23.01.2017 Views

Effects of methanol on yield and some quality characteristic of sugar beet (Beta vulgaris L.) in drought stress condition

Abstract A study was conducted to evaluate the effects of Methanol on yield and some Quality Characteristic of Sugar Beet (Beta vulgaris L.) in drought stress condition in Maahdasht (Karaj, Iran), in 2012. Aqueous solutions were 0(control), 7, 14, 21 and 28 (v/v) methanol. Second factor was irrigation regime 1.normal irrigation (irrigation after 40% depletion of available water), 2.mild drought stress (irrigation after 60% depletion of available water) and 3.severe drought stress (irrigation after 70% depletion of available water). Irrigation system was dripping irrigation system (Tape) in this study. These solutions were sprayed overhead three times in two-week intervals on foliage parts of sugar beet. Results of this experiment indicated that there was a significant difference between effects of solutions on root yield, leaf yield, white sugar yield, molasses, white sugar content, N and Na concentrations. The best of root yield, leaf yield and white sugar yield was gained in 7% (v/v) of methanol with 76.62, 61.72 and 9.91(ton/h), respectively. There was also significant difference among three levels of irrigations on root yield, leaf yield, sugar content and K and N concentrations of white sugar content.

Abstract
A study was conducted to evaluate the effects of Methanol on yield and some Quality Characteristic of Sugar Beet (Beta vulgaris L.) in drought stress condition in Maahdasht (Karaj, Iran), in 2012. Aqueous solutions were 0(control), 7, 14, 21 and 28 (v/v) methanol. Second factor was irrigation regime 1.normal irrigation (irrigation after 40% depletion of available water), 2.mild drought stress (irrigation after 60% depletion of available water) and 3.severe drought stress (irrigation after 70% depletion of available water). Irrigation system was dripping irrigation system (Tape) in this study. These solutions were sprayed overhead three times in two-week intervals on foliage parts of sugar beet. Results of this experiment indicated that there was a significant difference between effects of solutions on root yield, leaf yield, white sugar yield, molasses, white sugar content, N and Na concentrations. The best of root yield, leaf yield and white sugar yield was gained in 7% (v/v) of methanol with 76.62, 61.72 and 9.91(ton/h), respectively. There was also significant difference among three levels of irrigations on root yield, leaf yield, sugar content and K and N concentrations of white sugar content.

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

J. Bio. & Env. Sci. 2014<br />

Introducti<strong>on</strong><br />

Stress is an altered physiological c<strong>on</strong>diti<strong>on</strong> by factors<br />

that tends to disrupt the equilibrium, such as <strong>drought</strong><br />

<strong>stress</strong>. Drought is a meteorological term comm<strong>on</strong>ly<br />

def<strong>in</strong>ed as a period without significant ra<strong>in</strong>fall (Ober,<br />

2001). Around <strong>on</strong>e third <str<strong>on</strong>g>of</str<strong>on</strong>g> cultivable l<strong>and</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

world encounter water shortage <strong>and</strong> recently it has<br />

been reported that <strong>drought</strong> <strong>stress</strong> is the ma<strong>in</strong> factor <strong>in</strong><br />

reduc<strong>in</strong>g the <strong>quality</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>sugar</strong> <strong>beet</strong> (Clover et al.,<br />

1998). Although <strong>sugar</strong> <strong>beet</strong> is resistant aga<strong>in</strong>st<br />

<strong>drought</strong> <strong>stress</strong> but to reach high productivity,<br />

researchers have c<strong>on</strong>sidered <strong>some</strong> acti<strong>on</strong>s to reduce<br />

<strong>drought</strong> <strong>stress</strong> (Hsiao, 2000). Most <str<strong>on</strong>g>of</str<strong>on</strong>g> these acti<strong>on</strong>s<br />

are focused to f<strong>in</strong>d the ways to reduce transpirati<strong>on</strong> <strong>in</strong><br />

order to ma<strong>in</strong>ta<strong>in</strong> stability <str<strong>on</strong>g>of</str<strong>on</strong>g> Co2 <strong>and</strong> reduce<br />

photorespirati<strong>on</strong> <strong>in</strong> <strong>drought</strong> <strong>stress</strong> c<strong>on</strong>diti<strong>on</strong>.<br />

Accord<strong>in</strong>g to Zbiec et al. (2003) <strong>in</strong>creas<strong>in</strong>g density <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Co2 can neutralize the effects resulted by <strong>drought</strong><br />

<strong>stress</strong>, so apply<strong>in</strong>g materials to <strong>in</strong>crease Co2’s density<br />

<strong>in</strong> plants eventually stabilizes the <strong>yield</strong> <strong>in</strong> <strong>drought</strong><br />

c<strong>on</strong>diti<strong>on</strong>s. One <str<strong>on</strong>g>of</str<strong>on</strong>g> the soluti<strong>on</strong>s to <strong>in</strong>crease Co2’s<br />

density <strong>in</strong> the plants is us<strong>in</strong>g the compounds such as<br />

<str<strong>on</strong>g>methanol</str<strong>on</strong>g>, ethanol, propanol, butanol <strong>and</strong> also us<strong>in</strong>g<br />

Am<strong>in</strong>o acids as glyc<strong>in</strong>e, glutamate <strong>and</strong> aspartate<br />

(N<strong>on</strong>omura, 1992). It should be noted that <str<strong>on</strong>g>methanol</str<strong>on</strong>g><br />

is comm<strong>on</strong> for plants because it is the simplest plant<br />

products, which is produced <strong>in</strong>side the plant (Fall et<br />

al., 1996). This organic compound escapes from the<br />

leaves via stomata or it is metabolized by plant tissues<br />

<strong>and</strong> becomes Co2 for plant’s c<strong>on</strong>sumpti<strong>on</strong> (Gout et al.,<br />

2000). Methanol's applicati<strong>on</strong> causes to produce Co2<br />

<strong>in</strong> the leaves <strong>and</strong> <strong>in</strong>creases photosynthesis so it can be<br />

used as carb<strong>on</strong>’s source (Zbiec et al., 1999). Foliar<br />

applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>methanol</str<strong>on</strong>g> can <strong>in</strong>crease activity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

nitrate reductase <strong>and</strong> alkal<strong>in</strong>e phosphatase <strong>in</strong> leaves<br />

(Zbieć et al., 1999). Andres et al. (1990) studied the<br />

effects <str<strong>on</strong>g>of</str<strong>on</strong>g> alcohols (<str<strong>on</strong>g>methanol</str<strong>on</strong>g>, ethanol, propanol,<br />

butanol) <strong>on</strong> the associati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the thylakoid<br />

membrane with fructose-1,6-bisphosphatase<br />

(FBPase), <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the pr<strong>in</strong>cipal enzymes c<strong>on</strong>troll<strong>in</strong>g is<br />

the activity <str<strong>on</strong>g>of</str<strong>on</strong>g> the photosynthetic carb<strong>on</strong> reducti<strong>on</strong><br />

cycle. The most important advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>methanol</str<strong>on</strong>g> is<br />

prevent<strong>in</strong>g <strong>and</strong> reduc<strong>in</strong>g <strong>in</strong>ducted <strong>stress</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g> plants<br />

dur<strong>in</strong>g their photorespirati<strong>on</strong> (N<strong>on</strong>omura et al.,<br />

1992).<br />

Under <strong>drought</strong> <strong>stress</strong> c<strong>on</strong>diti<strong>on</strong>s due to closeness <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

stomata <strong>and</strong> transpirati<strong>on</strong> rate is reduced <strong>and</strong> Co2<br />

cannot enter <strong>in</strong>to the leaves. Zbiec et al (1999)<br />

<strong>in</strong>dicated that the reas<strong>on</strong> for reduc<strong>in</strong>g photosynthesis<br />

<strong>in</strong> plants treated with <str<strong>on</strong>g>methanol</str<strong>on</strong>g> is rapid oxidati<strong>on</strong><br />

<str<strong>on</strong>g>methanol</str<strong>on</strong>g> to Co2 <strong>and</strong> its comb<strong>in</strong>ati<strong>on</strong> with ribulose 5-<br />

1- diphosphate <strong>and</strong> elim<strong>in</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen exchange.<br />

Methanol causes the delay <str<strong>on</strong>g>of</str<strong>on</strong>g> senescence <strong>in</strong> leaves <strong>and</strong><br />

<strong>in</strong>fluences <strong>on</strong> ethylene producti<strong>on</strong> <strong>in</strong> plant, which<br />

causes the <strong>in</strong>crease photosynthesis activity. Zbiec et al<br />

(2003) reported <strong>in</strong>creas<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> 10% root <strong>yield</strong> <strong>on</strong> <strong>sugar</strong><br />

<strong>beet</strong> <strong>in</strong> 20 <strong>and</strong> 30% (v/v) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>methanol</str<strong>on</strong>g>, meanwhile<br />

Makhdum et al (2002) reported that <str<strong>on</strong>g>methanol</str<strong>on</strong>g> has<br />

caused the <strong>in</strong>crease cott<strong>on</strong> leaf's surface. A bacterium<br />

exists named Methyltrophic bacteria. These bacteria<br />

are capable to grow <strong>on</strong> <str<strong>on</strong>g>methanol</str<strong>on</strong>g> <strong>and</strong> generate plant<br />

growth regulators such as aux<strong>in</strong> <strong>and</strong> cytok<strong>in</strong><strong>in</strong> (Lee et<br />

al., 2006). Weather is the most important external<br />

factor <strong>in</strong>fluenc<strong>in</strong>g <strong>on</strong> <strong>yield</strong> <strong>and</strong> technologic <strong>quality</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>sugar</strong> <strong>beet</strong>. Humidity restricti<strong>on</strong> <strong>in</strong> the soil causes the<br />

decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> leaf's surface <strong>and</strong> eventually<br />

photosynthesis <strong>and</strong> f<strong>in</strong>ally reduces root <strong>yield</strong> (Cooke<br />

at al., 1993). Accord<strong>in</strong>g to <strong>some</strong> reports, <strong>drought</strong><br />

<strong>stress</strong> caused root <strong>yield</strong> decrease <strong>and</strong> white <strong>sugar</strong><br />

<strong>yield</strong> (Bazza et al., 1993). Water shortage <strong>and</strong> high<br />

temperature <strong>in</strong> additi<strong>on</strong> to reduc<strong>in</strong>g growth cause the<br />

<strong>in</strong>crease <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>sugar</strong> <strong>in</strong> the root (Abdollahian-noghabi et<br />

al., 1998). Impos<strong>in</strong>g <strong>drought</strong> <strong>stress</strong> at the end <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

growth seas<strong>on</strong> causes the density <strong>in</strong>crease <str<strong>on</strong>g>of</str<strong>on</strong>g> root's<br />

impurities particularly potassium, nitrogen <strong>and</strong><br />

sodium <strong>and</strong> f<strong>in</strong>ally causes the <strong>in</strong>crease molasses<br />

(Ober, 2001). Clover et al (1998) reported that los<strong>in</strong>g<br />

water through roots <strong>and</strong> smallness <str<strong>on</strong>g>of</str<strong>on</strong>g> roots caused to<br />

<strong>in</strong>creas<strong>in</strong>g <strong>sugar</strong> level <strong>in</strong> <strong>drought</strong> <strong>stress</strong> c<strong>on</strong>diti<strong>on</strong>.<br />

Some other reas<strong>on</strong>s <strong>in</strong>clude break<strong>in</strong>g down <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

polysaccharide <strong>and</strong> c<strong>on</strong>vert<strong>in</strong>g to m<strong>on</strong>osaccharide<br />

<strong>and</strong> f<strong>in</strong>ally <strong>in</strong>creas<strong>in</strong>g density <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>sugar</strong>s <strong>in</strong> the cell<br />

(Cooke at al., 1993).<br />

The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> this research <strong>in</strong>cludes effects assess<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

foliar applicati<strong>on</strong> <strong>in</strong> <str<strong>on</strong>g>methanol</str<strong>on</strong>g> <strong>and</strong> <strong>drought</strong> <strong>stress</strong> <strong>on</strong><br />

240 | Nadali et al

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!