23.01.2017 Views

Effects of methanol on yield and some quality characteristic of sugar beet (Beta vulgaris L.) in drought stress condition

Abstract A study was conducted to evaluate the effects of Methanol on yield and some Quality Characteristic of Sugar Beet (Beta vulgaris L.) in drought stress condition in Maahdasht (Karaj, Iran), in 2012. Aqueous solutions were 0(control), 7, 14, 21 and 28 (v/v) methanol. Second factor was irrigation regime 1.normal irrigation (irrigation after 40% depletion of available water), 2.mild drought stress (irrigation after 60% depletion of available water) and 3.severe drought stress (irrigation after 70% depletion of available water). Irrigation system was dripping irrigation system (Tape) in this study. These solutions were sprayed overhead three times in two-week intervals on foliage parts of sugar beet. Results of this experiment indicated that there was a significant difference between effects of solutions on root yield, leaf yield, white sugar yield, molasses, white sugar content, N and Na concentrations. The best of root yield, leaf yield and white sugar yield was gained in 7% (v/v) of methanol with 76.62, 61.72 and 9.91(ton/h), respectively. There was also significant difference among three levels of irrigations on root yield, leaf yield, sugar content and K and N concentrations of white sugar content.

Abstract
A study was conducted to evaluate the effects of Methanol on yield and some Quality Characteristic of Sugar Beet (Beta vulgaris L.) in drought stress condition in Maahdasht (Karaj, Iran), in 2012. Aqueous solutions were 0(control), 7, 14, 21 and 28 (v/v) methanol. Second factor was irrigation regime 1.normal irrigation (irrigation after 40% depletion of available water), 2.mild drought stress (irrigation after 60% depletion of available water) and 3.severe drought stress (irrigation after 70% depletion of available water). Irrigation system was dripping irrigation system (Tape) in this study. These solutions were sprayed overhead three times in two-week intervals on foliage parts of sugar beet. Results of this experiment indicated that there was a significant difference between effects of solutions on root yield, leaf yield, white sugar yield, molasses, white sugar content, N and Na concentrations. The best of root yield, leaf yield and white sugar yield was gained in 7% (v/v) of methanol with 76.62, 61.72 and 9.91(ton/h), respectively. There was also significant difference among three levels of irrigations on root yield, leaf yield, sugar content and K and N concentrations of white sugar content.

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

J. Bio. & Env. Sci. 2014<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Biodiversity <strong>and</strong> Envir<strong>on</strong>mental Sciences (JBES)<br />

ISSN: 2220-6663 (Pr<strong>in</strong>t) 2222-3045 (Onl<strong>in</strong>e)<br />

Vol. 4, No. 3, p. 239-245, 2014<br />

http://www.<strong>in</strong>nspub.net<br />

RESEARCH PAPER<br />

OPEN ACCESS<br />

<str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>methanol</str<strong>on</strong>g> <strong>on</strong> <strong>yield</strong> <strong>and</strong> <strong>some</strong> <strong>quality</strong> <strong>characteristic</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>sugar</strong> <strong>beet</strong> (<strong>Beta</strong> <strong>vulgaris</strong> L.) <strong>in</strong> <strong>drought</strong> <strong>stress</strong> c<strong>on</strong>diti<strong>on</strong><br />

I. Nadali 1* , M. Yarnia1, F. Paknejad 2 , F. Farahvash1, S. Vazan 2<br />

1<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agr<strong>on</strong>omy <strong>and</strong> Plant Breed<strong>in</strong>g, Islamic Azad University Tabriz Branch, Iran<br />

2<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agr<strong>on</strong>omy <strong>and</strong> Plant Breed<strong>in</strong>g, Islamic Azad University Karaj Branch, Iran<br />

Article published <strong>on</strong> March 15, 2014<br />

Key words: Sugar <strong>beet</strong>, <str<strong>on</strong>g>methanol</str<strong>on</strong>g>, root <strong>yield</strong>, white <strong>sugar</strong> <strong>yield</strong> <strong>and</strong> <strong>drought</strong> <strong>stress</strong>.<br />

Abstract<br />

A study was c<strong>on</strong>ducted to evaluate the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Methanol <strong>on</strong> <strong>yield</strong> <strong>and</strong> <strong>some</strong> Quality Characteristic <str<strong>on</strong>g>of</str<strong>on</strong>g> Sugar Beet<br />

(<strong>Beta</strong> <strong>vulgaris</strong> L.) <strong>in</strong> <strong>drought</strong> <strong>stress</strong> c<strong>on</strong>diti<strong>on</strong> <strong>in</strong> Maahdasht (Karaj, Iran), <strong>in</strong> 2012. Aqueous soluti<strong>on</strong>s were<br />

0(c<strong>on</strong>trol), 7, 14, 21 <strong>and</strong> 28 (v/v) <str<strong>on</strong>g>methanol</str<strong>on</strong>g>. Sec<strong>on</strong>d factor was irrigati<strong>on</strong> regime 1.normal irrigati<strong>on</strong> (irrigati<strong>on</strong><br />

after 40% depleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> available water), 2.mild <strong>drought</strong> <strong>stress</strong> (irrigati<strong>on</strong> after 60% depleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> available water)<br />

<strong>and</strong> 3.severe <strong>drought</strong> <strong>stress</strong> (irrigati<strong>on</strong> after 70% depleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> available water). Irrigati<strong>on</strong> system was dripp<strong>in</strong>g<br />

irrigati<strong>on</strong> system (Tape) <strong>in</strong> this study. These soluti<strong>on</strong>s were sprayed overhead three times <strong>in</strong> two-week <strong>in</strong>tervals<br />

<strong>on</strong> foliage parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>sugar</strong> <strong>beet</strong>. Results <str<strong>on</strong>g>of</str<strong>on</strong>g> this experiment <strong>in</strong>dicated that there was a significant difference between<br />

effects <str<strong>on</strong>g>of</str<strong>on</strong>g> soluti<strong>on</strong>s <strong>on</strong> root <strong>yield</strong>, leaf <strong>yield</strong>, white <strong>sugar</strong> <strong>yield</strong>, molasses, white <strong>sugar</strong> c<strong>on</strong>tent, N <strong>and</strong> Na<br />

c<strong>on</strong>centrati<strong>on</strong>s. The best <str<strong>on</strong>g>of</str<strong>on</strong>g> root <strong>yield</strong>, leaf <strong>yield</strong> <strong>and</strong> white <strong>sugar</strong> <strong>yield</strong> was ga<strong>in</strong>ed <strong>in</strong> 7% (v/v) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>methanol</str<strong>on</strong>g> with<br />

76.62, 61.72 <strong>and</strong> 9.91(t<strong>on</strong>/h), respectively. There was also significant difference am<strong>on</strong>g three levels <str<strong>on</strong>g>of</str<strong>on</strong>g> irrigati<strong>on</strong>s<br />

<strong>on</strong> root <strong>yield</strong>, leaf <strong>yield</strong>, <strong>sugar</strong> c<strong>on</strong>tent <strong>and</strong> K <strong>and</strong> N c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> white <strong>sugar</strong> c<strong>on</strong>tent.<br />

* Corresp<strong>on</strong>d<strong>in</strong>g Author: I. Nadali imnadal@ymail.com<br />

239 | Nadali et al


J. Bio. & Env. Sci. 2014<br />

Introducti<strong>on</strong><br />

Stress is an altered physiological c<strong>on</strong>diti<strong>on</strong> by factors<br />

that tends to disrupt the equilibrium, such as <strong>drought</strong><br />

<strong>stress</strong>. Drought is a meteorological term comm<strong>on</strong>ly<br />

def<strong>in</strong>ed as a period without significant ra<strong>in</strong>fall (Ober,<br />

2001). Around <strong>on</strong>e third <str<strong>on</strong>g>of</str<strong>on</strong>g> cultivable l<strong>and</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

world encounter water shortage <strong>and</strong> recently it has<br />

been reported that <strong>drought</strong> <strong>stress</strong> is the ma<strong>in</strong> factor <strong>in</strong><br />

reduc<strong>in</strong>g the <strong>quality</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>sugar</strong> <strong>beet</strong> (Clover et al.,<br />

1998). Although <strong>sugar</strong> <strong>beet</strong> is resistant aga<strong>in</strong>st<br />

<strong>drought</strong> <strong>stress</strong> but to reach high productivity,<br />

researchers have c<strong>on</strong>sidered <strong>some</strong> acti<strong>on</strong>s to reduce<br />

<strong>drought</strong> <strong>stress</strong> (Hsiao, 2000). Most <str<strong>on</strong>g>of</str<strong>on</strong>g> these acti<strong>on</strong>s<br />

are focused to f<strong>in</strong>d the ways to reduce transpirati<strong>on</strong> <strong>in</strong><br />

order to ma<strong>in</strong>ta<strong>in</strong> stability <str<strong>on</strong>g>of</str<strong>on</strong>g> Co2 <strong>and</strong> reduce<br />

photorespirati<strong>on</strong> <strong>in</strong> <strong>drought</strong> <strong>stress</strong> c<strong>on</strong>diti<strong>on</strong>.<br />

Accord<strong>in</strong>g to Zbiec et al. (2003) <strong>in</strong>creas<strong>in</strong>g density <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Co2 can neutralize the effects resulted by <strong>drought</strong><br />

<strong>stress</strong>, so apply<strong>in</strong>g materials to <strong>in</strong>crease Co2’s density<br />

<strong>in</strong> plants eventually stabilizes the <strong>yield</strong> <strong>in</strong> <strong>drought</strong><br />

c<strong>on</strong>diti<strong>on</strong>s. One <str<strong>on</strong>g>of</str<strong>on</strong>g> the soluti<strong>on</strong>s to <strong>in</strong>crease Co2’s<br />

density <strong>in</strong> the plants is us<strong>in</strong>g the compounds such as<br />

<str<strong>on</strong>g>methanol</str<strong>on</strong>g>, ethanol, propanol, butanol <strong>and</strong> also us<strong>in</strong>g<br />

Am<strong>in</strong>o acids as glyc<strong>in</strong>e, glutamate <strong>and</strong> aspartate<br />

(N<strong>on</strong>omura, 1992). It should be noted that <str<strong>on</strong>g>methanol</str<strong>on</strong>g><br />

is comm<strong>on</strong> for plants because it is the simplest plant<br />

products, which is produced <strong>in</strong>side the plant (Fall et<br />

al., 1996). This organic compound escapes from the<br />

leaves via stomata or it is metabolized by plant tissues<br />

<strong>and</strong> becomes Co2 for plant’s c<strong>on</strong>sumpti<strong>on</strong> (Gout et al.,<br />

2000). Methanol's applicati<strong>on</strong> causes to produce Co2<br />

<strong>in</strong> the leaves <strong>and</strong> <strong>in</strong>creases photosynthesis so it can be<br />

used as carb<strong>on</strong>’s source (Zbiec et al., 1999). Foliar<br />

applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>methanol</str<strong>on</strong>g> can <strong>in</strong>crease activity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

nitrate reductase <strong>and</strong> alkal<strong>in</strong>e phosphatase <strong>in</strong> leaves<br />

(Zbieć et al., 1999). Andres et al. (1990) studied the<br />

effects <str<strong>on</strong>g>of</str<strong>on</strong>g> alcohols (<str<strong>on</strong>g>methanol</str<strong>on</strong>g>, ethanol, propanol,<br />

butanol) <strong>on</strong> the associati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the thylakoid<br />

membrane with fructose-1,6-bisphosphatase<br />

(FBPase), <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the pr<strong>in</strong>cipal enzymes c<strong>on</strong>troll<strong>in</strong>g is<br />

the activity <str<strong>on</strong>g>of</str<strong>on</strong>g> the photosynthetic carb<strong>on</strong> reducti<strong>on</strong><br />

cycle. The most important advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>methanol</str<strong>on</strong>g> is<br />

prevent<strong>in</strong>g <strong>and</strong> reduc<strong>in</strong>g <strong>in</strong>ducted <strong>stress</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g> plants<br />

dur<strong>in</strong>g their photorespirati<strong>on</strong> (N<strong>on</strong>omura et al.,<br />

1992).<br />

Under <strong>drought</strong> <strong>stress</strong> c<strong>on</strong>diti<strong>on</strong>s due to closeness <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

stomata <strong>and</strong> transpirati<strong>on</strong> rate is reduced <strong>and</strong> Co2<br />

cannot enter <strong>in</strong>to the leaves. Zbiec et al (1999)<br />

<strong>in</strong>dicated that the reas<strong>on</strong> for reduc<strong>in</strong>g photosynthesis<br />

<strong>in</strong> plants treated with <str<strong>on</strong>g>methanol</str<strong>on</strong>g> is rapid oxidati<strong>on</strong><br />

<str<strong>on</strong>g>methanol</str<strong>on</strong>g> to Co2 <strong>and</strong> its comb<strong>in</strong>ati<strong>on</strong> with ribulose 5-<br />

1- diphosphate <strong>and</strong> elim<strong>in</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen exchange.<br />

Methanol causes the delay <str<strong>on</strong>g>of</str<strong>on</strong>g> senescence <strong>in</strong> leaves <strong>and</strong><br />

<strong>in</strong>fluences <strong>on</strong> ethylene producti<strong>on</strong> <strong>in</strong> plant, which<br />

causes the <strong>in</strong>crease photosynthesis activity. Zbiec et al<br />

(2003) reported <strong>in</strong>creas<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> 10% root <strong>yield</strong> <strong>on</strong> <strong>sugar</strong><br />

<strong>beet</strong> <strong>in</strong> 20 <strong>and</strong> 30% (v/v) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>methanol</str<strong>on</strong>g>, meanwhile<br />

Makhdum et al (2002) reported that <str<strong>on</strong>g>methanol</str<strong>on</strong>g> has<br />

caused the <strong>in</strong>crease cott<strong>on</strong> leaf's surface. A bacterium<br />

exists named Methyltrophic bacteria. These bacteria<br />

are capable to grow <strong>on</strong> <str<strong>on</strong>g>methanol</str<strong>on</strong>g> <strong>and</strong> generate plant<br />

growth regulators such as aux<strong>in</strong> <strong>and</strong> cytok<strong>in</strong><strong>in</strong> (Lee et<br />

al., 2006). Weather is the most important external<br />

factor <strong>in</strong>fluenc<strong>in</strong>g <strong>on</strong> <strong>yield</strong> <strong>and</strong> technologic <strong>quality</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>sugar</strong> <strong>beet</strong>. Humidity restricti<strong>on</strong> <strong>in</strong> the soil causes the<br />

decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> leaf's surface <strong>and</strong> eventually<br />

photosynthesis <strong>and</strong> f<strong>in</strong>ally reduces root <strong>yield</strong> (Cooke<br />

at al., 1993). Accord<strong>in</strong>g to <strong>some</strong> reports, <strong>drought</strong><br />

<strong>stress</strong> caused root <strong>yield</strong> decrease <strong>and</strong> white <strong>sugar</strong><br />

<strong>yield</strong> (Bazza et al., 1993). Water shortage <strong>and</strong> high<br />

temperature <strong>in</strong> additi<strong>on</strong> to reduc<strong>in</strong>g growth cause the<br />

<strong>in</strong>crease <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>sugar</strong> <strong>in</strong> the root (Abdollahian-noghabi et<br />

al., 1998). Impos<strong>in</strong>g <strong>drought</strong> <strong>stress</strong> at the end <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

growth seas<strong>on</strong> causes the density <strong>in</strong>crease <str<strong>on</strong>g>of</str<strong>on</strong>g> root's<br />

impurities particularly potassium, nitrogen <strong>and</strong><br />

sodium <strong>and</strong> f<strong>in</strong>ally causes the <strong>in</strong>crease molasses<br />

(Ober, 2001). Clover et al (1998) reported that los<strong>in</strong>g<br />

water through roots <strong>and</strong> smallness <str<strong>on</strong>g>of</str<strong>on</strong>g> roots caused to<br />

<strong>in</strong>creas<strong>in</strong>g <strong>sugar</strong> level <strong>in</strong> <strong>drought</strong> <strong>stress</strong> c<strong>on</strong>diti<strong>on</strong>.<br />

Some other reas<strong>on</strong>s <strong>in</strong>clude break<strong>in</strong>g down <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

polysaccharide <strong>and</strong> c<strong>on</strong>vert<strong>in</strong>g to m<strong>on</strong>osaccharide<br />

<strong>and</strong> f<strong>in</strong>ally <strong>in</strong>creas<strong>in</strong>g density <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>sugar</strong>s <strong>in</strong> the cell<br />

(Cooke at al., 1993).<br />

The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> this research <strong>in</strong>cludes effects assess<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

foliar applicati<strong>on</strong> <strong>in</strong> <str<strong>on</strong>g>methanol</str<strong>on</strong>g> <strong>and</strong> <strong>drought</strong> <strong>stress</strong> <strong>on</strong><br />

240 | Nadali et al


J. Bio. & Env. Sci. 2014<br />

root <strong>yield</strong>, leaf <strong>yield</strong>, <strong>sugar</strong> c<strong>on</strong>tent, sodium,<br />

potassium, nitrogen c<strong>on</strong>centrati<strong>on</strong>, molasses, white<br />

<strong>sugar</strong> c<strong>on</strong>tent <strong>and</strong> white <strong>sugar</strong> <strong>yield</strong>. As far as<br />

<str<strong>on</strong>g>methanol</str<strong>on</strong>g> acts as a C source for C3 crops to enhance<br />

<strong>yield</strong>, the ma<strong>in</strong> objectives <str<strong>on</strong>g>of</str<strong>on</strong>g> our experiments 1.) To<br />

evaluate the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> foliar applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>methanol</str<strong>on</strong>g> <strong>on</strong><br />

the root <strong>yield</strong>, leaf <strong>yield</strong>, white <strong>sugar</strong> <strong>yield</strong>, <strong>sugar</strong> <strong>yield</strong><br />

<strong>and</strong> <strong>some</strong> <strong>quality</strong> properties 2.) Determ<strong>in</strong>e the<br />

efficacious alcohol c<strong>on</strong>centrati<strong>on</strong> for foliar applicati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>methanol</str<strong>on</strong>g>.<br />

Materials <strong>and</strong> methods<br />

Field c<strong>on</strong>diti<strong>on</strong>s<br />

This research was c<strong>on</strong>ducted <strong>in</strong> a research farm <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Islamic Azad university <str<strong>on</strong>g>of</str<strong>on</strong>g> Karaj, Iran (35 45’ N <strong>and</strong><br />

51 o 56’ E, 1160 M) dur<strong>in</strong>g 2012-2013 growth seas<strong>on</strong>.<br />

The plant<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>sugar</strong> <strong>beet</strong> was carried out <strong>in</strong> early<br />

may <strong>on</strong> s<strong>and</strong>y loam soil with an electrical c<strong>on</strong>ductivity<br />

(EC) <str<strong>on</strong>g>of</str<strong>on</strong>g> 4.28 dSm -1 <strong>and</strong> pH <str<strong>on</strong>g>of</str<strong>on</strong>g> 7.91.<br />

Experimental design <strong>and</strong> plant material<br />

Treatments arranged as split-plot experiment based<br />

<strong>on</strong> a r<strong>and</strong>omized completely block design (RCBD)<br />

with 3 replicati<strong>on</strong>s. Studied factorials <strong>in</strong>cluded<br />

0(c<strong>on</strong>trol), 7, 14, 21<strong>and</strong> 28 (v/v) <str<strong>on</strong>g>methanol</str<strong>on</strong>g>, Plots<br />

related to c<strong>on</strong>trol treatments were sprayed with water<br />

at the time <str<strong>on</strong>g>of</str<strong>on</strong>g> foliar applicati<strong>on</strong>. The sec<strong>on</strong>d factor<br />

was normal irrigati<strong>on</strong> (irrigati<strong>on</strong> after 40% depleti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> available water), mild <strong>drought</strong> <strong>stress</strong> (irrigati<strong>on</strong><br />

after 60% depleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> available water) <strong>and</strong> severe<br />

<strong>drought</strong> <strong>stress</strong> (irrigati<strong>on</strong> after 70% depleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

available water). Irrigati<strong>on</strong> system was dripp<strong>in</strong>g<br />

(Tape) <strong>in</strong> this study. Soil moisture c<strong>on</strong>tent was<br />

determ<strong>in</strong>ed us<strong>in</strong>g chalk blocks based <strong>on</strong> humidity<br />

dra<strong>in</strong>age <str<strong>on</strong>g>of</str<strong>on</strong>g> the field. Blocks were studied by Paknejad<br />

et al (2007) <strong>in</strong> this farm. S<strong>in</strong>ce that <strong>sugar</strong> <strong>beet</strong> is<br />

sensitive to envir<strong>on</strong>mental <strong>stress</strong>es such as <strong>drought</strong><br />

<strong>stress</strong> so Irrigati<strong>on</strong> was d<strong>on</strong>e enough from<br />

germ<strong>in</strong>ati<strong>on</strong> stage to perfectly stabilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> plant<br />

<strong>and</strong> after 8 leaf stages due to depleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moisture,<br />

<strong>drought</strong> <strong>stress</strong> treatment was imposed.<br />

Methanol applicati<strong>on</strong><br />

Methanol soluti<strong>on</strong>s were sprayed overhead three<br />

times <strong>in</strong> two-week <strong>in</strong>tervals <strong>on</strong> foliage parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>sugar</strong><br />

<strong>beet</strong>. The first foliar applicati<strong>on</strong> was applied dur<strong>in</strong>g<br />

80 days after plant<strong>in</strong>g. These treatments were applied<br />

<strong>on</strong> july 19 th , August 2 nd <strong>and</strong> August 17 th , between<br />

14:00 pm to 16:00 pm dur<strong>in</strong>g bright sunny days at<br />

hot temperature. Spray<strong>in</strong>g foliage was c<strong>on</strong>t<strong>in</strong>ued until<br />

flow<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> soluti<strong>on</strong> drops.<br />

Sow<strong>in</strong>g operati<strong>on</strong> until harvest<strong>in</strong>g<br />

The plant<strong>in</strong>g density was approximately 10 plant m-2<br />

with the rows 50 cm apart. Plots were 7.5 m <strong>in</strong> width<br />

<strong>and</strong> 5m <strong>in</strong> length <strong>in</strong> each replicati<strong>on</strong>. The<br />

experimental field received 150 kg P2O5 h -1 , two third<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> which was applied dur<strong>in</strong>g deep plough <strong>in</strong> autumn<br />

<strong>and</strong> rema<strong>in</strong>der <strong>in</strong> spr<strong>in</strong>g prior to disk harrow<strong>in</strong>g.<br />

Nitrogen fertilizer was applied at a rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 150 kg N h -1<br />

<strong>in</strong> the form <str<strong>on</strong>g>of</str<strong>on</strong>g> urea, the first half <str<strong>on</strong>g>of</str<strong>on</strong>g> which dur<strong>in</strong>g<br />

harrow<strong>in</strong>g <strong>in</strong> spr<strong>in</strong>g <strong>and</strong> the rema<strong>in</strong><strong>in</strong>g half before<br />

hoe<strong>in</strong>g when the plants reached the six-leaf stage.<br />

Weeds were c<strong>on</strong>trolled by h<strong>and</strong> weed<strong>in</strong>g when<br />

necessary. F<strong>in</strong>al harvest<strong>in</strong>g was c<strong>on</strong>ducted <strong>on</strong> 17 Nov<br />

2012 with ignor<strong>in</strong>g a meter from each plant<strong>in</strong>g l<strong>in</strong>e <strong>in</strong><br />

3.6 meter square.<br />

Lab analysis<br />

The obta<strong>in</strong>ed roots <str<strong>on</strong>g>of</str<strong>on</strong>g> each plot were washed <strong>and</strong> after<br />

weigh<strong>in</strong>g they were placed <strong>in</strong> special dishes r<strong>and</strong>omly<br />

after cover<strong>in</strong>g trays by nyl<strong>on</strong> cover they were<br />

transferred to freezer immediately <strong>and</strong> kept <strong>in</strong> -20 o C<br />

until time <str<strong>on</strong>g>of</str<strong>on</strong>g> qualitative analysis. Each paste sample<br />

was placed <strong>in</strong> 20 c to perform qualitative analysis<br />

<strong>and</strong> after thaw<strong>in</strong>g, 26 g paste from each sample with<br />

177 m.lit so stat lead were mixed for three m<strong>in</strong>utes.<br />

Limpid syrup was obta<strong>in</strong>ed After transferr<strong>in</strong>g mixture<br />

to funnel. In the obta<strong>in</strong>ed syrup, <strong>sugar</strong> c<strong>on</strong>tent was<br />

measured by polarymetery method by sodium <strong>and</strong><br />

potassium saccharide meter device by liquid digit<br />

betalizer device (Clover et al., 1998). As for density <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

impurities <strong>in</strong> white <strong>sugar</strong> c<strong>on</strong>tent per gram <strong>sugar</strong> <strong>in</strong><br />

100 gram <strong>sugar</strong> <strong>beet</strong> <strong>and</strong> percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> Molasses<br />

<strong>sugar</strong> per gram <strong>sugar</strong> <strong>in</strong> 100 gram <strong>sugar</strong> <strong>beet</strong> were<br />

estimated by follow<strong>in</strong>g equati<strong>on</strong>:<br />

White <strong>sugar</strong> c<strong>on</strong>tent(%) = <strong>sugar</strong> c<strong>on</strong>tent(%) –<br />

(Molasses+ 0.6)<br />

241 | Nadali et al


J. Bio. & Env. Sci. 2014<br />

Sugar wastage was estimated as 0.6 <strong>in</strong> <strong>sugar</strong> factory.<br />

Also, the white <strong>sugar</strong> <strong>yield</strong> was measured by these<br />

equati<strong>on</strong>s:<br />

White <strong>sugar</strong> <strong>yield</strong> (t/ha) = root <strong>yield</strong> (t<strong>on</strong> [fresh<br />

weight]/ha) ×white <strong>sugar</strong> c<strong>on</strong>tent (%).<br />

Molasses Amount is estimated based <strong>on</strong> potassium<br />

sodium <strong>and</strong> Nitrogen by <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the most comm<strong>on</strong><br />

experimental formulas gathered.<br />

Statistical analysis<br />

The SAS was used to analyze all the data <strong>and</strong> means<br />

were compared by the least significant differences<br />

(LSD) test at 0.05 probability level.<br />

Results <strong>and</strong> Discussi<strong>on</strong><br />

Study<strong>in</strong>g <str<strong>on</strong>g>methanol</str<strong>on</strong>g>’s effect <strong>on</strong> qualitative <strong>and</strong><br />

quantitative properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>sugar</strong> <strong>beet</strong><br />

The results <str<strong>on</strong>g>of</str<strong>on</strong>g> variance analysis showed that there<br />

were significant differences (p


J. Bio. & Env. Sci. 2014<br />

bel<strong>on</strong>gs to level <str<strong>on</strong>g>of</str<strong>on</strong>g> 7% (v/v) (Table, 2). Plants after<br />

<str<strong>on</strong>g>methanol</str<strong>on</strong>g> applicati<strong>on</strong> tend to absorb<strong>in</strong>g the elements<br />

such as N, K, NA ( Zbiec et al., 2003), as far as<br />

nitrogen has the best effects <strong>on</strong> plants growth, it<br />

seems that nitrogen absorpti<strong>on</strong> is preferred to sodium<br />

absorpti<strong>on</strong> for growth <strong>and</strong> level <str<strong>on</strong>g>of</str<strong>on</strong>g> 7% (v/v) had the<br />

maximum nitrogen <strong>and</strong> the m<strong>in</strong>imum sodium. As<br />

shown <strong>in</strong> table 1 there was a significant difference<br />

(p


J. Bio. & Env. Sci. 2014<br />

Table 2. Comparis<strong>on</strong> means for quantitative <strong>and</strong> <strong>quality</strong> traits <strong>in</strong> <strong>sugar</strong> <strong>beet</strong>.<br />

Treatment<br />

C<strong>on</strong>trol<br />

7%<br />

21%<br />

28%<br />

35%<br />

WHITE<br />

SUGAR<br />

YIELD<br />

6.74b<br />

9.91a<br />

8.68a<br />

8.66a<br />

8.64a<br />

WHITE<br />

SUGAR<br />

MOLASSES CONTENT<br />

(%) (%)<br />

4.006a<br />

3.54ab<br />

3.26b<br />

3.61ab<br />

3.4b<br />

10.75b<br />

12.96a<br />

12.77a<br />

12.11ab<br />

12.43ab<br />

N<br />

(meq.<br />

100 g<br />

<strong>sugar</strong> -1 )<br />

1.9c<br />

2.83a<br />

2.81ab<br />

2.05bc<br />

2.12abc<br />

K<br />

(meq. 100 g<br />

<strong>sugar</strong> -1 )<br />

METHANOL<br />

5.4a<br />

5.48a<br />

5.26a<br />

5.4a<br />

5.3a<br />

IRRIGATION<br />

Na<br />

(meq.<br />

100 g<br />

<strong>sugar</strong> -1 )<br />

6.61a<br />

4.37b<br />

5.034b<br />

5.47ab<br />

4.95b<br />

SUGAR<br />

CONTENT<br />

(%)<br />

15.48a<br />

17.15a<br />

16.62a<br />

16.37a<br />

16.49a<br />

SHOOT<br />

YILED<br />

(T/ha)<br />

49.29c<br />

61.72a<br />

52.88bc<br />

57.44ab<br />

56.27ab<br />

ROOT<br />

YIELD<br />

(T/ha)<br />

61.33c<br />

76.62a<br />

68.05bc<br />

73.03ab<br />

69.48ab<br />

Normal<br />

9.03a<br />

3.73a<br />

11.094b<br />

2.039b<br />

5.11b<br />

5.58a<br />

15.46b<br />

65.95a<br />

80.13a<br />

Mild<br />

<strong>drought</strong><br />

<strong>stress</strong><br />

8.07a<br />

3.49a<br />

12.25ab<br />

2b<br />

5.33ab<br />

5.38a<br />

16.33ab<br />

49.2b<br />

65.11b<br />

Severe<br />

<strong>drought</strong><br />

<strong>stress</strong> 8.47a 3.46a 13.2a 2.99a 5.66a 4.9a 17.5a 51.4b 63.8b<br />

Means, <strong>in</strong> each column <strong>and</strong> for each factor, followed by at least <strong>on</strong>e letter <strong>in</strong> comm<strong>on</strong> are not significantly<br />

different at the 5% probability level-us<strong>in</strong>g LSD test.<br />

Study<strong>in</strong>g effect <str<strong>on</strong>g>of</str<strong>on</strong>g> irrigati<strong>on</strong> levels <strong>on</strong> qualitative <strong>and</strong><br />

quantitative properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>sugar</strong> <strong>beet</strong><br />

The result <str<strong>on</strong>g>of</str<strong>on</strong>g> variance analysis showed that (table, 1)<br />

there was significant difference am<strong>on</strong>g normal levels,<br />

mild <strong>drought</strong> <strong>stress</strong> <strong>and</strong> severe <strong>drought</strong> <strong>stress</strong> <strong>on</strong> root<br />

<strong>yield</strong> (p


J. Bio. & Env. Sci. 2014<br />

break<strong>in</strong>g polysaccharide <strong>and</strong> c<strong>on</strong>vert<strong>in</strong>g to<br />

m<strong>on</strong>osaccharide <strong>and</strong> eventually <strong>in</strong>creas<strong>in</strong>g <strong>sugar</strong><br />

materials density <strong>in</strong> the cell ma<strong>in</strong>ta<strong>in</strong> the osmotic<br />

adjustment (Cook et al, 1993). Nitrogen <strong>and</strong><br />

potassium amounts showed significant difference<br />

between severe <strong>drought</strong> <strong>stress</strong>, mild <strong>drought</strong> <strong>stress</strong><br />

<strong>and</strong> normal levels (Table, 1). Results showed that the<br />

optimum Nitrogen <strong>and</strong> potassium amounts were<br />

observed at the severe <strong>drought</strong> <strong>stress</strong> (Table, 2).<br />

Usually <strong>in</strong> the <strong>drought</strong> <strong>stress</strong> c<strong>on</strong>diti<strong>on</strong>s, the<br />

impurities <str<strong>on</strong>g>of</str<strong>on</strong>g> root will <strong>in</strong>crease to ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g turgor<br />

by osmotic adjustment (Smith et al., 1977). Rates <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

sodium for irrigati<strong>on</strong> levels did not show significant<br />

difference (Table, 1). Accord<strong>in</strong>g to table 2 white <strong>sugar</strong><br />

c<strong>on</strong>tent was <strong>in</strong>creased With lower<strong>in</strong>g water c<strong>on</strong>tent<br />

<strong>and</strong> under severe <strong>drought</strong> <strong>stress</strong> c<strong>on</strong>diti<strong>on</strong>s <strong>and</strong> this<br />

property was significant am<strong>on</strong>g normal, mild <strong>and</strong><br />

severe <strong>drought</strong> <strong>stress</strong> levels(p

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!