07.02.2017 Views

Evaluation of the effects of climate change on meteorological and hydrological parameters using climatic models and Mann – Kendall test (case study: Urmia Lake)

Abstract Climate change and increase of global temperature are important environmental issues on which various studies have been conducted in recent years. This issue has a high importance due to environmental, economic and social impacts because, human activities are based on climate stability. In this article, effects of climate change on meteorological and hydrological parameters of Urmia Lake watershed have been investigated and forecasted for period 2010-2100. In order to forecast meteorological parameters, Atmosphere General Circulation Model was used. Temperature, precipitation and evaporation data were downscaled and calibrated using LARS software by SDSM model and observed data. In continue, Artificial Neural Network (ANN) was used to simulate model of precipitation to runoff. The models outputs mostly showed increase of temperature and evaporation and decrease of precipitation in future periods. Also, the results of Mann-Kendall indicated that, climate change and global warming is not significant on long-term trend of hydrological factors affecting Urmia Lake. Therefore, the factors of rapid reduction of the lake water level in recent years should be explored among climatic fluctuations such as wet and drought, and human factors such as dam constructing, uncontrolled extraction of groundwater and unsuitable irrigation methods.

Abstract
Climate change and increase of global temperature are important environmental issues on which various studies have been conducted in recent years. This issue has a high importance due to environmental, economic and social impacts because, human activities are based on climate stability. In this article, effects of climate change on meteorological and hydrological parameters of Urmia Lake watershed have been investigated and forecasted for period 2010-2100. In order to forecast meteorological parameters, Atmosphere General Circulation Model was used. Temperature, precipitation and evaporation data were downscaled and calibrated using LARS software by SDSM model and observed data. In continue, Artificial Neural Network (ANN) was used to simulate model of precipitation to runoff. The models outputs mostly showed increase of temperature and evaporation and decrease of precipitation in future periods. Also, the results of Mann-Kendall indicated that, climate change and global warming is not significant on long-term trend of hydrological factors affecting Urmia Lake. Therefore, the factors of rapid reduction of the lake water level in recent years should be explored among climatic fluctuations such as wet and drought, and human factors such as dam constructing, uncontrolled extraction of groundwater and unsuitable irrigation methods.

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

J. Bio. & Env. Sci. 2014<br />

temperature in <str<strong>on</strong>g>the</str<strong>on</strong>g> observati<strong>on</strong> period (1961-2001)<br />

<strong>and</strong> its mean value in <str<strong>on</strong>g>the</str<strong>on</strong>g> predicti<strong>on</strong> period (2010-<br />

2100) have been shown in Table (3), (4) <strong>and</strong> (6). The<br />

difference between <str<strong>on</strong>g>the</str<strong>on</strong>g>se values represents<br />

temperature variati<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> future.<br />

Precipitati<strong>on</strong><br />

Table (7) presents <str<strong>on</strong>g>the</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Mann</strong>-<strong>Kendall</strong> <strong>test</strong><br />

for m<strong>on</strong>thly <strong>and</strong> annual mean precipitati<strong>on</strong> in two<br />

index synoptic stati<strong>on</strong>s. The results show that, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

stati<strong>on</strong>s have descending trend or no trend. Mean<br />

values <str<strong>on</strong>g>of</str<strong>on</strong>g> precipitati<strong>on</strong> in observati<strong>on</strong>s <strong>and</strong><br />

predicti<strong>on</strong>s period have been presented in Fig.5 <strong>and</strong><br />

Table (8).<br />

Table 3. Results <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Mann</strong>-<strong>Kendall</strong> (for c<strong>on</strong>fidence level <str<strong>on</strong>g>of</str<strong>on</strong>g> 95%).<br />

Time series<br />

Autocorrelati<strong>on</strong><br />

Zs<br />

Possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> significant trend<br />

coefficient<br />

existence level<br />

Mean water level <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> lake<br />

0.82<br />

-0.17<br />

Yes<br />

Mean precipitati<strong>on</strong> height <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> lake<br />

0.3<br />

-0.22<br />

No<br />

Mean surface inflow<br />

0.17<br />

-2.2<br />

Yes<br />

Mean precipitati<strong>on</strong> volume <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> lake<br />

0.3<br />

-1.9<br />

Yes<br />

Mean evaporati<strong>on</strong> height from <str<strong>on</strong>g>the</str<strong>on</strong>g> pan<br />

0.48<br />

-3.4<br />

Yes<br />

Mean evaporati<strong>on</strong> height from <str<strong>on</strong>g>the</str<strong>on</strong>g> lake<br />

0.68<br />

-2.7<br />

Yes<br />

<strong>Lake</strong> volume variati<strong>on</strong>s<br />

0.74<br />

-0.6<br />

No<br />

Temperature variati<strong>on</strong>s<br />

0.43<br />

2.6<br />

Yes<br />

Table 4. Results <str<strong>on</strong>g>of</str<strong>on</strong>g> linear regressi<strong>on</strong> <strong>test</strong>.<br />

Time series<br />

Regressi<strong>on</strong> equati<strong>on</strong><br />

Gradient in c<strong>on</strong>fidence P value<br />

R2<br />

range <str<strong>on</strong>g>of</str<strong>on</strong>g> 90%<br />

Mean water level <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> lake<br />

Y= -8/<br />

8X<br />

+ 4830<br />

- 8/8 ،8/88<br />

8 /838<br />

0 /1%<br />

Mean precipitati<strong>on</strong> height <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> lake<br />

low<br />

Mean surface inflow<br />

Y= -8/<br />

43X<br />

+ 838<br />

- 8/43 ،4/88<br />

8 /08<br />

8 /84%<br />

Mean precipitati<strong>on</strong> volume <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> lake<br />

low<br />

Mean evaporati<strong>on</strong> height from <str<strong>on</strong>g>the</str<strong>on</strong>g> pan<br />

Y= -03/<br />

8X<br />

+ 48880<br />

- 03/8 ،28/8<br />

8 /880<br />

48 /1%<br />

Mean evaporati<strong>on</strong> height from <str<strong>on</strong>g>the</str<strong>on</strong>g> lake<br />

high<br />

<strong>Lake</strong> volume variati<strong>on</strong>s<br />

Y= -1/<br />

38X<br />

+ 4110<br />

- 1/38 ،0/2<br />

8 /80<br />

8 /4%<br />

low<br />

Mean water level <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> lake<br />

Y= -3/<br />

8X<br />

+ 4238<br />

- 3/8 ،8/2<br />

- 3 E 8 /81<br />

88 /4%<br />

Mean precipitati<strong>on</strong> height <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> lake<br />

high<br />

Mean surface inflow<br />

Y= -88/<br />

0X<br />

+ 3313<br />

- 88/0 ،43/8<br />

8 /884<br />

81 /8%<br />

Mean precipitati<strong>on</strong> volume <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> lake<br />

high<br />

Mean evaporati<strong>on</strong> height from <str<strong>on</strong>g>the</str<strong>on</strong>g> pan<br />

Y= -48/<br />

84X<br />

+ 48481<br />

- 48/84 ،48481<br />

8 /30<br />

8 /8%<br />

Mean evaporati<strong>on</strong> height from <str<strong>on</strong>g>the</str<strong>on</strong>g> lake<br />

low<br />

<strong>Lake</strong> volume variati<strong>on</strong>s<br />

Y= -8/<br />

81X<br />

+ 0/82<br />

- 8/81 ،8/88<br />

8 /881<br />

48 /8%<br />

high<br />

Evaporati<strong>on</strong><br />

Table (9) show <str<strong>on</strong>g>the</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Mann</strong>-<strong>Kendall</strong> <strong>test</strong> for<br />

m<strong>on</strong>thly evaporati<strong>on</strong> in index synoptic stati<strong>on</strong>s. The<br />

results show that, <str<strong>on</strong>g>the</str<strong>on</strong>g> stati<strong>on</strong>s have an ascending<br />

trend in <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> evaporati<strong>on</strong>. Mean values <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

evaporati<strong>on</strong> in observati<strong>on</strong> <strong>and</strong> predicti<strong>on</strong> period<br />

have been shown in Fig.6 <strong>and</strong> Table (10).<br />

118 | Khaneshan et al

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!