmyer, Journal <strong>of</strong> Physics:<br />

Condensed Matter 19 (2007) 036210.<br />

[18] B. Li, X. Xiu, R. Zhang, Z. Tao, L. Chen, Z. Xie, Y. Zheng, Materials<br />

Science in Semiconductor Processing 9 (2006) 141–145.<br />

[19] T. Gao, T.H. Wang, Applied Physics A 80 (2004) 1451–1454.<br />

[20] S. Anandan, A. Vinu, T. Mori, N. Gokulakrishnan, P. Srinivasu, V.<br />

Murugesan, K. Ariga, Catalysis Communications 8 (2007)<br />

1377–1382.<br />

[21] Z.-X. Xu, V.A.L. Roy, P. Stallinga, M. Muccini, S. T<strong>of</strong>fanin, H.-F. Xiang,<br />

C.-M. Che, Applied Physics Letters 90 (2007) 223509.<br />

[22] C.-L. Hsu, T.-Y. Tsai, Journal <strong>of</strong> the Electrochemical Society 158<br />

(2011) K20–K23.<br />

[23] Y.R. Ryu, J.A. Lubguban, T.S. Lee, H.W. White, T.S. Jeong, C.J. Youn,<br />

B.J. Kim, Applied Physics Letters 90 (2007) 131115.<br />

[24] X.M. Teng, H.T. Fan, S.S. Pan, C. Ye, G.H. Li, Journal <strong>of</strong> Applied<br />

Physics 100 (2006) 053507.<br />

[25] S. Chirakkara, S.B. Krupanidhi, Physica Status Solidi RRL 6 (2012)<br />

34–36.<br />

[26] X. Chen, B. Xu, J. Xue, Y. Zhao, C. Wei, J. Sun, Y. Wang, X. Zhang,<br />

X. Geng, Thin Solid Films 515 (2007) 3753–3759.<br />

[27] P. Ruankham, T. Sagawa, H. Sakaguchi, S. Yoshikawa, Journal <strong>of</strong><br />

Materials Chemistry 21 (2011) 9710–9715.<br />

[28] S. Mendoza-Galván, C. Trejo-Cruz, J. Lee, D. Bhattacharyya,<br />

J. Metson, P.J. Evans, U. Pal, Journal <strong>of</strong> Applied Physics 99 (2006)<br />

014306.<br />

[29] I. Honma, S. Hirakawa, K. Yamada, J.M. Bae, Solid State Ionics 118<br />

(1999) 29–36.<br />

[30] M. Peres, A. Cruz, S. Pereira, M.R. Correia, M.J. Soares, A. Neves,<br />

M.C. Carmo, T. Monteiro, A.S. Pereira, M.A. Martins, T. Trindade,<br />

E. Alves, S.S. Nobre, R.A.Sá Ferreira, Applied Physics A 88 (2007)<br />

129–133.<br />

[31] S. Bachir, K. Azuma, J. Kossanyi, P. Valat, J.C. Ronfard-Haret, Journal<br />

<strong>of</strong> Luminescence 75 (1997) 35–49.<br />

[32] X.T. Zhang, Y.C. Liu, J.G. Ma, Y.M. Lu, D.Z. Shen, W. Xu, G.Z. Zhong,<br />

X.W. Fan, Thin Solid Films 413 (2002) 257–261.<br />

[33] G. Wu, Y. Zhuang, Z. Lin, X. Yuan, T. Xie, L. Zhang, Physica E<br />

31 (2006) 5–8.<br />

[34] S. Anandan, A. Vinu, K.L.P. Sheeja Lovely, N. Gokulakrishnan,<br />

P. Srinivasu, T. Mori, V. Murugesan, V. Sivamurugan, K. Ariga,<br />

Journal <strong>of</strong> Molecular Catalysis A: Chemical 266 (2007) 149–157.<br />

[35] C. Ge, C. Xie, M. Hu, Y. Gui, Z. Bai, D. Zeng, Materials Science and<br />

Engineering: B 141 (2007) 43–48.<br />

[36] C.-C. Hwang, T.-Y. Wu, Journal <strong>of</strong> Materials Science 39 (2004)<br />

6111–6115.<br />

[37] J.T. Chen, J. Wang, F. Zhang, G.A. Zhang, Z.G. Wu, P.X. Yan, Journal <strong>of</strong><br />

Crystal Growth 310 (2008) 2627–2632.<br />

[38] G.-Y. Ahn, S.-I. Park, S.-J. Kim, C.-S. Kim, Journal <strong>of</strong> Magnetism and<br />

Magnetic Materials 304 (2006) e498–e500.<br />

[39] S. Fujihara, C. Sasaki, T. Kimura, Journal <strong>of</strong> the European Ceramic<br />

Society 21 (2001) 2109–2112.<br />

[40] T.J.B. Holland, S.A.T. Redfern, Journal <strong>of</strong> Applied Crystallography 30<br />

(1997) 84.<br />

[41] S.H. Jeong, B.N. Park, S.B. Lee, J.H. Boo, Surface and Coatings<br />

Technology 193 (2005) 340–344.<br />

[42] Q. Yu, W. Fu, C. Yu, H. Yang, R. Wei, Y. Sui, S. Liu, Z. Liu, M. Li,<br />

G. Wang, C. Shao, Y. Liu, G. Zou, Journal <strong>of</strong> Physics D: Applied<br />

Physics 40 (2007) 5592.<br />

[43] J.F. Cordaro, Y. Shim, J.E. May, Journal <strong>of</strong> Applied Physics 60 (1986)<br />

4186.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!