10.04.2017 Views

Jakob Larson - Summer Research - 2015

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

“Quantifying the Impact of Multi-<br />

Annual Drought on California’s<br />

Agricultural Industry”<br />

<strong>Jakob</strong> P. <strong>Larson</strong> – Class of 2017 –<br />

<strong>2015</strong> <strong>Summer</strong> Science <strong>Research</strong><br />

Program


California is an Agriculture Powerhouse<br />

• 77,900 farms and ranches in<br />

2014<br />

• Exported $46.4 billion<br />

worth of ag products<br />

• The $46.4 billion resembles<br />

14.7% of the Nation’s<br />

agriculture<br />

http://www.cdfa.ca.gov/statistics/<br />

http://nassgeodata.gmu.edu/CropScape/


0.589<br />

2.2<br />

0.01<br />

0.001<br />

Global Water Availability<br />

Salt Water<br />

Glaciers/Icecaps<br />

Ground Water<br />

97.2<br />

Surface Water<br />

Water Vapor


Los<br />

Angeles<br />

Times,<br />

August<br />

2014<br />

New York<br />

Times,<br />

July 2014<br />

Los Angeles<br />

Times, July<br />

2014<br />

Redlands<br />

Daily, January<br />

2014


http://www.ritholtz.com/blog/2014/08/current-reservoir-conditionsin-california/


Folsom Lake<br />

Lake Oroville<br />

https://www.google.com/search?q=lake+oroville+before+and+after&rlz=1C1CHFX_en<br />

US552US552&espv=2&biw=1366&bih=643&source=lnms&tbm=isch&sa=X&ved=0CAY<br />

Q_AUoAWoVChMIornx4PvZxgIV0TOICh2zDQvo#imgrc=WJSm4OGd4FP-uM%3A<br />

http://www.citylab.com/work/2014/02/californias-terrible-drought-explained-one-image/8497/


Controls On Precipitation<br />

El Nino 1997-1998 (Dec.-Feb.)<br />

La Nina 2010-2011 (Dec.-Feb.)


Multi-Annual Drought in Our Future?<br />

El Nino<br />

Conditions<br />

…?<br />

La Nina Conditions<br />

http://www.coolingnews.com/debunk-global-warming-minutes.html


<strong>Research</strong> Questions<br />

• If California’s Water Supply is out of balance, how<br />

much water is being lost each year and where is this<br />

effect most severe?<br />

• A huge amount of our water is devoted to<br />

agriculture, can we identify which crops are the<br />

most water intensive and which are the least?<br />

• Can we reduce California’s water usage to return the<br />

Water Balance equation to a state of equilibrium?


Water Balance Model<br />

• Inflow – Outflow = ΔS<br />

• Inflows: Moisture Supply<br />

▫ Precipitation<br />

▫ Soil Moisture Storage<br />

• Outflows: Moisture Demand<br />

▫ Potential Evapotranspiration<br />

• Temperature + Radiation


Model Inputs (Inflows)<br />

Precipitation (Nov. 2014)<br />

Soil Moisture


Model Inputs (Outflows)<br />

*(P + Previous Year’s<br />

Storage) – ET = ΔS<br />

Temperature<br />

Radiation


Equation<br />

• Inputs = Outputs + (change in) S<br />

• P + Q(in) + GW(in) = E + Q(out) + GW(out) +<br />

(change in) S<br />

• P – E + Q(in) –Q(out) + GW(in) –GW(out) +<br />

(change in) S<br />

• P – ET = (change in) S<br />

Q = Discharge/Flow<br />

GW = Groundwater<br />

*At large scales, Q and GW become<br />

negligible<br />

P = Precipitation<br />

ET = Evapotranspiration<br />

S = Storage


P<br />

ET<br />

Q(in)<br />

GW(in)<br />

S(Storage)<br />

Q(out)<br />

GW(out)<br />

*P – ET = ∆S


Agricultural (and crop) Water Usage<br />

• Calculate for individual crop Kc and ETc<br />

• Determine what crops are highly water intensive and<br />

propose substitutes<br />

• Economically compare substitutes to original crop to<br />

figure price differentials


What Are California’s Main Crops?<br />

Barley<br />

1%<br />

2014 Agriculture<br />

Oranges<br />

3%<br />

Pistachios<br />

Cotton 3%<br />

3%<br />

Tomatoes<br />

4%<br />

Walnuts<br />

5%<br />

Oats<br />

2%<br />

All Other<br />

Crops<br />

10%<br />

Alfalfa<br />

16%<br />

Almonds<br />

15%<br />

Other Hay/Non<br />

Alfalfa<br />

6%<br />

Rice<br />

6%<br />

Corn<br />

6%<br />

Grapes<br />

14%<br />

Wheat<br />

6%


How Much Water Do These Crops Use?<br />

• Evapotranspiration (ET) = E + T<br />

• Crop water need ~f(ETc)<br />

http://water.usgs.gov/edu/watercycleeva<br />

potranspiration.html


Calculating Crop ET<br />

= ET<br />

constant/control<br />

= ET of<br />

specific crop<br />

http://www.fao.org/docrep/s2022e/s2<br />

022e07.htm#3.3.2%20crop%20water%<br />

20need%20calculation%20example


Calculated (weighted) Kc Values for selected major crops<br />

Total<br />

Initial stage<br />

Weighting<br />

factor<br />

Kc Initial<br />

Kc initial<br />

weighted<br />

Crop<br />

Development weighting<br />

stage factor<br />

Kc crop dev.<br />

stage<br />

Kc crop dev.<br />

weighted<br />

Weighting<br />

Mid season stage factor<br />

Kc mid season<br />

initial<br />

Kc mid season<br />

weighted<br />

Late season<br />

stage<br />

Weighting<br />

factor<br />

Kc late season<br />

initial<br />

Kc late season<br />

weighted<br />

Barley/Oats/Wh<br />

eat 120 15 0.13 0.35 0.04 25.00 0.21 0.75 0.16 50.00 0.42 1.15 0.48 30.00 0.25 0.45 0.11<br />

150 15 0.10 0.35 0.04 30.00 0.20 0.75 0.15 65.00 0.43 1.15 0.50 40.00 0.27 0.45 0.12<br />

Bean/dry 95 15 0.16 0.35 0.06 25.00 0.26 0.70 0.18 35.00 0.37 1.10 0.41 20.00 0.21 0.30 0.06<br />

110 20 0.18 0.35 0.06 30.00 0.27 0.70 0.19 40.00 0.36 1.10 0.40 20.00 0.18 0.30 0.05<br />

Cabbage 120 20 0.17 0.45 0.08 25.00 0.21 0.75 0.16 60.00 0.50 1.05 0.53 15.00 0.13 0.90 0.11<br />

140 25 0.18 0.45 0.08 30.00 0.21 0.75 0.16 65.00 0.46 1.05 0.49 20.00 0.14 0.90 0.13<br />

Cotton/Flax 180 30 0.17 0.45 0.08 50.00 0.28 0.75 0.21 55.00 0.31 1.15 0.35 45.00 0.25 0.75 0.19<br />

195 30 0.15 0.45 0.07 50.00 0.26 0.75 0.19 65.00 0.33 1.15 0.38 50.00 0.26 0.75 0.19<br />

ET corn = ET o x K corn<br />

Maize, grain 125 20 0.16 0.40 0.06 35.00 0.28 0.80 0.22 40.00 0.32 1.15 0.37 30.00 0.24 0.70 0.17<br />

180 30 0.17 0.40 0.07 50.00 0.28 0.80 0.22 60.00 0.33 1.15 0.38 40.00 0.22 0.70 0.16<br />

ET corn = 849.7 x 0.77<br />

ET corn = 650mm<br />

Millet 105 15 0.14 0.35 0.05 25.00 0.24 0.70 0.17 40.00 0.38 1.10 0.42 25.00 0.24 0.65 0.15<br />

140 20 0.14 0.35 0.05 30.00 0.21 0.70 0.15 55.00 0.39 1.10 0.43 35.00 0.25 0.65 0.16<br />

Onion/dry 150 15 0.10 0.50 0.05 25.00 0.17 0.75 0.13 70.00 0.47 1.05 0.49 40.00 0.27 0.85 0.23<br />

210 20 0.10 0.50 0.05 35.00 0.17 0.75 0.13 110.00 0.52 1.05 0.55 45.00 0.21 0.85 0.18<br />

Pea 90 15 0.17 0.45 0.08 25.00 0.28 0.80 0.22 35.00 0.39 1.15 0.45 15.00 0.17 1.05 0.18<br />

100 20 0.20 0.45 0.09 30.00 0.30 0.80 0.24 35.00 0.35 1.15 0.40 15.00 0.15 1.05 0.16<br />

Pepper 120 25 0.21 0.35 0.07 35.00 0.29 0.70 0.20 40.00 0.33 1.05 0.35 20.00 0.17 0.90 0.15<br />

210 30 0.14 0.35 0.05 40.00 0.19 0.70 0.13 110.00 0.52 1.05 0.55 30.00 0.14 0.90 0.13<br />

Potato 105 25 0.24 0.45 0.11 30.00 0.29 0.75 0.21 30.00 0.29 1.15 0.33 20.00 0.19 0.85 0.16<br />

145 30 0.21 0.45 0.09 35.00 0.24 0.75 0.18 50.00 0.34 1.15 0.40 30.00 0.21 0.85 0.18<br />

Sorghum 120 20 0.17 0.35 0.06 30.00 0.25 0.75 0.19 40.00 0.33 1.10 0.37 30.00 0.25 0.65 0.16<br />

130 20 0.15 0.35 0.05 35.00 0.27 0.75 0.20 45.00 0.35 1.10 0.38 30.00 0.23 0.65 0.15<br />

Sugarbeet 160 25 0.16 0.45 0.07 35.00 0.22 0.80 0.18 60.00 0.38 1.15 0.43 40.00 0.25 0.80 0.20<br />

230 45 0.20 0.45 0.09 65.00 0.28 0.80 0.23 80.00 0.35 1.15 0.40 40.00 0.17 0.80 0.14<br />

Sunflower 125 20 0.16 0.35 0.06 35.00 0.28 0.75 0.21 45.00 0.36 1.15 0.41 25.00 0.20 0.55 0.11<br />

130 25 0.19 0.35 0.07 35.00 0.27 0.75 0.20 45.00 0.35 1.15 0.40 25.00 0.19 0.55 0.11<br />

Tomato http://www.fao.org/docrep/s2022e/s2022e07.htm#3.3.2%20crop%20water%20need%20calcula<br />

135 30 0.22 0.35 0.08 40.00 0.30 0.75 0.22 40.00 0.30 1.10 0.33 25.00 0.19 0.90 0.17<br />

tion%20example<br />

180 35 0.19 0.35 0.07 45.00 0.25 0.75 0.19 70.00 0.39 1.10 0.43 30.00 0.17 0.90 0.15


Sunflower<br />

Cotton/Flax<br />

Bean/dry<br />

Potato<br />

Pepper<br />

Peas<br />

Sorghum<br />

Maize, grain<br />

Barley/Oats/Wheat<br />

Tomato<br />

Millet<br />

Sugarbeet<br />

Cabbage<br />

Onion/dry<br />

Barley/Oats/Wheat<br />

Maize, grain<br />

Cotton/Flax<br />

Tomato<br />

Sunflower<br />

Sorghum<br />

Sugarbeet<br />

Onion/dry<br />

Potato<br />

Bean/dry<br />

Peas<br />

Pepper<br />

Cabbage<br />

Millet<br />

Water Use By Crop<br />

0.0250<br />

0.0200<br />

0.0150<br />

0.0100<br />

0.0050<br />

0.0000<br />

Crop ET (ft/day)<br />

Total Water Needed Statewide (ft/year)<br />

1,400,000.00<br />

1,200,000.00<br />

1,000,000.00<br />

800,000.00<br />

600,000.00<br />

400,000.00<br />

200,000.00<br />

-<br />

Water<br />

Needed<br />

(ft/day)<br />

Water Needed<br />

(ft/year)


Barley/Oats/Wheat<br />

Maize, grain<br />

Cotton/Flax<br />

Tomato<br />

Sunflower<br />

Sorghum<br />

Sugarbeet<br />

Onion/dry<br />

Potato<br />

Bean/dry<br />

Peas<br />

Pepper<br />

Cabbage<br />

Millet<br />

Water Costs For Select Crops<br />

Statewide (2014)<br />

$2,500,000,000.00<br />

2014 State Water Costs Per Crop<br />

$2,000,000,000.00<br />

$1,500,000,000.00<br />

$1,000,000,000.00<br />

$500,000,000.00<br />

$-<br />

2014 State Water Costs Per<br />

Crop


Substitutes For Corn<br />

Crop Uses Growing<br />

Season<br />

Length<br />

(average)<br />

ET (ft) Per<br />

Day<br />

ET (mm)<br />

Per Season<br />

Number of<br />

Harvests<br />

(yearly)<br />

Corn<br />

Sorghum<br />

Livestock feed,<br />

flour, sillage<br />

(human<br />

consumption),<br />

corn syrup,<br />

ethanol<br />

Cereals, crop<br />

rotations,<br />

flour<br />

alternatives<br />

152.5 0.0140 650 1<br />

125 0.0144 550 1-2<br />

Millet<br />

Bird seed,<br />

crop rotations<br />

122.5 0.0114 425 2+ (yearround)


700.50<br />

600.50<br />

500.50<br />

Water Used (billion gallons)<br />

400.50<br />

300.50<br />

200.50<br />

Corn<br />

Millet<br />

Sorghum<br />

100.50<br />

0.50<br />

2006 2008 2010 2012 2014 2016


Cost of Water (Billion Dollars)<br />

3.00<br />

2.50<br />

2.00<br />

1.50<br />

Corn<br />

Millet<br />

Sorghum<br />

1.00<br />

0.50<br />

2006 2008 2010 2012 2014 2016


Money Saved in Irrigation If<br />

Substituted*<br />

Year Acres of Corn Sorghum Millet<br />

2014 481,808.3 $242,091,113.3 $544,700,452.3<br />

2013 845,094.8 $424,629,341.1 $955,408,032.1<br />

2012 593,882.4 $298,402,150.7 $671,401,869.7<br />

2011 617,516 $310,277,089.4 $698,120,363.5<br />

2010 537,498.5 $270,071,496.3 $607,658,179.2<br />

2009 370,216.5 $186,018,982.6 $418,540,859.7<br />

2008 610,355.5 $306,679,224.5 $690,025,203.4<br />

2007 556,461.2 $279,599,494.6 $629,096,080.4<br />

Total 4,612,833.2 $2,317,768,892 $5,214,951,040


Conclusions<br />

• If California’s Water Supply is out of balance, how much water is being lost<br />

each year and where is this effect most severe?<br />

• A: 746 mm of water was lost from California in 2014 with higher rates in<br />

Southern California<br />

• A huge amount of our water is devoted to agriculture, can we identify which<br />

crops are the most water intensive and which are the least?<br />

• A: Yes, Evapotranspiration rate of corn exceeds that of comparable grains<br />

(millet/sorghum) as well as other California crops.<br />

• Can we reduce California’s water usage to return the Water Balance<br />

equation to a state of equilibrium?<br />

• A: Yes, changes in crop choices can lead to a significant reduction in water<br />

usage and spending.


Acknowledgements<br />

• Dr. Hillary Jenkins<br />

• University of Redlands - Environmental Studies,<br />

Spatial Studies, Business, and Economics<br />

Departments<br />

• University of Redlands <strong>Summer</strong> Science<br />

Program<br />

• California Department of Water Resources<br />

• California Bureau of Reclamation<br />

• Dr Harvil, Ms. Ifft, Dr. & Mrs. Nimmo


Questions?


Controls on California’s Water Supply<br />

El Nino:<br />

• Slackening of the<br />

Trade Winds<br />

• Anomalous<br />

Warming in the<br />

Eastern<br />

Equatorial Pacific<br />

• Low Pressure in<br />

the North-<br />

Eastern Pacific<br />

http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensocycle/nawinter.shtml


Controls on California’s Water Supply<br />

La Nina:<br />

• Strengthening of the<br />

Trade Winds<br />

• Cooling in the<br />

Eastern Equatorial<br />

Pacific<br />

• High Pressure Wall<br />

in the North-Eastern<br />

Pacific<br />

http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensocycle/nawinter.shtml


El Nino: A Positive<br />

Precipitation Control<br />

For California<br />

This map displays the<br />

precipitation sum of the<br />

months of:<br />

December,1997<br />

January, 1998<br />

February, 1998<br />

The 1997-1998 year was a<br />

year typical of an El Nino


How Much Water Do We Consume?<br />

1200<br />

1000<br />

Agriculture Items and Their Water Use (gallons)<br />

1000<br />

800<br />

600<br />

400<br />

330<br />

200<br />

0<br />

8 14 36 48<br />

1 Tomato 1 Orange Pasta (2 oz) Milk (8 fl<br />

oz)<br />

Chicken 8<br />

oz)<br />

*1 pair of Jeans : 1800<br />

1 Sunday Newspaper: 150<br />

1 average sized domestic car (with tires): 39,000<br />

1 Thanksgiving dinner for 8: 48,000<br />

120<br />

1 egg 1 two lb<br />

loaf of<br />

wheat<br />

bread<br />

1.1<br />

1 Almond

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!