14.06.2016 Views

MENON

menon_issue_2nd_special_052016

menon_issue_2nd_special_052016

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

UNIVERSITY OF WESTERN MACEDONIA<br />

FACULTY OF EDUCATION<br />

<strong>MENON</strong><br />

©online<br />

Journal Of Educational Research<br />

Ἔχεις μοι εἰπεῖν, ὦ<br />

Σώκρατες, ἆρα<br />

διδακτὸν ἡ ἀρετή; ἢ<br />

A National and International Interdisciplinary Forum<br />

for Scholars, Academics, Researchers and Educators<br />

from a wide range of fields related to<br />

Educational Studies<br />

οὐ διδακτὸν ἀλλ’<br />

ἀσκητόν; ἢ οὔτε<br />

ἀσκητὸν οὔτε<br />

μαθητόν, ἀλλὰ<br />

φύσει παραγίγνεται<br />

τοῖς ἀνθρώποις ἢ<br />

ἄλλῳ τινὶ τρόπῳ<br />

The Use of History of Mathematics in<br />

Mathematics Education<br />

2 nd Thematic Issue<br />

Florina, May 2016


UNIVERSITY OF WESTERN MACEDONIA<br />

FACULTY OF EDUCATION<br />

ABOUT <strong>MENON</strong><br />

The scope of the <strong>MENON</strong> is broad, both<br />

in terms of topics covered and<br />

disciplinary perspective, since the<br />

journal attempts to make connections<br />

between fields, theories, research<br />

methods, and scholarly discourses, and<br />

welcomes contributions on humanities,<br />

social sciences and sciences related to<br />

educational issues. It publishes original<br />

empirical and theoretical papers as well<br />

as reviews. Topical collections of articles<br />

appropriate to <strong>MENON</strong> regularly<br />

appear as special issues (thematic<br />

issues).<br />

This open access journal welcomes<br />

papers in English, as well in German<br />

and French. Allsubmitted manuscripts<br />

undergo a peer-review process. Based<br />

on initial screening by the editorial<br />

board, each paper is anonymized and<br />

reviewed by at least two referees.<br />

Referees are reputed within their<br />

academic or professional setting, and<br />

come from Greece and other European<br />

countries. In case one of the reports is<br />

negative, the editor decides on its<br />

publication.<br />

Manuscripts must be submitted as<br />

electronic files (by e-mail attachment in<br />

Microsoft Word format) to:<br />

mejer@uowm.gr or via the Submission<br />

Webform.<br />

Submission of a manuscript implies that<br />

it must not be under consideration for<br />

publication by other journal or has not<br />

been published before.<br />

<strong>MENON</strong><br />

©online Journal Of Educational Research<br />

2<br />

ABOUT <strong>MENON</strong><br />

EDITOR<br />

• CHARALAMPOS LEMONIDIS<br />

University Of Western Macedonia,<br />

Greece<br />

EDITORIAL BOARD<br />

• ANASTASIA ALEVRIADOU<br />

University Of Western Macedonia,<br />

Greece<br />

• ELENI GRIVA<br />

University Of Western Macedonia,<br />

Greece<br />

• SOFIA ILIADOU-TACHOU<br />

University Of Western Macedonia,<br />

Greece<br />

• DIMITRIOS PNEVMATIKOS<br />

University Of Western Macedonia,<br />

Greece<br />

• ANASTASIA STAMOU<br />

University Of Western Macedonia,<br />

Greece<br />

<strong>MENON</strong> © is published at<br />

UNIVERSITY OF WESTERN<br />

MACEDONIA – FACULTY OF<br />

EDUCATION<br />

Reproduction of this publication for educational<br />

or other non-commercial purposes is authorized<br />

as long as the source is acknowledged. Readers<br />

may print or save any issue of <strong>MENON</strong> as long<br />

as there are no alterations made in those issues.<br />

Copyright remains with the authors, who are<br />

responsible for getting permission to reproduce<br />

any images or figures they submit and for<br />

providing the necessary credits.<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


UNIVERSITY OF WESTERN MACEDONIA<br />

FACULTY OF EDUCATION<br />

<strong>MENON</strong><br />

©online Journal Of Educational Research<br />

3<br />

SCIENTIFIC BOARD<br />

• Barbin Evelyne, University of Nantes, France<br />

• D’ Amore Bruno, University of Bologna, Italy<br />

• Fritzen Lena, Linnaeus University Kalmar Vaxjo,<br />

Sweeden<br />

• Gagatsis Athanasios, University of Cyprus, Cyprus<br />

• Gutzwiller Eveline, Paedagogische Hochschule von<br />

Lucerne, Switzerland<br />

• Harnett Penelope, University of the West of England,<br />

United Kingdom<br />

• Hippel Aiga, University of Munich, Germany<br />

• Hourdakis Antonios, University of Crete, Greece<br />

• Iliofotou-Menon Maria, University of Cyprus,<br />

Cyprus<br />

• Katsillis Ioannis, University of Patras, Greece<br />

• Kokkinos Georgios, University of Aegean, Greece<br />

• Korfiatis Konstantinos, University of Cyprus, Cyprus<br />

• Koutselini Mary, University of Cyprus, Cyprus<br />

• Kyriakidis Leonidas, University of Cyprus, Cyprus<br />

• Lang Lena, Universityof Malmo, Sweeden<br />

• Latzko Brigitte, University of Leipzig, Germany<br />

• Mikropoulos Anastasios, University of Ioannina,<br />

Greece<br />

• Mpouzakis Sifis, University of Patras, Greece<br />

• Panteliadu Susana, University of Thessaly, Greece<br />

• Paraskevopoulos Stefanos, University of Thessaly,<br />

Greece<br />

• Piluri Aleksandra, Fan S. Noli University, Albania<br />

• Psaltou -Joycey Angeliki, Aristotle University of<br />

Thessaloniki, Greece<br />

• Scaltsa Matoula, AristotleUniversity of Thessaloniki,<br />

Greece<br />

• Tselfes Vassilis, National and<br />

KapodistrianUniversity of Athens, Greece<br />

• Tsiplakou Stavroula, Open University of Cyprus,<br />

Cyprus<br />

• Vassel Nevel, Birmingham City University, United<br />

Kingdom<br />

• Vosniadou Stella, National and Kapodistrian<br />

University of Athens, Greece<br />

• Woodcock Leslie, University of Leeds, United<br />

Kingdom<br />

LIST OF REVIEWERS<br />

The Editor and the Editorial<br />

Board of the <strong>MENON</strong>: Journal<br />

Of Educational Research thanks<br />

the following colleagues for their<br />

support in reviewing<br />

manuscripts for the current<br />

issue.<br />

• Konstantinos Christou<br />

• Charalampos Lemonidis<br />

• Konstantinos Nikolantonakis<br />

Design & Edit: Elias Indos<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


UNIVERSITY OF WESTERN MACEDONIA<br />

FACULTY OF EDUCATION<br />

<strong>MENON</strong><br />

©online Journal Of Educational Research<br />

4<br />

EDITOR'S INTRODUCTORY NOTE<br />

INTRODUCTION TO THEMATIC ISSUE<br />

“The Use of History of Mathematics in Mathematics Education”<br />

The question of the integration of the History of Mathematics in<br />

Mathematics Education has been discussed since the 20 th century by Educators<br />

(Barwell, Brousseau, Freudental, Piaget), Philosophers (Bachelard),<br />

Mathematicians (Klein, Poincare), and Historians of Mathematics (Loria,<br />

Smith), who have supported the proposal and have given arguments on the<br />

interest and challenges in school Mathematics courses.<br />

Since the 1960s the use of the history of mathematics in mathematics<br />

education has become more popular and many papers in scientific journals,<br />

books, proceedings of conferences and groups of researchers have focused on<br />

this in contrast to the paradigm of the “modern mathematics” reform. We can<br />

find many didactical situations, mathematical problems, teaching series but also<br />

empirical and theoretical studies, Master and Phd level dissertations on the role<br />

and the ways of using historical, social and cultural elements in the teaching of<br />

mathematics. During the 2 nd International Congress on Mathematics Education<br />

(ICME) in 1972 we have the creation of an International research group<br />

(International study group on the relation between the History and Pedagogy<br />

of Mathematics (HPM)) which organizes a congress every 4 years. The idea of a<br />

European Summer University (ESU) on the Epistemology and History in<br />

Mathematics Education started from the Instituts Universitaires de Formation<br />

de Maîtres (IUFM) in France, and an ESU is organized every three years in<br />

different European countries. Since 2009 in the context of the Congress of the<br />

European Society for Mathematics Education (CERME) we have also the<br />

appearance of a discussion group on The Role of History of Mathematics in<br />

Mathematics Education: Theory and Research (WG 12). This group also<br />

concentrates on empirical research. We should also mention the publication of<br />

the ICMI study History in mathematics education: the ICMI study (Fauvel & van<br />

Maanen, 2000) which presents the state of the art until this period.<br />

Since the publication of this study, researchers address in a more<br />

demanding way questions about the efficacy and pertinence of many efforts<br />

(examples) of applications in classrooms. They are also wondering about the<br />

transferability of positive experiences from educators on different levels of<br />

education. They are considering questions on the capacity of students but also<br />

of educators when they were in front of the difficulties of studying the<br />

historical aspect of many notions.<br />

Recently researchers΄ activities are moving to investigations in terms of<br />

didactic and educational foundations from which they believe that it could be<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


UNIVERSITY OF WESTERN MACEDONIA<br />

FACULTY OF EDUCATION<br />

<strong>MENON</strong><br />

©online Journal Of Educational Research<br />

5<br />

possible to think better about the role of the history of mathematics in the<br />

teaching and learning of mathematics and the development of theoretical and<br />

conceptual frameworks which could provide the required equipment for the<br />

production of finer and more focus investigations.<br />

These issues include, among others, the educational and teaching<br />

foundations of a cultural-historical perspective in the classroom, the need to<br />

give voice to community stakeholders about the introduction and more<br />

broadly, the nature and the terms of the empirical investigation prevailing in<br />

the research environment.<br />

Parallel to these advancements in research, an attempt to humanize<br />

Mathematics is increasingly present in the mathematics curricula worldwide.<br />

For over 20 years, the presence of the history of mathematics in training<br />

teachers’ environments has increased considerably in many countries.<br />

However, despite the different objectives associated with the introduction of<br />

the history of mathematics in training mathematics teachers, this presence,<br />

implicit or explicit, took the form of specific initiatives for each establishment of<br />

teacher training.<br />

By browsing through the literature since 1990, it is possible to classify the<br />

empirical studies on the use of history in the mathematics classroom into two<br />

categories: studies that relate to the narrative of grounded experiences and<br />

quantitative studies on a larger scale.<br />

Overall, it appears necessary to restore the research field on the introduction<br />

of History in the teaching and learning of mathematics within Didactics of<br />

mathematics and more generally with the educational sciences. This<br />

repositioning should enable research to get inspired from the contexts of the<br />

exploratory work from Humanities as well as theoretical, conceptual and<br />

methodological issues from the Didactics of mathematics and educational<br />

sciences.<br />

This issue includes eight invited papers. Six papers are written in English<br />

and two in French. Each text is accompanied by an abstract in English. The<br />

following papers discuss specific issues in the domain of Using History of<br />

Mathematics in Mathematics Education and are ordered according to the<br />

instructional level; from elementary school to the university and in service<br />

teachers training.<br />

• Evelyne Barbin suggests a new thinking on technique, proposed in the<br />

texts of Simondon and Rabardel. Her purpose, in introducing an<br />

historical instrumental approach of geometrical teaching for students<br />

aged 11-14 years, is to show how an instrument can be conceived both as<br />

an invention to solve problems and as a knowledge or theorem in action.<br />

In particular, she stresses the links between different varieties of<br />

instruments and different kinds of knowledge and shows the<br />

consequences of an instrumental failure for the construction of new<br />

knowledge. Her goal is a coherent using where teaching is based on<br />

families of instruments.<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


UNIVERSITY OF WESTERN MACEDONIA<br />

FACULTY OF EDUCATION<br />

<strong>MENON</strong><br />

©online Journal Of Educational Research<br />

6<br />

• Matthaios Anastasiadis and Konstantinos Nikolantonakis describe the<br />

context of an instructional intervention focused on isoperimetric figures<br />

and area-perimeter relationships with the use of one historical note and<br />

two primary sources, from Pappus’ Collection and from Polybius’<br />

Histories. Their findings are based on classroom observations, worksheets<br />

and interviews with sixth grade Greek students.<br />

• Vasiliki Tsiapou and Konstantinos Nikolantonakis present part of a<br />

research study that intended to use the Chinese abacus for the<br />

development of place value concepts and the notion of carried number<br />

with sixth grade Greek students.<br />

• Ingo Witzke, Horst Struve, Kathleen Clark and Gero Stoffels describe<br />

how the concepts of empirical and formalistic belief systems can be used to<br />

give an explanation for the transition from school to university<br />

mathematics during an intensive Seminar. They stress the usefulness of<br />

this approach by outlining the historical sources and the participants’<br />

activities with the sources on which the seminar is based, as well as some<br />

results of the qualitative data gathered during and after the seminar.<br />

• David Guillemette tries to highlight some difficulties that have been<br />

encountered during the implementation of reading activities of historical<br />

texts in the preservice teachers training context. He describes a history of<br />

mathematics course offered at the Université du Québec à Montréal,<br />

with reading activities that have been constructed and implemented in<br />

class and the efforts made by the students and the trainer to articulate<br />

both synchronic and diachronic reading, in order to not uproot the text<br />

and his author from their socio-historical and mathematical context.<br />

• Michael Kourkoulos and Constantinos Tzanakis present and analyze a<br />

teaching work on Pascal's wager realized with Greek students,<br />

prospective elementary school teachers, in the context of a probability<br />

and statistics course. They focus on classroom discussion concerning<br />

mathematical modeling activities, connecting elements of probability<br />

theory and decision theory with elements of philosophical discussions.<br />

• Areti Panaoura examines in-service teachers’ beliefs and knowledge<br />

about the use of the history of mathematics in the framework of the<br />

inquiry-based teaching approach at the educational system of Cyprus,<br />

and the difficulties teachers face in adopting and implementing this<br />

specific innovation in primary education.<br />

• Snezana Lawrence offers ideas for teachers to engage with mathematics<br />

through the historical ‘journeys’ and relationship with art and cultural<br />

and intellectual history. She treats the question of how teachers could<br />

find their own ‘mathematical’ voice through series of historical<br />

investigations and what impact that may have on their teaching and<br />

pupils’ progress.<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


UNIVERSITY OF WESTERN MACEDONIA<br />

FACULTY OF EDUCATION<br />

<strong>MENON</strong><br />

©online Journal Of Educational Research<br />

7<br />

Aknowledgements<br />

Firstly, I would like to express my warmest thanks to Christina Gkonou 1 for<br />

her precious efforts to read and ameliorate the English texts.<br />

Secondly, I would also like to express my thanks to the Editorial Committee<br />

of Menon Journal for giving me the chance to work this Thematic Issue on<br />

the field of Using History in Mathematics Education.<br />

Finally, I would like to express my grateful thanks to my Colleagues who<br />

sustain with their papers this publication.<br />

The Editor of the 2 nd Thematic Issue of<br />

<strong>MENON</strong>: Journal for Educational Research<br />

Konstantinos Nikolantonakis<br />

Associate Professor<br />

University of Western Macedonia<br />

Greece<br />

1 Christina Gkonou is Lecturer in Teaching English as a Foreign Language in the Department of Language<br />

and Linguistics at the University of Essex, UK. She received her BA from Aristotle University and her MA<br />

and PhD from the University of Essex. Her research interests are in foreign language pedagogy and the<br />

psychology of language learning and teaching.<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


UNIVERSITY OF WESTERN MACEDONIA<br />

FACULTY OF EDUCATION<br />

<strong>MENON</strong><br />

©online Journal Of Educational Research<br />

8<br />

CONTENTS<br />

CONTENTS<br />

9-30 Εvelyne Barbin<br />

L’INSTRUMENT MATHÉMATIQUE COMME INVENTION ET<br />

CONNAISSANCE-EN-ACTION<br />

31-50 Matthaios Anastasiadis, Konstantinos Nikolantonakis<br />

PRIMARY SOURCES AND HISTORY-BASED PROBLEMS ABOUT<br />

ISOPERIMETRY: A USE OF MATHEMATICS HISTORY IN GRADE SIX<br />

51-65 Vasiliki Tsiapou, Konstantinos Nikolantonakis<br />

THE DEVELOPMENT OF PLACE VALUE CONCEPTS AND THE<br />

NOTION OF CARRIED NUMBER AMONG SIXTH GRADE STUDENTS<br />

VIA THE STUDY OF THE CHINESE ABACUS<br />

66-93 Ingo Witzke, Horst Struve, Kathleen Clark, Gero Stoffels<br />

ÜBERPRO – A SEMINAR CONSTRUCTED TO CONFRONT THE<br />

TRANSITION PROBLEM FROM SCHOOL TO UNIVERSITY<br />

MATHEMATICS, BASED ON EPISTEMOLOGICAL AND HISTORICAL<br />

IDEAS OF MATHEMATICS<br />

94-111 David Guillemette<br />

QUELQUES DIFFICULTÉS RENCONTRÉES DANS LA FORMATION<br />

DES ENSEIGNANTS DE MATHÉMATIQUES DU SECONDAIRE À<br />

L’AIDE DE L’HISTOIRE DES MATHÉMATIQUES: UNE RÉFLEXION<br />

SUR LES MODALITÉS DE LECTURES DE TEXTES HISTORIQUES<br />

112-129 Michael Kourkoulos, Constantinos Tzanakis<br />

DISCUSSING MATHEMATICAL MODELING CONCERNING<br />

PASCAL'S WAGER<br />

130-145 Areti Panaoura<br />

THE HISTORY OF MATHEMATICS DURING AN INQUIRY-BASED<br />

TEACHING APPROACH<br />

146-158 Snezana Lawrence<br />

THE OLD TEACHER EUCLID: AND HIS SCIENCE IN THE ART OF<br />

FINDING ONE’S MATHEMATICAL VOICE<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


UNIVERSITY OF WESTERN MACEDONIA<br />

FACULTY OF EDUCATION<br />

<strong>MENON</strong><br />

©online Journal Of Educational Research<br />

9<br />

L’INSTRUMENT MATHÉMATIQUE COMME INVENTION ET<br />

CONNAISSANCE-EN-ACTION<br />

Εvelyne Barbin<br />

Laboratoire LMJL & IREM - Université de Nantes<br />

evelyne.barbin@wanadoo.fr<br />

ABSTRACT<br />

The role of instruments had been underestimated widely in history, including in the<br />

case of the geometry, and that is linked with the Aristotelian partition between theory<br />

and technique. In this paper we work with a new thinking on technique, proposed<br />

recently in the texts of Simondon and Rabardel. To introduce an instrumental<br />

approach of geometrical teaching for students aged 11-14 years, we choose to examine<br />

beginnings of a geometrical thought in history. Our purpose is to show how an<br />

instrument can be conceived both as an invention to solve problems and as a<br />

knowledge or theorem in action. With some examples, we analyze the dynamical<br />

process by which an instrument can be involved in the introduction of geometrical<br />

notions and in the construction of mental schemes. In particular, we stress on the links<br />

between different varieties of instruments and different kinds of knowledge and we<br />

show the consequences of an instrumental failure for construction of new knowledge.<br />

Our goal is not a heteroclite using of instruments in teaching but a coherent using<br />

where teaching is based on families of instruments.<br />

Keywords: geometry, instruments, measurement of distances, technics, trisection of<br />

angle<br />

1. INTRODUCTION<br />

Le rôle des instruments dans l’histoire des mathématiques a été largement<br />

sous-estimé, y compris pour ce qui concerne l’histoire de la géométrie. Plus<br />

largement, nous avons été longtemps tributaires de la séparation<br />

aristotélicienne entre la technique qui est ‘poïétique’, c’est-à-dire du côté de<br />

l’action, de la science, qui est ‘théorétique’, c’est-à-dire du côté de la<br />

contemplation et de la spéculation (Aristote 1991: 4-9). C’est ainsi que, par<br />

exemple, tout rôle des techniques dans la révolution scientifique du XVIIe siècle<br />

(Barbin 2006: 9-44) a été refusé par Alexandre Koyré. Les figures de la<br />

géométrie grecque ont été rattachées à une conception purement idéale, qui est<br />

héritée d’écrits platoniciens et qui les rattache uniquement au discours<br />

axiomatique des Éléments d’Euclide.<br />

Une nouvelle pensée de la technique a été proposée par le philosophe<br />

Gilbert Simondon, qui écrit dans son ouvrage Du mode d’existence des objets<br />

techniques:”il semble que cette opposition entre l'action et la contemplation,<br />

entre l'immuable et le mouvant, doive cesser devant l'introduction de<br />

l'opération technique dans la pensée philosophique comme terrain de réflexion<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Εvelyne Barbin<br />

L’INSTRUMENT MATHÉMATIQUE COMME INVENTION ET CONNAISSANCE-EN-<br />

ACTION<br />

10<br />

et même comme paradigm” (Simondon 1969: 256). Dans cet article, nous<br />

reprenons les réflexions de Simondon sur les objets techniques pour les<br />

rapporter aux instruments mathématiques dans leur histoire, ainsi que celles du<br />

psychologue Pierre Rabardel qui publie en 1995 Les hommes et les technologies:<br />

approche cognitive des instruments contemporains, où il fait état des écrits de<br />

Simondon et de travaux concernant le travail, la connaissance et l’action.<br />

L’ouvrage de Rabardel a subi une transposition didactique dans des écrits<br />

récents, qui tendent à simplifier, à réifier, et à mettre de côté les propos de<br />

l’auteur, sur le sujet connaissant et sur ‘les autres’, propos qui intéressent en<br />

revanche l’épistémologie et l’histoire des mathématiques. Pour servir à une<br />

approche instrumentale de l’enseignement, nous avons choisi de nous<br />

restreindre à des instruments correspondant aux débuts de la construction<br />

d’une pensée géométrique dans l’histoire, et qui s’adressent à l’enseignement<br />

des élèves du cycle 3 en France (9 ans-12 ans).<br />

2. L’INSTRUMENT COMME INVENTION ET L’ÉDIFICATION DE LA<br />

GÉOMÉTRIE<br />

Un instrument mathématique, comme tout instrument technique, apparaît<br />

d’emblée comme le résultat d’une invention et son fonctionnement suppose,<br />

pour être possible, cette invention (Barbin 2004: 26-27). Simondon écrit à propos<br />

de l’objet technique: “l’objet qui sort de l’invention technique emporte avec lui<br />

quelque chose de l’être qui l’a produit […] ; on pourrait dire qu’il y a de la<br />

nature humaine dans l’être technique” (Simondon 1969: 248). Cette approche<br />

indique que l’instrument peut, mieux que le discours, apporter une forme<br />

dynamique à la connaissance qui est sous-jacente au fonctionnement d’un<br />

instrument. De plus, l’invention, tout comme la science, est la réponse à un<br />

problème. Rabardel écrit à propos de l’artefact: “l’artefact concrétise une<br />

solution à un problème ou à une classe de problèmes socialement poses”<br />

(Rabardel 1995: 49). Pour lui, l’artefact désigne largement toute chose<br />

transformée par un humain, tandis que l’instrument désigne “l’artefact en<br />

situation dans un rapport à l’action du sujet, en tant que moyen de cette action”<br />

(Rabardel 1995: 49). L’artefact n’est donc pas ‘un outil nu’, comme l’écrit Luc<br />

Trouche (Trouche 2005: 265), dans la mesure où il porte avec lui la solution à un<br />

problème et, activé dans une situation analogue à celle qui a présidé à son<br />

invention, il devient un instrument de réponse à ce problème.<br />

En accord avec l’importance que nous accordons au problème, nous<br />

considérons donc que c’est l’enseignement qui donnera son sens à l’instrument<br />

et non l’instrument qui donnera le sien à l’enseignement, à l’instar de ce que<br />

Simondon écrit à propos des rapports entre le travail et l’objet technique.<br />

L’histoire du baromètre, que l’on attribue au physicien Ernest Rutherford, est<br />

une manière amusante d’illustrer ce propos. Elle raconte que l’on a demandé à<br />

un étudiant de mesurer la hauteur d’un immeuble à l’aide d’un baromètre.<br />

L’étudiant est monté en haut de l’édifice et ayant attaché le baromètre à une<br />

corde, il a descendu la corde et l’a remontée pour mesurer la longueur de la<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Εvelyne Barbin<br />

L’INSTRUMENT MATHÉMATIQUE COMME INVENTION ET CONNAISSANCE-EN-<br />

ACTION<br />

11<br />

corde descendue. Le professeur le recale, mais il lui donne une chance de se<br />

rattraper: il faut qu’il fasse preuve de connaissance physique. L’étudiant monte<br />

alors en haut de l’édifice et laisse tomber le baromètre, il mesure le temps de<br />

chute avec un chronomètre et il applique la loi de chute pour trouver la<br />

longueur de la chute. Il est admis à l’examen et il indique qu’il a d’autres<br />

réponses: en faisant osciller le baromètre comme un pendule ou en comparant<br />

la hauteur de l’ombre du baromètre à celle de l’immeuble. L’étudiant ajoute que<br />

la meilleure solution est de sonner chez le concierge de l’immeuble et de lui<br />

dire: “si vous me donnez la hauteur de l’immeuble, je vous donne ce superbe<br />

baromètre”. Rappelons que lorsque Blaise Pascal a fait entreprendre<br />

l’expérience du Puy de Dôme, son problème n’était pas d’en mesurer la<br />

hauteur, mais de montrer qu’il y avait du vide en haut du tube du dispositif de<br />

Torricelli.<br />

Quels sont les problèmes qui ont accompagné la genèse d’une science<br />

géométrique? Le terme de géométrie signifie ‘mesure de la terre’, il renvoie à<br />

l’arpentage, qui consiste, pour mesurer les terrains, à reporter un bâton et à<br />

compter le nombre de reports. Mais la géométrie grecque a été au-delà de<br />

l’arpentage. Les historiens attribuent aux Ioniens, au VIe siècle avant J.-C., la<br />

solution du problème de déterminer la distance d’un bateau en mer.<br />

L’arpentage avec un bâton est inadéquat, mais”quand les techniques échouent<br />

la science est proche” (Simondon 1969: 246). Pour résoudre le problème, il faut<br />

ruser: les Ioniens ont utilisé un dioptre, c’est-à-dire un instrument de visée, qui<br />

pouvait être un cadran sur lequel tourne une partie flexible autour d’une partie<br />

maintenue verticale grâce à un fil à plomb (fig. 1). En montant sur un endroit<br />

élevé, il est possible de faire une visée vers le bateau en orientant la partie<br />

flexible du dioptre. Ensuite, il faut se retourner en gardant la même inclinaison<br />

et viser un point sur le sol. Deux nouveaux gestes pour résoudre le problème:<br />

une visée et un retournement qui balaie l’espace. Le problème est résolu parce<br />

que le sujet géomètre a remplacé le ‘schème primitive’, celui du report de<br />

l’arpentage, par un processus d’instrumentation au sens de Rabardel. Un<br />

nouveau schème est formé, qui englobe non seulement des mesures de<br />

distances mais des visées, qui relie des visées et des distances. En quoi consiste<br />

ce schème? Par quel processus l’instrument et le nouveau schème sont-ils<br />

potentiellement porteurs d’une connaissance géométrique?<br />

Figure 1. Le cadran ionien<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Εvelyne Barbin<br />

L’INSTRUMENT MATHÉMATIQUE COMME INVENTION ET CONNAISSANCE-EN-<br />

ACTION<br />

12<br />

La géométrie a pour objet de voir et de faire voir ce que l’on pense. Il faut<br />

d’abord représenter la situation. En détachant du réel les éléments essentiels à<br />

sa compréhension, on réalisera un schéma (fig. 2), puis une mise en figure<br />

composée de droites permettra de connecter ces éléments essentiels (fig. 3). Sur<br />

cette figure, certaines droites représentent des distances concrètes, mais pas<br />

celles qui correspondent aux rayons visuels. Pour tenir un discours qui explique<br />

la solution à un autre (qui le demanderait), il faut dire ce qui est maintenant<br />

représenté par un espace entre deux droites et qui correspond à ce qui est une<br />

‘vise’ dans le contexte instrumental. Cet espace a une signification dans le<br />

contexte du problème et il est relié à une distance: on l’appellera un ‘angle’. La<br />

notion d’angle est attribuée aux Ioniens. Cette notion n’est pas présente dans les<br />

mathématiques égyptiennes, dont ont hérité les Grecs, y compris dans les<br />

problèmes de pente de pyramide.<br />

Figure 2. La distance d’un bateau en mer: schéma<br />

Figure 3. La distance d’un bateau en mer: figure<br />

Le schème consiste en une connaissance sur la figure: l’égalité des angles<br />

implique l’égalité des distances. Nous appellerons schème géométrique (ou<br />

simplement schème) une connaissance qui coordonne des éléments d’une<br />

configuration géométrique particulière, et qui peut être activée, transformée ou<br />

généralisée par re-connaissance de cette configuration dans des situations<br />

variées. Pour démontrer (à un autre qui n’en serait pas convaincu) que l’égalité<br />

des angles implique l’égalité de droites, il faudrait encore introduire les notions<br />

de triangle et d’égalité de triangles, puis des lettres pour désigner les éléments<br />

de la figure. La géométrie qui s’édifie ainsi est une science qui raisonne sur des<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Εvelyne Barbin<br />

L’INSTRUMENT MATHÉMATIQUE COMME INVENTION ET CONNAISSANCE-EN-<br />

ACTION<br />

13<br />

grandeurs pour les comparer. La dioptre est une connaissance-en-action parce<br />

que son fonctionnement demande l’effectuation de gestes et l’activation d’un<br />

schème qui reprennent ceux de l’invention et qui seront repris dans d’autres<br />

situations problématiques. Ici, la connaissance instrumentale et la science<br />

procèdent de manière identique.<br />

Examinons maintenant l’instrument scolaire qui est associé à l’angle, c’est-àdire<br />

le rapporteur (fig. 4), et son usage. Il est demandé aux élèves de mesurer<br />

des angles, c’est-à-dire de dire des nombres qui correspondent (plus ou moins)<br />

à un angle dessiné ou de dessiner des angles qui valent 30°, 45°, etc. Le<br />

rapporteur est un outil qui sert essentiellement dans le contexte de dessins de<br />

figures qui n’ont pas toujours ou peu un statut de représentation d’une<br />

situation. Tant qu’il reste dans ce cadre numérique étroit, le rapporteur est peu<br />

susceptible de provoquer des raisonnements géométriques. Il vaut d’ailleurs<br />

mieux que l’élève l’oublie quand il lui sera adjoint de ‘démontrer’. Il en va<br />

différemment si un élève demande, ce qui n’est pas rare, pourquoi les angles<br />

sont mesurés de la même façon, quelle que soit la taille du rapporteur. La<br />

réponse à cette question est une connaissance: le rapport de l’arc intercepté par<br />

un angle au centre à la circonférence tout entière est le même, quel que soit le<br />

rayon du cercle. Avec cette réponse, le rapporteur devient une connaissance-enaction.<br />

Figure 4. Un rapporteur<br />

Avec les deux instruments examinés, nous avons abordé le rôle de ‘l’autre’,<br />

qui dans chacun des deux cas questionne. Cette intrusion n’est pas artificielle<br />

dans l’histoire, où les instruments sont inventés et discutés par des hommes.<br />

Lorsque Rabardel décrit les relations entre les trois pôles constitués par le sujet,<br />

l’instrument et l’objet, il indique bien la composante essentielle qui est<br />

l’environnement. Puis plus loin, il enchérit avec un ‘modèle’ incluant les autres<br />

sujets. Ce modèle SACI (fig. 5) des ‘situations d’activités collectives<br />

instrumentées’ devrait également attirer l’intérêt des didacticiens (Rabardel<br />

1995: 62).<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Εvelyne Barbin<br />

L’INSTRUMENT MATHÉMATIQUE COMME INVENTION ET CONNAISSANCE-EN-<br />

ACTION<br />

14<br />

Figure 5. Modèle SACI d’après Pierre Rabardel<br />

3. GENÈSE INSTRUMENTALE ET CONNAISSANCE-EN-ACTION<br />

L’invention d’un instrument à partir d’un autre et la mise en connexion des<br />

instruments entre eux sont deux processus que nous pouvons explorer dans<br />

l’histoire des mathématiques. Nous les analyserons en reprenant les notions<br />

d’instrumentation et d’instrumentalisation proposées par Rabardel qui<br />

concernent la production de nouveaux artefacts et de nouveaux schèmes. Il<br />

écrit : ”un processus de genèse et d’élaboration instrumentale, porté par le sujet<br />

et qui, parce qu’il concerne les deux pôles de l’entité instrumentale, l’artefact et<br />

les schèmes d’utilisation, a lui aussi deux dimensions, deux orientations à la fois<br />

distinguables et souvent conjointes : l’instrumentalisation dirigée vers l’artefact<br />

et l’instrumentation relative au sujet lui-même” (Rabardel 1995 : 109). Il<br />

caractérise le premier processus comme “un processus d’enrichissement des<br />

propriétés de l’artefact par le sujet” (Rabardel 1995: 114) ou encore comme une<br />

transformation de l’artefact par le sujet. Tandis qu’il caractérise le processus<br />

d’instrumentation en constatant que “la découverte progressive des propriétés<br />

(intrinsèques) de l’artefact par les sujets s’accompagne de l’accommodation de<br />

leurs schèmes, mais aussi de changements de signification de l’instrument<br />

résultant de l’association de l’artefact à de nouveaux schemes” (Rabardel<br />

1995:116). Le schéma ci-dessous (fig. 6) indique que les deux processus sont<br />

effectivement ‘portés par le sujet’ et orientés vers le sujet ou l’artefact, “dans un<br />

même processus de genèse et d’élaboration instrumentale”.<br />

Figure 6. La genèse instrumentale<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Εvelyne Barbin<br />

L’INSTRUMENT MATHÉMATIQUE COMME INVENTION ET CONNAISSANCE-EN-<br />

ACTION<br />

15<br />

Avec la transposition en didactique effectuée par Luc Trouche, la place du<br />

sujet n’est plus la même et le processus d’instrumentalisation va de l’artefact<br />

vers le sujet (fig. 7). Pourtant Rabardel precise: “ces deux types de processus<br />

sont le fait du sujet. L’instrumentalisation par attribution d’une fonction à<br />

l’artefact, résulte de son activité, tout comme l’accommodation de ses schèmes.<br />

Ce qui les distingue c’est l’orientation de cette activité. Dans le processus<br />

d’instrumentation elle est tournée vers le sujet lui-même, alors que dans le<br />

processus corrélatif d’instrumentalisation, elle est orientée vers la composante<br />

artefact de l’instrument” (Rabardel 1995: 111-112).<br />

Figure 7. La genèse instrumentale d’après Trouche<br />

Trouche écrit que “Rabardel distingue, dans la genèse d’un instrument,<br />

deux processus croisés, l’instrumentation et l’instrumentalisation:<br />

l’instrumentalisation est relative à la personnalisation de l’artefact par le sujet,<br />

l’instrumentation est relative à l’émergence des schèmes chez le sujet (c’est-àdire<br />

à la façon avec laquelle l’artefact va contribuer à préstructurer l’action du<br />

sujet, pour réaliser la tâche en question)” (Trouche 2015: 267). Les termes en<br />

italiques sont le fait de l’auteur, mais celui-ci n’indique pas de pagination en<br />

référence à l’ouvrage de Rabardel. Les conceptions d’un sujet qui ‘personnalise’<br />

l’artefact, tandis que l’artefact ‘préstructure’ l’action du sujet, doivent être<br />

rapprochées du projet de l’auteur, à savoir « de guider et intégrer les usages des<br />

outils de calcul dans l’enseignement mathématiques ». En effet, qu’il s’agisse de<br />

calculateur ou d’ordinateur, le sujet ne peut prétendre modifier ce que nous<br />

pouvons appeler ‘machines’, plutôt qu’artefacts. Tandis que les exemples<br />

nombreux donnés par Rabardel, y compris dans le cadre de formation de sujets,<br />

concernent effectivement les modifications des artefacts et des schèmes.<br />

3.1 De l’outil à l’instrument<br />

L’analyse de processus historiques de modifications d’artefacts permet<br />

d’approfondir la notion d’instrument comme connaissance-en-action. En effet,<br />

il n’y a pas dans l’histoire de simultanéité de tous les instruments mais passage<br />

de l’un à l’autre, avec parfois des crises ou des ruptures. En reprenant ce<br />

qu’écrit Simondon à propos de la technique, nous dirons que l’éducation<br />

mathématique ne doit pas “manquer ces dynamismes humains”, “il faut avoir<br />

saisi l’historicité du devenir instrumental à travers l’historicité du devenir du<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Εvelyne Barbin<br />

L’INSTRUMENT MATHÉMATIQUE COMME INVENTION ET CONNAISSANCE-EN-<br />

ACTION<br />

16<br />

sujet” (Simondon 1969: 107-109).<br />

Nous possédons peu de témoignages ou de traces des premiers instruments<br />

de la géométrie. De ce point de vue, l’ouvrage Géométrie de Gerbert d’Aurillac,<br />

datant de l’an 1000, possède un rôle vicariant. L’auteur a été pape en Avignon,<br />

il a voyagé en Espagne et il a ainsi pu connaître les sciences mathématiques<br />

arabes. Il explique dans son ouvrage comment mesurer la largeur d’une rivière<br />

avec un bâton, il s’agit donc encore ici d’un ‘problème de distance inaccessible’.<br />

Les gestes à effectuer sont les suivants: Gerbert plante son bâton sur le bord de<br />

la rivière, il s’éloigne du bord jusqu’à ce que son œil, l’extrémité du bâton et<br />

l’autre bord de la rivière soient alignés. Comme précédemment, nous réalisons<br />

un schéma qui représente la situation, puis une mise en figure lettrée qui permet<br />

de formuler le schème opérant à condition d’adopter une échelle de proportion<br />

(fig. 8). La configuration est constituée de deux triangles emboîtés pour lesquels<br />

le rapport des côtés BD à CD est égal au rapport de BP à OP, on a la proportion<br />

BD : CD :: BP : OP. Ce schème permet d’obtenir la distance BP, qui est la somme<br />

de BD et de DP, à l’issue d’un calcul sur les grandeurs.<br />

Figure 8. La largeur de la rivière par Gerbert<br />

Ce schème intervient aussi dans le fonctionnement de la ‘lychnia’ (lanterne),<br />

présentée au IIe siècle dans les Cestes de Jules l’Africain. Il s’agit d’une<br />

accommodation pratique du bâton, plutôt que d’une genèse instrumentale: elle<br />

comporte un bâton muni à son sommet d’un autre bâton qui peut tourner et qui<br />

permet ainsi d’effectuer des visées plus aisées (fig. 9). Dans le traité Sur la<br />

Dioptre, datant du Ier siècle, Héron d’Alexandrie présente un dioptre assez<br />

semblable à la lychnia et il lui associe un autre outil: un poteau muni d’un<br />

disque, qui peut coulisser le long du poteau. Il résout de nombreux problèmes<br />

de distances inaccessibles (Barbin 2016) : mesurer des différences de niveaux,<br />

joindre deux lieux qui ne sont pas visibles l’un pour l’autre, creuser un tunnel<br />

connaissant ses extrémités, mesurer l’aire d’un champ en restant à l’extérieur<br />

du champ, etc. L’adjonction de poteaux constitue une instrumentalisation, elle<br />

ne modifie pas le schème primitif des triangles emboîtés. Mais la complexité des<br />

problèmes s’accompagne de celle des figures, et les raisonnements demandent<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Εvelyne Barbin<br />

L’INSTRUMENT MATHÉMATIQUE COMME INVENTION ET CONNAISSANCE-EN-<br />

ACTION<br />

17<br />

‘d’imaginer’ de nombreuses droites qui ne représentent pas d’objets tangibles<br />

(fig. 10).<br />

Figure 9. La lychnia de Jules l’Africain et la dioptre d’Héron d’Alexandrie<br />

Gerbert écrit que “un géomètre doit toujours avoir un bâton avec lui”, mais<br />

la possession de cet outil ne suffit pas pour obtenir la solution. Il faut de plus un<br />

raisonnement extérieur à l’outil, qui est singulier pour chacune des utilisations<br />

de l’outil. Examinons de ce point de vue un autre instrument de Gerbert. Il est<br />

composé de deux bâtons, solidaires et perpendiculaires, dont les trois parties<br />

ainsi déterminées sont égales (fig. 10). Pour mesurer la hauteur d’un édifice,<br />

Gerbert aligne l’extrémité du bâton horizontal, le haut du bâton vertical et le<br />

haut de l’édifice. Le schème précédent permet d’obtenir l’égalité de BH et HE, et<br />

donc AB est égal à la somme de HE et FC. La distance HE est accessible par<br />

arpentage et si FC est égal à 1 (par exemple), alors AB égale HE + 1. Notons que,<br />

pour obtenir la solution, il faut adjoindre à la figure une droite HE, qui est le<br />

témoin de la ruse et de la connaissance du géomètre. Cette droite ne représente<br />

aucun élément tangible, elle est ‘imaginative’.<br />

Figure 10. L’instrument de Gerbert<br />

Nous dirons que nous avons affaire ici à un instrument, parce que Gerbert<br />

incorpore dans la conception de son instrument une connaissance du géomètre:<br />

l’instrument est instruit. Le mot instrument vient du mot latin instrumentum, qui<br />

signifie matériel, outillage ou ressource et qui dérive du verbe instruere. Ce verbe,<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Εvelyne Barbin<br />

L’INSTRUMENT MATHÉMATIQUE COMME INVENTION ET CONNAISSANCE-EN-<br />

ACTION<br />

18<br />

francisé en enstruire, donne disposer, outiller et équiper. Ainsi, les mots instrument<br />

et instruire renvoient l'un à l'autre (Barbin 2004: 7-12). Le passage du bâton à<br />

l’instrument peut-être compris comme un processus d’instrumentation, car<br />

l’instrument incorpore le schème dans sa conception. Celui qui l’utilisera<br />

tiendra en main une connaissance-en-action.<br />

3.2 Connexions entre instruments et connaissances<br />

Dans sa Protomathesis de 1532, Oronce Fine présente un instrument que nous<br />

appelons aujourd’hui ‘équerre articulée’. Il est géomètre, astronome et<br />

cartographe, il a enseigné les mathématiques au Collège Royal de Paris et il<br />

publiera en 1556 un ouvrage de géométrie intitulé De re & Praxi geometrica.<br />

Depuis le XIIIe siècle, les Éléments d’Euclide sont connus en Occident par une<br />

traduction latine d’une traduction arabe et ils sont imprimés en 1482. Fine cite<br />

le texte euclidien lorsqu’il présente son équerre articulée (Fine 1532: 67).<br />

Illustration. Extrait de la Protomathesis d’Oronce Fine<br />

L’instrument est composé d’un bâton qui sera dressé verticalement et de<br />

deux bâtons perpendiculaires l’un à l’autre (les alidades) fixés au sommet du<br />

bâton et qui peuvent tourner autour. Pour mesurer, par exemple, la largeur<br />

d’une rivière, il faut poser l’instrument au bord de la rivière et viser à l’aide<br />

d’une alidade l’autre bord de la rivière, puis viser à l’aide de la seconde alidade<br />

un point qui se trouve de notre côté de la rivière, mais en terre ferme (fig. 11).<br />

La distance entre ce point et la base du bâton est connue, ainsi que la hauteur<br />

du bâton. Ceci suffit à connaître la largeur de la rivière.<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Εvelyne Barbin<br />

L’INSTRUMENT MATHÉMATIQUE COMME INVENTION ET CONNAISSANCE-EN-<br />

ACTION<br />

19<br />

Figure 11. La largeur d’une rivière avec l’équerre articulée<br />

En effet, si nous représentons sur une figure les droites intervenant dans la<br />

situation, nous pouvons en extraire un triangle rectangle ABC et sa hauteur AH<br />

(fig. 12). Cette configuration permet de formuler un nouveau schème, qui<br />

correspond à l’un des théorèmes appartenant à la figure. En effet, ‘le théorème<br />

de la hauteur du triangle rectangle’ affirme que, dans un triangle rectangle avec<br />

l’angle droit en A et AH la hauteur, on a BH : AH :: AH : HC ou encore, la<br />

hauteur AH égale le produit des segments déterminés sur la base, AH 2 = BH <br />

HC. Par conséquent, HC s’obtient à partir de BH et AH, qui nous sont connus,<br />

et si AH = 1 alors HC = 1 : BH. Ce théorème est la proposition 8 du Livre VI<br />

d’Euclide (Euclide 1994: 176-179), il est déduit de la similarité des triangles<br />

ABH et CAH, car deux triangles semblables (qui ont leurs angles égaux) ont<br />

leurs côtés proportionnels. L’équerre articulée est une connaissance-en-action,<br />

celle du théorème de la hauteur du triangle rectangle. Sa genèse correspond à la<br />

fois à un processus d’instrumentation, car le schème correspond à une forme<br />

plus complexe que celle des triangles emboîtés, et à un processus<br />

d’instrumentalisation puisque l’usage de l’instrument est amélioré. Le nouveau<br />

schème est une connaissance géométrique qui pourra intervenir dans d’autres<br />

instruments. Rabardel écrit à ce propos que “L’instrument est un moyen de<br />

capitalisation de l’expérience accumulée (cristallisée disent même certains<br />

auteurs). En ce sens, tout instrument est connaissance” (Rabardel 1995: 73).<br />

Figure 12 . Le théorème de la hauteur d’un triangle rectangle<br />

Nous trouvons dans l’histoire de la géométrie, qu’on appelle pratique et que<br />

nous préférons nommer instrumentale, de nombreux instruments de visée pour<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Εvelyne Barbin<br />

L’INSTRUMENT MATHÉMATIQUE COMME INVENTION ET CONNAISSANCE-EN-<br />

ACTION<br />

20<br />

trouver des distances inaccessibles. Ils forment un monde d’individus liés les<br />

uns aux autres, dont l’exploration est bien préférable pour l’enseignement, à<br />

l’utilisation d’un seul d’entre eux. En effet, la dynamique instrumentale peut<br />

introduire un ordre des connaissances qui constituera un apprentissage<br />

dynamique de la déduction mathématique. Nous reprenons en ce sens ce que<br />

Simondon formule pour la réalisation technique: elle “donne la connaissance<br />

scientifique qui lui sert de principe de fonctionnement sous une forme<br />

d’intuition dynamique appréhensible par un enfant même jeune, et susceptible<br />

d’être de mieux en mieux élucidée, doublée par une compréhension discursive”<br />

(Simondon 1969: 109).<br />

4. DYNAMIQUE INSTRUMENTALE ET CONSTRUCTIONS DE<br />

CONNAISSANCES<br />

Depuis la géométrie grecque, la règle et le compas sont les outils de<br />

construction des figures par excellence. Cependant, en conformité avec<br />

l’héritage aristotélicien qui sépare la poïétique de la théorétique, Euclide ne<br />

mentionne pas ces outils, ni aucun autre, mais son ouvrage contient de<br />

nombreuses constructions de figures qui sont obtenues par intersections de<br />

droites et cercles, au point qu’il peut être lu comme un ouvrage de<br />

constructions tout autant que de théorèmes. Les Éléments répondent aux<br />

préceptes aristotéliciens d’une science démonstrative, c’est-à-dire dans laquelle<br />

chaque proposition est déduite soit d’un axiome (demande ou notion<br />

commune), soit de propositions précédemment démontrées. Les premières<br />

demandes sont “de mener une ligne droite de tout point à tout point” et “de<br />

décrire un cercle à partir de tout centre et au moyen de tout intervalle” (Euclide<br />

1994: 167-169). Les historiens ont discuté sur le rôle existentiel de ces demandes,<br />

mais, de toute façon, mener une droite et décrire un cercle sont deux opérations<br />

de base pour effectuer une construction concrète à l’aide d’outils de figures sur<br />

lesquelles le géomètre spécule et raisonne. Il apparaît dès lors difficile de bannir<br />

la considération de tout outillage dans l’interprétation des Éléments.<br />

Il y a deux sortes de propositions dans les Éléments, les constructions (ce que<br />

les Anciens appellent les problèmes) et les théorèmes. L’intrication entre les<br />

deux sortes de propositions est forte et déterminée puisqu’un théorème sur une<br />

figure ne peut pas être démontré sans que celle-ci et les lignes nécessaires à la<br />

démonstration soient construites à la règle et au compas. Il est nécessaire aussi<br />

que toute construction soit justifiée par des théorèmes démontrés<br />

précédemment. Quelle conception prévaut à cette nécessité? Nous pouvons lire<br />

une réponse dans le dialogue du Ménon de Platon qui permet de lier<br />

l’édification de la géométrie grecque à un échec, à une impossibilité de dire qui<br />

est compensée par une possibilité de montrer par une construction et par des<br />

gestes.<br />

Dans ce célèbre dialogue, Socrate expose à Ménon la théorie de la<br />

réminiscence et il fait venir un esclave pour montrer que, par de simples<br />

questions, il va conduire l’esclave à se ressouvenir. Il présente à l’esclave un<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Εvelyne Barbin<br />

L’INSTRUMENT MATHÉMATIQUE COMME INVENTION ET CONNAISSANCE-EN-<br />

ACTION<br />

21<br />

carré de côté deux et donc d’aire quatre, puis il lui demande s’il est possible de<br />

construire un carré d’aire double. Il continue en demandant quel serait le côté<br />

d’un carré d’aire huit: “essaie de me dire quelle serait la longueur de chaque<br />

ligne dans ce nouvel espace”. L’esclave essaie donc de dire: il dit d’abord<br />

quatre, puis trois. Les deux tentatives échouent. Socrate modifie alors sa<br />

demande: “taches de me le dire exactement, et si tu aimes mieux ne pas faire de<br />

calculs, montre la nous”. Il ne s’agit plus de dire un nombre mais de montrer une<br />

figure. Socrate construit étape par étape la figure, qui permet de montrer la<br />

droite demandée. Il accole quatre carrés égaux au carré de départ, puis trace<br />

dans chacun une diagonale (fig. 13). Les quatre diagonales délimitent le carré<br />

cherché. Ainsi ce qui n'est pas dit exactement est construit exactement à la règle<br />

et au compas. Socrate déplace l’objet de l’exactitude, du nombre à la figure.<br />

Figure 13. La construction géométrique de la duplication d’un carré<br />

4.1 Les compas<br />

La seconde demande d’Euclide, de décrire un cercle, peut être satisfaite avec<br />

une corde ou avec un ‘compas à balustre’ (avec un crayon et une pointe). Mais<br />

un compas peut servir aussi à reporter des longueurs de segments. Dans ce cas,<br />

un ‘compas à pointes sèches’ (sans crayon) est suffisant. L’opération de report<br />

est nécessaire en géométrie, elle intervient dès les premiers théorèmes sur les<br />

triangles. Aussi, dans la proposition 2 du Livre I, Euclide demande de placer en<br />

un point donné A, un segment égal à un segment donné BC (Euclide 1994: 197).<br />

Il donne les étapes de la construction: il faut joindre A et B, construire un<br />

triangle équilatéral DAB sur AB (la construction est donnée dans la proposition<br />

1), prolonger DA et DB, puis construire un cercle de centre B et de rayon BC et<br />

un cercle de centre D et de rayon DG (avec G intersection du cercle précédent<br />

avec le prolongement de DB) (fig. 15). Euclide démontre que l’intersection L de<br />

ce dernier cercle avec le prolongement de DA répond au problème car AL est<br />

égal à CB.<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Εvelyne Barbin<br />

L’INSTRUMENT MATHÉMATIQUE COMME INVENTION ET CONNAISSANCE-EN-<br />

ACTION<br />

22<br />

Figure 14. Le report géométrique d’un segment<br />

Le compas à balustre et le compas à pointes sèches sont deux outils<br />

ressemblants d’un point de vue matériel, mais leurs fonctions sont différentes,<br />

et la théorie montre comment l’une peut se ramener rationnellement à l’autre.<br />

Nous allons examiner deux autres compas que nous qualifions d’instruments,<br />

car chacun est une connaissance-en-action. Ils sont également ressemblants l’un<br />

à l’autre d’un point de vue matériel et d’un usage très ancien chez les artisans.<br />

On les retrouve décrits jusqu’à récemment, dans Le dictionnaire pratique de<br />

Menuiserie, Ébénisterie, Charpente de Justin Storck, édité au début du XXe siècle.<br />

Le ‘compas d'épaisseur’, joliment appelé ‘maître à danser’ à cause de sa<br />

forme suggestive, est composé de deux tiges égales, croisées et articulées autour<br />

de leur milieu. Il permet de mesurer le diamètre extérieur d'un cylindre ou d'un<br />

flacon en y introduisant la partie inférieure de l’instrument, les pieds du ‘maître<br />

à danser’ (fig. 15).<br />

Figure 15. Le compas d’épaisseur ou maître à danser<br />

Le problème est encore de trouver une longueur inaccessible à une mesure<br />

exacte. Puisque les segments OA, Oa, OB et Ob sont égaux, et que les angles au<br />

sommet O sont égaux, les deux triangles OAB et Oab sont égaux<br />

(superposables) donc en mesurant AB, nous obtenons ab. La connaissance en<br />

action présente dans la conception et le fonctionnement de l’instrument<br />

correspond à la proposition IV du Livre I des Éléments d’Euclide (premier cas<br />

d’égalité de deux triangles).<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Εvelyne Barbin<br />

L’INSTRUMENT MATHÉMATIQUE COMME INVENTION ET CONNAISSANCE-EN-<br />

ACTION<br />

23<br />

Le ‘compas de réduction est composé de deux tiges égales, croisées et<br />

articulées autour de leur intersection. La place de cette intersection est<br />

modifiable grâce à des fentes placées sur les deux tiges et une fixation (fig. 16).<br />

Ce compas permet d’obtenir une figure réduite d’une figure donnée, mais tout<br />

aussi bien agrandie. En effet, supposons par exemple que l’on veuille réduire<br />

une figure au tiers, il suffit de placer l’intersection O de telle sorte que aO et bO<br />

soient le tiers de OA et OB. Pour réduire au tiers un segment quelconque, il faut<br />

placer A et B à ses extrémités, alors a et b sont les extrémités du segment réduit.<br />

La conception et le fonctionnement du compas de réduction manifestent une<br />

connaissance-en-action, énoncée un peu plus haut. En effet, les triangles Oab et<br />

OAB sont semblables, donc leurs côtés sont proportionnels, par conséquent ab<br />

est le tiers de AB.<br />

Figure 16. Le compas de réduction.<br />

4.2 Échec instrumental et construction de connaissances<br />

Nous allons examiner deux problèmes qui illustrent l’expression de<br />

Simondon, “quand les techniques échouent la science est proche” (Simondon<br />

1969: 246), et qui fournissent d’autres exemples d’inventions d’instruments et<br />

de schèmes. Ils font partie des fameux problèmes à la règle et au compas que les<br />

géomètres grecs ne sont pas parvenus à résoudre, ce sont la duplication d’un<br />

cube et la trisection d’un angle. Dès la science grecque et durant des siècles, ils<br />

vont connaître de très nombreuses solutions instrumentales et géométriques<br />

(Barbin 2014: 87-146). Nous avons choisi de présenter des solutions anciennes<br />

ou élémentaires.<br />

Le problème de la duplication du cube consiste à construire le côté d’un<br />

cube ayant un volume qui est double d’un cube donné. Il peut être considéré<br />

comme une suite du problème de la duplication d’un carré, dont la solution est<br />

obtenue à la règle et au compas grâce à la figure du Ménon, puisqu’un carré est<br />

constructible. Selon Proclus, pour parvenir à la solution pour le cube, le<br />

mathématicien grec du Ve siècle avant J.-C. Hippocrate de Chios ramène le<br />

problème à un autre problème, celui de construire deux segments qui soient<br />

moyennes proportionnelles entre un segment et son double, ou plus largement<br />

entre deux segments quelconques. En écriture symbolique, nous cherchons à<br />

construire deux segments x et y tels que a : x :: x : y :: y : b. Les Commentaires<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Εvelyne Barbin<br />

L’INSTRUMENT MATHÉMATIQUE COMME INVENTION ET CONNAISSANCE-EN-<br />

ACTION<br />

24<br />

d'Eutocius d'Ascalon sur le traité de la sphère et du cylindre d’Archimède (Ve siècle)<br />

indiquent différentes solutions de géomètres grecs, des instruments mais aussi<br />

des constructions à l’aide des coniques, qui auraient été inventées à cet effet par<br />

Ménechme (IVe siècle avant J.-C.) (Archimède 1969: 551-718).<br />

Nous allons nous intéresser à l’instrument attribué à Platon en commençant<br />

par examiner si effectivement, comme l’écrit Ératosthène, pour Hippocrate<br />

“l’embarras fut changé en un autre et non moindre embarrass”. En effet, le<br />

problème proposé par Hippocrate est une suite de la construction d’une<br />

moyenne proportionnelle entre deux segments, qui s’effectue à la règle et au<br />

compas. Étant donnés deux segments BH et HC mis bout à bout, il suffit de<br />

construire à la règle et au compas le milieu de BC, le demi-cercle de diamètre<br />

BC et la hauteur en H à BC. Si A est l’intersection du demi-cercle et de la<br />

hauteur alors AH est la solution au problème (fig. 17 gauche). En effet, ceci<br />

résulte du théorème de la hauteur d’un triangle rectangle car le triangle ABC est<br />

inscrit dans un demi-cercle, donc il est rectangle. Cette solution indique que<br />

l’équerre est aussi un outil commode pour construire la moyenne<br />

proportionnelle à deux segments (fig. 17 droite): il suffit de placer le coin de<br />

l’équerre sur une perpendiculaire (construite avec l’équerre) en H à BC.<br />

L’équerre est un outil qui permet de mettre en action le théorème du triangle<br />

rectangle.<br />

Figure 17. La moyenne proportionnelle avec le compas et avec l’équerre<br />

Notons que la construction de la moyenne proportionnelle AH entre deux<br />

segments BH et HC est aussi celle du côté d’un carré de même aire que le<br />

rectangle de côtés BH et HC. Le théorème du triangle rectangle fournit donc la<br />

solution au problème de la quadrature d’un rectangle. Ce problème est une<br />

étape essentielle dans la quadrature d’un polygone établie par Euclide, il est<br />

donc légitime de rattacher le théorème du triangle rectangle et son invention à<br />

un problème de construction.<br />

L’instrument de Platon pour construire deux moyennes proportionnelles<br />

consiste en trois barres fixes, Hθ, HZ et Mθ. Les deux dernières barres sont<br />

munies de rainures, de sorte qu’une quatrième barre KΛ coulisse parallèlement<br />

à Hθ (fig. 18 gauche). Pour construire deux moyennes proportionnelles à deux<br />

segments AB et BC, on les dispose perpendiculairement l’un à l’autre (avec une<br />

équerre) et on les prolonge (avec une règle). Posons l’instrument de sorte que<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Εvelyne Barbin<br />

L’INSTRUMENT MATHÉMATIQUE COMME INVENTION ET CONNAISSANCE-EN-<br />

ACTION<br />

25<br />

l’angle θHZ soit sur le prolongement de AB et que Hθ passe par C, puis faisons<br />

coulisser KΛ de sorte qu’elle passe par A (fig. 18 droite). Alors nous avons:<br />

BA : BK :: BK : BH :: BH : BC.<br />

En effet, dans le triangle rectangle AKH nous avons BA : BK :: BK : BH, et<br />

dans le triangle rectangle KHC nous avons BK : BH :: BH : BC. L’instrument de<br />

Platon est le résultat d’un processus d’instrumentalisation car il améliore la<br />

simple équerre et il s’appuie sur le même schème, celui de la hauteur d’un<br />

triangle rectangle.<br />

Figure 18. L’instrument de Platon et son fonctionnement<br />

L’invention de l’instrument résulte d’une nouvelle considération du<br />

problème de la moyenne proportionnelle, il faut s’emparer du schème qui a<br />

réussi pour le compas tout en prenant en compte l’échec du compas au-delà.<br />

Nous pouvons alors regarder l’instrument de Platon comme deux équerres<br />

coordonnées qui permettent d’aller au-delà de la simple équerre. En effet, ce<br />

redoublement répond au redoublement de la moyenne proportionnelle<br />

nécessaire pour résoudre la duplication du cube. Le passage par les instruments<br />

constitue ainsi encore une entrée dynamique dans le raisonnement déductif.<br />

L’embarras dans lequel serait tombé Hippocrate est donc profitable, comme<br />

cela est souvent le cas en mathématiques. Auprès de Ménon, Socrate soutenait<br />

l’intérêt de l’embarras de l’esclave pour l’enseignement.<br />

Le problème de la construction à la règle et au compas de la trisection de<br />

l’angle (en trois angles égaux) est également la suite d’un problème qui est<br />

constructible, celui de la bissection d’un angle (en deux angles égaux). Tenant<br />

compte de l’expérience précédente, nous examinons le schème qui autorise la<br />

réussite dans ce cas. Diviser un angle en n parties égales est équivalent à diviser<br />

en n parties égales l’arc correspondant à cet angle quand il est inscrit au centre<br />

d’un cercle. Étant donné un angle de sommet A, traçons un arc de cercle de<br />

centre A qui coupe les côtés de l’angle en B et C, il faut diviser en deux l’arc BC.<br />

Pour cela, il suffit de construire le milieu M de la corde BC en construisant la<br />

médiatrice. Traçons à partir de B et C deux arcs de cercle égaux qui se coupent<br />

en D, alors AD est la médiatrice (fig. 19 gauche). Les deux triangles AMB et<br />

AMC sont égaux car leurs trois côtés sont égaux, donc les angles BAM et CAM<br />

sont égaux. Cette construction ne va pas au-delà de la division en deux parties<br />

égales. Si nous divisions en trois parties égales la corde BC, ce qui est possible à<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Εvelyne Barbin<br />

L’INSTRUMENT MATHÉMATIQUE COMME INVENTION ET CONNAISSANCE-EN-<br />

ACTION<br />

26<br />

la règle et au compas alors l’arc BC n’est pas divisé en trois parties égales (fig.<br />

19 droite).<br />

Figure 19. Division d’un angle et de la corde sous-tendue<br />

Nous allons examiner trois instruments de trisection dont l’invention prend<br />

en compte ce qui a produit la réussite pour la bissectrice mais aussi l’échec audelà.<br />

Les deux premiers sont des instruments d’artisans et le troisième est<br />

inventé par un mathématicien.<br />

Le ‘couteau de cordonnier’ est présenté dans la Géométrie appliquée à<br />

l’Industrie à l’usage des artistes et des ouvriers de Claude Lucien Bergery de 1828.<br />

D’après l’auteur, il était utilisé par les ouvriers messins. Le couteau est composé<br />

d’une règle BE, d’une équerre BCD et un demi-cercle de centre F et diamètre AB<br />

tels que BC est égal à BF. Pour obtenir la trisection d’un angle GHI, il suffit de<br />

poser le couteau sur l’angle, le demi-cercle étant tangent à l’un des côtés et C<br />

étant sur l’autre côté. En effet, les angles GHB, BHF et FHI sont égaux et donc<br />

valent le tiers de l’angle GHI (fig. 20).<br />

Menons HF et FI, l’angle FIH est droit. Les triangles CBH et FBH sont égaux,<br />

donc l’angle CHB est égal à l’angle BHF. Les triangles BFH et FIH sont égaux,<br />

donc l’angle BHF est égal à l’angle FHI. L’invention et le fonctionnement du<br />

couteau de cordonnier reprennent le schème primitif qui préside à la<br />

construction de la bissectrice d’un angle, à savoir l’égalité de deux triangles<br />

rectangles. L’invention du couteau contourne l’obstacle en mimant la situation<br />

des cordes égales et en introduisant un schème qui prolonge le précédent: celui<br />

qui est attaché à la configuration de trois triangles égaux.<br />

Figure 20. Le couteau du cordonnier<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Εvelyne Barbin<br />

L’INSTRUMENT MATHÉMATIQUE COMME INVENTION ET CONNAISSANCE-EN-<br />

ACTION<br />

27<br />

‘L’équerre du charpentier’ est présentée dans un article de Scudder intitulé<br />

“How to trisect an angle with a carpenter’s square”, paru en 1928 dans la revue<br />

American Mathematical Monthly. L’équerre est posée sur l’angle BOA, dont on<br />

cherche la trisection, de façon à tracer le long de la partie GH de l’équerre une<br />

parallèle au côté OA de l’angle. Sur l’équerre est marqué un point F tel que FH<br />

est égal à HK. L’équerre est ensuite posée sur l’angle de sorte à ce que le coin K<br />

de l’équerre soit sur la parallèle au point E, que le sommet O soit sur la partie<br />

GH de l’équerre et que le point F soit sur OB (fig. 21). Les points F, K et H sont<br />

marqués sur la figure. Traçons OH, OK et KF, la perpendiculaire à OA passant<br />

par K. Les trois angles FOH, HOK et KOF sont égaux car les trois triangles<br />

rectangles FOH, HOK et KOF sont égaux. Ainsi, bien que le couteau du<br />

cordonnier et l’équerre du charpentier soient deux instruments très<br />

dissemblables d’un point de vue matériel, la connaissance-en-action est la<br />

même.<br />

Figure 21. L’équerre du charpentier<br />

Un problème posé par James Watt pour améliorer le fonctionnement des<br />

machines à vapeur attire l’intérêt des mathématiciens pour ce qui sera appelé<br />

‘systèmes articulés’, c’est-à-dire un système de tiges articulées les unes aux<br />

autres. Tout au long du XIXe siècle, ils recherchent des systèmes particuliers<br />

pour tracer les courbes ou pour résoudre des problèmes de construction (Barbin<br />

2014: 137-139). Dans ce contexte, le mathématicien Charles-Ange Laisant<br />

introduit ‘un compas trisecteur’, qui fait l’objet d’un article d’Henri Brocard en<br />

1875 (Brocard 1875 : 47-48). L’instrument est composé de deux losanges<br />

articulés OABC et BEDC et d’une tige rigide OBD sur laquelle D peut glisser.<br />

Pour obtenir la trisection d’un angle il suffit de poser l’instrument sur l’angle de<br />

sorte que A et E soient sur ses côtés. Alors les angles EOB, BOC et COA sont<br />

égaux et l’angle AOE est coupé en trois parties égales. En effet, les diagonales<br />

d’un losange sont perpendiculaires, donc OD est la médiatrice de EC et les<br />

triangles EOB et BOC sont égaux. La diagonale OC divise aussi le losange<br />

OBCA en deux triangles BOC et COA égaux.<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Εvelyne Barbin<br />

L’INSTRUMENT MATHÉMATIQUE COMME INVENTION ET CONNAISSANCE-EN-<br />

ACTION<br />

28<br />

Figure 22. Le compas trisecteur de Laisant<br />

Les trois instruments de trisections activent des schèmes similaires, mais les<br />

deux premiers sont singuliers, ils ne sont pas susceptibles de résoudre d’autres<br />

problèmes, alors que le compas trisecteur appartient à une famille<br />

d’instruments qui peuvent se coordonner les uns aux autres, de s’enrichir par<br />

l’introduction d’autres schèmes, comme pour l’inverseur de Peaucellier qui<br />

permet de résoudre exactement le problème de Watt. Avec les systèmes<br />

articulés s’ouvre la construction de courbes.<br />

5. CONCLUSION: APPROCHE INSTRUMENTALE ET HISTORIQUE DE<br />

L’ENSEIGNEMENT<br />

Comme nous l’avons souligné à plusieurs endroits, l’invention et la genèse<br />

instrumentales permettent une entrée dynamique dans la déduction<br />

mathématique: elles définissent des schèmes opérants et elles construisent une<br />

suite ordonnée de schèmes. Le fonctionnement de l’instrument constitue une<br />

connaissance-en-action, susceptible d’être reprise ou prolongée avec l’emploi de<br />

nouveaux instruments ou l’intervention de nouveaux problèmes. Le processus<br />

d’instrumentation va souvent de pair avec le processus d’instrumentalisation,<br />

car ils correspondent tous les deux à des modifications de l’instrument. Comme<br />

l’écrit Séris pour la technique, la genèse instrumentale dépend d’une<br />

“aspiration à faire les choses autrement et mieux” (Séris 1994: 20-21). Nous<br />

rencontrons dans l’histoire deux dynamiques de la genèse instrumentale: pour<br />

un même problème, il faut inventer des instruments de plus en plus commodes,<br />

ou il faut chercher à résoudre des problèmes de plus en plus complexes. Dans<br />

l’enseignement, il semble donc nécessaire d’une part, d’introduire des<br />

instruments dont le fonctionnement est accessible et ainsi compréhensible et<br />

d’autre part, de considérer des familles d’instruments reliés les uns aux autres<br />

par des champs de problèmes et/ou des champs de schèmes. Ceci ne se<br />

restreint pas au domaine de la géométrie, qui fait l’objet unique de cet article.<br />

Examinons ces deux points dans le contexte de l’enseignement aujourd’hui.<br />

Nous avons noté que plus un instrument est porteur de nombreuses<br />

connaissances, plus son usage peut être commode et plus universel. Mais sa<br />

complexité peut alors devenir telle qu’il faille lui intégrer des mécanismes<br />

facilitant et régulant son usage. C’est ainsi que le fonctionnement de<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Εvelyne Barbin<br />

L’INSTRUMENT MATHÉMATIQUE COMME INVENTION ET CONNAISSANCE-EN-<br />

ACTION<br />

29<br />

l’instrument peut devenir en partie ou complètement caché. Nous en avons un<br />

exemple avec l’histoire et l’enseignement des instruments de calcul, car il est<br />

long le processus qui va du boulier à l’ordinateur (Chabert, Barbin et al. 1999).<br />

En présence d’un ordinateur, l’élève sait ce qui entre dans la machine et ce qui<br />

en sort, mais non ce qui s’y fait: il s’accomplit une opération à laquelle l’élève ne<br />

participe pas même s’il la commande.<br />

Ce qu’écrit Simondon de la situation du travailleur face à une machine peut<br />

être repris ici : “commander est encore rester extérieur à ce que l’on commande,<br />

lorsque le fait de commander consiste à déclencher selon un montage préétabli,<br />

fait pour ce déclenchement, prévu pour opérer ce déclenchement dans le<br />

schéma de construction de l’objet technique”. Pour lui, l’aliénation du<br />

travailleur, qui résulte de cette extériorité, réside dans la rupture qui se produit<br />

entre la genèse et l’existence de l’objet technique: “il faut que la genèse de<br />

l’objet technique fasse effectivement partie de son existence, et que la relation<br />

de l’homme à l’objet technique comporte cette attention à la genèse continue de<br />

l’objet technique” (Simondon 1969: 249-250). Cette attention à la genèse<br />

instrumentale est également nécessaire dans une approche instrumentale de<br />

l’enseignement, si nous voulons voir accomplir les effets que nous lui<br />

accordons. Elle invite à se tourner vers la genèse historique des instruments.<br />

Dans le même souci, la reprise du schéma de Trouche (fig.7) dans plusieurs<br />

écrits didactiques incite à relever que la genèse instrumentale ne peut pas se<br />

défaire du sujet connaissant, sous peine en effet d’aliénation. “Les objets<br />

techniques qui produisent le plus d’aliénation sont aussi ceux qui sont destinés<br />

à des utilisateurs ignorant” (Simondon 1969: 249-250).<br />

L’introduction de familles d’instruments plutôt que d’instruments<br />

hétéroclites et isolés est indispensable dans le cadre de l’enseignement de la<br />

géométrie, et plus largement des mathématiques d’aujourd’hui. En France,<br />

comme dans beaucoup de pays, l’enseignement de la géométrie est de plus en<br />

plus limité et éparpillé, dans le contexte d’un enseignement des mathématiques<br />

lui-même réduit et morcelé. Il ne s’agit plus tant de former les élèves et les<br />

étudiants, que de leur inculquer des savoirs et surtout de leur fournir des<br />

compétences. Il s’avère que plus ces enseignements sont amoindris de la sorte,<br />

plus ils perdent de leur légitimité sociale et de leur intérêt cognitif. L’approche<br />

instrumentale doit permettre de relier des connaissances et non pas favoriser<br />

encore un éparpillement de savoirs, qui placerait les élèves en face<br />

d’instruments dont le fonctionnement, non seulement n’est pas porteur de<br />

connaissance-en-action, mais leur échappe.<br />

RÉFÉRENCES<br />

Archimède (1960). Les œuvres complètes (Vol. II). Trad. P. Ver Eecke. Liège:<br />

Vaillant-Carmanne.<br />

Aristote (1991). Métaphysique. Trad. Tricot, J. Paris: Vrin.<br />

Barbin, É. (1994). L'invention des théorèmes et des instruments. In É. Hébert<br />

(Ed.), Instruments scientifiques à travers l'histoire (pp. 7-12) Paris: Ellipses.<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Εvelyne Barbin<br />

L’INSTRUMENT MATHÉMATIQUE COMME INVENTION ET CONNAISSANCE-EN-<br />

ACTION<br />

30<br />

Barbin, É. (2004). L’outil technique comme théorème en acte. In Ces instruments<br />

qui font la science (pp. 26-28). Paris: Sciences et avenir.<br />

Barbin, É. (2006). La révolution mathématique du xviie siècle. Paris: Ellipses.<br />

Barbin, É. (2014). Les constructions mathématiques avec des instruments et des<br />

gestes (Ed.). Paris: Ellipses.<br />

Barbin, É (2016). La Dioptre d’Héron d’Alexandrie: investigations pratiques et<br />

théoriques. In D. Bénard & G. Moussard (Ed.). Les mathématiques et le réel:<br />

expériences, instruments, investigations. Rennes : PUR.<br />

Brocard, H. (1875). Note sur un compas trisecteur proposé par M. Laisant.<br />

Bulletin de la SMF, 3, 47-48.<br />

Chabert, J.-L. & Barbin, É. et al. (1999). A history of Algorithms. From the<br />

Pebble to the Microchip. New-York: Springer.<br />

Euclide (1994). Les Éléments (Vol. 2). Trad. B. Vitrac. Paris: PUF.<br />

Fine, O. (1532). Protomathesis. Paris: Impensis Gerard Morrhij et Ioannis Petri.<br />

Rabardel, P. (1995). Les hommes et les technologies: approche cognitive des<br />

instruments contemporains. Paris: Armand Colin.<br />

Séris, J.-P. (1994). La technique. Paris: PUF.<br />

Simondon, G. (1969). Du mode d’existence des objets techniques. Paris: Aubier-<br />

Montaigne.<br />

Trouche, L. (2005). Des artefacts aux instruments, une approche pour guider et<br />

intégrer les usages des outils de calcul dans l’enseignement des<br />

mathématiques. Actes de l’université d’été de Saint-Flour (pp. 265-276).<br />

BRIEF BIOGRAPHY<br />

Évelyne Barbin is full professor of epistemology and history of sciences (University of<br />

Nantes). Her research concerns history of mathematics and relations between history<br />

and teaching. She works in the French IREMS where she organized thirty colloquia<br />

and summer universities and she edited many books. She had been chair of the HPM<br />

Group from 2008 to 2012.<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


UNIVERSITY OF WESTERN MACEDONIA<br />

FACULTY OF EDUCATION<br />

<strong>MENON</strong><br />

©online Journal Of Educational Research<br />

31<br />

PRIMARY SOURCES AND HISTORY-BASED PROBLEMS<br />

ABOUT ISOPERIMETRY: A USE OF MATHEMATICS HISTORY<br />

IN GRADE SIX 1<br />

Matthaios Anastasiadis<br />

Primary school teacher, MSc, University of Western Macedonia<br />

mat.anastasiadis@gmail.com<br />

Konstantinos Nikolantonakis<br />

Associate Professor, University of Western Macedonia<br />

knikolantonakis@uowm.gr<br />

ABSTRACT<br />

In this paper, we report on the use of one historical note and two primary sources, an<br />

extract from Pappus’ Collection and an extract from Polybius’ Histories, in the context of<br />

an instructional intervention focused on isoperimetric figures and area-perimeter<br />

relationships. The participants were 22 sixth graders, aged 11-12. The research findings<br />

we present here are based on classroom observations, on the worksheets used during<br />

the intervention and on personal interviews with the students. During the intervention,<br />

the students solved problems, which were based on the sources. Twenty-one of the 22<br />

students considered the problem which was based on Pappus’ text to be more<br />

interesting than the problems that they were usually asked to solve in mathematics. In<br />

addition, the students’ ratings of the texts indicate that the extract from Pappus was<br />

the text that they liked most. We also examine the various ways through which the<br />

particular use of mathematics history affected the development of the students’<br />

personal Geometrical Working Spaces.<br />

Keywords: History of mathematics, Primary sources, Isoperimetric figures, Area,<br />

Geometrical Working Space<br />

1. INTRODUCTION<br />

This paper presents some findings from a larger research study linking the<br />

use of historical sources in mathematics education with the Geometrical<br />

Working Spaces theoretical framework (Kuzniak 2006), in the context of an<br />

instructional intervention focused on isoperimetric figures and area-perimeter<br />

relationships. In the paper, we focus on how the sources were used and we<br />

discuss the students’ views both on their learning and on the use of the<br />

particular historical sources, and the various ways through which the particular<br />

use of mathematics history affected the development of the students’ personal<br />

Geometrical Working Spaces.<br />

1 A Greek version of this paper has been published in: Kourkoulos, M., & Tzanakis, C. (guest Eds.). (2014).<br />

History of Mathematics and Mathematics Education. Education Sciences. Special Issue 2014. Rethymno,<br />

Greece: Department of Primary Education, University of Crete.<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Matthaios Anastasiadis, Konstantinos Nikolantonakis<br />

PRIMARY SOURCES AND HISTORY-BASED PROBLEMS ABOUT ISOPERIMETRY :<br />

A USE OF MATHEMATICS HISTORY IN GRADE SIX<br />

32<br />

1.1. History of mathematics and mathematics education<br />

Regarding the use of mathematics history, on the one hand, there are<br />

theoretical objections and practical difficulties. For example, it has been argued<br />

that students often dislike history and that the history of mathematics could<br />

confuse students (Jankvist 2009, Tzanakis et al. 2000). Practical difficulties<br />

include the lack of teaching time and material and the teachers’ lack of<br />

expertise. Moreover, the use of mathematics history could not be easily<br />

assessed, so it would not attract students’ attention.<br />

On the other hand, it has been argued that mathematics history can motivate<br />

students and contribute to the teaching of specific mathematical content<br />

(Jankvist 2009, Tzanakis et al. 2000). Moreover, learning about the difficulties,<br />

errors and misconceptions that arose in the history of mathematics could be<br />

beneficial to students in terms of emotions, beliefs and attitudes; on the other<br />

hand, this kind of knowledge helps teachers to anticipate students’ possible<br />

difficulties and to develop or adapt history-based problems and other<br />

instructional material that could help students overcome these difficulties. Also,<br />

mathematics history shows the role of individuals and the role of different<br />

cultures in the evolution of mathematics and indicates that mathematical<br />

concepts were developed as tools for organizing the world. Finally,<br />

mathematics history enables the connection between mathematics and other<br />

subjects.<br />

Concerning the relationship between students’ difficulties and the<br />

difficulties encountered in mathematics history, there are different approaches.<br />

Through the concept of epistemological obstacle, Brousseau (2002) emphasized<br />

the role of a piece of prior knowledge, which, depending on its structure, has<br />

particular advantages but also leads to particular errors. Contrarily, Furinghetti<br />

and Radford (2008) emphasized the role of culture and argued that school<br />

prepares the unpacking of a tradition established over centuries. Finally,<br />

according to the conceptual change framework, children’s initial theories can<br />

emerge through the children’s interaction with the physical environment and<br />

with the cultural tools (Vosniadou & Vamvakoussi 2006). Thus, similarities<br />

between children’s difficulties and the difficulties encountered in history could<br />

possibly be related to the use of similar cultural tools or to children’s perception<br />

of the environment; this seems to be particularly interesting in the case of<br />

elementary geometry, considered as the science of space (Kuzniak 2006).<br />

As regards the ways of using mathematics history, the most common way is<br />

the use of historical notes, i.e. texts that are written for teaching purposes and<br />

may include names, dates, biographies, anecdotes and stories (Jankvist 2009;<br />

Tzanakis et al. 2000). Worksheets, historical problems, and primary and<br />

secondary sources are also forms of using history. The various history uses can<br />

also be combined for designing teaching and learning sequences (packages) and<br />

projects, which may be short or more extensive and more or less relevant to the<br />

curriculum.<br />

The use of primary sources is both demanding and time-consuming, and it<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Matthaios Anastasiadis, Konstantinos Nikolantonakis<br />

PRIMARY SOURCES AND HISTORY-BASED PROBLEMS ABOUT ISOPERIMETRY :<br />

A USE OF MATHEMATICS HISTORY IN GRADE SIX<br />

33<br />

is often difficult to assess the results (Jahnke et al. 2000). The teacher may need<br />

to translate or modify the text, but such adaptations should not deviate far from<br />

the original text. A primary source may be introduced directly (without prior<br />

preparation) or indirectly, e.g. after problem solving. In short, there is not only<br />

one teaching strategy for the use of primary sources; therefore, the most<br />

appropriate strategy should be chosen.<br />

1.2. Area-perimeter relationships in ancient Greek mathematics<br />

There is sufficient evidence to suggest that area-perimeter relationships have<br />

caused difficulties in the past. For example, Polybius from Megalopolis (2 nd c.<br />

BC), in the ninth book of his treatise Histories, argued that army generals should<br />

have knowledge of astronomy and geometry, and to support his claim, he<br />

wrote: “Most people infer the size of the aforementioned [cities and camps]<br />

only from the perimeter. (....) The reason of this is that we do not remember the<br />

geometry lessons we were taught in our childhood” (Hist. 9.26a.1-4, Büttner-<br />

Wobst ed.). 2 Furthermore, he gave two examples: the first concerns the<br />

comparison between Sparta and Megalopolis, while the second concerns a<br />

hypothetical town or camp which has a perimeter of 40 stadia but is twice as<br />

large as another with a perimeter of 100 stadia.<br />

According to Walbank (1967), ‘the size’ is the area of each city. Moreover,<br />

the first example is of particular historical interest, since the comparison seems<br />

not to be confirmed in the case of area, at least with the existing archaeological<br />

findings. On the contrary, the second example refers to an extreme case and is<br />

mostly of mathematical interest. In any case, Polybius’ reference to geometry is<br />

a characteristic example of the way that ancient writers used mathematics to<br />

present their accounts as superior in terms of accuracy and reliability (Cuomo<br />

2001).<br />

Polybius’ reference to ‘geometry lessons’ shows that area-perimeter<br />

relationships had already been an object of study for mathematicians. In the<br />

Elements, Euclid had already proved that parallelograms on the same base or on<br />

equal bases, and between the same parallels are equal to one another and then<br />

he proved the same for triangles (Ι.35-38). These theorems imply that the length<br />

of the contour of a parallelogram or triangle does not determine the extent of its<br />

surface; this is why, according to Proclus, these theorems caused astonishment<br />

to non-experts (Heath 1921).<br />

Isoperimetry was also the object of Zenodorus’ work (probably 2 nd c. BC).<br />

His treatise on isoperimetric figures has not survived; however, on the basis of<br />

what Theon wrote later, Zenodorus proved that of all regular polygons with<br />

equal perimeter, the largest is the one having the greatest number of angles,<br />

and that if a circle and a regular polygon have equal perimeter, then the circle is<br />

larger (Cooke 2005, Heath 1921). Furthermore, he showed that of all<br />

2 Book 9 survives in fragments, and there have been different views concerning the order of the fragments. In<br />

οther editions or translations, this passage is part of 9.21. In Büttner-Wobst’s edition it is a part of 9.26a, and<br />

Walbank (1967) considered this order to be more coherent.<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Matthaios Anastasiadis, Konstantinos Nikolantonakis<br />

PRIMARY SOURCES AND HISTORY-BASED PROBLEMS ABOUT ISOPERIMETRY :<br />

A USE OF MATHEMATICS HISTORY IN GRADE SIX<br />

34<br />

isoperimetric polygons with the same number of angles, the largest is the<br />

equilateral and equiangular, but he partially based his proof on a lemma that<br />

had not been proved in a general way.<br />

Isoperimetry is also the topic of Book V of Pappus’ Mathematical Collection<br />

(4 th c. AD). The first part of the book concerns plane figures and begins with an<br />

introduction, which is characterized of literary merit (Cooke 2005, Heath 1921)<br />

and stimulates the interest of the reader; its topic is the hexagonal shape of the<br />

cells of honeycombs. Pappus’ explanation of the shape is teleological, as he<br />

claimed that bees choose this shape on purpose. At the end of the introduction,<br />

Pappus formulated a mathematical problem:<br />

Bees then know only what is useful to them. That is, that the hexagon is greater<br />

than the square and the triangle, and can hold more honey, for the same<br />

expenditure of material for the construction of each one. We, however, claiming<br />

to have a greater share of wisdom than bees, will investigate something greater.<br />

That is, that of all equilateral and equiangular plane figures having equal<br />

perimeter, the one which has the greatest number of angles is always greater.<br />

And the greatest of all is the circle, whenever it has perimeter equal to them.<br />

(Mathematical Collection V.3, Hultsch ed.)<br />

According to Cuomo (2000), Book V was probably situated in the context of<br />

rivalries for the appropriation of tradition, for the acquisition of reputation and<br />

for the gaining of new pupils. Bees were frequently used as an example by<br />

philosophers too; for Pappus, the difference between bees and humans is that<br />

bees have limited, useful and intuitive knowledge, whereas humans are both<br />

capable of and interested in proving. Thus, the introduction points out to the<br />

need for proving the isoperimetric theorems. The proof process, which follows,<br />

is situated in the context of the Euclidean tradition. Furthermore, although<br />

there is no reference to Zenodorus, it seems that Pappus followed Zenodorus’<br />

work, especially in the case of plane figures, but also added his own<br />

propositions and proofs (Heath 1921).<br />

Pappus’ introduction about bees is also related to the problem which was<br />

later known as the honeycomb conjecture. According to the conjecture, which<br />

has been proved more thoroughly by Hales (2001), “any partition of the plane<br />

into regions of equal area has perimeter at least that of the regular hexagonal<br />

honeycomb tiling” (p. 1).<br />

1.3. Theoretical framework for designing the intervention<br />

Work with isoperimetric figures, that is geometric figures with equal<br />

perimeters, involves the concepts of perimeter and area and their relation.<br />

Regarding these concepts, prior research (Douady & Perrin-Glorian 1989,<br />

Moreira-Baltar & Comiti 1994, Vighi 2010, Woodward & Byrd 1983, Zacharos<br />

2006) has shown that students often use formulas at the expense of other<br />

strategies, make errors when applying them and do not understand the result,<br />

and confuse area and perimeter; they also believe that a smaller/equal/greater<br />

perimeter implies a smaller/equal/greater area respectively, and vice versa,<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Matthaios Anastasiadis, Konstantinos Nikolantonakis<br />

PRIMARY SOURCES AND HISTORY-BASED PROBLEMS ABOUT ISOPERIMETRY :<br />

A USE OF MATHEMATICS HISTORY IN GRADE SIX<br />

35<br />

and this misconception often reappears after instruction. Furthermore, the<br />

difficulties related to area-perimeter relationships are observed even in<br />

secondary school students and adults (Kellogg 2010, Woodward & Byrd 1983).<br />

Regarding the concept of area, it has been argued that students need to<br />

understand that area is an attribute (Van de Walle & Lovin 2006). The following<br />

strategies have been recommended: a) area measurement with the use of twodimensional<br />

units, b) comparison of areas of different figures, c) superposition<br />

of a surface onto another and reconfiguration of one of the surfaces, and d)<br />

examination of area-perimeter relationships (Douady & Perrin-Glorian 1989,<br />

Nunes, Light, & Mason 1993, Van de Walle & Lovin 2006, Zacharos 2006). It is<br />

also worth noting that in the USA the examination of area-perimeter<br />

relationships is recommended for Grade 3 or above (Common Core State<br />

Standards Initiative 2010, Georgia Department of Education 2014, North<br />

Carolina Department of Public Instruction 2012, Van de Walle & Lovin 2006).<br />

In this research study the concepts of area and perimeter were examined<br />

from the standpoint of geometry, so we used the Geometric Working Spaces<br />

theoretical framework (Kuzniak 2006, 2015). A Geometric Working Space<br />

(GWS) is a space organized in a way that makes it possible for the user of the<br />

space (mathematician or student) to solve a geometric problem. Therefore,<br />

problems are the reason of existence of GWSs. The framework distinguishes<br />

three levels: a) the reference GWS, which is determined by a particular<br />

community of mathematicians or, in education, by the curriculum, b) the<br />

appropriate GWS, which is designed by a teacher for a particular class, and c)<br />

the personal GWS, which is developed by the final user, in our case each<br />

student. In addition, there are three paradigms. Here, we are mainly interested<br />

in Geometry I (GI), wherein experimentation is dominant, and practical proofs,<br />

measurement, the use of numbers and approximate answers are allowed, and<br />

in Geometry II (GII), whose archetype is the classical Euclidean geometry.<br />

The GWS’s epistemological plane includes three components: a) a real space<br />

with its geometric objects, b) a set of artifacts, and c) a theoretical frame of<br />

reference with the definitions and the properties of the objects (Kuzniak 2015).<br />

A second and cognitive plane includes three kinds of processes: visualization,<br />

construction and proof. Visualization includes the reconfiguration of figures,<br />

which may be performed materially or with the use of reorganizing lines or<br />

only by looking (Duval 2005).<br />

Concerning students’ misconceptions, Brousseau (2002) has argued that<br />

overcoming an obstacle requires the involvement of students in solving selected<br />

problems, through which they will realize the ineffectiveness of a piece of<br />

knowledge or conception. He noted, however, that problems should be chosen<br />

in a way that students are motivated and, subsequently, act, discuss and think<br />

so as to solve them. Another strategy which can help students change their<br />

ideas is the use of refutation texts (Tippett 2010), i.e. texts which refer to a<br />

prevalent alternative idea, stressing that it is incorrect. For the use of these texts,<br />

a combination with discussions and other activities is recommended, because<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Matthaios Anastasiadis, Konstantinos Nikolantonakis<br />

PRIMARY SOURCES AND HISTORY-BASED PROBLEMS ABOUT ISOPERIMETRY :<br />

A USE OF MATHEMATICS HISTORY IN GRADE SIX<br />

36<br />

changing ideas is difficult and no text alone is sufficient to achieve this with all<br />

students. Finally, it is recommended that teaching should close with a<br />

metacognitive phase, during which “the teacher asks the students to describe<br />

their old and their new knowledge and to realize its differences” (Kariotoglou,<br />

2006: 36).<br />

We referred above to the role of students’ motivation in solving problems<br />

and we noted that motivation is a usual goal when using the history of<br />

mathematics. Besides, from the viewpoint of motivational psychology, Pintrich<br />

and Schunk (2002) have recommended, among others, the use of original source<br />

material. Regarding the features of the texts that stimulate interest, Schraw,<br />

Bruning and Svoboda (1995) highlighted the role of vividness and of ease of<br />

comprehension. Moreover, prior research has found that students and teachers<br />

argued that when a text is read aloud by the teacher, it becomes more<br />

interesting, and comprehension becomes easier (Ariail & Albright 2006, Ivey &<br />

Broaddus 2001). Other factors that could stimulate interest are: novelty, group<br />

work, hands-on activities, some themes related to nature, meaningfulness and<br />

the balance between the degree of challenge and the level of knowledge and<br />

skill of a person (Bergin 1999, Mitchell 1993, Pintrich & Schunk 2002).<br />

2. METHOD<br />

As already mentioned, this paper presents some findings from a larger<br />

research study. In the paper, we focus on two questions:<br />

1. In what ways was the particular use of mathematics history related to the<br />

development of the students’ personal Geometrical Working Spaces?<br />

2. What were the students’ views both on the particular use of mathematics<br />

history and on their learning?<br />

The research was conducted in Thessaloniki, Greece, and the participants<br />

were 22 sixth graders, aged 11-12. The findings we present here are based on<br />

classroom observations, worksheets and personal interviews with the students.<br />

The instructional intervention was implemented by the first researcher in the<br />

regular classroom of the students. An exception was the class period allotted to<br />

the solution of the main mathematical problem, for which we decided not to<br />

have the groups of students work simultaneously in the regular classroom but<br />

to have each group work for one class period in another classroom of the<br />

school. This was decided in order to enable the observation of the students’<br />

work and of the difficulties they faced. Thus, the whole intervention consisted<br />

of six class periods in the regular classroom and one class period for each group<br />

in another classroom.<br />

The whole research project also included personal interviews with the<br />

students before and after the intervention. In this paper, we focus on the<br />

interviews conducted after the intervention and, in particular, on the questions<br />

asking the students to provide some further explanation concerning their views<br />

on the particular use of mathematics history.<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Matthaios Anastasiadis, Konstantinos Nikolantonakis<br />

PRIMARY SOURCES AND HISTORY-BASED PROBLEMS ABOUT ISOPERIMETRY :<br />

A USE OF MATHEMATICS HISTORY IN GRADE SIX<br />

37<br />

2.1. Design of the appropriate GWS<br />

The intervention was implemented prior to the teaching of the geometry<br />

unit, because the textbook’s emphasis on formulas and the learning of area<br />

formulas for general triangles and trapezoids would affect the students’<br />

personal GWSs, favouring the use of formulas at the expense of other strategies.<br />

Concerning mathematics history, we selected two primary sources: the first<br />

was the introduction to the first part of Book V of Pappus’ Mathematical<br />

Collection (V.1-3) and the second was an extract from Polybius’ Histories<br />

(9.26a.1-6). In addition, we decided to use a historical note entitled Geometry<br />

and included in the sixth grade textbook (Kassoti, Kliapis, & Oikonomou 2006:<br />

136).<br />

Since primary school students do not know ancient Greek, the sources were<br />

presented in translation. During the translation, we used words and phrases as<br />

close as possible to the original texts, while in some cases we used shorter<br />

sentences, so that the translated texts were both suitable for the students and<br />

close to the original (Jahnke et al. 2000). Furthermore, on the basis of the<br />

objectives of the intervention, we did not include in the extract from Pappus the<br />

vocative address “most excellent Megethion” (Mathematical Collection V.1), the<br />

closing of the introduction including the reference to the circle (V.3), and the<br />

detailed verbal proof of the fact that only three regular figures can completely<br />

cover a surface without gaps or overlaps (V.2).<br />

The extract from Pappus, as a historical source, was not introduced directly,<br />

but after the use of the historical note. More specifically, work with the<br />

historical note included reading it, discussing briefly about the origin and<br />

development of geometry and providing additional information about Pappus’<br />

life and his historical period. As regards Pappus’ text, a different approach was<br />

selected: formulation of questions by the teacher, followed by a teacher readaloud<br />

of the text, and discussion based on the initial questions. Then, the<br />

teaching plan included providing the students with a copy of the extract and<br />

asking them to underline words and phrases related to mathematics. The goal<br />

was to provide or help the students activate the definitions and geometric<br />

properties needed for developing their GWSs, namely definitions of polygon,<br />

regular polygon, equilateral triangle, square and regular hexagon, and<br />

definitions of perimeter and area; also which regular figures completely cover a<br />

surface without gaps or overlaps, which figures are called isoperimetric and<br />

how demonstration is related to mathematics.<br />

Work with the text was followed by the formulation of a geometric problem<br />

asking the students to examine if Pappus was right in stating that a cell having<br />

the shape of a regular hexagon holds more honey than other figures suitable for<br />

tessellation. The students were asked to solve the problem in groups and with<br />

different methods:<br />

1. Direct area comparison: superposition of a surface onto another and<br />

reconfiguration of one of the surfaces.<br />

2. Indirect area comparison: tiling of equal surfaces (inverse proportion: the<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Matthaios Anastasiadis, Konstantinos Nikolantonakis<br />

PRIMARY SOURCES AND HISTORY-BASED PROBLEMS ABOUT ISOPERIMETRY :<br />

A USE OF MATHEMATICS HISTORY IN GRADE SIX<br />

38<br />

shape which is used fewer times for the tiling of equal surfaces is<br />

greater).<br />

3. Area measurement with the use of a transparent grid (square-counting).<br />

4. Area calculation with the use of formulas.<br />

The objects of the real space were regular polygons with three, four and six<br />

angles, and irregular polygons (elongated rectangles), in a material form<br />

(cardboard), in order to facilitate the reconfiguration of the shapes. Since the<br />

length of the sides was not given, the students needed to measure the sides, so<br />

as to calculate the perimeter of each shape, and then they were asked to apply<br />

the proposed method of area comparison (GI). The tools selected to be available<br />

(where appropriate, depending on the method) were: triangle ruler, scissors,<br />

glue, adhesive tape, transparency film with a square grid printed on it, marker<br />

pen, pencil, rubber eraser and calculator. In addition, we prepared one<br />

worksheet for each group, aiming, firstly, to provide through a set of questions<br />

particular steps for solving the problem and, secondly, to help students present<br />

their findings in the classroom.<br />

The institutionalization of the new properties was followed by the use of the<br />

extract from Polybius. Work with the second source included a discussion<br />

about area-perimeter relationships, and two other activities. The first one asked<br />

what the shape and the dimensions of two cities could be, if the one had a<br />

perimeter of 40 stadia but twice the area of the other having a perimeter of 100<br />

stadia. The second activity was called ‘Neighborhoods of Thessaloniki’ and<br />

involved eight isoperimetric figures, which represented neighborhoods<br />

(Appendix, Fig. 1).<br />

More specifically, each pair of students was given two figures, which were<br />

printed on a sheet of paper, along with the length of each side in metres. The<br />

students were asked to calculate the perimeter of each figure and to deduce,<br />

without calculation, if an area was smaller than, equal to, or larger than the<br />

other and why.<br />

Regarding perimeter, the students needed only to add the given lengths and<br />

realize that the figures were isoperimetric. Regarding area, they had to develop<br />

the theoretical pole of their GWS (GII), applying the institutionalized<br />

conclusions which were based on the honeycomb problem. Then, each pair of<br />

students was asked to present their answer and check its correctness by<br />

performing measurements (GI) via a computer connected to a projector and<br />

with the use of a Geogebra applet designed for the activity. In the applet, a map<br />

of Thessaloniki was inserted as a background and the eight figures were on the<br />

same scale as the map. Finally, the students were asked to put all the figures on<br />

a board from the smallest to the largest in area, noting that eight different<br />

figures had equal perimeter but different area, that the largest in area was the<br />

regular figure having the greatest number of angles, and that the smallest was<br />

the most elongated figure.<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Matthaios Anastasiadis, Konstantinos Nikolantonakis<br />

PRIMARY SOURCES AND HISTORY-BASED PROBLEMS ABOUT ISOPERIMETRY :<br />

A USE OF MATHEMATICS HISTORY IN GRADE SIX<br />

39<br />

3. RESULTS<br />

3.1. Implementation of the appropriate GWS and students’ difficulties<br />

Regarding the extract from Pappus, we noticed two interrelated behaviours.<br />

First, when students were asked to find in the text words and phrases related to<br />

mathematics, none of them mentioned the word ‘proof’. Secondly, after<br />

working with the text, several students seemed convinced that Pappus was<br />

right and they agreed a priori that the hexagon will be larger.<br />

In the honeycomb problem, all groups correctly arranged the figures in<br />

increasing order of area. The main difficulties they faced while solving the<br />

problem were the following:<br />

Superposition-reconfiguration: the relatively most difficult comparison<br />

was between the hexagon and the square (Appendix, Fig. 2). Overall,<br />

however, this method was the easiest.<br />

Tiling of equal surfaces: the students understood the rationale of the<br />

method when the teacher provided the hypothetical example of two<br />

identical rooms with different tiles. When counting the number of shapes<br />

used, we noticed more difficulties in the case of the hexagon, since there<br />

were parts that were smaller or greater than half the hexagon (Appendix,<br />

Fig. 3), and the students had to recompose these parts by looking (Duval<br />

2005).<br />

Square-counting: at first, the students did not remember that in previous<br />

grades, to find the area of a figure, they counted squares, in grids which<br />

were either pre-drawn on the pages of the textbooks or designed by the<br />

students. In addition, they had to find an operational way to use the<br />

transparent grid, which was new to them as a tool. The most difficult<br />

point was the counting of small squares in the case of the hexagon<br />

(Appendix, Fig. 4); an advanced solution was given later and involved<br />

the reconfiguration of the entire hexagon, in a way that two rectangles<br />

were formed.<br />

Calculation: certain shapes needed to be reconfigured so as to form<br />

shapes whose area could be calculated with the already taught formulas<br />

(Appendix, Fig. 5). There were difficulties regarding the choice of the<br />

appropriate formula, the reconfiguration of the hexagon, and the<br />

calculation which was required when a shape had been reconfigured not<br />

with the use of scissors, but via folding.<br />

Furthermore, some students from different groups showed area-perimeter<br />

confusion. Another obstacle for the students was the usual didactic contract,<br />

since in Greek upper elementary education hands-on activities with figures<br />

presented in a material form are, in practical terms, almost absent. Thus, some<br />

students felt the need to ask for permission to use the scissors and to fold or cut<br />

the shapes, although they had been told that they could work as they wanted,<br />

using whatever tool available they wanted.<br />

Concerning the extract from Polybius, in the discussion which followed, the<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Matthaios Anastasiadis, Konstantinos Nikolantonakis<br />

PRIMARY SOURCES AND HISTORY-BASED PROBLEMS ABOUT ISOPERIMETRY :<br />

A USE OF MATHEMATICS HISTORY IN GRADE SIX<br />

40<br />

students concluded, “that a region can have greater perimeter but smaller area<br />

[as compared with another region], or smaller perimeter but greater area”<br />

(student Q) and that “if a region is greater, it’s not perimeter that matters, it is<br />

area that matters” (student Z). As regards the activity ‘Neighborhoods of<br />

Thessaloniki’, an indicative example is the response of the students who<br />

compared the rectangle with the square: “The square is greater, because they<br />

have equal perimeter and those [figures] that are regular are greater”. Likewise,<br />

in comparing the regular pentagon with the equilateral triangle, the following<br />

answer was given: “They are regular and isoperimetric the one to the other.<br />

Although they have the same perimeter, the pentagon has more angles than the<br />

triangle, thus we assumed that the pentagon is greater”. On the other hand,<br />

there was a student who calculated the perimeters incorrectly and another<br />

student who was initially willing to work within GI, by reconfiguring the<br />

figures and calculating with formulas, but this was difficult, since the figures<br />

were in fact scaled representations.<br />

3.2. Students’ self-references regarding their learning<br />

In the last worksheet used during the intervention there were several<br />

questions aiming to help the students reflect on their learning. These were not<br />

answered by all students, and there were also some non-specific answers. The<br />

rest of the answers referred:<br />

To area-perimeter relationships. For example, student Y wrote that an<br />

idea which she changed was that “those figures which have the same<br />

perimeter always have the same area too”, while her new idea was that<br />

“area and perimeter are not related”. Also, student D wrote that<br />

something which surprised him was that “small and large figures have<br />

the same perimeter”.<br />

To ideas or processes associated with experimentation. For example,<br />

student I wrote that an idea which she changed was that “to find<br />

perimeter I believed that I should do side ∙ side”, but “I discovered that<br />

we do side + side + side + side...”. Furthermore, student H wrote that<br />

something he learnt is “that I can find which figure has the biggest area<br />

without calculating it”, thus showing the dominance of calculation with<br />

formulas in the students’ past experiences. Likewise, student X reported<br />

that something which surprised him is “that there are so many different<br />

methods to measure which figure is bigger”.<br />

To bees and to the shape of the honeycomb cells, as something that<br />

caused surprise.<br />

To the students’ attitude towards geometry. In particular, student Z said<br />

that, previously, she did not love geometry, whereas after these lessons<br />

she liked it somewhat more, because she understood them. Similarly,<br />

student Y wrote that something that surprised her is that “I believed that<br />

geometry was difficult, confusing and incomprehensible, but after these<br />

lessons I found that it is easier”.<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Matthaios Anastasiadis, Konstantinos Nikolantonakis<br />

PRIMARY SOURCES AND HISTORY-BASED PROBLEMS ABOUT ISOPERIMETRY :<br />

A USE OF MATHEMATICS HISTORY IN GRADE SIX<br />

41<br />

In addition, the students were asked to write something they found difficult.<br />

Two students mentioned the honeycomb problem, one student mentioned the<br />

method of tiling and two others mentioned the method of square-counting, four<br />

students wrote that they found it difficult to find the area of the hexagon or of<br />

the triangle, and one student referred to the fact that “There are figures with<br />

equal perimeter”. Finally, several students wrote that they did not find<br />

anything difficult or they did not write anything.<br />

3.3. Students’ assessment of the sources and of the problem<br />

In the same worksheet, the students were also asked how much they liked<br />

each of the texts used in the lessons. The students could rate each text on a 5-<br />

point scale ranging from 1 (the least) to 5 (the maximum). Regarding the<br />

historical note, the mean score was 3.45 (SD = .91, N = 22), whereas in the case<br />

of the extract from Pappus the mean score was 4.36 (SD = .66, N = 22). Finally,<br />

regarding the extract from Polybius, the mean score was 3.85 (SD = 1.31, N =<br />

20); we note that two students were asked to rate only the two first texts, since<br />

they had been absent from school when the extract from Polybius had been<br />

taught.<br />

To determine whether there is a statistically significant difference as to how<br />

much the students liked the three texts, we excluded the two students who did<br />

not rate the third text (N = 20), and we used the Friedman test, which showed<br />

that the difference was significant (χ 2 = 6.818, df = 2, p = .033 < .05). As a posthoc<br />

test, we used the Wilcoxon Signed Ranks Test with Bonferroni correction<br />

(Corder & Foreman 2014), which showed that the difference was statistically<br />

significant in the comparison between the extract from Pappus and the<br />

historical note (Z = -2.857, p = .004 < .017), but not between the extract from<br />

Pappus and the extract from Polybius (Z = -1.543, p = .123) nor between the<br />

extract from Polybius and the historical note (Z = -.997, p = .319). We note that<br />

both the Friedman and the Wilcoxon test are non-parametric, but they are more<br />

appropriate for ratings and for small sample sizes (N


Matthaios Anastasiadis, Konstantinos Nikolantonakis<br />

PRIMARY SOURCES AND HISTORY-BASED PROBLEMS ABOUT ISOPERIMETRY :<br />

A USE OF MATHEMATICS HISTORY IN GRADE SIX<br />

42<br />

A comparison of the self-reported degree of the problem’s difficulty with the<br />

method used by the students in solving it, shows that none of those who<br />

performed superposition-reconfiguration considered the problem to be more<br />

difficult. In contrast, three quarters of those who used square-counting<br />

considered the problem to be more difficult. Furthermore, a recoding of the<br />

responses (1: more difficult; 0: same degree of difficulty; -1: easier), shows that,<br />

on average, the students who performed superposition-reconfiguration or tiled<br />

equal surfaces considered the problem to be easier (average degree of difficulty<br />

-.5 and -.3 respectively), as compared with the students who used squarecounting<br />

and calculation with formulas (.5 and 0 respectively). It is also worth<br />

noting that five students who were generally weak in mathematics considered<br />

the problem to be easier than usual.<br />

In the interviews conducted after the intervention, the students were asked<br />

to explain the judgments they had made. For example, student T said:<br />

Answer: The problems we usually solve in the textbook are more difficult.<br />

Question: What is it that makes them more difficult?<br />

Answer: Hmm... when I do not understand, this seems difficult.<br />

Also, student A considered the problem to be easier, because “it didn’t need<br />

many calculations and the like”, and student C agreed also because “we were<br />

more students and we collaborated”. On the contrary, student P, for example,<br />

thought that the problem was more difficult, because “it was more<br />

complicated”, while student W, who had tiled equal surfaces, regarded the<br />

problem as more difficult, because “it puzzled you with the shapes, if it fits, if it<br />

leaves a gap, if you must... if you had to put something else”.<br />

Regarding interest, 12 students referred explicitly and clearly to nature,<br />

bees, honeycombs or to ancient Greeks and, more generally, to what constitutes<br />

the context of the problem, for example:<br />

“We learned many things about geometry, many ways to find the area<br />

and the perimeter of a shape, but we also learned about reality, why bees<br />

use this shape”. (student I)<br />

“You were curious to see it; it is about nature and... it is a mystery what<br />

bees do, whereas the textbook's problems are, let’s say, simpler”.<br />

(student Q)<br />

“I liked it with the example we did, that is with bees and honeycombs<br />

and the text saying... It was like a story that you had to solve”. (student<br />

M)<br />

On the other hand, student B explicitly linked difficulty with interest: “It<br />

was more difficult; it was interesting to solve”. There was also one mention of<br />

the fact that mathematicians worked on this problem and one answer saying<br />

that this way the students learned “how geometry was discovered” (student<br />

W), three mentions of the fact that the students worked in groups and two<br />

mentions of the fact that the problem was unusual; student X, for example, gave<br />

this characteristic answer: “I hadn’t done a problem like this before and this is<br />

why I liked it”.<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Matthaios Anastasiadis, Konstantinos Nikolantonakis<br />

PRIMARY SOURCES AND HISTORY-BASED PROBLEMS ABOUT ISOPERIMETRY :<br />

A USE OF MATHEMATICS HISTORY IN GRADE SIX<br />

43<br />

4. DISCUSSION<br />

In the present research, we used the history of mathematics to achieve<br />

various goals, which were related to each other and to the development of the<br />

students' GWSs as well. In particular, the historical sources were the source of<br />

geometric problems and problems are the reason of existence of GWSs<br />

(Kuzniak 2015). In addition, the historical sources and the historical note served<br />

as a means of motivation and motivation constitutes an important tool for the<br />

active involvement of students in solving problems (Brousseau 2002). Since the<br />

three texts were assessed positively, it could be argued that they all helped to<br />

motivate the students. Thus, the argument that many students may be affected<br />

negatively because they dislike history (Jankvist 2009, Tzanakis et al. 2000) was<br />

not supported here.<br />

Pappus’ text was also used as a means of activating preexisting definitions<br />

and properties of the theoretical frame of reference (e.g. definition of perimeter)<br />

and of enriching it with new definitions and properties (e.g. definition of<br />

regular figure); these properties were necessary for the development of the<br />

students’ personal GWSs and the solution of the honeycomb problem.<br />

Additionally, the students made a first acquaintance with a new property<br />

concerning area-perimeter relationships. This property, however, was regarded<br />

by some students not as a proposition to be confirmed, but as established<br />

knowledge. This behaviour could be attributed to the usual didactic contract,<br />

according to which textbooks and, by extension, texts used in school, contain<br />

indisputable truths; it is also likely to reflect a broader conception according to<br />

which mathematical knowledge is generally unchanging over time (Schommer-<br />

Aikins 2002), and, therefore, a mathematician cannot be mistaken.<br />

As already mentioned, the historical sources were the source of geometric<br />

problems. Subsequently, the honeycomb problem constituted a means of<br />

enriching the students’ personal GWSs with new tools (transparent grid) as<br />

well as with experimentation methods which present area as an attribute and<br />

which had been used in previous grades but had been forgotten.<br />

Furthermore, mathematical problems are a means to overcome students’<br />

misconceptions (Brousseau 2002), and Polybius’ text seems to have contributed<br />

to this goal. This text is not a refutation text written for teaching purposes, but a<br />

historical source, with all its complexity. However, the reference to<br />

misconceptions related to area-perimeter relationships and the information that<br />

such mistakes were also made by important persons in history both acted as<br />

stimuli to the students and contributed to a climate of comfort for the students<br />

to reflect and talk about themselves. This is also related to the students’<br />

personal GWSs and, in particular, to their theoretical frame of reference.<br />

Here, however, we should take into account that changing ideas is difficult<br />

and no text alone is sufficient to achieve this with all students (Tippett 2010).<br />

This is also true for area-perimeter relationships, in which even secondary<br />

school students and adults have difficulties (Kellogg 2010, Woodward & Byrd<br />

1983). Besides, it has been observed that misconceptions concerning area-<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Matthaios Anastasiadis, Konstantinos Nikolantonakis<br />

PRIMARY SOURCES AND HISTORY-BASED PROBLEMS ABOUT ISOPERIMETRY :<br />

A USE OF MATHEMATICS HISTORY IN GRADE SIX<br />

44<br />

perimeter relationships often reappear after instruction (Douady & Perrin-<br />

Glorian 1989, Kellogg 2010, Vighi 2010).<br />

Apart from these, it is interesting that two students spontaneously referred<br />

to their attitude towards geometry, although this was not the main goal of the<br />

intervention.<br />

Regarding the assessment of the historical texts, the students on average<br />

answered that they liked all three texts; most of all they liked the extract from<br />

Pappus, then the extract from Polybius and finally the historical note. The<br />

difference was statistically significant in comparing the extract from Pappus<br />

with the historical note. These findings have multiple interpretations:<br />

The ranking of the three texts reflects the time allotted to each one.<br />

However, if the students did not like the way that teaching time was<br />

used, then more allotted time would have probably led to a greater<br />

dislike of a text.<br />

The students’ greater preference for both primary sources is in<br />

accordance with the recommendation made by Pintrich & Schunk (2002)<br />

that original source material should be used. At the same time, this<br />

preference could be attributed to the fact that both primary sources were<br />

accompanied by a mathematical problem, whereas the historical note<br />

was not.<br />

The extract from Pappus was read aloud by the teacher, and this<br />

probably facilitated comprehension and made the text more vivid,<br />

thereby increasing the students’ interest (Ariail & Albright 2006, Ivey &<br />

Broaddus 2001, Schraw et al. 1995).<br />

Most of all, it seems that the students’ greater preference for the extract<br />

from Pappus is related to the theme and, generally, to the features of the<br />

text: regularity in nature, and the society of bees are two themes that had<br />

attracted the interest of philosophers and mathematicians since antiquity<br />

and were widely known (Cuomo 2000). Thus, we could say that these<br />

themes could be listed among those themes that are related to nature and<br />

are reported to stimulate interest (Bergin 1999). Besides, as student Q<br />

said: “it is about nature and... it is a mystery what bees do”. Apart from<br />

this, Pappus’ text was written as a literary introduction to his book with<br />

the aim of stimulating interest. And finally, the chosen extract does not<br />

contain names, and dates or numbers, unlike the other two texts.<br />

Regarding the degree of difficulty of the honeycomb problem as compared<br />

with the usual problems, the students’ opinions were not homogeneous:<br />

somewhat more students (11) considered the problem to be easier, whereas<br />

eight of the 22 said that it was more difficult. The students’ opinions were<br />

influenced, first, by the method with which each student worked. Second, it<br />

seems that the students who were generally weak in mathematics considered<br />

the problem to be easier than usual, taking into account the lack of calculations,<br />

the material form of the shapes, the availability of tools appropriate for work<br />

within GI and the fact that the students worked in groups. Thus, they were able<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Matthaios Anastasiadis, Konstantinos Nikolantonakis<br />

PRIMARY SOURCES AND HISTORY-BASED PROBLEMS ABOUT ISOPERIMETRY :<br />

A USE OF MATHEMATICS HISTORY IN GRADE SIX<br />

45<br />

to participate and contribute to the solution, and it is indicative that in the<br />

group which used calculations with formulas the most difficult reconfiguration<br />

of the hexagon was performed by a student who was generally weak in<br />

mathematics. Furthermore, the (indirect) subdivision of the problem through<br />

the questions included in the accompanying worksheet is also likely to have<br />

helped those who face difficulties in organizing the problem solving process.<br />

On the other hand, 21 out of the 22 students considered the problem to be<br />

more interesting than the usual problems. This finding, combined with the<br />

answers regarding the degree of difficulty, suggests a sufficient balance<br />

between the requirements of the problem and the level of knowledge and skill<br />

of each student. As shown previously, a factor that contributed to this balance<br />

was the hands-on nature of the activity. In addition, the arguments of the<br />

students show that group work, the unusual nature of the problem and, most of<br />

all, the context of the problem also stimulated interest. All these factors have<br />

been reported in the related literature (Bergin 1999, Mitchell 1993, Pintrich &<br />

Schunk 2002) and may have influenced the students’ views both directly and<br />

indirectly. For example, group work affected the students not only directly, but<br />

also indirectly by facilitating the solution of the problem, thus intervening in<br />

the relationship between challenge and skill. Finally, the context of the problem<br />

was determined by Pappus’ text, and it seems that the combination of the<br />

problem with the text linked knowledge with the questions that gave birth to it<br />

and gave meaning to the activity.<br />

REFERENCES<br />

Ariail, M., & Albright, L. K. (2006). A survey of teachers' read-aloud practices in<br />

middle schools. Reading Research and Instruction, 45(2), 69-89.<br />

Bergin, D. A. (1999). Influences on classroom interest. Educational Psychologist,<br />

34(2), 87-98.<br />

Brousseau, G. (2002). Theory of didactical situations in Mathematics (N.<br />

Balacheff, M. Cooper, R. Sutherland, & V. Warfield, Eds. & Trans.). New<br />

York: Kluwer Academic.<br />

Common Core State Standards Initiative. (2010). Common Core State Standards<br />

for Mathematics. Retrieved from<br />

http://www.corestandards.org/assets/CCSSI_Math%20Standards.pdf<br />

Cooke, R. (2005). The history of mathematics: A brief course (2nd ed.).<br />

Hoboken, NJ: Wiley.<br />

Corder, G. W., & Foreman, D. I. (2014). Nonparametric statistics. A step by step<br />

approach (2nd ed.). Hoboken, NJ: Wiley.<br />

Cuomo, S. (2000). Pappus of Alexandria and the mathematics of late antiquity.<br />

Cambridge: Cambridge University Press.<br />

Cuomo, S. (2001). Ancient mathematics. London: Routledge.<br />

Douady, R., & Perrin-Glorian, M. J. (1989). Un processus d'apprentissage du<br />

concept d'aire de surface plane. Educational Studies in Mathematics, 20, 387-<br />

424.<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Matthaios Anastasiadis, Konstantinos Nikolantonakis<br />

PRIMARY SOURCES AND HISTORY-BASED PROBLEMS ABOUT ISOPERIMETRY :<br />

A USE OF MATHEMATICS HISTORY IN GRADE SIX<br />

46<br />

Duval, R. (2005). Les conditions cognitives de l’apprentissage de la géométrie:<br />

développement de la visualisation, différenciation des raisonnements et<br />

coordination de leurs fonctionnements. Annales de Didactique et de<br />

Sciences Cognitives, 10, 5-53.<br />

Furinghetti, F., & Radford, L. (2008). Contrasts and oblique connections<br />

between historical conceptual developments and classroom learning in<br />

mathematics. In L. English (Ed.), Handbook of International Research in<br />

Mathematics Education (2nd ed., pp. 626-655). New York, NY: Routledge.<br />

Georgia Department of Education. (2014, July). Common Core Georgia<br />

Performance Standards Framework. Third Grade mathematics. Unit 4:<br />

Geometry. Retrieved November 9, 2014 from<br />

https://www.georgiastandards.org/Common-<br />

Core/Common%20Core%20Frameworks/CCGPS_Math_3_Unit4Framewor<br />

k.pdf<br />

Hales, T. C. (2001). The honeycomb conjecture. Discrete & Computational<br />

Geometry, 25, 1-22.<br />

Heath, T. (1921). A history of Greek mathematics (Vol. 2). Oxford: Clarendon<br />

Press.<br />

Jahnke, H. N., Arcavi, A., Barbin, E., Bekken, O., Furinghetti, F., El Idrissi, A., . .<br />

. Weeks, C. (2000). The use of original sources in the mathematics classroom.<br />

In J. Fauvel, & J. van Maanen (Eds.), History in mathematics education. The<br />

ICMI Study (pp. 291-328). Dordrecht: Kluwer Academic.<br />

Jankvist, U. T. (2009). A categorization of the “whys” and “hows” of using<br />

history in mathematics education. Educational Studies in Mathematics, 71,<br />

235-261.<br />

Ivey, G., & Broaddus, K. (2001). Just plain reading: A survey of what makes<br />

students want to read in middle school classrooms. Reading Research<br />

Quarterly, 36(4), 350-377.<br />

Kariotoglou, P. (2006). Science pedagogical content knowledge [in Greek].<br />

Thessaloniki: Grafima.<br />

Kassoti, O., Kliapis, P., & Oikonomou, Th. (2006). Sixth Grade mathematics [in<br />

Greek]. Athens: O.E.D.B.<br />

Kellogg, M. S. (2010). Preservice elementary teachers' pedagogical content<br />

knowledge related to area and perimeter: A teacher development<br />

experiment investigating anchored instruction with web-based microworlds<br />

(Doctoral dissertation). University of South Florida. Retrieved from<br />

http://scholarcommons.usf.edu/etd/1679<br />

Kuzniak, A. (2006). Paradigmes et espaces de travail géométriques. Éléments<br />

d'un cadre théorique pour l'enseignement et la formation des enseignants en<br />

géométrie. Canadian Journal of Science, Mathematics and Technology<br />

Education, 6(2), 167-187.<br />

Kuzniak, A. (2015). Understanding the nature of the geometric work through its<br />

development and its transformations. In S. J. Cho (Ed.), Selected regular<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Matthaios Anastasiadis, Konstantinos Nikolantonakis<br />

PRIMARY SOURCES AND HISTORY-BASED PROBLEMS ABOUT ISOPERIMETRY :<br />

A USE OF MATHEMATICS HISTORY IN GRADE SIX<br />

47<br />

lectures from the 12th International Congress on Mathematical Education<br />

(pp. 1-15). Cham: Springer.<br />

Mitchell, M. (1993). Situational interest: Its multifaceted structure in the<br />

secondary school mathematics classroom. Journal of Educational<br />

Psychology, 85(3), 424-436.<br />

Moreira-Baltar, P., & Comiti, C. (1994). Difficultés rencontrées par des élèves de<br />

cinquième en ce qui concerne la dissociation aire/périmètre pour des<br />

rectangles. Petit x, 34, 5-29.<br />

North Carolina Department of Public Instruction. (2012). Third Grade area and<br />

perimeter. Retrieved May 20, 2013 from<br />

http://maccss.ncdpi.wikispaces.net/file/view/3rdGradeUnit.pdf<br />

Nunes, T., Light, P., & Mason, J. (1993). Tools for thought: the measurement of<br />

length and area. Learning and Instruction, 3, 39-54.<br />

Pintrich, P. R., & Schunk, D. H. (2002). Motivation in education: theory,<br />

research, and applications (2nd ed.). Upper Saddle River, NJ: Merrill/<br />

Prentice-Hall.<br />

Schraw, G., Bruning, R., & Svoboda, C. (1995). Sources of situational interest.<br />

Journal of Literacy Research, 27(1), 1-17.<br />

Schommer-Aikins, M. (2002). An evolving theoretical framework for an<br />

epistemological belief system. In B. K. Hofer, & P. R. Pintrich (Eds.),<br />

Personal epistemology: the psychology of beliefs about knowledge and<br />

knowing (pp. 103-118). Mahwah, NJ: Lawrence Erlbaum.<br />

Tippett, C. D. (2010). Refutation text in science education: A review of two<br />

decades of research. International Journal of Science and Mathematics<br />

Education, 8, 951-970.<br />

Tzanakis, C., Arcavi, A., de Sa, C. C., Isoda, M., Lit, C. K., Niss, M., . . . Siu, M.<br />

K. (2000). Integrating history of mathematics in the classroom: An analytic<br />

survey. In J. Fauvel, & J. van Maanen (Eds.), History in mathematics<br />

education. The ICMI Study (pp. 201-240). Dordrecht: Kluwer Academic.<br />

Vighi, P. (2010). Investigating comparison between surfaces. In V. Durand-<br />

Guerrier, S. Soury-Lavergne, & F. Arzarello (Eds.), Proceedings of the 6th<br />

Congress of the European Society for Research in Mathematics Education<br />

(pp. 716-725). Lyon, France: Institut National de Recherche Pédagogique.<br />

Van de Walle, J. A., & Lovin, L.-A., H. (2006). Teaching student-centered<br />

mathematics : Grades 3-5. Boston: Pearson.<br />

Vosniadou, S., & Vamvakoussi, X. (2006). Examining mathematics learning<br />

from a conceptual change point of view: Implications for the design of<br />

learning environments. In L. Verschaffel, F. Dochy, M. Boekaerts, & S.<br />

Vosniadou (Eds.), Instructional psychology: Past, present and future trends.<br />

Sixteen essays in honour of Erik De Corte (pp. 55-72). Oxford: Elsevier.<br />

Walbank, F. W. (1967). A historical commentary on Polybius (Vol. 2). Oxford:<br />

Clarendon Press.<br />

Woodward, E., & Byrd, F. (1983). Area : included topic, neglected concept.<br />

School Science and Mathematics, 83, 343-347.<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Matthaios Anastasiadis, Konstantinos Nikolantonakis<br />

PRIMARY SOURCES AND HISTORY-BASED PROBLEMS ABOUT ISOPERIMETRY :<br />

A USE OF MATHEMATICS HISTORY IN GRADE SIX<br />

48<br />

Zacharos, K. (2006). Prevailing educational practices for area measurement and<br />

students’ failure in measuring areas. Journal of Mathematical Behavior, 25,<br />

224-239.<br />

BRIEF BIOGRAPHIES<br />

Matthaios Anastasiadis has graduated from the Department of History and<br />

Archaeology (Aristotle University of Thessaloniki) and the Department of Primary<br />

Education (University of Western Macedonia). He has also received a master’s degree<br />

in didactics of science and mathematics (University of Western Macedonia). He<br />

currently works as a primary school teacher.<br />

Konstantinos Nikolantonakis is Associate Professor of Mathematics Education at the<br />

Department of Primary Education of the University of Western Macedonia. He has<br />

graduated from the Department of Mathematics of the Aristotle University of<br />

Thessaloniki. He received a master and a Ph.D. in Epistemology and History of<br />

Mathematics from the University of Denis Diderot (Paris-7). His research concerns the<br />

didactical use of the History of Mathematics, the History of Ancient Greek<br />

Mathematics, and the didactics of Arithmetic & Geometry.<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Matthaios Anastasiadis, Konstantinos Nikolantonakis<br />

PRIMARY SOURCES AND HISTORY-BASED PROBLEMS ABOUT ISOPERIMETRY :<br />

A USE OF MATHEMATICS HISTORY IN GRADE SIX<br />

49<br />

APPENDIX<br />

Figure 1: The isoperimetric figures used in the activity « Neighborhoods of<br />

Thessaloniki ».<br />

Figure 2: Superposition-reconfiguration; comparison between the hexagon and the<br />

square.<br />

Figure 3: Tiling with regular hexagons.<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Matthaios Anastasiadis, Konstantinos Nikolantonakis<br />

PRIMARY SOURCES AND HISTORY-BASED PROBLEMS ABOUT ISOPERIMETRY :<br />

A USE OF MATHEMATICS HISTORY IN GRADE SIX<br />

50<br />

Figure 4: Square-counting in the case of<br />

the regular hexagon.<br />

Figure 5: Reconfiguration of the<br />

equilateral triangle into a rectangle (4th<br />

method).<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


UNIVERSITY OF WESTERN MACEDONIA<br />

FACULTY OF EDUCATION<br />

<strong>MENON</strong><br />

©online Journal Of Educational Research<br />

51<br />

THE DEVELOPMENT OF PLACE VALUE CONCEPTS AND THE<br />

NOTION OF CARRIED NUMBER AMONG SIXTH GRADE<br />

STUDENTS VIA THE STUDY OF THE CHINESE ABACUS<br />

Vasiliki Tsiapou<br />

Primary School Teacher, Phd Student,<br />

University of Western Macedonia<br />

vana@semiphoto.com<br />

Konstantinos Nikolantonakis<br />

Associate Professor,<br />

University of Western Macedonia<br />

knikolantonakis@uowm.gr<br />

ABSTRACT<br />

The paper presents part of a research study that intended to use the history of<br />

mathematics for the development of place value concepts and the notion of carried<br />

number with sixth grade Greek students. In the given pre-tests students faced<br />

difficulties in solving place value tasks, such as regrouping quantities and multi-digit<br />

subtractions. Also, they vaguely explained the carried number, a notion which is<br />

structurally associated with calculations. We held an instructive intervention via a<br />

historical calculating tool, the Chinese abacus. In the post-tests students improved<br />

their scores and they often put forward expressions influenced by the abacus<br />

investigation. To a smaller extent we attempted to highlight the historical dimension<br />

of the subject.<br />

Keywords: historical instrument, Chinese abacus, place value, carried number,<br />

Primary school students<br />

1. INTRODUCTION<br />

Studies have shown that many students don’t comprehend thoroughly the<br />

structure of our number system. They don’t know the values of the digits of a<br />

number and how these values interrelate. A great difficulty is in developing an<br />

understanding of multi-digit numbers. Students need to understand not only<br />

how numbers are partitioned according to the base-10 structure, but also how<br />

these values interrelate (Fuson 1990). Resnick (1983) used the term ‘multiple<br />

partitioning’ to describe the ability to partition numbers in non-standard<br />

ways, e.g., 34 can be decomposed into 2 Tens and 14 Units. This ability is<br />

essential for competence in calculations and many types of errors that have<br />

been observed in subtraction (Fuson 1990) are due to the students’ difficulty to<br />

acquire this competence. As a consequence, they cannot interpret the<br />

carried number; a concept structurally associated with calculations. That is why<br />

the development of the concept of the carried number which is associated with<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Vasiliki Tsiapou, Konstantinos Nikolantonakis<br />

THE DEVELOPMENT OF PLACE VALUE CONCEPTS AND THE NOTION OF<br />

CARRIED NUMBER AMONG SIXTH GRADE STUDENTS VIA THE STUDY OF THE<br />

CHINESE ABACUS<br />

52<br />

exchanges between classes should deserve more attention during primary<br />

school years (Poisard 2005).<br />

In this paper we focus on the difficulties that the students of the present<br />

study faced in the above concepts (converting nonstandard representations of<br />

the numbers’ multiple partitioning in standard form and in interpreting the<br />

carried number) and the way that we tried to address these difficulties with<br />

the use of the history of mathematics. Initially, we present the reasons that<br />

historical instruments may positively contribute to mathematics education.<br />

Then we describe the didactical use of the historical instrument that we<br />

used in the intervention, the Chinese abacus. Afterwards we present an<br />

overview of the intervention: the objectives, the design with the use of history,<br />

and an example of a didactical session. Then, a brief quantitative and a<br />

more detailed qualitative analysis of the results follow.<br />

2. THE ROLE OF THE HISTORY OF MATHEMATICS IN THE<br />

CLASSROOM<br />

Researchers have long thought about whether mathematics education can<br />

be improved through incorporating ideas and elements from the history of<br />

mathematics. Tzanakis and Arcavi (2000) offered a list of arguments and<br />

Jankvist (2009) distinguished these arguments between using ‘history-as-agoal’<br />

(learning of the mathematical concepts) and using ‘history-as-a-tool’<br />

(learning mathematical concepts). Jankvist also classified the approaches in<br />

which history can be used. One of these is the modules approach’. Modules<br />

are instructional units suitable for the use of history as a cognitive tool, since<br />

extra time is required to study more in-depth mathematical concepts, and as<br />

a goal (Jankvist 2009). Among the possible ways that modules can be<br />

implemented using history as a ‘tool’ as well as a ‘goal’, is through the use of<br />

historical instruments since they can illustrate mathematical concepts οn an<br />

empirical basis. They are considered as non-standard media, unlike<br />

blackboards and books, which can also affect students cognitively and<br />

emotionally (Fauvel & van Maanen 2000). Students explore them as historical<br />

sources for arithmetic, algebra, or geometry and they may also enable<br />

students to acquire awareness of the cultural dimensions of mathematics<br />

(Bussi 2000).<br />

2.1 Chinese abacus: A historical calculating instrument<br />

The positional system up to the construction of algorithms for operation is<br />

embodied by abaci, such as the Chinese one (Bussi 2000). Martzlof (1996) cites<br />

that the first Chinese abacus’ representations are found in manuals of the 14th<br />

and 15th centuries. The use of the abacus, however, became widespread from<br />

the mid 16th century during the Ming dynasty. At 1592 a Chinese<br />

mathematician Cheng Dawei printed his famous work Suanfa Tongzong which<br />

deals mainly with the abacus calculations. Due to this work, the Chinese abacus<br />

was spread in Korea and Japan.<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Vasiliki Tsiapou, Konstantinos Nikolantonakis<br />

THE DEVELOPMENT OF PLACE VALUE CONCEPTS AND THE NOTION OF<br />

CARRIED NUMBER AMONG SIXTH GRADE STUDENTS VIA THE STUDY OF THE<br />

CHINESE ABACUS<br />

53<br />

The Chinese abacus comprises vertical rods with same sized beads sliding<br />

on them. The beads are separated by a horizontal bar into a set of two beads<br />

(value 5) above and a set of five beads (value 1) below. The rate of the unit<br />

from right to left is in base ten. To represent a number e.g. 5.031.902 (figure 1)<br />

beads of the upper or/and the lower group are pushed towards the bar,<br />

otherwise zero is represented.<br />

Figure 1: Representation of numbers on the Chinese abacus<br />

Brian Rotman (cited in Bussi 2000) gives an epistemological analysis of<br />

abacus:<br />

“To move from abacus to paper is to shift from a gestural medium (in which<br />

physical movements are given ostensively and transiently in relation to an<br />

external apparatus) to a graphic medium (in which permanent signs, having<br />

their origin in these movements, are subject to a syntax given independently of<br />

any physical interpretation)’.<br />

Many characteristics of our number system are illustrated by the abacus<br />

(Spitzer 1942). Unlike Dienes’ blocks, the semi-abstract structure of the<br />

abacus becomes apparent as the same sized beads and their positiondependent<br />

value has direct reference to digit numbers. The function of zero is<br />

represented, as a place-holder. Furthermore, it may illustrate the idea of<br />

collection, since amounts become evident in terms of place value. Finally, the<br />

notion of carried number emerges. Poisard (2005) argued that we can write<br />

up to fifteen units in each column and make exchanges with the hand; this<br />

reinforces the understanding of the carried number in operations. From the<br />

definition of the carried number, Poisard (2005: 78) highlighted its relation to<br />

the functionality of the decimal system to allow quick calculations: “the carried<br />

number allows managing the change of the place value; it carries out a transfer<br />

of the numbers between the ranks”.<br />

Finally, the notion of carried number emerges. What is so functional of our<br />

base 10 numeration system is to allow the representation of big numbers. In<br />

each position the digits from zero to nine are written. As soon as ten is reached<br />

there is a transfer of numbers between ranks, e.g. 10tens = 1 hundred, 10<br />

hundreds = 1 thousand, etc. To do arithmetic operations we use this relation.<br />

From the definition of the carried number that Poisard (2005: 78) gives, its<br />

relation to the functionality of the decimal system to allow quick calculations is<br />

highlighted:<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Vasiliki Tsiapou, Konstantinos Nikolantonakis<br />

THE DEVELOPMENT OF PLACE VALUE CONCEPTS AND THE NOTION OF<br />

CARRIED NUMBER AMONG SIXTH GRADE STUDENTS VIA THE STUDY OF THE<br />

CHINESE ABACUS<br />

54<br />

“The carried number allows managing the change of the place value; it carries<br />

out a transfer of the numbers between the ranks”.<br />

In Poisard’s study sixth grade students were asked ‘what is a carried<br />

number?’. Most answers did not have mathematical meaning. After the<br />

workshop with the Chinese abacus, the answers were more specific. According<br />

to Poisard (2005: 57-59), the fact that we can write up to fifteen in each rank on<br />

Chinese abacus and make exchanges with the hand, reinforces the conceptual<br />

understanding of the notion of carried number. The same question was given to<br />

teachers, but definitions that link the place-value system with the carriednumber,<br />

were cited by few teachers. That is why Poisard points out that the<br />

study of the carried number requires in-depth comprehension of the placevalue<br />

system and this problem should be confronted in teachers’ education as<br />

well.<br />

What Poisard stresses as crucial in the teaching/learning process is the use<br />

of the abacus as an instrument (the user learns mathematics) and not as a<br />

machine (the user just calculates). If the students do not ‘see’ the concepts that<br />

regulate the movements on abacus, they may learn to calculate quick and<br />

correctly but without understanding.<br />

Based on the studies about students’ difficulties in place value<br />

understanding and the possible positive contribution of the history of<br />

mathematics via the Chinese abacus, the present study sets various objectives:<br />

1. To study whether sixth grade students recognize the structure of our<br />

number system when handling numbers.<br />

2. To study how they verbally explain the carried number and how they<br />

use it in written calculations.<br />

3. To study to what extent an instructive intervention with the Chinese<br />

abacus would help students handle possible difficulties and<br />

misconceptions and acquire a better conceptual understanding.<br />

4. To highlight the historical context of the abacus and enrich teaching<br />

with a variety of approaches where students are actively involved.<br />

In the present study we adopted Poisard’s (2005) proposal for the didactical<br />

use of the Chinese abacus; we used all the beads in order to record up to 15<br />

units, unlike the standard technique where one of the upper beads (value five)<br />

is not used at all. This allowed us to add new elements in the present study,<br />

such as the use of regrouping activities as essential knowledge (Resnick 1983)<br />

before implementing the written algorithms of addition and subtraction.<br />

3. RESEARCH METHODS<br />

The research study took place in an elementary school in Thessaloniki.<br />

Our aim was to introduce the History of Mathematics as a cognitive tool and, to<br />

a lesser extent, as a goal (Jankvist 2009). The participants were 18 twelve-yearold<br />

students (9 girls and 9 boys). The criterion was that the students would be<br />

able to participate once a week during the hours when their school<br />

program was to work on a two-hour project. Four students had a very<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Vasiliki Tsiapou, Konstantinos Nikolantonakis<br />

THE DEVELOPMENT OF PLACE VALUE CONCEPTS AND THE NOTION OF<br />

CARRIED NUMBER AMONG SIXTH GRADE STUDENTS VIA THE STUDY OF THE<br />

CHINESE ABACUS<br />

55<br />

weak cognitive background and eight students often relied on procedural<br />

rules due to partial conceptual understanding.<br />

For the first two objectives two questionnaires (pre-tests) were<br />

administered in November. Questionnaire A consisted of six closed-type<br />

questions and one that required a written explanation. After the intervention<br />

similar questions were administered as post-test. The questions were created<br />

with the following in mind: (a) the literature about students’ difficulties (b) the<br />

Greek mathematics curriculum so as to ascertain that they constitute<br />

important and prerequisite knowledge in the beginning of grade 6, and (c) the<br />

feasibility of teaching via the abacus. For integers the questions concerned:<br />

named place value, expanded form, regrouping, rounding, subtraction, and<br />

multiplication. For decimals: transforming from verbal to digit form, number<br />

pattern, addition, and subtraction. Two of the questions that are subjected in<br />

the present analysis concern exchanges between classes: sub question 3b,<br />

which concerned regrouping and comparing quantities, and sub question 7a,<br />

which dealt with subtraction with carried number. In order to study how<br />

students perceive the concept of carried number used in the subtraction tasks,<br />

we administered Questionnaire B. It consisted of Poisard’s (2005: 101) four<br />

open questions. The same questions were given as post-test (Appendix). Here<br />

we present students responses to the question: what is a carried number?<br />

3.1 The design of the intervention with the use of the History of<br />

Mathematics<br />

For the other two objectives we implemented a five-month instructive<br />

intervention. It was inspired by modules approach (Jankvist 2009) and used<br />

history as a cognitive tool. We designed a didactical sequence for the teaching<br />

of mathematical concepts that was allocated in sections (integers, decimals,<br />

and operations). For every session a teaching plan was elaborated including<br />

procedure, forms of work, media and material. The outcomes were recorded<br />

and several sessions were videotaped as feedback for the research. The<br />

introductory and closing activities aimed at using history mainly as a goal.<br />

Initially, the arguments mentioned below are aimed at exploring why<br />

history would support the learning and raise the cultural dimension of<br />

mathematics. They were based on Tzanakis & Arcavi’s (2000) arguments and<br />

were grouped under Jankvist’s (2009) categorization. We have included a third<br />

category placing pedagogical arguments in an attempt to emotionally motivate<br />

as well as develop critical thinking. Thus, students are expected to:<br />

A. History as tool<br />

1. develop their understanding by exploring mathematical concepts<br />

empirically,<br />

2. recognize the validity of non-formal approaches of the past.<br />

B. History as a goal<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Vasiliki Tsiapou, Konstantinos Nikolantonakis<br />

THE DEVELOPMENT OF PLACE VALUE CONCEPTS AND THE NOTION OF<br />

CARRIED NUMBER AMONG SIXTH GRADE STUDENTS VIA THE STUDY OF THE<br />

CHINESE ABACUS<br />

56<br />

1. become aware that different people in different periods developed<br />

various forms of representations,<br />

2. perceive that mathematics were influenced by social and cultural factors.<br />

C. Pedagogical arguments:<br />

motivate emotionally, develop critical thinking and/or metacognitive<br />

abilities.<br />

Some examples of the interrelation between the activities chosen and the<br />

arguments for such a choice are presented below. (The arguments are in<br />

parentheses).<br />

Introductory and closing activities: Presentations about number systems of<br />

the antiquity: Roman, Babylonian, Greek, Mayan (B1, C); students create<br />

numbers and discuss the effectiveness of the systems (A2, B1, C).<br />

Presentation about the ancestor of the abacus, the counting rods (B1); form<br />

rod numerals and compare with the modern representation (A1, A2, C).<br />

Information about the abacus (B2); compare the two forms (abacus and<br />

rods): advantages/disadvantages, similarities/differences (B1). After the<br />

intervention students presented their work to an audience in the role of the<br />

teacher (C); they elaborate on information about the cultural context of<br />

the abacus that led to prevail over the counting rods (B2, C) for a<br />

multicultural event.<br />

Main part: Students investigated place value with handmade abaci, web<br />

applications (A1, A2, C; Appendix) and worksheets designed by the<br />

researchers (A2, C); they analyzed the abacus’ representations/procedures<br />

and corresponded with the formal one (A1, A2); contests between groups<br />

(A1, C).<br />

3.2 The implementation of the intervention<br />

The sequence of the instructive intervention was allocated in three sections;<br />

we investigated place value concepts in integers, then in decimals and finally<br />

we proceeded to calculations. For every didactical session we were elaborating<br />

a teaching plan which included the procedure, forms of work (individual, in<br />

pairs or in small groups), the media and material.<br />

Students worked with abaci that constructed themselves, web application<br />

(Appendix) and worksheets designed by the teacher/researcher. At the end of<br />

the school year students presented their work to other students.<br />

Section 1: Integers; Subsection1.3: Regrouping number quantities to<br />

standard numbers.<br />

Previous knowledge on the abacus: Students know how to read and form<br />

multi-digit numbers; identify the place value of the digits and analyze<br />

numbers in the expanded form; compose ten units of a class to the next<br />

upper class as one unit e.g.10 tens of a column are exchanged for 1 hundred<br />

unit of the next left column.<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Vasiliki Tsiapou, Konstantinos Nikolantonakis<br />

THE DEVELOPMENT OF PLACE VALUE CONCEPTS AND THE NOTION OF<br />

CARRIED NUMBER AMONG SIXTH GRADE STUDENTS VIA THE STUDY OF THE<br />

CHINESE ABACUS<br />

57<br />

Objectives: to convert more complex number quantities (that in specific<br />

classes exceed the nine units) to standard numbers through composing.<br />

The concept of the carried number: The composing activities in later stages<br />

served as cognitive scaffolding for the conceptual understanding of the<br />

carried number in the operation of addition. In analogy, the decomposing<br />

activities of other didactical sessions were connected with the concept of the<br />

carried number in subtraction.<br />

Procedure:<br />

First stage: The teacher forms a quantity e.g. 8 Tens and 14 Units (fig. 2a) on<br />

the interactive blackboard’s simulation or on the classroom’s handmade<br />

abacus. She asks students to discover the number. They are encouraged to<br />

recall how ten units of higher value are composed on abacus. A student<br />

implements the process. The passage from 10 units to 1 ten is made by<br />

pushing away the two five beads in the units rod and pushing forward one<br />

unit bead in the tens rod (fig. 2b).<br />

Figures 2a and 2b: Regrouping quantities on abacus<br />

To avoid the abacus-machine usage the teacher asks for explanations in<br />

terms of place value. Thus, the student while doing the bead-movements<br />

says: “I transfer ten of the fourteen units to the units’ column and compose 1 more<br />

ten in the tenth’s column. So we have 9 tens and 4 units. The number is 94”.<br />

Second stage: Students volunteer and elaborate their own quantities on the<br />

interactive whiteboard (fig. 3). Afterwards other students try to match the<br />

abacus procedure with the symbolic one on the classic whiteboard.<br />

Figure 3: Students corresponding abacus and paper regrouping process<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Vasiliki Tsiapou, Konstantinos Nikolantonakis<br />

THE DEVELOPMENT OF PLACE VALUE CONCEPTS AND THE NOTION OF<br />

CARRIED NUMBER AMONG SIXTH GRADE STUDENTS VIA THE STUDY OF THE<br />

CHINESE ABACUS<br />

58<br />

Third stage: Students apply the new knowledge on worksheets in order to<br />

regroup quantities that they cannot be represented on abacus.<br />

The example is based on Poisard’s (2005) proposal for subtracting on an<br />

abacus with carried number. The method mainly taught to Greek schools<br />

and other European education systems is the ‘parallel additions’, which<br />

uses the relation a-b= (a+10 x ) - (b+10 x ). The other method, the ‘internal<br />

transfers’, is taught in second grade as an introductory method so it is<br />

rarely used over the years. It allows exchanges between classes and is the<br />

only method that can be implemented on abacus when using all beads.<br />

Previous knowledge on abacus: decompose quantities; perform<br />

subtractions without trading. Procedure: The teacher forms the minuend of<br />

the subtraction 933-51 on the abacus. The number 1 can be subtracted<br />

immediately by removing one unit bead (figure 4, step 1) but in the tens<br />

column the regrouping process must be put forward. A student removes a<br />

one-bead from the hundreds and replaces it with two five-beads in the tens<br />

(figure 4, step 2). Having a total 13 on the tens he/she removes one fivebead<br />

and gets the result (figure 4, step 3). The student is encouraged to<br />

explain in terms of place value: “I decompose 1 hundred to 10 tens and then<br />

subtract 5 tens”.<br />

Figure 4: Example of the subtraction method ‘internal transfers’ on abacus<br />

Observation from the teaching: A student solved the subtraction 4,005-8<br />

initially on the blackboard. She transferred a 1 thousands’ unit directly to<br />

the units’ position; she subtracted and found 3,007. We also observed this<br />

error (Fuson 1990) in some answers of the pre-test. When prompted to use<br />

the abacus, the student correctly implemented the decomposition process<br />

and explained it in terms of place value. Our discussion then revolved<br />

around the two results, so that the student reflected on her incorrect<br />

thought when she solved i t on the blackboard. One of the reasons that<br />

she did not make a mistake on the abacus – apart from the intervention’s<br />

influence – is possibly the visual-kinetic advantage of the tool; the<br />

space that occupies the intermediate columns may act as a deterrent for<br />

the eye to arbitrarily surpass them. Also, since we use the hand to remove<br />

one upper class unit bead, the fingers are merely guided to the next column<br />

in order to replace it with 10 equivalent lower units. The role of the teacher<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Vasiliki Tsiapou, Konstantinos Nikolantonakis<br />

THE DEVELOPMENT OF PLACE VALUE CONCEPTS AND THE NOTION OF<br />

CARRIED NUMBER AMONG SIXTH GRADE STUDENTS VIA THE STUDY OF THE<br />

CHINESE ABACUS<br />

59<br />

was crucial at this point to link the semi-abstract with the abstract<br />

technique, and at the same time to emphasize the common underlined<br />

mathematical theory.<br />

4. DATA ANALYSIS AND RESULTS<br />

Questionnaire A:<br />

The total score of Questionnaire A was 100. The t-tests showed a<br />

statistically significant difference between the two measurements of students’<br />

scores (t= 5.243, df = 17, p


Vasiliki Tsiapou, Konstantinos Nikolantonakis<br />

THE DEVELOPMENT OF PLACE VALUE CONCEPTS AND THE NOTION OF<br />

CARRIED NUMBER AMONG SIXTH GRADE STUDENTS VIA THE STUDY OF THE<br />

CHINESE ABACUS<br />

60<br />

Insufficient reasoning: “Because 7hundreds 11tens 16units is bigger”.<br />

Post-test: A figurative explanation appears (figure 5). By circling and using<br />

arrows, students were depicting the abacus process of composing ten units to a<br />

higher class.<br />

Figure 5: Sub question 3b – Example of regrouping at the post-test<br />

Translation: “Seven hundred and fifty three is bigger”.<br />

A more detailed response: “I get 10 from 14 T and make 1 H. The H now are 7.<br />

Then we have 13 U. I take 10 U and do another 1 T. The number is 753 greater than<br />

643”.<br />

Sub question 7a<br />

Pre-test: Solve the subtraction 70,005-9 in vertical form.<br />

Post-test: Solve the subtraction 40,006-9 in vertical form.<br />

Table 2: Management of the carried number on the pre-test (sub question 7a)<br />

carried number not noted parallel addition Totals<br />

Answers 10 6 16<br />

Success 4 5 9<br />

Two students did not answer this question. From table 2 we observe that<br />

half students succeeded. The visible method was ‘parallel additions’, since the<br />

rest of the students did not note the carried number. The types of errors are<br />

categorized in table 3.<br />

Table 3: Types of errors on the pre-test (sub question 7a)<br />

Question: 70,005-7 carried number not noted use of carried number<br />

Types of errors N Examples N Examples<br />

Carried number 5 60,008<br />

70,010<br />

81,098<br />

Copying numbers 1 7,005-7<br />

Number facts 1 69,997<br />

The main type of errors (table 3) seemed to be the management of<br />

the carried number. For example, in the result ‘60,008’, though the carried<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Vasiliki Tsiapou, Konstantinos Nikolantonakis<br />

THE DEVELOPMENT OF PLACE VALUE CONCEPTS AND THE NOTION OF<br />

CARRIED NUMBER AMONG SIXTH GRADE STUDENTS VIA THE STUDY OF THE<br />

CHINESE ABACUS<br />

61<br />

number is not noted, the error is the transfer of 1 thousand to the units’<br />

position.<br />

Sub question 7a, Post-test: Almost all students succeeded and the<br />

number of students who did not use the carried number decreased because of<br />

the use of the new method that requires the notation of the carried number<br />

(table 4).<br />

Table 4: Management of the carried number on the post-test (sub question 7a)<br />

Carried number Parallel Internal Totals<br />

not noted additions transfers<br />

answers 4 7 7 18<br />

success 3 6 7 16<br />

The method ‘internal transfers’ appears and along with ‘parallel additions’<br />

was applied successfully (table 4). The method of ‘parallel additions’ was<br />

applied mainly by students who had successfully applied it during the<br />

pre-test, while the method ‘internal transfers’ was given by those who had<br />

not been able to handle the carried number correctly.<br />

Figure 4: The method ‘internal transfers’ as implemented on the post-test<br />

Questionnaire B: ‘What is a carried number? ‘<br />

Table 5: The interpretation of the carried number (Pre-test)<br />

Explanations<br />

find/use/ something in calculations 9<br />

Example with addition 5<br />

I don't know/remember; I cannot describe it 4<br />

Explanations<br />

When the number exceeds 10 1<br />

Table 6: The interpretation of the carried number (Post-test)<br />

Explanations with the use of an<br />

example<br />

N Verbal explanations N<br />

N<br />

N<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Vasiliki Tsiapou, Konstantinos Nikolantonakis<br />

THE DEVELOPMENT OF PLACE VALUE CONCEPTS AND THE NOTION OF<br />

CARRIED NUMBER AMONG SIXTH GRADE STUDENTS VIA THE STUDY OF THE<br />

CHINESE ABACUS<br />

62<br />

Composing<br />

e.g.10hundreds=1 thousand<br />

Decomposing e.g.1hundred=10<br />

tens<br />

6 Ten units of a position move to the<br />

next position as<br />

one unit<br />

1 Number we keep aside/use in<br />

operations for transfer<br />

Composing/decomposing 1 Borrowing from a number 1<br />

A format of tens, hundreds, etc., for<br />

transfer<br />

Convert a number of ten and over<br />

to another format<br />

3<br />

2<br />

2<br />

1<br />

The explanations with the use of an example differ between the two tests<br />

(table 5 & 6). At the pre-test students just performed an addition while in the<br />

post-test they put forward composing and decomposing examples. Verbal<br />

explanations at the pre-test seemed meaningless. Only in one answer we<br />

detected an attempt of mathematical explanation; “when the number exceeds<br />

10”. At the post-test we can still observe a difficulty to explain but most<br />

students used the idea of exchanging (e.g., “transfer”, “convert the format”).<br />

One is specific: “10 units move to the next class as 1 unit”; others mix the<br />

knowledge before and after the intervention: “a number we keep for transfer”.<br />

5. DISCUSSION<br />

The results of the pre-tests showed that most students did not have a<br />

profound understanding of the numbers’ structure; almost all could not<br />

recognize the numbers behind a non-standard partitioning (Fuson 1990;<br />

Resnick 1983) and half failed to solve a four-digit subtraction across zeros, a<br />

task that other studies have shown is difficult (Fuson 1990). In addition, they<br />

could not interpret the notion of carried number (Poisard 2005) considering it<br />

as an aid in operations but more of a vague nature. At the post-test, almost all<br />

displayed a better conceptual understanding. Using schematic representations<br />

and place value explanations influenced by the abacus activities, they<br />

successfully regrouped non-standard representations to standard numbers. As<br />

for the subtraction task, the students that had unsuccessfully managed the<br />

carried number in the pre-test, implemented successfully the abacus’<br />

method ‘internal transfers’, which requires the reverse process of decomposing<br />

numbers. In agreement with Poisard (2005) the method has the advantage of<br />

illustrating the properties of our number system when they have not been<br />

adequately understood. The regrouping activities on the abacus and their<br />

connection to the algorithms of addition and subtraction changed students’<br />

perspective about the concept of the carried number. They explained it as an<br />

exchange between classes, either verbally denoted or through an example.<br />

Despite the limitations of the study, such as the small sample and the lack<br />

of relevant experiential studies about the Chinese abacus, except Poisard’s<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Vasiliki Tsiapou, Konstantinos Nikolantonakis<br />

THE DEVELOPMENT OF PLACE VALUE CONCEPTS AND THE NOTION OF<br />

CARRIED NUMBER AMONG SIXTH GRADE STUDENTS VIA THE STUDY OF THE<br />

CHINESE ABACUS<br />

63<br />

(2005), we believe that the reasons for using the history of mathematics were<br />

accomplished in a quite satisfactory way. By elaborating on place-value<br />

concepts via the abacus, students developed understanding on an empirical<br />

basis (literally with their hands). By analyzing processes with the historical<br />

tool, students appreciated that mathematics of the past also lead to results that<br />

have logical completeness. In general, Bartolini Bussi’s (2000) argument that<br />

in the tactile experience offered by the ancient instruments one may find the<br />

foundations of mathematical activity, was verified.<br />

During the intervention we recognized the crucial role of the teacher in the<br />

teaching/learning process. Students may learn to calculate correctly with the<br />

tool, but without conceptual understanding. Also, as the example from the<br />

didactical session showed, they may achieve understanding place-value<br />

concepts when calculating with the tool but they continue to misapply the<br />

written calculations because they do not connect the two processes. That is<br />

why teachers should encourage students to gain insight into the relation<br />

between the tool and the concept that it represents (Uttal, Scudder, &<br />

Deloache 1999), otherwise its semiotic function will not be transparent.<br />

As further research we suggest the study of the Chinese abacus with<br />

younger students for the teaching of simpler concepts (Zhou & Peverly 2005).<br />

REFERENCES<br />

Bartolini Bussi, M. (2000). Ancient instruments in the modern classroom. In<br />

J.Fauvel & J.V. Maanen (Eds.), History in mathematics education: The ICMI<br />

study (pp. 343-350). Dordrecht: Kluwer Academic publishers.<br />

Fuson, K. C. (1990). Conceptual structures for multiunit numbers: Implications<br />

for learning and teaching multidigit addition, subtraction, and place value.<br />

Cognition and Instruction, 7(4), 343-403.<br />

Jankvist, U.T. (2009). A categorization of the ‘whys’ and ‘hows’ of using history<br />

in mathematics education. Educational Studies in Mathematics, 71(3), 235-<br />

261.<br />

Maanen, J.V. (2000). Non-standard media and other resources. In J. Fauvel. &<br />

J.V. Maanen (Eds.), History in mathematics education: The ICMI study (pp.<br />

329-362). Dordrecht: Kluwer Academic publishers.<br />

Martzloff, J. C. (1996). A History of Chinese Mathematics. S.Wilson, translator.<br />

Germany: Springer.<br />

Poisard, C. (2005). Ateliers de fabrication et d’étude d’objets mathématiques, le<br />

cas des instruments à calculer (Doctoral dissertation, Université de<br />

Provence-Aix-Marseille I, France). Retrieved from http://tel.archivesouvertes.fr/docs/00/06/10/97/PDF/ThesePoisardC.pdf<br />

Resnick, L. B. (1983). A developmental theory of number understanding. In H.<br />

P. Ginsburg (Ed.), The development of mathematical thinking, (pp. 109-151).<br />

New York: Academic Press.<br />

Spitzer, H. (1942). The abacus in the teaching of arithmetic. The Elementary<br />

School Journal, 46(6), 448-451.<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Vasiliki Tsiapou, Konstantinos Nikolantonakis<br />

THE DEVELOPMENT OF PLACE VALUE CONCEPTS AND THE NOTION OF<br />

CARRIED NUMBER AMONG SIXTH GRADE STUDENTS VIA THE STUDY OF THE<br />

CHINESE ABACUS<br />

64<br />

Tzanakis, C., & Arcavi, A. (2000). Integrating history of mathematics in the<br />

classroom: an analytic survey. In J. Fauvel & J. van Maanen (Eds.), History<br />

in mathematics education: The ICMI study (pp. 201-240). Dordrecht: Kluwer<br />

Academic publishers.<br />

Utall, D.H., Scudder, K.V., & Deloache, J. S. (1997). Manipulatives as symbols: A<br />

new perspective on the use of concrete objects to teach mathematics. Journal<br />

of Applied Developmental Psychology, 18(1), 37-54.<br />

Zhou, Z., & Peverly, S. (2005). Teaching addition and subtraction to first<br />

graders: A Chinese perspective. Psychology in the Schools, 42(3), 266-273.<br />

BRIEF BIOGRAPHIES<br />

Vasiliki Tsiapou is a teacher at a public primary school in Thessaloniki. She has<br />

received a master in the Epistemology and History of Mathematics from the<br />

Department of Primary Education of the University of Western Macedonia, and she<br />

currently is a Ph.D. candidate at the same department. Her research is concerned with<br />

the integration of the History of Mathematics in class settings.<br />

Konstantinos Nikolantonakis is Associate Professor of Mathematics Education at the<br />

Department of Primary Education of the University of Western Macedonia. He has<br />

graduated from the Department of Mathematics of the Aristotle University of<br />

Thessaloniki. He received a master and a Ph.D. in the Epistemology and History of<br />

Mathematics from the University of Denis Diderot (Paris-7). His research concerns the<br />

didactical use of the History of Mathematics, the History of Ancient Greek<br />

Mathematics, and the didactics of Arithmetic & Geometry.<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Vasiliki Tsiapou, Konstantinos Nikolantonakis<br />

THE DEVELOPMENT OF PLACE VALUE CONCEPTS AND THE NOTION OF<br />

CARRIED NUMBER AMONG SIXTH GRADE STUDENTS VIA THE STUDY OF THE<br />

CHINESE ABACUS<br />

65<br />

APPENDICES<br />

Questionnaire B<br />

1. What does it mean for you “I do mathematics”?<br />

2. Cite objects to make calculations.<br />

3. Do you know what an abacus is? If yes, explain.<br />

4. What is a carried number?<br />

Abaci used during the instructive intervention<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


UNIVERSITY OF WESTERN MACEDONIA<br />

FACULTY OF EDUCATION<br />

<strong>MENON</strong><br />

©online Journal Of Educational Research<br />

66<br />

ÜBERPRO – A SEMINAR CONSTRUCTED TO CONFRONT<br />

THE TRANSITION PROBLEM FROM SCHOOL TO<br />

UNIVERSITY MATHEMATICS, BASED ON<br />

EPISTEMOLOGICAL AND HISTORICAL IDEAS OF<br />

MATHEMATICS 1<br />

Ingo Witzke<br />

University of Siegen<br />

witzke@mathematik.uni-siegen.de<br />

Horst Struve<br />

University of Cologne<br />

h.struve@uni-koeln.de<br />

Kathleen Clark<br />

Florida State University<br />

kclark@fsu.edu<br />

Gero Stoffels<br />

University of Siegen<br />

stoffels@mathematik.uni-siegen.de<br />

ABSTRACT<br />

In spring 2015 the authors taught an intensive seminar for undergraduate mathematics<br />

students, which addressed the transition problem from school to university by<br />

bringing to the fore concept changes in mathematical history and the learning<br />

biographies of the participants. This article describes how the concepts of empirical<br />

and formalistic belief systems can be used to give an explanation for both transitions –<br />

from school to university mathematics, and, for secondary mathematics teachers, back<br />

to school again. The usefulness of this approach is illustrated by outlining the historical<br />

sources and the participants’ activities with these sources on which the seminar is<br />

based, as well as some results of the qualitative data gathered during and after the<br />

seminar.<br />

Keywords: transition problem, genesis of geometry, secondary school mathematics,<br />

higher education, mathematical belief systems.<br />

1. INTRODUCTION TO THE TRANSITION PROBLEM<br />

The transition problem that secondary mathematics teachers experience<br />

when moving from school to university (as students), and then again when<br />

moving from their university training to teaching mathematics was articulated<br />

1 “ÜberPro” is an abbreviation of “Übergangsproblematik,” a German word for “transition problem”. With<br />

the term “university mathematics” we refer to mathematics courses designed for mathematics students<br />

and those pre-service secondary teachers majoring in mathematics (in Germany, these students are usually<br />

taught together).<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Ingo Witzke, Horst Struve, Kathleen Clark, Gero Stoffels<br />

ÜBERPRO – A SEMINAR CONSTRUCTED TO CONFRONT THE TRANSITION<br />

PROBLEM FROM SCHOOL TO UNIVERSITY MATHEMATICS, BASED ON<br />

EPISTEMOLOGICAL AND HISTORICAL IDEAS OF MATHEMATICS<br />

67<br />

by Felix Klein (1849-1925) as a “double discontinuity”:<br />

The young university student found himself, at the outset, confronted<br />

with problems, which did not suggest, in any particular way, the things<br />

with which he had been concerned at school. Naturally he forgot these<br />

things quickly and thoroughly. When, after finishing his course of study,<br />

he became a teacher, he suddenly found himself expected to teach the<br />

traditional elementary mathematics in the old pedantic way; and, since<br />

he was scarcely able, unaided, to discern any connection between this<br />

task and his university mathematics, he soon fell in with the time<br />

honored way of teaching, and his university studies remained only a<br />

more or less pleasant memory which had no influence upon his teaching.<br />

(Klein 1908: 1; first author’s translation)<br />

In the following we focus on the “first discontinuity”, referring to the<br />

transition from school to university and postulating an epistemological gap<br />

between school and university mathematics. We are encouraged by the more<br />

than 100-year-old problem, for which definitive solutions do not seem to appear<br />

on the horizon (Gueudet 2008). Unfortunately, dropout rates (especially in<br />

western countries) remain at a constantly high level. In Germany,<br />

approximately 50% of students studying mathematics or mathematics-related<br />

fields stop their efforts before finishing a bachelor’s degree (Heublein et al.<br />

2012). In the United States, attrition rates for mathematics majors are<br />

differentiated between two undergraduate degrees available – bachelor’s (fouryear<br />

degree) and associate’s (two-year degree). The National Center for<br />

Education Statistics (NCES) reported that for the years 2003 through 2009, 38%<br />

of mathematics majors entering university with the intent to earn a bachelor’s<br />

degree left the major (Chen 2013). Similarly for those students intending to earn<br />

an associate’s degree, some 78% left the major. This leads again to an (at least<br />

perceived) intensification of research in this field.<br />

Furthermore, recent investigations in the United States have focused on the<br />

critical role that success in calculus course taking plays in undergraduate<br />

students’ ambition for and persistence in mathematics. To date, many of the<br />

resulting publications from the Mathematical Association of America National<br />

Study of Calculus have highlighted the importance of student attributes on<br />

their success (e.g., Bressoud et al. 2013); however, identifying concrete ways in<br />

which students may be successful in negotiating the transition from secondary<br />

school mathematics student to first-year university mathematics student is<br />

absent from the literature.<br />

In 2011, the most important professional associations regarding mathematics<br />

(education) in Germany (DMV-Mathematics, GDM-Mathematics Education,<br />

and MNU-STEM Education) formed a task force regarding the problem of<br />

transition (cf. http://www.mathematik-schule-hochschule.de). Then, in<br />

February 2013, a scientific conference with the topic “Mathematik im Übergang<br />

Schule/Hochschule und im ersten Studienjahr” (“Mathematics at the Crossover<br />

School/University in the First Academic Year”) in Paderborn, Germany<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Ingo Witzke, Horst Struve, Kathleen Clark, Gero Stoffels<br />

ÜBERPRO – A SEMINAR CONSTRUCTED TO CONFRONT THE TRANSITION<br />

PROBLEM FROM SCHOOL TO UNIVERSITY MATHEMATICS, BASED ON<br />

EPISTEMOLOGICAL AND HISTORICAL IDEAS OF MATHEMATICS<br />

68<br />

attracted almost 300 participants giving over 80 talks regarding the problematic<br />

transition process from school to university mathematics. The proceedings of<br />

this conference (Hoppenbrock et al. 2013) and its predecessor on special<br />

transition courses (Biehler et al. 2014) give an impressive overview on the<br />

necessity and variety of approaches regarding this matter. Interestingly a vast<br />

majority of the studies and best practice examples for “transition courses”<br />

locate the problem in the context of deficits (going back as far as junior high<br />

school) regarding the content knowledge of freshmen at universities.<br />

In the “pre-course and transition course community” it seems to be<br />

consensus by now that existing deficits in central fields of lowersecondary<br />

schools’ mathematics make it difficult for freshmen to acquire<br />

concepts of advanced elementary mathematics and to apply these.<br />

Fractional arithmetic, manipulation of terms or concepts of variables<br />

have an important role, e.g., regarding differential and integral calculus<br />

or non-trivial application contexts and constitute insuperable obstacles if<br />

not proficiently available. (Biehler et al. 2014: 2; first author’s translation)<br />

The question of how to provide first semester university students with<br />

obviously lacking content knowledge is certainly an important facet of the<br />

transition problem. However, as the results of a recent empirical study suggest,<br />

there are other, deeper problem dimensions that aid in further understanding<br />

the issue.<br />

2. MOTIVATION FOR DEVELOPING THE SEMINAR<br />

To investigate new perspectives on the transition problem, approximately<br />

250 pre-service secondary school teachers from the University of Siegen and the<br />

University of Cologne in 2013 were asked for retrospective views on their way<br />

from school to university mathematics. When the survey was disseminated, the<br />

students had been at the universities for about one year. Surprisingly, the<br />

systematic qualitative content analysis of the data (Huberman & Miles 1994,<br />

Mayring 2002) showed that from the students’ point of view it was not the<br />

deficits in content knowledge that dominated their description of their own<br />

way from school to university mathematics. Instead, students articulated a<br />

feeling of “differentness” between school and university mathematics that did<br />

not relate simply to a rise in content-specific requirements. To illustrate this<br />

point of “differentness” we selected two exemplar responses from the<br />

questionnaire responses to the question,<br />

What is the biggest difference or similarity between school and university<br />

mathematics? What prevails? Explain your answer.<br />

Student (male, 19 years): “The fundamental difference develops as<br />

mathematics in school is taught “anschaulich”[1], whereas at university<br />

there is a rigid modern-axiomatic structure characterizing mathematics.<br />

In general there are more differences than similarities, caused by<br />

differing aims” (first author’s translation)<br />

At this first student’s point we can only speculate on the term “aims”, but in<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Ingo Witzke, Horst Struve, Kathleen Clark, Gero Stoffels<br />

ÜBERPRO – A SEMINAR CONSTRUCTED TO CONFRONT THE TRANSITION<br />

PROBLEM FROM SCHOOL TO UNIVERSITY MATHEMATICS, BASED ON<br />

EPISTEMOLOGICAL AND HISTORICAL IDEAS OF MATHEMATICS<br />

69<br />

reference to other formulations in his survey responses it seems possible that he<br />

distinguished between general education (in German, “Allgemeinbildung”) as an<br />

aim for school and specialized scientific teacher-training at universities.<br />

The second example is impressive in the same sense:<br />

Student (female, 20 years):<br />

Figure 1. A student’s articulation of difference or similarity between school and<br />

university mathematics.<br />

university<br />

abstrac<br />

t<br />

many<br />

proofs<br />

understanding<br />

school<br />

computing<br />

very empiric<br />

(everyday<br />

life)<br />

few<br />

proofs<br />

In many cases the students clearly distinguished between school and<br />

university mathematics, which is most prominent in the second example. For<br />

this student, school mathematics and university mathematics are so different,<br />

that the only remaining similarity (in German, “Gemeinsamkeit”) is the word<br />

“mathematics”. This “differentness” encountered by the students is specified in<br />

further parts of the questionnaire with terms as vividness, references to everyday<br />

life, applicability to the real world, ways of argumentation, mathematical rigor,<br />

axiomatic design, etc. 2<br />

Using additional results of studies with a similar interest (e.g., Gruenwald et<br />

al. 2004, Hoyles et al., 2001) we arrived at the preliminary conclusion that preservice<br />

mathematics teachers clearly distinguish between school and university<br />

mathematics with regard to the nature of mathematics. In the terms of Hefendehl-<br />

Hebeker Ableitinger and Herrmann, the students encounter an “Abstraction<br />

shock” (Hefendehl-Hebeker et al. 2010), meaning that students have serious<br />

difficulties regarding a dramatically increased level of abstraction at the<br />

beginning of their undergraduate courses in mathematics. Schichel and<br />

Steinbauer (2009: 1; first author’s translation) describe the same phenomenon,<br />

when saying that,<br />

2 The cited study has not been published in total so far. However, partial results have been published in<br />

Witzke 2013a, 2013b.<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Ingo Witzke, Horst Struve, Kathleen Clark, Gero Stoffels<br />

ÜBERPRO – A SEMINAR CONSTRUCTED TO CONFRONT THE TRANSITION<br />

PROBLEM FROM SCHOOL TO UNIVERSITY MATHEMATICS, BASED ON<br />

EPISTEMOLOGICAL AND HISTORICAL IDEAS OF MATHEMATICS<br />

70<br />

Abstraction shock: The level of abstraction regarding the teaching of<br />

university mathematics is in marked contrast to the teaching in school,<br />

where mathematical content is in principal developed on the basis of<br />

[concrete] examples. Many students get already lost in the “definitiontheorem-proof-jungle”<br />

in the first weeks of their university career being<br />

faced with an uncommented abstract approach.<br />

To describe and face this problem, we established a framework for further<br />

research concerning the transition problem. In the next section, we reconstruct<br />

the nature of mathematics communicated explicitly and implicitly in high school<br />

and university textbooks, lecture notes, standards, etc., with a special focus on<br />

differences to identify in detail what constitutes the abstraction shock described<br />

in literature and by students. Thereby we follow the paradigm of<br />

constructivism in mathematics education, believing that students construct<br />

their own view on mathematics when working and interacting in classroom or<br />

lecture hall with the material, problems, and stimulations that course<br />

instructors (and students’ peers) provide (Anderson et al. 2000, Bauersfeld<br />

1992).<br />

3. BELIEFS ON MATHEMATICS: TODAY AND IN HISTORY<br />

3.1 Beliefs describing the notion of mathematical objects and activities<br />

The terms nature of mathematics and belief system regarding mathematics are<br />

closely linked to each other if we understand learning in a constructive way.<br />

Schoenfeld (1985) successfully showed that personal belief systems matter<br />

when learning and teaching mathematics:<br />

One’s beliefs about mathematics [...] determine how one chooses to<br />

approach a problem, which techniques will be used or avoided, how<br />

long and how hard one will work on it, and so on. The belief system<br />

establishes the context within which we operate […] (Schoenfeld 1985:<br />

45)<br />

From an educational point of view beliefs about mathematics are decisive<br />

for our mathematical behavior as the empirical studies of Schoenfeld have<br />

shown; the beliefs system was identified as the critical factor determining<br />

success in concrete problem solving contexts. Furthermore, prominent among<br />

research on beliefs are four categories of beliefs concerning mathematics, which<br />

were distinguished by Grigutsch, Raatz and Törner (1998) as aspects: the<br />

toolbox aspect, the system aspect, the process aspect and the utility aspect.<br />

Liljedahl, Rolka and Roesken (2007) specified this wide range of possible<br />

aspects of a mathematical worldview as follows:<br />

In the “toolbox aspect”, mathematics is seen as a set of rules, formulae,<br />

skills and procedures, while mathematical activity means calculating as<br />

well as using rules, procedures and formulae. In the “system aspect”,<br />

mathematics is characterized by logic, rigorous proofs, exact definitions<br />

and a precise mathematical language, and doing mathematics consists of<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Ingo Witzke, Horst Struve, Kathleen Clark, Gero Stoffels<br />

ÜBERPRO – A SEMINAR CONSTRUCTED TO CONFRONT THE TRANSITION<br />

PROBLEM FROM SCHOOL TO UNIVERSITY MATHEMATICS, BASED ON<br />

EPISTEMOLOGICAL AND HISTORICAL IDEAS OF MATHEMATICS<br />

71<br />

accurate proofs as well as of the use of a precise and rigorous language.<br />

In the “process aspect”, mathematics is considered as a constructive<br />

process where relations between different notions and sentences play an<br />

important role. Here the mathematical activity involves creative steps,<br />

such as generating rules and formulae, thereby inventing or re-inventing<br />

the mathematics. Besides these standard perspectives on mathematical<br />

beliefs, a further important component is the usefulness, or utility<br />

[aspect], of mathematics. (Liljedahl et al. 2007: 279)<br />

Very often these beliefs are located within certain fields of tension (in<br />

German, “Spannungsfelder”). There is, for example, the process aspect, which is<br />

always implicitly connected to its opposite pole the product aspect. Another<br />

pair of concepts in this sense is certainly an intuitive aspect on the one hand<br />

and a formal aspect on the other, having even a historical dimension: “There is<br />

a problem that goes through the history of calculus: the tension between the<br />

intuitive and the formal” (Moreno-Armella 2014: 621). These fields of tension<br />

may help to describe the problems the students encounter on their way to<br />

university mathematics. Especially helpful when looking at the results of the<br />

aforementioned survey, representing one important facet, seems to be the<br />

tension between what Schoenfeld called an empirical belief [2] system and a<br />

formalistic belief system [3] – a convincing analytical distinction following the<br />

works of Burscheid and Struve (2010).<br />

The empirical belief system [2] on the one hand describes a set of beliefs in<br />

which mathematics is understood as an experimental natural science, which<br />

includes deductive reasoning about empirical objects. Struve (1990) and<br />

Schoenfeld (1985) have reconstructed this belief system in school, investigating<br />

school textbooks and students’ behavior.<br />

Good examples for comparable belief systems, regarding the understanding<br />

of mathematics in an empirical way, can be found in the history of mathematics.<br />

The famous mathematician Moritz Pasch (1843-1930), who completed Euclid’s<br />

axiomatic system, explicitly understood geometry in this way:<br />

The geometrical concepts constitute a subgroup within those concepts<br />

describing the real world […] whereas we see geometry as nothing more<br />

than a part of the natural sciences. (Pasch 1882: 3)<br />

Thus, mathematics in this sense is understood as an empirical, natural<br />

science. This, of course, implies the importance of inductive elements as well as<br />

a notion of truth bonded to the correct explanation of physical reality. In<br />

Pasch’s examples, Euclidean geometry is understood as a science describing our<br />

physical space by starting with evident axioms. Geometry then follows a<br />

deductive buildup, but it is legitimized by the power to describe the physical<br />

space around us correctly. This understanding of mathematics as an empirical<br />

science (on an epistemological level) can be found throughout the history of<br />

mathematics, and prominent examples for this understanding are found in<br />

many scientists of the 17 th and 18 th centuries. For example, Leibniz conducted<br />

analysis on an empirical level; the objects of his calculus differentialis and calculus<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Ingo Witzke, Horst Struve, Kathleen Clark, Gero Stoffels<br />

ÜBERPRO – A SEMINAR CONSTRUCTED TO CONFRONT THE TRANSITION<br />

PROBLEM FROM SCHOOL TO UNIVERSITY MATHEMATICS, BASED ON<br />

EPISTEMOLOGICAL AND HISTORICAL IDEAS OF MATHEMATICS<br />

72<br />

integralis were curves given by construction on a piece of paper and not as<br />

today’s abstract functions (cf. Witzke 2009).<br />

The formalistic belief system, on the other hand, describes a set of beliefs in<br />

which mathematics is understood as a system of un-interpreted concepts and<br />

their connections in propositional functions (in German, “Aussageformen”),<br />

which can be established using axioms, (implicit) definitions, and proofs. Davis<br />

and Hersh (1981) and Schoenfeld (1985) have reconstructed this belief system as<br />

a typical one for professional mathematicians.<br />

Good examples for comparable belief systems, regarding the understanding<br />

of mathematics in a formalistic way, can be found in the history of mathematics.<br />

The famous mathematician David Hilbert (1862-1943), released geometry<br />

completely from any empirically bonded entities:<br />

Whereas Pasch was anxious to derive his fundamental notions from<br />

experience and to postulate no more than experience seems to grant.<br />

Hilbert started ‘Wir denken uns…’ we imagine three kinds of things…<br />

called points… called lines… called planes… we imagine points, lines,<br />

and planes in some relations… called lying on, between, parallel,<br />

congruent…” (–) “Wir denken uns…” – the bond with reality is cut.<br />

Geometry has become pure mathematics. The question of whether and<br />

how to apply it to reality is the same in geometry as it is in other<br />

branches of mathematics. Axioms are not evident truths. They are not<br />

truths at all in the usual sense. (Freudenthal 1961: 14; English translation<br />

in Streefland 1993)<br />

Mathematics in this sense can be understood as the formal science. This<br />

implies the importance of deductive elements as well as a notion of truth in the<br />

sense of logical consistency. This understanding of mathematics as a formal<br />

science (on an epistemological level) can be found throughout the history of<br />

mathematics after Hilbert. Prominent examples for this understanding are<br />

found in many mathematicians of 19 th , 20 th , and 21 st centuries. For example,<br />

Kolmogoroff formalized probability theory in this way; the concepts of his<br />

Grundbegriffe der Wahrscheinlichkeitsrechnung are sets and measures given by<br />

definition in his famous axioms. (cf. Kolmogorov 1973).<br />

So, what is the connection among these elements, mathematics students, and<br />

the transition problem? If we examine current textbooks for school<br />

mathematics, we see that students at school are likely to acquire an empirical<br />

belief system. And, if we examine current course textbooks for university<br />

mathematics, we see that students at university are, in contrast, faced with a<br />

formalistic belief system (cf. Burscheid & Struve 2009, Schoenfeld 1985,<br />

Schoenfeld 2011, Struve 1990, Tall 2013 3 ). On epistemological grounds both<br />

show parallels to specific historical understandings of mathematics. These<br />

3 In his foundational work, “How humans learn to think mathematically”, David Tall (2013) emphasized an<br />

equivalent to Struve’s and Schoenfeld’s empirical belief system when referring to a blend of “Embodiment<br />

and Symbolism” prevailing in school. He distinguished this, what he calls worlds of mathematics, from a<br />

world of “(Axiomatic) formalism” realized at university level and associated Hilbert – which is quite<br />

similar to Burscheid and Struve’s formalistic belief system.<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Ingo Witzke, Horst Struve, Kathleen Clark, Gero Stoffels<br />

ÜBERPRO – A SEMINAR CONSTRUCTED TO CONFRONT THE TRANSITION<br />

PROBLEM FROM SCHOOL TO UNIVERSITY MATHEMATICS, BASED ON<br />

EPISTEMOLOGICAL AND HISTORICAL IDEAS OF MATHEMATICS<br />

73<br />

epistemological parallels were fundamental for the design of our “transition<br />

problem” seminar for students. The main idea is that the recognition and<br />

appreciation of different natures of mathematics in history (i.e. those held by<br />

expert mathematicians) can help students to become aware of their own belief<br />

system and may guide them to make necessary changes.<br />

4. A DEEPER LOOK INTO SCHOOL AND UNIVERSITY MATHEMATICS<br />

The most recent National Council of Teachers of Mathematics (NCTM)<br />

standards (2000) and prominent school textbooks indicate that, for good<br />

reasons (cf. the EIS-principle by Bruner (1966), the basic experiences<br />

(“Grunderfahrungen”) of Winter (1996) or the three worlds of mathematics by<br />

Tall (2013)), mathematics is taught in the context of concrete (physical) objects<br />

at school. For example, the NCTM process standards, and in particular<br />

“connections” and “representations,” (which are comparable to similar<br />

mathematics standards in Germany), focus on empirical aspects of<br />

mathematics. At school and in their future career it is important that students<br />

“recognize and apply mathematics in contexts outside of mathematics” or “use<br />

representations to model and interpret physical, social, and mathematical<br />

things” (NCTM 2000: 67). The prominent place of illustrative material and<br />

visual representations in the mathematics classroom has important<br />

consequences for the students’ views about the nature of mathematics. As we<br />

previously mentioned, Schoenfeld (1985, 2011) and Struve (1990, 2010)<br />

proposed that students acquire an empiricist belief system of mathematics at<br />

school. This is likely to be caused by the fact that mathematics in modern<br />

classrooms does not describe abstract entities of a formalistic theory but a<br />

universe of discourse ontologically bounded to “real objects”. For example,<br />

Probability Theory is bounded to random experiments from everyday life,<br />

Fractional Arithmetic to “pizza models”, Geometry to straightedge and compass<br />

constructions, Analytical Geometry to vectors as arrows, Calculus to functions as<br />

curves (graphs), and so forth.<br />

However, at university things can look totally different. Authors of<br />

prominent textbooks (in Germany, as well as in the United States) for beginners<br />

at university level depict mathematics in quite a formalistic, rigorous way. For<br />

example, in the preface of Abbott’s popular book for undergraduate students,<br />

Understanding Analysis, it becomes very clear how mathematicians consider a<br />

major difference between school and university mathematics: “Having seen<br />

mainly graphical, numerical, or intuitive arguments, students need to learn<br />

what constitutes a rigorous proof and how to write one” (Abbott 2001: vi). This<br />

view is also transported by Heuser’s popular analysis textbook for first<br />

semester students (Heuser 2009: 12; first author’s translation):<br />

The beginner at first feels […] uncomfortable […] with what constitutes<br />

mathematics:<br />

- The brightness and rigidity in concept formation<br />

- The pedantic accurateness when working with definitions<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Ingo Witzke, Horst Struve, Kathleen Clark, Gero Stoffels<br />

ÜBERPRO – A SEMINAR CONSTRUCTED TO CONFRONT THE TRANSITION<br />

PROBLEM FROM SCHOOL TO UNIVERSITY MATHEMATICS, BASED ON<br />

EPISTEMOLOGICAL AND HISTORICAL IDEAS OF MATHEMATICS<br />

74<br />

- The rigor of proofs which are to be conducted […] only with the means<br />

of logic not with Anschauung. [1]<br />

- Finally the abstract nature of mathematical objects, which we cannot see,<br />

hear, taste or smell. […]<br />

This does not mean that there are no pictures or physical applications in<br />

Abbott’s book; it is common sense that modern mathematicians work with<br />

pictures, figural mental representations, and models. However, in contrast to<br />

many students, it is clear to them that these are illustrations or visualizations<br />

only, displaying certain logical aspects of mathematical objects (and their<br />

relations to others) but by no means representing the mathematical objects in<br />

total. This distinction is more explicit if we look at a textbook example. In<br />

school textbooks (in Germany) the reference objects for functions are mainly<br />

drawn curves. Functions may then virtually be identified with these empirically<br />

given curves (Witzke 2014). Tietze, Klika and Wolpers (2000: 72) discussed this<br />

context of an analysis like “elementary algebra combined with the sketching of<br />

graphs”. Consequently, school textbook authors work with the so-called<br />

concept of graphical derivatives (firmly anchored in the curricula) in the context<br />

of analysis (see Fig. 2). At university, curves are by no means the reference<br />

objects; here they are only one possible interpretation of the abstract notion of<br />

function. The graph of a function in formalistic [3] university mathematics is<br />

actually only a set of (ordered) pairs.<br />

If we contrast the empirical belief system many students acquire in<br />

classroom with the formalistic belief system students are faced with at<br />

university we have a model that explains why challenging the transition<br />

problem regarding belief systems is necessary for the professionalization of<br />

mathematicians and math teachers. For example, in this model the notion of<br />

proof differs substantially in school and university mathematics. Whereas at<br />

universities (especially in pure mathematics) only formal deductive reasoning<br />

is an acceptable method, non-rigorous proofs relying on “graphical, numerical<br />

and intuitive arguments” are an essential part of proofs in school mathematics<br />

where we explain phenomena of the “real world”. Using Sierpinska’s (1987,<br />

1992) terminology, students in this transition-phase have to overcome a variety<br />

of “epistemological obstacles” 4 , requiring a significant change in their<br />

understanding of what mathematics is about.<br />

4 Following the definition and common usage of the term “epistemological obstacle” in mathematics<br />

education, we mean content-based obstacles that are likely to occur in every learning biography, and<br />

whose overcoming will eventually lead to a decisive process of cognition. Note that these are referred to as<br />

being based in the nature of things in principle and not in the lack of individual cognitive development (cf.<br />

Schneider 2014: 214-217).<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Ingo Witzke, Horst Struve, Kathleen Clark, Gero Stoffels<br />

ÜBERPRO – A SEMINAR CONSTRUCTED TO CONFRONT THE TRANSITION<br />

PROBLEM FROM SCHOOL TO UNIVERSITY MATHEMATICS, BASED ON<br />

EPISTEMOLOGICAL AND HISTORICAL IDEAS OF MATHEMATICS<br />

75<br />

Figure 2. Graphical derivatives in a German school textbook (EdM 2010: 203).<br />

5. SEMINAR DESIGN, CONTENT, AND IMPLEMENTATION<br />

The findings of the initial questionnaire and the identification of the<br />

theoretical considerations, which were described in the preceding paragraphs,<br />

were essential for designing a seminar to address the transition problem. The<br />

overall aim of the seminar course was to make students aware and to lead them<br />

to an understanding of crucial changes regarding the nature of mathematics<br />

from school to university, by discussing transcripts, textbooks, standards,<br />

historical sources, etc. The different “natures” of mathematics in school and<br />

university can also, on an epistemological level, be found in the history of<br />

mathematics, as we previously stated. Thus, an understanding of how and why<br />

this change (from empirical-physical to formalistic-abstract) took place should be<br />

achieved by an historical-philosophical analysis (cf. Davies 2010). This, in fact,<br />

is the key notion of the seminar. Thereby we hoped that the students were able<br />

to relate their own learning biographies to the historical development of<br />

mathematics. This conceptual design of the seminar draws upon positive<br />

experience with explicit approaches regarding changes in the belief system of<br />

students from science education (esp. “Nature of Science” cf. Abd-El-Khalick &<br />

Lederman 2001).<br />

The undergraduate ÜberPro seminar that is the focus of what follows, was<br />

designed for students to cope with the transition problem. It was implemented<br />

for the first time in February 2015 and was an intensive experience that took<br />

place over three days (approximately 18 hours of instruction). Twenty (8 male;<br />

12 female) undergraduate mathematics students, who were also preparing to<br />

teach secondary mathematics, participated in the seminar. Table 1 presents the<br />

distribution of student age and semester at university of the seminar<br />

participants.<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Ingo Witzke, Horst Struve, Kathleen Clark, Gero Stoffels<br />

ÜBERPRO – A SEMINAR CONSTRUCTED TO CONFRONT THE TRANSITION<br />

PROBLEM FROM SCHOOL TO UNIVERSITY MATHEMATICS, BASED ON<br />

EPISTEMOLOGICAL AND HISTORICAL IDEAS OF MATHEMATICS<br />

76<br />

Table 1. Age and semester at university for ÜberPro seminar participants<br />

(February 2015).<br />

Participant<br />

Semester Participant<br />

Age (in<br />

Age (in Semester at<br />

number (gender:<br />

at number (gender:<br />

years)<br />

years) university<br />

M(ale)/F(emale))<br />

university M(ale)/F(emale))<br />

1 (F) 23 7 11 (F) 22 7<br />

2 (F) 19 3 12 (F) 22 7<br />

3 (M) 23 7 13 (F) 21 3<br />

4 (F) 23 7 14 (M) 26 13<br />

5 (F) 22 5 15 (M) 26 5<br />

6 (M) 20 3 16 (F) 20 3<br />

7 (F) 21 3 17 (M) 25 7<br />

8 (F) 25 10 18 (M) 22 7<br />

9 (M) 26 3 19 (F) 22 5<br />

10 (F) 20 3 20 (M) 24 8<br />

The three-day seminar was organized in four parts:<br />

1) Raise attention to the importance of beliefs about and philosophies of<br />

mathematics.<br />

2) Historical case study: Geometry from Euclid to Hilbert. (In particular,<br />

which questions led to the modern understanding of mathematics?)<br />

3) Exploration of Hilbert’s approach (Or, what characterizes modern<br />

formalistic mathematics?)<br />

4) Summary discussion and reflection.<br />

We employed several instructional techniques during the intensive seminar.<br />

During the 18 hours of instruction students engaged in small group work,<br />

which included engaging in active learning tasks and short discussions, and<br />

whole class discussions, which included individual students and small groups<br />

sharing their work. The self-activating sequences were enriched by short<br />

instructional lectures of the participating mathematics educators (i.e. the first,<br />

second, and fourth authors). Moreover, seminar participants worked with a<br />

variety of materials, including reading original historical sources, excerpts from<br />

research literature, and school textbooks; using hands-on materials to model<br />

concepts from projective and hyperbolic geometry; and investigating concepts<br />

using dynamic geometry software. We provide further context and description<br />

for a number of the seminar activities within the elaboration of the four parts of<br />

the seminar that follows.<br />

1) Raise attention to the importance of beliefs about and philosophies of<br />

mathematics.<br />

In the first part of the seminar we wanted to make students aware of the<br />

idea of different belief systems and natures of mathematics. Here we began<br />

with individual reflections and work with authentic material such as transcripts<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Ingo Witzke, Horst Struve, Kathleen Clark, Gero Stoffels<br />

ÜBERPRO – A SEMINAR CONSTRUCTED TO CONFRONT THE TRANSITION<br />

PROBLEM FROM SCHOOL TO UNIVERSITY MATHEMATICS, BASED ON<br />

EPISTEMOLOGICAL AND HISTORICAL IDEAS OF MATHEMATICS<br />

77<br />

from Schoenfeld’s (1985) research that clearly showed the meaning and<br />

relevance of the concept of an empirical belief system. Afterwards students<br />

compared different types of textbooks: university course textbooks, school<br />

textbooks, and historical textbooks.<br />

The three excerpts (Fig. 3) illustrate how we worked within this comparative<br />

activity. In the upper left-hand corner of Fig. 3 is a formal university textbook<br />

definition of differentiation. It is characterized by a high degree of<br />

formalization: the objects of interest are functions defined on real numbers or<br />

complex numbers. The excerpt exhibits a highly symbolic definition where the<br />

theoretical concept of limit is necessary. In contrast, we see just below an<br />

excerpt from a popular German school textbook. Here, the derivative function<br />

is defined on a purely empirical level; the upper curve is virtually identified<br />

with the term function. Characteristic points are determined by an act of<br />

empirical measuring and the slopes of the triangles are then plotted underneath<br />

and results in the second graphed curve (graphical derivation).<br />

Figure 3. Three excerpts of different textbooks for comparison. University course<br />

textbook “Königsberger 2001: 34” (top left), school textbook “Lambacher Schweizer<br />

2009: 55” (bottom left), historical text “Leibniz, Acta Eruditorum,” 1693 (right).<br />

Finally, if we look back to Leibniz (one of the fathers of analysis), with his<br />

calculus differentialis and intergalis, we find that he conducted mathematics in a<br />

rather empirical way as well (cf. Witzke 2009). His objects were curves given by<br />

construction on a piece of paper – properties like differentiability or continuity<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Ingo Witzke, Horst Struve, Kathleen Clark, Gero Stoffels<br />

ÜBERPRO – A SEMINAR CONSTRUCTED TO CONFRONT THE TRANSITION<br />

PROBLEM FROM SCHOOL TO UNIVERSITY MATHEMATICS, BASED ON<br />

EPISTEMOLOGICAL AND HISTORICAL IDEAS OF MATHEMATICS<br />

78<br />

were read out of the curve. Furthermore, there seem to be parallels on an<br />

epistemological level between school analysis and historical analysis. For<br />

example, Leibniz presented (published in 1693) the invention of the so-called<br />

“integrator” (right-hand side of Fig. 3), a machine that was designed to draw an<br />

anti-derivative curve by retracing a given curve. So here, as in the school<br />

textbook, the empirical objects form the basis of the theory; even more the<br />

processes regarding Leibniz’ integrator and the textbooks’ graphical derivation.<br />

During the seminar course, students shared their response to the question,<br />

“What is mathematics?” – which were then organized according to the scheme<br />

aspect, formalism aspect, process aspect, and utility aspect, similar to those<br />

introduced in the items by Grigutsch, Raatz and Törner (1998).<br />

2) Historical case study: Geometry from Euclid to Hilbert. (In particular,<br />

which questions lead to the modern formalistic understanding of<br />

mathematics?)<br />

An adequate description of the development of the nature of mathematics in<br />

the course of history requires more than one book. We referenced the following<br />

ones: Bonola (1955) for a detailed historical presentation; Garbe (2001),<br />

Greenberg (2004), and Trudeau (1995) for a lengthy historical and philosophical<br />

discussion; Ewald (1971), Hartshorne (2000), and Struve and Struve (2010) for a<br />

modern mathematical presentation. Additionally, Davis and Hersh (1981) and<br />

Davis, Hersh and Marchiotto (1995) presented aspects of the historical and<br />

philosophical discussion in a concise manner, and for students, in a relatively<br />

easy and accessible way.<br />

The overall aim of the historical case study was to make students aware of<br />

how the nature of mathematics changed over history. Regarding our theoretical<br />

framework, we endeavored to make explicit how geometry – which for<br />

hundreds of years seemed to be the prototype of empirical mathematics,<br />

describing physical space – developed into the prototype of a formalistic<br />

mathematics as formulated in Hilbert’s Foundations of Geometry in 1899 (cf. Fig.<br />

4.)<br />

Figure 4 The historical and philosophical development of mathematics along the<br />

development of geometry.<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Ingo Witzke, Horst Struve, Kathleen Clark, Gero Stoffels<br />

ÜBERPRO – A SEMINAR CONSTRUCTED TO CONFRONT THE TRANSITION<br />

PROBLEM FROM SCHOOL TO UNIVERSITY MATHEMATICS, BASED ON<br />

EPISTEMOLOGICAL AND HISTORICAL IDEAS OF MATHEMATICS<br />

79<br />

Consequently, we helped students (or, aimed to help them) on their way to<br />

develop an understanding for different natures of mathematics, in particular,<br />

modern ones taught at the university level.<br />

In the seminar course we began this component of instruction with Euclid’s<br />

Elements; they show what a deductively built piece of mathematics, describing<br />

physical space, looks like in a prototype manner. Here we prompted the<br />

students to display in a diagrammatic manner how Pythagoras’ theorem can be<br />

traced down to Euclid’s five postulates. (cf. Fig. 5, the numbers indicate the<br />

number of the proposition within Euclid’ Elements). This activity was selected<br />

based upon the 2013 survey results, which showed that a significant number of<br />

students were not familiar with a deductive structure after one year of<br />

university mathematics.<br />

Figure 5. The architecture of Pythagoras’ theorem.<br />

It was important for the overall goal of the seminar that the Elements gave<br />

reason to discuss status, meaning, and heritage of axiomatic systems. This<br />

enabled us to focus on the self-evident character of the axioms (or, postulates)<br />

describing physical space in a true manner – and to provide insights on the<br />

surrounding real space which were accepted without proof (cf. Garbe 2001: 77).<br />

Figure 6. Photo of “Autobahn” taken by the first author (left); Albrecht Dürer: “Man<br />

drawing a lute” (1525), (middle); photo of Albrecht Dürer Activity during seminar,<br />

taken by third author (right)<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Ingo Witzke, Horst Struve, Kathleen Clark, Gero Stoffels<br />

ÜBERPRO – A SEMINAR CONSTRUCTED TO CONFRONT THE TRANSITION<br />

PROBLEM FROM SCHOOL TO UNIVERSITY MATHEMATICS, BASED ON<br />

EPISTEMOLOGICAL AND HISTORICAL IDEAS OF MATHEMATICS<br />

80<br />

Projective geometry was the next example on our way (in the seminar) to a<br />

modern understanding of geometry. Starting with the question of whether<br />

other geometries, besides the Euclidean one, are conceivable, projective<br />

geometry seemed to be an ideal case (cf. Ostermann & Wanner 2012: 319-344).<br />

Related to the overall goal of the course, the notion that there exists more than<br />

one geometry fostered the idea that there is more than one (“true”)<br />

mathematics. And, this in turn serves to lead us away from the quest for one<br />

unique mathematics describing physical space (cf. Davis & Hersh 1985: 322-<br />

330).<br />

On the one hand, we wanted students to become familiar with the idea (via<br />

the Albrecht Dürer Activity, cf. Fig. 6) that projective geometry seems to be so<br />

intuitive and evident when looking at its origins in the vanishing point<br />

perspective (arts). On the other hand, projective geometry adds new objects to<br />

the Euclidean geometry (esp. the infinitely distant points on the horizon) and its<br />

place in the seminar introduced the students to the insight that all parallels may<br />

meet eventually. Additionally, with projective geometry the students<br />

encountered a further axiomatizable geometry, which also possessed particular<br />

properties that finally influenced Hilbert to ultimately design a formalistic<br />

geometry that was free of any physical references (cf. Blumenthal 1935: 402).<br />

Julius Plücker saw in the 19 th century as one of the first that theorems in<br />

projective geometry hold if the terms “straight line” and “point” are<br />

interchanged. This so-called principle of duality gave a clear hint that the<br />

nature of geometrical objects may be irrelevant and that it is the relations<br />

between these objects that matter. (cf. Fig. 7)<br />

Figure 7. Example for the principle of duality: Theorem of Pappus-Pascal: Six<br />

points (red) incident with two lines (blue) – the points (green) which are incident with<br />

opposite lines of the hexahedron are collinear (green line). Theorem of Brianchon: Six<br />

lines (red) incident with two points (blue) – the lines (green) which are incident with<br />

opposite points of the hexahedron are copunctal (green point)<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Ingo Witzke, Horst Struve, Kathleen Clark, Gero Stoffels<br />

ÜBERPRO – A SEMINAR CONSTRUCTED TO CONFRONT THE TRANSITION<br />

PROBLEM FROM SCHOOL TO UNIVERSITY MATHEMATICS, BASED ON<br />

EPISTEMOLOGICAL AND HISTORICAL IDEAS OF MATHEMATICS<br />

81<br />

The next case that students examined was a revolutionary step towards a<br />

formalistic formulation of geometry that comprised the development of the non-<br />

Euclidean geometries, and which was connected to the names Janos Bolyai<br />

(1802-1860), Nikolai Ivanovitch Lobatchevski (1792-1856), Carl Friedrich Gauß<br />

(1777-1855), or Bernhard Riemann (1826-1866) (cf. Garbe 2001, Greenberg 2004,<br />

Trudeau 1995 on their historical role regarding non-Euclidean Geometries).<br />

In fact, the non-Euclidean geometries developed from the “theoretical<br />

question” around Euclid’s fifth postulate, the so-called parallel postulate:<br />

Let the following be postulated: [...]<br />

That if a straight line falling on two straight lines makes the interior<br />

angles on the same side less than two right angles, the straight lines, if<br />

produced indefinitely, will meet on that side on which the angles are less<br />

than two right angles. (Heath et al. 1908)<br />

Compared to the other postulates like the first, “to draw a straight line from<br />

any point to any point”, the fifth postulate sounds more complicated and less<br />

evident. This postulate cannot be “verified” by drawings on a sheet of paper as<br />

parallelism is a property presupposing infinitely long lines. In the words of<br />

Davis, Hersh and Marchiotto (1995: 242), “it seems to transcend the direct<br />

physical experience”. In history this was seen as a blemish in Euclid’s theory<br />

and various attempts have been undertaken to overcome this flaw. On the one<br />

hand, different individuals tried to find equivalent formulations, which are<br />

more evident (e.g. Proclus (412-485), John Playfair (1748-1819)) 5 . On the other<br />

hand, several mathematicians tried to deduce the fifth postulate from the other<br />

postulates so that the disputable statement becomes a theorem (which does not<br />

need to be evident) and not a postulate (e.g. Girolamo Saccheri (1667-1733),<br />

Johann Heinrich Lambert (1728-1777)). (cf. Davis & Hersh 1985: 217-223,<br />

Greenberg 2004: 209-238, Struve & Struve 2010)<br />

In contrast in the 18 th and 19 th century, Bolyai, Lobatchevski, Gauß, and<br />

Riemann experimented with negations and replacements of the fifth postulate<br />

guided by the question of whether the parallel postulate was logically<br />

dependent of the others (cf. Greenberg 2004: 239-248). If this would have been<br />

true – Euclidean geometry should actually work without it – what it does, in a<br />

sense that no inconsistencies occur.<br />

5 To Proclus, who was amongst the first commentators of Euclid’s Elements in ancient Greece, already<br />

formulated doubts on the parallel postulate and formulated around 450 an equivalent formulation (cf.<br />

Wußing & Arnold 1978: 30). Playfair’s formulation (1795), “in a plane, given a line and a point not on it,<br />

at most one line parallel to the given line can be drawn through the point”, is quite popular today (cf.<br />

Prenowitz & Jordan 1989: 25, Gray 1989: 34).<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Ingo Witzke, Horst Struve, Kathleen Clark, Gero Stoffels<br />

ÜBERPRO – A SEMINAR CONSTRUCTED TO CONFRONT THE TRANSITION<br />

PROBLEM FROM SCHOOL TO UNIVERSITY MATHEMATICS, BASED ON<br />

EPISTEMOLOGICAL AND HISTORICAL IDEAS OF MATHEMATICS<br />

82<br />

Figure 8. Visualizations regarding different geometries. Elliptic, Euclidean and<br />

Hyperbolic Geometry. (naiadseye, 2014)<br />

But this logical act leads to conclusions that differ from those in Euclidean<br />

geometry. For example:<br />

- In hyperbolic geometry the sum of interior angles in a triangle sums to<br />

less than 180°, in elliptical geometry to more than 180° (cf. Fig. 8)<br />

- The ratio of circumference and diameter of a circle in hyperbolic<br />

geometry is bigger than π, in elliptical geometry smaller than π.<br />

- In hyperbolic as in elliptical geometry triangles which are just similar but<br />

not congruent do not exist.<br />

- In hyperbolic geometry there is more than one parallel line through a<br />

point P to a given line g and in elliptical geometry there are no parallel<br />

lines at all. (cf. Davis & Hersh 1985: 222, Garbe 2001: 59)<br />

Working with texts and sources regarding the process of discovery of the<br />

non-Euclidean geometries had an important impact on students’ belief system.<br />

The 2013 survey results indicated that the so-called “Euclidean Myth” (Davis &<br />

Hersh 1985) was widely prevalent: to many first-year university students<br />

mathematics is a monolithic block of eternal truth; a theorem, once proven,<br />

necessarily holds in every context. With the discovery of the non-Euclidean<br />

geometries, it became apparent in history that there was no such truth in an<br />

ontological sense. In contrast, there seems to be multiple such truths, depending<br />

on the context in which you work. We used a discussion of Gauß’s qualms to<br />

publish his results on non-Euclidean geometry, afraid of being accused of doing<br />

something suspect, or the (probably legendary) story (cf. Garbe 2001: 81-85) that<br />

he tried to measure on a large scale whether the world is Euclidean to help the<br />

students become amenable to the revolutionary character of his discoveries.<br />

Following Freudenthal’s (1991) idea of guided reinvention, recapitulating the<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Ingo Witzke, Horst Struve, Kathleen Clark, Gero Stoffels<br />

ÜBERPRO – A SEMINAR CONSTRUCTED TO CONFRONT THE TRANSITION<br />

PROBLEM FROM SCHOOL TO UNIVERSITY MATHEMATICS, BASED ON<br />

EPISTEMOLOGICAL AND HISTORICAL IDEAS OF MATHEMATICS<br />

83<br />

history of humankind seems to bear quite fruitful perspectives for the<br />

development of individual belief systems.<br />

Finally, from the discussion of the non-Euclidean geometries students<br />

investigated questions which led to Hilbert’s formalistic turn. If there was more<br />

than one consistent geometry, which one was the true one? This question is<br />

closely linked to the question, what is mathematics?<br />

3) Exploration of Hilbert’s approach. (Or, what characterizes modern<br />

formalistic mathematics?)<br />

Hilbert actually gave an answer to this problem – not only in a philosophical<br />

and programmatic way but also by formulating a geometry “exempla trahunt”<br />

(Freudenthal 1961: 24), a discipline that was seen for ages as the natural<br />

description of physical space, in a formalistic sense and characterized by an<br />

axiomatic structure. The established axioms are fully detached and independent<br />

from the empirical world, which leads to an absolute notion of truth:<br />

mathematical certainty in the sense of consistency. Thus, with Hilbert the bond<br />

of geometry to reality is cut. This came to life in the seminar when students<br />

read Hilbert’s Foundations of Geometry (1902, see Fig. 9) in detail.<br />

Figure 9. The famous first paragraph of Hilbert’s (1902) Foundations of Geometry.<br />

Hilbert did not give his concepts an explicit semantic meaning; he spoke<br />

independently from any empirical meaning of “distinct systems of things”.<br />

Consequently, intuitive relations like in between or congruent do not have an<br />

empirical meaning but are relations fulfilling certain formal properties only (cf.<br />

for example, Hilbert & Bernays 1968: §1, Greenberg 2004: 103-129).<br />

As we all know, the discussion of nature of mathematics did not come to an<br />

end with Hilbert. Thus, the course ended with discussions of texts taken from<br />

What is Mathematics, Really? (Hersh 1997). Hersh understood “mathematics as a<br />

human activity, a social phenomenon, part of human culture, historically<br />

evolved, and intelligible only in a social context” (xi), which created a balanced<br />

view.<br />

However, nobody will deny that formalism in Hilbert’s open-minded<br />

version had a lasting effect on the development of mathematics. As a<br />

consequence, today’s university mathematics has the freedom to be developed<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Ingo Witzke, Horst Struve, Kathleen Clark, Gero Stoffels<br />

ÜBERPRO – A SEMINAR CONSTRUCTED TO CONFRONT THE TRANSITION<br />

PROBLEM FROM SCHOOL TO UNIVERSITY MATHEMATICS, BASED ON<br />

EPISTEMOLOGICAL AND HISTORICAL IDEAS OF MATHEMATICS<br />

84<br />

without being ‘true’ in an absolute sense anymore (cf. Freudenthal 1961), but<br />

nevertheless including the possibility to interpret it physically again.<br />

In the meantime, while the creative power of pure reason is at work, the<br />

outer world again comes into play, forces upon us new questions from<br />

actual experience, opens up new branches of mathematics, and while we<br />

seek to conquer these new fields of knowledge for the realm of pure<br />

thought, we often find the answers to old unsolved problems and thus at<br />

the same time advance most successfully the old theories. And it seems<br />

to me that the numerous and surprising analogies and that apparently<br />

prearranged harmony which the mathematician so often perceives in the<br />

questions, methods and ideas of the various branches of his science, have<br />

their origin in this ever-recurring interplay between thought and<br />

experience. (Hilbert 1900: English translation in Reid 1996: 77)<br />

It is this openness and freedom of questions of absolute truth, which Hilbert<br />

replaced by the concept of logical consistency that made mathematics so<br />

successful in the 20 th century (cf. Freudenthal 1961: 24, Garbe 2001: 100-109,<br />

Tapp 2013: 142).<br />

This makes again quite clear that modern mathematics after Hilbert is on<br />

epistemological grounds, completely different than (historical) empirical<br />

mathematics and of course, mathematics taught in school. Whether the first is<br />

grounded on set axioms and the notion of mathematical certainty<br />

(inconsistency), the second and third are grounded in evident axioms – thus<br />

describing physical space including a notion of (empirical) truth, resting<br />

essentially on induction from experience.<br />

4) Summary discussion and reflection<br />

The final session of the seminar entailed a whole-group discussion in which<br />

we sought to connect insights gained from the historical perspectives with the<br />

individual participants’ mathematical biographies. We first reminded students<br />

about the preliminary discussions regarding different personal belief systems<br />

that occurred in the first session of the seminar. The intention was that the<br />

transparency on the historical problems that led to a modern abstract<br />

understanding of mathematics can therefore lead to an understanding of what<br />

happens if students live through this revolution on epistemological grounds as<br />

individuals, thus opening differentiated views on the transition problem.<br />

As an example, the first author – while leading the concluding discussion of<br />

the seminar course – prompted students with:<br />

You have described, that [it] is all abstract; there is no application. […] You<br />

have also said, that it is somehow not too bad, because it is also important...If<br />

you are watching the reality, that’s what I want to remind you, at the differences<br />

between high school-university, that you also described again … (fourth<br />

author’s translation)<br />

To this, one student shared:<br />

If first-year students go to university, then they have a completely different<br />

concept map in their mind and for example, [they] have the understanding that a<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Ingo Witzke, Horst Struve, Kathleen Clark, Gero Stoffels<br />

ÜBERPRO – A SEMINAR CONSTRUCTED TO CONFRONT THE TRANSITION<br />

PROBLEM FROM SCHOOL TO UNIVERSITY MATHEMATICS, BASED ON<br />

EPISTEMOLOGICAL AND HISTORICAL IDEAS OF MATHEMATICS<br />

85<br />

graph is always a function. But in fact that is not right. And if the lecturer talks<br />

about such definitions, [students] will say: “Huh? I have never ever seen<br />

something like this in my whole life,” and principally they know, they can<br />

connect it to their knowledge, but they need simply someone who explains to<br />

them ok, the function is not the graph. Also they need principally a dictionary<br />

for high school to university, where you can look up the concepts. (fourth<br />

author’s translation)<br />

In this student’s personal mathematical biography, then, there was a clear<br />

gap between the mathematics experienced in high school when compared to<br />

that at university. And, the gap was so pronounced that a sort of translation<br />

device – “a dictionary for high school to university” – was required to make<br />

sense of the different concepts.<br />

6. SUMMARY<br />

Although the primary intent of this article was to share the usefulness of the<br />

intensive seminar we conceptualized and implemented with one group of<br />

university mathematics students at a German university in spring 2015, another<br />

aim was to share initial reflections on the data we gathered to determine<br />

whether an intervention longer than a three-day seminar was both warranted<br />

and necessary.<br />

The group of students who participated in the seminar was heterogeneous<br />

with respect to age and semesters at university (see Table 1), which gave us<br />

multi-perspective views on the success of the seminar and a deeper insight of<br />

the transition problem. Numerous data sources will inform the construction of<br />

six case studies which will describe the ‘state of the transition’ that the<br />

participants experienced – and are still experiencing – with respect to the<br />

transition from school to university mathematics. 6 The data sources include preand<br />

post-surveys (measures of beliefs and perceptions of mathematics, content<br />

items, and demographic information), video and audio recording of the threeday<br />

seminar, essays submitted by all seminar participants, audio recording of<br />

interviews of six seminar participants, observation notes (third author), and<br />

various seminar artifacts (e.g. daily debrief notes completed with students,<br />

response cards to open, anonymous prompts).<br />

However, as with the preceding sample revelations, further evidence – in<br />

the words of the students – revealed that they could articulate the transition<br />

problem adequately and that they desire a solution as they contemplated the<br />

next “abstraction shock” they will encounter. For example, in the summary<br />

discussion, one young woman declared:<br />

Even the problem with [limits], that was also described... and now it<br />

appears for me, as if the Anschaulichkeit and the applications are the<br />

6 As we have stated throughout, we intended for this article to present the theoretical foundation for and a<br />

description of the ÜberPro seminar that we implemented in February 2015. We have purposefully<br />

reserved the presentation of signature cases of student participation in the seminar for subsequent<br />

publications.<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Ingo Witzke, Horst Struve, Kathleen Clark, Gero Stoffels<br />

ÜBERPRO – A SEMINAR CONSTRUCTED TO CONFRONT THE TRANSITION<br />

PROBLEM FROM SCHOOL TO UNIVERSITY MATHEMATICS, BASED ON<br />

EPISTEMOLOGICAL AND HISTORICAL IDEAS OF MATHEMATICS<br />

86<br />

reasons; I mean the application in school, [is] the reason, that we now<br />

have problems while the transition process to university. And then I<br />

don’t understand, why this is in all the books of didactics nowadays, that<br />

using applications is very good and that instead, it is the problem for the<br />

transition to university.<br />

Another student observed in the essay assigned at the conclusion of the<br />

seminar that:<br />

All in all, the transition problem in mathematics is quite rightly an oftendiscussed<br />

topic, which seems is hard to solve. For many students the<br />

transition from school to university is [difficult] because of the following<br />

aspects: the changes in teaching and learning, the change in the character<br />

and beliefs on mathematics ((naive-) empirical to deductivemathematical),<br />

the pressure to perform and the [subsequent] loss of<br />

motivation. That’s why they fall into a nearly never-ending ravine, from<br />

which they have to find a way out, for overcoming the transition<br />

successfully. If they fail at this, they break up their studies. For me the<br />

transition from school to university was and is also not very easy.<br />

Still another student shared in his/her essay response that:<br />

Everything we discussed in [the] seminar led me to believe that it is<br />

crucial to understand the transition problem with the help of<br />

mathematical history. I would have liked to have some more practical<br />

advances in how to use this situation later as a teacher. (I know that [was<br />

not] the aim of this class and the research is probably at the very<br />

beginning but at some times we could have spent the time in a better<br />

way.)<br />

Thus, it was clear to us that there is much more work that we can do in<br />

responding to the seminar course students’ needs. Indeed, mathematical history<br />

can provide support in negotiating the second gap that university mathematics<br />

students encounter when they transition to teaching mathematics. One such<br />

support is to provide concrete ways in which mathematics teachers can draw<br />

upon particular moments in the historical development of a collection of related<br />

mathematical ideas (as in the case of geometry in the ÜberPro seminar).<br />

However, another support includes the way in which history of mathematics<br />

contributes to a teacher’s mathematical knowledge for teaching, particularly<br />

contributions to horizon content knowledge (Clark 2012).<br />

6.1 Implications for next steps<br />

For school purposes – from a well-informed mathematics educator’s point of<br />

view – nothing speaks against doing mathematics in an empirical way. Indeed,<br />

history has shown that empirical mathematics was a decent way to develop<br />

mathematical knowledge and the experimental natural sciences generate<br />

knowledge comparably. Yet approaches to bring formalistic mathematics into<br />

school classrooms have failed miserably (cf. the New Math Initiative, Why<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Ingo Witzke, Horst Struve, Kathleen Clark, Gero Stoffels<br />

ÜBERPRO – A SEMINAR CONSTRUCTED TO CONFRONT THE TRANSITION<br />

PROBLEM FROM SCHOOL TO UNIVERSITY MATHEMATICS, BASED ON<br />

EPISTEMOLOGICAL AND HISTORICAL IDEAS OF MATHEMATICS<br />

87<br />

Johnny Can’t Add (Kline 1974)). Moreover, we cannot step away from teaching<br />

mathematics in a theoretical way at universities. In contrast, the intensive<br />

seminar course that we implemented sought to make tangible, understandable,<br />

and explicit to first-year university students that the transition from school<br />

mathematics to university mathematics is an epistemological obstacle.<br />

Hefendehl-Hebeker (2013: 80) found quite comparably:<br />

[…] a principle difference between school and university is that at<br />

university with the axiomatic method a new level of theory formation<br />

has to be reached, and thus it follows that the discontinuity cannot be<br />

avoided.<br />

So if the discontinuity cannot be avoided, what can teachers and students at<br />

university gain from a seminar course like the one described here? We found<br />

that significant potential lies in the following areas:<br />

1. The historical excursions do not only focus on the beliefs aspect but also<br />

demonstrate and involve critical mathematical activities, especially<br />

regarding deductive reasoning within the frameworks of consistent<br />

mathematical theories.<br />

2. Teachers and students should become aware of the extent of the<br />

transition problem, and that the problem’s solution is not as easy as<br />

repeating particular secondary school mathematics, as many approaches<br />

(and deficit models) seem to suggest. Instead, a revolutionary act of<br />

conceptual change is required and this work does not occur overnight<br />

and needs guidance. The historical questions that led to the modern<br />

understanding of mathematics are too sophisticated and waiting for<br />

students to develop these for themselves is a particular burden on top of<br />

all the other factors of beginning mathematical study at university. The<br />

approach of initiating these questions explicitly within the framework<br />

we described here may support a more adequate and prompt change of<br />

belief system, which in turn holds promise for addressed both forms of<br />

“abstraction shock” experienced by secondary mathematics teachers.<br />

3. The seminar course has the power to sensitize for critical communication<br />

problems. Teachers and students should acknowledge that when talking<br />

about mathematics, using the same terms might not imply talking about<br />

the same things. For example, students may come to university from<br />

school having learned calculus in an empirical context such that<br />

functions might be equivalent to curves. This might imply that<br />

properties like continuity or differentiability are empirical and can be<br />

read from the sketched graph of the function (comparable to 17 th century<br />

mathematicians). The university lecturer, on the other hand, probably<br />

has a general abstract notion of function implying a completely different<br />

notion of mathematical reasoning and truth. In particular, lecturers<br />

should repeatedly check if the knowledge of their students is still bound<br />

to (single) objects of reference. The same holds for the students<br />

eventually leaving university and starting as secondary school<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Ingo Witzke, Horst Struve, Kathleen Clark, Gero Stoffels<br />

ÜBERPRO – A SEMINAR CONSTRUCTED TO CONFRONT THE TRANSITION<br />

PROBLEM FROM SCHOOL TO UNIVERSITY MATHEMATICS, BASED ON<br />

EPISTEMOLOGICAL AND HISTORICAL IDEAS OF MATHEMATICS<br />

88<br />

NOTES<br />

mathematics teachers: they should be aware that what they consider<br />

from an abstract point of view their students may instead possess<br />

visualizations of abstract notions as the reference objects.<br />

1. Anschauung: The meaning of the prominent German term Anschauung<br />

has two different connotations. It can mean something close to ‘empirical<br />

perception’ or something like an ‘inner mental image’ (according to<br />

Immanuel Kant). Heuser (2009) referred to the aspect of empirical<br />

perception.<br />

2. Empirical: The authors use the word empirical in the sense as it is used in<br />

the concept of “empirical theories” in philosophy of science, which is<br />

close to natural scientific theories. That means that some concepts of a<br />

theory have real/physical/empirical reference objects and the<br />

propositions of the theory can be checked by experiments in reality<br />

(Hempel 1945, Stegmüller 1987).<br />

3. Formalistic: The authors use the word formalistic in the Hilbertian sense.<br />

That means a (mathematical) theory is formalistic if all primitive concepts<br />

of the theory are (logical) variables and the axioms of the theory are not<br />

sentences but sentential functions with the primitive concepts as<br />

variables arguments (cp. C. G. Hempel 1945). By virtue of a physical<br />

interpretation of the originally uninterpreted primitives empirical models<br />

of the formalistic theory are defined. This is the relation between a<br />

formalistic mathematics and empirical science.<br />

Figure Acknowledgements:<br />

Fig. 1. Data from a survey made by Ingo Witzke in 2013.<br />

Fig. 2. Graphical derivative. Graphic from Griesel, H. et al. (Hrsg.): Elemente<br />

der Mathematik (EDM), Einführungsphase – Braunschweig: Schroedel 2010:<br />

203.<br />

Fig. 3. Three excerpts of different textbooks for comparison. University<br />

course textbook “Königsberger 2001: 34” (top left), school textbook<br />

“Lambacher Schweizer 2009: 55” (bottom left), historical text “Leibniz, Acta<br />

Eruditorum”, 1693 (right).<br />

Fig. 4. Historical development as one basis of the seminar. Created by Ingo<br />

Witzke and Gero Stoffels.<br />

Fig. 5. The Architecture of Pythagoras theorem. Graphic by S. Schlicht<br />

(University of Cologne) 2014.<br />

Fig. 6. Photo of “Autobahn” taken by Ingo Witzke (top); Albrecht Dürer:<br />

“Man drawing a lute” (1525), (bottom left); photo of Albrecht Dürer Activity<br />

during seminar, taken by Kathleen Clark (bottom right).<br />

Fig. 7. Example for the principle of duality: Theorem of Pappus-Pascal: Six<br />

points (red) incident with two lines (blue) – the points (green) which are<br />

incident with opposite lines of the hexahedron are collinear (green line).<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Ingo Witzke, Horst Struve, Kathleen Clark, Gero Stoffels<br />

ÜBERPRO – A SEMINAR CONSTRUCTED TO CONFRONT THE TRANSITION<br />

PROBLEM FROM SCHOOL TO UNIVERSITY MATHEMATICS, BASED ON<br />

EPISTEMOLOGICAL AND HISTORICAL IDEAS OF MATHEMATICS<br />

89<br />

Theorem of Brianchon: Six lines (red) incident with two points (blue) – the<br />

lines (green) which are incident with opposite points of the hexahedron are<br />

copunctal (green point). Graphic created by Horst Struve and Ingo Witzke.<br />

Fig. 8. Angle sums in different geometries: Internet source retrieved<br />

November 1, 2015 from the World Wide Web:<br />

https://naiadseye.files.wordpress.com/2014/10/euclidean-udnerstande1414490051530.png?w=470&h=289<br />

(Stand, 2015).<br />

Fig 9. First paragraph of Hilbert’s Foundations of Geometry (Hilbert 1902).<br />

REFERENCES<br />

Abbott, S. (2001). Understanding Analysis. New York: Springer.<br />

Abd-El-Khalick, F. & Lederman, N. G. (2001). The influence of history of science<br />

courses on students’ views of nature of science. Journal of Research in<br />

Science Teaching, 37, 1057-1095.<br />

Anderson, J. R., Reder, L. M. & Simon, H. A. (2000). Applications and<br />

misapplications of cognitive psychology to mathematics education.<br />

Pittsburgh: Carnegie Mellon, University, Department of psychology.<br />

Retrieved November 1, 2015 from the World Wide Web:<br />

http://files.eric.ed.gov/fulltext/ED439007.pdf<br />

Bauersfeld, H. (1992). Classroom cultures from a social constructivist’s<br />

perspective. Educational Studies in Mathematics, 23(5), 467-481.<br />

Biehler, R., Bruder, R., Hochmuth, R. & Koepf, W. (2014). Einleitung. In I.<br />

Bausch, R. Biehler, R. Bruder, P. R. Fischer, R. Hochmuth, W. Koepf,...T.<br />

Wassong (Eds.), Mathematische Vor- und Brückenkurse (pp. 1-6).<br />

Wiesbaden: Springer.<br />

Blumenthal, O. (1935). Lebensgeschichte. In D. Hilbert, Gesammelte<br />

Abhandlungen, vol. 3 1965 (pp. 388-429). New York: Chelsea Publishing<br />

Company.<br />

Bonola, R. (1955). Non-Euclidean Geometry. New York: Dover.<br />

Bressoud, D. M., Carlson, M. P., Mesa, V. & Rasmussen, C. (2013). The calculus<br />

student: insights from the Mathematical Association of America national<br />

study. International Journal of Mathematical Education in Science and<br />

Technology, 44(5), 685-698.<br />

Bruner, J. S. (1966). Toward a Theory of Instruction. Cambridge, MA: Belkapp<br />

Press.<br />

Burscheid, H. J. & Struve, H. (2009). Mathematikdidaktik in Rekonstruktionen.<br />

Hildesheim: Franzbecker.<br />

Chen, X. (2013). STEM attrition: College students’ paths into and out of STEM<br />

fields (NCES 2014-001). National Center for Education Statistics, Institute of<br />

Education Sciences. Washington, DC: US Department of Education.<br />

Clark, K. M. (2012). History of mathematics: illuminating understanding of<br />

school mathematics concepts for pre-service mathematics teachers.<br />

Educational Studies in Mathematics, 81(1), 67-84.<br />

Davies, E. B. (2010). Why Beliefs Matter. Oxford: Oxford University Press.<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Ingo Witzke, Horst Struve, Kathleen Clark, Gero Stoffels<br />

ÜBERPRO – A SEMINAR CONSTRUCTED TO CONFRONT THE TRANSITION<br />

PROBLEM FROM SCHOOL TO UNIVERSITY MATHEMATICS, BASED ON<br />

EPISTEMOLOGICAL AND HISTORICAL IDEAS OF MATHEMATICS<br />

90<br />

Davis, P. & Hersh, R. (1981). The Mathematical Experience. Boston: Birkhäuser.<br />

Davis, P. J., Hersh, R., Freudenthal, H. & Zehner, J. (1985). Erfahrung<br />

Mathematik. Basel: Birkhäuser.<br />

Davis, P., Hersh, R. & Marchiotto, E. (1995). The Mathematical Experience.<br />

Study Edition. Boston: Birkhäuser.<br />

Eisler, R. (1899). Wörterbuch der philosophischen Begriffe. Berlin: E.S. Mittler.<br />

Ewald, G. (1971). Geometry: An Introduction. Belmont, CA: Wadsworth.<br />

Freudenthal, H. (1961). Die Grundlagen der Geometrie um die Wende des 19.<br />

Jahrhunderts. Mathematisch-Physikalische Semesterberichte, 7, 2-25.<br />

Freudenthal, H. (1991). Revisting Mathematics Education, China lecturers.<br />

Mathematics Education Library, 9, Dordrecht: Kluwer.<br />

Garbe, A. (2001). Die partiell konventional, partiell empirisch bestimmte<br />

Realität physikalischer RaumZeiten. Würzburg: Königshausen & Neumann.<br />

Gray, J. (1989). Ideas of Space. Oxford: Claredon Press.<br />

Greenberg, M. J. (2004). Euclidean and non-Euclidean geometries –<br />

Development and history (4th Edition). New York: Freeman and Company.<br />

Grigutsch, S., Raatz, U. & Törner, G. (1998). Einstellungen gegenüber<br />

Mathematik bei Mathematiklehrern. Journal für Mathematikdidaktik, 19(1),<br />

3-45.<br />

Griesel, H. et al. (Hrsg.). (2010). Elemente der Mathematik (EDM),<br />

Einführungsphase – Braunschweig: Schroedel.<br />

Gruenwald, N., Kossow, A., Sauerbier, G. & Klymchuk, S. (2004). Der Übergang<br />

von der Schul- zur Hochschulmathematik. Global Journal of Engineering<br />

Education, 8, 283-294.<br />

Gueudet, G. (2008). Investigating the secondary-tertiary transition. Educational<br />

Studies in Mathematics, 67(3), 237-254.<br />

Hartshorne, R. (2000). Geometry: Euclid and Beyond. New York: Springer.<br />

Heath, T. L., Heiberg, I. L. & Euclid (1908). The thirteen books of Euclid’s<br />

elements: 1: Introduction and books I, II. Cambridge: University Press.<br />

Hefendehl-Hebeker, L., Ableitinger, C. & Herrmann, A. (2010). Mathematik<br />

Besser Verstehen. In Beiträge zum Mathematikunterricht (S. 93-94). Münster:<br />

WTM-Verlag Stein.<br />

Hefendehl-Hebeker, L. (2013). Doppelte Diskontinuität oder die Chance der<br />

Brückenschläge. In Ch. Ableitinger, J. Kramer, S. Prediger (Hrsg.) (2013):<br />

Zur doppelten Diskontinuität in der Gymnasiallehrerbildung - Ansätze zu<br />

Verknüpfungen der fachinhaltlichen Ausbildung mit schulischen<br />

Vorerfahrungen und Erfordernissen (S. 1-15). Wiesbaden: Springer<br />

Spektrum.<br />

Hempel, C. G. (1945). Geometry and empirical science. American Mathematical<br />

Monthly, 52(1), 7-17.<br />

Hersh, R. (1997). What is Mathematics, Really? New York: Oxford University<br />

Press.<br />

Heublein, U., Richter, J., Schmelzer, R. & Sommer, D. (2012). Die Entwicklung<br />

der Schwund- und Studienabbruchquoten an den deutschen Hochschulen.<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Ingo Witzke, Horst Struve, Kathleen Clark, Gero Stoffels<br />

ÜBERPRO – A SEMINAR CONSTRUCTED TO CONFRONT THE TRANSITION<br />

PROBLEM FROM SCHOOL TO UNIVERSITY MATHEMATICS, BASED ON<br />

EPISTEMOLOGICAL AND HISTORICAL IDEAS OF MATHEMATICS<br />

91<br />

Hannover: HIS, Hochschul-Informations-System (Forum Hochschule, 2012,<br />

3).<br />

Heuser, H. (2009). Lehrbuch der Analysis. Wiesbaden: Vieweg + Teubner.<br />

Hilbert, D. (1900). The original address “Mathematische Probleme“ appeared in<br />

Göttinger Nachrichten, 1900, pp. 253-297.<br />

Hilbert, D. (1902). The Foundations of Geometry. Authorized translation by E. J.<br />

Townsend. Chicago: The Open Court.<br />

Hilbert, D. & Bernays, P. (1968). Grundlagen der Mathematik. 2. Aufl. Berlin,<br />

Heidelberg, New-York: Springer-Verlag (Die Grundlehren der<br />

mathematischen Wissenschaften in Einzeldarstellungen, 40).<br />

Hoppenbrock, A. (2013). Mathematik im Übergang Schule/Hochschule und im<br />

ersten Studienjahr. Khdm-Report 13-01. Universität Paderborn, Institut für<br />

Mathematik.<br />

Hoyles, C., Newman, K. & Noss, R. (2001). Changing patterns of transition from<br />

school to university mathematics. International Journal of Mathematical<br />

Education in Science and Technology, 32(6), 829-845.<br />

Hubermann, A. M. & Miles, B. M. (1994). Data management and analysis<br />

methods. In N. K. Denzin et al. (Eds.) Handbook of Qualitative Research<br />

(pp. 428-44). Thousand Oaks, CA: Sage.<br />

Klein, F. (1908). Elementarmathematik vom höheren Standpunkte aus (3<br />

Bände). B.G. Teubner, Leipzig, Springer Berlin 1928<br />

Kline, M. (1973). Why Johnny Can’t Add: The Failure of the New Mathematics.<br />

New York: St. Martin’s Press.<br />

Kolmogorov, Andrej N. (1973). Grundbegriffe der<br />

Wahrscheinlichkeitsrechnung. Repr. [d. Ausg.] Berlin, Springer, 1933. Berlin,<br />

Heidelberg, New York: Springer (Ergebnisse der Mathematik und ihrer<br />

Grenzgebiete, Bd. 2, 3).<br />

Königsberger, K. (2001). Analysis 1. Berlin: Springer.<br />

LB (2009): Brandt, D. et al. (Eds.). (2014). Lambacher Schweizer, Mathematik<br />

Einführungsphase NRW. Stuttgart: Ernst Klett Verlag.<br />

Liljedahl, P., Rolka, K. & Roesken, B. (2007). Belief change as conceptual change.<br />

In P. Phillippou (Ed.), Proceedings of CERME 5 (pp. 278-287).<br />

Mayring, P. (2002). Qualitative content analysis – Research instrument or mode<br />

of interpretation? In M. Kiegelmann (Ed.). The Role of the Researcher in<br />

Qualitative Psychology (pp. 139-148). Tübingen: Huber.<br />

Moreno-Armella, L. (2014). An essential tension in mathematics education.<br />

ZDM–The International Journal on Mathematics Education, 46(4), 621-633.<br />

National Council of Teachers of Mathematics (2000). Principles and Standards<br />

for School Mathematics. Retrieved November 1, 2015 from the World Wide<br />

Web: http://www.nctm.org/standards/content.aspx?id=322<br />

Ostermann, A. & Wanner, G. (2012). Geometry by its History. Berlin: Springer.<br />

Pasch, M. (1882). Vorlesungen über neuere Geometrie. Leipzig: Teubner.<br />

Reid, C. (1996). Hilbert. New York: Copernicus.<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Ingo Witzke, Horst Struve, Kathleen Clark, Gero Stoffels<br />

ÜBERPRO – A SEMINAR CONSTRUCTED TO CONFRONT THE TRANSITION<br />

PROBLEM FROM SCHOOL TO UNIVERSITY MATHEMATICS, BASED ON<br />

EPISTEMOLOGICAL AND HISTORICAL IDEAS OF MATHEMATICS<br />

92<br />

Schichl, H. & Steinbauer, R. (2009). Einführung in das mathematische Arbeiten.<br />

Ein Projekt zur Gestaltung der Studieneingangsphase an der Universität<br />

Wien. Mitteilungen der DMV, 17(9), 244-246.<br />

Schneider, M. (2014). Epistemological obstacles in mathematics education. In S.<br />

Lerman (Ed.), Encyclopedia of Mathematics Education (pp. 214-217).<br />

Dordrecht: Springer.<br />

Schoenfeld, A. (1985). Mathematical Problem Solving. Orlando, FL: Academic<br />

Press.<br />

Schoenfeld, A. (2011). How We Think: Studies in Mathematical Thinking and<br />

Learning. New York: Routledge.<br />

Sierpińska, A. (1987). Humanities students and epistemological obstacles<br />

related to limits. Educational Studies in Mathematics, 18(4), 371–397.<br />

Sierpinska, A. (1992). On understanding the notion of function. In G. Harel & E.<br />

Dubinsky (Eds.), The Concept of Function: Aspects of Epistemology and<br />

Pedagogy (pp. 25-58). Washington, DC: The Mathematical Association of<br />

America.<br />

Stegmüller, W. (1987). Hauptsrömungen der Gegenwartsphilosophie. Eine<br />

kritische Einführung. 8. Aufl. 2 Bände. Stuttgart: Alfred Kröner Verlag.<br />

Streefland, L. (1993). The Legacy of Hans Freudenthal. Dordrecht: Springer.<br />

Struve, H. (1990). Grundlagen einer Geometriedidaktik. Mannheim [u.a.]: BI-<br />

Wiss.-Verl. (Lehrbücher und Monographien zur Didaktik der Mathematik,<br />

Bd. 17).<br />

Struve, H. & Struve, R. (2010). Non-Euclidean geometries: the Cayley-Klein<br />

approach. Journal of Geometry, 98, 151-170.<br />

Tall, D. (2013). How Humans Learn to Think Mathematically. New York:<br />

Cambridge University Press.<br />

Tapp, C. (2013). An den Grenzen des Endlichen. Berlin: Springer.<br />

Tietze, U.-P., Klika, M. & Wolpers, H. (Eds.). (2000). Mathematikunterricht in<br />

der Sekundartufe II. Band 1. Braunschweig, Wiesbaden: Springer.<br />

Trudeau, R. (1995). The Non-Euclidean Revolution (2nd Edition). Basel:<br />

Birkhäuser.<br />

Winter, H. (1996). Mathematikunterricht und Allgemeinbildung. Mitteilungen<br />

der Gesellschaft für Didaktik der Mathematik, 61, 3746.<br />

Witzke, I. (2009). Die Entwicklung des Leibnizschen Calculus. Eine Fallstudie<br />

zur Theorieentwicklung in der Mathematik. Texte zur mathematischen<br />

Forschung und Lehre, vol. 69. Berlin: Franzbecker.<br />

Witzke, I. (2009). Leibniz and the radius of curvature – a case study for<br />

mathematical development. In Proceedings of the 18th Novembertagung on<br />

the History, Philosophy and Didactics of Mathematics (pp. 41-67). Berlin:<br />

Logos Verlag.<br />

Witzke I. (2013a). Unterschiedliche Auffassungen von Mathematik – ein<br />

Ansatzpunkt zur Klärung der Übergangsproblematik im Fach Mathematik?<br />

In A. Hoppenbrock, S. Schreiber, R. Göller, R. Biehler, B. Büchler, R.<br />

Hochmuth, & H. G. Rück (Eds.), Mathematik im Übergang<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Ingo Witzke, Horst Struve, Kathleen Clark, Gero Stoffels<br />

ÜBERPRO – A SEMINAR CONSTRUCTED TO CONFRONT THE TRANSITION<br />

PROBLEM FROM SCHOOL TO UNIVERSITY MATHEMATICS, BASED ON<br />

EPISTEMOLOGICAL AND HISTORICAL IDEAS OF MATHEMATICS<br />

93<br />

Schule/Hochschule und im ersten Studienjahr. Extended Abstracts zur 2.<br />

Khdm-Arbeitstagung 20.02. - 23.02.2013 (pp. 172-174).<br />

Witzke, I. (2013b). Zur Übergangsproblematik im Fach Mathematik. In G.<br />

Greefrath, F. Käpnick, & M. Stein (Eds.), Beiträge zum<br />

Mathematikunterricht 2013 – Vorträge auf der 47. Tagung für Didaktik der<br />

Mathematik – Jahrestagung der Gesellschaft für Didaktik der Mathematik<br />

von 4.3.2013 bis 8.3.2013 in Münster, 47(2), 1098‐1101.<br />

Witzke, I. (2014). Zur Problematik der empirisch-­gegenständlichen Analysis<br />

des Mathematikunterrichtes. Der Mathematikunterricht, 60(2), 19-32.<br />

Wußing, H. & Arnold, W. (1978). Biographien bedeutender Mathematiker.<br />

Köln: Aulis.<br />

BRIEF BIOGRAPHIES<br />

Ingo Witzke is full professor at the University of Siegen. He is responsible for<br />

undergraduate and graduate mathematics education courses for pre-service teacher<br />

students in the mathematics department. He majored in mathematics and history for<br />

secondary level teaching and earned a doctorate in science education from the<br />

University of Cologne in 2009. His interest and area of publication is benefit-oriented<br />

fundamental research in the field of mathematics education. He focuses on beliefs and<br />

nature(s) of mathematics, including epistemological, historical and cognitive aspects.<br />

Horst Struve is a full professor at the University of Cologne. He completed his PhD in<br />

1978 at the University of Kiel in the foundations of geometry, and his habilitation in<br />

geometry education 1989 at the University of Cologne. His main research interests are<br />

the reconstruction of the development of mathematical theories in both the history of<br />

mathematics and in the classroom. Since there are important similarities between<br />

pupils’ conception of mathematics in school and of mathematicians in history,<br />

mathematics education can learn much from history.<br />

Kathleen Clark is an associate professor at Florida State University. She earned her<br />

doctorate in Curriculum and Instruction (University of Maryland – College Park) in<br />

2006. Kathleen Clark’s research interests are centered on investigating the role of<br />

history of mathematics in teaching and learning. She has published numerous journal<br />

articles, proceedings papers, and book chapters.<br />

Gero Stoffels is doctoral student at the University of Siegen and is supervised by Prof.<br />

Dr. Ingo Witzke. He majored in mathematics and physics for teaching at the University<br />

of Cologne. His doctoral dissertation project deals with the transition from school to<br />

university mathematics with a special focus on probability theory. He is also interested<br />

in comparing individual and historical development processes on an epistemological<br />

level.<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


UNIVERSITY OF WESTERN MACEDONIA<br />

FACULTY OF EDUCATION<br />

<strong>MENON</strong><br />

©online Journal Of Educational Research<br />

94<br />

QUELQUES DIFFICULTÉS RENCONTRÉES DANS LA<br />

FORMATION DES ENSEIGNANTS DE MATHÉMATIQUES DU<br />

SECONDAIRE À L’AIDE DE L’HISTOIRE DES<br />

MATHÉMATIQUES: UNE RÉFLEXION SUR LES MODALITÉS<br />

DE LECTURES DE TEXTES HISTORIQUES<br />

David Guillemette<br />

Faculté d’éducation, Université d’Ottawa<br />

david.guillemette@uottawa.ca<br />

ABSTRACT<br />

This paper tries to highlight some difficulties that have been encountered during the<br />

implementation of reading activities of historical texts in the preservice teachers<br />

training context. During a history of mathematics course offert at the Université du<br />

Québec à Montréal, seven reading activities have been constructed and implemented<br />

in class. Looking to articulate both synchronic and diachronic reading, numerous<br />

efforts have been deployed in order to do not uproot the text and his author from their<br />

socio-historical and mathematical context. We try here to describe the teaching<br />

difficulties that we have encountered in this context and to identify the possible<br />

sources and solutions to these problems. Furthermore, we question these concepts of<br />

synchronic and diachronic reading in this context. Examples of interactions between<br />

students, as well as the trainer, engaged in the reading of historical texts are provided<br />

and presented by the mean of sketches<br />

Keywords: History of Mathematics, Reading of Historical Texts, Diachronic and<br />

Synchronic Reading, Mathematics Preservice Teachers Training, Empirical Research<br />

1. L’HISTOIRE, LA PETITE HISTOIRE…<br />

L’histoire des mathématiques dans l’enseignement-apprentissage des<br />

mathématiques est un sujet qui a fait l’objet d’abondantes études, et ce, depuis<br />

de nombreuses années. C’est à partir des années soixante-dix que ce champ<br />

d’intérêt a connu une hausse importante de popularité. Un nombre important<br />

d’articles, publications, livres, recueils, conférences et groupes de recherche<br />

touchant plus ou moins directement l’histoire et l’enseignement des<br />

mathématiques sont issus de cette période effervescente.<br />

Jusqu’à récemment, il semblait que tous, enseignants et chercheurs,<br />

s’entendaient pour dire que l’histoire est bénéfique et se veut d’emblée un outil<br />

motivationnel et cognitif efficace dans l’apprentissage des mathématiques<br />

(Charbonneau 2006). En effet, un mouvement d’enthousiasme mêlé d’une<br />

grande inventivité anime le milieu depuis la création de ces entités de<br />

recherche. Cependant, depuis maintenant une dizaine d’années, la recherche<br />

autour de l’utilisation de l’histoire des mathématiques se restructure. De<br />

nouveaux questionnements font suite à la parution de l’étude ICMI sur le<br />

sujet (Fauvel & van Maanen 2000). Véritable bilan de santé du domaine de<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


David Guillemette<br />

QUELQUES DIFFICULTÉS RENCONTRÉES DANS LA FORMATION DES<br />

ENSEIGNANTS DE MATHÉMATIQUES DU SECONDAIRE À L’AIDE DE<br />

L’HISTOIRE DES MATHÉMATIQUES: UNE RÉFLEXION SUR LES MODALITÉS DE<br />

LECTURES DE TEXTES HISTORIQUES<br />

95<br />

recherche, le livre rassemble les réflexions, interrogations et inquiétudes des<br />

chercheurs du moment. On peut retenir très globalement que ces derniers<br />

prennent aujourd’hui du recul face à leurs travaux et tentent de construire de<br />

nouveaux outils d’investigations plus raffinés pouvant à la fois alimenter la<br />

production d’outils pratiques pour le terrain, de mieux en comprendre leurs<br />

utilisations par les acteurs des milieux éducatifs et, surtout, de raffiner les<br />

discours sur les enjeux didactiques et pédagogiques de l’utilisation de l’histoire<br />

en classe de mathématiques.<br />

Aujourd’hui, le champ de recherche semble essoufflé quant à la production<br />

et au design d’activités d’apprentissage, de situations problèmes ou de<br />

séquences d’enseignement. Les activités des chercheurs se déplacent vers la<br />

recherche en termes de fondements didactiques et pédagogiques à partir<br />

desquels il serait possible de mieux penser le rôle de l’histoire (Guillemette<br />

2011). Le développement de cadres théoriques et conceptuels permettant de<br />

fournir les appareillages nécessaires à la production d’investigations plus fines<br />

est encore maintenant attendu fermement (Kjeldsen 2012).<br />

2. SUR LE RÔLE ET LES MODALITÉS D’ÉTUDE DE L’HISTOIRE EN<br />

CLASSE DE MATHÉMATIQUES : LE POINT DE VUE DE FRIED<br />

Ainsi, un besoin important se fait sentir dans la communauté afin de<br />

construire des outils critiques permettant de porter un regard aiguisé sur la<br />

recherche et les pratiques actuelles. En particulier, on cherche à classer, à<br />

catégoriser et à évaluer les études du domaine. On tente d’éclaircir les discours<br />

en répertoriant les objectifs poursuivis par les chercheurs, les moyens employés<br />

et les concepts utilisés. Aussi, plusieurs tentatives de catégorisation concernant<br />

le ‘comment’ et le ‘pourquoi’ de l’utilisation de l’histoire sont parues suite à<br />

l’étude ICMI (p. ex. Fried 2001, 2007, 2008, Furinghetti 2004, Gulikers & Blom<br />

2001, Jankvist 2009, Tang 2007, Tzanakis & Thomaidis 2007). La discussion sur<br />

le rôle et les modalités d’étude de l’histoire en classe de mathématiques est<br />

encore très vive et les questions les plus larges restent, et ce pour le mieux,<br />

encore ouvertes.<br />

Un important point de vue est celui de Fried (2001, 2007, 2008) qui réaffirme<br />

à sa manière les vertus ‘humanisantes’ de l’histoire des mathématiques. Dans la<br />

mouvance actuelle, il prône fermement pour une perspective historique dans<br />

l’enseignement des mathématiques une perspective dirigée vers le<br />

développement global de l’individu, prétextant qu’une visée pragmatique,<br />

utilitaire et ponctuelle mène inexorablement à une histoire des mathématiques<br />

mutilée et réifiée, ainsi qu’à une démarche éducative stérile et séparée de<br />

fondements pédagogiques profonds (cf. Whig history, Fried 2007).<br />

Son discours recèle une dimension particulière, celle de la connaissance de<br />

soi (self-knowledge). Il souligne que le mouvement de va-et-vient entre la<br />

compréhension actuelle des objets mathématiques et les formes de<br />

compréhensions provenant d’autres époques amène l’apprenant à une<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


David Guillemette<br />

QUELQUES DIFFICULTÉS RENCONTRÉES DANS LA FORMATION DES<br />

ENSEIGNANTS DE MATHÉMATIQUES DU SECONDAIRE À L’AIDE DE<br />

L’HISTOIRE DES MATHÉMATIQUES: UNE RÉFLEXION SUR LES MODALITÉS DE<br />

LECTURES DE TEXTES HISTORIQUES<br />

96<br />

connaissance plus approfondie de lui-même: “a movement towards self-knowledge,<br />

a knowledge of ourselves as a kind of creature who does mathematics, a kind of<br />

mathematical being” (Fried 2007 : p. 218).<br />

Fried propose que cette connaissance de soi, c’est-à-dire de son ‘être<br />

mathématique’, soit l’objectif premier que doivent se donner les enseignants de<br />

mathématiques. C’est un contact important avec l’histoire qui doit faire émerger<br />

en l’apprenant une certaine conscience de ses propres conceptions, de ses<br />

manières de faire et de son individualité en mathématiques. Ainsi seulement, il<br />

aura la possibilité de faire grandir cette individualité par la confrontation<br />

constructive avec celles des autres. Fried n’hésite pas à souligner l’arrière-plan<br />

de sa pensée autour de ces considérations en mentionnant que: “education, in<br />

general, is directed towards the whole human being, and, accordingly, mathematics<br />

education, as opposed to, say, professional mathematical training, ought to contribute to<br />

students’ growing into a whole human beings” (Fried 2007: p. 219).<br />

Dans plusieurs études théoriques importantes, Fried (2001, 2007, 2008)<br />

discute en profondeur de ces éléments. D’abord, il met en relief la difficulté de<br />

traiter convenablement de l’histoire en classe de mathématiques. Très souvent<br />

l’histoire prend la forme d’anecdotes et de capsules historiques qu’il voit d’un<br />

très mauvais œil. Il souligne le risque évident d’une dénaturation de l’histoire,<br />

particulièrement d’une histoire contaminée par une vision moderne des<br />

mathématiques qui écrase l’historicité des concepts et aseptise la lecture<br />

historique. Comme les risques d’anachronisme et de lectures faussement<br />

progressives de l’histoire sont élevés, il souhaite que celle-ci soit prise au<br />

sérieux et que son étude soit prudente et attentive. Dans cette perspective, Fried<br />

propose les approches d’ ‘accommodation radical’ (radical accommodation) et de<br />

‘séparation radical’ (radical separation) (Fried 2001: 405). Il postule que l’étude<br />

des mathématiques d’une époque donnée doit se faire en symbiose avec le<br />

contenu visé du cours ou se séparer carrément du contenu mathématique<br />

moderne enseigné. Bref, pour Fried, il ne doit pas y avoir de demi-mesure.<br />

Qu’en est-il alors de la pertinence de l’histoire? L’histoire des<br />

mathématiques devrait-elle rester à sa place et ne pas interférer dans le cours de<br />

mathématiques? Avec de telles ‘accommodations’ et une telle ‘prise au sérieux<br />

de l’histoire’, est-il maintenant illusoire de penser introduire l’histoire avec un<br />

temps de classe limité? Surtout, quelles sont les lignes directrices que les<br />

enseignants des divers contextes éducatifs devraient suivre afin d’atteindre ces<br />

objectifs ambitieux?<br />

Fried répond (2007, 2008) en concentrant sa réflexion sur le rôle de<br />

l’enseignant, de ses choix pédagogiques et de son attitude face à la discipline.<br />

Ainsi, il plaide pour l’utilisation de sources primaires, et notamment pour une<br />

rencontre directe avec les mathématiques de l’histoire par la lecture de textes<br />

historiques. À ce sujet, il souligne que la lecture d’un document historique nous<br />

permet d’aller directement à la rencontre avec l’histoire et avec les formes<br />

d’activités mathématiques qui y sont apparues.<br />

Or, une telle lecture de texte doit être faite avec beaucoup de vigilance, et<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


David Guillemette<br />

QUELQUES DIFFICULTÉS RENCONTRÉES DANS LA FORMATION DES<br />

ENSEIGNANTS DE MATHÉMATIQUES DU SECONDAIRE À L’AIDE DE<br />

L’HISTOIRE DES MATHÉMATIQUES: UNE RÉFLEXION SUR LES MODALITÉS DE<br />

LECTURES DE TEXTES HISTORIQUES<br />

97<br />

Fried propose un certain cadre conceptuel afin de mieux penser ces activités<br />

d’enseignement-apprentissage très particulières, ainsi que leurs articulations<br />

avec les objectifs pédagogiques développés précédemment.<br />

Avant tout, il souligne que la lecture d’un tel texte est différente pour le<br />

mathématicien et pour l’historien. L’objectif de l’historien est de se plonger<br />

dans l’époque du mathématicien, de percevoir les idiosyncrasies de ce dernier<br />

et de situer l’ouvrage dans le continuum du développement des<br />

mathématiques. Quant au mathématicien, il tente de son côté de décoder les<br />

symboles désuets, de les restituer au langage moderne et de saisir l’aspect<br />

essentiellement mathématique des propos de l’auteur. Il qualifie de diachronique<br />

la lecture de l’historien et de synchronique la lecture du mathématicien, termes<br />

qu’il emprunte à de Saussure. Fried (2008) affirme que connaitre véritablement<br />

un concept mathématique signifie le connaitre à la fois synchroniquement,<br />

c’est-à-dire en considérant sa situation à l’intérieur du système de concepts<br />

mathématiques actuel, et diachroniquement, c’est-à-dire en considérant son<br />

historicité, son évolution dans le temps et l’espace.<br />

Afin d’éclairer ces termes synchronique et diachronique, retournons<br />

rapidement à la théorie linguistique saussurienne. De Saussure mentionne à<br />

propos de la langue que:<br />

Si on prenait la langue dans le temps, sans la masse parlante […] on ne<br />

constaterait peut-être aucune altération; le temps n’agirait pas sur elle.<br />

Inversement, si on considérait la masse parlante sans le temps, on ne<br />

verrait pas l’effet des forces sociales agissant sur la langue (De Saussure<br />

1967/2005: 113).<br />

On distingue ici deux perspectives: une perspective anhistorique où l’on<br />

observe comme une photo les signes (couple signifiant/signifié) effectifs dans la<br />

masse parlante et une perspective historique où les signes sont en perpétuel<br />

changement.<br />

En d’autres termes, quand l’histoire entre dans le tableau, le tableau change<br />

complètement. Dès lors, il apparait que “le fleuve de la langue coule sans<br />

interruption” (De Saussure: 193). C’est ici que de Saussure introduit les termes<br />

synchronique et diachronique pour distinguer respectivement ces perspectives<br />

anhistoriques et historiques.<br />

Pour Fried, la lecture synchronique des objets mathématiques est trop<br />

souvent renforcée par les enseignants et les mathématiciens dans le contexte de<br />

l’utilisation de l’histoire dans l’enseignement-apprentissage des<br />

mathématiques. Au contraire, le rôle de l’enseignant devrait être précisément<br />

de faire constamment basculer l’apprenant entre ces deux visions. C’est ce<br />

travail de va-et-vient continuel qui doit faire émerger chez l’apprenant une<br />

certaine conscience de ses propres conceptions des mathématiques et de son<br />

individualité face à la discipline.<br />

Se centrant sur les possibilités d’émancipation pour l’apprenant lors de ces<br />

expériences de lectures fondatrices, Fried insiste sur la prise de conscience et le<br />

mouvement de croissance de l’individu plutôt que sur la réflexion<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


David Guillemette<br />

QUELQUES DIFFICULTÉS RENCONTRÉES DANS LA FORMATION DES<br />

ENSEIGNANTS DE MATHÉMATIQUES DU SECONDAIRE À L’AIDE DE<br />

L’HISTOIRE DES MATHÉMATIQUES: UNE RÉFLEXION SUR LES MODALITÉS DE<br />

LECTURES DE TEXTES HISTORIQUES<br />

98<br />

épistémologique de ce dernier. Ce n’est qu’en chemin que la réflexion<br />

épistémologique de l’apprenant et l’émancipation recherchée apparaissent<br />

consubstantielles. Ici, l’histoire des mathématiques est pensée comme une<br />

source possible d’importantes expériences personnelles impliquant un certain<br />

rapport de soi à soi par l’intermédiaire de l’histoire et des artefacts historicoculturels<br />

qu’on y trouve, expérience fondamentale qui supporterait le<br />

mouvement de croitre qui est celui de l’apprenant.<br />

3. UN EXEMPLE D’OPÉRATIONNALISATION DANS LA RECHERCHE DE<br />

TERRAIN<br />

Malgré la richesse et la profondeur de ces considérations théoriques sur<br />

l’apport de l’histoire dans l’enseignement-apprentissage des mathématiques,<br />

celles-ci n’ont que très rarement été confrontées à la recherche de terrains<br />

(Guillemette 2011). Notre objectif sera d’interroger les considérations théoriques<br />

de Fried notamment sur les modalités de lectures synchroniques et<br />

diachroniques de textes historiques en classe de mathématiques à partir de<br />

données issues d’une précédente étude empirique (Guillemette 2015).<br />

Sommairement, l’étude en question avait pour objectif de décrire le<br />

dépaysement épistémologique (Barbin 1997, 2006, Jahnke et al. 2000) des<br />

étudiants en formation à l’enseignement des mathématiques au secondaire.<br />

Barbin explique qu’introduire l’histoire des mathématiques bouscule notre<br />

perspective coutumière des mathématiques et souligne que “l’histoire des<br />

mathématiques, et c’est peut-être son principal attrait, a la vertu de nous<br />

permettre de nous étonner de ce qui va de soi” (1997 : 21). Dans cette<br />

perspective, le dépaysement épistémologique serait un choc culturel aux<br />

dimensions affectives et cognitives qui mènerait à des compréhensions<br />

différentes des mathématiques et de ses objets de savoir. Afin d’obtenir une<br />

description de ce phénomène, sept activités de lectures de textes historiques ont<br />

été construites et mises en œuvres dans une classe d’étudiants inscrits à une<br />

formation à l’enseignement des mathématiques au secondaire:<br />

- A’hmosè: Papyrus de Rhind, problème 24<br />

- Euclide: Les Éléments proposition 14, Livre 2<br />

- Archimède: La quadrature de la parabole<br />

- Al-Khwarizmi: Abrégé du calcul par la restauration et la comparaison, types 4 et 5<br />

- Nicolas Chuquet: Tripartys en sciences des nombres, problème 166<br />

- Gilles Personne de Roberval: Observations sur la composition des mouvements et<br />

sur le moyen de trouver les touchantes des lignes courbes, Problème 1<br />

- Pierre de Fermat: Méthode pour la recherche du minimum et du maximum,<br />

problème 1 à 5.<br />

Lors de ces activités de lectures, nous nous efforcions, à titre de<br />

formateur/chercheur, de faire continuellement basculer les étudiants entre une<br />

lecture synchronique et une lecture diachronique des propos de l’auteur.<br />

La sélection des participants de l’étude a été faite parmi les futurs<br />

enseignants du secondaire inscrits au cours MAT6221 Histoire des mathématiques<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


David Guillemette<br />

QUELQUES DIFFICULTÉS RENCONTRÉES DANS LA FORMATION DES<br />

ENSEIGNANTS DE MATHÉMATIQUES DU SECONDAIRE À L’AIDE DE<br />

L’HISTOIRE DES MATHÉMATIQUES: UNE RÉFLEXION SUR LES MODALITÉS DE<br />

LECTURES DE TEXTES HISTORIQUES<br />

99<br />

à l’Université du Québec à Montréal. Six étudiants ont été recrutés sur une base<br />

volontaire. Cherchant à décrire l’expérience vécue des participants afin<br />

d’interroger et de mieux penser le concept de dépaysement épistémologique<br />

dans un tel cadre, une approche phénoménologique a alors été déployée. Des<br />

captations vidéo des activités de classe, des entretiens individuels et un<br />

entretien de groupe ont été réalisés et ont fourni les données de l’étude.<br />

Nous ne nous attarderons ici que sur les données issues des captations vidéo<br />

des activités de classe. Lors de ces dernières, deux caméras ont été installées à<br />

des points raisonnablement éloignés dans la classe et pointaient sur des ilots<br />

constitués de deux ou trois pupitres. Les six participants ont été invités à<br />

chaque séance à se séparer en deux équipes, chacune prenant place sur un ilot.<br />

Pour l’analyse de ces captations vidéo, un visionnement attentif séance par<br />

séance et équipe par équipe a été fait. Le but était alors de capter les moments<br />

d’objectivation (Radford 2011, 2013) nous apparaissant lors des activités de<br />

lecture, c’est-à-dire les moments de rencontre avec quelque chose qui<br />

s’(ob)jecte, qui se donne à voir à travers les activités de lecture. Quelque chose<br />

qui s’affirme en tant qu’altérité et qui se présente aux apprenants petit à petit.<br />

Une attention particulière a donc été donnée aux gestes, postures, attitudes et<br />

réactions diverses des participants, ainsi qu’aux échanges et réflexions<br />

émergentes en relation aux textes. Ce concept d’objectivation est issu de la<br />

théorie de l’objectivation. D’inspiration Vygotskienne, cette théorie<br />

socioculturelle contemporaine de l’enseignement-apprentissage plaide pour<br />

une conception non mentaliste de la pensée. S’opposant au courant rationaliste<br />

et idéaliste, elle propose la conception d’une pensée à la fois sensible et<br />

historique. D’une part, elle est sensible, car elle s’enracine dans le corps, les sens<br />

et l’affectivité, lesquels sont invoqués dans la saisie des objets de la réalité.<br />

D’autre part, elle est historique puisqu’elle se trouve, de manière inhérente,<br />

jetée dans une réalité sociohistorique. C’est pourquoi elle est attentive à<br />

l’influence des artefacts chez l’être humain et à l’interaction sociale.<br />

En parallèle à ce visionnement, un texte descriptif a été produit pour<br />

chacune des équipes de chaque activité de lecture. Des captures d’écran y ont<br />

été incluses, elles mettent en évidence, sous forme de saynètes, ces moments de<br />

rencontre. Il est à noter que ces captures d’écrans ont été modifiées à l’aide du<br />

logiciel SketchPen afin de donner un aspect ‘roquis de crayons’ aux images<br />

retenues. Ces modifications permettaient de garder l’anonymat des participants<br />

tout en laissant visibles leurs postures, gestes et réactions.<br />

4. PROPOSITION D’UNE ACTIVITÉ DE LECTURE<br />

Nous nous contenterons ici de revenir sur une seule de ces activités de<br />

lecture en nous concentrant sur les interactions entre les membres d’une équipe<br />

en particulier. Lors de cette activité, les trois participants; Aliocha, Martha et<br />

Ninotchka s’adonnent à la lecture de l’Abrégé du calcul par la restauration et la<br />

comparaison d’al-Khwarizmi, une traduction d’Ahmed Djebbar (2005).<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


David Guillemette<br />

QUELQUES DIFFICULTÉS RENCONTRÉES DANS LA FORMATION DES<br />

ENSEIGNANTS DE MATHÉMATIQUES DU SECONDAIRE À L’AIDE DE<br />

L’HISTOIRE DES MATHÉMATIQUES: UNE RÉFLEXION SUR LES MODALITÉS DE<br />

LECTURES DE TEXTES HISTORIQUES<br />

100<br />

Un seul extrait a été traité par les participants. Dans ce dernier, al-<br />

Khwārizmī propose un procédé pour la résolution du 4 e modèle d’équation<br />

quadratique: ax 2 + bx = c.<br />

Il donne en exemple générique l’équation à résoudre x 2 + 10x = 39. Voici son<br />

explication:<br />

Quant à la justification de “un bien et dix racines égalent trente-neuf dirhams”,<br />

sa figure est une surface carrée de côtés inconnus, et c’est le bien que tu veux<br />

connaitre et dont tu veux connaitre la racine. C’est la surface (AB), et chacun de<br />

ses côtés est la racine. Chacun de ses côtés, si tu le multiplies par un nombre<br />

parmi les nombres, quels que soient les nombres, sera des nombres de racines,<br />

chaque racine étant comme la racine de cette surface. Comme on a dit qu’avec le<br />

bien il y a dix de ses racines, nous prenons le quart de dix – et c’est deux et un<br />

demi – et nous transformons chacun de ses quarts [en segment] avec l’un des<br />

côtés de la surface. Il y aura ainsi, avec la première surface, qui est la surface<br />

(AB), quatre surfaces égales, la longueur de chacune d’elles étant comme la<br />

racine de la surface (AB) et sa largeur deux et un demi, et ce sont les surfaces<br />

(H), (T), (K), (J). Il [en] résulte une surface à côtés égaux, inconnue aussi, et<br />

déficiente dans ses quatre coins, chaque coin étant déficient de deux et demi par<br />

deux et demi. Alors, ce dont on a besoin comme ajout afin que la surface soit<br />

carrée, sera deux et demi par lui-même, quatre fois; et la valeur de tout cela est<br />

vingt-cinq. Or, nous avons appris que la première surface, qui est la surface du<br />

bien, et les quatre surfaces qui sont autour de lui et qui sont dix racines, sont<br />

[égales à] trente-neuf en nombre. Si on leur ajoute les vingt-cinq qui sont les<br />

quatre carrés qui sont dans les coins de la surface (AB), la quadrature de la<br />

surface la plus grande, et qui est (DE), sera alors achevée. Or nous savons que<br />

tout cela est soixante-quatre, et que l’un de ses côtés est sa racine, et c’est huit.<br />

Si on retranche de huit l’équivalent de deux fois le quart de dix – et c’est cinq –,<br />

aux extrémités du côté de la surface la plus grande qui est la surface (DE), il<br />

reste son côté trois, et c’est la racine de ce bien.<br />

5. DESCRIPTION ET ANALYSE<br />

Après une étude sommaire du contexte historique et mathématique du<br />

texte, ainsi qu’une présentation de l’auteur au début de l’activité, les<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


David Guillemette<br />

QUELQUES DIFFICULTÉS RENCONTRÉES DANS LA FORMATION DES<br />

ENSEIGNANTS DE MATHÉMATIQUES DU SECONDAIRE À L’AIDE DE<br />

L’HISTOIRE DES MATHÉMATIQUES: UNE RÉFLEXION SUR LES MODALITÉS DE<br />

LECTURES DE TEXTES HISTORIQUES<br />

101<br />

participants ont été invités à débuter la lecture. Voici la description commentée<br />

de cette séance de lecture:<br />

Martha a retourné son pupitre pour faire face à Aliocha et Ninotchka. Ils débutent<br />

individuellement et en silence la lecture pendant près de cinq minutes. Martha surligne<br />

quelques passages du premier extrait.<br />

Figure 1: Lecture d’al-Khwārizmī: équipe Martha - Aliocha - Ninotchka.<br />

Martha demande au formateur si la ‘comparaison’ invoquée dans le texte correspond<br />

à la comparaison telle qu’elle est comprise aujourd’hui. Le formateur explique que le<br />

mot ‘comparaison’ est issu de la traduction du texte original d’al-Khwārizmī et qu’il ne<br />

s’agit pas de la même chose. Ils reprennent ensuite tous leur lecture.<br />

Nous remarquons ici un premier appel au formateur à propos du<br />

vocabulaire. Martha se demande si le mot comparaison renvoie au sens tel que<br />

nous l’entendons aujourd’hui. Elle en doute et le formateur lui rappelle qu’elle<br />

lit une traduction du texte original, et que, par conséquent, le sens doit fort<br />

probablement être différent.<br />

Ninotchka et Martha organisent leur espace de travail, détachent les feuilles du<br />

document, tandis qu’Aliocha est plongé dans sa lecture. Le travail se poursuit<br />

individuellement pour encore plusieurs minutes.<br />

Martha questionne Ninotchka sur ce que représente la figure dessinée par l’auteur.<br />

Elles reprennent ensemble la signification des différents éléments de la figure et<br />

retournent rapidement à leur lecture. Chacun se concentre sur le premier extrait.<br />

Martha demande à ses coéquipiers pourquoi al-Khwārizmī prend le quart de la<br />

valeur du terme en x. Elle souligne que cette question a aussi été soulevée par l’autre<br />

équipe.<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


David Guillemette<br />

QUELQUES DIFFICULTÉS RENCONTRÉES DANS LA FORMATION DES<br />

ENSEIGNANTS DE MATHÉMATIQUES DU SECONDAIRE À L’AIDE DE<br />

L’HISTOIRE DES MATHÉMATIQUES: UNE RÉFLEXION SUR LES MODALITÉS DE<br />

LECTURES DE TEXTES HISTORIQUES<br />

102<br />

Figure 2: Lecture d’al-Khwārizmī: équipe Martha - Aliocha - Ninotchka.<br />

Aliocha lui explique que, puisque la figure initiale de l’auteur est un carré, il lui faut<br />

ensuite ajouter quatre rectangles autour, lesquels sont associés au terme en x. Ce<br />

dernier doit donc être divisé en quatre. Aliocha pointe les quatre rectangles sur la figure<br />

dessinée par Martha.<br />

Nous pouvons remarquer déjà après quelques minutes une traduction de<br />

l’auteur en langage moderne. Les participants discutent d’un “terme en x” sans<br />

avoir à se justifier ni à s’expliquer. Or, l’usage de lettres dans l’énonciation d’un<br />

raisonnement algébrique ne se trouve nulle part chez al-Khwārizmī.<br />

Figure 3: Lecture d’al-Khwārizmī: équipe Martha - Aliocha - Ninotchka.<br />

Martha souligne la perspicacité d’Aliocha. Elle écrit ce raisonnement sur sa feuille<br />

de travail. Martha demande ensuite: “La longueur 10, comment on la connait?”.<br />

Aliocha exprime son incompréhension. Elle ajoute: “Dans mon schéma, comment je sais<br />

combien ça mesure 10/4, je me donne une unité de référence?”. Les deux autres<br />

acquiescent. Aliocha souligne que l’auteur parle du ‘dirham’, une monnaie qui peut ici<br />

être considérée comme l’unité.<br />

À nouveau, les participants tentent de traduire dans leurs mots le<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


David Guillemette<br />

QUELQUES DIFFICULTÉS RENCONTRÉES DANS LA FORMATION DES<br />

ENSEIGNANTS DE MATHÉMATIQUES DU SECONDAIRE À L’AIDE DE<br />

L’HISTOIRE DES MATHÉMATIQUES: UNE RÉFLEXION SUR LES MODALITÉS DE<br />

LECTURES DE TEXTES HISTORIQUES<br />

103<br />

vocabulaire de l’auteur. Une association est effectuée entre le ‘dirham’ et l’<br />

‘unite’.<br />

Martha souligne que la démarche de l’auteur ressemble à la méthode algébrique de la<br />

complétion de carré. Ils reprennent individuellement leur lecture. Aliocha résonne<br />

dorénavant sur la figure, tandis que Ninotchka et Martha relisent l’extrait mot à mot<br />

tout en augmentant leur dessin de nouveaux éléments. Martha surligne à nouveau des<br />

passages de l’extrait, tandis qu’Aliocha tente de résoudre algébriquement le problème.<br />

Nous pouvons observer les participants se référer à une stratégie de<br />

résolution algébrique à l’aide de représentations géométriques (tuiles<br />

algébriques). Il s’agit d’un outil didactique acquis au cours de leur formation à<br />

l’enseignement des mathématiques. Aliocha débute quant à lui une démarche<br />

algébrique moderne à partir de l’énoncé du problème.<br />

Aliocha se lève et demande de l’aide au formateur. Ce dernier propose à Aliocha de<br />

réfléchir à une solution qui serait normalement proposée aujourd’hui. Aliocha rétorque<br />

qu’il faudrait appliquer la formule quadratique. Ninotchka propose la complétion de<br />

carré comme stratégie de résolution et montre ses démarches à Aliocha.<br />

Figure 4: Lecture d’al-Khwārizmī: équipe Martha - Aliocha - Ninotchka.<br />

Le formateur vient en aide à l’équipe en leur proposant d’élaborer d’abord<br />

une solution avec leurs outils actuels avant d’entreprendre l’interprétation du<br />

texte. L’objectif serait de possiblement faire le parallèle avec la démarche d’al-<br />

Khwārizmī, afin de mieux comprendre cette dernière.<br />

Martha se rapproche alors et le groupe tente ensuite de concilier la démarche de<br />

Ninotchka avec celle de l’auteur, il est question d’abord du traitement du terme en x.<br />

Figure 5: Lecture d’al-Khwārizmī: équipe Martha - Aliocha - Ninotchka.<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


David Guillemette<br />

QUELQUES DIFFICULTÉS RENCONTRÉES DANS LA FORMATION DES<br />

ENSEIGNANTS DE MATHÉMATIQUES DU SECONDAIRE À L’AIDE DE<br />

L’HISTOIRE DES MATHÉMATIQUES: UNE RÉFLEXION SUR LES MODALITÉS DE<br />

LECTURES DE TEXTES HISTORIQUES<br />

104<br />

Le groupe ne réussit pas à concilier les deux démarches. Le formateur quitte alors le<br />

groupe et laisse les participants à leurs réflexions. Ils reprennent chacun leur travail<br />

individuellement.<br />

Ninotchka se souvient alors qu’à la complétion de carré est associée habituellement<br />

une figure géométrique. Elle montre son dessin au groupe et demande l’avis d’Aliocha<br />

sur son approche.<br />

Figure 6: Lecture d’al-Khwārizmī: équipe Martha - Aliocha - Ninotchka.<br />

Elle souligne que dans ce cas-ci, il faut diviser par deux et non par quatre comme le<br />

fait al-Khwārizmī. Martha explique qu’al-Khwārizmī ajoute quatre rectangles autour de<br />

son carré plutôt que deux comme il est habituellement fait lors de la complétion de carré.<br />

Elle pointe alors chacun des côtés du carré.<br />

Retournant à la méthode de la complétion de carré, qui apparait plus près<br />

de celle d’al-Khwārizmī, les participants tentent à nouveau de concilier leurs<br />

manières de faire avec celles de l’auteur. Un repère particulier est mis en<br />

évidence, celui de la représentation et du découpage en rectangle des quantités<br />

en question.<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


David Guillemette<br />

QUELQUES DIFFICULTÉS RENCONTRÉES DANS LA FORMATION DES<br />

ENSEIGNANTS DE MATHÉMATIQUES DU SECONDAIRE À L’AIDE DE<br />

L’HISTOIRE DES MATHÉMATIQUES: UNE RÉFLEXION SUR LES MODALITÉS DE<br />

LECTURES DE TEXTES HISTORIQUES<br />

105<br />

Figure 7: Lecture d’al-Khwārizmī: équipe Martha - Aliocha - Ninotchka.<br />

Aliocha explique donc que si l’on veut suivre la méthode de l’auteur, il faut alors<br />

diviser le terme en x par quatre. Martha poursuit en expliquant que les rectangles<br />

couvriront au total la même surface, mais seront simplement disposés différemment.<br />

Aliocha est d’accord et ajoute que la démarche algébrique associée sera alors différente.<br />

Ils se lancent à nouveau dans l’exploration algébrique de la démarche de l’auteur.<br />

Ninotchka partage ses résultats avec Aliocha, Martha avance seule.<br />

Avançant dans la réconciliation entre la méthode de complétion de carré et<br />

celle d’al-Khwārizmī, les participants se proposent en parallèle de fournir une<br />

démarche algébrique moderne.<br />

Martha tente de généraliser le cas traité par l’auteur à l’aide d’une expression<br />

algébrique. Elle explique comment elle a obtenu son expression à Aliocha. Ce dernier<br />

généralise davantage l’expression de Martha et l’accompagne dans le peaufinement de<br />

sa démarche. Après quelques avancées, Aliocha conclut cependant que le travail de<br />

généralisation de Martha ne les avance pas dans la compréhension et la validation de la<br />

démarche de l’auteur.<br />

Figure 8: Lecture d’al-Khwārizmī: équipe Martha - Aliocha - Ninotchka.<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


David Guillemette<br />

QUELQUES DIFFICULTÉS RENCONTRÉES DANS LA FORMATION DES<br />

ENSEIGNANTS DE MATHÉMATIQUES DU SECONDAIRE À L’AIDE DE<br />

L’HISTOIRE DES MATHÉMATIQUES: UNE RÉFLEXION SUR LES MODALITÉS DE<br />

LECTURES DE TEXTES HISTORIQUES<br />

106<br />

Aliocha continue alors la démarche sur sa feuille et annonce qu’il croit s’approcher<br />

de la formule quadratique, formule qu’il appelle ‘grosse Bertha’.<br />

Figure 9: Lecture d’al-Khwārizmī: équipe Martha - Aliocha - Ninotchka.<br />

Le groupe accompagne alors Aliocha dans cette recherche. Aliocha conclut qu’il a<br />

réussi à concilier la démarche de l’auteur avec la formule quadratique, à l’exception du<br />

signe d’un des termes de son équation. Il se lève et demande alors de l’aide au formateur<br />

pour expliquer cette différence et compléter sa démarche. Avec le groupe, le formateur<br />

reprend alors plus en détail le raisonnement associé à l’application de la formule<br />

quadratique.<br />

Figure 10: Lecture d’al-Khwārizmī: équipe Martha - Aliocha - Ninotchka.<br />

C’est alors que Ninotchka comprend subitement que le signe est inversé dans<br />

l’application de la formule quadratique à partir du cas général, ce qui explique le<br />

problème soulevé précédemment par Aliocha. Le groupe se remet ensuite au travail<br />

individuellement.<br />

Aliocha explique alors que la manipulation des irrationnels éloigne le texte des<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


David Guillemette<br />

QUELQUES DIFFICULTÉS RENCONTRÉES DANS LA FORMATION DES<br />

ENSEIGNANTS DE MATHÉMATIQUES DU SECONDAIRE À L’AIDE DE<br />

L’HISTOIRE DES MATHÉMATIQUES: UNE RÉFLEXION SUR LES MODALITÉS DE<br />

LECTURES DE TEXTES HISTORIQUES<br />

107<br />

mathématiques de la Grèce antique. Avec Martha, Aliocha conclut que l’utilisation de la<br />

géométrie rapproche la démarche à celles des mathématiciens de la période hellénistique.<br />

Aliocha souligne aussi qu’al-Khwārizmī procède d’un exemple particulier pour discuter<br />

d’un résultat général.<br />

Au moment de conclure, Aliocha propose quelques réflexions à propos de la<br />

démarche de l’auteur et tente de faire des liens entre son propos et le contexte<br />

mathématique de l’époque. Notons que ces réflexions ne surviennent qu’à la<br />

toute fin de l’activité de lecture.<br />

Martha explique alors que, durant un stage en enseignement secondaire, elle devait<br />

enseigner les propriétés des logarithmes. Son superviseur lui avait suggéré de partir<br />

d’un cas particulier pour aboutir au cas général, alors qu’elle avait prévu l’inverse dans<br />

ses planifications. Aliocha souligne que, malgré les liens établis avec les mathématiques<br />

de la Grèce antique, les Grecs ne proposaient pas cette démarche pédagogique<br />

d’accompagnement du lecteur et que celle-ci est importante pour les élèves.<br />

La séance de lecture est suspendue par le formateur.<br />

Notons ici d’intéressantes réflexions sur l’histoire et l’enseignementapprentissage<br />

des mathématiques en termes de pratiques enseignantes.<br />

Globalement, les autres activités de lecture se sont déroulées selon le même<br />

canevas. En s’inspirant des considérations théoriques et épistémologiques de<br />

Fried décrite plus haut, les activités de lecture de textes ont été menées en<br />

articulant constamment deux pôles : un pôle que l’on pourrait qualifier de<br />

‘traductif’ qui visait essentiellement à extirper et à travailler les mathématiques<br />

que convoquaient les textes et un second plus ‘interpretative’ qui visait à mieux<br />

comprendre l’auteur en lui réservant un accueil qui ne le déracinait pas de son<br />

contexte sociohistorique et culturel. Les deux pôles concernant la lecture des<br />

textes ont été explicités avec les étudiants du groupe.<br />

Bien entendu, cet accueil nécessitait de la part de l’apprenant de nombreuses<br />

connaissances et une vision riche de l’époque dont était tiré le texte. D’ailleurs,<br />

cette nécessité d’un fort ancrage dans l’époque étudiée est affirmée couramment<br />

dans la littérature (Jankvist 2009). Dans le contexte de l’étude, cet ancrage a été<br />

assuré par la première partie du cours qui fournissait les repères historiques et<br />

culturels importants et tentait de fournir une certaine ‘saveur’ de l’époque en<br />

question.<br />

Le choix de présenter une description de cette activité parmi les sept autres<br />

qui ont été menées est motivé par le fait qu’elle représente bien et de manière<br />

globale, l’attitude des étudiants face aux textes, ainsi que nos difficultés, à titre<br />

de chercheur/formateur, à soutenir une lecture diachronique de la part des<br />

étudiants. Elle montre la manière dont les étudiants, malgré les consignes et les<br />

efforts du formateur, interrogent spontanément les textes et en initient<br />

l’exploration.<br />

6. Quelques remarques sur la lecture synchronique et diachronique de textes<br />

historiques<br />

Comme mentionné précédemment, Fried souligne la tendance trop forte des<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


David Guillemette<br />

QUELQUES DIFFICULTÉS RENCONTRÉES DANS LA FORMATION DES<br />

ENSEIGNANTS DE MATHÉMATIQUES DU SECONDAIRE À L’AIDE DE<br />

L’HISTOIRE DES MATHÉMATIQUES: UNE RÉFLEXION SUR LES MODALITÉS DE<br />

LECTURES DE TEXTES HISTORIQUES<br />

108<br />

enseignants de mathématiques à livrer une lecture synchronique de la<br />

discipline. Est ainsi mis en avant, le point de vue des enseignants et formateurs,<br />

lesquels vacillent et basculent entre une perspective purement synchronique et<br />

une autre, plus fragile, précaire, et potentiellement dangereuse, qui serait<br />

diachronique. S’appuyant sur de Saussure qui affirmait que comprendre la<br />

langue est comprendre à la fois, et d’une seul tenant, son versant synchronique<br />

et diachronique, Fried mentionne que:<br />

[If] the application of Saussure’s ideas to the teaching of mathematics is truly<br />

valid, we must conclude that teaching ‘mathematics’ also demands presenting<br />

both its diachronic and synchronic aspects; far from having to choose between<br />

‘mathematics’ and ‘history of mathematics’ the teacher must give attention to<br />

both (2008 : 195-196).<br />

Généralement, il suggère alors que les enseignants n’ont pas nécessairement<br />

à faire le choix entre un enseignement ‘classique’ des mathématiques et un<br />

enseignement ‘axé sur l’histoire’ qui risque de les éloigner de leurs objectifs<br />

curriculaires. De ses analyses saussuriennes, il conclut:<br />

We realize that history can play a part in the classroom without the material and<br />

focus of our mathematics teaching becoming radically altered. What is altered is<br />

a kind of background sense of the mathematical subjects we are teaching; the<br />

human origin of mathematical ideas, which the serious study of history brings<br />

out supremely […] Thus, a humanistic mathematics education will not deprive<br />

students of the knowledge of the ‘state of the art’ but will make them realize that<br />

the art is, indeed, in a certain, though not necessarily permanent, state (2008:<br />

195-196).<br />

Il souhaite donc voir se déployer une perspective ‘humaniste’ des<br />

mathématiques par l’intermédiaire d’une histoire prise au sérieux et d’un<br />

rapport profondément historique à la discipline. C’est pourquoi les enseignants<br />

doivent éviter selon lui de donner une lecture synchronique des mathématiques<br />

qui serait une lecture appauvrie de la discipline et de ces objets d’étude.<br />

Or, nous souhaiterions ici avancer que les étudiants ont eux aussi une<br />

tendance forte à déployer une lecture synchronique. En effet, d’après nos<br />

expériences sommairement rapportées ici, ceux-ci semblent avoir naturellement<br />

propension à traduire et rapporter les propos de l’auteur en langage moderne.<br />

Il est aisé de reconnaitre que les participants ont une forte inclination à mettre<br />

eux-mêmes en avant une lecture synchronique de texte historique proposé, et<br />

ce, malgré les efforts du formateur. L’auteur est difficilement considéré dans<br />

son contexte. Le style ou les particularités de l’auteur sont difficilement<br />

remarqués et ne sont que très peu discutés lors des activités de lectures. Les<br />

auteurs se voient alors dépossédés de leur singularité, ils se trouvent très<br />

souvent traduits, résumés et réifiés. En sommes, nous remarquons une certaine<br />

‘violence’ de la synchronisation envers l’auteur.<br />

Ainsi, la rencontre avec l’auteur perçu dans son contexte sociohistorique et<br />

mathématique ne se fait pas d’emblée, et ce, malgré les attentions et les efforts<br />

du formateur. En évitant toute généralisation et en nous rapportant à nos<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


David Guillemette<br />

QUELQUES DIFFICULTÉS RENCONTRÉES DANS LA FORMATION DES<br />

ENSEIGNANTS DE MATHÉMATIQUES DU SECONDAIRE À L’AIDE DE<br />

L’HISTOIRE DES MATHÉMATIQUES: UNE RÉFLEXION SUR LES MODALITÉS DE<br />

LECTURES DE TEXTES HISTORIQUES<br />

109<br />

expériences, nous souhaiterions humblement avancer qu’une lecture<br />

diachronique demande un effort considérable pour les étudiants. Ceux-ci nous<br />

apparaissent fortement marqués par la culture académique des mathématiques<br />

et, dans notre contexte de formation à l’enseignement, animés par un souci<br />

pragmatique de développement d’outils d’enseignement. Les difficultés ne<br />

nous semblent donc pas exclusivement provenir de l’enseignant ou du<br />

formateur qui orienterait les apprenants dans une démarche stérile de<br />

traduction. Bien entendu, celui-ci ne peut qu’accompagner les apprenants dans<br />

leur quête de sens, laquelle ne saurait se faire sans l’apport de leurs<br />

connaissances et expériences scolaires, académiques, mathématiques ou autres.<br />

Dans cette perspective, nous ressentons une résistance des étudiants à déployer<br />

une lecture diachronique. Résistances qui appellent à une enquête plus<br />

approfondie notamment en ce qui concerne les développements théoriques sur<br />

le sujet et les conceptualisations qui nous permettent de penser les pratiques<br />

dans ce contexte.<br />

À ce titre, nous voudrions voir s’ouvrir davantage à la dynamique de classe<br />

les conceptualisations théoriques associées à ces expériences d’enseignementapprentissage.<br />

Pour mieux penser les difficultés liées à l’enseignementapprentissage<br />

dans le contexte de l’utilisation de l’histoire, nous souhaiterions<br />

voir se développer des manières de faire, autant dans la recherche que dans les<br />

milieux de pratiques, orientées davantage vers l’ouverture à l’expérience que<br />

celle-ci peut possiblement renfermer.<br />

En ces termes, un développement conceptuel pourrait être envisagé, et ce,<br />

afin de penser cette expérience fondatrice, non pas en termes sociolinguistiques<br />

formels, mais en termes de relations sensibles et éthiques face à la diversité des<br />

formes que peut prendre l’activité mathématique. Le regard tourné vers la<br />

dimension expérientielle du phénomène, il serait alors possible de mieux<br />

comprendre le vécu des étudiants et la manière dont ce vécu prend sens à<br />

l’intérieur de l’enseignement-apprentissage des mathématiques ou encore de<br />

leur devenir enseignant, et, ainsi, ultimement, mieux accompagner les<br />

apprenants dans la (re)découverte de la discipline.<br />

REFERENCES<br />

Barbin, E. (1997). Histoire et enseignement des mathématiques: Pourquoi?<br />

Comment? Bulletin de l’Association mathématique du Québec, 37(1), 20–25.<br />

Barbin, E. (2006). Apport de l’histoire des mathématiques et de l’histoire des<br />

sciences dans l'enseignement. Tréma, 26(1), 20–28.<br />

Charbonneau, L. (2006). Histoire des mathématiques et les nouveaux<br />

programmes au Québec : un défi de taille. In N. Bednarz & C. Mary (Eds.),<br />

Actes du colloque de l’Espace mathématique francophone 2006 (pp. 11–21).<br />

Sherbrooke: Éditions du CRP et Faculté d’éducation, Université de<br />

Sherbrooke.<br />

Djebbar, A. (2005). L’algèbre arabe: la genèse d’un art, Paris : Vuibert.<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


David Guillemette<br />

QUELQUES DIFFICULTÉS RENCONTRÉES DANS LA FORMATION DES<br />

ENSEIGNANTS DE MATHÉMATIQUES DU SECONDAIRE À L’AIDE DE<br />

L’HISTOIRE DES MATHÉMATIQUES: UNE RÉFLEXION SUR LES MODALITÉS DE<br />

LECTURES DE TEXTES HISTORIQUES<br />

110<br />

Fauvel, J. & van Maanen, J. (Eds.). (2000). History in mathematics education: the<br />

ICMI study. Dordrecht: Kluwer Academic Publishers.<br />

Fried, M. N. (2001). Can mathematics education and history of mathematics<br />

coexist? Science & Education, 10(4), 391–408.<br />

Fried, M. N. (2007). Didactics and history of mathematics: Knowledge and Self-<br />

Knowledge. Educational Studies in Mathematics, 66(2), 203–223.<br />

Fried, M. N. (2008). History of mathematics in mathematics education: a<br />

saussurean perspective. The Montana Mathematics Enthusiast, 5(2), 185–<br />

198.<br />

Furinghetti, F. (2004). History and mathematics education: a look around the<br />

world with particular reference to Italy. Mediterranean Journal for Research<br />

in Mathematics Education, 3(1-2), 125–146.<br />

Guillemette, D. (2011). L’histoire dans l’enseignement des mathématiques: sur<br />

la méthodologie de recherche. Petit x, 86(1), 5–26.<br />

Guillemette, D. (2015). L’histoire des mathématiques et la formation des<br />

enseignants du secondaire: sur l’expérience du dépaysement<br />

épistémologique des étudiants. Thèse de doctorat inédite, Université du<br />

Québec à Montréal, Montréal, Canada. [Disponible en ligne:<br />

http://www.archipel.uqam.ca/7164/1/D-2838.pdf].<br />

Gulikers, I. & Blom, K. (2001). A historical angle: survey of recent literature on<br />

the use and value of history in geometrical education. Educational Studies in<br />

Mathematics, 47(2), 223–258.<br />

Kjeldsen, T. H. (2012). Uses of history for the learning of and about<br />

mathematics: towards a theoretical framework for integrating history of<br />

mathematics in mathematics education. In S. Choi & S. Wang (Eds.),<br />

Proceedings of HPM 2012 (pp. 1–21). Daejeon, Corée du Sud: Korean Society<br />

of Mathematical Education et Korean Society for History of Mathematics.<br />

Jahnke, H. N., Arcavi, A., Barbin, E., Bekken, O., Furinghetti, F., El Idrissi, A. &<br />

Weeks, C. (2000). The use of original sources in the mathematics classroom.<br />

In J. Fauvel & J. van Maanen (Eds.), History in mathematics education: the<br />

ICMI study (pp. 291–328). Dordrecht: Kluwer Academic Publishers.<br />

Jankvist, U. T. (2009). A categorization of the “whys” and “hows” of using<br />

history in mathematics education. Educational Studies in Mathematics,<br />

71(3), 235–261.<br />

Radford, L. (2011). Vers une théorie socioculturelle de l’enseignementapprentissage:<br />

la théorie de l'Objectivation. Éléments, 1, 1–27.<br />

Radford, L. (2013). Three key concepts of the theory of objectification:<br />

knowledge, knowing, and learning. Journal of Research in Mathematics<br />

Education, 2(1), 7–44.<br />

Saussure, F. de. (2005). Cours de linguistique générale. Paris: Payot & Rivages.<br />

(Œuvre originale publiée en 1967)<br />

Tang, K.-C. (2007). History of mathematics for the young educated minds: a<br />

Hong Kong reflection. In F. Furinghetti, S. Kaijser & C. Tzanakis (Eds.),<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


David Guillemette<br />

QUELQUES DIFFICULTÉS RENCONTRÉES DANS LA FORMATION DES<br />

ENSEIGNANTS DE MATHÉMATIQUES DU SECONDAIRE À L’AIDE DE<br />

L’HISTOIRE DES MATHÉMATIQUES: UNE RÉFLEXION SUR LES MODALITÉS DE<br />

LECTURES DE TEXTES HISTORIQUES<br />

111<br />

Proceedings of HPM 2004 & ESU 4 (revised edition) (pp. 630–638). Uppsala:<br />

Université d’Uppsala.<br />

Tzanakis, C. & Thomaidis, Y. (2007). The notion of historical “parallelism”<br />

revisited: historical evolution and students’ conception of the order relation<br />

on the number line. Educational Studies in Mathematics, 66(2), 165–183.<br />

BRIEF BIOGRAPHY<br />

David Guillemette. Après avoir complété un doctorat en éducation à l’Université du<br />

Québec à Montréal, il a joint la Faculté d’éducation de l’Université d’Ottawa à titre de<br />

professeur adjoint. Ses recherches portent sur le potentiel de l’histoire des<br />

mathématiques dans l’éducation mathématique, notamment dans la formation initiale<br />

et continue des enseignants.<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


UNIVERSITY OF WESTERN MACEDONIA<br />

FACULTY OF EDUCATION<br />

<strong>MENON</strong><br />

©online Journal Of Educational Research 112<br />

DISCUSSING MATHEMATICAL MODELING CONCERNING<br />

PASCAL'S WAGER<br />

Michael Kourkoulos<br />

University of Crete, Department of Primary Education<br />

mkourk@edc.uoc.gr<br />

Constantinos Tzanakis<br />

University of Crete, Department of Primary Education<br />

tzanakis@edc.uoc.gr<br />

ABSTRACT<br />

We present and analyze teaching work on Pascal's wager realized with Greek students,<br />

prospective elementary school teachers, in the context of a probability and statistics<br />

course. In this paper we focus on classroom discussion concerning mathematical<br />

modeling activities, connecting elements of probability theory and decision theory<br />

with elements of philosophical discussions. On the one hand, this link enriched<br />

students' scientific culture, and on the other hand, it allowed for deepening the<br />

classroom discussion on Pascal's wager.<br />

Keywords: Pascal's wager, prospective elementary school teachers, mathematical<br />

modeling, probability theory, decision theory<br />

1. INTRODUCTION<br />

Discussions on philosophical and religious issues have deep and rich<br />

historical links with science; this is particularly true about probabilities and<br />

statistics (e.g. see Chandler & Harrison 2012, Hacking 1975, Hald 2003, Porter<br />

1986). However, these rich links have been rarely explored in the conventional<br />

teaching of these disciplines, and even less (or not at all) at an introductory<br />

level.<br />

We argue that: (a) With adequate teaching design and implementation, it is<br />

possible to explore such links even with novice students in statistics and<br />

probability, (b) Exploring such links can be fruitful, both for the development of<br />

students' scientific culture and for the deepening of the discussion with them on<br />

the examined philosophical and/or religious issues (see also Kourkoulos &<br />

Tzanakis 2015).<br />

To support (a) and (b) above, we present an example of teaching work<br />

concerning Pascal's wager that was realized during an introductory seminar on<br />

probability and statistics with Greek students, prospective elementary school<br />

teachers 1 .<br />

1 An initial version of this work was presented in the Science and Religion International Conference (see<br />

Kourkoulos & Tzanakis, in press).<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Michael Kourkoulos, Constantinos Tzanakis<br />

DISCUSSING MATHEMATICAL MODELING CONCERNING PASCAL'S WAGER 113<br />

In the discussion on Pascal's wager, which has been active for more than<br />

three and a half centuries, important elements of scientific culture are involved<br />

such as elements of probability theory and decision theory (e.g. see Bras 2009,<br />

Hacking 1972, Hájek 2012, Jordan 1994, 2006). However, many of the arguments<br />

involved in the discussion on Pascal's wager, although fundamental, can be<br />

followed without the need of a sophisticate scientific background; this is related<br />

to the fact that the wager was established in the very first period of the<br />

historical development of probability theory, and to Pascal’s ingenious way to<br />

establish and present his argumentation. This makes these arguments adequate<br />

to be accessed by students like ours; however, because of their fundamental<br />

character, they have the potential to increase students' interest significantly.<br />

2. BACKGROUND INFORMATION AND FOCUS<br />

Our teaching work was realized during an introductory seminar on<br />

probability and statistics (with classroom meetings for 3 hours per week) with<br />

27 4th-year students (25 female and 2 male) in our Department of Education.<br />

Students had a high-school level background in probability and statistics, so<br />

the first four weeks were devoted to revising and completing this knowledge<br />

(see below). Next, the teacher gave a first presentation on Pascal's wager and<br />

asked students to express their thoughts and comments on this issue; the<br />

discussion that followed in this way, lasted for four weeks, and constitutes the<br />

first part of classroom discussion.<br />

For the second part, the teacher asked students to read an overview of<br />

literature on the discussion on Pascal's wager and other relevant reading<br />

sources, and to present elements of their personal study in the classroom. The<br />

elements presented by the students substantially enriched the classroom<br />

discussion; their discussion lasted for three weeks and constitutes the second<br />

part of the classroom discussion 2 .<br />

The focus of this paper is to present and analyze some main aspects of the<br />

classroom discussion on Pascal’s wager. In particular, the paper aims to present<br />

and analyze realized connections between mathematical modeling activities<br />

and elements of philosophical reasoning that fruitfully supported both the<br />

development of students’ concepts of probability theory and of decision theory,<br />

and the evolution of the discussion on Pascal’s wager.<br />

3. TEACHING ON PROBABILITY AND STATISTICS<br />

As already mentioned, our students had a high-school level background in<br />

probability and statistics. During their tertiary studies they had not taken any<br />

course on probability and/or statistics; however, they had some exposure to<br />

readings of statistical results in the context of courses on Pedagogy and<br />

Psychology.<br />

2<br />

During these three weeks, four meetings of three hours were realized, instead of three.<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Michael Kourkoulos, Constantinos Tzanakis<br />

DISCUSSING MATHEMATICAL MODELING CONCERNING PASCAL'S WAGER 114<br />

Students' knowledge in probability and (descriptive) statistics was revised<br />

and completed during the first four weeks. We talked about data organization<br />

and their (graphically and numerically tabulated) representation, measures of<br />

central tendency (mode, median, mean) and variation (range, interquartile<br />

range and standard deviation), the shape of a distribution and skewness. We<br />

also talked about the probability multiplication and addition laws, the binomial<br />

distribution and examples of its applications (e.g. chance games, wagering<br />

situations, simple insurance models) and the Low of Large Numbers and the<br />

normal distribution accompanied by adequate examples 3 . Moreover we<br />

discussed the concepts of expected value and expected utility, and their<br />

differences 4 . Using adequate examples the teacher explained that the criterion<br />

of maximum expected utility is more appropriate than the one of maximum<br />

expected value for making decisions in wagering situations 5 .<br />

4. FIRST PART OF THE CLASSROOM DISCUSSION<br />

4.1 Introduction and initial debate on Pascal’s wager<br />

During the 5 th week, the teacher discussed with students on elements of<br />

Pascal’s life and work (e.g. see Adamson1995, Hacking 1975 ch7-9, Hald 2003<br />

ch5, Mesnard 1951).<br />

Then he gave a first presentation of Pascal's wager 6 . In this context he also<br />

mentioned the so-called "many Gods objection" about Pascal's wager.<br />

4.1.1 Many Gods objection<br />

Regarding the "many Gods objection", students agreed that the wager may<br />

be meaningless for a person who doubts God's existence but considers that, if<br />

He exists, conflicting hypotheses about Him are probable (e.g. he considers that<br />

God may be the Holy Trinity, or the 12 Olympian Gods, or Goddess Kali).<br />

Students commented that in this case it may be impossible for the person to<br />

find a coherent behavior that satisfies all Gods that he considers as probably<br />

existing.<br />

However, students considered that if a person (a) doubts God's existence,<br />

but (b) still considers that, if He exists, He is an omnipotent, omniscient and<br />

3 In this context Pascal's triangle was also discussed; additionally the teacher mentioned the pioneering<br />

role of Pascal in the formation of probability theory (e.g. see Edwards 2002, Hald 2003 ch5). Furthermore,<br />

the teacher discussed with students the historical distinction of classical, subjective and frequentist<br />

probability (e.g. see Hacking 1975, Hald 2003, Stigler 1986).<br />

4 Usually the concept of expected utility and its differences from the concept of expected value are not<br />

discussed in introductory level probability courses. However having planned to discuss Pascal's wager<br />

with students, it was a substantial element of preparation to discuss this subject with students.<br />

5 In this context the teacher also discussed with students at an initial level the Saint Petersburg paradox.<br />

(The Saint Petersburg paradox was initially established and treated, in the first half of the 18 th century, by<br />

Nicolas and Daniel Bernoulli and Gabriel Cramer; e.g. Bernoulli 1954, Dutka 1988, Martin 2014.)<br />

6 During this presentation the teacher also presented the text of Pascal Wager (in the English translation by<br />

W. F. Trotter, in Pascal 1910, 83-87); moreover he mentioned Pascal's Pensées and the history of its edition<br />

(e.g. see Brunschvicg 1909; Descotes and Proust 2011; Lafuma 1954).<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Michael Kourkoulos, Constantinos Tzanakis<br />

DISCUSSING MATHEMATICAL MODELING CONCERNING PASCAL'S WAGER 115<br />

omnibenevolent God, then such a person may consider the wager meaningful.<br />

During the discussion some students remarked that persons believing (a)<br />

and (b) above are more likely to be found in societies with a strong religious<br />

tradition, like the Greek society, because in such a society, alternative<br />

hypotheses about existing Gods are not supported by the tradition.<br />

4.1.2 God cannot be fooled<br />

A second objection expressed by four students was the following: If<br />

someone bets his way of living on the hypothesis of God's existence, as Pascal<br />

proposes, and lives a virtuous life but still has doubts about God's existence,<br />

then God, as omniscient, will know that he is not a genuine believer and thus<br />

this person's efforts will be in vain.<br />

The teacher explained that Pascal doesn't propose the wager to fool God.<br />

Pascal believed, he said, that man's heart has the natural tendency to believe in<br />

God and the natural ability to perceive that He exists, however because of<br />

passions and sins man's heart is blinded and this leaves room for doubts about<br />

God's existence. If one accepts the wager and lives a virtuous life, his heart will<br />

be purified from passions and sins and thus his heart will perceive God's<br />

existence and his doubts will vanish.<br />

Three students commented that if God exists, then the wagering person is<br />

not alone in the wager; God is also there and, by appreciating this person’s<br />

efforts, He may help him by providing whatever feelings or evidence are<br />

necessary for that person to genuinely believe in His existence. Four students<br />

argued that if God wanted to help in this way for believing in His existence, it<br />

would be easy for Him to provide all people with the necessary evidence, and<br />

thus atheists or doubting persons would not exist, but this is not the case. One<br />

of the previous students answered that God helps to believe in Him those who<br />

want to believe, because He respects men's will; a person who wagers his way<br />

of living as proposed by Pascal, clearly makes a very strong effort to dissipate<br />

his doubts in the direction of believing in God's existence, and thus it is highly<br />

likely that he will attract God's help. Five other students as well made<br />

comments that endorsed this remark 7 .<br />

4.1.3 Loving and caring unbelievers<br />

A third objection expressed by eight students concerned the idea that<br />

unbelievers will lose eternal salvation. Students said that an unbeliever who is a<br />

loving and caring person and dedicates his life to help his fellow humans, will<br />

not lose eternal salvation, in their opinion, because God been loving and just<br />

will not ignore the goodness of his heart and his efforts. Three other students<br />

remarked that the church teaches that being a good person is not enough for<br />

7<br />

Moreover, three of them commented that this remark also implies that the wager may be less demanding<br />

than what the argument of pure heart implies. They thought that perhaps because of God's generosity, He<br />

will help the wagering person to believe once He will consider that he makes a strong effort to live a<br />

virtuous life and not wait until his heart is fully purified.<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Michael Kourkoulos, Constantinos Tzanakis<br />

DISCUSSING MATHEMATICAL MODELING CONCERNING PASCAL'S WAGER 116<br />

eternal salvation; a correct faith is also necessary. However, the first ones<br />

persisted in their opinion. Moreover four of them argued that the idea that<br />

unbelievers will lose eternal salvation regardless of their goodness is an idea<br />

unfair to God, because it presents Him as harsh and intolerant.<br />

4.1.4 Selfish motivation<br />

A fourth objection expressed by six students was that if a person that doubts<br />

God's existence accepts Pascal's wager only on the basis of Pascal's argument,<br />

namely because he doesn't want to lose eternal salvation, then he accepts the<br />

wager only because of a self-interested motivation, and it is doubtful that God<br />

will reward efforts because of such motivation. A student remarked that in the<br />

New Testament eternal hell and eternal salvation are often mentioned as a<br />

motive for people to try to be right and avoid sinning; so church does not reject<br />

such a motive as a starting motivation for a person to try to ameliorate himself.<br />

Three students elaborated on this last point saying that, although such a<br />

motivation indeed is not satisfactory, a person that accepts Pascal's wager even<br />

on this basis and tries to live a virtuous life, he will perhaps achieve to be<br />

gradually liberated from sins and passions; because of this and God's help he<br />

may gradually obtain less selfish motives. Thus even with this unsatisfactory<br />

initial motivation the wager may have a positive outcome.<br />

Comment<br />

In many of the aforementioned students’ remarks and considerations, the<br />

influence of the Orthodox tradition was obvious, as well as their acquaintance<br />

with this tradition.<br />

It is also worth noting that some students’ considerations reflected an<br />

elaborated thinking in the context of this tradition.<br />

4.2 Modeling of Pascal's Wager<br />

After the aforementioned initial debate on Pascal’s wager, the teacher<br />

turned the discussion on its modelling. The following table was presented to<br />

the students as a summary of the situation faced by the doubting person in the<br />

wager.<br />

Table1<br />

God exists (G.E.) God doesn't exist (N.G.E.)<br />

Subjective probability for<br />

G.E. (p 1)<br />

Subjective probability for<br />

N.G.E. (p 2)<br />

Wager that God exists Present Life1, Salvation Present Life2<br />

Not wager that God<br />

exists<br />

Present Life3, Misery<br />

Present Life4<br />

The mathematical modeling demands clarification and a precise statement<br />

of initial premises. This demand leads to a re-examination of the initial<br />

premises established by philosophical considerations. Often the demanded<br />

clarification and precision leads to reconsidering or re-conceptualizing initial<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Michael Kourkoulos, Constantinos Tzanakis<br />

DISCUSSING MATHEMATICAL MODELING CONCERNING PASCAL'S WAGER 117<br />

premises.<br />

In what follows we present examples of how the demand of mathematical<br />

modeling for clarification and precision influenced the consideration of initial<br />

premises of Pascal’s wager.<br />

4.2.1 On the partition of hypotheses about God (columns’ partition)<br />

The teacher remarked that Pascal proposed the wager to a hypothetical<br />

person doubting God's existence but considering that if He exists then He is the<br />

God as taught by the Christian church, that is, the Holy Trinity. This remark<br />

further provoked the discussion on the many Gods objection. Two students<br />

said that for a person doubting God's existence and considering that if He<br />

exists, then He is Allah, the wager may also be meaningful; and that this holds<br />

also for someone who considers that if He exists He is an omnipotent,<br />

omniscient and omnibenevolent God, without specifying His name and<br />

religion. Five other students made similar comments agreeing with their<br />

colleagues. Three students remarked that although the wager may be<br />

meaningful for such a person, his efforts may be in vain because he wagers in a<br />

wrong faith. Four students argued that, following the church, believing in the<br />

Holy Trinity is a condition for salvation only for those who have been properly<br />

taught the Gospel; thus, for example, for a doubting person that lives in an<br />

Islamic society and has not been taught the Gospel this objection doesn't hold.<br />

Three students argued that in all these cases, if the wagering person achieves to<br />

live a virtuous life and obtain pure heart, then if the pure heart argument holds,<br />

he will perceive that He exists, and with His help he will end up with whatever<br />

faith He considers adequate for his salvation; so in all these cases the wager<br />

may have a positive outcome.<br />

4.2.2 On the partition of possible courses of action (rows’ partition)<br />

The teacher recalled that Pascal argues that wagering about God's existence<br />

is not optional for a doubting person; so he doesn't distinguish between those<br />

who don't wager that God exists and those who wager that God doesn't exist.<br />

Six students argued that it would be better if the line "Not wager that God<br />

exists" was split into two lines; "Not wager that God exists and live a virtuous<br />

life" and "Not wager that God exists and not live a virtuous life". Four students<br />

considered that it would be better to split the other line into two too; "Wager<br />

that God exists and achieve to live a virtuous life" and "Wager that God exists<br />

but do not achieve to live a virtuous life".<br />

4.2.3 Reconsideration of the wager about God’s existence<br />

These remarks led three students to comment that the wager should be<br />

adapted to the beliefs of the different categories of persons that doubt God's<br />

existence. Two students went further to propose that the wager should be<br />

personalized in order to be adapted to the beliefs of each person who doubts<br />

God's existence. Many other students (11) made comments endorsing these<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Michael Kourkoulos, Constantinos Tzanakis<br />

DISCUSSING MATHEMATICAL MODELING CONCERNING PASCAL'S WAGER 118<br />

considerations. Thus, the idea emerged in the classroom that the wager about<br />

God’s existence should be regarded as personal and be adapted to each<br />

doubting person’s considerations and beliefs.<br />

This was an important idea that emerged during the first part of the<br />

mathematical modeling work on the wager; that is the clarification of the initial<br />

premises of the modeling.<br />

This new consideration of the wager about God’s existence was later<br />

developed further. In the context of this reconsideration of the wager, Pascal’s<br />

wagering proposal was considered as a special case that initiated the discussion<br />

and as a point of reference for establishing alternative versions of the wager<br />

adapted to each doubting person’s beliefs.<br />

4.2.4 Other initial premises for modeling Pascal's wager<br />

The teacher told the students that it would be interesting to examine such<br />

variants of Pascal's Wager, but after the examination of the initial version,<br />

which was done later. Subsequently, the teacher commented that in the wager's<br />

text Pascal attributes explicitly positive infinite utility to Salvation ("an infinity<br />

of an infinitely happy life", see Pascal 1910: 85), while he is not explicit about<br />

the negative utility of Misery. However, he said, Pascal was a devoted Catholic<br />

and his hypothetical doubting person considers that if God exists, He is as<br />

taught by the Church. Therefore, he said, we may examine first the most severe<br />

version of the wager where Misery has infinite negative utility (eternal<br />

damnation, eternal hell); this version accentuates the dilemma faced by the<br />

doubting person. The teacher also remarked that, according to Pascal, all<br />

Present Lives (1, 2, 3 and 4) have finite utility value, because they all have finite<br />

time and finite pleasures and displeasures.<br />

He also mentioned that p1, p2 are the probabilities that the doubting person<br />

attributes to the hypotheses that God exists or not; thus they pertain to<br />

subjective probabilities 8 . However, he added, at this early time neither the<br />

relevant concepts of probability theory, nor the corresponding terminology had<br />

been formulated; thus Pascal explains his idea through examples of relevant<br />

betting situations. Pascal’s examples were also discussed with the students.<br />

4.2.5 Argument from dominance<br />

Subsequently, the teacher remarked that Pascal argues that for the present<br />

life, wagering in favor of God's existence and living a virtuous life is better and<br />

in fact more pleasant than wagering that God doesn't exist and not live a<br />

virtuous life. Thus, according to this, the utility value of Present Life2 is greater<br />

than the utility value of Present Life4 and the same holds for Present Life1,<br />

compared to Present Life3 (U(PL2)>U(PL4) and U(PL1)>U(PL3)). If a doubting<br />

person agrees with this, then for him it is advantageous to wager that God<br />

exists in both eventualities (God exists or not).<br />

8 He also recalled that p 1, p 2 are not 0 or 1 and p 1 + p 2=1.<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Michael Kourkoulos, Constantinos Tzanakis<br />

DISCUSSING MATHEMATICAL MODELING CONCERNING PASCAL'S WAGER 119<br />

The teacher also remarked that this argument of Pascal is often called an<br />

argument from dominance; in the sense that one choice (here, wagering in favor of<br />

God’s existence) is advantageous (dominates) in all possible eventualities (here,<br />

God exists, or not); e.g. see Hacking 1972.<br />

Students agreed that if a doubting person agrees with this consideration, in<br />

addition to all previous hypotheses about his beliefs, then it is reasonable that<br />

he will consider advantageous for him to wager that God exists. However, they<br />

remarked that there are too many hypotheses on the beliefs and considerations<br />

of the hypothetical doubting person, and this makes important the question of<br />

whether there are such real persons. Some of them also said that many<br />

doubting persons may consider such a virtuous life as the one proposed by<br />

Pascal, harsh and unpleasant; so, they concluded, perhaps this last hypothesis<br />

holds only for very few.<br />

4.2.6 Argument from dominating expectation<br />

Then the teacher remarked that for those who do not agree with the last<br />

hypothesis (that U(PL2)>U(PL4) and U(PL1)>U(PL3)) Pascal proposes another<br />

argument:<br />

The expected utility of wagering that God exists is<br />

E<br />

1<br />

p1<br />

U<br />

PL1<br />

p2<br />

U<br />

PL2<br />

(since 0


Michael Kourkoulos, Constantinos Tzanakis<br />

DISCUSSING MATHEMATICAL MODELING CONCERNING PASCAL'S WAGER 120<br />

The students initially thought that this argument should be logically<br />

convincing for Pascal's targeted audience (persons who doubt God's existence<br />

but believe that if He exists then the teaching of the Church about Him is<br />

correct). Subsequently, they remarked that all those who consider Church's<br />

teaching to be true agree with Pascal's consideration that there is a danger of<br />

losing eternal salvation and suffering eternal hell. However, they remarked, a<br />

considerable number of these persons, despite of this belief, make very little<br />

effort to live a virtuous life. So since the argument based on this danger does<br />

not convince many persons who believe that the danger is true, then the<br />

argument may also not convince doubting persons to whom Pascal is<br />

addressed.<br />

Students continued discussing about why the argument, despite the fact that<br />

it seems rationally powerful, does not convince many persons who believe that<br />

the danger to lose eternal salvation is a true danger. Students proposed<br />

different explanations; one of these that attracted the attention and interest of<br />

many students is the following 10 : People find it very unpleasant and painful to<br />

think of the eventuality that they will lose eternal salvation and will suffer<br />

eternal hell; thus they avoid thinking about it and most of the time, or even all<br />

the time, they live their lives without thinking about this eventuality.<br />

Three students remarked that this is not specific to the danger of suffering<br />

eternal hell and losing eternal salvation; it is part of a more general behavior of<br />

people that concerns avoiding thoughts about extremely negative (either certain<br />

or probable) future events. For example, they mentioned that most people<br />

avoid and think rarely about their own death or the death of their (living)<br />

parents, which are certain future events, because such thoughts are very painful<br />

and hard. Six students gave other examples endorsing this consideration, such<br />

as avoiding thinking about future illnesses, accidents, professional catastrophes<br />

etc. However, four students commented that although existent indeed, such a<br />

behavior may become irrational when someone avoids thinking about<br />

eventualities such as professional catastrophes or some kind of illness or even<br />

suffering eternal hell, because these are cases for which, if he thinks, he can take<br />

action to minimize the risk of negative outcomes. Nevertheless, remarked one<br />

student, if someone thinks about suffering eternal hell not superficially, but<br />

intensively, and uses his imagination in order to catch even a small part of what<br />

he may suffer there, then such thoughts quickly become totally unbearable. Five<br />

other students commented that if someone frequently or - even worse -<br />

continuously thinks about things such as losing eternal salvation and suffering<br />

eternal hell, his future death, and so on, he may easily make his present life<br />

really miserable by his own thoughts alone. Two of them also commented that<br />

the aforementioned avoidance behaviors are in fact important self-protection<br />

behaviors. Four other students made comments arguing in favor of this<br />

10<br />

Other explanatory elements proposed by students (such as that there are Christians who don't believe<br />

in eternal hell, or that there are people, like drug addicts, who have no more strength to be liberated from<br />

their passions) engendered limited discussion in the classroom at that time.<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Michael Kourkoulos, Constantinos Tzanakis<br />

DISCUSSING MATHEMATICAL MODELING CONCERNING PASCAL'S WAGER 121<br />

consideration. 11<br />

Students agreed that these avoidance and self-protection behaviors may<br />

very well be a strong explanatory factor of why Pascal's argument based on the<br />

danger of losing eternal salvation and suffering eternal hell is less convincing<br />

than he thought; and that this explanatory factor also concerns the relevant<br />

version of the argument for those who believe that the teaching of the Church is<br />

true 12 . They also agreed that for persons who avoid considering the danger of<br />

losing eternal salvation, mathematical modeling which attributes infinite utility<br />

value to salvation and damnation, like the one already mentioned, is<br />

inadequate for representing their questions and dilemma about God and His<br />

existence.<br />

4.3 Comment<br />

In the first part of classroom discussion, the students acquired some<br />

familiarity with Pascal's wager and its mathematical modeling and discussed<br />

basic objections about the wager at an initial level. During the modeling of<br />

Pascal's wager they had the opportunity to encounter and work with infinite<br />

expected utilities. Moreover they encountered, discussed and applied the<br />

principle of maximum expected utility.<br />

Furthermore they realized some significant advances concerning the<br />

conceptualization of Pascal's wager.<br />

They considered that the wager about God’s existence should be regarded<br />

as personal and thus be adapted to each doubting person’s considerations and<br />

beliefs. In this context Pascal’s wagering proposal was considered as a special<br />

case that initiated discussion, and as a point of reference for shaping alternative<br />

versions of the wager.<br />

Students examining Pascal's argument which is based on the danger of<br />

losing eternal salvation and suffering eternal hell, considered, on pragmatic<br />

grounds, that it has not the convincing power that Pascal thought it had. This,<br />

in turn, led them to question the adequacy of Pascal's utility function about<br />

eternal salvation and eternal hell.<br />

5. SECOND PART OF CLASSROOM DISCUSSION<br />

Preparing for the second part of classroom discussion, in the 7 th week of the<br />

course, the teacher proposed that students read an overview on the debate on<br />

Pascal's wager (Hájek 2012) and some other relevant writings (in particular<br />

Hacking 1975, Jordan 1994, Lycan & Schlesinger 1989). He encouraged them to<br />

11 Moreover, three students remarked that considerations of the kind "I live my life now, I repent later"<br />

may facilitate the avoidance wished because of self-protection mechanisms. Four students argued that<br />

frequently suffering the thought of the threat of eternal hell may produce in certain people worst attitudes<br />

than avoidance; such as rejecting altogether Church and its teaching.<br />

12 It is interesting to note that these students' considerations are in line with well known pastoral<br />

considerations and concerns about the convincing power and the role of arguments based on the danger to<br />

loose eternal salvation and suffer eternal hell (e.g. see Bishop Kallistos Ware 1998, p.6).<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Michael Kourkoulos, Constantinos Tzanakis<br />

DISCUSSING MATHEMATICAL MODELING CONCERNING PASCAL'S WAGER 122<br />

feel free, after this initial reading, to continue focusing on authors or lines of<br />

thought that they would find interesting and attractive in relation to their own<br />

ideas and thoughts. The students actively worked on this task as they found the<br />

subject attractive. So, from the 9th to the 11 th week of the course 13 they orally<br />

presented in the classroom elements of their study and their own comments<br />

that substantially enriched the discussion there. Below we describe some<br />

characteristic aspects of this second part of classroom discussion:<br />

Students encountered in their readings and presented in the classroom, a<br />

spectrum of hypotheses about God significantly larger than the one that they<br />

considered in the first part of classroom discussion. For some of these<br />

hypotheses they thought that they are only intellectual constructs elaborated for<br />

the sake of argument, or that it is improbable (or very rare) to be hypotheses<br />

having some significant weight in the considerations of real doubting persons;<br />

for example, because they totally lacked the support of tradition 14 . However<br />

they found others interesting, in particular those hypotheses that suggest that<br />

there is no eternal hell such as the hypothesis that all will be finally saved, or<br />

the hypothesis that after death the righteous are saved and the wicked pass to<br />

nothingness, not to eternal hell. For this last hypothesis they even formulated a<br />

corresponding version of the wager 15 and its mathematical modelling. For this<br />

version students considered the utility value of salvation to be and the<br />

utility value of hell to be 0.<br />

Students also discussed Penelhum's (1971: 211-219) objection that the<br />

consideration of Pascal's wager that honest unbelievers will lose eternal<br />

salvation is an immoral consideration. This enriched and deepened the<br />

previous relevant discussion in the classroom (see section 4.1). Moreover, in<br />

relation to this discussion, the teacher along with the students examined the<br />

mathematical modeling of a version of the wager with the additional<br />

assumption that virtuous doubting persons who don’t wager in favor of God’s<br />

existence do not lose eternal salvation.<br />

5.1 Duff's objection<br />

Moreover, two students presented Anthony Duff’s (1986) objection on<br />

Pascal's wager that a doubting person who does not wager in favor of God’s<br />

existence still has some chance to convert before the end of his days. During the<br />

discussion on this objection, four students argued that a person who in the<br />

present wagers in favor of God's existence and tries hard to live a virtuous life,<br />

still is not certain about eternal salvation because he may fall even at the end of<br />

his life, and conversely, it is not certain for a person who wagers against God's<br />

13 The two weeks of Easter holiday were between the 8 th and the 9 th week of the course.<br />

14 For example, the hypothesis of Martin (1983) that God rewards the unbelievers and punishes the<br />

believers, or the hypothesis of infinitely many possible Gods. It is worth noting that students’ arguments<br />

for restricting the spectrum of hypotheses to be considered find support in some of Lycan and Schlesinger<br />

considerations (see Lycan & Schlesinger 1989, Schlesinger 1994)<br />

15 This version concerns a person that doubts God's existence and believes that if He exists, then this<br />

hypothesis is true.<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Michael Kourkoulos, Constantinos Tzanakis<br />

DISCUSSING MATHEMATICAL MODELING CONCERNING PASCAL'S WAGER 123<br />

existence and lives a non-virtuous life that he will suffer eternal hell because he<br />

may repent even at the end of his life 16 . Seven other students made comments<br />

that endorsed these considerations. Moreover three of them suggested that the<br />

modeling of the wager should allow for some probability of suffering eternal<br />

hell for persons who at present wager in favor of God's existence, and some<br />

probability of obtaining salvation for those who at present wager against God's<br />

existence.<br />

A relevant version of the wager was modeled with teacher’s help 17 . In this<br />

version, both the expected utilities of wagering in favor of God's existence and<br />

against God's existence were undetermined; so the application of the criterion<br />

of maximum expected utility was inconclusive. These results initially puzzled<br />

students. After further examination six of them considered that since the<br />

criterion of maximum expected utility was inconclusive then the doubting person<br />

should consider that the odds of eternal salvation are greater in the case of<br />

wagering in favor of God's existence and the converse holds for the odds of<br />

suffering eternal hell; and that this consideration points in the direction of<br />

wagering in favor of God's existence 18 . It is worth noting that with these<br />

comments students proposed to use a decision-making criterion of maximum<br />

probability similar to that proposed by Schlesinger (1994) 19 .<br />

Four other students, based on grounds of intuitive rationality, thought that<br />

the difference of the Expected utility of wagering in favor of God’s existence<br />

minus this one of wagering against God’s existence is ; and that this also<br />

points to the direction of wagering in favor of God's existence. However, three<br />

other students objected that concluding that one undetermined value is better<br />

or greater than another undetermined value is meaningless, and thus the<br />

conclusion should be that this modelling leads to no definite conclusion. The<br />

discussion on this issue permitted students to understand that although there<br />

are criteria according to which this modeling leads to conclusion, they are<br />

controversial.<br />

After this discussion, the teacher discussed with students relevant<br />

paradoxes involving utilities and expected utilities of infinite value 20 .<br />

<br />

16 These students’ remarks echoed the well known Church’s teaching that no-living person can be sure<br />

about his salvation after death.<br />

17 In this version, the utility values of eternal salvation and of suffering eternal hell were considered, once<br />

again, to be and respectively. The conditional probabilities of eternal salvation and of suffering<br />

eternal hell, if God exists and the doubting person’s wagers in favor of God's existence, were named p s, p h ;<br />

both p s, p h were considered to be different than 0 and p s+ p h was considered to be equal to 1. The respective<br />

conditional probabilities if God exists and the doubting person’s wagers against God's existence were<br />

named p s', p h'; both p s', p h' were considered to be different than 0 and p s'+ p h' was considered to be equal to<br />

1. It was also considered that p s> p s' and consequently p h< p h'.<br />

18 In their argumentation, they considered that utilities and expected utilities of earthly lives could be<br />

disregarded in this modelling because of being too small, compared to the infinite utilities and expected<br />

utilities of salvation and hell.<br />

19 Which, however, is not uncontroversial (e.g. see Bartha 2007, Sorensen 1994).<br />

20 Some of them concerned the wager, while others did not; the teacher also suggested further relevant<br />

reading (e.g see Bartha 2007, Jordan 2006 ch4, Sorensen 1994).<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Michael Kourkoulos, Constantinos Tzanakis<br />

DISCUSSING MATHEMATICAL MODELING CONCERNING PASCAL'S WAGER 124<br />

5.2 Finiteness of human perception and understanding<br />

Concerning the utility value of hell and salvation, three students presented a<br />

relevant consideration that they had read about; that, although salvation and<br />

hell may be infinite, humans may not be able to appreciate this infiniteness<br />

adequately because their perception and understanding are finite in several<br />

respects (Hájek 2012). Many (12) students endorsed this consideration and<br />

argued that living humans are able to perceive eternal salvation and suffering<br />

eternal hell only at an abstract level and not at the level of feelings and<br />

sensations. Four of them stretched that what Pascal proposes for salvation (an<br />

infinity of infinitely happy life) can not be perceived because man has neither the<br />

experience of happiness of infinite intensity nor the ability for this feeling; and<br />

that the same holds for feelings of suffering of infinite intensity.<br />

However, seven students remarked that a mathematical modeling of the<br />

wager which attributes finite utility values to salvation and damnation is not<br />

satisfactory with regard to men's ability to perceive infinite utilities for<br />

salvation and damnation, even though at an abstract level only. Three of them<br />

also argued that for persons who believe that if God exists then the teaching of<br />

the Church is true such a modeling does not represent their beliefs and<br />

considerations. Five students commented that since men cannot perceive such<br />

infinite utilities at the level of feelings and sensations but can do so at an<br />

abstract level, then, both modelling with finite such values and modelling with<br />

infinite ones will be unsatisfactory with respect to one or to the other.<br />

Four students argued that, although the aforementioned considerations<br />

about the finiteness of human perception and understanding are reasonable,<br />

previous modeling involving infinite utility for eternal salvation and hell<br />

should not be considered as invalid because of these considerations, since<br />

humans can still conceive such utilities, even though at an abstract level only.<br />

They thought that such modeling should be available to people that consider it<br />

adequate for themselves; for instance, persons who consider that argumentation<br />

of this kind is very important to them 21 .<br />

Following these considerations, students, with the teacher’s help,<br />

formulated a relevant version of the wager and its mathematical modelling. In<br />

this version they considered the utility values of salvation and of suffering hell<br />

to be finite. Students observed that in this version of the wager the application<br />

of the criterion of maximum expected utility is possible to suggest not to wager in<br />

favor of the hypothesis of God's existence, and that this depends on the<br />

considered utility and probability values. They thought this to be another<br />

important difference from previously examined versions of the wager. Eight<br />

students considered that in this version of the wager the utility values are closer<br />

to the reality of limitations of human understanding. Six of them argued that<br />

because of this the possible outcomes of the criterion include the alternative<br />

result (not wager in favor of God's existence) which is also a real behavior<br />

21 Pascal, remarked two of them, should be one such person.<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Michael Kourkoulos, Constantinos Tzanakis<br />

DISCUSSING MATHEMATICAL MODELING CONCERNING PASCAL'S WAGER 125<br />

observed among doubting persons.<br />

6. FINAL COMMENTS<br />

The classroom discussion and students’ related individual work realized<br />

during this course allowed them to gain some significant insights into Pascal’s<br />

thought about the wager concerning God’s existence, as well as on the relevant<br />

debate among philosophers and decision theorists 22 .<br />

Moreover they realized some significant conceptual advances concerning<br />

this subject.<br />

- They reconsidered Pascal's wager in a dynamic way. More precisely they<br />

considered that wagering about God's existence should be considered as<br />

personal and be adapted to each doubting person’s considerations and<br />

beliefs. In this context, the initial version of the wager was regarded as a<br />

special case that initiated the subject and as a reference point for shaping<br />

alternative versions of the wager.<br />

- Students considered, on pragmatic grounds, that Pascal's argument<br />

based on the danger of loss of eternal salvation has less convincing<br />

power than what Pascal had thought. This also led them to question the<br />

adequacy of infinite utility values attributed to salvation and damnation<br />

in the context of the corresponding mathematical modeling.<br />

- In connection with the aforementioned, students worked on the<br />

modeling of different versions of the wager. This permitted them to<br />

work with the concepts of infinite utility and infinite expected utility<br />

(concepts which they had very little familiarity with until then) as well as<br />

face some interesting problems of decision theory in situations that such<br />

utilities are involved.<br />

6.1 Students’ familiarity with Orthodox tradition and the discussion on<br />

Pascal’s wager<br />

All along the classroom discussion, in students’ comments and<br />

considerations, their familiarity with Orthodox tradition and the important<br />

influences they have received from this tradition, were frequently observed.<br />

Students’ relation to the Orthodox tradition both restricted and deepened<br />

important aspects of the discussion on Pascal’s wager. This is particularly true<br />

with reference to (i) the many Gods objection on Pascal’s wager, and (ii)<br />

students’ comments on doubting persons’ considerations concerning God’s<br />

existence.<br />

Their relation to the Orthodox tradition was a factor that works in the<br />

direction of restricting the spectrum of hypotheses about God that they<br />

considered interesting to examine as hypotheses of persons doubting God’s<br />

existence. A number of such hypotheses, which were put forward by<br />

22 However, given the extent and the importance of this debate, the work done in this course has to be<br />

considered only as a first-initiation work on Pascal’s wager.<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Michael Kourkoulos, Constantinos Tzanakis<br />

DISCUSSING MATHEMATICAL MODELING CONCERNING PASCAL'S WAGER 126<br />

philosophers and decision theorists, were considered by the students as<br />

uninteresting to be examined, because they lacked the backup of tradition and<br />

were thought of as improbable (or very rare) to be hypotheses that have some<br />

significant weight in the considerations of real doubting persons. On the other<br />

hand, their relation to this tradition was a factor that enriched and deepened<br />

their thoughts on the hypotheses that they examined. Moreover, students’<br />

relation to the Orthodox tradition enriched the insightfulness of their thinking<br />

concerning doubting persons’ considerations about God’s existence.<br />

6.2 Mathematical modeling in the discussion on Pascal’s wager<br />

In the class work on Pascal’s wager, elements of probability and decision<br />

theory were systematically involved. Besides (subjective) probabilities, utilities<br />

and expected utilities, often of infinite value, were involved as well as criteria of<br />

decision-making.<br />

These elements were structured in modelling activities of versions of<br />

Pascal’s wager and led to interesting problems of decision theory. The<br />

mathematical elaboration on infinite values already presented some difficulty<br />

for students; but more importantly, often the results of mathematical<br />

elaboration were questionable or even in contrast with respect to intuitive<br />

rationality. Such tensions enhanced or led to questioning the initial premises of<br />

the modeling, for example, questioning the adequacy of the attribution of<br />

infinite values to involved utilities and expected utilities. However, replacing<br />

these infinite values with finite ones presented other fundamental inadequacies.<br />

Thus, in these modeling activities students encountered and worked with the<br />

concepts of utilities and expected utilities of infinite value and faced some<br />

related questions which are deeply routed in probability theory and decision<br />

theory, along with a network of relevant problems.<br />

In these modelling activities, students observed that correct mathematical<br />

elaboration does not always lead to safe and/or uncontestable results; as it is,<br />

for example, the case in Euclidean Geometry, where the initial premises<br />

(axioms) are not questioned 23 . On the other hand, the clarity of mathematical<br />

elaborations that led to question initial premises of the modelling permitted to<br />

identify flaws of these premises that it was very difficult or impossible, to<br />

identify as long as these premises were discussed at the literal level.<br />

Thus, these modelling activities offer students the occasion to appreciate<br />

that mathematics may have an important role in the discussion of philosophical<br />

issues, to understand some basic aspects of modelling work and even to<br />

question stereotypes and enrich their concept image for mathematics.<br />

REFERENCES<br />

23 Although they had heard about the existence of non-Euclidean Geometries, students had never worked<br />

with Geometry which was incompatible with the Euclidean one. Moreover, students had very little, if any,<br />

experience of mathematical modelling work that may lead to unsafe or contestable results for reasons<br />

other than the well known “you haven’t done your work correctly”.<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Michael Kourkoulos, Constantinos Tzanakis<br />

DISCUSSING MATHEMATICAL MODELING CONCERNING PASCAL'S WAGER 127<br />

Adamson, D. (1995). Blaise Pascal: mathematician, physicist and thinker about<br />

God. London: Macmillan pub.<br />

Bartha, P. (2007). Taking Stock of Infinite Value: Pascal's Wager and Relative<br />

Utilities. Synthese, 154, 5–52.<br />

Bernoulli, D. (1954). Exposition of a New Theory on the Measurement of Risk.<br />

Econometrica, 22(1), 23-36. (Translation. Translated by Sommer, L.<br />

Originally published as "Specimen Theoriae Novae de Mensura Sortis",<br />

Commentarii Academiae Scientiarum Imperialis Petropolitanae, Tomus V,<br />

1738, 175-192.)<br />

Bishop Kallistos Ware (1998). Dare we hope for the salvation of all? Origen, St<br />

Gregory of Nyssa and St Isaac the Syrian. Theology Digest, 45(4), 303-317.<br />

Bras, M. (2009). Blaise Pascal, apologie et probabilités: une étude sur la<br />

méthodologie de 1'apologie pascalienne et sa portée (Doctoral Dissertation).<br />

Ottawa: Université d'Ottawa, Département de Philosophie.<br />

Brunschvicg, L. (1909). Histoire des Pensées. In L. Brunschvicg (ed.), Blaise<br />

Pascal: Pensées et Opuscules, 5eme édition (pp. 255-265). Paris: Librairie<br />

Hachette.<br />

Chandler, J. & Harrison, V. (eds.) (2012). Probability in the Philosophy of<br />

Religion. Oxford: Oxford University Press.<br />

Descotes, D. & Proust, G. (2011). L’édition électronique des Pensées de Blaise<br />

Pascal. Retrieved Mars 15, 2013 from the World Wide Web:<br />

http://www.penseesdepascal.fr/index.php<br />

Duff, A. (1986). Pascal's Wager and Infinite Utilities. Analysis, 46(2), 107-109.<br />

Dutka, J. (1988). On the St. Petersburg paradox. Archive for History of Exact<br />

Sciences, 39(1), 13-39.<br />

Edwards, A. W. F. (2002). Pascal’s arithmetical triangle: The Story of a<br />

Mathematical Idea. Baltimore: Johns Hopkins University Press.<br />

Hacking, I. (1972). The Logic of Pascal's Wager. American Philosophical<br />

Quarterly, 9(2), 186–192.<br />

Hacking, I. (1975). The Emergence of Probability. Cambridge: Cambridge<br />

University Press.<br />

Hájek, A. (2012). Pascal's Wager. In E. N. Zalta (ed.), The Stanford Encyclopedia<br />

of Philosophy. Retrieved September 25, 2013 from the World Wide Web:<br />

http://plato.stanford.edu/archives/win2012/entries/pascal-wager/<br />

Hald, A. (2003). A History of Probability and Statistics and their applications<br />

before 1750. NJ: Wiley.<br />

Jordan, J. (ed.) (1994). Gambling on God: Essays on Pascal's Wager. Lanham,<br />

Maryland: Rowman & Littlefield pub.<br />

Jordan, J. (2006). Pascal’s Wager: Pragmatic Arguments and Belief in God.<br />

Oxford: Clarendon Press.<br />

Kourkoulos, M. & Tzanakis, C. (2015). Statistics and Free Will. In E. Barbin, U.<br />

Jankvist, and T.H. Kjeldsen (eds), Proceedings of the 7th European Summer<br />

University on the History and Epistemology in Mathematics Education (pp.<br />

417-432). Denmark: Danish School of Education, 417-432.<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Michael Kourkoulos, Constantinos Tzanakis<br />

DISCUSSING MATHEMATICAL MODELING CONCERNING PASCAL'S WAGER 128<br />

Kourkoulos, M. & Tzanakis, C. (in press). Greek students of today discussing<br />

Pascal's wager. In E. Nicolaidis & K. Skordoulis (eds), Proceedings of the<br />

Science and Religion International Conference. Athens: Hellenic Research<br />

Foundation- Institute of Historical Research.<br />

Lafuma, L. (1954). Histoire des Pensées de Pascal (1656-1952). Paris: Editions du<br />

Luxembourg.<br />

Lycan, W. & Schlesinger, G. (1989). You Bet Your Life: Pascal's Wager<br />

Defended. In J. Feinberg (ed.), Reason and Responsibility: Readings in Some<br />

Basic Problems of Philosophy, 7th edition (pp. 82-90). Belmont CA:<br />

Wadsworth Pub.<br />

Martin, M. (1983). Pascal's Wager as an Argument for Not Believing in God.<br />

Religious Studies, 19, 57-64.<br />

Martin, R. (2014). The St. Petersburg Paradox. In E. N. Zalta (ed.), The Stanford<br />

Encyclopedia of Philosophy. Retrieved November 15, 2014 from the World<br />

Wide Web: http://plato.stanford.edu/archives/sum2014/entries/paradoxstpetersburg/<br />

Mesnard, J. (1951). Pascal: l'homme et l'œuvre. Paris: Editions Boivin.<br />

Pascal, B. (1910). Thoughts. In Ch. E. Eliot (ed), Blaise Pascal: Thoughts, tr. By<br />

W.F. Trotter, Letters, tr. by M.L. Booth, Minor Works, tr. by O.W. Wight: with<br />

introds. notes and illus. (pp7-322). New York: P.F. Collier & Son Co.<br />

(Translation. Translated by W.F. Trotter. Originally published as "Pensées" in L.<br />

Brunschvicg (ed.) (1897), Blaise Pascal: Opuscules et Pensées. Paris: Librairie<br />

Hachette.) 24<br />

Penelhum, T. (1971). Religion and Rationality: an introduction to the<br />

philosophy of religion. NY: Random House.<br />

Porter, T.M. (1986). The Rise of Statistical Thinking 1820–1900. Princeton:<br />

Princeton University Press.<br />

Schlesinger, G. (1994). A Central Theistic Argument. In Jordan (1994). Gambling<br />

on God: Essays on Pascal's Wager. Lanham, Maryland: Rowman &<br />

Littlefield pub (pp83–99).<br />

Sorensen, R. (1994). Infinite Decision Theory. In Jordan (1994). Gambling on<br />

God: Essays on Pascal's Wager. Lanham, Maryland: Rowman & Littlefield<br />

pub (pp139–159).<br />

Stigler, S.M. (1986). The history of statistics: the measurement of uncertainty<br />

before 1900. Harvard: Harvard University Press.<br />

BRIEF BIOGRAPHIES<br />

Michael Kourkoulos is Assistant Professor of the Didactics of Mathematics at the<br />

Department of Primary Education of the University of Crete. He has graduated from<br />

the Department of Mathematics of the University of Athens. He received a master and<br />

a Ph.D. in the Didactics of Mathematics from the University of Louis Pasteur<br />

24<br />

This translation was reissued by Dover Publications in 2003, under the title Pensées. The reissue includes an<br />

introduction by T. S. Eliot, written in 1958.<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Michael Kourkoulos, Constantinos Tzanakis<br />

DISCUSSING MATHEMATICAL MODELING CONCERNING PASCAL'S WAGER 129<br />

(Strasbourg). His research concerns alternative forms of Mathematics’ teaching, as well<br />

as, the didactical use of the History of Mathematics. In particular, his research concerns<br />

the didactics of Arithmetic & Algebra, Geometry, and Statistics & Probability.<br />

Constantinos Tzanakis is professor at the Department of Primary Education of the<br />

University of Crete, teaching mathematics and physics. He holds a first degree in<br />

mathematics, an MSc degree in Astronomy and a PhD in Theoretical Physics. His<br />

research interests and activities are in theoretical physics and the didactics of<br />

mathematics and physics and has published 84 papers, co-edited 9 collective volumes<br />

and 5 volumes of conference proceedings and journals’ special issues. He has been<br />

chair of the International Study Group on the Relations between the History and Pedagogy of<br />

Mathematics, affiliated to the International Commission on Mathematical Instruction<br />

(2004-08).<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


UNIVERSITY OF WESTERN MACEDONIA<br />

FACULTY OF EDUCATION<br />

<strong>MENON</strong><br />

©online Journal Of Educational Research 130<br />

THE HISTORY OF MATHEMATICS DURING AN INQUIRY-<br />

BASED TEACHING APPROACH<br />

Areti Panaoura<br />

Frederick University, Department of Primary Education<br />

pre.pm@frederick.ac.cy<br />

ABSTRACT<br />

The use of the history of Mathematics in teaching has long been considered as a useful<br />

tool in order to enable students to construct conceptually the mathematical concepts.<br />

At the same time the inquiry-based teaching approach is proposed to be used in order<br />

to improve students’ learning by using their natural tendency to curiosity. The use of<br />

the history of mathematical concepts during an inquiry-based teaching approach is<br />

expected to multiply the positive effects on students’ learning. The present study<br />

examines in-service teachers’ beliefs and knowledge about the use of the history of<br />

mathematics in the framework of the inquiry-based teaching approach at the<br />

educational system of Cyprus, and the difficulties teachers face in adopting and<br />

implementing this specific innovation in primary education. At the first phase of the<br />

study a questionnaire was used in order to investigate teachers’ knowledge and beliefs<br />

about the use of the history of mathematics in education and mainly in relation to the<br />

inquiry-based teaching approach. At the second phase of the study two case studies<br />

were examined, where teachers introduced a mathematical concept by using the<br />

history of mathematics in order to identify the practices they used and the difficulties<br />

they faced. The results indicated that the teachers’ knowledge about the use of the<br />

history and mainly the experimental nature of mathematics is significantly related with<br />

their positive beliefs about the inquiry-based teaching approach. Teachers’ worries<br />

were mainly concentrated on their difficulties to manage the time and the content of<br />

the subject and to face efficiently and flexibly their students’ mistakes and difficulties.<br />

Keywords: history of mathematics, inquiry-based activities, teachers’ knowledge,<br />

beliefs and practices<br />

1. INTRODUCTION<br />

The idea of using the history of mathematics in education is not new<br />

(Goktepe & Ozdemir 2013). Over the past three decades researchers from<br />

various countries have discussed the possibility of introducing new concepts<br />

within relevant historical context (Yee & Chapman 2010), at different<br />

educational levels. Some researches describe the affective impact from using the<br />

history of mathematics in education (e.g. Furinghetti 2007, Marshall 2000) and<br />

others discuss the necessity to include the history of mathematics in pre-service<br />

teachers’ university programs (e.g. Fleener et al. 2002) in order to train teachers<br />

to use it with their students. There are several reasons to incorporate the use of<br />

the history of mathematics in education, and the major one is the impact of such<br />

a practice on the development of the mathematical disposition of students<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Areti Panaoura<br />

THE HISTORY OF MATHEMATICS DURING AN INQUIRY-BASED TEACHING<br />

APPROACH<br />

131<br />

(Clark 2006). Using authentic problems from the history of mathematics<br />

provides material for students to actively engage in classroom discourse<br />

(Gulikers & Blom 2001), and to realize the role of the construction of the science<br />

of mathematics.<br />

At the same time inquiry-based learning is not a recent movement in<br />

mathematics education, and it has been recommended as an appropriate basis<br />

for student learning in mathematics for the last decades. Numerous studies and<br />

reports of committees continue to call for inquiry-based teaching and learning<br />

approaches in mathematics (e.g. Marshall & Horton 2011) in order to encourage<br />

students to think critically and creatively. Teachers need to know how to<br />

approach their teaching in a way that is reflective, responsive and flexible<br />

(Marin 2014).<br />

Having in mind that the use of the history and the inquiry-based teaching<br />

approach are among the major objectives in mathematics education, we have<br />

decided to examine the use of the history of mathematics in a framework of the<br />

inquiry-based teaching approach at the early stages of primary education and<br />

mainly to investigate teachers’ difficulties in applying in their instruction the<br />

proposed innovation. Burton (2003) defines history of mathematics as a vast<br />

area of study which includes investigating sources of discoveries in mathematics,<br />

highlighting that it includes investigations of the achievements of significant<br />

mathematicians and their ideas. At the Curriculum of Mathematics which was<br />

constructed in 2011 for primary education in Cyprus the use of history of<br />

mathematics is suggested and the usual use of inquiry-based teaching approach<br />

is proposed as the main teaching approach. The two central concepts for the<br />

inquiry-based teaching approach are the use of investigations and explorations.<br />

Radford, Furingetti and Katz (2007) acknowledge that questions related to<br />

the pedagogical role of the history of mathematics remain open to investigation.<br />

Teachers have various beliefs such as about themselves as teachers, the nature<br />

of the discipline of mathematics, the factors that affect the learning and the<br />

teaching of mathematics. The present study concentrates on teachers’<br />

knowledge about teaching mathematics by using the inquiry-based teaching<br />

model in the framework of the history of mathematics and mainly their<br />

respective practices in authentic teaching situations. We concentrate our<br />

attention on the experimental epistemological dimension of mathematics<br />

(Ernest 1991) which is directly related with the inquiry-based teaching and<br />

learning approach. It is important to examine how teachers use their knowledge<br />

and their beliefs in order to design instructional activities fostering<br />

mathematical inquiry by using the history of mathematics. The specific research<br />

questions were:<br />

1. How are teachers’ knowledge and beliefs about using the history of<br />

mathematics related with their knowledge and beliefs about the use of<br />

inquiry-based teaching approach?<br />

2. What are the teachers’ practices on using the history of mathematics during<br />

an inquiry-based teaching approach?<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Areti Panaoura<br />

THE HISTORY OF MATHEMATICS DURING AN INQUIRY-BASED TEACHING<br />

APPROACH<br />

132<br />

2. THEORETICAL FRAMEWORK<br />

2.1 The history of Mathematics in mathematics education<br />

Teachers have long been encouraged through curriculum and the scientific<br />

community in mathematics to incorporate aspects from the history of<br />

mathematics into their teaching (Lopez-Real 2004). Jankvist (2009) suggests the<br />

use of the history of mathematics by highlighting the increased motivation and<br />

the realization that mathematics is a human creation. Introducing the history of<br />

mathematics in school curricula enhances learners’ motivation, promotes<br />

favoured attitudes, and draws attention to possible obstacles faced in the<br />

generation and evolution of mathematical concepts. As a pedagogical tool it can<br />

serve as a guide to the difficulties students may encounter as they learn a<br />

particular mathematical topic (Haverhal & Rsocoe 2010). Schubring and<br />

colleagues (2000) also posit that programs based on the history of mathematics<br />

could increase self-confidence in working with mathematical tasks and develop<br />

learners’ ability to apply mathematical methods. A journey through the history<br />

of mathematics could also enable learners to construct mathematical meanings<br />

and support new conceptions about mathematics by changing learners’ existing<br />

beliefs and attitudes (Dubey & Singh 2013). In addition, the historical<br />

dimension encourages learners to think of mathematics as an evolving body of<br />

knowledge, rather than as a well-defined entity composed of irrefutable and<br />

eternal truths (Barbin, Bagni, Grugnetli, & Kronfellner 2000).<br />

Jahnke (2000) suggested three general ideas which might be suited for<br />

describing the special effects of studying a source on the teaching of<br />

mathematics: (a) the notion of replacement according to which mathematics is<br />

seen as an intellectual activity rather than a set of techniques, (b) the notion of<br />

reorientation according to which history reminds us that the mathematical<br />

concepts were invented and (c) the notion of cultural understanding according<br />

to which integrating history of mathematics invites us to place the development<br />

of mathematics in the scientific and technological context of a particular time<br />

and in the history of ideas and societies and also to consider the history of<br />

teaching mathematics.<br />

For many years, the rationale of employing the history of mathematics in<br />

teaching has explicitly or implicitly been hinged on the notion of<br />

“recapitulation”, according to which ontogenesis recapitulates phylogenesis.<br />

Although this principle has been challenged on the grounds of different sociocultural<br />

conditions, Sfard (1995) points to “inherent properties of knowledge”<br />

which result in similar phenomena that can “be traced throughout its historical<br />

development and its individual construction” (p. 15). These inherent properties<br />

or epistemological obstacles could provide the grounds for a meaningful<br />

negotiation of meaning using history as a means towards an epistemological<br />

laboratory (Radford 1997).<br />

Studying the development of mathematical ideas also opens up the<br />

possibility of seeing mathematics as a socio-cultural creation and helps<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Areti Panaoura<br />

THE HISTORY OF MATHEMATICS DURING AN INQUIRY-BASED TEACHING<br />

APPROACH<br />

133<br />

“humanize” mathematics (Fauvel 1991). As Siu (1997) claims, using the history<br />

of mathematics in the classroom does not necessarily increase students’<br />

cognitive performance, but “it can make learning mathematics a meaningful<br />

and lively experience, so that learning will come easier and will go deep” (p. 8).<br />

Such programs also have the potential to help students overcome mathematics<br />

anxiety or mathematics avoidance. In addition to that, historical and<br />

epistemological analysis of the content helps teachers understand why a certain<br />

concept is difficult for students to grasp. Such an understanding is important,<br />

because it can inform selection of tasks/problems to introduce a particular<br />

concept, the strategies teachers employ in helping students develop<br />

understanding of this concept, and the time they allot to working on this<br />

concept (Barbin et al. 2000). The mathematics teachers in the study by Lit and<br />

Wong (2001) were very supportive in theory for using history in their teaching.<br />

Siu (1998), in an invited talk given at the working conference of the 10 th ICMI<br />

study on the role of history of mathematics in mathematics education, offered a<br />

list of thirteen reasons why a school teacher hesitates to make use of the history<br />

of mathematics in classroom teaching such as “I have no time for it in class”,<br />

“Students don’t like it”, “There is a lack of teacher training on it”, “Students do<br />

not have enough general knowledge on culture to appreciate it”, etc. The<br />

suggestions which are included in Curriculum or Reports of Committees do not<br />

necessarily mean that teachers are able to apply them in their teaching, either<br />

due to their lack of positive beliefs and self-efficacy beliefs or due to teaching<br />

difficulties and obstacles, which they are unable to overcome when they face<br />

them.<br />

2.2 The inquiry-based teaching approach<br />

Inquiry-based teaching and learning is based on the principles of social<br />

constructivism (Aulls & Shore 2008), according to which a learner assimilates a<br />

new situation and experience on previous experiences and depending on interindividual<br />

differences constructs the new knowledge. The scientific journal of<br />

ZDM in Mathematics Education has published a special issue in 2013 with nine<br />

papers focusing on inquiry-based mathematics education and their<br />

implementations, indicating that many questions remain unanswered. The<br />

challenge for educational systems is to enable its teachers to adopt the values of<br />

the inquiry-based pedagogy. Chin and Lin (2013) claim that there are obstacles<br />

and difficulties such as: (i) teachers did not experience inquiry-based learning<br />

in mathematics in their own school years, (ii) they do not have complete<br />

understanding of the inquiry-based teaching, (iii) there are practical constraints<br />

such as that the allocated teaching hours are not enough, (iv) the influence of<br />

teaching for success in tests.<br />

The learner-focused perspectives of mathematics education require teachers<br />

to use pedagogical methods which actively engage students in developing<br />

conceptual understanding of mathematical concepts (Chapman 2011).<br />

According to Taylor and Bilbrey (2011) the research outlines two facets of<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Areti Panaoura<br />

THE HISTORY OF MATHEMATICS DURING AN INQUIRY-BASED TEACHING<br />

APPROACH<br />

134<br />

inquiry-based instruction which are open education and differentiation. The<br />

major characteristic of the open education is that instruction is driven by the<br />

desires of the students, while the differentiation approach allows students’<br />

preferences to guide how particular content is encountered. Hakkarainen (2003)<br />

proposes an inquiry pedagogical approach called progressive inquiry for young<br />

learners in learning science, while Song and Looi (2011) explore the application<br />

of an adaptation of this approach to mathematics inquiry learning. The learnerfocused<br />

perspectives of mathematics education requires teachers to use<br />

pedagogical methods which actively engage students in developing conceptual<br />

understanding of mathematical concepts (Chapman 2011). Teachers need to<br />

develop their ability to foster student decision-making by balancing support<br />

and independence in thinking and working (NCTM 2000). The teacher’s role<br />

has evolved from concept deliverer to concept facilitator.<br />

Hegarty – Hazel (1986) categorized four levels of inquiry – based activities<br />

which ranged from specific guidance and close question to open exploration<br />

and open question. For example at the first level the teacher provides specific<br />

inquiry question, solving procedures and solution, while at the last level the<br />

teachers provide learning environment for students to generate inquiry<br />

question. Both teachers and students need slow and stable steps in order to be<br />

moved from the traditional algorithmic procedures to the challenge of the<br />

conceptual processes.<br />

One of the main emphases of the new proposed teaching model of<br />

Mathematics in the centralized educational system of Cyprus which is<br />

presented at the New Curriculum (NCM 2011), is the use of exploration and<br />

investigation of mathematical ideas as two dimensions of the inquiry-based<br />

teaching and learning approach. Last year during the implementation of the<br />

new school mathematics curriculum, the new obligatory for use textbooks for<br />

grades 1, 2, 3 and 4 had already been introduced (ages 6-9 years old). The whole<br />

idea is to introduce a mathematical concept by using an inquiry-based activity<br />

through which the teacher generates curiosity and interest in the topic and<br />

he/she asks students to express their ideas and communicate by using the<br />

language of mathematics. The emphasis is on using authentic and open-ended<br />

problem solving activities without only one correct answer and each student is<br />

expected to respond in respect to his/her previous knowledge, experiences and<br />

unique way of thinking. Teachers are expected to support the students in<br />

working independently and creatively. In only few specific cases the activities<br />

which are included in the textbooks use the context of the history of<br />

mathematics.<br />

3. METHODOLOGY<br />

The present study was divided into two main phases. At the first phase the<br />

emphasis was on examining the teachers’ knowledge and beliefs about using<br />

the history of mathematics and mainly in cases of planning inquiry-based<br />

activities. To examine teachers’ knowledge and beliefs about the use of the<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Areti Panaoura<br />

THE HISTORY OF MATHEMATICS DURING AN INQUIRY-BASED TEACHING<br />

APPROACH<br />

135<br />

history of mathematics and the inquiry-based teaching approach, we<br />

constructed and used a questionnaire that consisted of two scales: one<br />

including 12 items that measured knowledge and beliefs about the use of the<br />

history of mathematics (e.g. Mathematics changes in order to fulfill the human<br />

or social needs) and another consisting of 12 items designed to capture<br />

knowledge and beliefs about the value and implementation of inquiry-based<br />

teaching (e.g the teachers’ guidance during inquiry-based teaching approach<br />

has to be limited). All items were measured on a 5-point Likert scale (1=<br />

strongly disagree and 5 = strongly agree).<br />

The emphasis of the second phase was on examining the practices teachers<br />

use during the implementation of the inquiry-based activities by using the<br />

history of mathematics in authentic classroom situations. We wanted to make<br />

the link between what they say and what they actually do. Researchers can<br />

examine the teachers’ behavior well when following and observing them in an<br />

authentic context (Hwang, Zhuang & Huang 2013). By using the case study<br />

approach we emphasized detailed contextual analysis of teaching condition in<br />

real-life school situations. A teacher of the 2 nd grade and a teacher of the 3 rd<br />

grade were observed individually while they were introducing the place-value<br />

of two- and four-digit numbers by using the history of mathematics, and then a<br />

semi-structured individual interview was conducted with each one of them.<br />

The respective activities which were suggested to be used by the textbooks<br />

introduced the concepts by using an exploration and an investigation (the<br />

Greek version of the respective pages are presented in Figure 1 and 2). A<br />

protocol for the observation was constructed and used in order to concentrate<br />

the observer’s attention on: a) teachers’ guidelines at the introduction of the<br />

activity, b) teachers’ feedback on students’ difficulties and mistakes and c) the<br />

time which was allocated for the specific activities. The interview was<br />

concentrated on the practices they had used and the difficulties they had faced.<br />

The sample: Participants who completed the questionnaire at the first phase<br />

of the study were 162 teachers, who were teaching mathematics at the first,<br />

second, third and fourth grade last year. The new curriculum methods with the<br />

new obligatory for use textbooks which include inquiry-based activities at a<br />

framework of the history of mathematics have already been introduced only at<br />

those four primary school grades. 115 of the participants of the sample were<br />

females and 47 were males. 45 participants were teaching at the first grade, 43<br />

at the second grade, 40 at the third grade and 34 at the fourth grade. All the<br />

participants were asked to complete the questionnaire voluntarily and<br />

anonymously. The teachers who took part in the second phase of the study<br />

were randomly chosen and both agreed to be observed during their teaching<br />

and take part in the individual interview.<br />

Statistical analyses: In order to confirm the structure of the questionnaire<br />

and mainly in order to examine the interrelations between the four main factors<br />

of the study, a Confirmatory Factor Analysis (CFA) was conducted using<br />

Bentler’s (1995) Structural Equation Modelling (EQS) programmes. The<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Areti Panaoura<br />

THE HISTORY OF MATHEMATICS DURING AN INQUIRY-BASED TEACHING<br />

APPROACH<br />

136<br />

tenability of a model can be determined by using the following measures of<br />

goodness of fit: x 2 /df 0.9 and RMSEA<br />

(Root Mean Square Error of Approximation)


Areti Panaoura<br />

THE HISTORY OF MATHEMATICS DURING AN INQUIRY-BASED TEACHING<br />

APPROACH<br />

137<br />

4. RESULTS<br />

4.1 Teachers’ knowledge and beliefs<br />

Firstly the interest concentrated on the interrelations between the first-order<br />

factors as indicators of the impact of the cognitive and affective factors<br />

concerning the use of the history of mathematics and the use of the inquirybased<br />

teaching approach. The initial model tested in this study hypothesized a<br />

first-order model with four main interrelated factors: (i) the in-service teachers’<br />

knowledge about the history of mathematics, (ii) their beliefs about the use of<br />

the history of mathematics in teaching, (iii) their knowledge about the use of the<br />

inquiry-based approach and (iv) their beliefs about the inquiry-based approach<br />

and its implementation. The a priori model hypothesized that the variables of<br />

all the measurements would be explained by a specific number of factors and<br />

that each item-statement would have a non-zero leading on the factor that it<br />

was supposed to measure. Additionally the model (following the LM Test) was<br />

tested under the constraint that the error variances of some pair of scores<br />

associated with the same factor would have to be equal. As Kieftenbeld,<br />

Natesan and Eddy (2011) suggest few error variances need to be correlated<br />

when there is a local dependence between items. Local dependence occurs<br />

when participants’ responses to a particular item depended someway on their<br />

responses to other similar items.<br />

Figure 3 presents the results of the elaborated model that fits the data<br />

reasonably well (x 2 /df = 1.86, CFI = 0.932, RMSEA = 0.031). The first-order<br />

model that is considered appropriate for interpreting teachers’ beliefs and<br />

knowledge about the inquiry-based teaching approach which includes the use<br />

of the history of mathematics involves 4 first-order factors, as was proposed.<br />

The first factor consisted of 7 items concerning teachers’ knowledge about the<br />

history of mathematics. The loadings of all the items were >0.5 and all the<br />

regressions were statistically significant. The second first-order factor consisted<br />

of 6 items concerning teachers’ beliefs about using the history of mathematics in<br />

the teaching of mathematics at primary education. The third-order factor<br />

consisted of 5 items concerning teachers’ knowledge about the use of inquirybased<br />

approach in the teaching of mathematics and the fourth-order factor<br />

consisted of 6 items concerning teachers’ beliefs about using inquiry-based<br />

activities in their teaching. By using the specific analysis we aimed to explore<br />

the way these four dimensions of the model were interrelated. The existence or<br />

the non-existence of statistically significant interrelations is interesting.<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Areti Panaoura<br />

THE HISTORY OF MATHEMATICS DURING AN INQUIRY-BASED TEACHING<br />

APPROACH<br />

138<br />

Figure 3: CFA model about knowledge and beliefs interrelations<br />

As it was expected the relation between teachers’ knowledge about the<br />

history of mathematics and their beliefs about using it as part of the teaching<br />

process was statistically significant and extremely high (0.813), indicating that<br />

teachers who understand mathematics as a dynamic science which has evolved<br />

throughout the centuries in order to facilitate the development of the science<br />

and the social needs, they are at the same time teachers with positive beliefs<br />

about using the history of mathematics in teaching. At the same time teachers<br />

who know the advantages and limitations of using the inquiry-based teaching<br />

and learning approach, have positive beliefs about using the specific method in<br />

order to encourage their students to investigate and explore a mathematical<br />

concept (0.753).<br />

Statistically significant was the relationship between teachers’ knowledge<br />

about the use of the history of mathematics and their beliefs about using the<br />

inquiry-based approach (0.692). It seems that teachers who believe that<br />

mathematics has been created, constructed and enriched by humans during the<br />

development of the specific science, want to give their students the opportunity<br />

to work creatively and critically in order to explore or investigate a<br />

mathematical concept. Teachers who have positive beliefs about using the<br />

inquiry-based approach in their teaching have at the same time positive beliefs<br />

about the use of the history of mathematics (0.718).<br />

The non-existence of a statistically significant interrelation between teachers’<br />

knowledge about the use of inquiry-based approach and their knowledge and<br />

their beliefs about using the history of mathematics is justified by the fact that<br />

0.753<br />

the use of the inquiry-based approach in education is presented and suggested<br />

to teachers without relating it directly with the use of the history of<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Areti Panaoura<br />

THE HISTORY OF MATHEMATICS DURING AN INQUIRY-BASED TEACHING<br />

APPROACH<br />

139<br />

mathematics. However there are indirect interrelations, as teachers’ adequate<br />

knowledge about the inquiry-based approach is related with their beliefs about<br />

using the inquiry-based approach. At the same time teachers with high<br />

knowledge about using the history of mathematics have positive beliefs about<br />

using it.<br />

4.2 Teachers’ practices during inquiry-based teaching with the use of the<br />

history of mathematics<br />

The observation of two teachers enabled us to concentrate more<br />

qualitatively on the practices they followed in order to use the inquiry-based<br />

approach on their teaching when they decide to use the history of mathematics<br />

which is presented in the textbooks. Firstly we present briefly the observations<br />

and then the related parts of the follow-up interviews which concentrated on<br />

dimensions which are related to the instructional practices.<br />

The teacher of the 2 nd grade presented to her students a picture with ancient<br />

Egyptians who were farmers and at the background of the picture there were<br />

symbols on the wall of their houses. She told the students that ancient<br />

Egyptians used to engrave symbols on the walls or papyrus and she asked<br />

them to study the picture in their book and guess which numbers were<br />

possible. She actually preferred to pose an open question which guided them to<br />

many different accepted answers. Many right answers were given and only one<br />

wrong. In fact the mistake was made by a student who presented an<br />

unexpected answer with three-digit numbers. He claimed that the first number<br />

was 310, the second 502 and the third 106. The teacher told him “we have not<br />

learnt three-digit numbers yet, we will not discuss this mistake now”. She spent<br />

almost 10 minutes on the specific activity with the ancient Egyptians in the<br />

textbook and then she asked students to imagine that there were ancient<br />

Egyptians and they had to construct and propose their own symbols. Each<br />

group of two students had to decide 3 to 4 symbols and they had to present to<br />

their classmates few numbers in order to guess the value of each symbol.<br />

Students found the activity creative and all the pairs wanted to present their<br />

work. The most common mistake was the insufficient information which was<br />

given to their classmates in order to guess the value of the symbols. The teacher<br />

preferred to justify this mistake by making the comment to the students “you<br />

had preferred to pose an open problem, an exploration”. During the interview<br />

she justified this behaviour by saying that “it was an exploration and I didn’t<br />

want to kill students’ enthusiasm by pointing out that they worked wrongly. I<br />

wanted them to feel free to create in mathematics rather than feeling fear of<br />

making mistakes”. She justified the absence of feedback in the case of the threedigit<br />

numbers, which were presented above, by saying that “I do not have the<br />

time to discuss everything and most students would be unable to understand<br />

something from this discussion”. What was impressive and unexpected was<br />

that she continued with activities of place-value at two digit numbers without<br />

any reference to the similarities and differences of the two arithmetic systems.<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Areti Panaoura<br />

THE HISTORY OF MATHEMATICS DURING AN INQUIRY-BASED TEACHING<br />

APPROACH<br />

140<br />

At a question during the interview asking her to explain why she had not<br />

discussed the importance of the absence or the presence of zero at the<br />

arithmetic systems, she said “the history of mathematics can be used just as a<br />

fairy tale. It has to be used in the same way you can use literature in order to<br />

introduce a concept. We have no time to insist more. This could be done in the<br />

upper grades of education, not at the 2 nd grade”. The parts of the interview<br />

which are indicative of her beliefs about the use of the history of mathematics<br />

and about the inquiry-based approach are presented below.<br />

- How often do you use the inquiry-based approach in the teaching of<br />

mathematics?<br />

- I always do the investigations which are presented in the textbooks and<br />

sometimes the explorations.<br />

- Why are you not using all the explorations?<br />

- I do not have enough time. It is difficult to concentrate your students’<br />

attention on a specific concept when the framework is open.<br />

- Why did you decide to use the exploration with the ancient Egyptians?<br />

- This was interesting but you saw that I did not continue to discuss the<br />

three-digit numbers. I would have problem with the time.<br />

- Have you ever used something from the history of mathematics which is<br />

not presented in the textbook during an activity of exploration?<br />

- No, I didn’t know many things about the history of mathematics and it is<br />

too difficult to relate the historical concepts with the knowledge you<br />

want them to learn today.<br />

At a relative question about the attendance of any course related with the<br />

history of mathematics or the inquiry-based approach during her studies or any<br />

pre-service training program she claimed that she did not know anything about<br />

the use of the history of mathematics and she had attended the obligatory inservice<br />

training about the use of explorations and investigations which was<br />

organized by the Ministry of Education. She underlined the necessity of<br />

developing programs of training at the school in real teaching situations,<br />

especially in order to enforce the use of the inquiry-based approach.<br />

It is clear from the discussion which is presented above that the teacher felt<br />

the pressure of the syllabus which had to be taught; she indicated negative selfefficacy<br />

beliefs in managing the time and the unexpected situations derived by<br />

students who performed well in mathematics. At the same time the lack of<br />

knowledge about the content of the history of mathematics and the value of<br />

using it as a teaching tool is obvious, while the teacher was convinced about the<br />

value of using of the inquiry-based approach in daily-life framework.<br />

The teacher at the 3 rd grade started the lesson by asking students to imagine<br />

that they were archaeologists and they had to understand the numbers which<br />

were written on the stones (Figure 2). He asked them to cooperate with the<br />

classmate who was near them in order to solve the two exercises on page 19. He<br />

spent only 3 minutes in order to correct their answers. He asked three students<br />

to write the three numbers on the board and he evaluated students’<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Areti Panaoura<br />

THE HISTORY OF MATHEMATICS DURING AN INQUIRY-BASED TEACHING<br />

APPROACH<br />

141<br />

understanding by asking them to raise their hand if they knew how to translate<br />

the numbers 5328 and 2008. He asked from a child who did not raise his hand<br />

for translating the second number to go on the board in order to “help him to<br />

think together” the solution. When he realized that the child was confused<br />

because of the presence of “0”, he asked him to find the respective solution for<br />

the number 110 by presenting it firstly with the dienes cubes and then by using<br />

ancient symbols. Then he asked for the translation of numbers 101 and 1001.<br />

During the interview he claimed that the inquiry-based approach is useful,<br />

especially for students with low performance in mathematics as it reveals their<br />

misunderstandings and misconceptions. However he underlined the difficulty<br />

to work at the same time with all the students during an investigation. He knew<br />

few things about the history of mathematics, mainly about geometry and non-<br />

Euclidean geometry, which he had been taught at university but he could not<br />

imagine anything else beyond the arithmetic systems that could be used in the<br />

teaching of mathematics in primary education. He believed that the history of<br />

mathematics could be useful in gymnasium in order to enable students to honor<br />

the ancient Greeks who discovered mathematics. He did not remember other<br />

mathematicians except for Pythagoras and Euclid. It is obvious that this specific<br />

teacher preferred to use a guided investigation. He insisted on students’<br />

mistakes by using the strategy of simplifying the problem. He did not know the<br />

philosophy and pedagogy of using the history of mathematics in order to<br />

introduce a mathematical concept.<br />

5. DISCUSSION<br />

European reports will continue to call for inquiry-based teaching<br />

approaches in mathematics in order to urge students to think critically and<br />

creatively and to enable them to solve authentic real-life problems. Teachers are<br />

expected to actively engage students in open-ended learning experiences in<br />

order to foster an environment of inquiry. The current study provided evidence<br />

that although teachers have positive beliefs about the importance of the history<br />

of mathematics for the introduction of mathematical concepts, they do not<br />

apply its features into their teaching practice satisfactorily, because they do not<br />

have the necessary and sufficient knowledge. Teachers feel more confident to<br />

teach the way they were taught and they seemed not having adequate<br />

experiences in learning mathematics through the exploration of the respective<br />

history. We have to rethink at least the role of in-service training programmes<br />

and the respective experiences which are built through them. In pre-service or<br />

in-service training we have to equip teacher with methods and techniques for<br />

incorporating historical materials in their own teaching, with experiences in<br />

inquiry-based teaching approaches and with strategies of managing flexibly the<br />

time and their students’ misunderstandings. In order to enable teachers to<br />

adopt inquiry-based approaches which use the history of mathematics for the<br />

introduction of mathematical concepts, we have to develop pre-service and inservice<br />

training programs which use the progressive inquiry approach in order<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Areti Panaoura<br />

THE HISTORY OF MATHEMATICS DURING AN INQUIRY-BASED TEACHING<br />

APPROACH<br />

142<br />

to affect their knowledge on the specific domain, their masteries experiences<br />

and consequently their self-efficacy beliefs in respect to Bandura’s theory<br />

(Bandura 1997). Attempts to incorporate the history of mathematics in<br />

education might benefit from keeping in mind that teachers need to be helped<br />

to develop knowledge that is both useful and usable for the work of teaching<br />

mathematics.<br />

It is extremely important that teachers who adopted an experimental<br />

epistemological perspective about the nature of mathematics by understanding<br />

the dynamic development of the specific science throughout the centuries,<br />

believed in the value of exploring and investigating the mathematical concepts.<br />

This is an indication that their experiences as learners during their training<br />

courses at universities with the development of the mathematical concepts by<br />

using an inquiry-based approach will probably enable them to believe in the<br />

value of using the inquiry-based approach and the benefit of using the history<br />

of mathematics in order to humanize them.<br />

The present study is just the starting point of investigating a piece of this<br />

puzzle which is related with the history of mathematics and the inquiry – based<br />

approach and more research has to be developed in order to relate the teachers’<br />

knowledge and beliefs about the use of the history of mathematics with their<br />

beliefs and knowledge about the inquiry-based approach. Emphasis has to be<br />

given on studying further teachers’ difficulties in implementing the inquirybased<br />

teaching approach in general and in the case of using the history of<br />

mathematics in particular. Studies have to be developed to examine their<br />

practices and difficulties in real classroom actions. A future study could<br />

concentrate further on the investigation of teachers’ practices in classroom<br />

context by observing more instructions and investing on changes which would<br />

be the result of teachers’ own self-reflection on their teaching behaviour when<br />

difficulties are faced during an attempt to implement an innovation.<br />

REFERENCES<br />

Aulls, M.W. & Shore, B.M. (2008). Inquiry in Education, Volume I: The<br />

Conceptual Foundations for Research as a Curricular Imperative. New York:<br />

Lawrence Erlbaum Associates.<br />

Bandura, A. (1997). Self-efficacy: The exercise of control. New York: Freeman.<br />

Barbin, E., Bagni, G., Grugnetli, L., Kronfellner, M., (2000). Integrating history:<br />

research perspectives. In J. Fauvel, & J. Maanen (Eds.), History in<br />

mathematics education – The ICMI study (pp. 63-90). Dordrecht: Kluwer.<br />

Bentler, P. M. (1995). EQS structural equations program manual. Encino, CA:<br />

Multivariate Software.<br />

Burton, D. M. (2003). The History of Mathematics: An Introduction (5th ed.).<br />

New York, NY: McGraw-Hill.<br />

Chapman, O. (2011). Elementary school teachers’ growth in inquiry–based<br />

teaching of mathematics. ZDM Mathematics Education, 43, 951-963.<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Areti Panaoura<br />

THE HISTORY OF MATHEMATICS DURING AN INQUIRY-BASED TEACHING<br />

APPROACH<br />

143<br />

Chin, E. & Lin, F. (2013). A survey of the practice of a large–scale<br />

implementation of inquiry–based mathematics teaching: from Taiwan’s<br />

perspective. ZDM Mathematics Education, 45, 919-923.<br />

Clark, K. (2006). Investigating teachers’ experiences with the history of<br />

logarithms: a collection of five case studies. Dissertation: University of<br />

Mayrland.<br />

Dubey, M. & Singh, B. (2013). Assessing the effect of implementing<br />

mathematics history with Algebra. International Journal of Scientific and<br />

Research Publications, 3 (8), 1-3.<br />

Ernest, P. (1991). Philosophy of mathematics education. New York: Falmer<br />

Press.<br />

Fauvel, J. (1991). Using history in mathematics education. For the Learning of<br />

Mathematics, 11(2), 3-6.<br />

Fleener, M., Reeder, S., Young, E. & Reylands, A. (2002). History of<br />

mathematics: Building relationships for teaching and learning. Action in<br />

Teacher Education, 24, 73-84.<br />

Furinghetti, F. (2007). Teacher education through the history of mathematics.<br />

Educational Studies in Mathematics, 66, 131-143.<br />

Goktepk, S. & Sukru, A. (2013). An example of using history of mathematics in<br />

classes. European Journal of Science and Mathematics Education, 1 (3), 125-<br />

136.<br />

Gulikers, I., & Blom, K. (2001). 'A historical angle', a survey of recent literature<br />

on the use and value of history in geometrical education. Educational<br />

Studies in Mathematics, 47(2), 223-258.<br />

Hakkarainen, K. (2003). Progressive inquiry in a computer–supported biology<br />

class. Journal of Research in Science Teaching, 40 (10), 1072-1088.<br />

Haverhals, N. & Roscoe, M. (2010). The history of mathematics as a pedagogical<br />

tool: Teaching the Integral of the secant via Mercator’s projection. The<br />

Montana Mathematics Enthusiast, 7 (2), 339-368.<br />

Hegarty-Hazel, E. (1986). Lab work SET: Research information for teachers,<br />

number one. Canberra: Australian Council for Education Research.<br />

Hwang, G. J., Wu, P. H., Zhuang, Y. Y., & Huang, Y. M. (2013). Effects of the<br />

inquiry-based mobile learning model on the cognitive load and learning<br />

achievement of students. Interactive Learning Environments, 21(4), 338-354.<br />

Jahnke, H. (2000). The Use of original sources in the mathematics classroom. In<br />

Fauvel J, van Maanen J (eds). History in Mathematics Education: The ICMI<br />

study (p 291-328). Kluwer, Dordrecht.<br />

Jankvist, U. T. (2009). A categorization of the “whys” and “hows” of using<br />

history in mathematics education. Educational Studies in Mathematics, 71,<br />

235-261.<br />

Kieftenbeld, V., Natesan, P. & Eddy, C. (2011). An item response theory analysis<br />

of the mathematics teaching efficacy beliefs instrument. Journal of<br />

Psychoeducational Assessment, 29 (5), 443-454.<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Areti Panaoura<br />

THE HISTORY OF MATHEMATICS DURING AN INQUIRY-BASED TEACHING<br />

APPROACH<br />

144<br />

Lit, C. K., Siu, M. K., & Wong, N. Y. (2001). The use of history in the teaching of<br />

mathematics: Theory, practice, and evaluation of effectiveness. Educational<br />

Journal, 29(1), 17- 31.<br />

Lopez-Real, F. (2004). Using the history of mathematics as a starting point for<br />

investigations: some examples on approximation. Teaching Mathematics<br />

and its Applications, 23 (3), 133-147.<br />

Marshall, G. (2000). Using history of mathematics to improve secondary<br />

students’ attitudes towards mathematics. Unpublished doctoral dissertation,<br />

Illinois State University, Bloomington−Normal, IL, USA.<br />

Marshall, J. C., & Horton, R. M. (2011). The relationship of teacher-facilitated,<br />

inquiry-based instruction to student higher-order thinking. School Science<br />

and Mathematics, 111(3), 93-101.<br />

Radford, L. (1997). On Psychology, Historical Epistemology and the Teaching of<br />

Mathematics: Towards a Socio-Cultural History of Mathematics. For the<br />

Learning of Mathematics, 17(1), 26-33.<br />

Radford, L., Furinghetti, F., & Katz, V. (2007). Introduction: The topos of<br />

meaning or the encounter between past and present. Educational Studies in<br />

Mathematics, 66, 107-110.<br />

Schubring, G. Cousquer, E., Fung, C., El-Idrissi, A., Gispert, H., Heiede, T., et al.<br />

(2000). History of mathematics for trainee teachers. In J. Fauvel, & J. Maanen<br />

(Eds.), History in mathematics education – The ICMI study (pp. 91-142).<br />

Boston, MA: Kluwer.<br />

Siu, M. K. (1997). The ABCD of using history of mathematics in the<br />

(undergraduate) classroom. Bulletin of the Hong Kong Mathematical<br />

Society, 1(1), 143–154.<br />

Sfard, A. (1995) The Development of Algebra: Confronting Historical and<br />

Psychological Perspectives. Journal of Mathematical Behavior, 14, 15-39.<br />

Song, Y. & Looi, C. (2011). Linking teacher beliefs, practices and student inquiry<br />

based learning in a CSCL environment: A tale of two teachers. Computer<br />

Supported Collaborative Learning, 7, 129-159.<br />

Taylor, J. & Bilbrey, J. (2011). Teacher perceptions of inquiry–based instruction<br />

vs teacher-based instruction. International Review of Social Sciences and<br />

Humanities, 2 (1), 152-162.<br />

New Curriculum in Mathematics – NCM (2011). Cyprus: Ministry of Education.<br />

Available<br />

online:<br />

http://www.moec.gov.cy/analytika_programmata/ekteni_programmata_s<br />

poudon.html<br />

National Council of Teachers of Mathematics. (2000). Principles and standards<br />

for school mathematics. Reston, VA.<br />

Yee, L. & Chapman, E. (2010). Using history to enhance student learning and<br />

attitudes in Singapore mathematics classrooms. Education Research and<br />

perspectives, 37 (2), 110-132.<br />

BRIEF BIOGRAPHY<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Areti Panaoura<br />

THE HISTORY OF MATHEMATICS DURING AN INQUIRY-BASED TEACHING<br />

APPROACH<br />

145<br />

Areti Panaoura is associate professor in Mathematics Education at the Frederick<br />

University in Cyprus. She has BA in Education, MA in Mathematics Education and<br />

PhD in Mathematics Education (University of Cyprus) and MSc in Educational<br />

Research (University of Exeter). Her main research interests are about young pupils’<br />

metacognitive abilities in mathematics, the self-regulation, the affective domain in<br />

mathematics, the use of different representations for the teaching of mathematical<br />

concepts and the inquiry-based teaching and learning approach.<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


UNIVERSITY OF WESTERN MACEDONIA<br />

FACULTY OF EDUCATION<br />

<strong>MENON</strong><br />

©online Journal Of Educational Research 146<br />

THE OLD TEACHER EUCLID: AND HIS SCIENCE IN THE ART<br />

OF FINDING ONE’S MATHEMATICAL VOICE<br />

Dr Snezana Lawrence<br />

Senior Lecturer in Mathematics Education, Leader of Mathematics PGCE<br />

Bath Spa University<br />

s.lawrence2@bathspa.ac.uk<br />

ABSTRACT<br />

This paper offers ideas for teachers to engage with mathematics through the historical<br />

‘journeys’ and relationship with art and cultural and intellectual history. Its premise is<br />

that, whilst teachers’ main reason for choosing the career path of a mathematics<br />

teacher is usually their enjoyment of the subject, their later insistence on utilitarian<br />

view of mathematics leads to disengagement both in their students and their own<br />

disillusionment. The paper also treats the question of how teachers who come to the<br />

profession from non-mathematical backgrounds find their own ‘mathematical’ voice<br />

through series of historical investigations and what impact that may have on their<br />

teaching and pupils’ progress.<br />

Keywords: Professional identity, teacher identity, internal dialogue<br />

1. SCHOOL MATHEMATICIANS VS UNIVERSITY ONES<br />

As a teacher educator I often recommend to my teacher students to keep<br />

learning about mathematics (and in some cases through its history) in order to<br />

keep developing their practice (Lawrence 2009). This constant re-energising is<br />

necessary not only to keep one’s mind alive and well, but also because of the<br />

well-described reorientation process (Furinghetti 2007). There is however, a<br />

deeper need to which I dedicate this paper, and that is of being rooted in the<br />

practice of mathematics, developing conceptual understanding, learning new<br />

things, and being able to feel part of mathematical tradition in order to convey<br />

its practices, meanings, and joy of belonging to it, to the younger generations.<br />

In previous work (Lawrence & Ransom 2011) colleague and I have<br />

investigated in particular groups of mathematics teachers in training who came<br />

to secondary mathematics teaching from mathematically related degrees, but<br />

who have never been exposed to undergraduate or postgraduate mathematics<br />

courses and therefore the contextual culture of research university mathematics.<br />

All these students had to go on, to understand what ‘real’ mathematics is like,<br />

was what memories and their experiences of mathematics from the time of their<br />

own schooling.<br />

On the other hand, these teachers are, by their pupils, perceived as<br />

‘mathematicians’, similarly as art teachers are perceived as artists and science<br />

teachers as scientists. I do not argue here the numbers, percentages related to<br />

such beliefs and views, or measure their intensity: my supposition from<br />

experience tells me that some children will be better at realizing the difference<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Dr Snezana Lawrence<br />

THE OLD TEACHER EUCLID: AND HIS SCIENCE IN THE ART OF FINDING ONE’S<br />

MATHEMATICAL VOICE<br />

147<br />

between real mathematicians and their mathematics teachers, just as they will<br />

be at realizing the difference between a university and their school.<br />

Nevertheless, all they have, for six years of secondary schooling, is mathematics<br />

through their mathematics teacher.<br />

In many schools’ corridors one can hear the wisdom of the crowd phrase<br />

that “one does not have to be a brilliant mathematician to be a brilliant<br />

mathematics teacher”, and we will not dispute, support, or analyse this phrase.<br />

We merely mention the belief. The obvious fact of the learning and teaching is,<br />

that on the one hand, the fact that one has to have a full grasp of something one<br />

is to convey to others in teaching capacity, and on the other to be a good<br />

communicator and teacher in order to convey such meaning. A good solid<br />

grounding in mathematics and a desire to consistently and constantly learn<br />

new mathematics during their teaching career, seems then to be a necessary, if<br />

not sufficient condition. So what can we do to inspire teachers in training and<br />

education, coming from non-mathematical backgrounds, to become such good<br />

teachers? This paper describes one such approach, based on the principles of<br />

learning mathematics through history. In this respect, history is not ‘used’ to be<br />

either a tool or a goal (Jankvist 2009), but rather a method in a Collingwood’s<br />

(Collingwood 1939) sense of both transcendent and re-enacting in order for one<br />

to find one’s own voice and construct one’s own stories. By this I mean that one<br />

has to experience new mathematics at all times, in order to remain alive to its<br />

ability to fascinate, engage and have a dialogue (with pupils) about. To<br />

experience mathematics, is to become a mathematician for a while:<br />

…in its immediacy, as an actual experience of his own, Plato’s argument must<br />

undoubtedly have grown up out of a discussion of some sort, though I do not<br />

know what it was and been closely connected to such a discussion. Yet if I not<br />

only read his argument but understand it, follow it in my own mind re-enacting<br />

it with and for myself, the process of argument which I go through is not a<br />

process resembling Plato’s so far as I understand him correctly (Collingwood<br />

1946: 301).<br />

It is to grapple with an idea, with a mathematical object, for the first time,<br />

rather than just think how to convey its meaning. By this process, the teacher<br />

student deals with mathematical objects directly, rather than through someone<br />

else’s narrative, in fact the student builds their own narrative. So how can this<br />

be done?<br />

2. ME, MYSELF, AND MATHEMATICS<br />

Let me elaborate on this ‘personal voice’ phenomena in the process of<br />

becoming mathematics teacher a little bit further. The reoccurring theme whilst<br />

I have been working with teachers coming to mathematics teaching from nonspecialist<br />

backgrounds has been their inability to establish model for the<br />

learning that is rich in meaning to themselves, as they struggle to find this in<br />

mathematical topics, not having ‘roots’ in the discipline (Lawrence & Ransom<br />

2011). This does not mean that teachers coming to teaching with undergraduate<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Dr Snezana Lawrence<br />

THE OLD TEACHER EUCLID: AND HIS SCIENCE IN THE ART OF FINDING ONE’S<br />

MATHEMATICAL VOICE<br />

148<br />

mathematics degrees will also not have such problems. In my experience<br />

though, this uprootedness is less pronounced with such students, as they had<br />

been previously exposed to specific university mathematics culture with all its<br />

idiosyncrasies and subtle means of communication for at least three years.<br />

What kind of voice am I talking about? Well like in any other intellectual<br />

discipline, to have a ‘voice’ means to have something to say, being interested in<br />

particular aspects of the discipline, constantly learning further about the core of<br />

the discipline, and becoming and being creative in the discipline. In today’s<br />

world we are perhaps more used to ‘having our voices’ developed and<br />

disseminated via the social media from tweeting to blogging. 1 In mathematics<br />

education, teachers are expected to have this voice, which is not strictly<br />

mathematical, but has a strong relation to the mathematics as a discipline.<br />

One way of experiencing what exactly this ‘voice’ for real mathematicians<br />

sounds like, could be achieved by reading biographies or autobiographies of<br />

mathematicians. Unfortunately, mathematicians do not often feel a necessity to<br />

communicate their intellectual journey by letters, but more often they do it in<br />

mathematical language. One famous autobiography (Weil 1991) says it in<br />

words, with great skill and through an engaging narrative. However, this is a<br />

story more of a testimony to the period of mathematical history, than a way by<br />

which one can learn about the personal life journey as experienced through<br />

mathematics that the author learnt, conceived, and communicated.<br />

Then we can of course, look at educationalists. Great lessons can be learnt<br />

here, and one could do worse than reading John Stuart Mills’ Autobiography<br />

(Mills 1873). But at this point we will introduce back Collingwood, as he<br />

records an important aspect that we suggest could be used as a starting point<br />

for self-discovery, a process which should lead towards the forming of an<br />

identity for a mathematics teacher.<br />

The first great experience Collingwood gives in his intellectual<br />

autobiography is his personal experience of an initiation, awakening of his<br />

intellect’s desire to develop and learn. He describes this by reminiscing about<br />

how, when he first saw a book by Kant, something was born in him:<br />

… one day when I was eight years old curiosity moved me to take down a little<br />

black book lettered on its spine ‘Kant’s Theory of Ethics’… I was attached by a<br />

strange succession of emotions. First came an intense excitement. I felt that<br />

things of the highest importance were being said about matters of the utmost<br />

urgency: things which at all costs I must understand… There came upon me by<br />

degrees, after this, a sense of being burdened with a task whose nature I could<br />

not define except by saying, ‘I must think’. What I was to think about I did not<br />

1 At this point I have to digress and mention the Infinite Monkey Theorem, which states that a monkey<br />

hitting keys at random on a typewriter keyboard for an infinite amount of time will almost surely type a<br />

given text, such as the complete works of Shakespeare. Perhaps the most famous quote relating to this is<br />

Robert Wilensky’s supposed communication at the meeting at the EECS Department, University of<br />

California, Berkeley, in the Spring 1996, when he said “We’ve all heard that a million monkeys banging<br />

on a million typewriters will eventually reproduce the entire words of Shakespeare. Now, thanks to the<br />

Internet, we know this is not true” (http://www.quotationspage.com/quote/27695.html accessed 5th Dec<br />

2015).<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Dr Snezana Lawrence<br />

THE OLD TEACHER EUCLID: AND HIS SCIENCE IN THE ART OF FINDING ONE’S<br />

MATHEMATICAL VOICE<br />

149<br />

know; and when obeying this command, I fell silent and absent-minded in<br />

company, or sought solitude in order to think without interruption, I could not<br />

have said, and still cannot say, what it was that I actually thought. There were<br />

no particular questions that I asked myself; there were no special objects upon<br />

which I directed my mind; there was only a formless and aimless intellectual<br />

disturbance, as if I were wrestling with a fog (Collingwood 1939: 3-4).<br />

Teachers who read this passage (or the whole book) can use this to remind<br />

them of their memory of a kind – and their memory would be something to do<br />

with mathematics, as the desire to teach the subject has never left them – to<br />

which testifies their dedication to undertake a demanding training and<br />

education.<br />

But then, there is the process of finding and articulating the voice of which I<br />

am talking about. And it should begin with an area of mathematics, a journey<br />

they can undertake, or have undertaken, and other journeys that they may<br />

undertake. I will come back to this later again.<br />

I became interested in the ways of how teachers become confident in<br />

discovering their own mathematics teacher identity through finding their own<br />

voice, and this voice is a crucial element of a mathematical dialogue with<br />

others. To develop this, they first have to find their own, internal dialogues –<br />

they need to describe mathematical objects with which they meet for the first<br />

time in order to develop authentic voice. The development of pupils’ own<br />

mathematical selves has been well described by Fried (2008), and so my story<br />

builds on his work by considering the similar aspect for teachers in training,<br />

with obvious limitations to account for differences in ages, experiences,<br />

contexts, and maturity.<br />

Then we need to think of the most common dialogues mathematics teachers<br />

will have in their working careers: and they are those they have with children.<br />

The importance of that dialogue as being a permanent feature of teachers’ own<br />

development should not be underestimated. A question here arises on the<br />

nature of such a dialogue. Teachers will of course know much more of<br />

mathematics than their pupils. They will also know that they could not tell all<br />

they know, to their pupils, and surely not all at once. They will have to filter<br />

their knowledge and keep some of it for later, or even secret for a while: they<br />

will want to have a full control of making situations that will result in positive<br />

cognitive discomfort they wish to entice in their pupils, like the one from the<br />

quote above. If teachers succeed, their pupils will forever continue searching for<br />

the meaning of mathematical concepts and begin developing their own<br />

mathematical identities in turn. But to get back to their own voices - they first to<br />

have that, and the story they want to tell in order to engage their pupils. Here is<br />

where mathematical journeys of learning for teachers, through history, come.<br />

3. FINDING THE INSPIRATION<br />

The journey of finding own voice for a teacher doesn’t come from one<br />

episode, one example, or one area of mathematics. It is therefore difficult to find<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Dr Snezana Lawrence<br />

THE OLD TEACHER EUCLID: AND HIS SCIENCE IN THE ART OF FINDING ONE’S<br />

MATHEMATICAL VOICE<br />

150<br />

material that would offer many aspects that could tie in with the teachers’<br />

interests and their backgrounds. Cultural and historical contexts offer a rich<br />

field from within which one can sow and reap fruitful rewards. In this paper, I<br />

suggest a journey that relates the history of art to the history of mathematics.<br />

The reasons for this will become apparent and will be discussed later.<br />

I looked at finding a starting inspiration point from art, with limitation that<br />

mathematics contained in art should be obvious, represented clearly, and that it<br />

must say something about mathematics or mathematicians themselves. The<br />

journey narrative would then develop by looking at connections with the<br />

original concept represented.<br />

The starting point to the project I chose to be a geometric diagram that<br />

Euclid is showing (or proving a theorem) in Rafael’s School of Athens, a fresco in<br />

the Vatican. The detail shows diagram demonstrating a theorem – its exact<br />

shape is debatable (fig. 1).<br />

Fig. 1<br />

One interpretation is by Watson (2015), who suggests that diagram refers to<br />

areas of certain shapes contained in a hexagonal star. The diagram Watson<br />

suggests is given (fig. 2).<br />

Fig. 2<br />

C<br />

D<br />

E<br />

A<br />

B<br />

F<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Dr Snezana Lawrence<br />

THE OLD TEACHER EUCLID: AND HIS SCIENCE IN THE ART OF FINDING ONE’S<br />

MATHEMATICAL VOICE<br />

151<br />

The diagram relates, Watson suggests, to the right angled triangle contained<br />

within the hexagonal star, here labeled ABC, an application of Pythagoras’<br />

theorem (areas of equilateral triangles being replaced by squares: AEC and ABF<br />

add to BDC). It also points to some conjecturing on the ratio of shaded figures,<br />

the darker being 1/3 of the lighter. A reference is also made to the method of<br />

teaching to which picture refers, namely the dialogue as that described in Meno,<br />

between Socrates and the slave boy, and modeling the universal teaching<br />

method via a dialogue (Plato 2009, Watson & Mason 2009, Lawrence 2013).<br />

Another interpretation is that offered in Heilbron (2000) in the section<br />

relating to polygons, and in particular hexagon (fig. 3). In this diagram, the<br />

hexagonal star is divided by a diagonal PS, on both sides of which, at equal<br />

distances, parallel lines are constructed. Then the length AB will be equal to<br />

CD. This Heilbron called ‘Rafael’s theorem’. It must be pointed that while it<br />

may well be Rafael’s theorem, it is clearly being demonstrated on Rafael’s<br />

picture by Euclid (Haas 2012). This required some further investigation.<br />

Fig. 3<br />

P<br />

Q<br />

C<br />

B<br />

D<br />

R<br />

A<br />

x<br />

x<br />

T<br />

The investigation turned to another image, having a diagram also used<br />

apparently in a teaching episode of a kind, being shown on a similarly small<br />

blackboard: it is the famous painting of Luca Pacioli (1447-1517) attributed to<br />

Jacopo de’Barbari (1495). In this painting the diagram is quite clear (fig. 4).<br />

Fig. 4<br />

S<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Dr Snezana Lawrence<br />

THE OLD TEACHER EUCLID: AND HIS SCIENCE IN THE ART OF FINDING ONE’S<br />

MATHEMATICAL VOICE<br />

152<br />

It shows a theorem XIII.12 from Euclid (as it clearly also says on the side of<br />

the board, and on the page to which left hand is pointing – not shown in our<br />

detail) which states that if an equilateral triangle is inscribed in a circle, the<br />

square on the side of the triangle is triple of the square on the radius of the<br />

circle (fig. 5).<br />

This Euclid uses in the construction of the tetrahedron (it is, after all, book<br />

XIII dealing with solids), but not the construction of dodecahedron. However if<br />

we look a little more closely, we can say that this is closely related to what is<br />

previously mentioned as Rafael’s theorem, closely resembling though the first<br />

image of Watson’s interpretation (fig. 6). The images are clearly related.<br />

It is possible to identify the edition of Elements to which Pacioli is pointing<br />

on his left. Pacioli published his own edition of Elements in 1509, but if we are<br />

correct about the date of the picture, he must have used another copy at the<br />

time the picture was completed. As the date of the painting is most probably<br />

1495, the only possible Elements Pacioli (and indeed de’Barbari) would have had<br />

access to would be the Venice edition of 1482 (Mackinnon 1993). It is possible<br />

that he had in his possession a copy of Johannes Campanus (1220-1296),<br />

although unlikely – we will therefore assume that he had the more recent – to<br />

him – Venice edition of 1482, which was in fact the Latin translation of Johannes<br />

Campanus, who was Pope’s (Urban IV) chaplain at the time. This edition of the<br />

book was illustrated and produced by Erhald Ratdolt and, for my purposes of<br />

study, a copy of this book can be found in Albert and Victoria Museum in<br />

London. If one more closely looks at the book and pages Pacioli is pointing at,<br />

they are quite clearly identifiable as pages from the book. A copy of the<br />

diagram of XIII.12 as we just explained it above, is given in this edition (fig. 7).<br />

Fig. 5 Fig. 6 Fig. 7<br />

3<br />

2<br />

1<br />

What can these theorems do for the teachers? The similarity of their<br />

representation and their various interpretations, their repetition in the works of<br />

art, and being attributed to different mathematicians in different periods, as<br />

well as the high esteem in which they were obviously held by the artists of the<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Dr Snezana Lawrence<br />

THE OLD TEACHER EUCLID: AND HIS SCIENCE IN THE ART OF FINDING ONE’S<br />

MATHEMATICAL VOICE<br />

153<br />

Renaissance, would be a first point from which to begin questioning their<br />

meaning.<br />

4. EUCLID IN BATH, THEN AND NOW<br />

As we know, one of the most celebrated moments of intellectual history is<br />

the recovery of Euclid’s Elements to the West. Adelard of Bath (1080-1152), a<br />

philosopher, traveller, and translator, brought the first Latin such translation<br />

back from his travels. The illustration, part of frontispiece of his translation<br />

(Meliacin 1309-1316), in a French manuscript from the early 14th century, shows<br />

not only the learned men, but also a teacher who is female – a sight that is for<br />

our purposes welcome in the sea of male names and inventions (fig. 8).<br />

Our narrative started with only a clear idea about the possible image to<br />

initiate a construction of a learning episode which would make a bridge<br />

between art, culture, and mathematics, in order to develop teachers’ learning<br />

and grappling with new mathematics. The image had to be a real<br />

representation of some kind of mathematics, rather than the mathematical<br />

technique that helped generate the image. But, developing the narrative<br />

through tracing the history of the diagram appearing in Rafael, created other<br />

criteria which generated themselves as it were, along the way. One such<br />

criterion for example steamed from a long-term experience, that what is locally<br />

or culturally familiar to learners, is more likely to affect them positively as they<br />

begin making other connections by drawing on their experience (and my course<br />

is based in Bath from where Adelard came).<br />

Secondly, the identification for both genders is important – a happy<br />

coincidence that both relationship with geography and gender were given at<br />

once by Adelard of Bath’s first Latin translation (fig. 8).<br />

Fig. 8<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Dr Snezana Lawrence<br />

THE OLD TEACHER EUCLID: AND HIS SCIENCE IN THE ART OF FINDING ONE’S<br />

MATHEMATICAL VOICE<br />

154<br />

But the original exploration and the connection between two images by<br />

Rafael and de’Barberi offered much more than was hoped for in the beginning.<br />

A link between the two geometrical diagrams on Rafael and de’Barberi, and<br />

mathematics contained within them, is obvious as can be seen from the<br />

diagrams above. It further transpires that these images, that put geometry in<br />

context of history and art so beautifully, also contain a wealth of further<br />

pathways to investigate and learn from, and possible tasks rich in both depth<br />

and width of associations.<br />

At this point, it would be good to suggest to teacher students their further<br />

pathways of investigation, with some possibilities and resources. These<br />

resources could certainly take into account Piero della Francesca’s (1415-1492)<br />

work, one of the leading artists of the Renaissance with significant contributions<br />

to development of geometrical techniques, who was connected to both Rafael<br />

and Pacioli.<br />

Pierro did not only a work on perspective (Francesa 1482), but published at<br />

the same time as the two diagrams originated from which we began our<br />

journey, were created. Francesca’s work also influenced Luca Pacioli. Here we<br />

can link to the work of Leonardo, who also worked on perspective.<br />

Fig. 9<br />

Leonardo da Vinci (1452-1519), one of the most celebrated artists and<br />

scientists of all time, was also closely working with Pacioli on his De divina<br />

proportione (1498), having provided illustrations for it. Strangely enough, by<br />

looking at Leonardo’s mathematical works, a theorem after him comes up that<br />

is closely linked to our particular problem. He was certainly at the time<br />

interested in the problems of relationships between lengths, areas, and<br />

volumes. In Codex Arundel (da Vinci 1478-1518, Duvernoy 2008), he calculates<br />

(fig. 9) the centre of gravity of a pyramid (fol. 218v), further extending it to<br />

tetrahedron, as was the case with both instances of diagrams from which we<br />

began (fig. 5-7).<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Dr Snezana Lawrence<br />

THE OLD TEACHER EUCLID: AND HIS SCIENCE IN THE ART OF FINDING ONE’S<br />

MATHEMATICAL VOICE<br />

155<br />

5. FROM THE VOICE TO THE DIALOGUE<br />

How would this episode of research be of any relevance to the teachers in<br />

their education and training, or as French would say ‘formation’? There are two<br />

questions that now come to mind:<br />

1. What is the purpose of this mathematics teacher’s voice?<br />

2. What exactly should mathematics teacher do to model the learning for<br />

their pupils that this learning episode could help with?<br />

The first question refers us back to the beginning of the paper. The purpose<br />

of finding one’s voice and undertaking such historical journey as we did is<br />

about being ‘rooted’ in mathematical discipline. It is about developing, and<br />

having an awareness, of mathematical objects and concepts not only in how<br />

they relate to utilitarian and engineering topics, but how they have developed<br />

also as an intellectual tradition of a way of thinking and are hence deeply<br />

rooted themselves in our culture. It is about experiencing them for the first<br />

hand, and developing also ‘an eye’ to spot such references in culture all around<br />

us.<br />

Having such voice means, as we already said, an internal and an external<br />

dialogue. An internal dialogue would question what is being seen and<br />

discovered, and the trail that we sketched offers many possibilities to<br />

investigate, search, and refer to, in both mathematics and art. An external<br />

dialogue could then develop from interaction with colleagues first, and then<br />

with pupils (as we are talking about teachers in training and education).<br />

How could a teacher make mathematics relevant? Perhaps this is asked<br />

always as the sense of beauty and aesthetic experience is so far from<br />

mathematics classrooms that utility seems to be the only answer we are used to<br />

discussing. For most mathematicians though, their dedication to the discipline<br />

comes from their experience of such aesthetic pleasure.<br />

Mathematics teachers glimpse this particular aspect of doing mathematics,<br />

as they search for the profession and find it in teaching mathematics, and most<br />

refer to memories of clarity and beauty they experienced in some mathematical<br />

context, as children or later as adults, as the crucial reason for choosing the<br />

profession in the first place. But somehow, somewhere, that sense of beauty<br />

disappears and mathematics teachers are faced often with the question of<br />

‘when will we need this’ – something that is rarely being asked in art or music<br />

lessons.<br />

The second question points to the modeling of mathematics for the learning<br />

of pupils. Investigating something for the first time and searching for the<br />

answers is a messy process, and so what kinds of mathematical techniques and<br />

learning routines could possibly be interesting or useful through this journey?<br />

Perhaps not many, but they are I believe crucial for this voice to be developed<br />

and this dialogue to be truly established between a teacher and their pupils.<br />

Again, this is the possibly only way of meeting with the mathematical objects in<br />

Collingwood’s sense – the true object in all its beauty – and grappling with it<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Dr Snezana Lawrence<br />

THE OLD TEACHER EUCLID: AND HIS SCIENCE IN THE ART OF FINDING ONE’S<br />

MATHEMATICAL VOICE<br />

156<br />

for the first time as it is not given in any curriculum, and so should or would<br />

not have been met by mathematics teachers before.<br />

By searching for the answers teacher discovers their own way of thinking,<br />

and learns from it. This learning should be reflective, and articulate the points<br />

upon which one stumbles as one searches for meaning and understanding.<br />

Why is this theorem important? What does it tell us? How is it similar to the<br />

other one? What other theorems are like this? Why did he (Euclid, Rafael,<br />

Pacioli, Francesca, Leonardo) think it so? Who was that Euclid? Why was he<br />

important? Why does the image of Adelard’s Elements represent a woman as a<br />

teacher?<br />

Further investigations point to the possibilities of developing thinking on:<br />

a. the possibility of connecting two and three dimensional geometry,<br />

showing the interconnectedness of mathematics<br />

b. universality and beauty of mathematical concepts that transcend<br />

centuries, cultures, and disciplines<br />

c. showing that mathematics is part of a culture within which it grows, and<br />

is also an inspiration for the cultural life – we have shown this on the<br />

example of some great paintings mentioned in this paper.<br />

The routines of learning and thinking about mathematics therefore, by using<br />

historical episodes, become also embedded in the teachers’ own constant search<br />

for new material and inspiration. It is difficult to inspire without being inspired,<br />

and by looking for gems from the history of mathematics that intrigue, makes<br />

the search pleasurable, and the learning inspirational. Some of that inspiration,<br />

when structured properly, and narrated by a skilled teacher, could develop into<br />

a dialogue that enables pupils to discover the beauty of mathematics for<br />

themselves.<br />

Finally, the reference to Rafael appears for my teachers close to home – in a<br />

stately home at Stourhead in Wiltshire, adorning its famous library (fig. 10). A<br />

story perhaps to be discovered there for a teacher on a journey.<br />

Fig. 10<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Dr Snezana Lawrence<br />

THE OLD TEACHER EUCLID: AND HIS SCIENCE IN THE ART OF FINDING ONE’S<br />

MATHEMATICAL VOICE<br />

157<br />

REFERENCES<br />

Campanus, Johannes (1482). Euclid’s Elements. Illustrations and production by<br />

Erhald Ratdolt, Venice.<br />

da Vinci, Leonardo (1478-1518). Codex Arundel. MSS British Library, 263.<br />

Collingwood, R. E. (1939). An Autobiography. Oxford University Press, Oxford.<br />

Duvernoy, S. (2008). Leonardo and Theoretical Mathematics. In Nexus Network<br />

Journal, 10, 1: 39-50. Springer.<br />

Francesca, Pierro della (1482). Perspective Pigendi. Venice.<br />

Fried, N. Michael (2008). Between Public and Private: Where Students’<br />

Mathematical Selves Reside. Radford, Schubring, and Seeger (eds).<br />

Semiotics in Mathematics Education: Epistemology, history, Classroom, and<br />

Culture, 121-137. Sense Publishing.<br />

Furinghetti, F. (2007). Teacher education through the history of mathematics.<br />

Educational Studies in Mathematics, 66: 131-143.<br />

Haas, R. (2012). Raphael’s School of Athens: A Theorem in a Painting? Journal<br />

of Humanistic Mathematics, 2, 3:23.<br />

Heilbron, J. L. (2000). Geometry Civilized: History, Culture, and Technique.<br />

Clarendon Press, Oxford.<br />

Lawrence, S. (2009). What works in the classroom – Project on the History of<br />

Mathematics and the Collaborative Teaching Practice. Paper presented at<br />

CERME 6, January 2009, Lyon France.<br />

Lawrence, S. (2013). Meno, his Paradox, and the Incommensurable Segments for<br />

Teachers. In Mathematics Today, IMA, London.<br />

Mackinnon, N. (1993). The Portrait of Fra Luca Pacioli. The Mathematical<br />

Gazette, 77, 479: 130-219.<br />

Meliacin, M. (1309-1316). Scholastic miscellany. French MSS, Burney 275, British<br />

Library.<br />

Mill, John Stuart (1873). Autobiography. London: Longmans, Green, Reader,<br />

and Dyer.<br />

Pacioli, Luca (1494). Summa. Venice.<br />

Plato (translated by Robin Waterfiled) (2009). Meno and other dialogues.<br />

Oxford University Press.<br />

Watson, A. & Mason, J. (2009). The Menousa. For the Learning of Mathematics,<br />

29, 2: 32-37.<br />

Watson, A. (2015). Culture and Complexity. An unpublished manuscript based<br />

on presentation at the Art of Mathematics Day, held at Bath Spa University,<br />

19th June 2015.<br />

Weil, André (1991). The Apprenticeship of a Mathematician. Birkhäuser.<br />

BRIEF BIOGRAPHY<br />

Dr Snezana Lawrence is a Senior Lecturer in Mathematics Education at Bath Spa<br />

University. She is interested in the History of Mathematics and Mathematics<br />

Education. Snezana has published on the history of geometry and its applications in<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


Dr Snezana Lawrence<br />

THE OLD TEACHER EUCLID: AND HIS SCIENCE IN THE ART OF FINDING ONE’S<br />

MATHEMATICAL VOICE<br />

158<br />

architecture, as well as the image geometry has in popular culture and literature.<br />

Snezana is interested in the multitudes of manifestations of the cross-disciplinary links<br />

between mathematics and other creative disciplines, and writes a regular column on<br />

this called Historical Notes for Mathematics Today, the largest professional magazine for<br />

mathematicians in the UK. She recently co-edited a book with Mark McCartney on the<br />

relationship between mathematics and theology, Mathematicians and Their Gods, which<br />

is published by the Oxford University Press. She is on the Advisory Board of the<br />

History and Pedagogy of Mathematics group, (HPM, satellite group of the<br />

International Mathematics Union), and leads a teacher development programme for<br />

the Prince’s Teaching Institute (UK). She is a keen swimmer.<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016


UNIVERSITY OF WESTERN MACEDONIA<br />

FACULTY OF EDUCATION<br />

<strong>MENON</strong><br />

©online Journal Of Educational Research<br />

<strong>MENON</strong> © is published at<br />

UNIVERSITY OF WESTERN MACEDONIA – FACULTY OF EDUCATION<br />

Reproduction of this publication for educational or other non-commercial purposes is authorized as<br />

long as the source is acknowledged.<br />

Readers may print or save any issue of <strong>MENON</strong> as long as there are no alterations made in those<br />

issues.<br />

Copyright remains with the authors, who are responsible for getting permission to reproduce any<br />

images or figures they submit and for providing the necessary credits.<br />

<strong>MENON</strong>: Journal Of Educational Research [ISSN: 1792-8494]<br />

http://www.edu.uowm.gr/site/menon<br />

2 nd THEMATIC ISSUE<br />

05/2016

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!