08.12.2012 Views

Chapter 18. Introduction to Four Dimensions Linear algebra in four ...

Chapter 18. Introduction to Four Dimensions Linear algebra in four ...

Chapter 18. Introduction to Four Dimensions Linear algebra in four ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Chapter</strong> <strong>18.</strong> <strong>Introduction</strong> <strong>to</strong> <strong>Four</strong> <strong>Dimensions</strong><br />

<strong>L<strong>in</strong>ear</strong> <strong>algebra</strong> <strong>in</strong> <strong>four</strong> dimensions is more difficult <strong>to</strong> visualize than <strong>in</strong> three<br />

dimensions, but it is there, and it not mysterious. Like fly<strong>in</strong>g at night by radar, you<br />

cannot just look out the w<strong>in</strong>dow as you can <strong>in</strong> daytime, but you can detect enough<br />

<strong>in</strong>formation <strong>to</strong> know what’s happen<strong>in</strong>g <strong>to</strong> your airplane.<br />

In this section we show how the basic <strong>to</strong>ols for l<strong>in</strong>ear <strong>algebra</strong> <strong>in</strong> two and three<br />

dimensions still work <strong>in</strong> <strong>four</strong> dimensions. Later we will see how <strong>four</strong> dimensions<br />

actually illum<strong>in</strong>ates three dimensions (just as three dimensions expla<strong>in</strong>s twodimensional<br />

phenomena, such as reflection, that a two-dimensional be<strong>in</strong>g would<br />

f<strong>in</strong>d mysterious).<br />

<strong>Four</strong> dimensional space R 4 is the set of ordered quadruples of real numbers:<br />

R 4 = {(x, y, z, w) : x, y, z, w ∈ R}.<br />

Some aspects of lower dimensions are hardly changed: The zero-vec<strong>to</strong>r is<br />

0 = (0, 0, 0, 0), the standard basis is the <strong>four</strong> vec<strong>to</strong>rs<br />

e1 = (1, 0, 0, 0), e2 = (0, 1, 0, 0), e3 = (0, 0, 1, 0), e4 = (0, 0, 0, 1)<br />

and every vec<strong>to</strong>r <strong>in</strong> R 4 is can be uniquely expressed as a l<strong>in</strong>ear comb<strong>in</strong>ation of the<br />

standard basis vec<strong>to</strong>rs:<br />

(x, y, z, w) = xe1 + ye2 + ze3 + we4.<br />

A l<strong>in</strong>e <strong>in</strong> R 4 is the set of scalar multiples of a given nonzero vec<strong>to</strong>r v ∈ R 4 . Likewise,<br />

a plane <strong>in</strong> R 4 is the set of l<strong>in</strong>ear comb<strong>in</strong>ations of two nonproportional vec<strong>to</strong>rs<br />

v, v ′ ∈ R 4 . The dot product between two vec<strong>to</strong>rs v = (x, y, z, w), v ′ =<br />

(x ′ , y ′ , z ′ , w ′ ) is def<strong>in</strong>ed by<br />

the length of v is<br />

and we have the geometric formula<br />

〈v, v ′ 〉 = xx ′ + yy ′ + zz ′ + ww ′ ,<br />

|v| = � 〈v, v〉 = � x 2 + y 2 + z 2 + w 2<br />

〈v, v ′ 〉 = |v||v ′ | cos θ<br />

1


where θ is the angle between v and v ′ , measured <strong>in</strong> any plane conta<strong>in</strong><strong>in</strong>g them.<br />

The cross-product generalizes, but <strong>in</strong> a less-obvious way; we’ll get <strong>to</strong> that <strong>in</strong> the<br />

next section.<br />

We now describe some objects which are new <strong>in</strong> <strong>four</strong> dimensions. A hyperplane<br />

<strong>in</strong> R 4 is the set of vec<strong>to</strong>rs u = (x, y, z, w) satisfy<strong>in</strong>g an equation of the<br />

form<br />

ax + by + cz + dw = 0,<br />

where a, b, c, d are fixed real numbers, not all zero. Alternatively, a hyperplane is<br />

a set of all l<strong>in</strong>ear comb<strong>in</strong>ations<br />

H = {xv1 + yv2 + zv3 : x, y, z <strong>in</strong> R},<br />

where v1, v2, v3 are some vec<strong>to</strong>rs not ly<strong>in</strong>g <strong>in</strong> a common plane. S<strong>in</strong>ce it takes<br />

three numbers (x, y, z) <strong>to</strong> specify a po<strong>in</strong>t, a hyperplane looks like R 3 and we call<br />

it three dimensional. Among the <strong>in</strong>f<strong>in</strong>itely many hyperplanes, there are <strong>four</strong><br />

coord<strong>in</strong>ate hyperplanes:<br />

(x = 0) is the hyperplane {(0, y, z, w) : y, z, w ∈ R}<br />

(y = 0) is the hyperplane {(x, 0, z, w) : x, z, w ∈ R}<br />

(z = 0) is the hyperplane {(x, y, 0, w) : x, y, w ∈ R}<br />

(w = 0) is the hyperplane {(x, y, z, 0) : x, y, z ∈ R}.<br />

Note that the (general) hyperplane<br />

ax + by + cz + dw = 0<br />

consists of the vec<strong>to</strong>rs orthogonal <strong>to</strong> the normal vec<strong>to</strong>r n = (a, b, c, d), which<br />

must be nonzero. The <strong>in</strong>tersection of two hyperplanes<br />

ax + by + cz + dw = 0<br />

a ′ x + b ′ y + c ′ z + d ′ w = 0<br />

with non-proportional normal vec<strong>to</strong>rs n = (a, b, c, d) and n ′ = (a ′ , b ′ , c ′ , d ′ ) is a<br />

plane. For example,<br />

(x = 0) ∩ (w = 0) = {(0, y, z, 0) : y, z ∈ R}<br />

is the yz-plane, spanned by e2 and e3.<br />

2


Now consider the <strong>in</strong>tersection of two planes (as opposed <strong>to</strong> hyperplanes). In<br />

3d, two planes usually <strong>in</strong>tersect <strong>in</strong> a l<strong>in</strong>e, but <strong>in</strong> 4d th<strong>in</strong>gs are different:<br />

Usually, two planes <strong>in</strong> <strong>four</strong> dimensions <strong>in</strong>tersect <strong>in</strong> the s<strong>in</strong>gle po<strong>in</strong>t 0.<br />

For example, a po<strong>in</strong>t on the yz-plane has x = w = 0, while a po<strong>in</strong>t on the xwplane<br />

has y = z = 0, so the only po<strong>in</strong>t on both planes is (0, 0, 0, 0).<br />

To expla<strong>in</strong> what “usually” means <strong>in</strong> 4d, we will descibe the <strong>in</strong>tersection <strong>in</strong><br />

terms of a 4 × 4 matrix. Th<strong>in</strong>k of each plane itself as the <strong>in</strong>tersection of two<br />

hyperplanes, so that we have <strong>four</strong> hyperplanes<br />

ai1x + ai2y + ai3z + ai4w = 0, i = 1, 2, 3, 4. (1)<br />

The <strong>in</strong>tersection of the two planes is the <strong>in</strong>tersection of these <strong>four</strong> hyperplanes; A<br />

po<strong>in</strong>t (x, y, z, w) lives on the <strong>in</strong>tersection exactly when it satisfies all <strong>four</strong> equations<br />

(1). In other words, the po<strong>in</strong>t must satisfy the matrix equation<br />

⎡<br />

a11<br />

⎢a21<br />

⎢<br />

⎣a31<br />

a12<br />

a22<br />

a32<br />

a13<br />

a23<br />

a33<br />

⎤ ⎡ ⎤<br />

a14 x<br />

a24⎥<br />

⎢<br />

⎥ ⎢y<br />

⎥<br />

a34⎦<br />

⎣z<br />

⎦<br />

w<br />

=<br />

⎡ ⎤<br />

0<br />

⎢<br />

⎢0<br />

⎥<br />

⎣0⎦<br />

0<br />

.<br />

a41 a42 a43 a44<br />

Writ<strong>in</strong>g this matrix equation concisely as<br />

Av = 0,<br />

we see that our <strong>in</strong>tersection of two planes, or <strong>four</strong> hyperplanes, is the kernel of the<br />

matrix A:<br />

ker A = {v ∈ R 4 : Av = 0},<br />

where row i of A is the coefficients of the i th hyperplane. The <strong>in</strong>tersection is a<br />

s<strong>in</strong>gle po<strong>in</strong>t exactly when ker A is trivial, <strong>in</strong> which case we write ker A = 0.<br />

For a general 4 × 4 matrix A, there are five possible dimensions of ker A:<br />

ker A = 0 dim ker A = 0<br />

ker A = a l<strong>in</strong>e dim ker A = 1<br />

ker A = a plane dim ker A = 2<br />

ker A = a hyperplane dim ker A = 3.<br />

ker A = R 4 dim ker A = 4.<br />

As before, the determ<strong>in</strong>ant tells us if ker A is trivial or not.<br />

ker A = 0 if and only if det(A) �= 0. (2)<br />

3


The determ<strong>in</strong>ant is def<strong>in</strong>ed recursively as before. If we let Aij be the 3 × 3 matrix<br />

obta<strong>in</strong>ed from A by delet<strong>in</strong>g row i and column j then for any row i we have<br />

det(A) =<br />

and for any column j we have<br />

det(A) =<br />

4�<br />

j=1<br />

4�<br />

i=1<br />

(−1) i+j aij det(Aij)<br />

(−1) i+j aij det(Aij).<br />

Properties 1-6 of chapter 14 cont<strong>in</strong>ue <strong>to</strong> hold. No matter how you expand det(A),<br />

you get the same sum of 24 terms<br />

det(A) = �<br />

sgn(σ)a1σ(1)a2σ(2)a3σ(3)a4σ(4)<br />

σ<br />

(3)<br />

= a11a22a33a44 − a12a21a33a44 + a12a21a34a43 ± · · · ,<br />

where the sum is over all 4! = 24 permutations σ of the numbers 1, 2, 3, 4 and<br />

sgn(σ) = ±1 is itself the determ<strong>in</strong>ant<br />

sgn(σ) = det(Aσ)<br />

of the permutation matrix Aσ given by Aei = eσ(i).<br />

Our only purpose for writ<strong>in</strong>g out a few terms of the expansion (3) is <strong>to</strong> make<br />

it clear that det(A) is a polynomial expression <strong>in</strong> the entries of A. This clarifies<br />

our earlier assertion that “usually” two planes (or <strong>four</strong> hyperplanes) <strong>in</strong>tersect <strong>in</strong> a<br />

s<strong>in</strong>gle po<strong>in</strong>t. Indeed, we have seen that this <strong>in</strong>tersection is the kernel of the matrix<br />

A whose rows are the hyperplanes be<strong>in</strong>g <strong>in</strong>tersected, and ker A = 0 exactly when<br />

the polynomial det is nonzero at A, which is what usually happens, for a random<br />

matrix A.<br />

When ker A is larger than 0, it has a nonzero dimension which can be computed<br />

us<strong>in</strong>g determ<strong>in</strong>ants of submatrices of A. To expla<strong>in</strong> this we first need some<br />

def<strong>in</strong>itions. Fix 1 ≤ k ≤ 4, and choose a pair of k-element subsets<br />

I = {i1, . . . , ik}, J = {j1, . . . , jk}<br />

of {1, 2, 3, 4}. Let aIJ be the determ<strong>in</strong>ant of the k × k matrix whose entry <strong>in</strong> row<br />

p column q is aipjq. We call aIJ a k-m<strong>in</strong>or of A. For example, a 1-m<strong>in</strong>or is just<br />

an entry aij <strong>in</strong> A and det(A) itself is the unique 4-m<strong>in</strong>or of A.<br />

4


The rank of A, denoted rank(A), is a number <strong>in</strong> {0, 1, 2, 3, 4} def<strong>in</strong>ed as<br />

follows. If A is the zero matrix then rank(A) = 0. Otherwise, rank(A) is the<br />

largest k ≥ 1 for which some k-m<strong>in</strong>or is nonzero. If all k-m<strong>in</strong>ors are zero, then<br />

all (k+1)-m<strong>in</strong>ors are zero au<strong>to</strong>matically, so rank(A) < k and you need not bother<br />

with higher m<strong>in</strong>ors.<br />

In general, the dimension of the kernel of A is given by the formula<br />

dim ker A = 4 − rank(A) (4)<br />

The recipe for comput<strong>in</strong>g ker A when det(A) = 0 is as follows. There are<br />

<strong>four</strong> possibilities:<br />

• A is the zero matrix. Then ker A = R 4 .<br />

• A is not the zero matrix, but all rows are proportional <strong>to</strong> each other. Then<br />

rank(A) = 1 and ker A is the hyperplane with equation ax+by+cz+dw =<br />

0, where (a, b, c, d) is any nonzero vec<strong>to</strong>r proportional <strong>to</strong> all the rows of A.<br />

• Not all rows of A are proportional <strong>to</strong> each other, but all 3-m<strong>in</strong>ors of A are<br />

zero. Then rank(A) = 2 and ker A is the plane given by the <strong>in</strong>tersection of<br />

any two non-proportional row-hyperplanes.<br />

• Some 3-m<strong>in</strong>or aIJ is nonzero. Then rank(A) = 3 and ker A is a l<strong>in</strong>e. To<br />

f<strong>in</strong>d this l<strong>in</strong>e, let i ∈ {1, 2, 3, 4} be the <strong>in</strong>dex not <strong>in</strong> I. For j = 1, 2, 3, 4,<br />

let Aij be the 3 × 3 matrix obta<strong>in</strong>ed by delet<strong>in</strong>g row i and column j. Then<br />

ker A is the l<strong>in</strong>e through the vec<strong>to</strong>r<br />

(det(Ai1), − det(Ai2), det(Ai3), − det(Ai4)), (5)<br />

which is nonzero because, if j is the number not <strong>in</strong> J, then det(Aij) =<br />

aIJ �= 0.<br />

Example: The matrix<br />

A =<br />

⎡<br />

⎢<br />

⎣<br />

0 1 2 3<br />

4 5 6 7<br />

8 9 10 11<br />

12 13 14 15<br />

5<br />

⎤<br />

⎥<br />


�<br />

5<br />

has nonzero 2-m<strong>in</strong>ors, for example det<br />

13<br />

3-m<strong>in</strong>ors are zero. For example,<br />

�<br />

7<br />

= −16. But all sixteen of the<br />

15<br />

⎡<br />

0 2<br />

⎤<br />

3<br />

det ⎣ 4 6 7 ⎦ = 0.<br />

12 14 15<br />

Therefore rank(A) = 2 and dim ker(A) = 4 − 2 = 2. In other words, the <strong>four</strong><br />

row hyperplanes of A <strong>in</strong>tersect not <strong>in</strong> the usual po<strong>in</strong>t, but <strong>in</strong> a plane. Moreover,<br />

the plane ker A is the <strong>in</strong>tersection of any two row hyperplanes of A.<br />

To m<strong>in</strong>imize the calculation of determ<strong>in</strong>ants, you can sometimes use row reduction<br />

<strong>to</strong> simplify a matrix before try<strong>in</strong>g <strong>to</strong> f<strong>in</strong>d its rank and kernel, as follows.<br />

Suppose u and v are two rows of A. Take any nonzero scalars a, b and replace<br />

row u by au + bv, giv<strong>in</strong>g a new matrix A ′ which differs from A only <strong>in</strong> the row<br />

that was u and is now au + bv. Then we have<br />

rank(A) = rank(A ′ ), ker(A) = ker(A ′ ).<br />

In the example above, we replace each of rows 2, 3, 4 by itself m<strong>in</strong>us the row<br />

immediately above, and get<br />

A ′ ⎡<br />

0<br />

⎢<br />

= ⎢4<br />

⎣4<br />

1<br />

4<br />

4<br />

2<br />

4<br />

4<br />

⎤<br />

3<br />

4 ⎥<br />

4⎦<br />

4 4 4 4<br />

.<br />

This shows that ker(A) is the <strong>in</strong>tersection of the two hyperplanes<br />

The <strong>in</strong>verse of a 4 × 4 matrix<br />

y + 2z + 3w = 0, x + y + z + w = 0.<br />

Given a 4 × 4 matrix A, let Aij be the 3 × 3 matrix obta<strong>in</strong>ed by delet<strong>in</strong>g row<br />

i and column j from A. Form the matrix [(−1) i+j det(Aij] whose entry <strong>in</strong> row i<br />

column j is (−1) i+j det(Aij). Now take the transpose of this matrix and divide<br />

by det(A), and you will get the <strong>in</strong>verse of A:<br />

A −1 = 1<br />

det A [(−1)i+j det(Aij)] T .<br />

6


This formula is called Cramer’s formula and it applies <strong>to</strong> square matrices of<br />

any size. It generalizes the formula we used for <strong>in</strong>verses of 2 × 2 and 3 × 3<br />

matrices. Cramer’s rule shows that A −1 exists if and only if det(A) �= 0. Earlier,<br />

we have seen this is equivalent <strong>to</strong> ker A = {0}. Thus, the follow<strong>in</strong>g statements<br />

are equivalent:<br />

1. det A �= 0;<br />

2. ker A = {0};<br />

3. A −1 exists.<br />

Cramer’s formula <strong>in</strong>volves sixteen 3 × 3 determ<strong>in</strong>ants and one 4 × 4 determ<strong>in</strong>ant.<br />

Usually one asks a computer <strong>to</strong> work this out. However if the matrix has a<br />

lot of zeros or has some pattern, then the determ<strong>in</strong>ants det Aij, hence A −1 , may<br />

computed by hand without <strong>to</strong>o much trouble.<br />

Eigenvalues and Eigenvec<strong>to</strong>rs<br />

The def<strong>in</strong>itions are as before: An eigenvalue of a 4 × 4 matrix A is a number<br />

λ for which there exists a nonzero vec<strong>to</strong>r u such that Au = λu. Such a vec<strong>to</strong>r u<br />

is called a λ-eigenvec<strong>to</strong>r of A and the collection of all λ-eigenvec<strong>to</strong>rs forms the<br />

λ-eigenspace:<br />

E(λ) = {u ∈ R 4 : Au = λu}.<br />

In other words, λ is an eigenvec<strong>to</strong>r if and only if E(λ) �= {0}. S<strong>in</strong>ce E(λ) =<br />

ker(λI − A), we have E(λ) �= {0} if and only if det(λI − A) = 0. So the<br />

eigenvec<strong>to</strong>rs are the roots of the characteristic polynomial<br />

PA(x) = det(xI − A).<br />

The coefficients <strong>in</strong> PA(x) follow the same pattern as before: The coefficient of<br />

x 4−k <strong>in</strong> PA(x) is (−1) k times the sum of the diagonal k-m<strong>in</strong>ors of A. The sum of<br />

the diagonal 1-m<strong>in</strong>ors is the trace of A = [aij]:<br />

and the characteristic polynomial is<br />

PA(x) = t 4 − tr(A)t 3<br />

tr(A) = a11 + a22 + a33 + a44,<br />

+ (det A12,12 + det A13,13 + det A14,14 + det A23,23 + det A24,24 + det A34,34)t 2<br />

− (det A11 + det A22 + det A33 + det A44)t<br />

+ det(A).<br />

7


Here Aij,ij (respectively Aii) is the 2 × 2 (resp. 3 × 3) matrix obta<strong>in</strong>ed from A by<br />

delet<strong>in</strong>g rows i, j and columns i, j (resp. row i and column i).<br />

Exercise <strong>18.</strong>1 F<strong>in</strong>d the ranks and the kernels of the follow<strong>in</strong>g matrices.<br />

⎡<br />

0<br />

⎢<br />

A = ⎢0<br />

⎣0<br />

1<br />

0<br />

0<br />

1<br />

1<br />

0<br />

⎤<br />

1<br />

1 ⎥<br />

1⎦<br />

,<br />

⎡<br />

1<br />

⎢<br />

B = ⎢2<br />

⎣1<br />

1<br />

2<br />

1<br />

2<br />

1<br />

0<br />

⎤<br />

2<br />

1 ⎥<br />

0⎦<br />

0 0 0 0<br />

1 1 1 1<br />

.<br />

Exercise <strong>18.</strong>2 F<strong>in</strong>d the <strong>in</strong>verses of the follow<strong>in</strong>g matrices.<br />

⎡<br />

0<br />

⎢<br />

A = ⎢a<br />

⎣0<br />

0<br />

0<br />

b<br />

0<br />

0<br />

0<br />

⎤<br />

d<br />

0 ⎥<br />

0⎦<br />

, abcd �= 0,<br />

⎡<br />

0<br />

⎢<br />

B = ⎢1<br />

⎣1<br />

1<br />

0<br />

1<br />

1<br />

1<br />

0<br />

⎤<br />

1<br />

1 ⎥<br />

1⎦<br />

0 0 c 0<br />

1 1 1 0<br />

.<br />

Exercise <strong>18.</strong>3 Let P be the plane given as the <strong>in</strong>tersection of two hyperplanes<br />

ax + by + cz + dw = 0, a ′ x + b ′ y + c ′ z + d ′ w = 0,<br />

with non-proportional normal vec<strong>to</strong>rs n = (a, b, c, d) and n ′ = (a ′ , b ′ , c ′ , d ′ ).<br />

Let N be the plane spanned by the vec<strong>to</strong>rs n and n ′ . What is the geometric<br />

relationship between the planes P and N? Justify your answer. H<strong>in</strong>t: Dot product.<br />

Exercise <strong>18.</strong>4 Compute the characteristic polynomial PA(x) for the matrix<br />

⎡ ⎤<br />

0 0 0 d<br />

⎢<br />

A = ⎢1<br />

0 0 c ⎥<br />

⎣0<br />

1 0 b⎦<br />

0 0 1 a<br />

.<br />

Exercise <strong>18.</strong>5 F<strong>in</strong>d the eigenvalues of the matrix<br />

⎡ ⎤<br />

0 0 0 1<br />

⎢<br />

A = ⎢1<br />

0 0 0 ⎥<br />

⎣0<br />

1 0 0⎦<br />

0 0 1 0<br />

.<br />

You will f<strong>in</strong>d that ±1 are two of the eigenvalues. Compute E(1) and E(−1).<br />

8

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!