12.12.2012 Views

presentation - Northeastern University

presentation - Northeastern University

presentation - Northeastern University

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

A CZM-based Macro-model for Progressive Collapse<br />

1<br />

Analysis of Frame Structures<br />

Tam Nguyen Nguyen, , Jerome Hajjar Hajjar, , <strong>Northeastern</strong> <strong>University</strong><br />

Junho Song, Derya Deniz Deniz, , <strong>University</strong> of Illinois at Urbana Urbana-Champaign Champaign<br />

06/20/2012


2<br />

1. Background Progressive Collapse<br />

2. Cohesive Zone Model<br />

Content<br />

3. CZM-based Macro-model<br />

4. Summary


3<br />

Key elements of structural analysis and practice<br />

� Collapse assessment of new and existing seismicresisting<br />

systems: Incremental dynamic analysis<br />

(IDA) for ATC-63 to access collapse prevention of<br />

structural systems in seismic zone.<br />

Incremental dynamic analysis (IDA) of a 5story<br />

steel braced frame for 30 records by<br />

Vamvatsikos and Cornell, 2002<br />

An Integrated Platform for Validated Prediction of Collapse of Structures


4<br />

Key elements of structural analysis and practice<br />

� Regional loss assessment to prevent large-scale<br />

disaster: Fragility curve development for regional<br />

loss assessment (Mid-America Earthquake<br />

Center, MAEviz)<br />

�� Collapse prevention in U.S building codes:<br />

Structural integrity provisions in the wake of 9-<br />

11, whereby it is difficult to ascertain the impact of<br />

provisions because we have inadequate capacity as<br />

a profession to model collapse<br />

An Integrated Platform for Validated Prediction of Collapse of Structures


5<br />

Existing approaches for collapse modeling<br />

Continuum FEM<br />

� Indirect model fracture by “delete element”<br />

� Khandelwal and El-Tawil (2007): shell elements + Gurson model<br />

� Xu and Ellingwood (2011) brick elements + J2 plasticity<br />

Khandelwal and El-Tawil (2007)<br />

Xu and Ellingwood (2011)


6<br />

Existing approaches for collapse modeling<br />

Macro-model FEM<br />

� Fracture using spring elements / critical plastic strain -> “delete element”<br />

� Kanvinde (2003), Rodgers and Mahin (2006), Lee and Foutch (2004)<br />

� Khandelwal et al. (2008), Fu (2009), Szyniszewski (2012)<br />

� Concentrated plasticity: Kaewkulchai and Williamson (2004)<br />

spring model Khandelwal et al. (2008)<br />

Rodgers and Mahin (2006)


7<br />

Existing approaches for collapse modeling<br />

Applied Element Method (AEM)<br />

� Elements are connected through nonlinear springs<br />

� AEM: modeling crack initiation, propagation, fracture<br />

� Meguro (2003), Meguro and Tegel-din (2006)<br />

� Challenging to model ductile materials: e.g. Poisson’s ratio effect<br />

Modeling of structure in AEM<br />

AEM element separation<br />

http://www.appliedelementmethod.org


8<br />

Existing approaches for collapse modeling<br />

Adaptive shifted integration (ASI) method<br />

� Isobe and Toi (2000), Natahira et al (2008)<br />

� Physical equivalent of a linear Timoshenko beam and rigid bars<br />

connected via rotational spring<br />

� Proposed to shift the integration point in a beam element depending<br />

on the stage of plasticity/facture to handle strong discontinuity in<br />

progressive collapse analysis<br />

Linear Timoshenko beam<br />

and its physical equivalent<br />

Natahira et al (2008)


9<br />

Scope of research<br />

This research seeks “to create” effective and practical<br />

computational formulations for collapse modeling of<br />

steel structures<br />

� CZM continuum model + CZM-based macro-model<br />

formulations for structural collapse (<strong>Northeastern</strong><br />

Uni.)<br />

� A stochastic framework to identify accurate collapse<br />

limit states and critical damage measures via<br />

incremental dynamic analysis (UIUC)


10<br />

Collapse of industrial structure<br />

(Midwest Steel, Inc 2008)<br />

Cohesive Zone Model<br />

Collapse of structure vs. fracture failure using CZM: elements are<br />

disassociated<br />

CZM “has mainly been applied” to brittle materials in continua.<br />

Limited CZM studies for ductile materials “on a structural scale”<br />

Develop CZM-based macro-model<br />

� Efficient<br />

� Cyclic loadings<br />

Fracture failure using Cohesive Zone Model<br />

(CZM) approach (Zhang, 2003)


11<br />

Cohesive law<br />

CZM schematics<br />

Intrinsic model<br />

Extrinsic model<br />

Cohesive Zone Model<br />

(Park, 2009)


12<br />

Cohesive Zone Model: ductile materials<br />

Scheider and Brocks (2003), Tvergaardand Hutchinson (1992), Needleman, A. (1987)<br />

Load Load-displacement displacement curve Cohesive law for loading<br />

Fracture surface<br />

Cohesive law for unloading


13<br />

CZM: PPR cohesive model<br />

Based on potential, fracture energy, mixed-mode (Park et al, 2009)<br />

Wide range of materials including brittle and ductile material<br />

Parameters α, β control the slope, allow<br />

model different materials<br />

tension<br />

shear


14<br />

PPR cohesive model implementation<br />

Explicit time integration scheme (Abaqus explicit)<br />

User element subroutine<br />

� Virtual work<br />

� Update displacement<br />

� Update acceleration<br />

� Update velocity<br />

Mesh generation<br />

� Meshing by Abaqus/CAE<br />

� Insert cohesive elements into the mesh


CZM for ductile materials<br />

�� Validate CZM for ductile material using coupon Test<br />

�� CZM using PPR PPR model (Park, 2009) 2009) for mixed mode fracture<br />

�� CZM elements are inserted in critical area<br />

�� Preliminary Preliminary CZM result shows good agreement with experiment CZM elements<br />

15<br />

(tests at UIUC)<br />

Force (KN)<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Buck elements<br />

1/4" Test Number 1<br />

experiment<br />

analysis<br />

0 10 20 30 40 50 60<br />

Displacement (mm)<br />

Simulation vs. Experiment<br />

Exp


16<br />

CZM for progressive collapse (3D)<br />

�� CZM using PPR PPR model (park, (park, 2009) for mixed mode fracture<br />

�� CZM elements are inserted in critical areas<br />

�� Abaqus explicit + user element<br />

Park (2009)<br />

PPR CZM model<br />

Insert cohesive<br />

elements<br />

continuum elements<br />

elements Khandelwal and El-Tawil (2007)


N<br />

17<br />

A CZM-based macro-model<br />

1 3 3 4 4 2<br />

M<br />

h<br />

3 4<br />

Fiber section<br />

M<br />

The beam element B34 can<br />

be modeled in the same<br />

manner as CZM in<br />

continuum model<br />

N<br />

fiber<br />

δ<br />

Section<br />

Fiber section will follow<br />

modified plasticity model<br />

The stiffness of the fiber<br />

will be degraded (Damage<br />

parameter K = K 0*D)


Modified Multi-surface Kinematic Hardening Plasticity<br />

18<br />

K = K 0*D)<br />

The multi-surface kinematic hardening plasticity model (Mroz 1967) is<br />

modified for the fiber of the CZM-based macro-model to model cyclic<br />

loadings, softening and fracture<br />

n – line segments of constant tangent modulii: E 1, E 2, E 3,.., E n<br />

f 0, f 1, f 2 ,…, f n are hyper-surfaces with constant hardening modulii. All surfaces<br />

can translate in space without changing form and orientation<br />

- Loading/unloading ���� cyclic


Modified Multi-surface Kinematic Hardening Plasticity<br />

19<br />

Cantilever example<br />

Applied load<br />

Top displacement<br />

(Danevit, Opensees) vs. (macro-model)<br />

Elastic -plastic<br />

Applied load<br />

elastic


20<br />

Collapse modeling using CZM-based macro model<br />

Kanvinde (2003):<br />

Analyze using the proposed<br />

CZM-based macro-model<br />

2 3<br />

1<br />

Interface element<br />

spring model<br />

beam<br />

4


21<br />

Progressive collapse<br />

� Aim to develop a robust and efficient procedure<br />

Cohesive Zone model<br />

� Continuum mechanics<br />

� Fracture modeling<br />

CZM-based macro model<br />

� Fiber-section, efficient<br />

Summary<br />

� Multi-surface kinematic hardening plasticity<br />

� Cyclic and fracture

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!