31.12.2016 Views

A comparative analysis of phosphorus fertilizer regimes on seed production of Lablab in East and Central Africa

Abstract Lablab purpureus is an important forage legume in smallholder crop-livestock systems of East and Central Africa. Seed yields of L. purpureus are generally low owing to limited phosphorus levels in most soils. Amendment of soil with phosphorus fertilizers is thus critical in enhancing lablab seed production. The objective of this study was to investigate the effect of varying levels of Phosphorus fertilizers on seed yields and the resulting net benefits associated with each level. The paper examines results from three studies conducted in Uganda (treatments: 0, 15, 30, 40, 60, 80 and 100 kgP205 ha-1), Sudan (treatments: 0, 94 and 188 kg SSP/ha) and Burundi (treatments: 0, 20, 40, 60 and 80 kgDAP/ha). Generally, amendment of soil with P enhanced seed yield by 27, 18.4 and 4% in Uganda, Burundi and Sudan respectively. The highest increments in seed yield of 40, 27 and 5.3% were obtained at 30 kgP2O5, 60 kgDAP and 188 kgSSP Uganda, Burundi and Sudan respectively. Results from dominance analysis indicated that treatments 80 and 100 kgha-1 were dominated and their net benefits were lower than that of the control. In Uganda, marginal analysis showed that the marginal rate of return (MRR) from 0 to 15 and 30 kgP2O5 was 500 and 700% respectively, while moving from 15 to 30 kgP2O5 resulted into a MRR of 274%. The study concluded that the rate of 30kg P205ha-1 was the most economically viable rate for seed production in Uganda.

Abstract
Lablab purpureus is an important forage legume in smallholder crop-livestock systems of East and Central Africa. Seed yields of L. purpureus are generally low owing to limited phosphorus levels in most soils. Amendment of soil with phosphorus fertilizers is thus critical in enhancing lablab seed production. The objective of this study was to investigate the effect of varying levels of Phosphorus fertilizers on seed yields and the resulting net benefits associated with each level. The paper examines results from three studies conducted in Uganda (treatments: 0, 15, 30, 40, 60, 80 and 100 kgP205 ha-1), Sudan (treatments: 0, 94 and 188 kg SSP/ha) and Burundi (treatments: 0, 20, 40, 60 and 80 kgDAP/ha). Generally, amendment of soil with P enhanced seed yield by 27, 18.4 and 4% in Uganda, Burundi and Sudan respectively. The highest increments in seed yield of 40, 27 and 5.3% were obtained at 30 kgP2O5, 60 kgDAP and 188 kgSSP Uganda, Burundi and Sudan respectively. Results from dominance analysis indicated that treatments 80 and 100 kgha-1 were dominated and their net benefits were lower than that of the control. In Uganda, marginal analysis showed that the marginal rate of return (MRR) from 0 to 15 and 30 kgP2O5 was 500 and 700% respectively, while moving from 15 to 30 kgP2O5 resulted into a MRR of 274%. The study concluded that the rate of 30kg P205ha-1 was the most economically viable rate for seed production in Uganda.

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Int. J. Agr. & Agri. R.<br />

Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Agr<strong>on</strong>omy <strong>and</strong> Agricultural Research (IJAAR)<br />

ISSN: 2223-7054 (Pr<strong>in</strong>t)<br />

Vol. 1, No. 2, p. 20-27, 2011<br />

http://www.<strong>in</strong>nspub.net<br />

RESEARCH PAPER<br />

OPEN ACCESS<br />

A <str<strong>on</strong>g>comparative</str<strong>on</strong>g> <str<strong>on</strong>g>analysis</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>phosphorus</str<strong>on</strong>g> <str<strong>on</strong>g>fertilizer</str<strong>on</strong>g> <str<strong>on</strong>g>regimes</str<strong>on</strong>g> <strong>on</strong> <strong>seed</strong><br />

producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Lablab</strong> <strong>in</strong> <strong>East</strong> <strong>and</strong> <strong>Central</strong> <strong>Africa</strong><br />

Mugerwa Swidiq 1* , Sara Babiker 2 , Hab<strong>on</strong>ayo Glorios 3 , Nijimbere Aloys 3 , Kayiwa<br />

Stephen 1 , Zziwa Emmanuel 4 , Njarui D<strong>on</strong>ald 5<br />

1<br />

Nati<strong>on</strong>al Livestock Resources Research Institutes, P. O. Box 96, Tororo, Ug<strong>and</strong>a<br />

2<br />

Agricultural Research Corporati<strong>on</strong>, P. O. Box 126, Wad Medani, Sudan<br />

3<br />

Institut des Sciences Agr<strong>on</strong>omiques du Burundi, P. O. Box 795, Bujumbura<br />

4<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agricultural producti<strong>on</strong>, Makerere University, Ug<strong>and</strong>a<br />

5<br />

KARI – Katumani Research Centre, P. O. Box 340 -90100Machakos, Kenya<br />

Received: 12 November 2011<br />

Revised: 22 November 2011<br />

Accepted: 23 November 2011<br />

Key words: Marg<strong>in</strong>al rate <str<strong>on</strong>g>of</str<strong>on</strong>g> return, net benefits, dom<strong>in</strong>ance <str<strong>on</strong>g>analysis</str<strong>on</strong>g>, pasture <strong>seed</strong>.<br />

Abstract<br />

<strong>Lablab</strong> purpureus is an important forage legume <strong>in</strong> smallholder crop-livestock systems <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>East</strong> <strong>and</strong> <strong>Central</strong> <strong>Africa</strong>.<br />

Seed yields <str<strong>on</strong>g>of</str<strong>on</strong>g> L. purpureus are generally low ow<strong>in</strong>g to limited <str<strong>on</strong>g>phosphorus</str<strong>on</strong>g> levels <strong>in</strong> most soils. Amendment <str<strong>on</strong>g>of</str<strong>on</strong>g> soil<br />

with <str<strong>on</strong>g>phosphorus</str<strong>on</strong>g> <str<strong>on</strong>g>fertilizer</str<strong>on</strong>g>s is thus critical <strong>in</strong> enhanc<strong>in</strong>g lablab <strong>seed</strong> producti<strong>on</strong>. The objective <str<strong>on</strong>g>of</str<strong>on</strong>g> this study was to<br />

<strong>in</strong>vestigate the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> vary<strong>in</strong>g levels <str<strong>on</strong>g>of</str<strong>on</strong>g> Phosphorus <str<strong>on</strong>g>fertilizer</str<strong>on</strong>g>s <strong>on</strong> <strong>seed</strong> yields <strong>and</strong> the result<strong>in</strong>g net benefits associated<br />

with each level. The paper exam<strong>in</strong>es results from three studies c<strong>on</strong>ducted <strong>in</strong> Ug<strong>and</strong>a (treatments: 0, 15, 30, 40, 60, 80<br />

<strong>and</strong> 100 kgP205 ha -1 ), Sudan (treatments: 0, 94 <strong>and</strong> 188 kg SSP/ha) <strong>and</strong> Burundi (treatments: 0, 20, 40, 60 <strong>and</strong> 80<br />

kgDAP/ha). Generally, amendment <str<strong>on</strong>g>of</str<strong>on</strong>g> soil with P enhanced <strong>seed</strong> yield by 27, 18.4 <strong>and</strong> 4% <strong>in</strong> Ug<strong>and</strong>a, Burundi <strong>and</strong><br />

Sudan respectively. The highest <strong>in</strong>crements <strong>in</strong> <strong>seed</strong> yield <str<strong>on</strong>g>of</str<strong>on</strong>g> 40, 27 <strong>and</strong> 5.3% were obta<strong>in</strong>ed at 30 kgP2O5, 60 kgDAP<br />

<strong>and</strong> 188 kgSSP Ug<strong>and</strong>a, Burundi <strong>and</strong> Sudan respectively. Results from dom<strong>in</strong>ance <str<strong>on</strong>g>analysis</str<strong>on</strong>g> <strong>in</strong>dicated that treatments<br />

80 <strong>and</strong> 100 kgha -1 were dom<strong>in</strong>ated <strong>and</strong> their net benefits were lower than that <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>trol. In Ug<strong>and</strong>a, marg<strong>in</strong>al<br />

<str<strong>on</strong>g>analysis</str<strong>on</strong>g> showed that the marg<strong>in</strong>al rate <str<strong>on</strong>g>of</str<strong>on</strong>g> return (MRR) from 0 to 15 <strong>and</strong> 30 kgP2O5 was 500 <strong>and</strong> 700% respectively,<br />

while mov<strong>in</strong>g from 15 to 30 kgP2O5 resulted <strong>in</strong>to a MRR <str<strong>on</strong>g>of</str<strong>on</strong>g> 274%. The study c<strong>on</strong>cluded that the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 30kg P205ha -1<br />

was the most ec<strong>on</strong>omically viable rate for <strong>seed</strong> producti<strong>on</strong> <strong>in</strong> Ug<strong>and</strong>a.<br />

* Corresp<strong>on</strong>d<strong>in</strong>g Author: Mugerwa Swidiq swidiqk@yahoo.com<br />

Swidiq et al. Page 20


Int. J. Agr. & Agri. R.<br />

Introducti<strong>on</strong><br />

<strong>Lablab</strong> (<strong>Lablab</strong> purpureus L.) is an important forage<br />

legume used to supplement animals fed <strong>on</strong> low prote<strong>in</strong><br />

grass-based diets <strong>in</strong> many animal producti<strong>on</strong> systems<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>East</strong> <strong>and</strong> <strong>Central</strong> <strong>Africa</strong> (ECA). The nutritive value <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the legume is high with crude prote<strong>in</strong> c<strong>on</strong>tent <strong>and</strong><br />

digestibility <str<strong>on</strong>g>of</str<strong>on</strong>g> the leafy comp<strong>on</strong>ent rang<strong>in</strong>g between<br />

21-38 <strong>and</strong> 55-76% respectively (Camer<strong>on</strong>, 1988). This<br />

makes the legume a suitable opti<strong>on</strong> to supplement<br />

livestock fed <strong>on</strong> low prote<strong>in</strong> grass diets. In Ug<strong>and</strong>a,<br />

results from a household survey c<strong>on</strong>ducted with<strong>in</strong><br />

three districts (Masaka, Mityana <strong>and</strong> Wakiso Districts)<br />

<strong>in</strong>dicated that <strong>Lablab</strong> was the ma<strong>in</strong> forage legume used<br />

to supplement lactat<strong>in</strong>g animals fed <strong>on</strong> Napier based<br />

diets <strong>in</strong> smallholder dairy producti<strong>on</strong> systems.<br />

Recognized for its drought tolerance (Camer<strong>on</strong>, 1988),<br />

lablab has the potential to <str<strong>on</strong>g>of</str<strong>on</strong>g>fset drought <strong>in</strong>duced feed<br />

scarcity, susta<strong>in</strong> animal physiological processes <strong>and</strong><br />

<strong>in</strong>crease milk producti<strong>on</strong> dur<strong>in</strong>g drought. This makes<br />

the legume a suitable fodder for animal producti<strong>on</strong><br />

systems threatened with escalat<strong>in</strong>g levels <str<strong>on</strong>g>of</str<strong>on</strong>g> feed<br />

<strong>in</strong>security attributed partly to the <strong>in</strong>creased frequency<br />

<strong>and</strong> severity <str<strong>on</strong>g>of</str<strong>on</strong>g> droughts. Incorporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Lablab</strong> <strong>in</strong>to<br />

farm<strong>in</strong>g systems particularly <strong>in</strong> smallholder croplivestock<br />

systems therefore <str<strong>on</strong>g>of</str<strong>on</strong>g>fers a c<strong>on</strong>t<strong>in</strong>uum <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

benefits rang<strong>in</strong>g from improved crop productivity due<br />

to enhanced soil fertility (Maobe et al., 1998) to<br />

improved animal productivity emanat<strong>in</strong>g from<br />

sufficient animal nutriti<strong>on</strong> ( Schaaffhausen, 1963).<br />

However, susta<strong>in</strong><strong>in</strong>g the producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the legume is<br />

greatly c<strong>on</strong>stra<strong>in</strong>ed by <strong>in</strong>adequate quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> good<br />

quality <strong>seed</strong> am<strong>on</strong>gst farmers. This is attributed to the<br />

limited underst<strong>and</strong><strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the appropriate agr<strong>on</strong>omic<br />

practices, particularly, <str<strong>on</strong>g>fertilizer</str<strong>on</strong>g> requirements for<br />

optimum <strong>seed</strong> producti<strong>on</strong>. Legum<strong>in</strong>ous crops require<br />

adequate supply <str<strong>on</strong>g>of</str<strong>on</strong>g> readily available nutrients,<br />

particularly, <str<strong>on</strong>g>phosphorus</str<strong>on</strong>g> (P) for optimum growth <strong>and</strong><br />

yield (Yemane <strong>and</strong> Skjelvag, 2003). Am<strong>on</strong>g the<br />

essential plant nutrients, P is the most important for<br />

<strong>seed</strong> producti<strong>on</strong>. P helps <strong>in</strong> the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an<br />

efficient <strong>and</strong> sound root system which is essential <strong>in</strong><br />

the uptake <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrients from the soil. P also plays a key<br />

role <strong>in</strong> plant cell divisi<strong>on</strong>, flower<strong>in</strong>g, fruit<strong>in</strong>g <strong>in</strong>clud<strong>in</strong>g<br />

<strong>seed</strong> formati<strong>on</strong>, crop maturati<strong>on</strong> <strong>and</strong> nodulati<strong>on</strong> (Berg<br />

<strong>and</strong> Lynd, 1985; Pacovsky et al., 1986; Kasturikrishna<br />

& Ahlawat, 1999).<br />

Despite its importance <strong>in</strong> <strong>seed</strong> producti<strong>on</strong>, the<br />

appropriate P <str<strong>on</strong>g>regimes</str<strong>on</strong>g> for optimum producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

lablab <strong>seed</strong> have not been <strong>in</strong>vestigated. Scientific<br />

<strong>in</strong>vestigati<strong>on</strong>s <strong>on</strong> yield resp<strong>on</strong>ses to various <str<strong>on</strong>g>fertilizer</str<strong>on</strong>g><br />

<str<strong>on</strong>g>regimes</str<strong>on</strong>g> usually focus <strong>on</strong> <str<strong>on</strong>g>fertilizer</str<strong>on</strong>g> treatments that lead<br />

to highest resp<strong>on</strong>ses <strong>in</strong> yields with little emphasis <strong>on</strong><br />

the net ec<strong>on</strong>omic benefits associated with such<br />

treatments. Such studies may be mislead<strong>in</strong>g to farmers<br />

s<strong>in</strong>ce <strong>in</strong>crease <strong>in</strong> yields does not necessarily lead to<br />

<strong>in</strong>crease <strong>in</strong> <strong>in</strong>comes (net benefits) as high <strong>in</strong>vestment<br />

may be needed to achieve additi<strong>on</strong>al yields. It is<br />

therefore necessary for farmers to know how much<br />

additi<strong>on</strong>al <strong>in</strong>come can be generated by <strong>in</strong>vest<strong>in</strong>g more<br />

resources <strong>in</strong>to a given technology. Farmers are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten<br />

will<strong>in</strong>g to adopt new forage technologies <strong>on</strong>ly when<br />

they can see a f<strong>in</strong>ancial benefit <strong>in</strong> the short to medium<br />

term. Researchers need to provide support<strong>in</strong>g<br />

evidence that <strong>in</strong>vestment <strong>in</strong> new forage technologies<br />

makes a difference not <strong>on</strong>ly to livestock producti<strong>on</strong> but<br />

also to household <strong>in</strong>come. The objective <str<strong>on</strong>g>of</str<strong>on</strong>g> this study<br />

was to <strong>in</strong>vestigate the <strong>in</strong>fluence <str<strong>on</strong>g>of</str<strong>on</strong>g> vary<strong>in</strong>g levels <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>phosphorus</str<strong>on</strong>g> <str<strong>on</strong>g>fertilizer</str<strong>on</strong>g>s <strong>on</strong> lablab <strong>seed</strong> producti<strong>on</strong> as<br />

well as to establish the net benefits associated with<br />

each level.<br />

Materials <strong>and</strong> methods<br />

Study sites<br />

Three experiments to evaluate vary<strong>in</strong>g Phosphorus<br />

<str<strong>on</strong>g>regimes</str<strong>on</strong>g> <strong>on</strong> <strong>Lablab</strong> <strong>seed</strong> producti<strong>on</strong> were c<strong>on</strong>ducted <strong>in</strong><br />

Ug<strong>and</strong>a, Sudan <strong>and</strong> Burundi. In Ug<strong>and</strong>a, the study was<br />

c<strong>on</strong>ducted at the Nati<strong>on</strong>al Crop Resources Research<br />

Institute (NaCRRI) located at 00 32'' N <str<strong>on</strong>g>of</str<strong>on</strong>g> the Equator<br />

<strong>and</strong> 320 37'' E. NaCRRI is at an elevati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 1150<br />

meters (3780 ft) above sea level <strong>and</strong> has a tropical wet<br />

<strong>and</strong> mild dry climate with slightly humid c<strong>on</strong>diti<strong>on</strong>s<br />

Swidiq et al. Page 21


Int. J. Agr. & Agri. R.<br />

(average 65%). The area gets fairly uniform<br />

temperatures throughout the year with the highest<br />

mean m<strong>on</strong>thly temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> 27.7 0 C dur<strong>in</strong>g the dry<br />

seas<strong>on</strong> <strong>and</strong> the lowest <str<strong>on</strong>g>of</str<strong>on</strong>g> 21.3 0 C dur<strong>in</strong>g the wet seas<strong>on</strong>.<br />

NaCRRI is located with<strong>in</strong> the bimodal ra<strong>in</strong>fall regi<strong>on</strong><br />

with the first <strong>and</strong> sec<strong>on</strong>d ra<strong>in</strong>s occurr<strong>in</strong>g between<br />

February to June <strong>and</strong> August to December<br />

respectively. In Bulundi, The experiment was<br />

c<strong>on</strong>ducted at Moso, ISABU Research Stati<strong>on</strong> located <strong>in</strong><br />

the southern part <str<strong>on</strong>g>of</str<strong>on</strong>g> Burundi. The site experiences a<br />

sub-humid tropical type <str<strong>on</strong>g>of</str<strong>on</strong>g> climate <strong>and</strong> a bimodal<br />

ra<strong>in</strong>fall pattern. The short <strong>and</strong> lighter ra<strong>in</strong>s start from<br />

October to January <strong>and</strong> the l<strong>on</strong>g <strong>and</strong> heavy ra<strong>in</strong>s start<br />

from February to May with a peak <strong>in</strong> April. In Sudan,<br />

the study was carried out at the Gezira Research Farm<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the Agricultural Research Corporati<strong>on</strong>, Wad<br />

Medani, Sudan (“latitude 14 o 24N <strong>and</strong> l<strong>on</strong>gitude 33 0<br />

29 E). The altitude is 406.9 m above sea level with<br />

average annual ra<strong>in</strong>fall <str<strong>on</strong>g>of</str<strong>on</strong>g> 200-300 mm fall<strong>in</strong>g dur<strong>in</strong>g<br />

July to September. Maximum temperature ranges from<br />

33 0 C <strong>in</strong> January to 42 0 C <strong>in</strong> May, while m<strong>in</strong>imum<br />

temperature ranges from 14 0 C <strong>in</strong> January to 25 0 C <strong>in</strong><br />

June. The relative humidity is low dur<strong>in</strong>g most <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

year. W<strong>in</strong>d speed is slow as it is generally 2-3 m/s at 2<br />

m height.<br />

Experimental setup, data collecti<strong>on</strong> <strong>and</strong> <str<strong>on</strong>g>analysis</str<strong>on</strong>g><br />

In Ug<strong>and</strong>a, the experiment <strong>in</strong>volved twenty <strong>on</strong>e<br />

experimental plots (5 x 5m each) arranged <strong>in</strong> a<br />

completely r<strong>and</strong>omized block design with three<br />

replicati<strong>on</strong>s. Phosphorus <str<strong>on</strong>g>fertilizer</str<strong>on</strong>g>s <strong>in</strong> form <str<strong>on</strong>g>of</str<strong>on</strong>g> s<strong>in</strong>gle<br />

supper phosphates (SSP) c<strong>on</strong>stituted the treatment at<br />

seven levels: 0, 15, 30, 40, 60, 80 <strong>and</strong> 100kgP205 ha -1 .<br />

The <str<strong>on</strong>g>fertilizer</str<strong>on</strong>g>s were applied by broadcast <strong>and</strong><br />

<strong>in</strong>corporated <strong>in</strong>to the soil at sow<strong>in</strong>g <strong>and</strong> the plants<br />

were sown at a spac<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 x 1 meter. The experiment<br />

<strong>in</strong> Burundi <strong>in</strong>volved fifteen plots (5 x 5m each) also<br />

arranged <strong>in</strong> a completely r<strong>and</strong>omized block design with<br />

three replicati<strong>on</strong>s. Phosphate <str<strong>on</strong>g>fertilizer</str<strong>on</strong>g>s <strong>in</strong> form <str<strong>on</strong>g>of</str<strong>on</strong>g> Diamm<strong>on</strong>ium<br />

phosphate (DAP: 18% - 46% - 0%)<br />

c<strong>on</strong>stituted the treatment at five levels: 0, 20, 40, 60<br />

<strong>and</strong> 80 DAP kg ha -1 <strong>and</strong> were applied by broadcast <strong>and</strong><br />

<strong>in</strong>corporated <strong>in</strong>to the soil at sow<strong>in</strong>g. In Sudan, the<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> P <strong>on</strong> <strong>seed</strong> producti<strong>on</strong> was evaluated us<strong>in</strong>g<br />

three P levels: 0, 94 <strong>and</strong> 188 kgSSP ha -1 arranged <strong>in</strong> a<br />

completely r<strong>and</strong>omized block design with four<br />

replicati<strong>on</strong>s. The <str<strong>on</strong>g>fertilizer</str<strong>on</strong>g>s were applied at sow<strong>in</strong>g <strong>and</strong><br />

plants were irrigated every 10-14 days. Data was<br />

collected <strong>on</strong> days to first flower<strong>in</strong>g, days to 50%<br />

flower<strong>in</strong>g, number <str<strong>on</strong>g>of</str<strong>on</strong>g> flowers per plant, number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

pods per plant, number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>seed</strong>s per pod <strong>and</strong> <strong>seed</strong><br />

yield. Days to 50% flower<strong>in</strong>g was estimated by<br />

count<strong>in</strong>g the number <str<strong>on</strong>g>of</str<strong>on</strong>g> days from sow<strong>in</strong>g date to when<br />

50% <str<strong>on</strong>g>of</str<strong>on</strong>g> plants had flowered. The number <str<strong>on</strong>g>of</str<strong>on</strong>g> days from<br />

sow<strong>in</strong>g date to appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> the first <strong>in</strong>florescence <strong>in</strong><br />

each plot was used to determ<strong>in</strong>e the number <str<strong>on</strong>g>of</str<strong>on</strong>g> days to<br />

first flower<strong>in</strong>g. To determ<strong>in</strong>e the number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>seed</strong>s <strong>in</strong><br />

pods, 30 pods were selected r<strong>and</strong>omly from a bunch <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

pods harvested per plot <strong>and</strong> the number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>seed</strong>s <strong>in</strong><br />

each pod counted. Mature lablab <strong>seed</strong>s were picked by<br />

h<strong>and</strong>. The pods were dried, threshed, <strong>and</strong> the <strong>seed</strong><br />

cleaned. The <strong>seed</strong>s obta<strong>in</strong>ed per plot were dried at 12%<br />

moisture <strong>and</strong> weighed to obta<strong>in</strong> <strong>seed</strong> yield. The data<br />

was analyzed by <str<strong>on</strong>g>analysis</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> variance us<strong>in</strong>g the general<br />

l<strong>in</strong>ear procedure <str<strong>on</strong>g>of</str<strong>on</strong>g> XLSTAT (2011).<br />

Ec<strong>on</strong>omic <str<strong>on</strong>g>analysis</str<strong>on</strong>g><br />

The net benefits associated with the different<br />

<str<strong>on</strong>g>phosphorus</str<strong>on</strong>g> <str<strong>on</strong>g>regimes</str<strong>on</strong>g> <strong>in</strong>vestigated <strong>in</strong> Ug<strong>and</strong>a were also<br />

quantified to aid farmers’ decisi<strong>on</strong>s <strong>on</strong> selecti<strong>on</strong> <strong>and</strong><br />

adopti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> appropriate P <str<strong>on</strong>g>regimes</str<strong>on</strong>g>. The ec<strong>on</strong>omic<br />

<str<strong>on</strong>g>analysis</str<strong>on</strong>g> <strong>in</strong>volved estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> costs that vary, gross<br />

field benefits <strong>and</strong> net benefits as discussed <strong>in</strong> the<br />

subsequent secti<strong>on</strong>s.<br />

Calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> costs that vary<br />

The costs that varied with treatments <strong>in</strong>cluded costs<br />

<strong>in</strong>curred (per hectare) <strong>in</strong> purchase, transportati<strong>on</strong> <strong>and</strong><br />

applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> different quantities phosphate <str<strong>on</strong>g>fertilizer</str<strong>on</strong>g>s.<br />

The cost <strong>in</strong>curred <strong>in</strong> transportati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fertilizer</str<strong>on</strong>g>s was<br />

factored <strong>in</strong>to the cost <strong>in</strong>curred to purchase <str<strong>on</strong>g>fertilizer</str<strong>on</strong>g>s.<br />

C<strong>on</strong>sequently, the costs that varied for the different<br />

treatments were <str<strong>on</strong>g>of</str<strong>on</strong>g> two types: 1. costs <strong>in</strong>curred (per<br />

hectare) <strong>in</strong> purchase <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fertilizer</str<strong>on</strong>g>s <strong>and</strong> (2). Costs<br />

Swidiq et al. Page 22


Int. J. Agr. & Agri. R.<br />

<strong>in</strong>curred for labor dur<strong>in</strong>g applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fertilizer</str<strong>on</strong>g>s. The<br />

total costs that vary for each treatment were then<br />

calculated by summ<strong>in</strong>g up the two types <str<strong>on</strong>g>of</str<strong>on</strong>g> cost as<br />

described by (CIMMYT, 1989). The average cost <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

50kg bag <str<strong>on</strong>g>of</str<strong>on</strong>g> SSP from agro-<strong>in</strong>put outlets was Ug<strong>and</strong>a<br />

shill<strong>in</strong>gs (Ug. shs) 100,000 <strong>and</strong> the average<br />

transportati<strong>on</strong> cost <str<strong>on</strong>g>of</str<strong>on</strong>g> each 50kg bag to farmers’ fields<br />

from the nearest agro-<strong>in</strong>put outlets was Ug. shs 5000.<br />

Hence the cost <str<strong>on</strong>g>of</str<strong>on</strong>g> purchas<strong>in</strong>g <strong>and</strong> transport<strong>in</strong>g a 50kg<br />

bag was Ug. shs 105,000. The SSP <str<strong>on</strong>g>fertilizer</str<strong>on</strong>g> c<strong>on</strong>ta<strong>in</strong>ed<br />

20% <str<strong>on</strong>g>of</str<strong>on</strong>g> P205 imply<strong>in</strong>g that there were 10 kg <str<strong>on</strong>g>of</str<strong>on</strong>g> P205 <strong>in</strong><br />

the 50 kg bag. The cost (Ug. shs 10,500) <str<strong>on</strong>g>of</str<strong>on</strong>g> each<br />

kilogram <str<strong>on</strong>g>of</str<strong>on</strong>g> P205 was therefore obta<strong>in</strong>ed by divid<strong>in</strong>g<br />

Ug. shs 105,000 by 10. The average cost <str<strong>on</strong>g>of</str<strong>on</strong>g> apply<strong>in</strong>g a<br />

50 kg bag <str<strong>on</strong>g>of</str<strong>on</strong>g> SSP was Ug. shs 5000 <strong>and</strong> s<strong>in</strong>ce each bag<br />

c<strong>on</strong>ta<strong>in</strong>ed 10 kg <str<strong>on</strong>g>of</str<strong>on</strong>g> P205, it implied that each kg <str<strong>on</strong>g>of</str<strong>on</strong>g> P205<br />

was be<strong>in</strong>g applied at a cost <str<strong>on</strong>g>of</str<strong>on</strong>g> Ug. shs 500. We<br />

therefore multiplied Ug. shs 10,500 by the amount <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

P205 (kgha -1 ) to obta<strong>in</strong> the costs <strong>in</strong>curred <strong>in</strong> purchase <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>fertilizer</str<strong>on</strong>g>s. Also, Ug. shs 500 was multiplied by the<br />

amount <str<strong>on</strong>g>of</str<strong>on</strong>g> P205 (kgha -1 ) to obta<strong>in</strong> the cost <strong>in</strong>curred for<br />

labor. The two costs were then summed up to obta<strong>in</strong><br />

the total costs that vary per treatment. To allows<br />

comparis<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> costs across currencies, the costs were<br />

quantified when 1 US$= Ug. shs 2800.<br />

Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gross field <strong>and</strong> net benefits<br />

Assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Lablab</strong> yields <strong>on</strong> farmers’ farms with<strong>in</strong><br />

the area revealed that farmers’ yields were 20% lower<br />

than the yields obta<strong>in</strong>ed <strong>on</strong> experimental sites. We<br />

therefore adjusted the yield achieved <strong>in</strong> the experiment<br />

by reduc<strong>in</strong>g it by 20% to represent actual yield<br />

scenarios experienced by farmers. The average cost <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

1kg <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Lablab</strong> <strong>seed</strong> was estimated at Ug. shs 4000 <strong>and</strong><br />

this was multiplied by the adjusted <strong>seed</strong> yield to obta<strong>in</strong><br />

the gross field benefits from <strong>seed</strong> sales. The total costs<br />

that vary per treatment were subtracted from the gross<br />

field benefits to obta<strong>in</strong> the net benefits per treatment.<br />

Results<br />

Soil characteristics<br />

The pH <strong>in</strong> water for experimental sites ranged from 5.6<br />

(weakly acid soil <strong>in</strong> Ug<strong>and</strong>a), 6.21 (near neural soil <strong>in</strong><br />

Burundi) to alkal<strong>in</strong>e soils <strong>in</strong> Sudan (Table 1). The<br />

organic matter c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> the soils ranged from 0.8 to<br />

3.32 with Burundi <strong>and</strong> Sudan hav<strong>in</strong>g low levels <str<strong>on</strong>g>of</str<strong>on</strong>g> soil<br />

organic matter. The amount <str<strong>on</strong>g>of</str<strong>on</strong>g> soil nitrogen (N) <strong>in</strong><br />

Ug<strong>and</strong>a <strong>and</strong> Sudan was below the critical N level<br />

(0.2%) required for adequate plant establishment <strong>and</strong><br />

growth. The amount <str<strong>on</strong>g>of</str<strong>on</strong>g> available extractable P was low<br />

<strong>in</strong> Ug<strong>and</strong>a <strong>and</strong> Sudan but moderate <strong>in</strong> Burundi. The<br />

c<strong>on</strong>centrati<strong>on</strong> P-fix<strong>in</strong>g i<strong>on</strong>s (Mn +2 ) was high <strong>in</strong> Ug<strong>and</strong>a<br />

<strong>and</strong> was far above the average level (200 ppm) <str<strong>on</strong>g>of</str<strong>on</strong>g> Mn +2<br />

reported for most soils <strong>in</strong> Ug<strong>and</strong>a.<br />

Table 1. Chemical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the top soil (0 -20cm)<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the experimental site.<br />

Variable Countries Method <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>analysis</str<strong>on</strong>g><br />

Ug<strong>and</strong>a Burundi Sudan<br />

pH (H2O) 5.6 6.21 8.7 pH meter<br />

OM (%) 3.21 1.67 0.8 Walkley-Black method<br />

N (%) 0.15 0.34 0.17 Kjeldahl method<br />

Av. P (mgkg -1 ) 2.25 6 3.5 Bray 1<br />

Fe (ppm) 162.2 - - AAS<br />

Mn (ppm) 318.3 - - AAS<br />

Av.P: Available extractable P<br />

AAS: Atomic Absorpti<strong>on</strong> Spectrophotometer<br />

Flower<strong>in</strong>g characteristics, <strong>seed</strong> yield <strong>and</strong> yield<br />

comp<strong>on</strong>ents<br />

Although additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> vary<strong>in</strong>g levels <str<strong>on</strong>g>of</str<strong>on</strong>g> P did not have a<br />

significant effect <strong>on</strong> the number <str<strong>on</strong>g>of</str<strong>on</strong>g> days to first <strong>and</strong><br />

50% flower<strong>in</strong>g, the mean number <str<strong>on</strong>g>of</str<strong>on</strong>g> days to flower<strong>in</strong>g<br />

(both first <strong>and</strong> 50%) for plots amended with P were<br />

less than those <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>trol by <strong>on</strong>e day <strong>in</strong> Ug<strong>and</strong>a <strong>and</strong><br />

Burundi. P fertilizati<strong>on</strong> significantly (p


Int. J. Agr. & Agri. R.<br />

Table 2. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> vary<strong>in</strong>g <str<strong>on</strong>g>regimes</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>phosphorus</str<strong>on</strong>g> <str<strong>on</strong>g>fertilizer</str<strong>on</strong>g>s <strong>on</strong> flower<strong>in</strong>g <strong>and</strong> <strong>seed</strong> producti<strong>on</strong> comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Lablab</strong>.<br />

Country Trts D-1 D-50 NBP NFP NPP NSP SY (kg/ha)<br />

Ug<strong>and</strong>a 0 76 a 90 a 4.2 a 16 cd 134 a 3.7 a 1253 a<br />

15 74 a 90 a 4.5 a 16 cd 149 a 3.9 a 1560 a<br />

30 75 a 89 a 5.6 b 17 bc 150 a 3.9 a 1753 a<br />

40 76 a 90 a 4.2 a 18 ab 141 a 3.9 a 1380 a<br />

Burundi<br />

60 74 a 88 a 4.4 a 18a b 146 a 3.9 a 1560 a<br />

80 75 a 89 aa 4.7 a 19 a 156 a 4.0 a 1680<br />

100 a 76 a 90 a 4.6 a 15 d 150 a 3.9 a 1593<br />

Mean 75 89 4.6 17 147 3.9 1540<br />

0 105 a 126 aa 5.3 b - 154 a 3.3 a 2960<br />

20 103 a 124 a 4.3 ab - 161 a 3.5 a 3360 a<br />

40 103 a 124 a 4.2 ab - 157 a 3.3 a 3147 a<br />

60 106 a 124 a 4.3 ab - 169 a 3.4 a 3760 a<br />

Sudan<br />

80 103 a 126 a 4.6 a - 167 a 3.5 a 3747 a<br />

Mean 104 125 4.17 - 163 a 3.4 3395<br />

0 90 a 105 a 3.3 a - 16.1 a 3.4 a 433 a<br />

94 89 a 107 a 3.7 a - 14.8 a 3.6 a 444 a<br />

188 89 a 106 a 3.8 a - 15.9 a 3.4 a 456 a<br />

Mean 89 106 3.6 - 15.6 3.47 444.3<br />

D-1 day to first flower<strong>in</strong>g, D-50 days to 50% flower<strong>in</strong>g, NBP number <str<strong>on</strong>g>of</str<strong>on</strong>g> branches per plant, NFP number <str<strong>on</strong>g>of</str<strong>on</strong>g> flowers per plant, NPP<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> pods per plant, NSP number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>seed</strong>s per pod, SY <strong>seed</strong> yield. a,b,c,d Means with different superscripts <strong>in</strong> the same column<br />

per country are significantly different (p


Int. J. Agr. & Agri. R.<br />

Table 3. Correlati<strong>on</strong> tests between <strong>seed</strong> yield <strong>and</strong> <strong>seed</strong> yield comp<strong>on</strong>ents.<br />

Country Variables Variables<br />

No. <str<strong>on</strong>g>of</str<strong>on</strong>g> branches No. <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

pods/plant<br />

No. <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>seed</strong>s<br />

/pod<br />

Seed yield<br />

(kgha -1 )<br />

Sudan No. <str<strong>on</strong>g>of</str<strong>on</strong>g> branches r=1 r=0.62*** r=0.16 r=0.41*<br />

No. <str<strong>on</strong>g>of</str<strong>on</strong>g> pods/plant r=0.62*** r=1 r=0.01 r=0.29*<br />

No. <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>seed</strong>s /pod r=0.16 r=0.01 r=1 r=0.39**<br />

Seed yield (kgha -1 ) r=0.41** r=0.29* r= 0.39* r=1<br />

Ug<strong>and</strong>a No. <str<strong>on</strong>g>of</str<strong>on</strong>g> branches r=1. r=0.18 r=0.071 r= 0.38<br />

No. <str<strong>on</strong>g>of</str<strong>on</strong>g> pods/plant r=0.18 r=1 r=0.053 r=303<br />

No. <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>seed</strong>s /pod r=0.071 r=0.053 r=1 r=0.444*<br />

Seed yield (kgha -1 ) r= 0.38 r=0.303 r=0.444* r=1<br />

Burundi No. <str<strong>on</strong>g>of</str<strong>on</strong>g> branches r=1 r=0.071 r=0.071 r=0.38<br />

No. <str<strong>on</strong>g>of</str<strong>on</strong>g> pods/plant r=0.17 r=1 r=0.071 r= 0.58<br />

No. <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>seed</strong>s /pod r=0.071 r=0.071 r=1 r=0.41<br />

Seed yield (kgha -1 ) r= -0.38 r= 0.58 r= 0.41 r= 1<br />

*Significant at p


Int. J. Agr. & Agri. R.<br />

Table 4. Cost-benefit <strong>and</strong> dom<strong>in</strong>ance <str<strong>on</strong>g>analysis</str<strong>on</strong>g> table for vary<strong>in</strong>g P levels.<br />

Treatments (kgP2O5)<br />

0 15 30 40 60 80 100<br />

Seed yield (kgha -1 ) 1253 1560 1753 1380 1560 1680 1593<br />

Adjusted yield (kgha -1 ) 1002 1248 1402 1104 1248 1344 1274<br />

Gross field benefits 4,009,600 4,992,000 5,609,600 4,416,000 4,992,000 5,376,000 5,097,600<br />

Cost <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fertilizer</str<strong>on</strong>g> (Ug. Shs ha -1 ) 0 157,500 315,000 420,000 630,000 840,000 1,050,000<br />

Cost <str<strong>on</strong>g>of</str<strong>on</strong>g> applicati<strong>on</strong> 0 7500 15000 20,000 30,000 40,000 50,000<br />

Total costs that vary 0 165,000 330,000 440,000 660,000 880,000 1,100,000<br />

Net benefits 4,009,600 4,827,000 5,279,000 3,976,000D 4,332,000 4,496,000 3,997,600D<br />

D Dom<strong>in</strong>ated treatments, 1 US$=2800 Ug<strong>and</strong>a shill<strong>in</strong>gs<br />

Ec<strong>on</strong>omic <str<strong>on</strong>g>analysis</str<strong>on</strong>g><br />

CIMMYT (1989) noted that the m<strong>in</strong>imum marg<strong>in</strong>al<br />

rate <str<strong>on</strong>g>of</str<strong>on</strong>g> return acceptable to farmers before mak<strong>in</strong>g a<br />

decisi<strong>on</strong> to change from an old practice to a new<br />

practice is 50%. In this current study, the MRR from 0<br />

to 15 <strong>and</strong> 30 kgP2O5 were 500 <strong>and</strong> 700% respectively,<br />

all far bey<strong>on</strong>d 50%. This implied that when a farmer<br />

<strong>in</strong>vested <strong>on</strong>e shill<strong>in</strong>g as an additi<strong>on</strong>al cost to change<br />

from 0 to 15kgP2O5, the farmer would recover the <strong>on</strong>e<br />

shill<strong>in</strong>g <strong>and</strong> an additi<strong>on</strong>al five shill<strong>in</strong>gs as pr<str<strong>on</strong>g>of</str<strong>on</strong>g>it.<br />

Likewise, when a farmer <strong>in</strong>vested a shill<strong>in</strong>g as an<br />

additi<strong>on</strong>al cost to change from 0 to 30 kgP2O5, the<br />

same farmer would recover the <strong>on</strong>e shill<strong>in</strong>g <strong>and</strong> an<br />

additi<strong>on</strong>al seven shill<strong>in</strong>gs as pr<str<strong>on</strong>g>of</str<strong>on</strong>g>it. This is to say, when<br />

a farmer <strong>in</strong>vested Shs 330,000 as costs <strong>in</strong>curred <strong>in</strong><br />

buy<strong>in</strong>g <strong>and</strong> applicati<strong>on</strong> <str<strong>on</strong>g>fertilizer</str<strong>on</strong>g>s at a rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 30<br />

kgP2O5, the farmer would obta<strong>in</strong> Shs 2,310,000<br />

(330,000 * 7) as pr<str<strong>on</strong>g>of</str<strong>on</strong>g>it <strong>in</strong> additi<strong>on</strong> to recover<strong>in</strong>g the<br />

<strong>in</strong>vested Shs 330,000. The results <str<strong>on</strong>g>of</str<strong>on</strong>g> dom<strong>in</strong>ance<br />

<str<strong>on</strong>g>analysis</str<strong>on</strong>g> revealed that it is not pr<str<strong>on</strong>g>of</str<strong>on</strong>g>itable to apply P<br />

<str<strong>on</strong>g>fertilizer</str<strong>on</strong>g>s bey<strong>on</strong>d 30 kgP2O5 s<strong>in</strong>ce the achieved netbenefits<br />

are lower than those achieved at 30 kgP2O5 but<br />

<strong>in</strong>volve <strong>in</strong>vestment <str<strong>on</strong>g>of</str<strong>on</strong>g> more <strong>in</strong>puts <strong>and</strong> hence costs.<br />

C<strong>on</strong>clusi<strong>on</strong><br />

From the results obta<strong>in</strong>ed, it can be c<strong>on</strong>cluded that<br />

presence <str<strong>on</strong>g>of</str<strong>on</strong>g> high c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> P-fix<strong>in</strong>g i<strong>on</strong>s<br />

(particularly Mn 2+ ) possibly limited <strong>Lablab</strong> resp<strong>on</strong>se to<br />

P-<str<strong>on</strong>g>fertilizer</str<strong>on</strong>g>s <strong>in</strong> acidic soils <str<strong>on</strong>g>of</str<strong>on</strong>g> Ug<strong>and</strong>a. In such soils,<br />

amendment with organic materials (manures) would<br />

enhance availability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>phosphorus</str<strong>on</strong>g>. Organic materials<br />

form complexes with P-fix<strong>in</strong>g i<strong>on</strong>s render<strong>in</strong>g<br />

<str<strong>on</strong>g>phosphorus</str<strong>on</strong>g> available to plants. In Sudan, a<br />

comb<strong>in</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> factors <strong>in</strong>clud<strong>in</strong>g soil alkal<strong>in</strong>ity, limited<br />

N <strong>and</strong> moisture limited <strong>Lablab</strong> resp<strong>on</strong>se to P<br />

fertilizati<strong>on</strong>. The applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> P at 30 kgP2O5 is most<br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>itable <strong>and</strong> hence recommended s<strong>in</strong>ce it is<br />

associated with higher net benefits <strong>and</strong> Marg<strong>in</strong>al rate<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> returns.<br />

Acknowledgements<br />

This publicati<strong>on</strong> is a product <str<strong>on</strong>g>of</str<strong>on</strong>g> a project “Strengthen<strong>in</strong>g<br />

regi<strong>on</strong>al germplasm collecti<strong>on</strong> <strong>and</strong> forage <strong>seed</strong><br />

producti<strong>on</strong> <strong>in</strong> <strong>East</strong> <strong>and</strong> <strong>Central</strong> <strong>Africa</strong>” funded by the<br />

Associati<strong>on</strong> for Strengthen<strong>in</strong>g Agricultural Research <strong>in</strong><br />

<strong>East</strong>ern <strong>and</strong> <strong>Central</strong> <strong>Africa</strong> (ASARECA).<br />

References<br />

Berg RK, Lynd JQ. 1985. Soil fertility effects <strong>on</strong><br />

growth, yield, nodulati<strong>on</strong> <strong>and</strong> nitrogenase activity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Austrian w<strong>in</strong>ter pea. J. Plant Nutr. 8, 131—145.<br />

Boll<strong>and</strong> DA, Riethmuller GP, Siddique HM,<br />

Loss SP. 2001. Methods <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>phosphorus</str<strong>on</strong>g> applicati<strong>on</strong><br />

<strong>and</strong> row spac<strong>in</strong>g <strong>on</strong> gra<strong>in</strong> yield <str<strong>on</strong>g>of</str<strong>on</strong>g> Faba bean (Vicia faba<br />

L.) Aust. J. Exp. Agric. 41, 227—234.<br />

Brady CN. 1990. The nature <strong>and</strong> properties <str<strong>on</strong>g>of</str<strong>on</strong>g> Soils.<br />

Tenth Editi<strong>on</strong>. Collier Macmillan Publishers, L<strong>on</strong>d<strong>on</strong>.<br />

621p.<br />

Swidiq et al. Page 26


Int. J. Agr. & Agri. R.<br />

CIMMYT. 1988. From agr<strong>on</strong>omic data to farmer<br />

recommendati<strong>on</strong>s: An ec<strong>on</strong>omic tra<strong>in</strong><strong>in</strong>g manual.<br />

Completely revised editi<strong>on</strong>. Mexico. D.F.<br />

French RJ. 1990. The c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pod numbers<br />

to field pea (Pisum sativum L.) yields <strong>in</strong> a short<br />

grow<strong>in</strong>g seas<strong>on</strong> envir<strong>on</strong>ment. Aust. J. Agric. Res. 41,<br />

853—862.<br />

In: Soil fertility research for maize based farm<strong>in</strong>g<br />

systems <strong>in</strong> Malawi <strong>and</strong> Zimbabwe. Soil Fertility<br />

Network. S.R.Wadd<strong>in</strong>gt<strong>on</strong>, H.K.Murwira,<br />

J.D.T.Kumwenda, D.Hikwa <strong>and</strong> F.Tagwira (Editors).<br />

Pp 105-112.<br />

Pacovsky RS, Bethlenfalvay GJ, Paul EA. 1986.<br />

Comparis<strong>on</strong>s between P-fertilized <strong>and</strong> mycorrhizal<br />

plants. Crop Sci. 26, 151—156.<br />

Kasturikrishna S, Ahlawat PS. 1999. Growth <strong>and</strong><br />

yield resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> pea (Pisum sativum) to moisture<br />

stress, <str<strong>on</strong>g>phosphorus</str<strong>on</strong>g>, sulphur <strong>and</strong> z<strong>in</strong>c <str<strong>on</strong>g>fertilizer</str<strong>on</strong>g>s. Indian<br />

J. Agr<strong>on</strong>. 44, 588—596.<br />

Maobe SN, Dyek EA, Mureithi SG. 1998.<br />

Screen<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> soil improv<strong>in</strong>g herbaceous legumes for<br />

<strong>in</strong>clusi<strong>on</strong> <strong>in</strong>to smallholder farm<strong>in</strong>g systems <strong>in</strong> Kenya.<br />

Scaaffhausen RV. 1963. Ec<strong>on</strong>omical methods for<br />

us<strong>in</strong>g the legume (Dolichos lablab) for soil<br />

improvement, food <strong>and</strong> feed. Turialba 13, 172-178.<br />

Yemane AAO, Skjelva˚ g. 2003. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Fertilizer Phosphorus <strong>on</strong> Yield Traits <str<strong>on</strong>g>of</str<strong>on</strong>g> Dekoko (Pisum<br />

sativum var. abyss<strong>in</strong>icum) Under Field C<strong>on</strong>diti<strong>on</strong>s. J.<br />

Agr<strong>on</strong>omy & Crop Science 189, 14—20.<br />

Swidiq et al. Page 27

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!