12.12.2012 Views

Photochromism in composite and hybrid materials based on ...

Photochromism in composite and hybrid materials based on ...

Photochromism in composite and hybrid materials based on ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>Photochromism</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>composite</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> <str<strong>on</strong>g>materials</str<strong>on</strong>g><br />

<str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> transiti<strong>on</strong>-metal oxides<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> polyoxometalates<br />

Abstract<br />

Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879<br />

Tao He, Jiannian Yao *<br />

CAS Key Laboratory of Photochemistry, Center for Molecular Sciences, Institute of Chemistry,<br />

Ch<str<strong>on</strong>g>in</str<strong>on</strong>g>ese Academy of Sciences, Beij<str<strong>on</strong>g>in</str<strong>on</strong>g>g 100080, PR Ch<str<strong>on</strong>g>in</str<strong>on</strong>g>a<br />

Received 25 April 2005; accepted 5 December 2005<br />

Photochromic <str<strong>on</strong>g>materials</str<strong>on</strong>g> are attractive <str<strong>on</strong>g>and</str<strong>on</strong>g> promis<str<strong>on</strong>g>in</str<strong>on</strong>g>g for applicati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> many fields. One subject<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> this area is to prepare <str<strong>on</strong>g>and</str<strong>on</strong>g> study the photochromism <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>composite</str<strong>on</strong>g> or <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> <str<strong>on</strong>g>materials</str<strong>on</strong>g> <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong><br />

transiti<strong>on</strong>-metal oxides or polyoxometalates. Their properties not depend <strong>on</strong>ly <strong>on</strong> the chemical<br />

nature of each comp<strong>on</strong>ent, but also <strong>on</strong> the <str<strong>on</strong>g>in</str<strong>on</strong>g>terface <str<strong>on</strong>g>and</str<strong>on</strong>g> synergy between them. S<str<strong>on</strong>g>in</str<strong>on</strong>g>ce the charge<br />

transfer plays a key role <str<strong>on</strong>g>in</str<strong>on</strong>g> the photochromism of these <str<strong>on</strong>g>materials</str<strong>on</strong>g>, it is very important to <str<strong>on</strong>g>in</str<strong>on</strong>g>crease<br />

the charge (electr<strong>on</strong>s, holes, <str<strong>on</strong>g>and</str<strong>on</strong>g> prot<strong>on</strong>s) <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>s between the two comp<strong>on</strong>ents <str<strong>on</strong>g>in</str<strong>on</strong>g> either <str<strong>on</strong>g>composite</str<strong>on</strong>g>s<br />

or <str<strong>on</strong>g>hybrid</str<strong>on</strong>g>s. To realize this, <strong>on</strong>e big challenge is to optimize the two comp<strong>on</strong>ents <strong>on</strong> a molecular<br />

or nanometer scale, which is closely relevant to the c<strong>on</strong>stituents, sample history (pre-treatment,<br />

preparati<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> post-treatment), envir<strong>on</strong>ment (humidity, presence of reducible or oxidizible matters,<br />

light-irradiati<strong>on</strong> wavelength, <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity, time, etc.). Based <strong>on</strong> these, many novel <str<strong>on</strong>g>composite</str<strong>on</strong>g> or<br />

<str<strong>on</strong>g>hybrid</str<strong>on</strong>g> <str<strong>on</strong>g>materials</str<strong>on</strong>g> with improved photochromism, visible-light colorati<strong>on</strong>, reversible photochromism,<br />

multicolor photochromism or, possibly, fast photoresp<strong>on</strong>se, have been prepared dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the last two<br />

decades or three. This may underscore the opportunity of us<str<strong>on</strong>g>in</str<strong>on</strong>g>g these <str<strong>on</strong>g>composite</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> <str<strong>on</strong>g>materials</str<strong>on</strong>g><br />

as the phot<strong>on</strong>ic applicati<strong>on</strong>s. In present paper, we summarize thoroughly all the recent progress<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> these subjects.<br />

Ó 2005 Elsevier Ltd. All rights reserved.<br />

* Corresp<strong>on</strong>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g author. Tel./fax: +86 10 82616517.<br />

E-mail address: jnyao@iccas.ac.cn (J. Yao).<br />

0079-6425/$ - see fr<strong>on</strong>t matter Ó 2005 Elsevier Ltd. All rights reserved.<br />

doi:10.1016/j.pmatsci.2005.12.001<br />

www.elsevier.com/locate/pmatsci


C<strong>on</strong>tents<br />

T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879 811<br />

1. Introducti<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 812<br />

2. Inorganic/<str<strong>on</strong>g>in</str<strong>on</strong>g>organic <str<strong>on</strong>g>composite</str<strong>on</strong>g> <str<strong>on</strong>g>materials</str<strong>on</strong>g> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 813<br />

2.1. Semic<strong>on</strong>ductor/metal <str<strong>on</strong>g>composite</str<strong>on</strong>g> <str<strong>on</strong>g>materials</str<strong>on</strong>g> . . . . . . . . . . . . . . . . . . . . . . . . . . . . 814<br />

2.1.1. Improved photochromism of WO 3 <str<strong>on</strong>g>and</str<strong>on</strong>g> MoO 3 ................... 814<br />

2.1.2. Multicolor photochromism ................................. 817<br />

2.2. Semic<strong>on</strong>ductor/semic<strong>on</strong>ductor <str<strong>on</strong>g>composite</str<strong>on</strong>g> <str<strong>on</strong>g>materials</str<strong>on</strong>g> ...................... 818<br />

2.2.1. Improved photochromism <str<strong>on</strong>g>in</str<strong>on</strong>g> WO 3/MoO 3 system . . . . . . . . . . . . . . . . . 818<br />

2.2.2. Improved photochromism <str<strong>on</strong>g>in</str<strong>on</strong>g> other <str<strong>on</strong>g>composite</str<strong>on</strong>g>s c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g WO3 ...... 822<br />

2.2.3. Improved photochromism <str<strong>on</strong>g>in</str<strong>on</strong>g> MoO3/TiO2 system ................. 825<br />

2.2.4. Visible-light colorati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> MoO 3/TiO 2 system . . . . . . . . . . . . . . . . . . . 827<br />

2.2.5. Visible-light colorati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>duced by CdS . . . . . . . . . . . . . . . . . . . . . . . 828<br />

2.3. Photochromic <str<strong>on</strong>g>materials</str<strong>on</strong>g> with dopants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 830<br />

2.3.1. Doped TiO 2 systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 830<br />

2.3.2. Transiti<strong>on</strong>-metal-doped titanates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 833<br />

2.3.3. Doped molybdates <str<strong>on</strong>g>and</str<strong>on</strong>g> tungstates . . . . . . . . . . . . . . . . . . . . . . . . . . . 835<br />

2.3.4. Field-assisted photochromism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 836<br />

2.4. Miscellaneous <str<strong>on</strong>g>composite</str<strong>on</strong>g> <str<strong>on</strong>g>materials</str<strong>on</strong>g> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 837<br />

2.4.1. a-WO3/Si heterostructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 837<br />

2.4.2. H3PW12O40/TiO2 system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 839<br />

2.4.3. Other <str<strong>on</strong>g>composite</str<strong>on</strong>g> systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 839<br />

3. Inorganic/organic <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> <str<strong>on</strong>g>materials</str<strong>on</strong>g> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 840<br />

3.1. Model molecules, photochromic mechanism, <str<strong>on</strong>g>and</str<strong>on</strong>g> preparati<strong>on</strong> methods . . . . . . . 840<br />

3.1.1. Model molecules <str<strong>on</strong>g>and</str<strong>on</strong>g> photochromic mechanism . . . . . . . . . . . . . . . . . 840<br />

3.1.2. Preparati<strong>on</strong> methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 842<br />

3.1.3. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 843<br />

3.2. Hybrids at molecular level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 843<br />

3.2.1. D<strong>on</strong>or–acceptor systems prepared from POMs <str<strong>on</strong>g>and</str<strong>on</strong>g> aromatic organic<br />

molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 843<br />

3.2.2. Alkylamm<strong>on</strong>ium POMs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 845<br />

3.2.3. Hybrids prepared from POMs <str<strong>on</strong>g>and</str<strong>on</strong>g> small biological molecules . . . ..... 847<br />

3.2.4. Visible-light colorati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> CT complexes. . . . . . . . . . . . . . . . . . . . . . . 847<br />

3.3. Hybrids at nanometer level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 848<br />

3.3.1. Multilayer th<str<strong>on</strong>g>in</str<strong>on</strong>g> films prepared by electrostatic layer-by-layer method . . 848<br />

3.3.2. POMs embedded <str<strong>on</strong>g>in</str<strong>on</strong>g> polymeric matrices . . . . . . . . . . . . . . . . . . . . . . . 856<br />

3.3.3. POMs embedded <str<strong>on</strong>g>in</str<strong>on</strong>g> organic/silica matrices . . . . . . . . . . . . . . . . . . . . . 862<br />

3.3.4. POMs anchored to organic polymeric backb<strong>on</strong>e . . . . . . . . . . . . . . . . . 863<br />

3.3.5. Self-organized <str<strong>on</strong>g>hybrid</str<strong>on</strong>g>s <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> POMs <str<strong>on</strong>g>and</str<strong>on</strong>g> DODA . . . . . . . . . . . . . . . 864<br />

3.4. Miscellaneous <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> <str<strong>on</strong>g>materials</str<strong>on</strong>g> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 867<br />

3.4.1. TMOs/DMF systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 867<br />

3.4.2. Molybdenum-oxide cluster/citric acid complexes . . . . . . . . . . . . . . . . . 868<br />

3.4.3. Molybdenum (VI) oxalate complexes . . . . . . . . . . . . . . . . . . . . . . . . . 870<br />

4. C<strong>on</strong>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 870<br />

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 871<br />

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 872


812 T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879<br />

1. Introducti<strong>on</strong><br />

The word ‘‘photochromism’’ derives from two Greek words mean<str<strong>on</strong>g>in</str<strong>on</strong>g>g light <str<strong>on</strong>g>and</str<strong>on</strong>g> color,<br />

which refers to such a phenomen<strong>on</strong> that the material can change color <str<strong>on</strong>g>in</str<strong>on</strong>g> a reversible<br />

way by electromagnetic radiati<strong>on</strong> (UV, visible, <str<strong>on</strong>g>and</str<strong>on</strong>g> IR illum<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>) [1–6]. The reverse<br />

process can take place by exposure to the light at a different frequency [1–3], by heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the dark [1–3], by electrochemical polarizati<strong>on</strong> [7], or by chemical oxidati<strong>on</strong> [8]. Photochromic<br />

<str<strong>on</strong>g>materials</str<strong>on</strong>g> exhibit a wide range of optical properties, which makes them attractive<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> promis<str<strong>on</strong>g>in</str<strong>on</strong>g>g for a variety of applicati<strong>on</strong>s. In the book edited by Brown [1], Bertels<strong>on</strong> has<br />

given an excellent review about these applicati<strong>on</strong>s. The sensitivity of the <str<strong>on</strong>g>materials</str<strong>on</strong>g> to light<br />

radiati<strong>on</strong> makes them useful for self-develop<str<strong>on</strong>g>in</str<strong>on</strong>g>g photography, protective <str<strong>on</strong>g>materials</str<strong>on</strong>g>, dosimetry<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> act<str<strong>on</strong>g>in</str<strong>on</strong>g>ometry. The <str<strong>on</strong>g>materials</str<strong>on</strong>g> with good photochromic reversibility have potential<br />

applicati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> reusable <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> storage media, data display, optical signal process<str<strong>on</strong>g>in</str<strong>on</strong>g>g,<br />

chemical switch for computer, smart w<str<strong>on</strong>g>in</str<strong>on</strong>g>dow (c<strong>on</strong>trol of radiati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity), <str<strong>on</strong>g>and</str<strong>on</strong>g> the like.<br />

These <str<strong>on</strong>g>materials</str<strong>on</strong>g> can also be used as the reagents for photomask<str<strong>on</strong>g>in</str<strong>on</strong>g>g, photoresist, camouflage,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> so <strong>on</strong>.<br />

The photochromism was first phenomenologically observed <str<strong>on</strong>g>in</str<strong>on</strong>g> both <str<strong>on</strong>g>in</str<strong>on</strong>g>organic <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

organic <str<strong>on</strong>g>materials</str<strong>on</strong>g>, which dates back to the 19th century [2,9–14]. However, subsequent<br />

developmental work has proliferated the number of organic <str<strong>on</strong>g>materials</str<strong>on</strong>g> c<strong>on</strong>siderably.<br />

Although so far most photochromic <str<strong>on</strong>g>materials</str<strong>on</strong>g> are organic, <str<strong>on</strong>g>in</str<strong>on</strong>g>organic <str<strong>on</strong>g>materials</str<strong>on</strong>g> have some<br />

advantages over the organic counterparts. They have better thermal stability, strength,<br />

chemical resistance, <str<strong>on</strong>g>and</str<strong>on</strong>g> macroscopic shape mold<str<strong>on</strong>g>in</str<strong>on</strong>g>g (can be easily shaped as th<str<strong>on</strong>g>in</str<strong>on</strong>g> films,<br />

coat<str<strong>on</strong>g>in</str<strong>on</strong>g>gs, m<strong>on</strong>oliths, or other suitable forms). In the first half of 20th century, the research<br />

<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>organic photochromic <str<strong>on</strong>g>materials</str<strong>on</strong>g> was ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly focused <strong>on</strong> alkali halides, alkal<str<strong>on</strong>g>in</str<strong>on</strong>g>e earth<br />

halides, alkali metal azides, TiO2, titanates, complex m<str<strong>on</strong>g>in</str<strong>on</strong>g>erals, <str<strong>on</strong>g>and</str<strong>on</strong>g> complex mercury salts,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> so <strong>on</strong> [1,2,10,15–18]. After Deb’s pi<strong>on</strong>eer<str<strong>on</strong>g>in</str<strong>on</strong>g>g work [19–22], a widespread <str<strong>on</strong>g>in</str<strong>on</strong>g>terest<br />

[7–9,23–38] has been motivated <str<strong>on</strong>g>in</str<strong>on</strong>g> the photochromism of transiti<strong>on</strong>-metal oxides<br />

(TMOs) <str<strong>on</strong>g>and</str<strong>on</strong>g> polyoxometalates (POMs), specifically <str<strong>on</strong>g>in</str<strong>on</strong>g> MoO3 <str<strong>on</strong>g>and</str<strong>on</strong>g> WO3. The photochromic<br />

resp<strong>on</strong>se of MoO3 [7] <str<strong>on</strong>g>and</str<strong>on</strong>g> WO3 [36] th<str<strong>on</strong>g>in</str<strong>on</strong>g> film was extended from ultraviolet (UV) light<br />

to visible light after the cathodic polarizati<strong>on</strong> pre-treatment. The photochromic activity of<br />

TMO films can be improved when irradiated <str<strong>on</strong>g>in</str<strong>on</strong>g> reducible atmosphere [30,31], though from<br />

which <strong>on</strong>ly a few applicati<strong>on</strong>s can be benefited. For s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle <str<strong>on</strong>g>in</str<strong>on</strong>g>organic photochromic species,<br />

they usually exhibit poor reversibility (e.g., thermal bleached WO3 or MoO3 cannot be<br />

photocolored aga<str<strong>on</strong>g>in</str<strong>on</strong>g>), small change <str<strong>on</strong>g>in</str<strong>on</strong>g> optical density after colorati<strong>on</strong> (low photochromic<br />

activity), narrow resp<strong>on</strong>se <str<strong>on</strong>g>in</str<strong>on</strong>g> the spectrum (all the TMOs except V2O5 resp<strong>on</strong>se <strong>on</strong>ly to<br />

the blue or UV light), low fatigability (cannot be cycled many times while ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g performance),<br />

m<strong>on</strong>ot<strong>on</strong>ic colorati<strong>on</strong> (usually blue color for most TMOs), low thermal stability<br />

of virg<str<strong>on</strong>g>in</str<strong>on</strong>g> or colored states, slow resp<strong>on</strong>se time, <str<strong>on</strong>g>and</str<strong>on</strong>g> sometimes a high-cost preparati<strong>on</strong><br />

with difficulty <str<strong>on</strong>g>in</str<strong>on</strong>g> tailor-make, <str<strong>on</strong>g>and</str<strong>on</strong>g> so forth.<br />

Dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the last two decades or three, specifically due to the development of nanotechnology<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> nanoscience, a c<strong>on</strong>siderable promis<str<strong>on</strong>g>in</str<strong>on</strong>g>g potential of molecular <str<strong>on</strong>g>materials</str<strong>on</strong>g> has<br />

been ly<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> the possibility to create <str<strong>on</strong>g>composite</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> <str<strong>on</strong>g>materials</str<strong>on</strong>g>. The technological<br />

drive <str<strong>on</strong>g>in</str<strong>on</strong>g> the quest for this novel class of multifuncti<strong>on</strong>al <str<strong>on</strong>g>materials</str<strong>on</strong>g> is the desire to secure a<br />

property or a comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of properties not available <str<strong>on</strong>g>in</str<strong>on</strong>g> any of the <str<strong>on</strong>g>in</str<strong>on</strong>g>dividual comp<strong>on</strong>ent<br />

of the <str<strong>on</strong>g>composite</str<strong>on</strong>g>s or <str<strong>on</strong>g>hybrid</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g>/or at least to improve some properties of the active comp<strong>on</strong>ent<br />

[39–42]. Accord<str<strong>on</strong>g>in</str<strong>on</strong>g>gly, the trend <str<strong>on</strong>g>in</str<strong>on</strong>g> photochromism beg<str<strong>on</strong>g>in</str<strong>on</strong>g>s to c<strong>on</strong>cern the <str<strong>on</strong>g>materials</str<strong>on</strong>g><br />

comb<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g several properties <str<strong>on</strong>g>in</str<strong>on</strong>g> a synergistic way. In most cases, it is to develop


T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879 813<br />

photochromic systems of <str<strong>on</strong>g>in</str<strong>on</strong>g>organic/<str<strong>on</strong>g>in</str<strong>on</strong>g>organic <str<strong>on</strong>g>composite</str<strong>on</strong>g>s [23,28,29,38] <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>organic/<br />

organic <str<strong>on</strong>g>hybrid</str<strong>on</strong>g>s [43–47] <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> TMOs or POMs. These systems are very <str<strong>on</strong>g>in</str<strong>on</strong>g>terest<str<strong>on</strong>g>in</str<strong>on</strong>g>g from<br />

the perspectives of basic science <str<strong>on</strong>g>and</str<strong>on</strong>g> technology. The properties expected <str<strong>on</strong>g>in</str<strong>on</strong>g> them do not<br />

depend <strong>on</strong>ly <strong>on</strong> the chemical nature of each comp<strong>on</strong>ent, but also <strong>on</strong> the <str<strong>on</strong>g>in</str<strong>on</strong>g>terface <str<strong>on</strong>g>and</str<strong>on</strong>g> synergy<br />

between them. The latter usually plays a key role <str<strong>on</strong>g>in</str<strong>on</strong>g> tun<str<strong>on</strong>g>in</str<strong>on</strong>g>g the photochromic behavior.<br />

Thus, a critical po<str<strong>on</strong>g>in</str<strong>on</strong>g>t for the design of these <str<strong>on</strong>g>materials</str<strong>on</strong>g> is the tun<str<strong>on</strong>g>in</str<strong>on</strong>g>g of nature, extensi<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> accessibility of the <str<strong>on</strong>g>in</str<strong>on</strong>g>ner <str<strong>on</strong>g>in</str<strong>on</strong>g>terfaces [48]. The general tendency <str<strong>on</strong>g>in</str<strong>on</strong>g> research is to create<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>timate mix<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g>/or <str<strong>on</strong>g>in</str<strong>on</strong>g>terpenetrati<strong>on</strong> at molecular or nanometer level between the two<br />

comp<strong>on</strong>ents <str<strong>on</strong>g>in</str<strong>on</strong>g> order to obta<str<strong>on</strong>g>in</str<strong>on</strong>g> str<strong>on</strong>g <str<strong>on</strong>g>in</str<strong>on</strong>g>terfacial <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>s, specifically a str<strong>on</strong>g charge<br />

(electr<strong>on</strong>, hole, prot<strong>on</strong>) communicati<strong>on</strong>. Accord<str<strong>on</strong>g>in</str<strong>on</strong>g>gly, the preparati<strong>on</strong> methods transfer<br />

from pretty high-cost physical techniques (such as thermal evaporati<strong>on</strong> or sputter<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

depositi<strong>on</strong>) to readily <str<strong>on</strong>g>and</str<strong>on</strong>g> relatively low-cost ‘‘soft’’ chemical (chimie douce) <strong>on</strong>es. Hopefully<br />

most of the aforementi<strong>on</strong>ed issues for s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle species, though not all, may be surmounted<br />

or at least ameliorated <str<strong>on</strong>g>in</str<strong>on</strong>g> these systems. In the <str<strong>on</strong>g>composite</str<strong>on</strong>g> systems, the<br />

photogenerated electr<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> holes can transfer between the two <str<strong>on</strong>g>in</str<strong>on</strong>g>organic c<strong>on</strong>stituents<br />

due to the different energy levels, lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g to an improved photochromism [28,29,38,49–<br />

52], visible-light colorati<strong>on</strong> [23,53,54], or multicolor photochromism [55–57]. Similarly,<br />

the transfer of photogenerated charge carriers <str<strong>on</strong>g>and</str<strong>on</strong>g>, possibly, prot<strong>on</strong>s between <str<strong>on</strong>g>in</str<strong>on</strong>g>organic<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> organic moieties <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> <str<strong>on</strong>g>materials</str<strong>on</strong>g> usually results <str<strong>on</strong>g>in</str<strong>on</strong>g> improved photochromic activity,<br />

reversibility <str<strong>on</strong>g>and</str<strong>on</strong>g> resp<strong>on</strong>se time [45,58–62]. Another advantage for the <str<strong>on</strong>g>in</str<strong>on</strong>g>organic/<br />

organic <str<strong>on</strong>g>hybrid</str<strong>on</strong>g>s results from their high versatility <str<strong>on</strong>g>in</str<strong>on</strong>g> offer<str<strong>on</strong>g>in</str<strong>on</strong>g>g a wide range of possibilities<br />

to fabricate tailor-make <str<strong>on</strong>g>materials</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> terms of their extremely versatile chemical <str<strong>on</strong>g>and</str<strong>on</strong>g> physical<br />

properties, compositi<strong>on</strong>s, <str<strong>on</strong>g>and</str<strong>on</strong>g> process<str<strong>on</strong>g>in</str<strong>on</strong>g>g techniques [63–68].<br />

In present review, the recent advances of photochromism <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>organic/<str<strong>on</strong>g>in</str<strong>on</strong>g>organic <str<strong>on</strong>g>composite</str<strong>on</strong>g><br />

<str<strong>on</strong>g>materials</str<strong>on</strong>g> <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> TMOs <str<strong>on</strong>g>and</str<strong>on</strong>g> POMs will be c<strong>on</strong>sidered first, 1 ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly about the<br />

doped semic<strong>on</strong>ductors <str<strong>on</strong>g>and</str<strong>on</strong>g> coupl<str<strong>on</strong>g>in</str<strong>on</strong>g>g of a semic<strong>on</strong>ductor with a noble metal or another<br />

semic<strong>on</strong>ductor <strong>on</strong> the surface. The progress <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>organic/organic <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> systems <str<strong>on</strong>g>based</str<strong>on</strong>g><br />

<strong>on</strong> TMOs <str<strong>on</strong>g>and</str<strong>on</strong>g> POMs will be discussed <str<strong>on</strong>g>in</str<strong>on</strong>g> next secti<strong>on</strong>. The attenti<strong>on</strong> will be paid <strong>on</strong>ly<br />

to the systems <str<strong>on</strong>g>in</str<strong>on</strong>g> which photochromism is caused by the <str<strong>on</strong>g>in</str<strong>on</strong>g>organic moiety, not by the<br />

organic. The c<strong>on</strong>clusi<strong>on</strong>s together with a brief outlook will be given at last. In order to<br />

keep the unity <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrity of the review, it is necessary to <str<strong>on</strong>g>in</str<strong>on</strong>g>clude some papers published<br />

before 1970s.<br />

2. Inorganic/<str<strong>on</strong>g>in</str<strong>on</strong>g>organic <str<strong>on</strong>g>composite</str<strong>on</strong>g> <str<strong>on</strong>g>materials</str<strong>on</strong>g><br />

Electr<strong>on</strong>–hole pairs can be produced <str<strong>on</strong>g>in</str<strong>on</strong>g> TMOs up<strong>on</strong> b<str<strong>on</strong>g>and</str<strong>on</strong>g> gap (Eg) irradiati<strong>on</strong>, lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

to an obvious change <str<strong>on</strong>g>in</str<strong>on</strong>g> the optical density <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>sequently to a change <str<strong>on</strong>g>in</str<strong>on</strong>g> the color of<br />

TMOs [30,31]. The resultant absorpti<strong>on</strong> has been <str<strong>on</strong>g>in</str<strong>on</strong>g>terpreted by several theoretical models.<br />

For amorphous <str<strong>on</strong>g>materials</str<strong>on</strong>g>, the models are <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> the formati<strong>on</strong> of color center or<br />

hydrogen br<strong>on</strong>ze under illum<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> [31], <str<strong>on</strong>g>in</str<strong>on</strong>g> which the absorpti<strong>on</strong> is thought to be caused<br />

by the color center [20,22], <str<strong>on</strong>g>in</str<strong>on</strong>g>tervalence-charge transfer (IVCT) [69,70], or small-polar<strong>on</strong><br />

transiti<strong>on</strong> [71]. While for the systems c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g (nano)crystals, the absorpti<strong>on</strong> arises from<br />

1 Although some <str<strong>on</strong>g>in</str<strong>on</strong>g>organic <str<strong>on</strong>g>materials</str<strong>on</strong>g> pert<str<strong>on</strong>g>in</str<strong>on</strong>g>ent to TMOs or POMs (such as LiNbO3, Bi4Ge3O12, Bi12MeO20<br />

(where Me = Ge, Si, Ti, etc.), <str<strong>on</strong>g>and</str<strong>on</strong>g> the like) <str<strong>on</strong>g>and</str<strong>on</strong>g> their <str<strong>on</strong>g>composite</str<strong>on</strong>g>s can exhibit photochromism too, they are usually<br />

regarded as the photorefractive <str<strong>on</strong>g>materials</str<strong>on</strong>g> rather than the photochromic <str<strong>on</strong>g>materials</str<strong>on</strong>g>. So these <str<strong>on</strong>g>materials</str<strong>on</strong>g> will not be<br />

discussed <str<strong>on</strong>g>in</str<strong>on</strong>g> the current review.


814 T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879<br />

the free or trapped charge carriers [31]. Although so far discrepancy still exists am<strong>on</strong>g different<br />

models s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce n<strong>on</strong>e of them can successfully expla<str<strong>on</strong>g>in</str<strong>on</strong>g> all the experimental results, it is<br />

sure that the photochromic performance of TMOs is determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by the behavior of optically<br />

excited electr<strong>on</strong>–hole pairs. The colorati<strong>on</strong> performance can thus be tuned readily by<br />

c<strong>on</strong>troll<str<strong>on</strong>g>in</str<strong>on</strong>g>g the behavior of these charge carriers. Possibilities that immediately spr<str<strong>on</strong>g>in</str<strong>on</strong>g>g to<br />

m<str<strong>on</strong>g>in</str<strong>on</strong>g>d are studies of sensitizati<strong>on</strong>. Usually a noble metal with a high work functi<strong>on</strong> or a<br />

(narrow-b<str<strong>on</strong>g>and</str<strong>on</strong>g> gap) semic<strong>on</strong>ductor with more negative or less positive energy levels (vs.<br />

NHE) is used as dopant or surface compound to modify the TMOs. In former case, a<br />

Schottky barrier is formed at the metal/semic<strong>on</strong>ductor <str<strong>on</strong>g>in</str<strong>on</strong>g>terface [72,73], which facilitates<br />

the separati<strong>on</strong> of photogenerated electr<strong>on</strong>–hole pairs <str<strong>on</strong>g>and</str<strong>on</strong>g> leads to an improved photochromism<br />

of TMOs. In latter case, the effective charge carriers not come <strong>on</strong>ly from the photochromic<br />

TMOs but also from the comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ed semic<strong>on</strong>ductor. An improved photochromism<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g>, sometimes, visible-light colorati<strong>on</strong> are thus obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed.<br />

2.1. Semic<strong>on</strong>ductor/metal <str<strong>on</strong>g>composite</str<strong>on</strong>g> <str<strong>on</strong>g>materials</str<strong>on</strong>g><br />

2.1.1. Improved photochromism of WO3 <str<strong>on</strong>g>and</str<strong>on</strong>g> MoO3<br />

Yao et al. [38,74–76] have deposited a th<str<strong>on</strong>g>in</str<strong>on</strong>g> layer of Au or Pt ( 20 nm) <strong>on</strong>to the film<br />

surface of MoO3 by thermal vacuum evaporati<strong>on</strong> technique. Color change due to photochromism<br />

is usually measured as a change <str<strong>on</strong>g>in</str<strong>on</strong>g> absorbance (optical density) after <str<strong>on</strong>g>and</str<strong>on</strong>g> before<br />

colorati<strong>on</strong>, 2 DOD, simply the change <str<strong>on</strong>g>in</str<strong>on</strong>g> the optical absorpti<strong>on</strong> coefficient at a given wavelength.<br />

In these systems, DOD at the absorpti<strong>on</strong> peak (900 nm) for a UV-colored MoO 3/<br />

Au <str<strong>on</strong>g>and</str<strong>on</strong>g> MoO 3 th<str<strong>on</strong>g>in</str<strong>on</strong>g> film is 0.56 <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.21, respectively (Fig. 1) [38]. That is, MoO 3 th<str<strong>on</strong>g>in</str<strong>on</strong>g> films<br />

modified with Au overlayer exhibit an enhanced UV-light photochromism over the<br />

prist<str<strong>on</strong>g>in</str<strong>on</strong>g>e films. It has been reported that Au-nanoparticle overlayer prepared by a sp<str<strong>on</strong>g>in</str<strong>on</strong>g>coat<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

method can also improve the photochromism of MoO3 [28,77] <str<strong>on</strong>g>and</str<strong>on</strong>g> WO3 [78] th<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

films.<br />

S<str<strong>on</strong>g>in</str<strong>on</strong>g>ce the Fermi level (EF) ofMoO3 <str<strong>on</strong>g>and</str<strong>on</strong>g> WO3 (4.3–4.9 eV) [28,78–83] is lower than the<br />

work functi<strong>on</strong> of Au (5.1 eV) or Pt (5.64 eV) [73], the c<strong>on</strong>tact of Au or Pt with MoO3 or<br />

WO 3 th<str<strong>on</strong>g>in</str<strong>on</strong>g> film results <str<strong>on</strong>g>in</str<strong>on</strong>g> the formati<strong>on</strong> of a Schottky barrier at the <str<strong>on</strong>g>in</str<strong>on</strong>g>terface (Fig. 2). Under<br />

this built-<str<strong>on</strong>g>in</str<strong>on</strong>g> electric field photogenerated electr<strong>on</strong>s up<strong>on</strong> UV-light excitati<strong>on</strong> are drifted<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>to the bulk TMOs al<strong>on</strong>g the c<strong>on</strong>ducti<strong>on</strong> b<str<strong>on</strong>g>and</str<strong>on</strong>g>, while holes to the <str<strong>on</strong>g>in</str<strong>on</strong>g>terface via the valence<br />

b<str<strong>on</strong>g>and</str<strong>on</strong>g>. So the separati<strong>on</strong> of photogenerated electr<strong>on</strong>–hole pairs <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>composite</str<strong>on</strong>g> film is<br />

more efficient than that <str<strong>on</strong>g>in</str<strong>on</strong>g> the prist<str<strong>on</strong>g>in</str<strong>on</strong>g>e film. C<strong>on</strong>sequently, recomb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of the photogenerated<br />

charge carriers is suppressed more efficiently. Another advantage of surface modificati<strong>on</strong><br />

with Au or Pt is that Schottky barrier is <str<strong>on</strong>g>in</str<strong>on</strong>g> favor of <str<strong>on</strong>g>in</str<strong>on</strong>g>hibit<str<strong>on</strong>g>in</str<strong>on</strong>g>g the surface<br />

photocorrosi<strong>on</strong> of semic<strong>on</strong>ductor [38]. The use of Au nanoparticles can afford the third<br />

enhancement mechanism. Much more water is adsorbed at the <str<strong>on</strong>g>in</str<strong>on</strong>g>terface or film surface<br />

of TMO/metal than that of TMO due to the surface effect of nanoparticles, which is favorable<br />

to the utilizati<strong>on</strong> of photogenerated holes [28,78,84]. This has been c<strong>on</strong>firmed by the<br />

surface photovoltage spectra, FT-IR <str<strong>on</strong>g>and</str<strong>on</strong>g> XPS results [28,78]. So much more photogenerated<br />

charge carriers can c<strong>on</strong>tribute to the colorati<strong>on</strong> process, result<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> an improved<br />

photochromism. In additi<strong>on</strong>, it is argued [80] that the improved photochromism of<br />

2 In literatures, different authors have used optical density, OD, ABS, or absorptance to represent absorbance.<br />

In present review we just keep the orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al form <str<strong>on</strong>g>in</str<strong>on</strong>g> the figures that the authors had used <str<strong>on</strong>g>in</str<strong>on</strong>g> their publicati<strong>on</strong>s<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>stead of try<str<strong>on</strong>g>in</str<strong>on</strong>g>g to unify them by <strong>on</strong>e denotati<strong>on</strong>.


T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879 815<br />

Fig. 1. Absorpti<strong>on</strong> spectra of (A) MoO 3/Au <str<strong>on</strong>g>and</str<strong>on</strong>g> (B) MoO 3 th<str<strong>on</strong>g>in</str<strong>on</strong>g> film. (a) Prist<str<strong>on</strong>g>in</str<strong>on</strong>g>e film; (b) spectrum taken after<br />

the film (a) was irradiated with UV light for 3 m<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> air [38].<br />

WO 3 by Pt <str<strong>on</strong>g>in</str<strong>on</strong>g> HCO 2H or EtOH is due to the ‘spillover’ effect (high catalysis of noble metals<br />

<strong>on</strong> the evoluti<strong>on</strong> of hydrogen), which can lead to more hydrogen to penetrate <str<strong>on</strong>g>in</str<strong>on</strong>g>to<br />

WO3.<br />

It is reported [38,74,76,77,85] that visible-light colorati<strong>on</strong> of MoO3 th<str<strong>on</strong>g>in</str<strong>on</strong>g> films <str<strong>on</strong>g>in</str<strong>on</strong>g>duced<br />

by cathodic polarizati<strong>on</strong> can also be improved by the depositi<strong>on</strong> of Au or Pt <strong>on</strong>to the film<br />

surface (Fig. 3) [38]. This enhancement effect is still attributed to the formati<strong>on</strong> of a Schottky<br />

barrier at the <str<strong>on</strong>g>in</str<strong>on</strong>g>terface up<strong>on</strong> the surface modificati<strong>on</strong> with a noble metal. Pt produces<br />

a str<strong>on</strong>ger improvement effect than Au because a str<strong>on</strong>ger built-<str<strong>on</strong>g>in</str<strong>on</strong>g> electric field is formed at<br />

the <str<strong>on</strong>g>in</str<strong>on</strong>g>terface due to its higher work functi<strong>on</strong>.


816 T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879<br />

Fig. 2. Schematic diagram for Schottky barrier <str<strong>on</strong>g>and</str<strong>on</strong>g> charge-transfer process at TMO/Au (here TMO refers to<br />

MoO3 or WO3) <str<strong>on</strong>g>in</str<strong>on</strong>g>terface.<br />

Fig. 3. Comparis<strong>on</strong> of visible-light photochromic resp<strong>on</strong>ses at 900 nm of MoO3, MoO3/Au, <str<strong>on</strong>g>and</str<strong>on</strong>g> MoO3/Pt th<str<strong>on</strong>g>in</str<strong>on</strong>g>film<br />

samples. DABS1 refers to the change <str<strong>on</strong>g>in</str<strong>on</strong>g> absorbance after polarizati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> DABS2 referes to the <strong>on</strong>e after<br />

visible-light illum<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> [38].<br />

Although the additi<strong>on</strong> of Pt, as a surface microcrystall<str<strong>on</strong>g>in</str<strong>on</strong>g>e deposit, to f<str<strong>on</strong>g>in</str<strong>on</strong>g>ely powdered<br />

(nanosized) TiO2 can promote the producti<strong>on</strong> of hydrogen <str<strong>on</strong>g>and</str<strong>on</strong>g> suppress the recomb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong><br />

of photogenerated charge carriers, it causes a progressive decrease <str<strong>on</strong>g>in</str<strong>on</strong>g> the reversible<br />

photochromic resp<strong>on</strong>se with <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g Pt c<strong>on</strong>tent [86]. In the meantime, optical absorpti<strong>on</strong><br />

of trapped holes might be observed [87,88]. This is because <str<strong>on</strong>g>in</str<strong>on</strong>g> this case Pt deposited <strong>on</strong><br />

TiO2 particles acts as a scavenger for electr<strong>on</strong>s [86–91]. This is aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st the results for MoO3<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> WO3 th<str<strong>on</strong>g>in</str<strong>on</strong>g> films. With larger pieces of semic<strong>on</strong>ductor there is a depleti<strong>on</strong> layer at the<br />

surface, across which there exists a potential gradient that allows the separati<strong>on</strong> of charge<br />

carriers; while a potential gradient of this k<str<strong>on</strong>g>in</str<strong>on</strong>g>d does not exist when the diameter of nano-


T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879 817<br />

sized particle is smaller than the thickness of such a space-charge layer <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> such case<br />

the details of charge separati<strong>on</strong> may not be the same as those <str<strong>on</strong>g>in</str<strong>on</strong>g> bulk semic<strong>on</strong>ductor<br />

[88,92–94]. That is, electr<strong>on</strong>s transfer efficiently from TiO2 to Pt <str<strong>on</strong>g>and</str<strong>on</strong>g> there are no evidences<br />

for the back-flow of electr<strong>on</strong>s from the metal <str<strong>on</strong>g>in</str<strong>on</strong>g> Pt/TiO2 to form Ti 3+ [89]. Similar<br />

phenomen<strong>on</strong> has also been found <str<strong>on</strong>g>in</str<strong>on</strong>g> Ag/TiO2 nano<str<strong>on</strong>g>composite</str<strong>on</strong>g> system up<strong>on</strong> irradiati<strong>on</strong><br />

(cf. Secti<strong>on</strong> 2.1.2).<br />

2.1.2. Multicolor photochromism<br />

C<strong>on</strong>venti<strong>on</strong>al photochromic <str<strong>on</strong>g>materials</str<strong>on</strong>g> usually resp<strong>on</strong>d <str<strong>on</strong>g>in</str<strong>on</strong>g> a m<strong>on</strong>ochromatic way, so<br />

that multicolor photochromism requires several different <str<strong>on</strong>g>materials</str<strong>on</strong>g> or filters comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ed<br />

appropriately. Recently a reversible multicolor photochromism has been reported <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

TiO2 films loaded with silver nanoparticles by photocatalytic means [55–57]. This multicolor<br />

photochromism achieved with a simple material is of great significance for the applicati<strong>on</strong>s<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> a rewritable color-copy paper, a high-density multiwavelength optical memory,<br />

a multicolor-smart glass, a color-changeable pa<str<strong>on</strong>g>in</str<strong>on</strong>g>t, <str<strong>on</strong>g>and</str<strong>on</strong>g> the like.<br />

After Ag + is embedded <str<strong>on</strong>g>in</str<strong>on</strong>g>to TiO 2 th<str<strong>on</strong>g>in</str<strong>on</strong>g> film, Ag nanoparticles are obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by irradiat<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

the resultant film with UV light due to the reducti<strong>on</strong> of Ag + by the excited electr<strong>on</strong>s<br />

from TiO2 [95–97]. S<str<strong>on</strong>g>in</str<strong>on</strong>g>ce Ag nanoparticles absorb visible light of various wavelengths due<br />

to surface plasm<strong>on</strong> res<strong>on</strong>ance <str<strong>on</strong>g>and</str<strong>on</strong>g> that the wavelength depends <strong>on</strong> local refractive <str<strong>on</strong>g>in</str<strong>on</strong>g>dex<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> particle size <str<strong>on</strong>g>and</str<strong>on</strong>g> shape [97–101], brownish-gray color of the as-prepared Ag/TiO2 film<br />

is ascribed to Ag nanoparticles with various sizes <str<strong>on</strong>g>and</str<strong>on</strong>g> shapes deposited <str<strong>on</strong>g>in</str<strong>on</strong>g> the nanopores of<br />

TiO 2 film [55–57]. The orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al color can be substantially bleached <str<strong>on</strong>g>in</str<strong>on</strong>g> air up<strong>on</strong> visible-light<br />

irradiati<strong>on</strong> due to the plasm<strong>on</strong> res<strong>on</strong>ance transfer of electr<strong>on</strong>s to oxygen either directly or<br />

via TiO 2 [56,102] <str<strong>on</strong>g>and</str<strong>on</strong>g> be restored aga<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>on</strong> UV-light illum<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>. This colorati<strong>on</strong>–decolorati<strong>on</strong><br />

process is repeatable. Similar phenomen<strong>on</strong> has been observed <str<strong>on</strong>g>in</str<strong>on</strong>g> Pt/TiO2 system,<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> which color changes from pale blue-gray to pale brown with the <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g amount of<br />

Pt [86].<br />

Interest<str<strong>on</strong>g>in</str<strong>on</strong>g>gly, the <str<strong>on</strong>g>in</str<strong>on</strong>g>itial brownish-gray color of the film changes under a colored visiblelight<br />

illum<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> to almost the same color as that of <str<strong>on</strong>g>in</str<strong>on</strong>g>cident light, which turns brownishgray<br />

aga<str<strong>on</strong>g>in</str<strong>on</strong>g> by irradiati<strong>on</strong> with UV light (Fig. 4) [57]. Under m<strong>on</strong>ochromatic visible-light<br />

irradiati<strong>on</strong>, the corresp<strong>on</strong>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g Ag nanoparticles absorb light, <str<strong>on</strong>g>and</str<strong>on</strong>g> the electr<strong>on</strong>s thus<br />

excited are accepted by O 2, result<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> oxidati<strong>on</strong> of the Ag nanoparticles to Ag + i<strong>on</strong>s<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> a decrease <str<strong>on</strong>g>in</str<strong>on</strong>g> absorbance at the corresp<strong>on</strong>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g wavelength. As a result, <strong>on</strong>ly the light<br />

of the excitati<strong>on</strong> wavelength is reflected or transmitted, while the rema<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g particles<br />

absorb lights of all the other wavelengths [57]. Thus, the <str<strong>on</strong>g>in</str<strong>on</strong>g>itial color (brownish-gray)<br />

can change to almost the same color as that of the excitati<strong>on</strong> light. If the generated<br />

Ag + i<strong>on</strong>s are removed from the pores, the film reta<str<strong>on</strong>g>in</str<strong>on</strong>g>s its color even under UV light irradiati<strong>on</strong><br />

[55]. So the apparently uniform Ag/TiO 2 film can be almost any color <str<strong>on</strong>g>and</str<strong>on</strong>g> the role<br />

of TiO 2 is a repeatable generati<strong>on</strong> of Ag nanoparticles with different absorpti<strong>on</strong> wavelengths.<br />

3 This multicolor photochromic behavior <str<strong>on</strong>g>and</str<strong>on</strong>g> chromogenic property can be<br />

c<strong>on</strong>trolled by regulat<str<strong>on</strong>g>in</str<strong>on</strong>g>g irradiati<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s as well as geometry <str<strong>on</strong>g>and</str<strong>on</strong>g> matrix <str<strong>on</strong>g>materials</str<strong>on</strong>g><br />

of nanopores [55]. The formati<strong>on</strong> of anisotropic Ag particles can be suppressed by a<br />

3 It should be noted that the chromogenic mechanism (photooxidati<strong>on</strong> of Ag particles to Ag + ) of such k<str<strong>on</strong>g>in</str<strong>on</strong>g>d of<br />

multicolor—exhibit<str<strong>on</strong>g>in</str<strong>on</strong>g>g almost the same color as that of <str<strong>on</strong>g>in</str<strong>on</strong>g>cident m<strong>on</strong>ochromatic light—is different from that of<br />

c<strong>on</strong>venti<strong>on</strong>al silver glass [103] or silver halide photography [104], <str<strong>on</strong>g>in</str<strong>on</strong>g> which silver halide is photoreduced to Ag<br />

particles.


818 T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879<br />

Fig. 4. Multicolored Ag/TiO2 film. Photograph of multicolored spots (7 mm diameter) <strong>on</strong> the Ag/TiO2 film <strong>on</strong> a<br />

glass substrate irradiated successively with m<strong>on</strong>ochromatic lights (5 m<str<strong>on</strong>g>in</str<strong>on</strong>g> each). A xen<strong>on</strong> lamp <str<strong>on</strong>g>and</str<strong>on</strong>g> an UV-cut<br />

filter (block<str<strong>on</strong>g>in</str<strong>on</strong>g>g light below 400 nm) was used with a 450 nm (blue), 530 nm (green), 560 nm (yellowish-green),<br />

600 nm (orange) or 650 nm (red) b<str<strong>on</strong>g>and</str<strong>on</strong>g>pass filter (FWHM, 10 nm), or without any b<str<strong>on</strong>g>and</str<strong>on</strong>g>pass filter (white). Light<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>tensity, 10 mW cm 2 except for white light (50 mW cm 2 ) [57]. (For <str<strong>on</strong>g>in</str<strong>on</strong>g>terpretati<strong>on</strong> of the reference <str<strong>on</strong>g>in</str<strong>on</strong>g> color <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

this figure legend, the reader is refered to the web versi<strong>on</strong> of this article.).<br />

dual-light irradiati<strong>on</strong> (310 <str<strong>on</strong>g>and</str<strong>on</strong>g> 420 nm) for Ag depositi<strong>on</strong>, result<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> the improvement of<br />

chromogenic properties [55]. It is claimed that the nanopores with various sizes <str<strong>on</strong>g>and</str<strong>on</strong>g> shapes<br />

present <str<strong>on</strong>g>in</str<strong>on</strong>g> TiO 2 films act as molds for Ag nanoparticles with various sizes <str<strong>on</strong>g>and</str<strong>on</strong>g> shapes,<br />

which is the pre-requisite to display various color [55]. S<str<strong>on</strong>g>in</str<strong>on</strong>g>ce the refractive <str<strong>on</strong>g>in</str<strong>on</strong>g>dex of surround<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>materials</str<strong>on</strong>g> can <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence the surface plasm<strong>on</strong> res<strong>on</strong>ance wavelength of Ag nanoparticles<br />

[105] <str<strong>on</strong>g>and</str<strong>on</strong>g> Ag nanoparticles are <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>tact not <strong>on</strong>ly with TiO2 but also with air<br />

[55], the ratio of TiO2 to air as well as the matrix <str<strong>on</strong>g>materials</str<strong>on</strong>g> can be used to tune this chromogenic<br />

property. For <str<strong>on</strong>g>in</str<strong>on</strong>g>stance, coat<str<strong>on</strong>g>in</str<strong>on</strong>g>g the Ag/TiO2 film with a silica or nitrocellulose<br />

film can change its spectrum [56].<br />

It should be noted that it is <str<strong>on</strong>g>in</str<strong>on</strong>g>evitable that the color images displayed <strong>on</strong> the film can be<br />

bleached gradually <str<strong>on</strong>g>in</str<strong>on</strong>g> air by ambient white light due to photochromism. This photochromism<br />

as well as the rewritability of Ag/TiO 2 film can be temporarily deactivated by modificati<strong>on</strong><br />

with octadecanethiol or fluorodecanethiol, which can be fully reactivated by<br />

sufficiently irradiat<str<strong>on</strong>g>in</str<strong>on</strong>g>g the film with UV light [56]. The possible reas<strong>on</strong>s why the photooxidati<strong>on</strong><br />

of Ag nanoparticles was <str<strong>on</strong>g>in</str<strong>on</strong>g>hibited by thiols <str<strong>on</strong>g>in</str<strong>on</strong>g>clude the block of electr<strong>on</strong> transfer to<br />

oxygen <str<strong>on</strong>g>and</str<strong>on</strong>g> water repulsi<strong>on</strong>. The block<str<strong>on</strong>g>in</str<strong>on</strong>g>g effect might be more effective for the suppressi<strong>on</strong><br />

of bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g. The reactivati<strong>on</strong> is due to the decompositi<strong>on</strong> of thiols by TiO2<br />

photocatalysis.<br />

2.2. Semic<strong>on</strong>ductor/semic<strong>on</strong>ductor <str<strong>on</strong>g>composite</str<strong>on</strong>g> <str<strong>on</strong>g>materials</str<strong>on</strong>g><br />

2.2.1. Improved photochromism <str<strong>on</strong>g>in</str<strong>on</strong>g> WO3/MoO3 system<br />

In the <str<strong>on</strong>g>composite</str<strong>on</strong>g> semic<strong>on</strong>ductor systems, WO3/MoO3 might be the first that <strong>on</strong>e should<br />

c<strong>on</strong>sider s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce both of them exhibit pr<strong>on</strong>ounced photochromic resp<strong>on</strong>se. Furthermore,<br />

<strong>on</strong>e disadvantage of us<str<strong>on</strong>g>in</str<strong>on</strong>g>g s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle MoO3 or WO3 for display devices is that the absorpti<strong>on</strong><br />

peak (MoO3, 1.56 eV; WO3, 1.4 eV) [31,106] does not match the peak of eye-sensitivity<br />

curve (at 2.25 eV). It is reported that the maximum optical absorpti<strong>on</strong> of WO 3/MoO 3 films<br />

can occur at 2.15 eV [106], which is significant because it is very close to the resp<strong>on</strong>se of<br />

eyes. The <str<strong>on</strong>g>composite</str<strong>on</strong>g> films can be made by co-evaporati<strong>on</strong> [52,106,107], chemical vapor


T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879 819<br />

Fig. 5. The photochromic resp<strong>on</strong>ses of (a) 92%WO3–8%MoO3, (b) WO3, <str<strong>on</strong>g>and</str<strong>on</strong>g> (c) MoO3 th<str<strong>on</strong>g>in</str<strong>on</strong>g> films <str<strong>on</strong>g>in</str<strong>on</strong>g> C2H5OH<br />

(vol%) <str<strong>on</strong>g>in</str<strong>on</strong>g> N2 [52].<br />

depositi<strong>on</strong> (CVD) [108] or sol–gel [109] methods. However, so far most researches are<br />

focused primarily <strong>on</strong> characterizati<strong>on</strong> or electrochromism of WO3/MoO3 <str<strong>on</strong>g>composite</str<strong>on</strong>g> films<br />

[71,106,108–114] <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong>ly few are pert<str<strong>on</strong>g>in</str<strong>on</strong>g>ent to the photochromism [52,75,115].<br />

The photochromic resp<strong>on</strong>ses of WO3/MoO3 th<str<strong>on</strong>g>in</str<strong>on</strong>g> films subject<str<strong>on</strong>g>in</str<strong>on</strong>g>g to UV irradiati<strong>on</strong> are<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated <str<strong>on</strong>g>in</str<strong>on</strong>g> reduc<str<strong>on</strong>g>in</str<strong>on</strong>g>g envir<strong>on</strong>ments, of which the spectra are shown <str<strong>on</strong>g>in</str<strong>on</strong>g> Fig. 5 [52]. WO3/<br />

MoO3 <str<strong>on</strong>g>composite</str<strong>on</strong>g> films exhibit an enhanced photochromic absorpti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> ethanol vapor<br />

when compared to those of pure MoO 3 or WO 3 films. The associated change <str<strong>on</strong>g>in</str<strong>on</strong>g> absorbance<br />

of the <str<strong>on</strong>g>composite</str<strong>on</strong>g> film is ca. 1.5 times that of WO 3 film, <str<strong>on</strong>g>and</str<strong>on</strong>g> is ca. 2.7 times that<br />

of MoO3 film. The photochromic performance of the <str<strong>on</strong>g>composite</str<strong>on</strong>g> oxide is dependent <strong>on</strong><br />

the c<strong>on</strong>stituent compositi<strong>on</strong> of the film. The largest photochromic resp<strong>on</strong>se takes place<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>composite</str<strong>on</strong>g> WO3/MoO3 film that c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s about 8 wt% MoO3 (Fig. 6) [52]. Except<br />

the enhanced absorpti<strong>on</strong>, a blue-shift (ca. 0.2 eV) <str<strong>on</strong>g>in</str<strong>on</strong>g> the photochromic absorpti<strong>on</strong> for the<br />

<str<strong>on</strong>g>composite</str<strong>on</strong>g> film is observed, which is similar to the blue-shift observed <str<strong>on</strong>g>in</str<strong>on</strong>g> the electrochromic<br />

experiments [71,106,108]. All these observati<strong>on</strong>s can be rati<strong>on</strong>alized by the IVCT [106]<br />

or small-polar<strong>on</strong> absorpti<strong>on</strong> [116] <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>composite</str<strong>on</strong>g> oxide.<br />

When WO 3 or MoO 3 film is subjected to light irradiati<strong>on</strong>, it is colored by a simultaneous<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>jecti<strong>on</strong> of prot<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> electr<strong>on</strong>s to form br<strong>on</strong>ze. The optical absorpti<strong>on</strong> is<br />

due to IVCT or small-polar<strong>on</strong> absorpti<strong>on</strong> arose from the transiti<strong>on</strong> of W 5+ to W 6+<br />

(W ! W) or Mo 5+ to Mo 6+ (Mo ! Mo) between adjacent i<strong>on</strong>s. In the <str<strong>on</strong>g>composite</str<strong>on</strong>g> oxide,<br />

another transiti<strong>on</strong>, Mo 5+ to W 6+ (Mo ! W), is believed to take place [106,107]. Itis<br />

assumed that the Mo levels are lower <str<strong>on</strong>g>in</str<strong>on</strong>g> energy than the corresp<strong>on</strong>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g W levels. If the<br />

colored product of the <str<strong>on</strong>g>composite</str<strong>on</strong>g> oxide is schematically represented as HxW1 yMoyO3,<br />

electr<strong>on</strong>s will be trapped at Mo sites <str<strong>on</strong>g>and</str<strong>on</strong>g> Mo ! Mo <str<strong>on</strong>g>and</str<strong>on</strong>g> Mo ! W transiti<strong>on</strong>s will occur<br />

when x < y; whereas when x > y, the Mo sites are saturated <str<strong>on</strong>g>and</str<strong>on</strong>g> Mo ! W <str<strong>on</strong>g>and</str<strong>on</strong>g> W ! W<br />

transiti<strong>on</strong>s can take place [117]. The energies required for the W ! W, Mo ! Mo <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Mo ! W transiti<strong>on</strong>s have been calculated as 1.4, 1.54, <str<strong>on</strong>g>and</str<strong>on</strong>g> 2.13 eV, respectively [106].<br />

So the Mo ! W transiti<strong>on</strong> corresp<strong>on</strong>ds to the highest energy <str<strong>on</strong>g>and</str<strong>on</strong>g> matches the peak of<br />

eye-sensitivity curve. This expla<str<strong>on</strong>g>in</str<strong>on</strong>g>s the observed blue-shift <str<strong>on</strong>g>in</str<strong>on</strong>g> the photochromic absorpti<strong>on</strong><br />

of <str<strong>on</strong>g>composite</str<strong>on</strong>g> films, though the shift amplitude <str<strong>on</strong>g>in</str<strong>on</strong>g> the photochromism is smaller (ca. 0.2 eV)<br />

than that <str<strong>on</strong>g>in</str<strong>on</strong>g> the electrochromism (0.6 or 0.7 eV), which might due to the weak colorati<strong>on</strong><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> photochromism. Such a blue-shift may also exist <str<strong>on</strong>g>in</str<strong>on</strong>g> other mixed-metal oxides. M<strong>on</strong>k


820 T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879<br />

Fig. 6. The photochromic resp<strong>on</strong>ses of mixed WO3/MoO3 films of different compositi<strong>on</strong>s which were irradiated<br />

with UV light for 5 m<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> 1.0 vol% C2H5OH <str<strong>on</strong>g>in</str<strong>on</strong>g> N2 [52].<br />

et al. [118] have given a semi-empirical approach to correlate an optical-shift parameter S<br />

(via the frequency maximum of an optical b<str<strong>on</strong>g>and</str<strong>on</strong>g>) with the compositi<strong>on</strong> of the mixed-metal<br />

oxides (Eq. (1)), which might allow the colors of colorati<strong>on</strong>-oxide mixtures to be tailored<br />

S ¼ mpure mmixture<br />

mpure<br />

In additi<strong>on</strong>, D<strong>on</strong>nadieu et al. [108] have used the Hubbard–Mott model [119] to expla<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

this blue-shift. Accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to their <str<strong>on</strong>g>in</str<strong>on</strong>g>terpretati<strong>on</strong>, the colorati<strong>on</strong> is caused by the electr<strong>on</strong><br />

transiti<strong>on</strong> between the two Hubbard b<str<strong>on</strong>g>and</str<strong>on</strong>g>s separated by a pseudo-gap. The <str<strong>on</strong>g>in</str<strong>on</strong>g>troducti<strong>on</strong><br />

of Mo <str<strong>on</strong>g>in</str<strong>on</strong>g> the WO3 matrix can decrease the value of the <str<strong>on</strong>g>in</str<strong>on</strong>g>terelectr<strong>on</strong> distance (the atomic<br />

radius of Mo, <strong>on</strong> which the electr<strong>on</strong>s are preferentially trapped, be<str<strong>on</strong>g>in</str<strong>on</strong>g>g smaller than that of<br />

W). At the same time, the r<str<strong>on</strong>g>and</str<strong>on</strong>g>om distributi<strong>on</strong> of Mo <str<strong>on</strong>g>in</str<strong>on</strong>g> WO3 matrix <str<strong>on</strong>g>in</str<strong>on</strong>g>creases the localizati<strong>on</strong><br />

of electr<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> the repulsi<strong>on</strong> am<strong>on</strong>g them. Thus the <str<strong>on</strong>g>in</str<strong>on</strong>g>terb<str<strong>on</strong>g>and</str<strong>on</strong>g> separati<strong>on</strong><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>creases <str<strong>on</strong>g>and</str<strong>on</strong>g> the maximum of the absorpti<strong>on</strong> is shifted towards higher energies. The<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>creased disorder <str<strong>on</strong>g>in</str<strong>on</strong>g> the film due to the r<str<strong>on</strong>g>and</str<strong>on</strong>g>om distributi<strong>on</strong> of Mo can also expla<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the improved photochromic effect as <str<strong>on</strong>g>in</str<strong>on</strong>g> the case of electrochromism [108,120].<br />

ð1Þ


T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879 821<br />

Fig. 7. Photochromic resp<strong>on</strong>ses of a 92%WO3–8%MoO3 th<str<strong>on</strong>g>in</str<strong>on</strong>g> film <str<strong>on</strong>g>in</str<strong>on</strong>g> four different alcohol vapors (vol%)<br />

measured at 800 nm: (a) ethanol; (b) methanol; (c) n-propanol; (d) iso-propanol [52].<br />

The photochromic resp<strong>on</strong>se of <str<strong>on</strong>g>composite</str<strong>on</strong>g> WO3/MoO3 films has also been tested <str<strong>on</strong>g>in</str<strong>on</strong>g> different<br />

alcohol vapors (Fig. 7) [52]. The largest photochromic resp<strong>on</strong>se of the <str<strong>on</strong>g>composite</str<strong>on</strong>g><br />

films is observed <str<strong>on</strong>g>in</str<strong>on</strong>g> ethanol, followed by methanol, n-propanol, <str<strong>on</strong>g>and</str<strong>on</strong>g> iso-propanol vapors,<br />

which is as the same order as that for MoO3 film [30,121]. In HCOOH vapor, WO3 exhibits<br />

the largest photochromic resp<strong>on</strong>se, the <str<strong>on</strong>g>composite</str<strong>on</strong>g> oxide follows <str<strong>on</strong>g>and</str<strong>on</strong>g> MoO3 the least<br />

(Fig. 8) [52]. It is suggested [121] that the Mo sites <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>composite</str<strong>on</strong>g> film are resp<strong>on</strong>sible<br />

for the photochromic resp<strong>on</strong>se to these alcohols <str<strong>on</strong>g>and</str<strong>on</strong>g> the W sites are resp<strong>on</strong>sible for the<br />

observed photochromic resp<strong>on</strong>ses when exposed to HCOOH. So the photochromism of<br />

<str<strong>on</strong>g>composite</str<strong>on</strong>g> WO3/MoO3 th<str<strong>on</strong>g>in</str<strong>on</strong>g> films <str<strong>on</strong>g>in</str<strong>on</strong>g> alcohol vapors can potentially be used for chemical<br />

sens<str<strong>on</strong>g>in</str<strong>on</strong>g>g purpose.<br />

Fig. 8. Photochromic resp<strong>on</strong>ses of (a) WO 3, (b) 92%WO 3–8%MoO 3, (c) MoO 3 th<str<strong>on</strong>g>in</str<strong>on</strong>g> films <str<strong>on</strong>g>in</str<strong>on</strong>g> HCOOH (vol%) <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

N2 [52].


822 T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879<br />

2.2.2. Improved photochromism <str<strong>on</strong>g>in</str<strong>on</strong>g> other <str<strong>on</strong>g>composite</str<strong>on</strong>g>s c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g WO3<br />

Apart from the enhanced photochromism of WO3/MoO3 <str<strong>on</strong>g>composite</str<strong>on</strong>g>, the photochromism<br />

of WO3 can be improved by the oxides of Ti [29,49,83,122–128], Nb[49], Ta[49],<br />

Zn [51], <str<strong>on</strong>g>and</str<strong>on</strong>g> Zr [49]. Here the photochromic performance <str<strong>on</strong>g>and</str<strong>on</strong>g> enhancement mechanism<br />

are dem<strong>on</strong>strated by us<str<strong>on</strong>g>in</str<strong>on</strong>g>g WO3/TiO2 system as an example.<br />

Fig. 9 [29] shows the typical UV–Vis absorpti<strong>on</strong> spectra of WO 3 <str<strong>on</strong>g>and</str<strong>on</strong>g> WO 3/TiO 2 colloids.<br />

Str<strong>on</strong>g absorpti<strong>on</strong> appears at short wavelengths, corresp<strong>on</strong>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g to the fundamental<br />

semic<strong>on</strong>ductor b<str<strong>on</strong>g>and</str<strong>on</strong>g> gap. Up<strong>on</strong> irradiati<strong>on</strong> with UV light, a typical absorpti<strong>on</strong> peak<br />

centered around 900 nm appears due to the absorpti<strong>on</strong> of electr<strong>on</strong>s trapped at the energy<br />

levels with<str<strong>on</strong>g>in</str<strong>on</strong>g> the forbidden gap of WO3 [29]. After a 3-m<str<strong>on</strong>g>in</str<strong>on</strong>g> UV-light irradiati<strong>on</strong>, WO3/<br />

TiO2 colloids turn deep blue <str<strong>on</strong>g>in</str<strong>on</strong>g> color, while WO3 colloids turn very light bluish which<br />

can hardly be perceived by naked eyes. The experimental results (<str<strong>on</strong>g>in</str<strong>on</strong>g>sets <str<strong>on</strong>g>in</str<strong>on</strong>g> Fig. 9) [29] <str<strong>on</strong>g>in</str<strong>on</strong>g>dicate<br />

that DOD at 900 nm <str<strong>on</strong>g>in</str<strong>on</strong>g>creases with the <str<strong>on</strong>g>in</str<strong>on</strong>g>creased c<strong>on</strong>centrati<strong>on</strong> of TiO2 no matter<br />

there is a hole scavenger (H 2C 2O 4) present or not <str<strong>on</strong>g>and</str<strong>on</strong>g> the maximum enhancement amplitude<br />

can reach more than 100-fold. Similar results have also been observed <str<strong>on</strong>g>in</str<strong>on</strong>g> WO 3/TiO 2<br />

<str<strong>on</strong>g>composite</str<strong>on</strong>g> films [126] <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> WO 3/SrTiO 3 system [129]. Am<strong>on</strong>g the oxides of Nb, Ta, Ti,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Zr, it is claimed [49] that Zr has the str<strong>on</strong>gest enhancement effect <strong>on</strong> the photochromic<br />

properties of WO3 th<str<strong>on</strong>g>in</str<strong>on</strong>g> films, which is attributed to the Zr effect <strong>on</strong> the WO3 structure.<br />

Although now it is widely accepted that the photochromic performance of WO3 can be<br />

improved by TiO2, a c<strong>on</strong>troversy still exists about the mechanism am<strong>on</strong>g different authors.<br />

S<str<strong>on</strong>g>in</str<strong>on</strong>g>ce the optical colorati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> WO3 is electr<strong>on</strong>ic <str<strong>on</strong>g>in</str<strong>on</strong>g> nature [22], all the authors agree that<br />

this enhancement should be <str<strong>on</strong>g>in</str<strong>on</strong>g>terpreted <str<strong>on</strong>g>in</str<strong>on</strong>g> terms of the electr<strong>on</strong> energy levels <str<strong>on</strong>g>in</str<strong>on</strong>g> these<br />

<str<strong>on</strong>g>materials</str<strong>on</strong>g>. The process might <str<strong>on</strong>g>in</str<strong>on</strong>g>volve the transfer of electr<strong>on</strong>s at the <str<strong>on</strong>g>in</str<strong>on</strong>g>terface if the work<br />

functi<strong>on</strong>s are comparable. This is <str<strong>on</strong>g>in</str<strong>on</strong>g>deed the case as c<strong>on</strong>firmed by some authors<br />

[29,83,123,124].<br />

Fig. 9. UV–Vis spectra of (A) WO3/TiO2 <str<strong>on</strong>g>and</str<strong>on</strong>g> (B) WO3 colloids. (—) Virg<str<strong>on</strong>g>in</str<strong>on</strong>g> state; (---) after UV-light irradiati<strong>on</strong><br />

for 3 m<str<strong>on</strong>g>in</str<strong>on</strong>g>. The <str<strong>on</strong>g>in</str<strong>on</strong>g>sets show the dependence of DOD at 900 nm <strong>on</strong> the c<strong>on</strong>centrati<strong>on</strong> of TiO 2 for the systems with<br />

(<str<strong>on</strong>g>in</str<strong>on</strong>g>set <str<strong>on</strong>g>in</str<strong>on</strong>g> A) <str<strong>on</strong>g>and</str<strong>on</strong>g> without (<str<strong>on</strong>g>in</str<strong>on</strong>g>set <str<strong>on</strong>g>in</str<strong>on</strong>g> B) oxalic acid [29].


T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879 823<br />

Fig. 10. Schematic diagram represent<str<strong>on</strong>g>in</str<strong>on</strong>g>g the energy levels of WO 3 <str<strong>on</strong>g>and</str<strong>on</strong>g> TiO 2, <str<strong>on</strong>g>and</str<strong>on</strong>g> charge (photogenerated<br />

electr<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> holes) <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>s between them.<br />

S<str<strong>on</strong>g>in</str<strong>on</strong>g>ce the relative positi<strong>on</strong>s of the valence b<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>ducti<strong>on</strong> b<str<strong>on</strong>g>and</str<strong>on</strong>g> of WO 3 are lower<br />

than those of TiO2 [29,83,130,131], when they comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ed together a heterojuncti<strong>on</strong> is<br />

formed at the <str<strong>on</strong>g>in</str<strong>on</strong>g>terface of WO3 <str<strong>on</strong>g>and</str<strong>on</strong>g> TiO2 (Fig. 10). Electr<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> holes can be generated<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> both WO3 <str<strong>on</strong>g>and</str<strong>on</strong>g> TiO2 under UV-light irradiati<strong>on</strong> s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce both of them are good photoresp<strong>on</strong>sive<br />

<str<strong>on</strong>g>materials</str<strong>on</strong>g>. The photogenerated electr<strong>on</strong>s aris<str<strong>on</strong>g>in</str<strong>on</strong>g>g from TiO2 are <str<strong>on</strong>g>in</str<strong>on</strong>g>jected <str<strong>on</strong>g>in</str<strong>on</strong>g>to the<br />

c<strong>on</strong>ducti<strong>on</strong> b<str<strong>on</strong>g>and</str<strong>on</strong>g> of WO3, whereas the holes orig<str<strong>on</strong>g>in</str<strong>on</strong>g>at<str<strong>on</strong>g>in</str<strong>on</strong>g>g from WO3 move to the valence<br />

b<str<strong>on</strong>g>and</str<strong>on</strong>g> of TiO2. The holes can oxidize the adsorbed species, such as water or organic residue,<br />

form<str<strong>on</strong>g>in</str<strong>on</strong>g>g prot<strong>on</strong>s that then migrate <str<strong>on</strong>g>in</str<strong>on</strong>g>to WO 3 gra<str<strong>on</strong>g>in</str<strong>on</strong>g>s through diffusi<strong>on</strong> or Coulombic<br />

attracti<strong>on</strong>. Blue-colored tungsten br<strong>on</strong>ze is produced by the reacti<strong>on</strong> of WO 3 with the<br />

prot<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>ducti<strong>on</strong>-b<str<strong>on</strong>g>and</str<strong>on</strong>g> electr<strong>on</strong>s. In the meantime, electr<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the valence b<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

of WO3 can also be excited to the c<strong>on</strong>ducti<strong>on</strong> b<str<strong>on</strong>g>and</str<strong>on</strong>g> of WO3 <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>tribute, possibly<br />

the ma<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>tributi<strong>on</strong>, to the photochromism. However, Chopoorian et al. [123] have suggested<br />

that UV light is absorbed by TiO2, which <str<strong>on</strong>g>in</str<strong>on</strong>g> turn, photoactivates WO3. This difference<br />

might be due to that the oxides used by them have different b<str<strong>on</strong>g>and</str<strong>on</strong>g> gap energy <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

energy levels, which is a normal case for the same samples with different preparati<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> (pre)treatment methods [30,31,117]. In additi<strong>on</strong>, the samples used by Chopoorian<br />

et al. are sodium (poly)tungstates, whereas the <strong>on</strong>e used by others is WO 3.<br />

Another enhancement mechanism has been put forward for the photochromism of<br />

WO3 colloids comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ed with TiO2 nanoparticles [29,51], <str<strong>on</strong>g>in</str<strong>on</strong>g> which no hydrogen br<strong>on</strong>ze<br />

is formed after colorati<strong>on</strong> <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> the follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g two arguments. (i) The st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard redox<br />

potential of hydrogen tungsten br<strong>on</strong>ze (ca. 0.29 V vs. NHE) [132] is <str<strong>on</strong>g>in</str<strong>on</strong>g>sufficiently negative<br />

for the photogenerated electr<strong>on</strong>s to reduce WO3 <str<strong>on</strong>g>in</str<strong>on</strong>g>to the br<strong>on</strong>ze [133]. (ii) Raman<br />

spectra are almost identical before <str<strong>on</strong>g>and</str<strong>on</strong>g> after UV-light colorati<strong>on</strong> for both WO3 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

WO 3/TiO 2 colloids [29]. It is suggested that [29,94,131,133,134] the colorati<strong>on</strong> of WO 3 colloids<br />

are caused by electr<strong>on</strong>s trapped at energy levels with<str<strong>on</strong>g>in</str<strong>on</strong>g> the forbidden gap of WO 3.<br />

These trapped electr<strong>on</strong>s are metastable <str<strong>on</strong>g>in</str<strong>on</strong>g> air <str<strong>on</strong>g>and</str<strong>on</strong>g> are rather stable <str<strong>on</strong>g>in</str<strong>on</strong>g> an <str<strong>on</strong>g>in</str<strong>on</strong>g>ert atmosphere<br />

[29,133], which can be optically excited <str<strong>on</strong>g>in</str<strong>on</strong>g>to higher energy levels, lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g to a broad<br />

absorpti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> red-IR regi<strong>on</strong> (Fig. 9) [29]. Thus the colloids turn blue under UV-light irradiati<strong>on</strong>.<br />

When WO3 <str<strong>on</strong>g>and</str<strong>on</strong>g> TiO2 comb<str<strong>on</strong>g>in</str<strong>on</strong>g>e together, similarly, a heterojuncti<strong>on</strong> is also formed<br />

at the <str<strong>on</strong>g>in</str<strong>on</strong>g>terface (Fig. 10). The positive holes created <str<strong>on</strong>g>in</str<strong>on</strong>g> WO3 can migrate to the valence<br />

b<str<strong>on</strong>g>and</str<strong>on</strong>g> of TiO2 particles due to a lower valence b<str<strong>on</strong>g>and</str<strong>on</strong>g> of WO3 particles, <str<strong>on</strong>g>and</str<strong>on</strong>g> may be trapped


824 T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879<br />

at the surface thereafter. At the same time, most photogenerated electr<strong>on</strong>s (orig<str<strong>on</strong>g>in</str<strong>on</strong>g>ated<br />

from both WO3 <str<strong>on</strong>g>and</str<strong>on</strong>g> TiO2) will transfer to <str<strong>on</strong>g>and</str<strong>on</strong>g> be trapped at the energy levels with<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the forbidden gap of WO3. The results of surface photovoltage have c<strong>on</strong>firmed that electr<strong>on</strong>s<br />

can really transfer from TiO2 to WO3 <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>composite</str<strong>on</strong>g> system [29]. So the electr<strong>on</strong>s<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> holes orig<str<strong>on</strong>g>in</str<strong>on</strong>g>ally generated <str<strong>on</strong>g>in</str<strong>on</strong>g> both WO3 <str<strong>on</strong>g>and</str<strong>on</strong>g> TiO2 particles are separated more efficiently,<br />

result<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> suppress<str<strong>on</strong>g>in</str<strong>on</strong>g>g the recomb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>. This suppressi<strong>on</strong> has been proved<br />

by the results of fluorescence spectra [29,124]. C<strong>on</strong>sequently, <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>composite</str<strong>on</strong>g> system<br />

much more electr<strong>on</strong>s (not <strong>on</strong>ly from WO 3 but also from TiO 2) will be trapped <str<strong>on</strong>g>in</str<strong>on</strong>g> the b<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

gap of WO3 <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>tribute to the colorati<strong>on</strong> process, lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g to an improved photochromism<br />

of WO3 colloids. In additi<strong>on</strong>, it has been reported [124] that TiO2 prepared by a<br />

photoassisted method shows str<strong>on</strong>ger enhancement effects than that prepared by c<strong>on</strong>venti<strong>on</strong>al<br />

sol–gel technique due to the promoted suppressi<strong>on</strong> of recomb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>, a narrowed<br />

b<str<strong>on</strong>g>and</str<strong>on</strong>g> gap for the former, <str<strong>on</strong>g>and</str<strong>on</strong>g> so <strong>on</strong>. The enhancement mechanism of TiO2 is further supported<br />

by the comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of WO 3 with SnO 2 or ZnO. Similar to TiO 2, ZnO improves the<br />

photochromism of WO 3 s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce its c<strong>on</strong>ducti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> valence b<str<strong>on</strong>g>and</str<strong>on</strong>g>s are higher than those of<br />

WO 3 so that electr<strong>on</strong>s can transfer from ZnO to WO 3 [51]. However, SnO 2 cannot<br />

improve the photochromism of WO3 due to its lower c<strong>on</strong>ducti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> valence b<str<strong>on</strong>g>and</str<strong>on</strong>g>s than<br />

WO3, <str<strong>on</strong>g>in</str<strong>on</strong>g> which electr<strong>on</strong>s transfer from WO3 to SnO2 [29].<br />

In additi<strong>on</strong>, it is noted that [127], if the th<str<strong>on</strong>g>in</str<strong>on</strong>g> films are prepared by aerosol-assisted<br />

chemical vapor depositi<strong>on</strong> (AACVD), the layered WO3/TiO2 films show significant photochromism,<br />

while comparable thickness titanium-doped WO3 films show reduced photochromism,<br />

proporti<strong>on</strong>al to the level of Ti dop<str<strong>on</strong>g>in</str<strong>on</strong>g>g (Fig. 11) [127]. Compared with the<br />

aforementi<strong>on</strong>ed WO 3/TiO 2 systems, the <str<strong>on</strong>g>in</str<strong>on</strong>g>hibited effects of Ti dopant <str<strong>on</strong>g>in</str<strong>on</strong>g> AACVD films is<br />

due to Ti <str<strong>on</strong>g>in</str<strong>on</strong>g>corporati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>to the WO 3 lattice (the substituti<strong>on</strong> of Ti for W) dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the preparati<strong>on</strong>,<br />

i.e., a solid soluti<strong>on</strong> of titanium <str<strong>on</strong>g>and</str<strong>on</strong>g> tungsten oxides, rather than the presence of<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>terstitial Ti. In fact, no TiO2 peaks appear <str<strong>on</strong>g>in</str<strong>on</strong>g> XRD patterns for titanium-doped WO3<br />

Fig. 11. Change <str<strong>on</strong>g>in</str<strong>on</strong>g> optical density aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st irradiati<strong>on</strong> time for 1: a doped metal oxide film with metal atom% ratio<br />

of W:Ti 82:18, 2: a doped metal oxide film with metal atom% ratio of W:Ti 92:8, 3: a TiO 2 underlayer with a WO 3<br />

overlayer, 4: an undoped WO3 film, all produced by aerosol-assisted CVD, under 254 nm irradiati<strong>on</strong> [127].


T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879 825<br />

films [127]. This <str<strong>on</strong>g>in</str<strong>on</strong>g>dicates that the synthesis method is very important for prepar<str<strong>on</strong>g>in</str<strong>on</strong>g>g such<br />

k<str<strong>on</strong>g>in</str<strong>on</strong>g>d of <str<strong>on</strong>g>composite</str<strong>on</strong>g> <str<strong>on</strong>g>materials</str<strong>on</strong>g>.<br />

WO3 <str<strong>on</strong>g>and</str<strong>on</strong>g> TiO2 can also be comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ed together to fabricate a photoelectrochromic system,<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> which WO3 film <str<strong>on</strong>g>and</str<strong>on</strong>g> dye-sensitized TiO2 film form the two electrodes of an electrochemical<br />

cell [135]. The resultant structure exhibits colorati<strong>on</strong> under photoirradiati<strong>on</strong>. Unlike<br />

c<strong>on</strong>venti<strong>on</strong>al photochromic films, the light-absorpti<strong>on</strong> process, performed by a ruthenium<br />

polypyrid<str<strong>on</strong>g>in</str<strong>on</strong>g>e-sensitized nanocrystall<str<strong>on</strong>g>in</str<strong>on</strong>g>e TiO 2 electrode, is separate from the colorati<strong>on</strong> process<br />

(<str<strong>on</strong>g>in</str<strong>on</strong>g> WO 3 film). Light absorpti<strong>on</strong> by the sensitiz<str<strong>on</strong>g>in</str<strong>on</strong>g>g dye leads to electr<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>jecti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>to<br />

the TiO2 film. When the electrodes are short-circuited, the electr<strong>on</strong>s move from TiO2<br />

through external circuit to the WO3 film where, <str<strong>on</strong>g>in</str<strong>on</strong>g> the presence of cati<strong>on</strong>s small enough<br />

to <str<strong>on</strong>g>in</str<strong>on</strong>g>tercalate <str<strong>on</strong>g>in</str<strong>on</strong>g>to the WO3 lattice, a bluish-colored tungsten br<strong>on</strong>ze is formed. This can<br />

be used as the so-called self-powered smart w<str<strong>on</strong>g>in</str<strong>on</strong>g>dow. As a matter of fact, it is the electrochromism<br />

of WO3 driven by a dye-sensitized solar cell.<br />

2.2.3. Improved photochromism <str<strong>on</strong>g>in</str<strong>on</strong>g> MoO 3/TiO 2 system<br />

MoO 3/TiO 2 is another promis<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>composite</str<strong>on</strong>g>, which can be prepared by reactive DC<br />

magnetr<strong>on</strong> sputter<str<strong>on</strong>g>in</str<strong>on</strong>g>g [136] <str<strong>on</strong>g>and</str<strong>on</strong>g> sol–gel related methods [50,123,137]. The effects of TiO2<br />

<strong>on</strong> the photochromic behavior of MoO3 are similar to those <strong>on</strong> WO3 [50,123,136–138].<br />

It is said [137] this colored <str<strong>on</strong>g>composite</str<strong>on</strong>g> may exhibit a more neutral color than the pure c<strong>on</strong>stituents.<br />

Kullman et al. [136] have reported that two peaks appear <str<strong>on</strong>g>in</str<strong>on</strong>g> the absorpti<strong>on</strong> spectra<br />

for the photochromatically <str<strong>on</strong>g>in</str<strong>on</strong>g>duced MoO3/TiO2 samples, which shift <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity,<br />

positi<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> width with changes <str<strong>on</strong>g>in</str<strong>on</strong>g> the compositi<strong>on</strong> (Fig. 12) [136]. The absorpti<strong>on</strong> is<br />

str<strong>on</strong>gest <str<strong>on</strong>g>in</str<strong>on</strong>g> the most Mo-rich film; the pure Ti oxide film shows no photochromism at<br />

all under these c<strong>on</strong>diti<strong>on</strong>s. At wavelengths exceed<str<strong>on</strong>g>in</str<strong>on</strong>g>g ca. 500 nm there is an absorpti<strong>on</strong><br />

maximum, which is split <str<strong>on</strong>g>in</str<strong>on</strong>g>to two comp<strong>on</strong>ents for <str<strong>on</strong>g>in</str<strong>on</strong>g>termediate Mo/Ti ratios. One absorpti<strong>on</strong><br />

b<str<strong>on</strong>g>and</str<strong>on</strong>g> lies at the red regi<strong>on</strong> (ca. 750 nm), which is <str<strong>on</strong>g>in</str<strong>on</strong>g> good agreement with the data <strong>on</strong><br />

pure molybdenum oxide [30,31], whereas another is at ca. 570 nm. The former b<str<strong>on</strong>g>and</str<strong>on</strong>g> has<br />

been expla<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by the small-polar<strong>on</strong> absorpti<strong>on</strong> due to the electr<strong>on</strong> hopp<str<strong>on</strong>g>in</str<strong>on</strong>g>g between similar<br />

or different transiti<strong>on</strong>-metal sites [136]. But no explanati<strong>on</strong> has been given for the latter<br />

absorpti<strong>on</strong>. Here we suggest that, similar to the WO 3/MoO 3 system (cf. Secti<strong>on</strong> 2.2.1), the<br />

former absorpti<strong>on</strong> b<str<strong>on</strong>g>and</str<strong>on</strong>g> might be due to the Mo ! Mo or Ti ! Ti transiti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the latter<br />

due to the Mo ! Ti transiti<strong>on</strong>. However, this hypothesis needs further experimental<br />

evidences. In additi<strong>on</strong>, It is reported that [123] the samples c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g TiO2 undergo a c<strong>on</strong>siderably<br />

more rapid colorati<strong>on</strong> than the blank, <str<strong>on</strong>g>and</str<strong>on</strong>g> a range of 30–35% TiO2 is the most<br />

effective <str<strong>on</strong>g>in</str<strong>on</strong>g> the colorati<strong>on</strong> rate.<br />

Similar to the case <str<strong>on</strong>g>in</str<strong>on</strong>g> WO3/TiO2 system, a heterojuncti<strong>on</strong> is formed at the <str<strong>on</strong>g>in</str<strong>on</strong>g>terface of<br />

MoO3 <str<strong>on</strong>g>and</str<strong>on</strong>g> TiO2 when they are comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ed together s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce the relative positi<strong>on</strong>s of the<br />

valence b<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>ducti<strong>on</strong> b<str<strong>on</strong>g>and</str<strong>on</strong>g> of MoO 3 are more positive or less negative (vs.<br />

NHE) than those of TiO 2 [50,137]. Efficient electr<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g>jected <str<strong>on</strong>g>in</str<strong>on</strong>g>to the c<strong>on</strong>ducti<strong>on</strong> b<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

of MoO 3 orig<str<strong>on</strong>g>in</str<strong>on</strong>g>ate not <strong>on</strong>ly from MoO 3 but also from TiO 2 under UV-light irradiati<strong>on</strong>.<br />

As <str<strong>on</strong>g>in</str<strong>on</strong>g> the case of WO3/TiO2, however, Chopoorian et al. [123] have suggested that UV<br />

light is absorbed by TiO2, which <str<strong>on</strong>g>in</str<strong>on</strong>g> turn, photoactivates the MoO3. This difference might<br />

be caused by the different samples used <str<strong>on</strong>g>in</str<strong>on</strong>g> different groups, sodium (poly)molybdates for<br />

Chopoorian [123] <str<strong>on</strong>g>and</str<strong>on</strong>g> MoO3 for others [50,137].<br />

It has been po<str<strong>on</strong>g>in</str<strong>on</strong>g>ted out [138] that the transfer of hydrogen atoms between two mechanically<br />

mixed particulate TiO 2 <str<strong>on</strong>g>and</str<strong>on</strong>g> MoO 3 can take place <str<strong>on</strong>g>in</str<strong>on</strong>g> the suspensi<strong>on</strong> system, from<br />

which the enhancement effect might also be benefited. In additi<strong>on</strong>, s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce the adsorbed


826 T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879<br />

Fig. 12. Spectral absorptance for Mo–Ti oxide films with different compositi<strong>on</strong>s measured <str<strong>on</strong>g>in</str<strong>on</strong>g> as-deposited state<br />

(triangles) <str<strong>on</strong>g>and</str<strong>on</strong>g> after photochromic colorati<strong>on</strong> by UV irradiati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> air with ethanol vapor for 18 h (squares) <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

24 h (circles). The films were deposited <strong>on</strong>to uncoated glass substrates [136].<br />

water plays an important role <str<strong>on</strong>g>in</str<strong>on</strong>g> the photochromism of TMOs films [30,31], it might be<br />

mean<str<strong>on</strong>g>in</str<strong>on</strong>g>gful to <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigate the changes <str<strong>on</strong>g>in</str<strong>on</strong>g> the amount of adsorbed water after the comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>.<br />

Although surface hydroxyl groups or surface acidity have been reported to change<br />

greatly <str<strong>on</strong>g>in</str<strong>on</strong>g> WO3/TiO2 <str<strong>on</strong>g>and</str<strong>on</strong>g> MoO3/TiO2 systems [139–142], there are no reports <strong>on</strong> the correlati<strong>on</strong><br />

between the photochromism <str<strong>on</strong>g>and</str<strong>on</strong>g> changes <str<strong>on</strong>g>in</str<strong>on</strong>g> surface acidity.


T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879 827<br />

2.2.4. Visible-light colorati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> MoO3/TiO2 system<br />

Visible-light colorati<strong>on</strong> is of great importance for efficient utilizati<strong>on</strong> of solar energy<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> laser sources that cover a broad wavelength from mid-IR to blue. For all TMOs<br />

except V2O5, however, the energy of the electromagnetic irradiati<strong>on</strong> hm, which <str<strong>on</strong>g>in</str<strong>on</strong>g>duces<br />

the formati<strong>on</strong> of the colored (activated) species, is usually situated <str<strong>on</strong>g>in</str<strong>on</strong>g> the near-UV range<br />

of spectrum (corresp<strong>on</strong>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g to its optical b<str<strong>on</strong>g>and</str<strong>on</strong>g> gap) [31]. In order to extend the colorati<strong>on</strong><br />

photoresp<strong>on</strong>se to visible-light regi<strong>on</strong>, the spectral sensitizati<strong>on</strong> for these wide b<str<strong>on</strong>g>and</str<strong>on</strong>g> gap<br />

TMOs, similar to the dye-sensitized solar cell [130,143], becomes a crucial practical<br />

problem [42]. For MoO3 <str<strong>on</strong>g>and</str<strong>on</strong>g> WO3 th<str<strong>on</strong>g>in</str<strong>on</strong>g> films, visible-light colorati<strong>on</strong> can be <str<strong>on</strong>g>in</str<strong>on</strong>g>duced<br />

by a slightly cathodic polarizati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> n<strong>on</strong>-aqueous soluti<strong>on</strong> [7,36], by a comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> with<br />

CdS [23,53,54,144,145] or with TiO2 [50,136]. The first case is out of the scope of present<br />

review <str<strong>on</strong>g>and</str<strong>on</strong>g> the sec<strong>on</strong>d will be discussed <str<strong>on</strong>g>in</str<strong>on</strong>g> Secti<strong>on</strong> 2.2.5.<br />

It is reported that the photochromically colored MoO3/TiO2 <str<strong>on</strong>g>composite</str<strong>on</strong>g>s show an <strong>on</strong>set<br />

of absorpti<strong>on</strong> at a lower energy (<str<strong>on</strong>g>in</str<strong>on</strong>g> the visible-light range) than the prist<str<strong>on</strong>g>in</str<strong>on</strong>g>e films [50,136].<br />

Kullman et al. [136] have ascribed it to the modificati<strong>on</strong>s of electr<strong>on</strong>ic density of states,<br />

either by charge <str<strong>on</strong>g>in</str<strong>on</strong>g>corporati<strong>on</strong> or by changes <str<strong>on</strong>g>in</str<strong>on</strong>g> the crystall<str<strong>on</strong>g>in</str<strong>on</strong>g>e order. A more detailed<br />

mechanism has been put forward by Elder et al. [50] to elucidate the visible-light colorati<strong>on</strong><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> nanocrystall<str<strong>on</strong>g>in</str<strong>on</strong>g>e TiO2–(MoO3) core–shell <str<strong>on</strong>g>materials</str<strong>on</strong>g>.<br />

A series of nanocrystall<str<strong>on</strong>g>in</str<strong>on</strong>g>e TiO2–(MoO3) core–shell <str<strong>on</strong>g>materials</str<strong>on</strong>g> have been synthesized by<br />

a co-nucleati<strong>on</strong> of metal-oxide clusters at the surface of surfactant micelles [50,146]. The<br />

nanocrystall<str<strong>on</strong>g>in</str<strong>on</strong>g>e TiO2 (anatase) phase is chemically b<strong>on</strong>ded to MoO3 phase through a heterojuncti<strong>on</strong><br />

formed at an <str<strong>on</strong>g>in</str<strong>on</strong>g>terface between them. The calc<str<strong>on</strong>g>in</str<strong>on</strong>g>ed TiO 2–(MoO 3) x powders<br />

display a variety of colors rang<str<strong>on</strong>g>in</str<strong>on</strong>g>g from gray-green to green as a functi<strong>on</strong> of MoO 3 c<strong>on</strong>tent.<br />

A significant <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>terest<str<strong>on</strong>g>in</str<strong>on</strong>g>g th<str<strong>on</strong>g>in</str<strong>on</strong>g>g is that all samples turn blue or black when excited<br />

with visible light (ca. 420–460 nm, i.e., 2.88–2.60 eV). This energy is lower than the b<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

gap of both MoO3 (2.9 eV) <str<strong>on</strong>g>and</str<strong>on</strong>g> TiO2 (3.2 eV), corresp<strong>on</strong>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g to the energy required to<br />

excite TiO2-core valence b<str<strong>on</strong>g>and</str<strong>on</strong>g> electr<strong>on</strong>s to MoO3-shell c<strong>on</strong>ducti<strong>on</strong> b<str<strong>on</strong>g>and</str<strong>on</strong>g> states. This<br />

energy is correlated with both the nanoparticle size <str<strong>on</strong>g>and</str<strong>on</strong>g> the degree of chemical <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong><br />

between the TiO2 core <str<strong>on</strong>g>and</str<strong>on</strong>g> the MoO3 shell. When the size of TiO2–(MoO3) nanoparticles<br />

changes from 8 to 4 nm, it decreases from 2.88 to 2.60 eV with decreas<str<strong>on</strong>g>in</str<strong>on</strong>g>g particle size.<br />

This is c<strong>on</strong>trast to the most core–shell semic<strong>on</strong>ductor nanoparticles, for which the b<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

gap (which is a functi<strong>on</strong> of both size quantizati<strong>on</strong> effects <str<strong>on</strong>g>and</str<strong>on</strong>g> the relative compositi<strong>on</strong><br />

of the core–shell particle, i.e., relative thickness of the core <str<strong>on</strong>g>and</str<strong>on</strong>g> shell) <str<strong>on</strong>g>in</str<strong>on</strong>g> the limit<str<strong>on</strong>g>in</str<strong>on</strong>g>g case<br />

is greater than or equal to the smallest b<str<strong>on</strong>g>and</str<strong>on</strong>g> gap material compris<str<strong>on</strong>g>in</str<strong>on</strong>g>g the core–shell system<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> a photoabsorpti<strong>on</strong>-energy blue-shift (relative to the b<str<strong>on</strong>g>and</str<strong>on</strong>g> gap energies of the bulk<br />

<str<strong>on</strong>g>materials</str<strong>on</strong>g>) takes place when the core–shell particle size is <str<strong>on</strong>g>in</str<strong>on</strong>g> the quantum regime (i.e., core<br />

diameter or shell thickness equal to or smaller than the Bohr radius of a valence/c<strong>on</strong>ducti<strong>on</strong><br />

b<str<strong>on</strong>g>and</str<strong>on</strong>g> electr<strong>on</strong>) [147,148].<br />

The systematic red-shift exhibited by the TiO 2–(MoO 3) x core–shell <str<strong>on</strong>g>materials</str<strong>on</strong>g> is ascribed<br />

to the change <str<strong>on</strong>g>in</str<strong>on</strong>g> the relative positi<strong>on</strong> of the MoO 3-shell c<strong>on</strong>ducti<strong>on</strong> b<str<strong>on</strong>g>and</str<strong>on</strong>g> as it evolves from<br />

less than a m<strong>on</strong>olayer to a two m<strong>on</strong>olayer shell. The optical absorpti<strong>on</strong> properties exhibit<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

by the TiO2–(MoO3)x <str<strong>on</strong>g>materials</str<strong>on</strong>g> are due to the charge-transfer (CT) processes at semic<strong>on</strong>ductor<br />

heterojuncti<strong>on</strong>. S<str<strong>on</strong>g>in</str<strong>on</strong>g>ce the chemical b<strong>on</strong>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g between the TiO2 core <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

MoO3 shell is present <str<strong>on</strong>g>in</str<strong>on</strong>g> the system [149], the core–shell wave functi<strong>on</strong>s are allowed to<br />

overlap at the <str<strong>on</strong>g>in</str<strong>on</strong>g>terface, giv<str<strong>on</strong>g>in</str<strong>on</strong>g>g rise to a heterojuncti<strong>on</strong> b<str<strong>on</strong>g>and</str<strong>on</strong>g> structure (Fig. 13) [50].<br />

The lowest energy excitati<strong>on</strong> is from the TiO 2 valence b<str<strong>on</strong>g>and</str<strong>on</strong>g> to the MoO 3 c<strong>on</strong>ducti<strong>on</strong> b<str<strong>on</strong>g>and</str<strong>on</strong>g>,<br />

acore! shell charge transfer, <str<strong>on</strong>g>and</str<strong>on</strong>g> this energy closely matches the experimental result.


828 T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879<br />

Fig. 13. Arrangement of the TiO2 core <str<strong>on</strong>g>and</str<strong>on</strong>g> MoO3 shell valence b<str<strong>on</strong>g>and</str<strong>on</strong>g>s (VB) <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>ducti<strong>on</strong> b<str<strong>on</strong>g>and</str<strong>on</strong>g>s (CB) for TiO2–<br />

(MoO 3) 1.8 after heterojuncti<strong>on</strong> formati<strong>on</strong> [50].<br />

This electr<strong>on</strong>ic transiti<strong>on</strong> is allowed because of the reduced symmetry at the core–shell<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>terface. So the obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed series of TiO2–(MoO3)x compounds are not a simple l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong><br />

of those of the nanocrystall<str<strong>on</strong>g>in</str<strong>on</strong>g>e TiO2 core <str<strong>on</strong>g>and</str<strong>on</strong>g> MoO3 shell, but <str<strong>on</strong>g>in</str<strong>on</strong>g>stead entirely<br />

new photophysical properties are observed as a result of the core–shell nanoarchitecture<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> the electr<strong>on</strong>ic transiti<strong>on</strong>s this structure supports.<br />

2.2.5. Visible-light colorati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>duced by CdS<br />

Two methods have been reported about the c<strong>on</strong>structi<strong>on</strong> of a double-layer CdS/WO3 or<br />

CdS/MoO3 structure. One is that a polycrystall<str<strong>on</strong>g>in</str<strong>on</strong>g>e CdS th<str<strong>on</strong>g>in</str<strong>on</strong>g> layer is synthesized us<str<strong>on</strong>g>in</str<strong>on</strong>g>g the<br />

chemical bath depositi<strong>on</strong> technique <str<strong>on</strong>g>and</str<strong>on</strong>g> deposited <strong>on</strong>to the substrate surface, followed by<br />

the depositi<strong>on</strong> of an amorphous th<str<strong>on</strong>g>in</str<strong>on</strong>g> film of WO3 or MoO3 by thermal evaporati<strong>on</strong> technique<br />

[23,53,54]. Another is prepared by sequential evaporati<strong>on</strong> of CdS <str<strong>on</strong>g>and</str<strong>on</strong>g> nanostructured<br />

MoO 3 films us<str<strong>on</strong>g>in</str<strong>on</strong>g>g thermal <str<strong>on</strong>g>and</str<strong>on</strong>g> activated-reactive evaporati<strong>on</strong>, respectively [145].<br />

Fig. 14 [145] presents the optical absorpti<strong>on</strong> spectra recorded for MoO 3 <str<strong>on</strong>g>and</str<strong>on</strong>g> CdS/MoO 3<br />

samples illum<str<strong>on</strong>g>in</str<strong>on</strong>g>ated with a tungsten lamp at different durati<strong>on</strong>s. The absorpti<strong>on</strong> spectra<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>dicate the presence of an absorpti<strong>on</strong> b<str<strong>on</strong>g>and</str<strong>on</strong>g> from 500 to 1100 nm centered ca. 850 nm<br />

due to the formati<strong>on</strong> of color centers. The absorpti<strong>on</strong> edge at ca. 500 nm for CdS/<br />

MoO3 is due to the CdS ma<str<strong>on</strong>g>in</str<strong>on</strong>g> absorpti<strong>on</strong> b<str<strong>on</strong>g>and</str<strong>on</strong>g>, whereas the <strong>on</strong>e at ca. 400 nm for<br />

MoO3 is due to the ma<str<strong>on</strong>g>in</str<strong>on</strong>g> absorpti<strong>on</strong> b<str<strong>on</strong>g>and</str<strong>on</strong>g> of MoO3. Although the shape of this absorpti<strong>on</strong><br />

b<str<strong>on</strong>g>and</str<strong>on</strong>g> can be expected to be Gaussian from the IVCT model [145], the asymmetric shape is<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>terpreted as <str<strong>on</strong>g>in</str<strong>on</strong>g>dicat<str<strong>on</strong>g>in</str<strong>on</strong>g>g the presence of potential fluctuati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> amorphous films [107].<br />

For MoO 3 sample, the color center b<str<strong>on</strong>g>and</str<strong>on</strong>g> appears <strong>on</strong>ly <str<strong>on</strong>g>in</str<strong>on</strong>g> the spectrum of the sample irradiated<br />

for ca. 40 m<str<strong>on</strong>g>in</str<strong>on</strong>g>, <str<strong>on</strong>g>and</str<strong>on</strong>g> the l<strong>on</strong>ger irradiati<strong>on</strong> time notably decreases the color center<br />

c<strong>on</strong>centrati<strong>on</strong> [53,54,145]. For CdS/MoO3, however, l<strong>on</strong>ger illum<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> times produce<br />

str<strong>on</strong>ger b<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tensities due to the semic<strong>on</strong>ductor characteristics <str<strong>on</strong>g>and</str<strong>on</strong>g> photosensitivity<br />

of CdS [150]. Obviously, the <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity of the broad absorpti<strong>on</strong> b<str<strong>on</strong>g>and</str<strong>on</strong>g> for CdS/MoO3 is


T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879 829<br />

Fig. 14. The optical absorpti<strong>on</strong> spectra of as-deposited <str<strong>on</strong>g>and</str<strong>on</strong>g> irradiated (A) MoO3, (B) MoO3/CdS, <str<strong>on</strong>g>and</str<strong>on</strong>g> (C) MoO3/<br />

In:CdS films at different times. Dashed l<str<strong>on</strong>g>in</str<strong>on</strong>g>es <str<strong>on</strong>g>in</str<strong>on</strong>g> (A) represent the Gaussian approximati<strong>on</strong> used to evaluate color<br />

center c<strong>on</strong>centrati<strong>on</strong> [145].<br />

more pr<strong>on</strong>ounced than that for MoO3, <str<strong>on</strong>g>in</str<strong>on</strong>g>dicat<str<strong>on</strong>g>in</str<strong>on</strong>g>g the enhancement of the color-center<br />

c<strong>on</strong>centrati<strong>on</strong> by us<str<strong>on</strong>g>in</str<strong>on</strong>g>g CdS <str<strong>on</strong>g>in</str<strong>on</strong>g>terlayer. In additi<strong>on</strong>, the photochromic resp<strong>on</strong>se is more


830 T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879<br />

effective if In-doped CdS is used as the <str<strong>on</strong>g>in</str<strong>on</strong>g>terlayer to modify MoO3 (Fig. 14C) [145] s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce In<br />

acts as a d<strong>on</strong>or provid<str<strong>on</strong>g>in</str<strong>on</strong>g>g more free electr<strong>on</strong>s to the c<strong>on</strong>ducti<strong>on</strong> b<str<strong>on</strong>g>and</str<strong>on</strong>g> by photoexcitati<strong>on</strong><br />

[145,151].<br />

The mechanism of this visible-light colorati<strong>on</strong> phenomen<strong>on</strong>, which is <str<strong>on</strong>g>in</str<strong>on</strong>g>terpreted <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

terms of charge carrier <str<strong>on</strong>g>in</str<strong>on</strong>g>jecti<strong>on</strong> from CdS <str<strong>on</strong>g>in</str<strong>on</strong>g>to TMO film, is different from the <strong>on</strong>e<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>duced by cathodic polarizati<strong>on</strong> [7,36,85]. Under visible-light irradiati<strong>on</strong>, electr<strong>on</strong>–hole<br />

pairs will be produced <str<strong>on</strong>g>in</str<strong>on</strong>g> CdS layer s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce it is a narrow-b<str<strong>on</strong>g>and</str<strong>on</strong>g> gap semic<strong>on</strong>ductor<br />

(Eg 6 2.6 eV) (Fig. 15) [23]. Because CdS <str<strong>on</strong>g>and</str<strong>on</strong>g> TMOs have different energy levels, the<br />

photogenerated electr<strong>on</strong>s transfer to the c<strong>on</strong>ducti<strong>on</strong> b<str<strong>on</strong>g>and</str<strong>on</strong>g> of TMOs, whereas the holes<br />

to the <str<strong>on</strong>g>in</str<strong>on</strong>g>terface [23,53,54,152]. S<str<strong>on</strong>g>in</str<strong>on</strong>g>ce water undergoes decompositi<strong>on</strong> by holes at the <str<strong>on</strong>g>in</str<strong>on</strong>g>terface<br />

of CdS/TMO <str<strong>on</strong>g>in</str<strong>on</strong>g> order to generate prot<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g>to the TMO layer [23], the blue-colored<br />

br<strong>on</strong>ze is formed by the reacti<strong>on</strong> of TMO with these electr<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> prot<strong>on</strong>s. Due to the<br />

presence of O 2<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the S 2 vacancy sites <str<strong>on</strong>g>in</str<strong>on</strong>g> CdS layers prepared by chemical bath deposi-<br />

ti<strong>on</strong> [53,54], oxygen atoms migrate to the <str<strong>on</strong>g>in</str<strong>on</strong>g>terface of CdS/TMO under the photoirradiati<strong>on</strong>,<br />

leav<str<strong>on</strong>g>in</str<strong>on</strong>g>g two electr<strong>on</strong>s bounded to the sulfur vacancy. These oxygen atoms can<br />

immediately react with each other or with the oxygen liberated by light-<str<strong>on</strong>g>in</str<strong>on</strong>g>duced decompositi<strong>on</strong><br />

of water at that <str<strong>on</strong>g>in</str<strong>on</strong>g>terface to produce the more stable O2 molecules. This process<br />

guarantees a more efficient diffusi<strong>on</strong> of prot<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g>to the TMO volume.<br />

2.3. Photochromic <str<strong>on</strong>g>materials</str<strong>on</strong>g> with dopants<br />

2.3.1. Doped TiO 2 systems<br />

Although TiO 2 can be colored by b<str<strong>on</strong>g>and</str<strong>on</strong>g> gap excitati<strong>on</strong> due to the trapp<str<strong>on</strong>g>in</str<strong>on</strong>g>g of electr<strong>on</strong>s<br />

as Ti 3+ species (bulk <str<strong>on</strong>g>and</str<strong>on</strong>g>/or surface Ti 3+ ) [31,32], photochromism is hardly observed <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

absence of a hole scavenger <str<strong>on</strong>g>in</str<strong>on</strong>g> s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle crystals at room temperature [31], <str<strong>on</strong>g>in</str<strong>on</strong>g> bulk TiO2<br />

Fig. 15. Colorati<strong>on</strong> rate g as a functi<strong>on</strong> of the light exposure wavelength for a bare WO 3 film (open symbols) <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

a CdS-WO 3 bilayer (closed symbols). The colorati<strong>on</strong> rate is normalized to the <str<strong>on</strong>g>in</str<strong>on</strong>g>cident light <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity as a functi<strong>on</strong><br />

of the <str<strong>on</strong>g>in</str<strong>on</strong>g>cident wavelength <str<strong>on</strong>g>and</str<strong>on</strong>g> is determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed as the slope of the obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed curves of optical density vs. illum<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong><br />

time. For the bare WO3 film, no photochromism is detected when the <str<strong>on</strong>g>in</str<strong>on</strong>g>cident wavelength is greater than 380 nm;<br />

whereas there is a str<strong>on</strong>g <str<strong>on</strong>g>in</str<strong>on</strong>g>crease of the colorati<strong>on</strong> rate for the CdS/WO 3 bilayer at an <strong>on</strong>set of 525 nm, which<br />

roughly corresp<strong>on</strong>ds to the b<str<strong>on</strong>g>and</str<strong>on</strong>g> gap energy of CdS [23].


T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879 831<br />

particles [18,153], or <str<strong>on</strong>g>in</str<strong>on</strong>g> a dried gel [154]. Moreover, the photoformed Ti 3+ species are not<br />

stable <str<strong>on</strong>g>and</str<strong>on</strong>g> are easily quenched <str<strong>on</strong>g>in</str<strong>on</strong>g> the presence of O2. In order to improve the photochromism<br />

of TiO2, some elements or their oxides are usually used as dopants.<br />

Fe is the most frequently <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated dopant for TiO2 <str<strong>on</strong>g>and</str<strong>on</strong>g> photochromism has been<br />

widely observed <str<strong>on</strong>g>in</str<strong>on</strong>g> Fe-doped rutile [18,153,155–163]. Many authors [153,160–163] agree<br />

that Fe-doped rutile has a pale yellow color <str<strong>on</strong>g>in</str<strong>on</strong>g> the powdered form, <str<strong>on</strong>g>and</str<strong>on</strong>g> that irradiati<strong>on</strong><br />

with UV light superimposes a p<str<strong>on</strong>g>in</str<strong>on</strong>g>kish-brown t<str<strong>on</strong>g>in</str<strong>on</strong>g>ge up<strong>on</strong> its orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al color, that is reversible,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> bleaches <str<strong>on</strong>g>in</str<strong>on</strong>g> the dark. However, it is noted that a blue photochromic color has also<br />

been reported [158]. In additi<strong>on</strong>, a (dark subdued) flesh color, depend<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> the light<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>tensity, has been obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> Fe-doped anatase type TiO2 [164]. TiO2 also shows<br />

photochromism when small amounts of some other elements (Co, Cr, Cu, Mn, Mo,<br />

Nb, Ni, P, Si, V, W, Zn, <str<strong>on</strong>g>and</str<strong>on</strong>g> certa<str<strong>on</strong>g>in</str<strong>on</strong>g> rare earth metals) or their oxides are added to it<br />

[153,156,157,159,165,166]. Weyl <str<strong>on</strong>g>and</str<strong>on</strong>g> Förl<str<strong>on</strong>g>and</str<strong>on</strong>g> [160] have reported that str<strong>on</strong>gly photochromic<br />

TiO 2 has been obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by <str<strong>on</strong>g>in</str<strong>on</strong>g>corporat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>to the rutile a comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of the oxides of<br />

Fe, Nb <str<strong>on</strong>g>and</str<strong>on</strong>g> Ta, <str<strong>on</strong>g>in</str<strong>on</strong>g> which TiO 2 darkens when exposed to light <str<strong>on</strong>g>and</str<strong>on</strong>g> the tan-to-brown color<br />

fades <str<strong>on</strong>g>in</str<strong>on</strong>g> the dark. McTaggart <str<strong>on</strong>g>and</str<strong>on</strong>g> Bear [153] have claimed that Ni, Cr, <str<strong>on</strong>g>and</str<strong>on</strong>g> Cu are shown<br />

to give rise to marked effects, while slight effects are caused by Co, Mn, <str<strong>on</strong>g>and</str<strong>on</strong>g> certa<str<strong>on</strong>g>in</str<strong>on</strong>g> rare<br />

earths (Nd, Pr, Sm, etc.). Karv<str<strong>on</strong>g>in</str<strong>on</strong>g>en [157] has studied the effects of trace element (Cr, Fe, K,<br />

Nb, P, Si, V, <str<strong>on</strong>g>and</str<strong>on</strong>g> Zn) dop<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> the optical properties of nanostructured TiO2. Fe-, V-, or<br />

Si-doped samples show better photochromism than the undoped <strong>on</strong>es, whereas Cr-, P-,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Nb-doped samples exhibit the comparable photochromism to the undoped <strong>on</strong>es. V<br />

is the most effective dop<str<strong>on</strong>g>in</str<strong>on</strong>g>g element <str<strong>on</strong>g>in</str<strong>on</strong>g> mak<str<strong>on</strong>g>in</str<strong>on</strong>g>g anatase photochromic, followed by Si, further<br />

followed by Fe <str<strong>on</strong>g>and</str<strong>on</strong>g> Nb. Most authors have reported optimum impurity levels for the<br />

photochromic effect at about 0.2% by weight. Remy [159] has claimed that the best result<br />

about the photochromism of doped-TiO2 has been obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed with a 0.57 mol% Fe-doped<br />

sample calc<str<strong>on</strong>g>in</str<strong>on</strong>g>ed at 873 K am<strong>on</strong>g the dop<str<strong>on</strong>g>in</str<strong>on</strong>g>g elements of Cr, Co, Cu, Fe, Mn, Mo, <str<strong>on</strong>g>and</str<strong>on</strong>g> Ni.<br />

Some authors [160,163] have regarded the photochromism of doped-TiO2 as a bulk<br />

effect due to the impurities <str<strong>on</strong>g>in</str<strong>on</strong>g> lattice. Ir<strong>on</strong> is an effective impurity <str<strong>on</strong>g>in</str<strong>on</strong>g> TiO2 s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce Fe 3+<br />

has an i<strong>on</strong>ic radius close to that of Ti 4+ <str<strong>on</strong>g>and</str<strong>on</strong>g> distorti<strong>on</strong> of the lattice occurs when the impurity<br />

i<strong>on</strong>s fit <str<strong>on</strong>g>in</str<strong>on</strong>g>to a Ti vacancy [17]. When light strikes an impurity i<strong>on</strong>, for <str<strong>on</strong>g>in</str<strong>on</strong>g>stance, Fe 3+ <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

a TiO 2 lattice, an electr<strong>on</strong> is excited from the foreign i<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> moves either <str<strong>on</strong>g>in</str<strong>on</strong>g>to an oxygen<br />

vacancy of the defective rutile structure, thus produc<str<strong>on</strong>g>in</str<strong>on</strong>g>g a chromophoric Fe 4+ i<strong>on</strong>, or the<br />

electr<strong>on</strong> attaches itself to a Ti 4+ i<strong>on</strong> to give a colored Ti 3+ [160].<br />

Makovskii [158] has also c<strong>on</strong>sidered the photochromism of doped-TiO2 as a bulk effect,<br />

but proposed a different mechanism. The change of color from light yellow to blue of rutile<br />

c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g Fe under illum<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> is due to the transiti<strong>on</strong> of Ti <str<strong>on</strong>g>and</str<strong>on</strong>g> Fe from the tetravalent<br />

to the trivalent state (Eq. (2), VO represents an oxygen vacancy) [158]. Oxygen vacancies<br />

are formed <str<strong>on</strong>g>in</str<strong>on</strong>g> TiO 2 with Fe, <str<strong>on</strong>g>and</str<strong>on</strong>g> the c<strong>on</strong>ducti<strong>on</strong> electr<strong>on</strong>s, which associated to form the F<br />

centers, are resp<strong>on</strong>sible for the blue color [158].<br />

Colorati<strong>on</strong><br />

Ti 4þ –VO–ð2eÞ–Fe 4þ ƒƒƒƒ! ƒƒƒƒ Ti 3þ –VO–Fe 3þ<br />

Bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

S<str<strong>on</strong>g>in</str<strong>on</strong>g>ce most work has been carried out <strong>on</strong> small TiO 2 particles, McTaggart <str<strong>on</strong>g>and</str<strong>on</strong>g> Bear<br />

[153] have recognized the <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence of high specific area of this material <strong>on</strong> its optical<br />

properties <str<strong>on</strong>g>and</str<strong>on</strong>g> put forward that the photochromic effect is ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly due to a surface photoreacti<strong>on</strong><br />

(i.e., impurity is adsorbed at the surface or <str<strong>on</strong>g>in</str<strong>on</strong>g>terface) with an optimum sample<br />

treatment temperature of about 300 °C. It is noted that the impurities <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated have<br />

ð2Þ


832 T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879<br />

<strong>on</strong>e property <str<strong>on</strong>g>in</str<strong>on</strong>g> comm<strong>on</strong>, i.e., two or more valency states. Moreover, a fully oxidized form<br />

is usually characteristically darker <str<strong>on</strong>g>in</str<strong>on</strong>g> color than a lower form. Up<strong>on</strong> irradiati<strong>on</strong>, a stable<br />

low-valence impurity i<strong>on</strong> <strong>on</strong> TiO2 surface is oxidized to a colored high-valence state [153].<br />

A high-valence form of the i<strong>on</strong> reverts to a low-valence form with<str<strong>on</strong>g>in</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>utes to weeks up<strong>on</strong><br />

cessati<strong>on</strong> of irradiati<strong>on</strong> [153].<br />

Clark <str<strong>on</strong>g>and</str<strong>on</strong>g> Broadhead [155] have suggested, s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce TiO 2 is known to show str<strong>on</strong>g surface<br />

photoreacti<strong>on</strong>s, photochromism <str<strong>on</strong>g>in</str<strong>on</strong>g> powdered samples may be due to a comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of<br />

bulk <str<strong>on</strong>g>and</str<strong>on</strong>g> surface mechanism. In fact, the possible photochromic effects occurr<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

doped-TiO2 can be caused by a variety of different mechanisms depend<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> sample history<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> envir<strong>on</strong>ment [155]. In Fe-doped rutile particles, the p<str<strong>on</strong>g>in</str<strong>on</strong>g>kish-brown colorati<strong>on</strong> is<br />

not due to Ti 3+ but due to Fe 2+ –VO (VO signifies a Fe-adjacent ani<strong>on</strong> vacancy) color center<br />

[155]. Irradiati<strong>on</strong> of the Fe-doped crystal with light of phot<strong>on</strong> energy greater than that<br />

required to lift the electr<strong>on</strong> from the valence b<str<strong>on</strong>g>and</str<strong>on</strong>g> to Fe 3+ –VO centers will generate Fe 2+ –<br />

V O centers <str<strong>on</strong>g>and</str<strong>on</strong>g> the majority of the resultant holes are trapped by Fe 3+ i<strong>on</strong>s <strong>on</strong> sites without<br />

an adjacent vacancy. It is proposed [155] that the optical absorpti<strong>on</strong> of Fe 2+ –V O centers<br />

is str<strong>on</strong>ger than that caused by Fe 3+ –V O centers, so that irradiati<strong>on</strong> causes an <str<strong>on</strong>g>in</str<strong>on</strong>g>crease<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> absorpti<strong>on</strong>. The optical absorpti<strong>on</strong> of Fe 2+ –VO system will be a comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of crystal<br />

field absorpti<strong>on</strong> with<str<strong>on</strong>g>in</str<strong>on</strong>g> the deformed i<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> CT processes <str<strong>on</strong>g>in</str<strong>on</strong>g>volv<str<strong>on</strong>g>in</str<strong>on</strong>g>g optical excitati<strong>on</strong> of<br />

an electr<strong>on</strong> from the center to the c<strong>on</strong>ducti<strong>on</strong> b<str<strong>on</strong>g>and</str<strong>on</strong>g>. Bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g is a comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of optical<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> thermal release of electr<strong>on</strong>s from Fe 2+ –VO centers <str<strong>on</strong>g>in</str<strong>on</strong>g>to c<strong>on</strong>ducti<strong>on</strong> b<str<strong>on</strong>g>and</str<strong>on</strong>g> followed by<br />

recomb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> with the trapped holes, <str<strong>on</strong>g>and</str<strong>on</strong>g> direct recomb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> between the Fe 2+ –VO<br />

centers <str<strong>on</strong>g>and</str<strong>on</strong>g> n<strong>on</strong>-trapped holes [155].<br />

Metal i<strong>on</strong>s doped <str<strong>on</strong>g>in</str<strong>on</strong>g>to TiO 2 <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence the charge-carrier recomb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>terfacial<br />

CT rates of photogenerated carriers [32,93,167]. The relative efficiency of a metal i<strong>on</strong> dopant<br />

depends <strong>on</strong> whether it serves as a mediator of <str<strong>on</strong>g>in</str<strong>on</strong>g>terfacial charge transfer, or as a<br />

recomb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> center [93,157]. Enhanced <str<strong>on</strong>g>in</str<strong>on</strong>g>terfacial charge transfer <str<strong>on</strong>g>in</str<strong>on</strong>g> the presence of<br />

effective dopants appears to be the most important factor <str<strong>on</strong>g>in</str<strong>on</strong>g> the enhancement of photoreactivity<br />

of doped TiO2, which is relevant to the dopant c<strong>on</strong>centrati<strong>on</strong>, the energy level of<br />

dopant with<str<strong>on</strong>g>in</str<strong>on</strong>g> TiO2, its d electr<strong>on</strong>ic c<strong>on</strong>figurati<strong>on</strong>, the distributi<strong>on</strong> of dopant with<str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

particles, the electr<strong>on</strong> d<strong>on</strong>or c<strong>on</strong>centrati<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>cident light <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity [93]. Itis<br />

claimed [86] that the photoresp<strong>on</strong>se is completely absent <str<strong>on</strong>g>in</str<strong>on</strong>g> the presence of 0.85 i<strong>on</strong>%<br />

Cr 3+ homogeneously distributed because the homogeneous dop<str<strong>on</strong>g>in</str<strong>on</strong>g>g with Cr 3+ can <str<strong>on</strong>g>in</str<strong>on</strong>g>troduce<br />

centers which facilitate electr<strong>on</strong>–hole recomb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>. It is reported that Fe<br />

[156,168], Mo[156], <str<strong>on</strong>g>and</str<strong>on</strong>g> V [156] dopant <str<strong>on</strong>g>in</str<strong>on</strong>g> TiO2 may cause an <str<strong>on</strong>g>in</str<strong>on</strong>g>hibiti<strong>on</strong> of hole–electr<strong>on</strong><br />

recomb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>. However, Mart<str<strong>on</strong>g>in</str<strong>on</strong>g> et al. [167] have argued that V dopant may promote<br />

charge-carrier recomb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> with electr<strong>on</strong> trapp<str<strong>on</strong>g>in</str<strong>on</strong>g>g at VO þ<br />

2 <str<strong>on</strong>g>in</str<strong>on</strong>g> TiO2-25 <str<strong>on</strong>g>and</str<strong>on</strong>g> V 4+ impurities<br />

as hole trap <str<strong>on</strong>g>in</str<strong>on</strong>g> TiO2-200/400.<br />

In certa<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g>troducti<strong>on</strong> of a metal dopant (such as Fe 3+ ,V 4+ ,Rh 3+ , <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Mn 3+ ) <str<strong>on</strong>g>in</str<strong>on</strong>g>to TiO 2 <str<strong>on</strong>g>in</str<strong>on</strong>g>duces a red-shift <str<strong>on</strong>g>in</str<strong>on</strong>g> b<str<strong>on</strong>g>and</str<strong>on</strong>g> gap transiti<strong>on</strong>, sometimes extend<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>to<br />

the visible-light range. This is attributed to the CT transiti<strong>on</strong>s between the metal i<strong>on</strong> d electr<strong>on</strong>s<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> the TiO2 c<strong>on</strong>ducti<strong>on</strong> or valence b<str<strong>on</strong>g>and</str<strong>on</strong>g> or a d–d transiti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the crystal field [93].<br />

For example, it is reported [155] that photochromism has been observed <str<strong>on</strong>g>in</str<strong>on</strong>g> Fe-doped rutile<br />

s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle-crystal up<strong>on</strong> irradiati<strong>on</strong> with light of phot<strong>on</strong> energy greater than 2.5 eV. In additi<strong>on</strong>,<br />

the presence of water <str<strong>on</strong>g>in</str<strong>on</strong>g> some form at the surface or <str<strong>on</strong>g>in</str<strong>on</strong>g>terface appears to be essential<br />

to the photochromic reacti<strong>on</strong>, which might be due to its reacti<strong>on</strong> with hole or oxygen liberated<br />

from TiO 2 up<strong>on</strong> irradiati<strong>on</strong>, or to its enter<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>to the b<strong>on</strong>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g between impurity<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> host oxide [31,153].


T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879 833<br />

2.3.2. Transiti<strong>on</strong>-metal-doped titanates<br />

Str<strong>on</strong>tium titanate (SrTiO3) is a crystal with a cubic perovskite structure at room temperature.<br />

It is transparent <str<strong>on</strong>g>in</str<strong>on</strong>g> visible range with a b<str<strong>on</strong>g>and</str<strong>on</strong>g> gap of ca. 3.2 eV separat<str<strong>on</strong>g>in</str<strong>on</strong>g>g the oxygen<br />

2p valence b<str<strong>on</strong>g>and</str<strong>on</strong>g> from the empty titanium 3d c<strong>on</strong>ducti<strong>on</strong> b<str<strong>on</strong>g>and</str<strong>on</strong>g> [2,169–171]. When<br />

s<str<strong>on</strong>g>in</str<strong>on</strong>g>gly doped with Fe [2,169–179], Ni[2,170,176,180], Co[2,170], Cr[2], V[2], or double<br />

doped with Fe–Mo [153,160,170,173], Ni–Mo [2,170,173], V–Fe [177], <str<strong>on</strong>g>and</str<strong>on</strong>g> Al–Fe [181],<br />

it is capable of photochromism <str<strong>on</strong>g>and</str<strong>on</strong>g> sometimes a small amount of visible absorpti<strong>on</strong><br />

appears before colorati<strong>on</strong>. Mn-doped SrTiO 3 does not change at all under illum<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong><br />

[2]. Dop<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>fluences the charge compensati<strong>on</strong>, which plays an important role <str<strong>on</strong>g>in</str<strong>on</strong>g> photochromic<br />

SrTiO3 s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce it permits the existence of many different valence states of impurity<br />

i<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the crystal [2,170]. The dop<str<strong>on</strong>g>in</str<strong>on</strong>g>g may also improve the electrical c<strong>on</strong>ductivity. Apart<br />

from the thermal decay, the <str<strong>on</strong>g>in</str<strong>on</strong>g>duced colorati<strong>on</strong> can be bleached with visible light<br />

[2,170,174,175].<br />

Ir<strong>on</strong> has probably been studied more thoroughly as an impurity <str<strong>on</strong>g>in</str<strong>on</strong>g> SrTiO 3 than any<br />

other transiti<strong>on</strong> metals. It is claimed that Fe-doped SrTiO 3 crystal exhibits photochromic<br />

properties <strong>on</strong>ly at low temperature (


834 T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879<br />

Fig. 16. Schematic representati<strong>on</strong> of (a) Ni 3+ d<strong>on</strong>or charge transfer, (b) Ni 3+ –VO–(e) acceptor, <str<strong>on</strong>g>and</str<strong>on</strong>g> (c) Ni 3+ –VO–<br />

(2e) d<strong>on</strong>or-transfer primary processes. Dashed l<str<strong>on</strong>g>in</str<strong>on</strong>g>es: sec<strong>on</strong>dary electr<strong>on</strong> or hole-trapp<str<strong>on</strong>g>in</str<strong>on</strong>g>g processes [176].<br />

to Ni 3+ –VO–(e) (Fig. 16) [176]. Acceptor-type charge transfer at near-b<str<strong>on</strong>g>and</str<strong>on</strong>g> gap energy<br />

k < 500 nm generates Ni 3+ –VO–(2e) centers from Ni 3+ –VO–(e). The holes liberated are<br />

trapped at cubic Ni 2+ sites which c<strong>on</strong>vert back to Ni 3+ . The photochromic b<str<strong>on</strong>g>and</str<strong>on</strong>g> at<br />

525 nm, characteristic of Ni 3+ , is due to a d<strong>on</strong>or charge transfer of cubic Ni 3+ to become<br />

Ni 4+ . The b<str<strong>on</strong>g>and</str<strong>on</strong>g> at 575 nm is a Ni 3+ –VO–(2e) d<strong>on</strong>or b<str<strong>on</strong>g>and</str<strong>on</strong>g> which changes this center back<br />

to the Ni 3+ –VO–(e) state. The str<strong>on</strong>g b<str<strong>on</strong>g>and</str<strong>on</strong>g> at 480 nm is assumed to be caused by an excitati<strong>on</strong><br />

of Ni 3+ –VO–(2e) <str<strong>on</strong>g>in</str<strong>on</strong>g>to an unstable c<strong>on</strong>figurati<strong>on</strong> or charge state which relaxes back<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>to the <str<strong>on</strong>g>in</str<strong>on</strong>g>itial state before the carriers liberated can move away.<br />

When Fe–Mo double doped SrTiO3 is irradiated with light <str<strong>on</strong>g>in</str<strong>on</strong>g> the 390–430 nm regi<strong>on</strong>,<br />

broad visible absorpti<strong>on</strong> b<str<strong>on</strong>g>and</str<strong>on</strong>g>s appear due to the formati<strong>on</strong> of Fe 4+ <str<strong>on</strong>g>and</str<strong>on</strong>g> Mo 5+ via electr<strong>on</strong><br />

transfer from Fe 3+ to Mo 6+ [153,160,170,172,173]. This is also observed <str<strong>on</strong>g>in</str<strong>on</strong>g> Fe–Mo<br />

doped TiO2 [170,173]. This process does not depend <strong>on</strong> the surface effect. The role of<br />

Mo is that of an electr<strong>on</strong> trap. When Mo is not present, another transiti<strong>on</strong> i<strong>on</strong> can act<br />

as both an electr<strong>on</strong> d<strong>on</strong>or <str<strong>on</strong>g>and</str<strong>on</strong>g> an electr<strong>on</strong> trap [170,173,182,183]. In this case, the thermal<br />

decay rate is faster. For <str<strong>on</strong>g>in</str<strong>on</strong>g>stance, at 300 K thermal bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g of the photo<str<strong>on</strong>g>in</str<strong>on</strong>g>duced colored<br />

state occurs with<str<strong>on</strong>g>in</str<strong>on</strong>g> several m<str<strong>on</strong>g>in</str<strong>on</strong>g>utes for the Fe–Mo doped SrTiO3 <str<strong>on</strong>g>and</str<strong>on</strong>g> with<str<strong>on</strong>g>in</str<strong>on</strong>g> less than a<br />

sec<strong>on</strong>d for s<str<strong>on</strong>g>in</str<strong>on</strong>g>gly Fe-doped SrTiO3 [170,173].<br />

It is reported [184,185] that a light red color is developed from white <strong>on</strong> exposure of<br />

calcium titanate (CaTiO 3, E g<br />

3.4 eV) to light. On the c<strong>on</strong>trary to the report of Tanaka<br />

[185], MacNev<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Ogle [184] have claimed that oxygen <str<strong>on</strong>g>and</str<strong>on</strong>g> moisture have no <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence<br />

<strong>on</strong> the color resp<strong>on</strong>se of CaTiO 3. BaTiO 3 also exhibits photochromism, though <str<strong>on</strong>g>in</str<strong>on</strong>g> general<br />

less <str<strong>on</strong>g>in</str<strong>on</strong>g>tense compared with CaTiO3 due to slight reducti<strong>on</strong> of Ti 4+ to colored Ti 3+ dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

the preparati<strong>on</strong> [184]. An impurity is usually present <str<strong>on</strong>g>in</str<strong>on</strong>g> the two titanates, the effect of<br />

which tends to parallel <str<strong>on</strong>g>in</str<strong>on</strong>g> them <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>creases with its amount [184]. It is also <str<strong>on</strong>g>in</str<strong>on</strong>g>dicated<br />

[2,170] that CaTiO3 doped with transiti<strong>on</strong> metals has photochromic properties very similar<br />

to SrTiO3. It is claimed [184] that <str<strong>on</strong>g>in</str<strong>on</strong>g> order for an impurity i<strong>on</strong> to <str<strong>on</strong>g>in</str<strong>on</strong>g>duce photochromism, it<br />

must have a radius near that of Ti 4+ but not exactly the same, otherwise no distorti<strong>on</strong><br />

would occur. Moreover, an effective impurity i<strong>on</strong> must have a valence other than 4 so that<br />

electr<strong>on</strong> transfer is possible [184]. Therefore, Fe 3+ ,Zn 2+ ,V 5+ <str<strong>on</strong>g>and</str<strong>on</strong>g> Sb 5+ give the most


pr<strong>on</strong>ounced effects (chang<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>to (dark) violet) whereas Ag + ,Cu 2+ ,Sb 3+ ,Sn 4+ ,Zr 4+ <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Co 2+ produced no detectable color <str<strong>on</strong>g>in</str<strong>on</strong>g> BaTiO3 <str<strong>on</strong>g>and</str<strong>on</strong>g> no detectable <str<strong>on</strong>g>in</str<strong>on</strong>g>crease <str<strong>on</strong>g>in</str<strong>on</strong>g> the slight colorati<strong>on</strong><br />

of pure CaTiO3.<br />

<str<strong>on</strong>g>Photochromism</str<strong>on</strong>g> cannot occur <str<strong>on</strong>g>in</str<strong>on</strong>g> MgTiO3, which is basically dependent up<strong>on</strong> its different<br />

crystal structure from that of CaTiO3 [184]. CaTiO3 has a structure <str<strong>on</strong>g>in</str<strong>on</strong>g> which Ca 2+ <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

O 2<br />

i<strong>on</strong>s together form a close-packed lattice <str<strong>on</strong>g>and</str<strong>on</strong>g> small Ti 4+ i<strong>on</strong> is surrounded octahe-<br />

drally by six O 2<br />

T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879 835<br />

i<strong>on</strong>s. In MgTiO 3, however, <strong>on</strong>ly O 2<br />

i<strong>on</strong>s form a close-packed c<strong>on</strong>figu-<br />

rati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Mg 2+ <str<strong>on</strong>g>and</str<strong>on</strong>g> Ti 4+ i<strong>on</strong>s exist <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>terstices. An ir<strong>on</strong> impurity added to MgTiO3 can replace the Mg 2+ <str<strong>on</strong>g>and</str<strong>on</strong>g>/or Ti 4+ i<strong>on</strong> without produc<str<strong>on</strong>g>in</str<strong>on</strong>g>g an asymmetrical field. Zn 2+ , similar<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> size to Mg 2+ <str<strong>on</strong>g>and</str<strong>on</strong>g> Ti 4+ , may replace <strong>on</strong>e or both i<strong>on</strong>s without stra<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>on</strong> the closepacked<br />

O 2<br />

structure.<br />

2.3.3. Doped molybdates <str<strong>on</strong>g>and</str<strong>on</strong>g> tungstates<br />

The photochromic effect <str<strong>on</strong>g>in</str<strong>on</strong>g> PbMoO 4 crystals (with Scheelite structure) is due to the<br />

charge exchange Mo 6+ +Pb 2+ M Mo 5+ +Pb 3+ [186], which accounts for the appearance<br />

of all three absorpti<strong>on</strong> b<str<strong>on</strong>g>and</str<strong>on</strong>g>s after UV-light illum<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>. The <strong>on</strong>e at ca. 435 nm is due to<br />

Pb 3+ i<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> the <strong>on</strong>es at ca. 390 <str<strong>on</strong>g>and</str<strong>on</strong>g> 575 nm are assigned to Mo 5+ i<strong>on</strong>s [186–189]. The<br />

deviati<strong>on</strong> from compositi<strong>on</strong>al stoichiometry toward an excess of MoO3 can also cause<br />

the appearance of these absorpti<strong>on</strong> b<str<strong>on</strong>g>and</str<strong>on</strong>g>s [186]. For PbMoO4 crystals with BaO <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Bi2O3 additi<strong>on</strong>s, Ba 2+ <str<strong>on</strong>g>and</str<strong>on</strong>g> Bi 3+ substitute isomorphically for Pb 2+ i<strong>on</strong>s. C<strong>on</strong>sequently,<br />

the <str<strong>on</strong>g>in</str<strong>on</strong>g>troducti<strong>on</strong> of Ba 2+ reduces photo<str<strong>on</strong>g>in</str<strong>on</strong>g>duced colorati<strong>on</strong> due to the exerted stabiliz<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

effect <strong>on</strong> the lead sublatttice, <str<strong>on</strong>g>and</str<strong>on</strong>g> Bi-doped crystals exhibit a str<strong>on</strong>g absorpti<strong>on</strong> at<br />

435 nm but no photochromism [186].<br />

Another crystal with the same Scheelite structure as PbMoO 4 is PbWO 4, for which the<br />

most prom<str<strong>on</strong>g>in</str<strong>on</strong>g>ent absorpti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the range from 350 to 370 nm is usually attributed to the<br />

existence of Pb 3+ centers [190] <str<strong>on</strong>g>and</str<strong>on</strong>g> the peak at 420 nm seems to be caused by O centers<br />

[191]. Burachas et al. [192] have po<str<strong>on</strong>g>in</str<strong>on</strong>g>ted out that the radiati<strong>on</strong>-<str<strong>on</strong>g>in</str<strong>on</strong>g>duced photochromic<br />

effects of PbWO4 are caused by phase transiti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong>s of tungsten oxide<br />

(WO3 x for the undoped <strong>on</strong>e, <str<strong>on</strong>g>and</str<strong>on</strong>g> W1 yLyO3 x (0 < x < 0.3) for the L-doped <strong>on</strong>e,<br />

L = Y, La, Gd), of which a valency change is <str<strong>on</strong>g>in</str<strong>on</strong>g>itiated <str<strong>on</strong>g>and</str<strong>on</strong>g> results <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>duced absorpti<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g>, c<strong>on</strong>sequently, <str<strong>on</strong>g>in</str<strong>on</strong>g> crystal colorati<strong>on</strong>. S<str<strong>on</strong>g>in</str<strong>on</strong>g>ce PbWO 4 crystals are usually used as sc<str<strong>on</strong>g>in</str<strong>on</strong>g>tillati<strong>on</strong><br />

detector <str<strong>on</strong>g>in</str<strong>on</strong>g> high energy physics <str<strong>on</strong>g>and</str<strong>on</strong>g> modern medical imag<str<strong>on</strong>g>in</str<strong>on</strong>g>g, almost all <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong>s<br />

hitherto are focused <strong>on</strong> how to improve the radiati<strong>on</strong> hardness [190–193], <strong>on</strong>e of the<br />

most important properties for sc<str<strong>on</strong>g>in</str<strong>on</strong>g>tillati<strong>on</strong> <str<strong>on</strong>g>materials</str<strong>on</strong>g>. By <str<strong>on</strong>g>in</str<strong>on</strong>g>troducti<strong>on</strong> of dop<str<strong>on</strong>g>in</str<strong>on</strong>g>g with La<br />

[190,192,194,195], Gd [192,195,196], Nb [197], Y [192,198], Sb [195,198], <str<strong>on</strong>g>and</str<strong>on</strong>g> certa<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

group-IV impurities (Th) [198], the radiati<strong>on</strong> hardness of PbWO4 is <str<strong>on</strong>g>in</str<strong>on</strong>g>creased. Dop<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

with Zr 4+ ,Si 4+ ,Sc 3+ , <str<strong>on</strong>g>and</str<strong>on</strong>g> Ti 3+ does not improve while dop<str<strong>on</strong>g>in</str<strong>on</strong>g>g with Sn 4+ <str<strong>on</strong>g>and</str<strong>on</strong>g> Yt 3+ even<br />

c<strong>on</strong>siderably decreases the transparency <str<strong>on</strong>g>and</str<strong>on</strong>g> radiati<strong>on</strong> hardness of PbWO 4 [195,198].<br />

Up<strong>on</strong> exposure to UV light, Bi-doped calcium, str<strong>on</strong>tium, <str<strong>on</strong>g>and</str<strong>on</strong>g> barium tungstates <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

their solid soluti<strong>on</strong>s can change from white to purple, green or p<str<strong>on</strong>g>in</str<strong>on</strong>g>k color, respectively<br />

[35,199]. Under the same irradiati<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s the <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity of UV-<str<strong>on</strong>g>in</str<strong>on</strong>g>duced colorati<strong>on</strong><br />

depends <strong>on</strong> the Bi c<strong>on</strong>tent <str<strong>on</strong>g>and</str<strong>on</strong>g> preparati<strong>on</strong> temperature of the tungstates. Bi c<strong>on</strong>tents<br />

higher than 0.1 mol% <str<strong>on</strong>g>and</str<strong>on</strong>g> preparati<strong>on</strong> temperatures higher than 1250 °C give str<strong>on</strong>g colorati<strong>on</strong>.<br />

In Bi-doped tungstates photogenerated holes can be trapped by cati<strong>on</strong> vacancies<br />

created by the <str<strong>on</strong>g>in</str<strong>on</strong>g>troducti<strong>on</strong> of Bi 3+ i<strong>on</strong>s or by Bi 3+ themselves [199]. Then electr<strong>on</strong>s, without<br />

be<str<strong>on</strong>g>in</str<strong>on</strong>g>g recomb<str<strong>on</strong>g>in</str<strong>on</strong>g>ed, can be trapped by oxygen i<strong>on</strong> vacancies, lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g to colorati<strong>on</strong> of<br />

the crystals. The similar photochromic mechanism has been put forward by Cr<strong>on</strong>emeyer


836 T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Beaubien [200]. The UV-<str<strong>on</strong>g>in</str<strong>on</strong>g>duced color fades gradually at room temperature <str<strong>on</strong>g>in</str<strong>on</strong>g> darkness,<br />

by thermal fad<str<strong>on</strong>g>in</str<strong>on</strong>g>g, or by optical bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g [199]. The fad<str<strong>on</strong>g>in</str<strong>on</strong>g>g rate <str<strong>on</strong>g>in</str<strong>on</strong>g>creases with<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g Bi c<strong>on</strong>tent <str<strong>on</strong>g>and</str<strong>on</strong>g> is promoted by visible-light exposure.<br />

2.3.4. Field-assisted photochromism<br />

In the applicati<strong>on</strong> of photochromism to an optical memory, there is a substantial problem<br />

that the change <str<strong>on</strong>g>in</str<strong>on</strong>g> optical absorpti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>duced by light irradiati<strong>on</strong> degrades with time.<br />

Faughnan [170] has suggested this degradati<strong>on</strong> results from the thermal reverse reacti<strong>on</strong>.<br />

For the photochromic TMOs doped by transiti<strong>on</strong>-metal i<strong>on</strong>s, Kobayashi et al. [201–204]<br />

have suggested that the presence of a str<strong>on</strong>g electric field can suppress this thermal reverse<br />

reacti<strong>on</strong>, <str<strong>on</strong>g>in</str<strong>on</strong>g> which electr<strong>on</strong>s (or holes) emitted from impurity levels to the c<strong>on</strong>ducti<strong>on</strong><br />

(valence) b<str<strong>on</strong>g>and</str<strong>on</strong>g> drift toward an electrode al<strong>on</strong>g the electric filed. This is the so-called<br />

field-assisted photochromism. A photochromic material is <str<strong>on</strong>g>in</str<strong>on</strong>g>terposed between two th<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

electrodes so that a str<strong>on</strong>g electric field can be applied to it (Fig. 17) [201]. It is assumed<br />

that the charge of doped transiti<strong>on</strong>-metal i<strong>on</strong>s, M n+ , is identical with the charge of metal<br />

i<strong>on</strong>s of a host metal oxide, <str<strong>on</strong>g>and</str<strong>on</strong>g> M n+ i<strong>on</strong>s form an impurity level with the state density of<br />

Nd at Ed below the bottom of the c<strong>on</strong>ducti<strong>on</strong> b<str<strong>on</strong>g>and</str<strong>on</strong>g> (the depth energy Ed is less than <strong>on</strong>ehalf<br />

of the b<str<strong>on</strong>g>and</str<strong>on</strong>g> gap energy Eg). In the presence of a str<strong>on</strong>g electric field, electr<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> a<br />

shallow impurity level of M n+ i<strong>on</strong>s can be thermally emitted <str<strong>on</strong>g>in</str<strong>on</strong>g>to the c<strong>on</strong>ducti<strong>on</strong> b<str<strong>on</strong>g>and</str<strong>on</strong>g>.<br />

The thermal emissi<strong>on</strong> of electr<strong>on</strong>s results <str<strong>on</strong>g>in</str<strong>on</strong>g> the variati<strong>on</strong> of the c<strong>on</strong>centrati<strong>on</strong> of M n+ i<strong>on</strong>s<br />

with time. C<strong>on</strong>sequently, the formati<strong>on</strong> of a deep impurity level of M n+ i<strong>on</strong>s is an important<br />

c<strong>on</strong>diti<strong>on</strong> required to realize an optical memory. If the c<strong>on</strong>diti<strong>on</strong>s are satisfied, the<br />

positive space charges due to M n+1 i<strong>on</strong>s are not formed <str<strong>on</strong>g>in</str<strong>on</strong>g> the photochromic material,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> thus the b<str<strong>on</strong>g>and</str<strong>on</strong>g> of the photochromic material is straight as shown <str<strong>on</strong>g>in</str<strong>on</strong>g> Fig. 17A [201].<br />

Fig. 17. Schematic illustrati<strong>on</strong> of field-assisted photochromism: the b<str<strong>on</strong>g>and</str<strong>on</strong>g> diagrams of a film c<strong>on</strong>sist<str<strong>on</strong>g>in</str<strong>on</strong>g>g of ohmic<br />

electrode, photochromic material, <str<strong>on</strong>g>and</str<strong>on</strong>g> block<str<strong>on</strong>g>in</str<strong>on</strong>g>g electrode (A) before <str<strong>on</strong>g>and</str<strong>on</strong>g> (B) after light irradiati<strong>on</strong> [201].


T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879 837<br />

Under the light irradiati<strong>on</strong> with phot<strong>on</strong> energy hm, such as Ed < hm < Eg Ed, electr<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

M n+ i<strong>on</strong>s can be optically transferred to the c<strong>on</strong>ducti<strong>on</strong> b<str<strong>on</strong>g>and</str<strong>on</strong>g>, <str<strong>on</strong>g>and</str<strong>on</strong>g> subsequently electr<strong>on</strong>s<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the c<strong>on</strong>ducti<strong>on</strong> b<str<strong>on</strong>g>and</str<strong>on</strong>g> are drifted toward the left electrode al<strong>on</strong>g the applied electric field.<br />

This process is called photoi<strong>on</strong>izati<strong>on</strong> of doped transiti<strong>on</strong>-metal i<strong>on</strong>s: M n+ ! M n+1 +e.<br />

Even if light irradiati<strong>on</strong> is turned off, M n+1 i<strong>on</strong>s ly<str<strong>on</strong>g>in</str<strong>on</strong>g>g above the Fermi level of the ohmic<br />

electrode rema<str<strong>on</strong>g>in</str<strong>on</strong>g> unchanged. The presence of the electric field is effective for the charge<br />

separati<strong>on</strong> of electr<strong>on</strong>–hole pairs generated by light irradiati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> for suppress<str<strong>on</strong>g>in</str<strong>on</strong>g>g the<br />

thermal reverse reacti<strong>on</strong> from the ohmic electrode. In the applicati<strong>on</strong> of an optical memory,<br />

M n+1 i<strong>on</strong>s should be reduced optically to M n+ i<strong>on</strong>s. This requirement can be fulfilled<br />

by the phot<strong>on</strong>-<str<strong>on</strong>g>in</str<strong>on</strong>g>duced charge transfer from the valence b<str<strong>on</strong>g>and</str<strong>on</strong>g> to vacant impurity level<br />

orig<str<strong>on</strong>g>in</str<strong>on</strong>g>at<str<strong>on</strong>g>in</str<strong>on</strong>g>g from M n+1 i<strong>on</strong>s as shown <str<strong>on</strong>g>in</str<strong>on</strong>g> Fig. 17B [201]. Under the light irradiati<strong>on</strong> with<br />

a phot<strong>on</strong> energy larger than Eg Ed, M n+ i<strong>on</strong>s are generated <str<strong>on</strong>g>and</str<strong>on</strong>g> successively the photoi<strong>on</strong>izati<strong>on</strong><br />

of M n+ i<strong>on</strong>s take place.<br />

These authors have proposed a selecti<strong>on</strong> rule for the photoi<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> charge transfer<br />

at an arbitrary k vector <str<strong>on</strong>g>in</str<strong>on</strong>g> the Brillou<str<strong>on</strong>g>in</str<strong>on</strong>g> z<strong>on</strong>e by c<strong>on</strong>sider<str<strong>on</strong>g>in</str<strong>on</strong>g>g time <str<strong>on</strong>g>in</str<strong>on</strong>g>versi<strong>on</strong> [201]. N<strong>on</strong>zero<br />

matrix element is obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed for the <str<strong>on</strong>g>in</str<strong>on</strong>g>itial state of a M n+ i<strong>on</strong> c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g odd number<br />

of d electr<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the photoi<strong>on</strong>izati<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> for the f<str<strong>on</strong>g>in</str<strong>on</strong>g>al state of a M n+ i<strong>on</strong> c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

even number of d electr<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the charge transfer: d 2m+1 ! d 2m + e(c.b), <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

d 2m + e(v.b) ! d 2m+1 . Us<str<strong>on</strong>g>in</str<strong>on</strong>g>g this selecti<strong>on</strong> rule, the authors have argued <strong>on</strong>e can choose<br />

transiti<strong>on</strong>-metal i<strong>on</strong>s to be employed as a photochromic material. This has been dem<strong>on</strong>strated<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the systems of Co-doped ZnO [202] <str<strong>on</strong>g>and</str<strong>on</strong>g> Cu-doped ZnO [203]. A broad peak<br />

around 640 nm <str<strong>on</strong>g>in</str<strong>on</strong>g> the photocurrent spectrum is assigned to photothermal i<strong>on</strong>izati<strong>on</strong> of<br />

Co 2+ i<strong>on</strong>s ðCo 2þ ! Co 3þ þ e CB Þ [202,205], which can be enhanced <str<strong>on</strong>g>in</str<strong>on</strong>g> a str<strong>on</strong>g electric field<br />

because the barrier height for thermal emissi<strong>on</strong> is reduced by the electric field as <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

Pool-Frenkel model [206]. The c<strong>on</strong>centrati<strong>on</strong> of Co 2+ i<strong>on</strong>s is decreased by the irradiati<strong>on</strong><br />

of 500 nm <str<strong>on</strong>g>and</str<strong>on</strong>g> is recovered to the <str<strong>on</strong>g>in</str<strong>on</strong>g>itial value by turn<str<strong>on</strong>g>in</str<strong>on</strong>g>g off the bias voltage.<br />

2.4. Miscellaneous <str<strong>on</strong>g>composite</str<strong>on</strong>g> <str<strong>on</strong>g>materials</str<strong>on</strong>g><br />

2.4.1. a-WO 3/Si heterostructure<br />

Tutov et al. [207,208] have prepared an amorphous WO 3/Si (a-WO 3/Si) heterostructure<br />

by vacuum c<strong>on</strong>densati<strong>on</strong> of thermally evaporated tungsten trioxide powder <strong>on</strong> n-Si substrate<br />

under c<strong>on</strong>diti<strong>on</strong>s lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g to formati<strong>on</strong> of a transparent WO3 film (stoichiometric)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> the <strong>on</strong>e with color centers (partially reduced). The latter is analogous to a thermochromic<br />

process without the c<strong>on</strong>comitant structural order<str<strong>on</strong>g>in</str<strong>on</strong>g>g of the film. The tendencies of a<br />

relative <str<strong>on</strong>g>in</str<strong>on</strong>g>crease of the negative charge <str<strong>on</strong>g>and</str<strong>on</strong>g> the surface states density <str<strong>on</strong>g>in</str<strong>on</strong>g> the a-WO3/Si heterostructure<br />

dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g photo- <str<strong>on</strong>g>and</str<strong>on</strong>g> electrochromism are the same as that for thermochromic<br />

process. The c<strong>on</strong>centrati<strong>on</strong> of color centers <str<strong>on</strong>g>in</str<strong>on</strong>g>creases m<strong>on</strong>ot<strong>on</strong>ically with UV-irradiati<strong>on</strong><br />

time <str<strong>on</strong>g>and</str<strong>on</strong>g> reaches a saturated value of 2.4 · 10 20 cm 3 <str<strong>on</strong>g>in</str<strong>on</strong>g> a time of 100 m<str<strong>on</strong>g>in</str<strong>on</strong>g>. The formati<strong>on</strong><br />

of color centers <str<strong>on</strong>g>in</str<strong>on</strong>g> photochromic process leads to an expected <str<strong>on</strong>g>in</str<strong>on</strong>g>crease of the surface<br />

charge, with the additi<strong>on</strong>al surface charge located at the <str<strong>on</strong>g>in</str<strong>on</strong>g>terface <str<strong>on</strong>g>in</str<strong>on</strong>g> the a-WO3/Si structure<br />

be<str<strong>on</strong>g>in</str<strong>on</strong>g>g negative, which correlates with the occupati<strong>on</strong> of the electr<strong>on</strong> states <str<strong>on</strong>g>in</str<strong>on</strong>g> the b<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

gap of colored a-WO3 film as determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by XPS [209].<br />

High-frequency (HF) C–V characteristics have been <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated as well as an <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence<br />

of color center formati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> a-WO3 <strong>on</strong> charge parameters of heterojuncti<strong>on</strong> with UV irradiati<strong>on</strong><br />

for different exposure times (Fig. 18) [207]. Obviously, the C–V characteristics of<br />

the a-WO 3/Si films with an oxide film obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed under reduc<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>diti<strong>on</strong>s of depositi<strong>on</strong>


838 T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879<br />

Fig. 18. High-frequency C–V characteristics for (A) WO3 x/n-Si <str<strong>on</strong>g>and</str<strong>on</strong>g> (B) WO3/n-Si heterojuncti<strong>on</strong> dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

photochromic process. 20 0 ,40 0 ,80 0 —times of UV-irradiati<strong>on</strong>. (*) Marks curves for the structures with virg<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

oxide film [207].<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> hav<str<strong>on</strong>g>in</str<strong>on</strong>g>g at the outset a pale-blue color def<str<strong>on</strong>g>in</str<strong>on</strong>g>itely differ from the structures of the uncolored<br />

film. In the structure with WO 3 x film a s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle energy level of fast surface states is<br />

observed, located 0.06 eV below the Fermi level <str<strong>on</strong>g>in</str<strong>on</strong>g> Si. It is found that a fast smooth<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

of the peak <str<strong>on</strong>g>in</str<strong>on</strong>g> C–V characteristics occurs with the <str<strong>on</strong>g>in</str<strong>on</strong>g>crease of the irradiati<strong>on</strong> dose, <str<strong>on</strong>g>in</str<strong>on</strong>g>dicat<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

that the <str<strong>on</strong>g>in</str<strong>on</strong>g>itial type of defects (color centers) is ‘‘healed’’, replaced or suppressed by<br />

other centers characteristic of the photochromic process. However, density of states at this


T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879 839<br />

level <str<strong>on</strong>g>in</str<strong>on</strong>g>creases <str<strong>on</strong>g>in</str<strong>on</strong>g> electrochromic process [207], while this level for the structure with the<br />

a-WO3 x thermochromic film does not appear [210] s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce the process of thermovacuum<br />

reducti<strong>on</strong> is c<strong>on</strong>comitant by the order<str<strong>on</strong>g>in</str<strong>on</strong>g>g of the atomic structure. So the nature <str<strong>on</strong>g>and</str<strong>on</strong>g> mechanism<br />

of photochromism for tungsten trioxide might be different, at least by its electr<strong>on</strong><br />

processes observed <str<strong>on</strong>g>in</str<strong>on</strong>g> HF C–V characteristics of a-WO3/Si structure, from those of the<br />

electrochromic <str<strong>on</strong>g>and</str<strong>on</strong>g> thermochromic <strong>on</strong>es. This might be expla<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by the model of hydrogen<br />

photo<str<strong>on</strong>g>in</str<strong>on</strong>g>jecti<strong>on</strong> for the formati<strong>on</strong> of color centers proposed by Gavrilyuk <str<strong>on</strong>g>and</str<strong>on</strong>g> co-workers<br />

(cf. Secti<strong>on</strong> 3.4.1) [211]. In this model, some sequential reacti<strong>on</strong>s are assumed to result<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the formati<strong>on</strong> of color center. Probably, some of the processes occurr<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> these reacti<strong>on</strong>s<br />

lead to a suppressi<strong>on</strong> of alternative mechanisms of color center appearance <str<strong>on</strong>g>in</str<strong>on</strong>g> a-WO3<br />

found <str<strong>on</strong>g>in</str<strong>on</strong>g> C–V characteristics. This can expla<str<strong>on</strong>g>in</str<strong>on</strong>g> a reduced c<strong>on</strong>centrati<strong>on</strong> of color centers <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

photochromic process. Thus the C–V characteristics allow <strong>on</strong>e to observe electr<strong>on</strong> processes<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the color centers pert<str<strong>on</strong>g>in</str<strong>on</strong>g>ent <strong>on</strong>ly to the reducti<strong>on</strong> of a-WO3 film.<br />

2.4.2. H 3PW 12O 40/TiO 2 system<br />

12-Phosphotungstic acid (H 3PW 12O 40ÆnH 2O, PW 12) can be <str<strong>on</strong>g>in</str<strong>on</strong>g>corporated <str<strong>on</strong>g>in</str<strong>on</strong>g>to M–O<br />

matrix (like silica gel <str<strong>on</strong>g>and</str<strong>on</strong>g> TiO2) derived <str<strong>on</strong>g>composite</str<strong>on</strong>g>s [212–215]. With regard to the fact that<br />

TMO gels exhibit redox <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>duct<str<strong>on</strong>g>in</str<strong>on</strong>g>g properties while silica gels not, titania gel is used<br />

as a host matrix to prepare the <str<strong>on</strong>g>composite</str<strong>on</strong>g> photochromic PW12/TiO2 gels <str<strong>on</strong>g>and</str<strong>on</strong>g> films via a<br />

sol–gel route by a dip-coat<str<strong>on</strong>g>in</str<strong>on</strong>g>g technique [214]. Similarity of the characteristic b<str<strong>on</strong>g>and</str<strong>on</strong>g> frequencies<br />

(FT-IR <str<strong>on</strong>g>and</str<strong>on</strong>g> Raman spectra) to pure PW12 c<strong>on</strong>firms that entrapped Kegg<str<strong>on</strong>g>in</str<strong>on</strong>g> salt<br />

is well preserved <str<strong>on</strong>g>in</str<strong>on</strong>g>side the gel [213,214]. Dark blue reversible colorati<strong>on</strong> of PW 12/TiO 2<br />

is obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed under daylight or UV radiati<strong>on</strong> (k = 366 nm), which is relevant to the reducti<strong>on</strong><br />

of PW 12 <str<strong>on</strong>g>and</str<strong>on</strong>g> simultaneous oxidati<strong>on</strong> of organic solvent left <str<strong>on</strong>g>in</str<strong>on</strong>g> the gel lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g to the<br />

formati<strong>on</strong> of aldehyde <str<strong>on</strong>g>and</str<strong>on</strong>g> arises from the IVCT between metal i<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> two different oxidati<strong>on</strong><br />

states (W 5+ –W 6+ ) [214]. S<str<strong>on</strong>g>in</str<strong>on</strong>g>ce there is a good electrical communicati<strong>on</strong> between<br />

PW12 <str<strong>on</strong>g>and</str<strong>on</strong>g> nanoporous TiO2 [212], a good synergetic effect between the two comp<strong>on</strong>ents<br />

should be obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <strong>on</strong> the photochromism. However, so far there is no such k<str<strong>on</strong>g>in</str<strong>on</strong>g>d of discussi<strong>on</strong><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the literatures.<br />

2.4.3. Other <str<strong>on</strong>g>composite</str<strong>on</strong>g> systems<br />

Kostecki et al. [216] have prepared a layered TiO2/Ni(OH) 2 <str<strong>on</strong>g>composite</str<strong>on</strong>g> film by electrochemical<br />

depositi<strong>on</strong> method, which exhibits str<strong>on</strong>g, reversible photochromic properties <strong>on</strong><br />

UV-light irradiati<strong>on</strong>. Vectorial transport of the photogenerated holes <str<strong>on</strong>g>in</str<strong>on</strong>g> TiO2 toward the<br />

TiO2 surface <str<strong>on</strong>g>and</str<strong>on</strong>g> direct electr<strong>on</strong> transfer from the adjacent Ni(OH)2 phase to the TiO2<br />

layer result <str<strong>on</strong>g>in</str<strong>on</strong>g> the oxidati<strong>on</strong> of Ni(OH)2 to NiOOH [217], lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g to the darken<str<strong>on</strong>g>in</str<strong>on</strong>g>g of<br />

the film from nearly transparent to gray or even black, depend<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> the light <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> exposure time. It is noted that Ni(OH) 2–NiOOH itself is not photoresp<strong>on</strong>sive under<br />

natural illum<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> [216]. The formati<strong>on</strong> of stable Ti 3+ sites can result from the <str<strong>on</strong>g>in</str<strong>on</strong>g>jecti<strong>on</strong><br />

of photogenerated electr<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g>to TiO2 c<strong>on</strong>ducti<strong>on</strong> b<str<strong>on</strong>g>and</str<strong>on</strong>g>, which may c<strong>on</strong>tribute to the colorati<strong>on</strong><br />

of the <str<strong>on</strong>g>composite</str<strong>on</strong>g> up<strong>on</strong> illum<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>, corresp<strong>on</strong>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g to a l<strong>on</strong>g tail that extends to<br />

1000 nm <str<strong>on</strong>g>in</str<strong>on</strong>g> the electr<strong>on</strong>ic spectrum. The presence of trapped Ti 3+ species decreases<br />

the efficiency of further photo<str<strong>on</strong>g>in</str<strong>on</strong>g>duced charge separati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> TiO2 [218], <str<strong>on</strong>g>and</str<strong>on</strong>g> thereby<br />

decreases the photochromic efficiency. When the illum<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of <str<strong>on</strong>g>composite</str<strong>on</strong>g> is blocked,<br />

the opposite process takes place. Electr<strong>on</strong>s accumulated <str<strong>on</strong>g>in</str<strong>on</strong>g> the TiO2 c<strong>on</strong>ducti<strong>on</strong> b<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g>/or trapped <str<strong>on</strong>g>in</str<strong>on</strong>g> Ti 3+ sites become available for a direct <str<strong>on</strong>g>in</str<strong>on</strong>g>terfacial charge transfer (or<br />

through the surface states) to the NiOOH–Ni(OH) 2 layer <str<strong>on</strong>g>and</str<strong>on</strong>g> thus reduce NiOOH to


840 T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879<br />

Ni(OH)2, result<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> appearance from gray-black to transparent. The photochromic effect<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the TiO2/Ni(OH)2 film can be significantly enhanced by anodic polarizati<strong>on</strong> [216].<br />

Similar phenomen<strong>on</strong> has been observed <str<strong>on</strong>g>in</str<strong>on</strong>g> Prussian blue modified TiO2 [219–221] <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

n-SrTiO3 [222,223] electrodes. Illum<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of the <str<strong>on</strong>g>composite</str<strong>on</strong>g> electrode leads to the oxidati<strong>on</strong><br />

of colorless Prussian white film to Prussian blue at potentials negative of that measured<br />

at noble metals.<br />

3. Inorganic/organic <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> <str<strong>on</strong>g>materials</str<strong>on</strong>g><br />

The ability to comb<str<strong>on</strong>g>in</str<strong>on</strong>g>e, <str<strong>on</strong>g>in</str<strong>on</strong>g> a s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle material, <str<strong>on</strong>g>in</str<strong>on</strong>g>organic <str<strong>on</strong>g>and</str<strong>on</strong>g> organic comp<strong>on</strong>ents at<br />

molecular or nanometer level represents an excit<str<strong>on</strong>g>in</str<strong>on</strong>g>g directi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> material science with<br />

extraord<str<strong>on</strong>g>in</str<strong>on</strong>g>ary implicati<strong>on</strong>s for develop<str<strong>on</strong>g>in</str<strong>on</strong>g>g novel multifuncti<strong>on</strong>al <str<strong>on</strong>g>materials</str<strong>on</strong>g>. These <str<strong>on</strong>g>in</str<strong>on</strong>g>organic/organic<br />

<str<strong>on</strong>g>hybrid</str<strong>on</strong>g>s have the possibility to possess the advantages of both <str<strong>on</strong>g>in</str<strong>on</strong>g>organic<br />

(high strength, thermal stability, chemical resistance, etc.) <str<strong>on</strong>g>and</str<strong>on</strong>g> organic <str<strong>on</strong>g>materials</str<strong>on</strong>g> (light<br />

weight, flexibility, versatility, etc.) [224]. The uses of such <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> approach to obta<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

greatly improved photochromic properties with opportunities for applicati<strong>on</strong>s are now<br />

be<str<strong>on</strong>g>in</str<strong>on</strong>g>g widely studied <str<strong>on</strong>g>in</str<strong>on</strong>g> many groups. In Secti<strong>on</strong> 3.1.1., we will see that such (improved)<br />

photochromism is closely relevant to the charge transfer (CT) between <str<strong>on</strong>g>in</str<strong>on</strong>g>organic <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

organic moieties. So for these <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> systems, it is of great importance to c<strong>on</strong>struct a<br />

bridge, through which the charges, specifically the electr<strong>on</strong>s, <str<strong>on</strong>g>and</str<strong>on</strong>g>/or prot<strong>on</strong>s can reversibly<br />

transfer between the two c<strong>on</strong>stituents up<strong>on</strong> photoirradiati<strong>on</strong>. To realize this, first, <strong>on</strong>e<br />

should choose the proper <str<strong>on</strong>g>in</str<strong>on</strong>g>organic <str<strong>on</strong>g>and</str<strong>on</strong>g> organic molecules, <str<strong>on</strong>g>and</str<strong>on</strong>g>, then, the suitable preparati<strong>on</strong><br />

methods.<br />

3.1. Model molecules, photochromic mechanism, <str<strong>on</strong>g>and</str<strong>on</strong>g> preparati<strong>on</strong> methods<br />

3.1.1. Model molecules <str<strong>on</strong>g>and</str<strong>on</strong>g> photochromic mechanism<br />

POMs with well-def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed primary structures, <str<strong>on</strong>g>and</str<strong>on</strong>g> sometimes the TMOs, are usually chosen<br />

as build<str<strong>on</strong>g>in</str<strong>on</strong>g>g units for such k<str<strong>on</strong>g>in</str<strong>on</strong>g>d of novel <str<strong>on</strong>g>hybrid</str<strong>on</strong>g>s. POMs can be seen as metal-oxide clusters<br />

due to the similar compositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> topology between POMs <str<strong>on</strong>g>and</str<strong>on</strong>g> oxides [225]. Similar<br />

to the behavior of semic<strong>on</strong>duct<str<strong>on</strong>g>in</str<strong>on</strong>g>g TMOs [226], POMs can be photochemically reduced<br />

[227] to form colored mixed-valence species while reta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g the structural <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrity because<br />

of their well-known special structures, reversible redox activities, high electr<strong>on</strong>ic densities<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> good prot<strong>on</strong> c<strong>on</strong>ductors [35,228–231]. N<strong>on</strong>-reduced POMs are characterized by oxygen-to-metal<br />

(O ! M) charge transfer (CT) b<str<strong>on</strong>g>and</str<strong>on</strong>g>s appear<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> UV regi<strong>on</strong>. Reducti<strong>on</strong> of<br />

POMs to heteropoly blues or heteropoly browns results <str<strong>on</strong>g>in</str<strong>on</strong>g> decrease of the O ! MCT<br />

b<str<strong>on</strong>g>and</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> formati<strong>on</strong> of d–d transiti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g>/or IVCT b<str<strong>on</strong>g>and</str<strong>on</strong>g> located <str<strong>on</strong>g>in</str<strong>on</strong>g> the visible <str<strong>on</strong>g>and</str<strong>on</strong>g> near<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>frared regi<strong>on</strong>. The <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity <str<strong>on</strong>g>and</str<strong>on</strong>g> positi<strong>on</strong> of these absorpti<strong>on</strong> b<str<strong>on</strong>g>and</str<strong>on</strong>g>s are approximately<br />

proporti<strong>on</strong>al to the number of trapped electr<strong>on</strong>s [232]. Although it is said [27] these<br />

reduced species are chemically <str<strong>on</strong>g>and</str<strong>on</strong>g> spectroscopically equivalent to tungsten or molybdenum<br />

br<strong>on</strong>zes <str<strong>on</strong>g>in</str<strong>on</strong>g> the form of colloidal semic<strong>on</strong>duct<str<strong>on</strong>g>in</str<strong>on</strong>g>g quantum dots, the photochromic<br />

mechanism of POMs-<str<strong>on</strong>g>based</str<strong>on</strong>g> <str<strong>on</strong>g>hybrid</str<strong>on</strong>g>s is different from that of TMOs.<br />

The <strong>on</strong>ly absorpti<strong>on</strong> b<str<strong>on</strong>g>and</str<strong>on</strong>g> of POMs <str<strong>on</strong>g>in</str<strong>on</strong>g> the UV–Vis range is due to <str<strong>on</strong>g>in</str<strong>on</strong>g>tramolecular<br />

O ! M lig<str<strong>on</strong>g>and</str<strong>on</strong>g>-to-metal charge transfer (LMCT) transiti<strong>on</strong> s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce the metal i<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> oxidized<br />

POMs have d 0 electr<strong>on</strong>ic c<strong>on</strong>figurati<strong>on</strong>s [35]. When <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> <str<strong>on</strong>g>materials</str<strong>on</strong>g> <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> POMs are<br />

irradiated with UV light, electr<strong>on</strong>s are excited from the low-energy electr<strong>on</strong>ic states, which<br />

are ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly comprised of oxygen 2p orbitals <str<strong>on</strong>g>in</str<strong>on</strong>g> POM, to the high-energy states, which are


T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879 841<br />

ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly comprised of metal d orbitals. C<strong>on</strong>sequently, the metal i<strong>on</strong>s have d 1 <str<strong>on</strong>g>in</str<strong>on</strong>g>stead of d 0<br />

electr<strong>on</strong>ic c<strong>on</strong>figurati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> the electr<strong>on</strong>s added to polyani<strong>on</strong>s have a thermally activated<br />

delocalizati<strong>on</strong> with<str<strong>on</strong>g>in</str<strong>on</strong>g> the molecule [226]. For H3PMo12O40, it has been suggested that<br />

[233,234] the bridg<str<strong>on</strong>g>in</str<strong>on</strong>g>g oxygen (Ob) has exclusive reactivity <str<strong>on</strong>g>and</str<strong>on</strong>g> serves as adsorpti<strong>on</strong> sites<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the redox process. So the prot<strong>on</strong>s can be attracted to Ob atoms [235] to compensate<br />

the negative charges of the reducti<strong>on</strong> electr<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g>troduced <str<strong>on</strong>g>in</str<strong>on</strong>g>to the LUMO level which<br />

has an anti-b<strong>on</strong>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g nature [234]. In additi<strong>on</strong>, it is said that the term<str<strong>on</strong>g>in</str<strong>on</strong>g>al oxygen (O t)is<br />

apparently the most active atom <str<strong>on</strong>g>in</str<strong>on</strong>g> the redox process s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce O t is located at a protrud<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

positi<strong>on</strong> of the Kegg<str<strong>on</strong>g>in</str<strong>on</strong>g> unit <str<strong>on</strong>g>and</str<strong>on</strong>g> the Ot–Mo b<strong>on</strong>d is a double b<strong>on</strong>d [234,236]. Thus electr<strong>on</strong>s<br />

can be photoexcited from Ot without much difficulty dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the photochemical reacti<strong>on</strong><br />

[236].<br />

S<str<strong>on</strong>g>in</str<strong>on</strong>g>ce heteroatoms or counter cati<strong>on</strong>s corresp<strong>on</strong>d to impurities or lattice defects <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

b<str<strong>on</strong>g>and</str<strong>on</strong>g> model, the photogenerated charge carriers may be trapped <str<strong>on</strong>g>in</str<strong>on</strong>g> electr<strong>on</strong> traps <str<strong>on</strong>g>and</str<strong>on</strong>g> hole<br />

traps [35]. These traps provide states of localized energy <str<strong>on</strong>g>in</str<strong>on</strong>g> the O ! M LMCT energy gap.<br />

The trapped carriers can be released by thermal or optical stimulati<strong>on</strong>. If the trap depth is<br />

larger than kT, the probability for thermal escape from the trap will be negligibly small,<br />

result<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> a metastable situati<strong>on</strong>. The d 1 electr<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> O ! M LMCT states facilitate<br />

the absorpti<strong>on</strong> of visible light via IVCT <str<strong>on</strong>g>and</str<strong>on</strong>g>/or d–d transiti<strong>on</strong>s between the neighbored<br />

metal centers with different valence states [35]. The same type of transiti<strong>on</strong> may also be<br />

possible for the d 1 electr<strong>on</strong>s captured by electr<strong>on</strong> traps.<br />

The photochromic products may be different when the POMs are comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ed with different<br />

k<str<strong>on</strong>g>in</str<strong>on</strong>g>ds of organic molecules. The organic selected is usually <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> organic am<str<strong>on</strong>g>in</str<strong>on</strong>g>es,<br />

the molecules with p-electr<strong>on</strong>s, or some polymers. If there is hydrogen b<strong>on</strong>d present<br />

between the oxygen of POM <str<strong>on</strong>g>and</str<strong>on</strong>g> the hydrogen of organic (such as <str<strong>on</strong>g>in</str<strong>on</strong>g> the case of alkylamm<strong>on</strong>ium<br />

<str<strong>on</strong>g>based</str<strong>on</strong>g> <str<strong>on</strong>g>hybrid</str<strong>on</strong>g>s), the photoexcitati<strong>on</strong> of O ! M LMCT b<str<strong>on</strong>g>and</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g>duces transfer of a<br />

prot<strong>on</strong> from a hydrogen b<strong>on</strong>ded atom <str<strong>on</strong>g>in</str<strong>on</strong>g> organic (such as alkylamm<strong>on</strong>ium nitrogen) to a<br />

bridg<str<strong>on</strong>g>in</str<strong>on</strong>g>g oxygen atom at the photoreducible site <str<strong>on</strong>g>in</str<strong>on</strong>g> edge-shar<str<strong>on</strong>g>in</str<strong>on</strong>g>g MO6 octahedral lattice<br />

(Eq. (3)) [35]. The prot<strong>on</strong> transferred to the oxygen atom <str<strong>on</strong>g>in</str<strong>on</strong>g>teracts with the d 1 electr<strong>on</strong><br />

of metal atom. Meanwhile, the hole left at the oxygen atom as a result of the O ! M<br />

LMCT transiti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>teracts with n<strong>on</strong>-b<strong>on</strong>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g electr<strong>on</strong>s <strong>on</strong> the nitrogen atom to form a<br />

CT complex, result<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> separati<strong>on</strong> of electr<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> holes produced by O ! M LMCT<br />

transiti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the POM lattice <str<strong>on</strong>g>and</str<strong>on</strong>g> thus lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g to the stabilizati<strong>on</strong> of the colored state<br />

[35]. In such a case, the hydrogen b<strong>on</strong>d <str<strong>on</strong>g>and</str<strong>on</strong>g> prot<strong>on</strong> transfer are crucial for the photochromic<br />

process. The organic molecules not serve <strong>on</strong>ly as the prot<strong>on</strong> d<strong>on</strong>or for the colorati<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> stabilizati<strong>on</strong> of <str<strong>on</strong>g>hybrid</str<strong>on</strong>g>s, but also as the electr<strong>on</strong> d<strong>on</strong>or for the formati<strong>on</strong> of coord<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong><br />

b<strong>on</strong>d <str<strong>on</strong>g>in</str<strong>on</strong>g> the photo<str<strong>on</strong>g>in</str<strong>on</strong>g>duced CT complex. If the organic moiety <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> is reducible, it<br />

may be oxidized by holes. In this case, the colored products are reduced polyani<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

oxidized organic cati<strong>on</strong> or radical rather than the CT complex. This is similar to the photooxidati<strong>on</strong><br />

of alkanes catalyzed by polyani<strong>on</strong>s [237–243]. In additi<strong>on</strong>, like the case <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

WO 3/TiO 2 system, if the molecule selected is organic semic<strong>on</strong>ductor (such as 2,2 0 -biqu<str<strong>on</strong>g>in</str<strong>on</strong>g>ol<str<strong>on</strong>g>in</str<strong>on</strong>g>e),<br />

up<strong>on</strong> photoexcitati<strong>on</strong> electr<strong>on</strong>s can also come from the organic moiety to reduce<br />

the central metal <str<strong>on</strong>g>in</str<strong>on</strong>g> POM. 4<br />

4 In some cases, electr<strong>on</strong>s can transfer between organic electr<strong>on</strong> d<strong>on</strong>ors <str<strong>on</strong>g>and</str<strong>on</strong>g> POM ani<strong>on</strong>s even without light<br />

illum<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>, especially when the addendum atoms—usually Mo VI ,W VI ,orV V —of POM have been substituted<br />

by d-electr<strong>on</strong>-c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g first- or sec<strong>on</strong>d-row transiti<strong>on</strong>-metal cati<strong>on</strong>s [242]. However, this is outside the scope of<br />

the present review. Moreover, no photochromism has been reported <str<strong>on</strong>g>in</str<strong>on</strong>g> these systems.


842 T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879<br />

R<br />

N<br />

H 2<br />

+<br />

H<br />

Mo VI<br />

O<br />

O O<br />

O O<br />

O<br />

hv<br />

O2, Heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

R<br />

N<br />

H 2<br />

H +<br />

O<br />

O<br />

Mo V<br />

O<br />

O<br />

The relaxati<strong>on</strong> processes of O ! M LMCT excitati<strong>on</strong> energy <str<strong>on</strong>g>in</str<strong>on</strong>g>clude both the n<strong>on</strong>-radiative<br />

recomb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of electr<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> holes with<str<strong>on</strong>g>in</str<strong>on</strong>g> the energy gap <str<strong>on</strong>g>and</str<strong>on</strong>g> the <str<strong>on</strong>g>in</str<strong>on</strong>g>tramolecular<br />

energy transfer lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g to a CT emissi<strong>on</strong> [35]. The latter corresp<strong>on</strong>ds to the O ! M<br />

LMCT energy gap <str<strong>on</strong>g>and</str<strong>on</strong>g> takes place via radiative recomb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> sensitized emissi<strong>on</strong><br />

from the heteroatoms or cati<strong>on</strong>s. When the photocolored samples are placed <str<strong>on</strong>g>in</str<strong>on</strong>g> air <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

kept away from light, <str<strong>on</strong>g>in</str<strong>on</strong>g> most cases, they change back to the orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al color, <str<strong>on</strong>g>and</str<strong>on</strong>g> can be<br />

recolored aga<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>on</strong> exposure to UV light. Heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g can promote this bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g process.<br />

If the colored species are stored <str<strong>on</strong>g>in</str<strong>on</strong>g> an <str<strong>on</strong>g>in</str<strong>on</strong>g>ert atmosphere (nitrogen, arg<strong>on</strong>, helium, vacuum<br />

c<strong>on</strong>diti<strong>on</strong>s, <str<strong>on</strong>g>and</str<strong>on</strong>g> the like), however, they can reta<str<strong>on</strong>g>in</str<strong>on</strong>g> blue color for a quite l<strong>on</strong>g period. So<br />

oxygen molecules can <str<strong>on</strong>g>in</str<strong>on</strong>g>itiate the bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g of the colored samples, which may occur<br />

through electr<strong>on</strong> transfer from the metal i<strong>on</strong> with lower oxidati<strong>on</strong> state to the oxygen molecule<br />

(Eq. (4)), lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g to the back reacti<strong>on</strong> of Eq. (3).<br />

O2 þ M 5þ ! O2 þ M 6þ<br />

ð4Þ<br />

3.1.2. Preparati<strong>on</strong> methods<br />

To move towards realistic technological implementati<strong>on</strong>s of photochromic devices,<br />

from eng<str<strong>on</strong>g>in</str<strong>on</strong>g>eer<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>siderati<strong>on</strong>s, the colorati<strong>on</strong> <str<strong>on</strong>g>materials</str<strong>on</strong>g> selected should be easily shaped<br />

as th<str<strong>on</strong>g>in</str<strong>on</strong>g> films, coat<str<strong>on</strong>g>in</str<strong>on</strong>g>gs, m<strong>on</strong>oliths, or other suitable forms. However, it seems difficult to<br />

prepare the complex molecular structure <str<strong>on</strong>g>in</str<strong>on</strong>g> certa<str<strong>on</strong>g>in</str<strong>on</strong>g> films by the st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard methods of vacuum<br />

evaporati<strong>on</strong> or by sputter<str<strong>on</strong>g>in</str<strong>on</strong>g>g methods because most of the photochromic compounds<br />

have the tendency to decompose when heated [9]. S<str<strong>on</strong>g>in</str<strong>on</strong>g>ce most POMs are readily dissolved<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> water <str<strong>on</strong>g>and</str<strong>on</strong>g>/or many organic solvents, they might not be used directly <str<strong>on</strong>g>in</str<strong>on</strong>g> the device c<strong>on</strong>structi<strong>on</strong>.<br />

On the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, however, the high solubility <str<strong>on</strong>g>in</str<strong>on</strong>g> many solvents as well as the<br />

quite small size of POM ani<strong>on</strong>s or clusters (ca. 1–2 nm <str<strong>on</strong>g>in</str<strong>on</strong>g> diameter, with<str<strong>on</strong>g>in</str<strong>on</strong>g> the framework<br />

of molecular chemistry) makes them promis<str<strong>on</strong>g>in</str<strong>on</strong>g>g as <str<strong>on</strong>g>in</str<strong>on</strong>g>organic comp<strong>on</strong>ents <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> molecular<br />

<str<strong>on</strong>g>materials</str<strong>on</strong>g>. So far various strategies, especially through ‘‘soft’’ chemistry (chimie douce)<br />

process that affords versatility <str<strong>on</strong>g>and</str<strong>on</strong>g> relative ease of experimentati<strong>on</strong>, have been adopted to<br />

prepare th<str<strong>on</strong>g>in</str<strong>on</strong>g> films of <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> <str<strong>on</strong>g>materials</str<strong>on</strong>g>. With different preparati<strong>on</strong> methods, different<br />

<str<strong>on</strong>g>hybrid</str<strong>on</strong>g> <str<strong>on</strong>g>materials</str<strong>on</strong>g> are formed <str<strong>on</strong>g>and</str<strong>on</strong>g> thus the <str<strong>on</strong>g>in</str<strong>on</strong>g>termolecular or <str<strong>on</strong>g>in</str<strong>on</strong>g>tramolecular charge transfer<br />

may take place.<br />

The most comm<strong>on</strong>ly used method is the sol–gel derived coat<str<strong>on</strong>g>in</str<strong>on</strong>g>g technique, ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g sp<str<strong>on</strong>g>in</str<strong>on</strong>g>-, dip- <str<strong>on</strong>g>and</str<strong>on</strong>g> cast-coat<str<strong>on</strong>g>in</str<strong>on</strong>g>g methods. The sol–gel process is broadly def<str<strong>on</strong>g>in</str<strong>on</strong>g>ed as<br />

<strong>on</strong>e <str<strong>on</strong>g>in</str<strong>on</strong>g> which a useful solid product is prepared from a soluti<strong>on</strong> or suspensi<strong>on</strong> of precursor<br />

<str<strong>on</strong>g>materials</str<strong>on</strong>g> via hydrolysis <str<strong>on</strong>g>and</str<strong>on</strong>g> polyc<strong>on</strong>densati<strong>on</strong> [244]. In sol–gel process, the organic <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>organic parts can be c<strong>on</strong>nected by the formati<strong>on</strong> of chemical b<strong>on</strong>ds between the organic<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>organic molecules. Its advantage of low-temperature process allows synthesiz<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<str<strong>on</strong>g>materials</str<strong>on</strong>g> that cannot be prepared by c<strong>on</strong>venti<strong>on</strong>al methods. It is c<strong>on</strong>venient to fabricate<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> tailor the molecular properties of this new k<str<strong>on</strong>g>in</str<strong>on</strong>g>d of <str<strong>on</strong>g>materials</str<strong>on</strong>g> s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce variable compositi<strong>on</strong>s,<br />

microstructures <str<strong>on</strong>g>and</str<strong>on</strong>g> thickness of th<str<strong>on</strong>g>in</str<strong>on</strong>g> films <strong>on</strong> different substrates as well as m<strong>on</strong>oliths<br />

of various shapes can be easily prepared by simply adjust<str<strong>on</strong>g>in</str<strong>on</strong>g>g reacti<strong>on</strong> parameters (for<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>stance, the ratio of precursors to water, the nature of solvents, <str<strong>on</strong>g>and</str<strong>on</strong>g> reacti<strong>on</strong> temperature,<br />

etc.) [244–247]. The f<str<strong>on</strong>g>in</str<strong>on</strong>g>al products can exhibit good optical quality (high transmissi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

O<br />

O<br />

ð3Þ


visible regi<strong>on</strong>) <str<strong>on</strong>g>and</str<strong>on</strong>g> mechanical strength (easy process<str<strong>on</strong>g>in</str<strong>on</strong>g>g) required for applicati<strong>on</strong><br />

[244,247]. Moreover, the porous structure of these <str<strong>on</strong>g>materials</str<strong>on</strong>g> offers free spaces for photochromic<br />

comp<strong>on</strong>ents undergo<str<strong>on</strong>g>in</str<strong>on</strong>g>g reversible structural changes dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g photochromic transformati<strong>on</strong>s.<br />

In the early research stage for <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> photochromic <str<strong>on</strong>g>materials</str<strong>on</strong>g>, the attenti<strong>on</strong><br />

has been focused <strong>on</strong> embedd<str<strong>on</strong>g>in</str<strong>on</strong>g>g organic or organo-metallic chromophores <str<strong>on</strong>g>in</str<strong>on</strong>g> transparent<br />

matrices or networks (SiO 2,Al 2O 3, ormocers (organically modified ceramics) <str<strong>on</strong>g>and</str<strong>on</strong>g> ormosils<br />

(organically modified silicas), etc.) made by the sol–gel method [66,248]. In recent years,<br />

the study of <str<strong>on</strong>g>hybrid</str<strong>on</strong>g>s c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>organic photochromic <str<strong>on</strong>g>materials</str<strong>on</strong>g> has become an exp<str<strong>on</strong>g>and</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

research field. To realize the m<str<strong>on</strong>g>in</str<strong>on</strong>g>iaturizati<strong>on</strong> of the devices, <str<strong>on</strong>g>in</str<strong>on</strong>g> additi<strong>on</strong>, electrostatic<br />

(layer-by-layer) self-assembly method is used to fabricate ultrath<str<strong>on</strong>g>in</str<strong>on</strong>g> films <str<strong>on</strong>g>and</str<strong>on</strong>g> sometimes<br />

even a m<strong>on</strong>olayer of photochromic <str<strong>on</strong>g>in</str<strong>on</strong>g>organic material. Langmuir–Blodgett (LB) technique<br />

[249–251] may also be used to prepare ultrath<str<strong>on</strong>g>in</str<strong>on</strong>g> films. However, no <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong>s about<br />

the photochromism have been carried out <strong>on</strong> the LB films, though some of them should<br />

have it.<br />

3.1.3. Summary<br />

Generally speak<str<strong>on</strong>g>in</str<strong>on</strong>g>g, c<strong>on</strong>stituent elements, total charges, shapes, <str<strong>on</strong>g>and</str<strong>on</strong>g> sizes of the polyani<strong>on</strong>s,<br />

as well as the versatility <str<strong>on</strong>g>and</str<strong>on</strong>g> d<strong>on</strong>ati<strong>on</strong> ability of electr<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g>/or prot<strong>on</strong>s of organic<br />

molecules, can be readily altered or changed <str<strong>on</strong>g>in</str<strong>on</strong>g> order to tune the photochromic resp<strong>on</strong>se <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<str<strong>on</strong>g>hybrid</str<strong>on</strong>g>s. The challenge for these new <str<strong>on</strong>g>materials</str<strong>on</strong>g> is to optimize both the <str<strong>on</strong>g>in</str<strong>on</strong>g>organic <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

organic comp<strong>on</strong>ents <strong>on</strong> a molecular or nanometer scale [252]. The nanometer level <str<strong>on</strong>g>in</str<strong>on</strong>g> present<br />

review refers to the nanoparticles or clusters <str<strong>on</strong>g>in</str<strong>on</strong>g> nanosize rather than the molecules with<br />

the nanosize. For the <str<strong>on</strong>g>hybrid</str<strong>on</strong>g>s comb<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g the two comp<strong>on</strong>ents at molecular level [46,253–<br />

263], <strong>on</strong>e should prepare the complex with a CT bridge between <str<strong>on</strong>g>in</str<strong>on</strong>g>organic <str<strong>on</strong>g>and</str<strong>on</strong>g> organic<br />

moieties <str<strong>on</strong>g>in</str<strong>on</strong>g> the same molecule, specifically the d<strong>on</strong>or–acceptor system. For the <str<strong>on</strong>g>hybrid</str<strong>on</strong>g>s<br />

comb<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g the two c<strong>on</strong>stituents at nanometer level [43,45,62,264–268], <strong>on</strong>e had better prepare<br />

the <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> <str<strong>on</strong>g>materials</str<strong>on</strong>g> with a CT bridge between POM nanoparticles or clusters <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

organic molecules or matrices. In pr<str<strong>on</strong>g>in</str<strong>on</strong>g>ciple, the <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> <str<strong>on</strong>g>materials</str<strong>on</strong>g> with good <str<strong>on</strong>g>and</str<strong>on</strong>g> reversible<br />

photochromic resp<strong>on</strong>se may hopefully be obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> these <str<strong>on</strong>g>hybrid</str<strong>on</strong>g>s.<br />

3.2. Hybrids at molecular level<br />

T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879 843<br />

3.2.1. D<strong>on</strong>or–acceptor systems prepared from POMs <str<strong>on</strong>g>and</str<strong>on</strong>g> aromatic organic molecules<br />

The first <str<strong>on</strong>g>hybrid</str<strong>on</strong>g>s c<strong>on</strong>sidered are POMs comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ed with electr<strong>on</strong>-rich aromatic organic<br />

molecules. These CT complexes <str<strong>on</strong>g>in</str<strong>on</strong>g>clude [H2qu<str<strong>on</strong>g>in</str<strong>on</strong>g>]3[PW12O40] Æ 4EtOH Æ 2H2O (qu<str<strong>on</strong>g>in</str<strong>on</strong>g> =<br />

qu<str<strong>on</strong>g>in</str<strong>on</strong>g>ol<str<strong>on</strong>g>in</str<strong>on</strong>g>-8-ol) [253], b-[Htmpd]x[tmpd]4 x[Mo8O26] (tmpd = N,N,N 0 ,N 0 -tetramethylp-phenylenediam<str<strong>on</strong>g>in</str<strong>on</strong>g>e)<br />

[254], b-[Htmpd]x[tmpd]3 x[HMo8O26] [254], (Et4N)5[(ZnTPP)2-<br />

(XM 12O 40)(Z) n] (TPP = meso-tetraphenylporphyr<str<strong>on</strong>g>in</str<strong>on</strong>g>; X = P, Si; M = Mo, W; Z = Cl,<br />

Br, I; n = 1 or 2 depend<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> the presence of a tri- or tetranegative Kegg<str<strong>on</strong>g>in</str<strong>on</strong>g> ani<strong>on</strong>)<br />

[255], (QLH) 6[As 2Mo 18O 62] Æ 3QL Æ 1.5EtOH (QL = qu<str<strong>on</strong>g>in</str<strong>on</strong>g>ol<str<strong>on</strong>g>in</str<strong>on</strong>g>e) [261], 10QL Æ H 6P 2-<br />

W18O62 Æ 11H2O [269], <str<strong>on</strong>g>and</str<strong>on</strong>g> so <strong>on</strong>. Another more example is the comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of phosphomolybdic<br />

acid (H3PMo12O40) witha-phridylazo-b-naphthol [259], <str<strong>on</strong>g>in</str<strong>on</strong>g> which it is said<br />

that the organic lig<str<strong>on</strong>g>and</str<strong>on</strong>g>s (oxygen <str<strong>on</strong>g>in</str<strong>on</strong>g> C–O b<strong>on</strong>d of a-phridylazo-b-naphthol) coord<str<strong>on</strong>g>in</str<strong>on</strong>g>ate<br />

with prot<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> heteropoly acid through coord<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> b<strong>on</strong>d. More details about the<br />

photochromism <str<strong>on</strong>g>in</str<strong>on</strong>g> such k<str<strong>on</strong>g>in</str<strong>on</strong>g>d of CT complexes are discussed <str<strong>on</strong>g>in</str<strong>on</strong>g> those prepared with prot<strong>on</strong>ated<br />

2,2 0 -biqu<str<strong>on</strong>g>in</str<strong>on</strong>g>ol<str<strong>on</strong>g>in</str<strong>on</strong>g>e (biQL) <str<strong>on</strong>g>and</str<strong>on</strong>g> Kegg<str<strong>on</strong>g>in</str<strong>on</strong>g> polyani<strong>on</strong>s (a-isomers, simplified as XM 12) by<br />

co-crystallizati<strong>on</strong> method, hav<str<strong>on</strong>g>in</str<strong>on</strong>g>g the general formula (HbiQL) m[XM 12O 40] Æ nsolv


844 T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879<br />

(X = P (m = 3), Si (m = 4); M = Mo, W; n = 0, 3; solv = H2O, DMF) [258]. The b<str<strong>on</strong>g>and</str<strong>on</strong>g> at<br />

ca. 410–420 nm <str<strong>on</strong>g>in</str<strong>on</strong>g> electr<strong>on</strong>ic spectroscopy (Fig. 19) [258] is characteristic of the synthesized<br />

compounds <str<strong>on</strong>g>and</str<strong>on</strong>g> is resp<strong>on</strong>sible for their yellow color, which is assigned to charge<br />

transfer between organic base <str<strong>on</strong>g>and</str<strong>on</strong>g> Kegg<str<strong>on</strong>g>in</str<strong>on</strong>g> ani<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> thus gives a direct evidence for<br />

the <str<strong>on</strong>g>in</str<strong>on</strong>g>termolecular electr<strong>on</strong>ic <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>s between <str<strong>on</strong>g>in</str<strong>on</strong>g>organic <str<strong>on</strong>g>and</str<strong>on</strong>g> organic moieties <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Fig. 19. (A) Diffuse reflectance spectra of (a) 2,2 0 -biqu<str<strong>on</strong>g>in</str<strong>on</strong>g>ol<str<strong>on</strong>g>in</str<strong>on</strong>g>e, (b) H3[PW12O40] Æ nH2O, (c) (Hbiqui)3[PW12O40].<br />

(B) Diffuse reflectance spectra of (a) 2,2 0 -biqu<str<strong>on</strong>g>in</str<strong>on</strong>g>ol<str<strong>on</strong>g>in</str<strong>on</strong>g>e, (b) H 4[SiW 12O 40] Æ nH 2O, (c) (Hbiqui) 4[SiW 12O 40] Æ 4H 2O<br />

[258].


T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879 845<br />

the solid state. Evidence for the presence of such <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>s is also found for the compounds<br />

with [SiW12O40] 4<br />

ani<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> dimethylsulfoxide (DMSO) soluti<strong>on</strong>, which is<br />

assumed to result from <str<strong>on</strong>g>in</str<strong>on</strong>g>duced-dipole effects <str<strong>on</strong>g>and</str<strong>on</strong>g> is quite unusual for CT compounds<br />

<str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> Kegg<str<strong>on</strong>g>in</str<strong>on</strong>g> ani<strong>on</strong>s [258]. Under the irradiati<strong>on</strong> of sunlight or a tungsten lamp,<br />

the color of compounds with XMo12 ani<strong>on</strong>s changed from yellow or yellow-green<br />

to green because the exposure to light-<str<strong>on</strong>g>in</str<strong>on</strong>g>duced reducti<strong>on</strong> of [XMo 12O 40] n<br />

VI V<br />

to [XMo11 Mo O40] (n+1)<br />

. However, all these CT compounds do not exhibit good<br />

photochromic reversibility [258]. S<str<strong>on</strong>g>in</str<strong>on</strong>g>ce the extent of ani<strong>on</strong> reducti<strong>on</strong> followed the order<br />

(HbiQL)3[PMo12O40] Æ 3DMF (DMF = N,N-dimethylformamide) > (HbiQL)4[ SiMo12O40] Æ<br />

3DMF > (HbiQL)3[PMo12O40] > (HbiQL)4[SiMo12O40] Æ 4H2O, DMF molecules may<br />

play a role <str<strong>on</strong>g>in</str<strong>on</strong>g> the charge transfer that leads to the reducti<strong>on</strong> of ani<strong>on</strong>s [258]. Although<br />

[(DMF)2H]3[PMo12O40] is observed to be photosensitive [258], no evidence has been<br />

found that <str<strong>on</strong>g>in</str<strong>on</strong>g> these <str<strong>on</strong>g>hybrid</str<strong>on</strong>g>s DMF is directly <str<strong>on</strong>g>in</str<strong>on</strong>g>volved as an electr<strong>on</strong> d<strong>on</strong>or. The solvate–POM<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>s have also been observed <str<strong>on</strong>g>in</str<strong>on</strong>g> H4SiW12O40 Æ 4HMPA Æ 2H2O (HMPA = hexamethylphosphoramide) CT complex, <str<strong>on</strong>g>in</str<strong>on</strong>g> which there is no formati<strong>on</strong> of<br />

hydrogen b<strong>on</strong>d [270]. Thus the role of solvents needs further <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigati<strong>on</strong>.<br />

For most aforementi<strong>on</strong>ed CT complexes, however, quite poor or even no photochromism<br />

[253–255], let al<strong>on</strong>e the notorious irreversibility [258,261], has been observed. Some<br />

authors have argued that it is the quite weak <str<strong>on</strong>g>in</str<strong>on</strong>g>organic/organic electr<strong>on</strong>ic <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>s<br />

allowed <str<strong>on</strong>g>in</str<strong>on</strong>g> the solid state by the CT salts that have prevented the occurrence of an effective<br />

electr<strong>on</strong> transfer between the two comp<strong>on</strong>ents. But <str<strong>on</strong>g>in</str<strong>on</strong>g> the case that d<strong>on</strong>or <str<strong>on</strong>g>and</str<strong>on</strong>g> acceptor<br />

coexist <str<strong>on</strong>g>in</str<strong>on</strong>g> the same molecule, if the d<strong>on</strong>or is electr<strong>on</strong>-rich aromatic molecule, specifically<br />

the organic c<strong>on</strong>ductors, it will be not difficult for charge transfer to occur <str<strong>on</strong>g>in</str<strong>on</strong>g> the light of<br />

‘‘charge transfer theory’’ [271,272]. Thus extensive polarizati<strong>on</strong> of charge can take place<br />

over the whole <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> molecule. C<strong>on</strong>sequently, the electr<strong>on</strong>s photoexcited to the d orbitals<br />

may transfer to the organic molecule, lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g to a rather weak photochromism. S<str<strong>on</strong>g>in</str<strong>on</strong>g>ce usually<br />

<strong>on</strong>e should build str<strong>on</strong>g electr<strong>on</strong>ic <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>s between the <str<strong>on</strong>g>in</str<strong>on</strong>g>organic <str<strong>on</strong>g>and</str<strong>on</strong>g> organic<br />

moieties, it might be not wise to choose a molecule, especially the group c<strong>on</strong>nected to<br />

POM, with a large p-b<strong>on</strong>d for the fabricati<strong>on</strong> of <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> <str<strong>on</strong>g>materials</str<strong>on</strong>g> with good<br />

photochromism.<br />

3.2.2. Alkylamm<strong>on</strong>ium POMs<br />

Another strategy for the synthesis of <str<strong>on</strong>g>hybrid</str<strong>on</strong>g>s at molecular level is to prepare alkylamm<strong>on</strong>ium<br />

POMs by us<str<strong>on</strong>g>in</str<strong>on</strong>g>g POMs <str<strong>on</strong>g>and</str<strong>on</strong>g> organic am<str<strong>on</strong>g>in</str<strong>on</strong>g>e. In fact, almost all the CT complexes<br />

with truly reversible photochromism are a few alkylamm<strong>on</strong>ium salts of polymolybdates<br />

[35,256,273], though not all of them exhibit reversible colorati<strong>on</strong> [35] <str<strong>on</strong>g>and</str<strong>on</strong>g> some of them<br />

even show quite poor photoresp<strong>on</strong>se [35,46,262,274]. Alkylamm<strong>on</strong>ium POMs are discrete<br />

molecules which can be differentiated from <str<strong>on</strong>g>in</str<strong>on</strong>g>f<str<strong>on</strong>g>in</str<strong>on</strong>g>ite TMOs <str<strong>on</strong>g>and</str<strong>on</strong>g> are photosensitive<br />

both as solids <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> soluti<strong>on</strong> [35]. When the primary, sec<strong>on</strong>dary, <str<strong>on</strong>g>and</str<strong>on</strong>g> tertiary amm<strong>on</strong>ium<br />

POMs are irradiated with UV light with wavelength corresp<strong>on</strong>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g to the<br />

O ! M LMCT transiti<strong>on</strong> (k < 400 nm), the color of the crystal changes from white<br />

to violet, p<str<strong>on</strong>g>in</str<strong>on</strong>g>k, or reddish brown due to the formati<strong>on</strong> of mixed valence compound<br />

M VI M V O5(OH) [35]. The first photochromic alkylamm<strong>on</strong>ium POMs, [(CH3)2NH2]2O Æ<br />

3MoO3 Æ H2O, has been reported <str<strong>on</strong>g>in</str<strong>on</strong>g> 1973 [275], which is prepared by a reacti<strong>on</strong> with<br />

dimethylam<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>and</str<strong>on</strong>g> molybdic acid or molybdenum trioxide <str<strong>on</strong>g>in</str<strong>on</strong>g> water, or by the thermal<br />

decompositi<strong>on</strong> of molybdenum dimethyldithiocarbamate <str<strong>on</strong>g>in</str<strong>on</strong>g> chloroform or methylene<br />

dichloride solvent. Hydrothermal synthesis method has also been used to prepare


846 T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879<br />

[(C10H20)(NH2)2]2 Æ H3PMo12O40 Æ (H2O)7.5 [46,274], [(C10H20)(NH2)2]2 Æ H3PW12O40 Æ<br />

(H2O)2.4 [46,274], <str<strong>on</strong>g>and</str<strong>on</strong>g> [Cu(C12H8N2)2]1.5PW12O40 Æ 1.5H2O [260].<br />

The alkylamm<strong>on</strong>ium POMs prepared by the aforementi<strong>on</strong>ed methods are usually <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

crystal state, which cannot be used to prepare th<str<strong>on</strong>g>in</str<strong>on</strong>g> films. Moreover, the soluti<strong>on</strong>s of alkylamm<strong>on</strong>ium<br />

POMs are turbid, <str<strong>on</strong>g>and</str<strong>on</strong>g> cast<str<strong>on</strong>g>in</str<strong>on</strong>g>g them <str<strong>on</strong>g>in</str<strong>on</strong>g>to th<str<strong>on</strong>g>in</str<strong>on</strong>g> films is not without difficulty.<br />

This limited processability may be ruled out by a so-called supramolecular template preparati<strong>on</strong><br />

method, by which a gelat<str<strong>on</strong>g>in</str<strong>on</strong>g>ous soluti<strong>on</strong> of alkylamm<strong>on</strong>ium POMs may be<br />

obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed so that an ultrath<str<strong>on</strong>g>in</str<strong>on</strong>g> film can be fabricated via coat<str<strong>on</strong>g>in</str<strong>on</strong>g>g technique. For a typical<br />

synthesis [276,277], the amm<strong>on</strong>ium heptamolybdate ((NH4)6Mo7O24) is first added to a<br />

transparent alkylamm<strong>on</strong>ium soluti<strong>on</strong> prepared from alkylam<str<strong>on</strong>g>in</str<strong>on</strong>g>e <str<strong>on</strong>g>and</str<strong>on</strong>g> hydrochloric acid.<br />

Then the pH of the mixed soluti<strong>on</strong> is adjusted to 1–3. A white gel is obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed after heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

the soluti<strong>on</strong> at 80 °C for about 8 h with stirr<str<strong>on</strong>g>in</str<strong>on</strong>g>g. The gel, generally stable <str<strong>on</strong>g>in</str<strong>on</strong>g> the dark for 1–<br />

2 m<strong>on</strong>ths, is then sp<str<strong>on</strong>g>in</str<strong>on</strong>g>-coated <strong>on</strong>to the solid supports. The transparent th<str<strong>on</strong>g>in</str<strong>on</strong>g> films can be<br />

prepared from the l<strong>on</strong>g cha<str<strong>on</strong>g>in</str<strong>on</strong>g> alkylam<str<strong>on</strong>g>in</str<strong>on</strong>g>es (C16 <str<strong>on</strong>g>and</str<strong>on</strong>g> C18), but not from the short <strong>on</strong>es<br />

(C8, C10 <str<strong>on</strong>g>and</str<strong>on</strong>g> C12) [276,277]. Apart from these resultant (C 16H 33NH 3) 4Mo 8O 26<br />

[276,277] <str<strong>on</strong>g>and</str<strong>on</strong>g> (C 18H 37NH 3) 5HMo 7O 24 [245], NH 3CH 2CH 2NH 3Mo 3O 10 Æ 4.4H 2O [262],<br />

[(CH2OH)3CNH3]3PMo12O40 Æ 5H2O [256], [(CH2OH)3CNH3]3PW12O40 Æ 11H2O [256],<br />

[(CH2OH)3CNH2]2 Æ H4SiW12O40 Æ 10H2O [278], [(CH2OH)3CNH3]2H2SiW12O40 Æ 10H2O<br />

[256], (C6H18N2)3Mo7O24 Æ 4H2O [279], (C10H18N)6As2Mo18O62 Æ 6CH3CN Æ 8H2O [280],<br />

(H3dien)2Mo7O24 Æ 4H2O [281] (dien = diethylenetriam<str<strong>on</strong>g>in</str<strong>on</strong>g>e), (H2dien)2Mo8O26 Æ 6H2O<br />

[281], <str<strong>on</strong>g>and</str<strong>on</strong>g> MoO3(dien) [281] have also been synthesized by similar method. Most of them<br />

exhibit reversible photochromism. Up<strong>on</strong> irradiati<strong>on</strong> with UV light, the color of<br />

(C 16H 33NH 3) 4Mo 8O 26 <str<strong>on</strong>g>composite</str<strong>on</strong>g> film reversibly changes from colorless to violet<br />

(Fig. 20) [277]. This violet color is quite stable (more than <strong>on</strong>e year) <str<strong>on</strong>g>in</str<strong>on</strong>g> the dark under<br />

ambient c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> can be bleached by gentle heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g (70 °C) <str<strong>on</strong>g>in</str<strong>on</strong>g> the presence of<br />

Fig. 20. Absorpti<strong>on</strong> spectra of a (C16H33NH3)4Mo8O26 <str<strong>on</strong>g>composite</str<strong>on</strong>g> film (curve A) before <str<strong>on</strong>g>and</str<strong>on</strong>g> (curve B) after<br />

irradiati<strong>on</strong> with UV light for 10 m<str<strong>on</strong>g>in</str<strong>on</strong>g>. The largest change <str<strong>on</strong>g>in</str<strong>on</strong>g> the absorbance is at 472 nm. The <str<strong>on</strong>g>in</str<strong>on</strong>g>set shows the<br />

reversibility of the colorati<strong>on</strong>–decolorati<strong>on</strong> cycles [277].


T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879 847<br />

oxygen. The hydrogen b<strong>on</strong>d <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> is crucial for the photochromism. It is said [281]<br />

the b<strong>on</strong>d length of Mo(5)–O(17) also plays an important role <str<strong>on</strong>g>in</str<strong>on</strong>g> the photochemical properties<br />

of (H3dien)2[Mo7O24] Æ 4H2O (such as photochromic <str<strong>on</strong>g>and</str<strong>on</strong>g> anti-cancer activity).<br />

3.2.3. Hybrids prepared from POMs <str<strong>on</strong>g>and</str<strong>on</strong>g> small biological molecules<br />

S<str<strong>on</strong>g>in</str<strong>on</strong>g>ce POMs are generally n<strong>on</strong>-toxic to normal cells, as well as due to their rati<strong>on</strong>al <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

reproducible synthesis <str<strong>on</strong>g>and</str<strong>on</strong>g> flexibility <str<strong>on</strong>g>in</str<strong>on</strong>g> chang<str<strong>on</strong>g>in</str<strong>on</strong>g>g properties, they are attractive for applicati<strong>on</strong>s<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> medic<str<strong>on</strong>g>in</str<strong>on</strong>g>e, such as anti-viral, anti-tumoral, anti-neoplastic <str<strong>on</strong>g>and</str<strong>on</strong>g> anti-carc<str<strong>on</strong>g>in</str<strong>on</strong>g>ogens<br />

[281,282]. These applicati<strong>on</strong>s are usually associated with the comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of biological<br />

molecules, specifically of prote<str<strong>on</strong>g>in</str<strong>on</strong>g>. Some of these systems will be discussed briefly <str<strong>on</strong>g>in</str<strong>on</strong>g> present<br />

review s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce they exhibit photochromic behavior too. Am<str<strong>on</strong>g>in</str<strong>on</strong>g>o acid, as the basic unit of<br />

prote<str<strong>on</strong>g>in</str<strong>on</strong>g>, has attracted broad attenti<strong>on</strong> to its comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> with POMs [283–289]. Itis<br />

reported [290] that glyc<str<strong>on</strong>g>in</str<strong>on</strong>g>e (Gly) salt of 12-silicotungstate has activity <str<strong>on</strong>g>in</str<strong>on</strong>g> prevent<str<strong>on</strong>g>in</str<strong>on</strong>g>g plant<br />

virus, cucumber mosaic virus, the ma<str<strong>on</strong>g>in</str<strong>on</strong>g> harm to green pepper. The solid samples of<br />

(Gly) 2H 4SiW 12O 40 Æ 5.5H 2O [290] or (HGly–Gly) 3PMo 12O 40 Æ 4H 2O [291] can reversibly<br />

change color from white to blue under the sunlight irradiati<strong>on</strong>. Fig. 21 [290] shows the<br />

solid reflectance electr<strong>on</strong>ic spectra. For the O ! W CT transiti<strong>on</strong> b<str<strong>on</strong>g>and</str<strong>on</strong>g>s, no obvious<br />

changes take place <str<strong>on</strong>g>in</str<strong>on</strong>g> peak positi<strong>on</strong>, but the <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity decreases slightly. In the meantime,<br />

a new absorpti<strong>on</strong> b<str<strong>on</strong>g>and</str<strong>on</strong>g> appears <str<strong>on</strong>g>in</str<strong>on</strong>g> visible regi<strong>on</strong>, which is characteristic b<str<strong>on</strong>g>and</str<strong>on</strong>g> of heteropoly<br />

blue <str<strong>on</strong>g>and</str<strong>on</strong>g> is assigned to the IVCT (W 5+ ! W 6+ ) transiti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> heteropoly ani<strong>on</strong> [230]. Itis<br />

claimed [290] that the oxidati<strong>on</strong> of Gly occurs simultaneously with the reducti<strong>on</strong> of<br />

heteropoly ani<strong>on</strong> (W VI O 6 or Mo VI O 6) to heteropoly blue (W V O 5(OH) or Mo V O 5(OH)).<br />

In additi<strong>on</strong>, 12-molybdenum phosphoric acid can react with dextran ((C 6H 10O 5) n)to<br />

form an <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> compound [292]. The yellow <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> compound irreversibly changes<br />

to blue-violet due to the formati<strong>on</strong> of multivalent molybdenum (VI, V, IV) complex up<strong>on</strong><br />

UV-light irradiati<strong>on</strong>. The photochromic product is also some k<str<strong>on</strong>g>in</str<strong>on</strong>g>d of <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> compound.<br />

The stability of photochromism can be improved by the formati<strong>on</strong> of such <str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> compounds<br />

[292].<br />

3.2.4. Visible-light colorati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> CT complexes<br />

It is worth not<str<strong>on</strong>g>in</str<strong>on</strong>g>g that the absorpti<strong>on</strong> edge of CT complex might shift to the visible regi<strong>on</strong>,<br />

lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g to a visible-light colorati<strong>on</strong>. The complex charge-transfer electr<strong>on</strong> absorpti<strong>on</strong><br />

Fig. 21. Solid electr<strong>on</strong>ic spectra of (Gly)2H4SiW12O40 Æ 5.5H2O. (---) before irradiati<strong>on</strong>; (—) after irradiati<strong>on</strong>. All<br />

spectra were obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed from a pellet which c<strong>on</strong>sisted of 40% sample <str<strong>on</strong>g>and</str<strong>on</strong>g> 60% MgO by weight. The base of the<br />

pellet is MgO [290].


848 T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879<br />

Fig. 22. Spectra of a-H3PMoO12O40 <str<strong>on</strong>g>in</str<strong>on</strong>g> TMU (solid l<str<strong>on</strong>g>in</str<strong>on</strong>g>e), <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> H2O (dash l<str<strong>on</strong>g>in</str<strong>on</strong>g>e), both 0.24 mM <str<strong>on</strong>g>in</str<strong>on</strong>g> 10 mm cell at<br />

25 °C (right y-axis) <str<strong>on</strong>g>and</str<strong>on</strong>g> pseudo-first-order rate c<strong>on</strong>stants (circles) for producti<strong>on</strong> of PMo12O 4<br />

40 plotted as functi<strong>on</strong><br />

of cut-off of <str<strong>on</strong>g>in</str<strong>on</strong>g>cident light (left y-axis) [239].<br />

manifold of some soluble metal oxide species <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g heteropoly acids of Mo <str<strong>on</strong>g>and</str<strong>on</strong>g> W is<br />

known to shift substantially to lower energy <strong>on</strong> go<str<strong>on</strong>g>in</str<strong>on</strong>g>g from water to organic solvents<br />

[230,239]. These medium-<str<strong>on</strong>g>in</str<strong>on</strong>g>duced bathochromic spectral shifts render some POM species<br />

highly photosensitive [239] <str<strong>on</strong>g>and</str<strong>on</strong>g> are directly relevant to the use of POM as photochromic<br />

<str<strong>on</strong>g>materials</str<strong>on</strong>g>. Prosser-McCartha et al. [239] have found that, although the wavelength maximum<br />

for H3PMo12O40 is little perturbed <strong>on</strong> go<str<strong>on</strong>g>in</str<strong>on</strong>g>g from water (kmax. = 310 nm) to TMU (1,1,3,3tetramethylurea)<br />

(kmax. = 308 nm), the low energy absorpti<strong>on</strong> tail is quite shifted to the visible<br />

regi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> TMU (Fig. 22) [239]. This is ascribed to the electr<strong>on</strong>ic <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>s between<br />

POM <str<strong>on</strong>g>and</str<strong>on</strong>g> TMU. The <str<strong>on</strong>g>in</str<strong>on</strong>g>termolecular CT complex of H3PMo12O40 Æ 6DMA Æ CH3CN Æ<br />

0.5H 2O (DMA = N,N-dimethylacetamide) is also highly photosensitive <str<strong>on</strong>g>in</str<strong>on</strong>g> the near-UV or<br />

visible regi<strong>on</strong> where it absorbs either <str<strong>on</strong>g>in</str<strong>on</strong>g> soluti<strong>on</strong> or <str<strong>on</strong>g>in</str<strong>on</strong>g> crystall<str<strong>on</strong>g>in</str<strong>on</strong>g>e form [293]. Similar results<br />

have been reported [238,294] for H3PW12O40 <str<strong>on</strong>g>in</str<strong>on</strong>g> water <str<strong>on</strong>g>and</str<strong>on</strong>g> different organic solvents, which is<br />

expla<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by that <str<strong>on</strong>g>in</str<strong>on</strong>g>tramolecular O ! M LMCT transiti<strong>on</strong>s predom<str<strong>on</strong>g>in</str<strong>on</strong>g>ate <str<strong>on</strong>g>in</str<strong>on</strong>g> the high-energy<br />

regi<strong>on</strong> of the UV–Visible spectral range near the absorpti<strong>on</strong> maximum <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>termolecular<br />

CT transiti<strong>on</strong>s predom<str<strong>on</strong>g>in</str<strong>on</strong>g>ate <str<strong>on</strong>g>in</str<strong>on</strong>g> the low-energy regi<strong>on</strong>. The latter <str<strong>on</strong>g>in</str<strong>on</strong>g>termolecular transiti<strong>on</strong>s<br />

are largely solvent-to-POM charge transfer <str<strong>on</strong>g>in</str<strong>on</strong>g> orig<str<strong>on</strong>g>in</str<strong>on</strong>g> [238]. Similar mechanism has been<br />

put forward [295] to expla<str<strong>on</strong>g>in</str<strong>on</strong>g> the photochromism of [Ln(NMP)4(H2O)4][HxGe-<br />

Mo 12O 40] Æ 2NMP Æ 3H 2O (Ln = Ce IV ,Pr IV , x =0;Ln=Nd III , x = 1; NMP = N-methyl-<br />

2-pyrrolid<strong>on</strong>e), <str<strong>on</strong>g>in</str<strong>on</strong>g> which the electr<strong>on</strong>ic <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>s between POM <str<strong>on</strong>g>and</str<strong>on</strong>g> organic substrate<br />

result from both sec<strong>on</strong>dary Coulombic <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>duced-dipole effects [293]. It is said that the<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>termolecular CT complex of H4SiW12O40 Æ 4HMPA Æ 2H2O <str<strong>on</strong>g>in</str<strong>on</strong>g> solid state also has a quite<br />

large red-shift for the low-energy tail of the CT absorpti<strong>on</strong> b<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the electr<strong>on</strong>ic spectra<br />

[270] <str<strong>on</strong>g>and</str<strong>on</strong>g> the photochromism can be <str<strong>on</strong>g>in</str<strong>on</strong>g>itiated by blue-light irradiati<strong>on</strong>.<br />

3.3. Hybrids at nanometer level<br />

3.3.1. Multilayer th<str<strong>on</strong>g>in</str<strong>on</strong>g> films prepared by electrostatic layer-by-layer method<br />

3.3.1.1. Preparati<strong>on</strong>, structural characterizati<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> photochromic phenomen<strong>on</strong>. Selfassembly<br />

(SA) is a phenomen<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> which a supramolecular hierarchical organizati<strong>on</strong> or


T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879 849<br />

order is sp<strong>on</strong>taneously established <str<strong>on</strong>g>in</str<strong>on</strong>g> complex systems without external <str<strong>on</strong>g>in</str<strong>on</strong>g>terventi<strong>on</strong>.<br />

Attracti<strong>on</strong> of SA is that any number of layers of nanoparticles or platelets of any compositi<strong>on</strong><br />

can be adsorbed <strong>on</strong>to a large variety of structurally different substrates (size <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

topology) <str<strong>on</strong>g>in</str<strong>on</strong>g> any desired order [47]. Sequential adsorpti<strong>on</strong> of oppositely charged polyelectrolytes<br />

or diam<str<strong>on</strong>g>in</str<strong>on</strong>g>es <str<strong>on</strong>g>and</str<strong>on</strong>g> nanoparticles from soluti<strong>on</strong> (Fig. 23) [47], i.e., electrostatic<br />

layer-by-layer (LBL) self-assembly, is a simple yet powerful approach to c<strong>on</strong>struct<br />

supramolecular architectures with functi<strong>on</strong>al <str<strong>on</strong>g>in</str<strong>on</strong>g>organic <str<strong>on</strong>g>and</str<strong>on</strong>g> organic comp<strong>on</strong>ents <strong>on</strong> solid<br />

surfaces [296–298]. S<str<strong>on</strong>g>in</str<strong>on</strong>g>ce POM ani<strong>on</strong>s (polyani<strong>on</strong>s) are negatively charged, some photochromible<br />

POMs have been chosen as the <str<strong>on</strong>g>in</str<strong>on</strong>g>organic moiety <str<strong>on</strong>g>in</str<strong>on</strong>g> such <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> system; while<br />

positively charged polyelectrolytes or small molecules of organic diam<str<strong>on</strong>g>in</str<strong>on</strong>g>es are chosen as<br />

the counterpart. By this method the value of n, the number of POM/organic bilayer,<br />

can reach 40 or even more. Apart from electrostatic force, the <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>s between polyani<strong>on</strong>s<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> their counterparts <str<strong>on</strong>g>in</str<strong>on</strong>g> these <str<strong>on</strong>g>hybrid</str<strong>on</strong>g>s may <str<strong>on</strong>g>in</str<strong>on</strong>g>clude hydrogen b<strong>on</strong>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g, van der<br />

Waals force, <str<strong>on</strong>g>and</str<strong>on</strong>g> so <strong>on</strong> [43,58]. Organic molecules can affect the assembled structure of<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>organic precursor <str<strong>on</strong>g>and</str<strong>on</strong>g> the stability of the resultant colored complexes, <str<strong>on</strong>g>and</str<strong>on</strong>g> thus tailor<br />

the structure <str<strong>on</strong>g>and</str<strong>on</strong>g> photochromic properties of the SA th<str<strong>on</strong>g>in</str<strong>on</strong>g> film [299]. Such k<str<strong>on</strong>g>in</str<strong>on</strong>g>d of photochromic<br />

<str<strong>on</strong>g>hybrid</str<strong>on</strong>g> system was first reported with the ultrath<str<strong>on</strong>g>in</str<strong>on</strong>g> film of P/W (P = poly-(diallyldimethylamm<strong>on</strong>ium)<br />

chloride; W = sodium decatungstate) [47], though without<br />

detailed characterizati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> discussi<strong>on</strong> about photochromism. So<strong>on</strong> after that, many<br />

other <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> systems with photochromic performance have been reported, for <str<strong>on</strong>g>in</str<strong>on</strong>g>stance,<br />

WO3/4,4 0 -BAMBp (4,4 0 -bis(am<str<strong>on</strong>g>in</str<strong>on</strong>g>omethyl)-biphenyl) [43,300], WO3/4,4 0 -BPPOBp (4,4 0 -<br />

bis-(5-pyridium-pentyloxy)-biphenyl) [58,59], WO 3/1,10-DAD (1,10-diam<str<strong>on</strong>g>in</str<strong>on</strong>g>odecane)<br />

[299,301], PM 12/1,10-DAD (PM 12 =H 3PM 12O 40, M=Mo[62], W[62,302,303]), SiM 12/<br />

1,10-DAD (SiM 12 =H 4SiM 12O 40, M=Mo[62], W[62,304]), K 12.5Na 1.5[NaP 5W 30O 110]/<br />

poly(ethylenim<str<strong>on</strong>g>in</str<strong>on</strong>g>e) [305,306], [W10O32] 4 /poly(ethylenim<str<strong>on</strong>g>in</str<strong>on</strong>g>e) [306], <str<strong>on</strong>g>and</str<strong>on</strong>g> so <strong>on</strong>.<br />

Fig. 23. Schematics of layer-by-layer self-assembly of negatively charged POM <str<strong>on</strong>g>and</str<strong>on</strong>g> positively charged organic.<br />

Sodium decatungstate (W) <str<strong>on</strong>g>and</str<strong>on</strong>g> poly(diallyldimethylamm<strong>on</strong>ium chloride) (P) are used as examples <str<strong>on</strong>g>in</str<strong>on</strong>g> the diagram<br />

[47].


850 T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879<br />

Fig. 24. AFM images of <strong>on</strong>e layer of (A) P <str<strong>on</strong>g>and</str<strong>on</strong>g> of self-assembled S-(P/W)n films with (B) n = 1 <str<strong>on</strong>g>and</str<strong>on</strong>g> (D) n = 2 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

(C) of a self-assembled S-(P/W) 1/P film <strong>on</strong> mica substrates. Here S refers to the mica substrate [47].<br />

The topography of such <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> films can be obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed from AFM images (Fig. 24) [47].<br />

Accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to Fig. 24A, the first layer of P shows a featureless AFM image with a height


T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879 851<br />

variati<strong>on</strong> of ca. 2 nm. Adsorpti<strong>on</strong> of W <strong>on</strong>to the P film manifests itself <str<strong>on</strong>g>in</str<strong>on</strong>g> the formati<strong>on</strong> of<br />

numerous doma<str<strong>on</strong>g>in</str<strong>on</strong>g>s with a height variati<strong>on</strong> of ca. 4 nm (Fig. 24B). Self-assembly of the<br />

sec<strong>on</strong>d layer of P to form the P/W/P film decreases the height variati<strong>on</strong> to below 3 nm<br />

(Fig. 24C), <str<strong>on</strong>g>and</str<strong>on</strong>g> adsorpti<strong>on</strong> a layer of W to produce (P/W)2 results <str<strong>on</strong>g>in</str<strong>on</strong>g> the same type of<br />

doma<str<strong>on</strong>g>in</str<strong>on</strong>g>s (Fig. 24D) as imaged <str<strong>on</strong>g>in</str<strong>on</strong>g> Fig. 24B. The thicknesses of the P/W unit <str<strong>on</strong>g>and</str<strong>on</strong>g> of the first<br />

P layer are ca. 6.2 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2 nm, respectively.<br />

UV–Vis absorpti<strong>on</strong> spectra (Fig. 25) [43] are usually used to track the SA process of a<br />

self-assembly multilayer (SAM) th<str<strong>on</strong>g>in</str<strong>on</strong>g> film, from which the lamellar growth process of the<br />

alternat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>organic <str<strong>on</strong>g>and</str<strong>on</strong>g> organic layers can be c<strong>on</strong>firmed. Absorbance corresp<strong>on</strong>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g to<br />

the <strong>on</strong>e from organic molecule <str<strong>on</strong>g>and</str<strong>on</strong>g> from O ! M LMCT <str<strong>on</strong>g>in</str<strong>on</strong>g>creases proporti<strong>on</strong>ally with<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g n, <str<strong>on</strong>g>in</str<strong>on</strong>g>dicat<str<strong>on</strong>g>in</str<strong>on</strong>g>g a quantitative <str<strong>on</strong>g>and</str<strong>on</strong>g> reproducible SA process.<br />

Another technique used to characterize the layered structure of SAM film is the smallangle<br />

X-ray diffracti<strong>on</strong> (Fig. 26) [43], from which the d-space can be determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed. In these<br />

<str<strong>on</strong>g>hybrid</str<strong>on</strong>g> SAM systems, the alignment of organic molecules may be <str<strong>on</strong>g>in</str<strong>on</strong>g>cl<str<strong>on</strong>g>in</str<strong>on</strong>g>ed [43,58,59,300] or<br />

perpendicular [299,301–303] to the <str<strong>on</strong>g>in</str<strong>on</strong>g>organic counterparts. More important is that there is<br />

no doubt that the <str<strong>on</strong>g>in</str<strong>on</strong>g>organic moiety <str<strong>on</strong>g>in</str<strong>on</strong>g>corporates <str<strong>on</strong>g>in</str<strong>on</strong>g>to the <str<strong>on</strong>g>composite</str<strong>on</strong>g> film without structural<br />

alterati<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> the polyani<strong>on</strong>s penetrate <str<strong>on</strong>g>in</str<strong>on</strong>g>to <str<strong>on</strong>g>and</str<strong>on</strong>g> adsorb <strong>on</strong>to an underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g organic layer<br />

to form an <str<strong>on</strong>g>in</str<strong>on</strong>g>organic/organic i<strong>on</strong> complex [47].<br />

For the aforementi<strong>on</strong>ed <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> systems, the absorbance <str<strong>on</strong>g>in</str<strong>on</strong>g> visible spectral regi<strong>on</strong><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>creases under UV-light irradiati<strong>on</strong> (Fig. 27) [301], <str<strong>on</strong>g>in</str<strong>on</strong>g>dicat<str<strong>on</strong>g>in</str<strong>on</strong>g>g the photochromic behavior<br />

of these SAM films. The changes <str<strong>on</strong>g>in</str<strong>on</strong>g> the absorbance after colorati<strong>on</strong> for some of these systems<br />

are displayed <str<strong>on</strong>g>in</str<strong>on</strong>g> Table 1. The absorbance returns to its <str<strong>on</strong>g>in</str<strong>on</strong>g>itial state after the colored<br />

film is heated (such as to 70 °C) <str<strong>on</strong>g>in</str<strong>on</strong>g> the presence of O 2 for a certa<str<strong>on</strong>g>in</str<strong>on</strong>g> durati<strong>on</strong> (such as 1 h<br />

or 2).<br />

3.3.1.2. High photochromic reversibility. Although many photochromic POM salts have<br />

been reported <str<strong>on</strong>g>in</str<strong>on</strong>g> the literature [35,307], it is noted that hitherto <strong>on</strong>ly few POMs have been<br />

reported to exhibit good reversible colorati<strong>on</strong> [35]. For MoO3 <str<strong>on</strong>g>and</str<strong>on</strong>g> WO3, the best photochromic<br />

TMOs, <strong>on</strong>ce the colored samples are bleached by heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> the presence of O2<br />

they cannot be photocolored aga<str<strong>on</strong>g>in</str<strong>on</strong>g> [19,20,30,31]. However, it is reported that most <str<strong>on</strong>g>hybrid</str<strong>on</strong>g><br />

systems prepared by electrostatic LBL SA method exhibit good reversible photocolorati<strong>on</strong>–decolorati<strong>on</strong><br />

cycle even <str<strong>on</strong>g>in</str<strong>on</strong>g> the case they are thermally bleached <str<strong>on</strong>g>in</str<strong>on</strong>g> the presence of<br />

O2 (e.g., more than 20 times for WO3/4,4 0 -BAMBp <str<strong>on</strong>g>and</str<strong>on</strong>g> more than 50 for WO3/4,4 0 -<br />

BPPOBp <str<strong>on</strong>g>and</str<strong>on</strong>g> PM12/1,10-DAD). This feature thus shows c<strong>on</strong>siderable significance <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

promise, especially for the devices of reusable <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> storage media, display, signal<br />

process<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> chemical switch.<br />

The reas<strong>on</strong> account<str<strong>on</strong>g>in</str<strong>on</strong>g>g for such difference <str<strong>on</strong>g>in</str<strong>on</strong>g> reversibility is that they possess different<br />

photochromic mechanisms. For TMOs, the presence of oxygen vacancies or defects is critical<br />

for the photochromism [19,20,30,31,84,308]. If colorati<strong>on</strong> is caused by the formati<strong>on</strong><br />

of F-like centers by the capture of <strong>on</strong>e or two photogenerated electr<strong>on</strong>s excited from<br />

valence b<str<strong>on</strong>g>and</str<strong>on</strong>g> to the defect b<str<strong>on</strong>g>and</str<strong>on</strong>g> formed by oxygen vacancies or defects [19,20,30,31], these<br />

oxygen vacancies or defects can be destroyed when the colored TMOs are bleached by<br />

heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> the presence of O2, result<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> an irreversible colorati<strong>on</strong>–decolorati<strong>on</strong> process.<br />

If the colorati<strong>on</strong> is due to the formati<strong>on</strong> of hydrogen br<strong>on</strong>ze, the light-<str<strong>on</strong>g>in</str<strong>on</strong>g>duced decompositi<strong>on</strong><br />

of water is necessary for the colorati<strong>on</strong>. Up<strong>on</strong> irradiati<strong>on</strong>, the water adsorbed at surface<br />

or <str<strong>on</strong>g>in</str<strong>on</strong>g>terface is decomposed <str<strong>on</strong>g>in</str<strong>on</strong>g>to prot<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> highly reactive oxygen atoms [84]. The<br />

oxygen vacancies or defects <str<strong>on</strong>g>in</str<strong>on</strong>g>side sample can trap the nascent oxygen radicals so that


852 T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879<br />

Fig. 25. Absorpti<strong>on</strong> spectra of WO3/4,4 0 -BAMBp SAM films with different number of layers. The <str<strong>on</strong>g>in</str<strong>on</strong>g>set is the<br />

dependence of optical absorbance of these films <strong>on</strong> the number of layers at different wavelength [43].<br />

Fig. 26. X-ray diffracti<strong>on</strong> pattern of a SAM film composed of 40 alternat<str<strong>on</strong>g>in</str<strong>on</strong>g>g layers of WO3 <str<strong>on</strong>g>and</str<strong>on</strong>g> 4,4 0 -BAMBp [43].<br />

the back-reacti<strong>on</strong> of water decompositi<strong>on</strong> is efficiently suppressed. Thus, if the oxygen<br />

vacancies or defects are destroyed <str<strong>on</strong>g>in</str<strong>on</strong>g> the bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g process, the sample cannot show photochromic<br />

effect aga<str<strong>on</strong>g>in</str<strong>on</strong>g> due to the fast back reacti<strong>on</strong>. As for the pure POMs, the photochromic<br />

irreversibility results from as yet uncharacterized side reacti<strong>on</strong>s dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g both the<br />

colorati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> decolorati<strong>on</strong> [35].<br />

In the case of the SAM <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> systems, especially for those c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g am<str<strong>on</strong>g>in</str<strong>on</strong>g>o-end<br />

groups, as discussed <str<strong>on</strong>g>in</str<strong>on</strong>g> Secti<strong>on</strong> 3.1.1, up<strong>on</strong> photoexcitati<strong>on</strong> a colored CT complex is<br />

formed. When the colored species are heated <str<strong>on</strong>g>in</str<strong>on</strong>g> the presence of oxygen molecules, the


Fig. 27. Absorpti<strong>on</strong> spectra of a 28-layer WO 3/1,10-DAD SAM film (A, A 0 ) <str<strong>on</strong>g>and</str<strong>on</strong>g> a 40-layer WO 3/4,4 0 -BAMBp<br />

SAM film (B, B 0 ): A <str<strong>on</strong>g>and</str<strong>on</strong>g> B: spectra of freshly prepared or bleached films; A 0 <str<strong>on</strong>g>and</str<strong>on</strong>g> B 0 : spectra of the films irradiated<br />

with UV light <str<strong>on</strong>g>in</str<strong>on</strong>g> air for 3 m<str<strong>on</strong>g>in</str<strong>on</strong>g> [301].<br />

Table 1<br />

Changes <str<strong>on</strong>g>in</str<strong>on</strong>g> the absorbance of some SAM th<str<strong>on</strong>g>in</str<strong>on</strong>g> films after <str<strong>on</strong>g>and</str<strong>on</strong>g> before the photocolorati<strong>on</strong><br />

WO 3/4,4 0 -<br />

BAMBp<br />

T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879 853<br />

WO 3/4,4 0 -<br />

BPPOBp<br />

WO 3/1,10-<br />

DAD<br />

PMo 12/1,10-<br />

DAD<br />

SiMo 12/1,10-<br />

DAD<br />

PW 12/1,10-<br />

DAD<br />

SiW 12/1,10-<br />

DAD<br />

References [43] [59] [301] [62] [62] [62] [62,304]<br />

n 40 40 28 40 40 40 40 a or 17<br />

Thickness<br />

(nm)<br />

27 28 78.7 70 68 64 65 a<br />

DOD at 0.0055 0.0084 0.045 0.168 0.151 0.030 Not obvious<br />

1050 nm<br />

a<br />

or 0.003<br />

(at 800 nm)<br />

a<br />

From Ref. [62].<br />

reverse reacti<strong>on</strong> takes place. The bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g reacti<strong>on</strong> is <str<strong>on</strong>g>in</str<strong>on</strong>g>itiated by an electr<strong>on</strong> transfer<br />

from the metal i<strong>on</strong> with lower oxidati<strong>on</strong> state to the oxygen molecule (Eq. (4)) <str<strong>on</strong>g>and</str<strong>on</strong>g>, c<strong>on</strong>sequently,<br />

the orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al state is restored (Eq. (3)). So the heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g does not destroy anyth<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

pert<str<strong>on</strong>g>in</str<strong>on</strong>g>ent to the colorati<strong>on</strong> process <str<strong>on</strong>g>and</str<strong>on</strong>g> thus the SAM <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> films exhibit good reversible<br />

photochromism.<br />

3.3.1.3. High photochromic resp<strong>on</strong>se. It is noted from Table 1 that the <str<strong>on</strong>g>hybrid</str<strong>on</strong>g>s <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong><br />

molybdenum POMs usually show a high photochromic resp<strong>on</strong>se, while the counterparts<br />

<str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> tungsten not. The former also exhibits a much slower bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g speed than<br />

the latter. Similar phenomena have been observed <str<strong>on</strong>g>in</str<strong>on</strong>g> the systems of CT complexes<br />

[258,274], POMs embedded <str<strong>on</strong>g>in</str<strong>on</strong>g> polymeric matrices [264,309] or organic/silica matrices<br />

[267], <str<strong>on</strong>g>and</str<strong>on</strong>g> POMs anchored to organic polymeric backb<strong>on</strong>e [60].<br />

It has been po<str<strong>on</strong>g>in</str<strong>on</strong>g>ted out that the photochromic properties of <str<strong>on</strong>g>materials</str<strong>on</strong>g> comb<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

POMs with organic moieties are closely relevant to the reducti<strong>on</strong> potentials of polyani<strong>on</strong>s<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> to the d<strong>on</strong>or properties of organic molecules [258]. Bear<str<strong>on</strong>g>in</str<strong>on</strong>g>g the aforementi<strong>on</strong>ed


854 T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879<br />

photochromic mechanism <str<strong>on</strong>g>in</str<strong>on</strong>g> m<str<strong>on</strong>g>in</str<strong>on</strong>g>d, an electr<strong>on</strong> will transfer from O 2p (valence b<str<strong>on</strong>g>and</str<strong>on</strong>g>-like)<br />

to the d orbital of central metal (c<strong>on</strong>ducti<strong>on</strong> b<str<strong>on</strong>g>and</str<strong>on</strong>g>-like) up<strong>on</strong> photoexcitati<strong>on</strong>, lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

to its reducti<strong>on</strong>. Obviously, the easier the valence-electr<strong>on</strong> transiti<strong>on</strong> is <str<strong>on</strong>g>and</str<strong>on</strong>g>/or the more<br />

difficult the oxidati<strong>on</strong> of the reduced central metal is; the better the photochromic performance<br />

is. So the POM with a more positive redox potential should give a better photochromic<br />

resp<strong>on</strong>se. It is known that the energy level of Mo 6+ i<strong>on</strong>s lies lower than that of<br />

W 6+ i<strong>on</strong>s [106], which agrees with the fact that the redox potential of polyoxomolybdate<br />

is more positive than its tungsten-<str<strong>on</strong>g>based</str<strong>on</strong>g> counterpart. Moreover, the b<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g energy of O<br />

2p electr<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> POMs decreases (i.e., the peak value of absorpti<strong>on</strong> b<str<strong>on</strong>g>and</str<strong>on</strong>g> corresp<strong>on</strong>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

to O ! M LMCT <str<strong>on</strong>g>in</str<strong>on</strong>g> UV–Vis spectra occurs a red-shift) <str<strong>on</strong>g>in</str<strong>on</strong>g> the same order as the redox<br />

potential of POMs shifts to a more positive value (Table 2). This is reas<strong>on</strong>able s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce both<br />

the redox potential <str<strong>on</strong>g>and</str<strong>on</strong>g> b<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g energy of valence electr<strong>on</strong>s are characteristics of the ability<br />

for d<strong>on</strong>at<str<strong>on</strong>g>in</str<strong>on</strong>g>g-withdraw<str<strong>on</strong>g>in</str<strong>on</strong>g>g electr<strong>on</strong>s. Therefore, <strong>on</strong>e can readily choose a proper POM<br />

for the <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> system possibly with a high photochromic resp<strong>on</strong>se accord<str<strong>on</strong>g>in</str<strong>on</strong>g>g to its redox<br />

potential or the b<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g energy of valence electr<strong>on</strong>s. This correlati<strong>on</strong> has been c<strong>on</strong>firmed<br />

by the fact (Table 2) that the photochromic resp<strong>on</strong>se (DOD or the ratio of reduced central<br />

metal), when comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ed with the same organic molecules (1,10-DAD), decreases <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

order of H3PMo12O40 >H4SiMo12O40 >H3PW12O40 >H4SiW12O40, which agrees with<br />

the order of the negative shift of their redox potential. In additi<strong>on</strong>, the molybdenum-<str<strong>on</strong>g>based</str<strong>on</strong>g><br />

POMs have higher prot<strong>on</strong> aff<str<strong>on</strong>g>in</str<strong>on</strong>g>ities than their tungsten-<str<strong>on</strong>g>based</str<strong>on</strong>g> counterparts [310,311], <str<strong>on</strong>g>in</str<strong>on</strong>g>dicat<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

the process of prot<strong>on</strong> transfer from am<str<strong>on</strong>g>in</str<strong>on</strong>g>e to the former is easier than to the latter.<br />

This may also account for that the system c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g molybdenum has a better photochromic<br />

resp<strong>on</strong>se.<br />

It is noteworthy here that some <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> systems (PMo 12 or SiMo 12 comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ed with 1,10-<br />

DAD) have a very high photochromic resp<strong>on</strong>se (Tables 1 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2). A c<strong>on</strong>siderably th<str<strong>on</strong>g>in</str<strong>on</strong>g> film<br />

(such as around 70 nm) can show an equivalent photochromic resp<strong>on</strong>se (<str<strong>on</strong>g>in</str<strong>on</strong>g> DOD) as a<br />

MoO3 th<str<strong>on</strong>g>in</str<strong>on</strong>g> film with the thickness of ca. 1 lm [62]. However, the photochromic performance<br />

is quite poor for a MoO3 film with the thickness of dozens of nanometers. Furthermore,<br />

even <strong>on</strong>e PMo12 m<strong>on</strong>olayer deposited <strong>on</strong>to an am<str<strong>on</strong>g>in</str<strong>on</strong>g>osilane premodified solid<br />

support exhibits an observable photochromic resp<strong>on</strong>se, which is doubled after modified<br />

by an am<str<strong>on</strong>g>in</str<strong>on</strong>g>e m<strong>on</strong>olayer (Fig. 28) [61], c<strong>on</strong>firm<str<strong>on</strong>g>in</str<strong>on</strong>g>g the role of organic moiety for the photochromism.<br />

This strik<str<strong>on</strong>g>in</str<strong>on</strong>g>g feature is of great significance for the m<str<strong>on</strong>g>in</str<strong>on</strong>g>iature of devices, specifically<br />

for the 3-D ultrahigh-density optical memory devices.<br />

It is known that the prot<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> photogenerated electr<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> holes play a key role <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the photochromism for both SA <str<strong>on</strong>g>and</str<strong>on</strong>g> TMO th<str<strong>on</strong>g>in</str<strong>on</strong>g> films. The superior photochromic<br />

resp<strong>on</strong>se of SAM th<str<strong>on</strong>g>in</str<strong>on</strong>g> film to its TMO counterpart may be relevant to the behavior of<br />

Table 2<br />

Key parameters for some SAM th<str<strong>on</strong>g>in</str<strong>on</strong>g> films [62]<br />

POM Redox<br />

potential<br />

(V)<br />

B<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g energy<br />

for O 2p<br />

electr<strong>on</strong>s (eV)<br />

Absorpti<strong>on</strong> b<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

corresp<strong>on</strong>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g to<br />

O ! M LMCT (nm)<br />

D(OD)max after<br />

a 30-m<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

UV-irradiati<strong>on</strong><br />

Ratio of<br />

reduced Mo or<br />

W <str<strong>on</strong>g>in</str<strong>on</strong>g> films (%)<br />

PMo12 0.27 6.45 310 0.168 32 70<br />

SiMo 12 0.23 6.50 306 0.151 28 68<br />

PW 12 0.02 7.01 269 0.03 5 64<br />

SiW12 0.24 7.22 260 Not obvious Not obvious 65<br />

Thickness of<br />

a 40-layer<br />

film (nm)


T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879 855<br />

Fig. 28. UV–Visible spectrum of the PMo12 m<strong>on</strong>olayer. Inset (a) is the UV–Visible spectra of the m<strong>on</strong>olayer<br />

before <str<strong>on</strong>g>and</str<strong>on</strong>g> after 5 m<str<strong>on</strong>g>in</str<strong>on</strong>g> UV-irradiati<strong>on</strong>, the dashed l<str<strong>on</strong>g>in</str<strong>on</strong>g>e is the photochromic resp<strong>on</strong>se after the assembly of another<br />

organic am<str<strong>on</strong>g>in</str<strong>on</strong>g>e layer <strong>on</strong> the m<strong>on</strong>olayer film. Insert (b) is the photographs of the m<strong>on</strong>olayer before <str<strong>on</strong>g>and</str<strong>on</strong>g> after UVirradiati<strong>on</strong><br />

captured by a microscope equipped with a color CCD camera [61].<br />

these charges as well as, possibly, to the efficient utilizati<strong>on</strong> of excitati<strong>on</strong> light. For TMOs<br />

film, the positive holes generated <str<strong>on</strong>g>in</str<strong>on</strong>g>side the film transfer to the <str<strong>on</strong>g>in</str<strong>on</strong>g>terface or surface to oxidize<br />

adsorbed water or small organic molecules <str<strong>on</strong>g>and</str<strong>on</strong>g> the resultant prot<strong>on</strong>s are <str<strong>on</strong>g>in</str<strong>on</strong>g>jected<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>side the film by coulomb attracti<strong>on</strong> to form hydrogen br<strong>on</strong>ze or to neutralize the system.<br />

It is clear that there is a mass-transfer step for both holes <str<strong>on</strong>g>and</str<strong>on</strong>g> prot<strong>on</strong>s dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g this process,<br />

which may limit the photochromic activity. For MoO3 th<str<strong>on</strong>g>in</str<strong>on</strong>g> film, <str<strong>on</strong>g>in</str<strong>on</strong>g> additi<strong>on</strong>, the photochromic<br />

sensitivity <str<strong>on</strong>g>in</str<strong>on</strong>g>creases with the <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g film thickness [312] <str<strong>on</strong>g>and</str<strong>on</strong>g> reaches the<br />

maximum when the film thickness equals to the light-penetrati<strong>on</strong> depth (1/a, ca.1lm,<br />

a is the absorpti<strong>on</strong> coefficient). This may correlate film thickness to the efficient utilizati<strong>on</strong><br />

of excitati<strong>on</strong> light. Last, for large b<str<strong>on</strong>g>and</str<strong>on</strong>g> gap oxide semic<strong>on</strong>ductors (such as MoO3), it is<br />

ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly the carriers generated with<str<strong>on</strong>g>in</str<strong>on</strong>g> the depleti<strong>on</strong> (space charge) layer that will c<strong>on</strong>tribute<br />

to the photochemical reacti<strong>on</strong> because these semic<strong>on</strong>ductors have small mobilities <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

short hole (m<str<strong>on</strong>g>in</str<strong>on</strong>g>ority carrier) diffusi<strong>on</strong> lengths [34]. Therefore, <strong>on</strong>ly a very th<str<strong>on</strong>g>in</str<strong>on</strong>g> layer of<br />

MoO3 close to the surface or <str<strong>on</strong>g>in</str<strong>on</strong>g>terface can take part <str<strong>on</strong>g>in</str<strong>on</strong>g> the colorati<strong>on</strong> process.<br />

For the SA th<str<strong>on</strong>g>in</str<strong>on</strong>g> films, the situati<strong>on</strong>s are quite different. First, there is no need for holes<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> prot<strong>on</strong>s to undergo a l<strong>on</strong>g-distance transfer to form the colored species. Sec<strong>on</strong>d, it<br />

seems that, unlike the case for MoO3, all the photogenerated carriers may c<strong>on</strong>tribute to<br />

the photochemical reacti<strong>on</strong> s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce there is no depleti<strong>on</strong> layer present <str<strong>on</strong>g>in</str<strong>on</strong>g> the POM clusters<br />

or nanoparticles due to their small size. More important is that, s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce no obvious photochromic<br />

resp<strong>on</strong>se is observed for the pure PMO12 molecules deposited <strong>on</strong>to an unmodified<br />

substrate, it is assumed <strong>on</strong>ly the molybdenum atoms that <str<strong>on</strong>g>in</str<strong>on</strong>g>teract with am<str<strong>on</strong>g>in</str<strong>on</strong>g>o headgroups<br />

are photoreducible [61]. The prot<strong>on</strong>s not come <strong>on</strong>ly from the organic am<str<strong>on</strong>g>in</str<strong>on</strong>g>e (for each<br />

POM layer) but also from the premodified am<str<strong>on</strong>g>in</str<strong>on</strong>g>osilane (for the first PMo 12 m<strong>on</strong>olayer).


856 T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879<br />

Third, it has been claimed that almost all the polyani<strong>on</strong>s embedded <str<strong>on</strong>g>in</str<strong>on</strong>g> the ultrath<str<strong>on</strong>g>in</str<strong>on</strong>g> SAM<br />

film is electrochemically active <str<strong>on</strong>g>and</str<strong>on</strong>g> thereby c<strong>on</strong>tribute to the electrochromism [47]. C<strong>on</strong>sider<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

the similarity between photochromism <str<strong>on</strong>g>and</str<strong>on</strong>g> electrochromism of POMs [35], itis<br />

reas<strong>on</strong>able to deduce that almost all the polyani<strong>on</strong>s self-assembled <str<strong>on</strong>g>in</str<strong>on</strong>g> the SAM film is photochemically<br />

active <str<strong>on</strong>g>and</str<strong>on</strong>g> can c<strong>on</strong>tribute to the photochromism. The last reas<strong>on</strong> might be<br />

the multireflecti<strong>on</strong> of light <str<strong>on</strong>g>in</str<strong>on</strong>g> the SAM th<str<strong>on</strong>g>in</str<strong>on</strong>g> film so that the efficient utilizati<strong>on</strong> of light<br />

can be improved. However, further experimental evidences should be sought to c<strong>on</strong>firm<br />

these po<str<strong>on</strong>g>in</str<strong>on</strong>g>ts.<br />

In additi<strong>on</strong>, <strong>on</strong>e big argument for the <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> <str<strong>on</strong>g>materials</str<strong>on</strong>g> is the fast resp<strong>on</strong>se time for both<br />

colorati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> decolorati<strong>on</strong>. Some authors [60] have claimed that the <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> films c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

tungsten heteropolyoxometallates show faster colorati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g than pure<br />

tungsten oxide films. However, up to now no detailed reports are available. For the <str<strong>on</strong>g>hybrid</str<strong>on</strong>g><br />

system, at least <str<strong>on</strong>g>in</str<strong>on</strong>g> pr<str<strong>on</strong>g>in</str<strong>on</strong>g>ciple, <strong>on</strong>e may expect that the resp<strong>on</strong>se time should be faster than<br />

the pure <str<strong>on</strong>g>in</str<strong>on</strong>g>organic <str<strong>on</strong>g>materials</str<strong>on</strong>g> s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce, unlike the case <str<strong>on</strong>g>in</str<strong>on</strong>g> TMO films, <strong>on</strong>ly the <str<strong>on</strong>g>in</str<strong>on</strong>g>tramolecular<br />

O ! M LMCT transiti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g>/or the <str<strong>on</strong>g>in</str<strong>on</strong>g>termolecular CT transiti<strong>on</strong>s between the neighbored<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>organic <str<strong>on</strong>g>and</str<strong>on</strong>g> organic moieties take place <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> systems so that there is<br />

no need for the prot<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> holes to travel through a l<strong>on</strong>g distance <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>hybrid</str<strong>on</strong>g>s dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

the colorati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> decolorati<strong>on</strong> process (Eq. (3)).<br />

3.3.2. POMs embedded <str<strong>on</strong>g>in</str<strong>on</strong>g> polymeric matrices<br />

By sol–gel method (cast-, sp<str<strong>on</strong>g>in</str<strong>on</strong>g>- or dip-coat<str<strong>on</strong>g>in</str<strong>on</strong>g>g), th<str<strong>on</strong>g>in</str<strong>on</strong>g> films can be prepared from the<br />

<str<strong>on</strong>g>hybrid</str<strong>on</strong>g> <str<strong>on</strong>g>materials</str<strong>on</strong>g> synthesized by the methods menti<strong>on</strong>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> Secti<strong>on</strong> 3.2. However, the crack<br />

formati<strong>on</strong> is usually <str<strong>on</strong>g>in</str<strong>on</strong>g>evitable due to the shr<str<strong>on</strong>g>in</str<strong>on</strong>g>kage dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the dry<str<strong>on</strong>g>in</str<strong>on</strong>g>g process. In order to<br />

get a better film, the <str<strong>on</strong>g>hybrid</str<strong>on</strong>g>s can be fabricated at nanometer level by a so-called nano<str<strong>on</strong>g>composite</str<strong>on</strong>g><br />

method, which can provide a new tool to improve the processability <str<strong>on</strong>g>and</str<strong>on</strong>g> stability of<br />

nanocrystals with <str<strong>on</strong>g>in</str<strong>on</strong>g>trigu<str<strong>on</strong>g>in</str<strong>on</strong>g>g novel optical, electr<strong>on</strong>ic, <str<strong>on</strong>g>and</str<strong>on</strong>g> magnetic capacities [229]. The<br />

general pr<str<strong>on</strong>g>in</str<strong>on</strong>g>ciples <str<strong>on</strong>g>in</str<strong>on</strong>g> the c<strong>on</strong>structi<strong>on</strong> of such nano<str<strong>on</strong>g>composite</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g>volve the <str<strong>on</strong>g>in</str<strong>on</strong>g>timate mix<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

of c<strong>on</strong>stituents with processable matrices (polymers, glasses, <str<strong>on</strong>g>and</str<strong>on</strong>g> ceramics). Polymers are<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>troduced <str<strong>on</strong>g>in</str<strong>on</strong>g>to the <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> systems thanks to their versatile structural property <str<strong>on</strong>g>and</str<strong>on</strong>g> functi<strong>on</strong>ality.<br />

A ma<str<strong>on</strong>g>in</str<strong>on</strong>g> advantage of <str<strong>on</strong>g>in</str<strong>on</strong>g>organic/polymeric <str<strong>on</strong>g>hybrid</str<strong>on</strong>g>s is that the polymeric matrix<br />

can improve the stability <str<strong>on</strong>g>and</str<strong>on</strong>g> make nanometer scale POM clusters disperse very well <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the <str<strong>on</strong>g>composite</str<strong>on</strong>g>s [313]. Entrapment is relevant to cha<str<strong>on</strong>g>in</str<strong>on</strong>g> orientati<strong>on</strong>, chemical reacti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

structural relaxati<strong>on</strong>, as well as the <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>s between POM <str<strong>on</strong>g>and</str<strong>on</strong>g> polymeric matrix. Different<br />

f<str<strong>on</strong>g>in</str<strong>on</strong>g>al film structures may result <str<strong>on</strong>g>in</str<strong>on</strong>g> significantly different potential properties. The<br />

polymer used as a matrix <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> <str<strong>on</strong>g>materials</str<strong>on</strong>g> prepared by sol–gel technique should<br />

meet the follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g requirements: (1) good film-form<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> adhesive behaviors <strong>on</strong> many<br />

solid supports; (2) highly soluble <str<strong>on</strong>g>in</str<strong>on</strong>g> water or other proper solvents <str<strong>on</strong>g>in</str<strong>on</strong>g> order to prevent the<br />

phase separati<strong>on</strong> dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the reacti<strong>on</strong>; (3) c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g group that prefers to complex with<br />

many <str<strong>on</strong>g>in</str<strong>on</strong>g>organic salts result<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> the good dispersi<strong>on</strong> of <str<strong>on</strong>g>in</str<strong>on</strong>g>organic counterparts; (4) the<br />

resultant film should exhibit good optical quality (high transmissi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> visible range <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

low scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g loss) <str<strong>on</strong>g>and</str<strong>on</strong>g> mechanical strength (easy process<str<strong>on</strong>g>in</str<strong>on</strong>g>g). The polymers used <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

photochromic <str<strong>on</strong>g>hybrid</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g>clude polyacrylamide (PAM), polyv<str<strong>on</strong>g>in</str<strong>on</strong>g>yl alcohol (PVA), polyethylene<br />

glycol (PEG), polyv<str<strong>on</strong>g>in</str<strong>on</strong>g>yl pyrrolid<strong>on</strong>e (PVP), <str<strong>on</strong>g>and</str<strong>on</strong>g> the like.<br />

3.3.2.1. POMs embedded <str<strong>on</strong>g>in</str<strong>on</strong>g> PAM. Kegg<str<strong>on</strong>g>in</str<strong>on</strong>g> type tungsten (PW12) [44,264,265,313–318] or<br />

molybdenum (PMo12) [264] heteropolyoxometallate acid <str<strong>on</strong>g>and</str<strong>on</strong>g> Daws<strong>on</strong> type tungsten<br />

Þ heteropolyoxometallate [309] have been used<br />

ðP2W18O 6<br />

62<br />

Þ or molybdenum ðP2Mo18O 6<br />

62


T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879 857<br />

as the photoactive c<strong>on</strong>stituents <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> films <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> PAM matrix. Here PW12 is used<br />

as an example to elucidate the photochromism <str<strong>on</strong>g>and</str<strong>on</strong>g> related phenomena. The geometry of<br />

PW12 is preserved <str<strong>on</strong>g>in</str<strong>on</strong>g>side the matrix, <str<strong>on</strong>g>and</str<strong>on</strong>g> a CT bridge is built between PW12 <str<strong>on</strong>g>and</str<strong>on</strong>g> PAM via<br />

hydrogen b<strong>on</strong>d [44,264,265,313–318]. These N–H O hydrogen b<strong>on</strong>ds are c<strong>on</strong>sidered as<br />

normal <str<strong>on</strong>g>and</str<strong>on</strong>g> weak <strong>on</strong>es, of which the b<strong>on</strong>d energy is ca. 20 kJ mol 1 [319]. The PW12 clusters<br />

or nanoparticles are well dispersed <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> film <str<strong>on</strong>g>and</str<strong>on</strong>g> are surrounded by PAM. The<br />

average diameter for PW 12 particles at a low c<strong>on</strong>centrati<strong>on</strong> (9 wt% PW 12) is ca. 50 nm,<br />

while ca. 65 nm with simultaneous evoluti<strong>on</strong> of agglomerati<strong>on</strong> at a high c<strong>on</strong>centrati<strong>on</strong><br />

(38 wt% PW12) [313]. Up<strong>on</strong> UV-light irradiati<strong>on</strong>, the transparent PW12/PAM films are<br />

photochemically reduced, which can be tailored by tun<str<strong>on</strong>g>in</str<strong>on</strong>g>g PW12 c<strong>on</strong>tent [313,318]. The<br />

<strong>on</strong>e with a low c<strong>on</strong>centrati<strong>on</strong> of PW12 (9–28 wt%) can be reversibly reduced to heteropoly<br />

blues <str<strong>on</strong>g>and</str<strong>on</strong>g> that with a high c<strong>on</strong>centrati<strong>on</strong> (38–44 wt%) irreversibly reduced to heteropoly<br />

browns (highly-reduced products) [318]. The brown films might be used as permanent<br />

optical storage <str<strong>on</strong>g>materials</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> the blue <strong>on</strong>es as re-usable <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong>-storage <str<strong>on</strong>g>materials</str<strong>on</strong>g>.<br />

Moreover, the IVCT b<str<strong>on</strong>g>and</str<strong>on</strong>g> gap (peak positi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the absorpti<strong>on</strong> spectra) for the films with<br />

the c<strong>on</strong>centrati<strong>on</strong> of PW 12 from 9 to 28 wt% is ca. 2.0 eV (620 nm), whereas that for<br />

38 wt% <str<strong>on</strong>g>and</str<strong>on</strong>g> 44 wt% is ca. 2.3 eV (540 nm) <str<strong>on</strong>g>and</str<strong>on</strong>g> 2.7 eV (460 nm), respectively.<br />

No absorpti<strong>on</strong> appears <str<strong>on</strong>g>in</str<strong>on</strong>g> visible regi<strong>on</strong> before photoirradiati<strong>on</strong>. For the <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> film<br />

with a low c<strong>on</strong>centrati<strong>on</strong> of PW12[44,314,315], after exposure to the UV light two broad<br />

absorpti<strong>on</strong> b<str<strong>on</strong>g>and</str<strong>on</strong>g>s appear respectively at 600–700 <str<strong>on</strong>g>and</str<strong>on</strong>g> 490 nm <str<strong>on</strong>g>in</str<strong>on</strong>g> the UV–Vis spectra of the<br />

colored film (Fig. 29) [315]. They are assigned to IVCT <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity-enhanced d–d transiti<strong>on</strong>s,<br />

respectively [230,320]. In additi<strong>on</strong>, it is said [44,314,315,318] that the organic radicals<br />

are formed dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the colorati<strong>on</strong> process. The colored film can be bleached by<br />

heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> the presence of oxygen [44,314]. However, it cannot be bleached by oxygen<br />

at ambient atmosphere, while colored soluti<strong>on</strong> of PW12/PAM can fade <str<strong>on</strong>g>in</str<strong>on</strong>g> air at room temperature<br />

[44,314]. This is relevant to the diffusi<strong>on</strong> velocity of oxygen <str<strong>on</strong>g>in</str<strong>on</strong>g> polymeric network<br />

[44,314,318]. In additi<strong>on</strong>, before illum<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> the uncolored film is soluble <str<strong>on</strong>g>in</str<strong>on</strong>g> water, while<br />

the photocolored <strong>on</strong>e is stable <str<strong>on</strong>g>in</str<strong>on</strong>g> water due to the formati<strong>on</strong> of cross-l<str<strong>on</strong>g>in</str<strong>on</strong>g>ked networks by<br />

the radical polymerizati<strong>on</strong> between the polymeric radicals.<br />

Fig. 29. UV–Vis spectra of the <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> film with 9 wt% PW12 irradiated with different durati<strong>on</strong>s [315].


858 T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879<br />

The wavelength of d–d transiti<strong>on</strong> is unaffected by the extent of ani<strong>on</strong> reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> UV–<br />

Vis spectra s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce it is not an <str<strong>on</strong>g>in</str<strong>on</strong>g>tervalence transiti<strong>on</strong> [230,320], while the wavelength <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

density of IVCT b<str<strong>on</strong>g>and</str<strong>on</strong>g> change with <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g irradiati<strong>on</strong> time (Fig. 29). It is claimed<br />

[315] that this is because the photoreducti<strong>on</strong> proceeds from <strong>on</strong>e-electr<strong>on</strong> to two-electr<strong>on</strong><br />

blue stage with <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g irradiati<strong>on</strong> time. After the film is irradiated with UV light for<br />

2 m<str<strong>on</strong>g>in</str<strong>on</strong>g>, the k max of IVCT b<str<strong>on</strong>g>and</str<strong>on</strong>g> is at ca. 720 nm (1.7 eV), which is assigned to a <strong>on</strong>e-electr<strong>on</strong><br />

reducti<strong>on</strong> of POMs [227,320]. As irradiati<strong>on</strong> time <str<strong>on</strong>g>in</str<strong>on</strong>g>creases, the wavelength of IVCT b<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

exhibits a blue-shift until a m<str<strong>on</strong>g>in</str<strong>on</strong>g>imum appears. When the irradiati<strong>on</strong> time reaches 10 m<str<strong>on</strong>g>in</str<strong>on</strong>g>,<br />

kmax of IVCT is at ca. 620 nm (2.0 eV), which is ascribed to a two-electr<strong>on</strong> reducti<strong>on</strong> of<br />

POMS [227,320]. The relative <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity of IVCT for two-electr<strong>on</strong> reducti<strong>on</strong> is almost twice<br />

as that for <strong>on</strong>e-electr<strong>on</strong> reducti<strong>on</strong>.<br />

It has been reported [265,316] that the ultrasound irradiati<strong>on</strong> dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the preparati<strong>on</strong><br />

has a remarkable effect <strong>on</strong> the microstructure <str<strong>on</strong>g>and</str<strong>on</strong>g> photochromic properties of the <str<strong>on</strong>g>hybrid</str<strong>on</strong>g><br />

films. S<strong>on</strong>ochemistry aris<str<strong>on</strong>g>in</str<strong>on</strong>g>g from acoustic cavitati<strong>on</strong> phenomena—the formati<strong>on</strong>,<br />

growth, <str<strong>on</strong>g>and</str<strong>on</strong>g> implosive collapse of bubbles <str<strong>on</strong>g>in</str<strong>on</strong>g> a liquid medium—is a useful technique for<br />

generat<str<strong>on</strong>g>in</str<strong>on</strong>g>g f<str<strong>on</strong>g>in</str<strong>on</strong>g>ely dispersed nanoparticles <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>composite</str<strong>on</strong>g> <str<strong>on</strong>g>materials</str<strong>on</strong>g> [321–323]. Although the<br />

stability of <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> film decreases slightly after the s<strong>on</strong>icati<strong>on</strong> [316], for the <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> film with<br />

a high c<strong>on</strong>centrati<strong>on</strong> of PW12, PW12 nanoparticles are well separated from each other <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

homogeneously dispersed <str<strong>on</strong>g>in</str<strong>on</strong>g> the polymeric matrix after s<strong>on</strong>icati<strong>on</strong> (Fig. 30B) [265],<br />

whereas the nanoparticles without s<strong>on</strong>icati<strong>on</strong> agglomerate together (Fig. 30A) [265]. Furthermore,<br />

compar<str<strong>on</strong>g>in</str<strong>on</strong>g>g with the samples without s<strong>on</strong>icati<strong>on</strong> [264,315,318], <strong>on</strong>e strik<str<strong>on</strong>g>in</str<strong>on</strong>g>g feature<br />

for the system with s<strong>on</strong>icati<strong>on</strong> is that, after a l<strong>on</strong>g time (such as 40 m<str<strong>on</strong>g>in</str<strong>on</strong>g>) irradiati<strong>on</strong><br />

with UV light, the colored species of <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> film changes from irreversible heteropoly<br />

browns to reversible heteropoly blues (Fig. 31) [265]. This is ascribed to the s<strong>on</strong>ochemical<br />

c<strong>on</strong>troll<str<strong>on</strong>g>in</str<strong>on</strong>g>g over <str<strong>on</strong>g>in</str<strong>on</strong>g>terfacial <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> system [265,316]. Two different <str<strong>on</strong>g>in</str<strong>on</strong>g>terfacial<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>s result<str<strong>on</strong>g>in</str<strong>on</strong>g>g from n<strong>on</strong>-covalent <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>s exist <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> system, <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

which hydrogen b<strong>on</strong>ds <str<strong>on</strong>g>and</str<strong>on</strong>g> electrostatic forces play a key role <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> films. One<br />

is between the polyani<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> polymeric matrix; another is between polymer cha<str<strong>on</strong>g>in</str<strong>on</strong>g>s. Up<strong>on</strong><br />

s<strong>on</strong>icati<strong>on</strong> the latter is weakened while the former is enhanced <str<strong>on</strong>g>in</str<strong>on</strong>g> the meantime, which<br />

leads to the changes <str<strong>on</strong>g>in</str<strong>on</strong>g> microstructure <str<strong>on</strong>g>and</str<strong>on</strong>g> photochromism of the <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> <str<strong>on</strong>g>materials</str<strong>on</strong>g>.<br />

3.3.2.2. POMs embedded <str<strong>on</strong>g>in</str<strong>on</strong>g> PVA. Polyv<str<strong>on</strong>g>in</str<strong>on</strong>g>yl alcohol (PVA) is another important polymeric<br />

matrix used <str<strong>on</strong>g>in</str<strong>on</strong>g> the photochromic <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> <str<strong>on</strong>g>materials</str<strong>on</strong>g> [266,324–326]. The photoactive<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>organic <str<strong>on</strong>g>in</str<strong>on</strong>g>cludes WO3 [266,327–329], H4W10O32 [330], PW12 [325], SiW12 [325,331],<br />

PMo12 [236], H4GeW12O40 [326], H3PW11MoO40 [332], H6P2W18O62 [324], <str<strong>on</strong>g>and</str<strong>on</strong>g> TiO2<br />

[327,333,334]. Thanks to its spiral structure, PVA with partial carb<strong>on</strong>yl groups can form<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>clusi<strong>on</strong> complex with the multivalent POM complex <str<strong>on</strong>g>and</str<strong>on</strong>g> thus <str<strong>on</strong>g>in</str<strong>on</strong>g>crease the photochromic<br />

stability [236]. The <str<strong>on</strong>g>in</str<strong>on</strong>g>termolecular hydrogen b<strong>on</strong>d can be formed <str<strong>on</strong>g>in</str<strong>on</strong>g> these <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> <str<strong>on</strong>g>materials</str<strong>on</strong>g><br />

[331]. The <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> th<str<strong>on</strong>g>in</str<strong>on</strong>g> films exhibit c<strong>on</strong>siderably high prot<strong>on</strong> c<strong>on</strong>ductivity, which <str<strong>on</strong>g>in</str<strong>on</strong>g>creases<br />

with the <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g relative humidity <str<strong>on</strong>g>and</str<strong>on</strong>g> decreases as photochromism occurs <str<strong>on</strong>g>in</str<strong>on</strong>g> film [325].<br />

It is reported that both the prot<strong>on</strong> [326] <str<strong>on</strong>g>and</str<strong>on</strong>g> electr<strong>on</strong> [331] c<strong>on</strong>ductivity of such <str<strong>on</strong>g>hybrid</str<strong>on</strong>g><br />

films <str<strong>on</strong>g>in</str<strong>on</strong>g>crease with the <str<strong>on</strong>g>in</str<strong>on</strong>g>creased c<strong>on</strong>tent of heteropolyacid (HPA) s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce the HPA exhibits<br />

relatively good prot<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> electr<strong>on</strong> c<strong>on</strong>ductivity.<br />

PVA/WO3 <str<strong>on</strong>g>hybrid</str<strong>on</strong>g>s can be produced by us<str<strong>on</strong>g>in</str<strong>on</strong>g>g a sol–gel process <str<strong>on</strong>g>in</str<strong>on</strong>g>volv<str<strong>on</strong>g>in</str<strong>on</strong>g>g i<strong>on</strong> exchange<br />

of sodium tungstate dihydrate (Na2WO4 Æ 2H2O) [266,328,329]. WO3-rich doma<str<strong>on</strong>g>in</str<strong>on</strong>g>s hav<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

radius of gyrati<strong>on</strong> of about 5.7 nm disperse evenly <str<strong>on</strong>g>in</str<strong>on</strong>g> PVA matrix with the correlati<strong>on</strong><br />

length of 20–30 nm. In the vic<str<strong>on</strong>g>in</str<strong>on</strong>g>ity of the <str<strong>on</strong>g>in</str<strong>on</strong>g>terface of doma<str<strong>on</strong>g>in</str<strong>on</strong>g>s composed of WO3


T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879 859<br />

Fig. 30. TEM images <str<strong>on</strong>g>and</str<strong>on</strong>g> histogram of the particle-size distributi<strong>on</strong> for <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> films (A) before <str<strong>on</strong>g>and</str<strong>on</strong>g> (B) after<br />

ultrasound treatment [265].<br />

networks, some PVA cha<str<strong>on</strong>g>in</str<strong>on</strong>g>s are partly <str<strong>on</strong>g>in</str<strong>on</strong>g>corporated. The physical properties of the<br />

<str<strong>on</strong>g>hybrid</str<strong>on</strong>g>s are affected by the morphology. For example, the mechanical properties of the<br />

<str<strong>on</strong>g>hybrid</str<strong>on</strong>g> are improved markedly with the <str<strong>on</strong>g>in</str<strong>on</strong>g>creased amount of WO3. This is caused by<br />

str<strong>on</strong>g <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>s between PVA cha<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> WO3 doma<str<strong>on</strong>g>in</str<strong>on</strong>g>s, which are formed by <str<strong>on</strong>g>in</str<strong>on</strong>g>corporati<strong>on</strong><br />

of PVA cha<str<strong>on</strong>g>in</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g>to WO3 doma<str<strong>on</strong>g>in</str<strong>on</strong>g>s hav<str<strong>on</strong>g>in</str<strong>on</strong>g>g hydrogen b<strong>on</strong>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g. The transparent<br />

<str<strong>on</strong>g>hybrid</str<strong>on</strong>g> changes from (pale) yellow to blue under UV-light irradiati<strong>on</strong>, especially at low<br />

c<strong>on</strong>centrati<strong>on</strong> of WO 3, <str<strong>on</strong>g>and</str<strong>on</strong>g> is bleached with elapsed time <str<strong>on</strong>g>in</str<strong>on</strong>g> the dark after photoirradiati<strong>on</strong>.<br />

The reversibility of this system is relevant to the humidity s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce the adsorbed water<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>hybrid</str<strong>on</strong>g>s plays an important role <strong>on</strong> photochromism [266,335]. By us<str<strong>on</strong>g>in</str<strong>on</strong>g>g a picosec<strong>on</strong>d<br />

pump–probe technique [328,329], the IVCT b<str<strong>on</strong>g>and</str<strong>on</strong>g>s <str<strong>on</strong>g>in</str<strong>on</strong>g> red-near IR regi<strong>on</strong> (1.34, 2.0, <str<strong>on</strong>g>and</str<strong>on</strong>g>


860 T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879<br />

Fig. 31. UV–Vis spectra of <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> films (A) without <str<strong>on</strong>g>and</str<strong>on</strong>g> (B) with ultras<strong>on</strong>ic pre-treatment: (a) before UV<br />

irradiati<strong>on</strong>; (b) UV irradiati<strong>on</strong> of (A) for 25 m<str<strong>on</strong>g>in</str<strong>on</strong>g>; (c) after two m<strong>on</strong>ths <str<strong>on</strong>g>in</str<strong>on</strong>g> air of (b); (d) UV irradiati<strong>on</strong> of (B) for<br />

40 m<str<strong>on</strong>g>in</str<strong>on</strong>g>; (e) after 7 h <str<strong>on</strong>g>in</str<strong>on</strong>g> air of (d); (f) after 15 h <str<strong>on</strong>g>in</str<strong>on</strong>g> air of (d). The <str<strong>on</strong>g>in</str<strong>on</strong>g>set <str<strong>on</strong>g>in</str<strong>on</strong>g> (B) shows the colorati<strong>on</strong>–decolorati<strong>on</strong><br />

cycles of the film at 700 nm [265].<br />

2.4 eV) are found to exhibit transient bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g that decays m<strong>on</strong>oexp<strong>on</strong>entially with the<br />

characteristic time of similar to 300 ps. These b<str<strong>on</strong>g>and</str<strong>on</strong>g>s are assigned to the IVCT transiti<strong>on</strong><br />

between the ground state energy level of W 5+ i<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> energy levels of W 6+ i<strong>on</strong> split <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

rhombically distorted octahedr<strong>on</strong> lig<str<strong>on</strong>g>and</str<strong>on</strong>g> field. Absorpti<strong>on</strong> b<str<strong>on</strong>g>and</str<strong>on</strong>g>s at 0.98 <str<strong>on</strong>g>and</str<strong>on</strong>g> near


T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879 861<br />

1.6 eV are ascribed to IVCT transiti<strong>on</strong> W 5+ ! W 6+ <str<strong>on</strong>g>in</str<strong>on</strong>g> triangular group of three-cornershared<br />

WO6 octahedra, reduced by <strong>on</strong>e electr<strong>on</strong> [328,329].<br />

H4SiW12O40/PVA [331] <str<strong>on</strong>g>and</str<strong>on</strong>g> H3PW11MoO40/PVA [332] ultraf<str<strong>on</strong>g>in</str<strong>on</strong>g>e fiber aggregates or<br />

mats have been prepared by an electrosp<str<strong>on</strong>g>in</str<strong>on</strong>g>n<str<strong>on</strong>g>in</str<strong>on</strong>g>g technique. The color of these fibers<br />

changes from white to blue under UV-light irradiati<strong>on</strong>. In the meantime, PVA is oxidized<br />

to unsaturated ket<strong>on</strong>e or aldehyde. The blue color decays to white aga<str<strong>on</strong>g>in</str<strong>on</strong>g> under ambient<br />

c<strong>on</strong>diti<strong>on</strong>s. Two broad b<str<strong>on</strong>g>and</str<strong>on</strong>g>s (centered at 500 <str<strong>on</strong>g>and</str<strong>on</strong>g> 650 or 730 nm), corresp<strong>on</strong>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g respectively<br />

to the d–d <str<strong>on</strong>g>and</str<strong>on</strong>g> IVCT transiti<strong>on</strong>, appear <str<strong>on</strong>g>in</str<strong>on</strong>g> the spectra of the irradiated fibers.<br />

H4SiW12O40 is photoreduced via <strong>on</strong>e-electr<strong>on</strong> reacti<strong>on</strong> [331], while for H3PW11MoO40/<br />

PVA it is Mo 6+ [332] that is reduced to Mo 5+ up<strong>on</strong> UV-light illum<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce no<br />

ESR signals from tungsten are observed. This is reas<strong>on</strong>able s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce the energy level of<br />

Mo 6+ i<strong>on</strong>s lies lower than that of W 6+ i<strong>on</strong>s [106]. The photoreducti<strong>on</strong> process goes further<br />

with <str<strong>on</strong>g>in</str<strong>on</strong>g>creased irradiati<strong>on</strong> time. It is noted that for H4W10O32/PVA <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> system, formed<br />

by the reacti<strong>on</strong> of white powdery tungstic acid <str<strong>on</strong>g>in</str<strong>on</strong>g> aqueous soluti<strong>on</strong> c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g PVA, the<br />

reducti<strong>on</strong> degree of decatungstate ani<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> soluti<strong>on</strong> is relevant to the acidity [330]. Oneelectr<strong>on</strong><br />

reduced form is produced ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly at high pH value, while two-electr<strong>on</strong> reduced<br />

form ma<str<strong>on</strong>g>in</str<strong>on</strong>g>ly at low pH value.<br />

Unlike the PW12/PAM systems [313,315,318], the color of photochemically reduced<br />

H6P2W18O62/PVA <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> film changes from light blue to deep blue with <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g irradiati<strong>on</strong><br />

time <str<strong>on</strong>g>and</str<strong>on</strong>g> HPA c<strong>on</strong>tent [324]. However, the decay of the absorbance under ambient<br />

c<strong>on</strong>diti<strong>on</strong>s speeds up with the <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g HPA c<strong>on</strong>tent [324]. This is because the residual<br />

hydroxy of PVA, which decreases with the <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>tent of HPA, can affect the stability<br />

of the oxidic state of the organic matrix. In additi<strong>on</strong>, it is said [236] that PMo 12/PVA<br />

solid soluti<strong>on</strong> exhibits an irreversible photochromism.<br />

When TiO2 is irradiated <str<strong>on</strong>g>in</str<strong>on</strong>g> the presence of PVA [327,333,334], a blue color may appear<br />

due to the absorpti<strong>on</strong> of trapped electr<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g>, occasi<strong>on</strong>ally, due to the free electr<strong>on</strong>s [31].<br />

PVA can functi<strong>on</strong> as a hole scavenger <str<strong>on</strong>g>and</str<strong>on</strong>g> be oxidized by positive holes to polymer ket<strong>on</strong>e.<br />

In the absence of PVA, colorati<strong>on</strong> is hardly observed <str<strong>on</strong>g>in</str<strong>on</strong>g> TiO2 up<strong>on</strong> UV-light irradiati<strong>on</strong> at<br />

room temperature. Due to a much smaller permeability of O2 <str<strong>on</strong>g>in</str<strong>on</strong>g>to the PVA matrix, the<br />

fad<str<strong>on</strong>g>in</str<strong>on</strong>g>g of the resultant blue color of TiO 2/PVA films <str<strong>on</strong>g>in</str<strong>on</strong>g>itiated by the oxidati<strong>on</strong> of O 2 is<br />

quite slow.<br />

3.3.2.3. POMs embedded <str<strong>on</strong>g>in</str<strong>on</strong>g> other polymeric matrices. WO3 can also be <str<strong>on</strong>g>in</str<strong>on</strong>g>corporated <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

polyethylene glycol (PEG) [336–338] <str<strong>on</strong>g>and</str<strong>on</strong>g> silica end-capped PEG [335]. WO3/PEG <str<strong>on</strong>g>hybrid</str<strong>on</strong>g><br />

films show good reversible photochromism. WO3 <str<strong>on</strong>g>in</str<strong>on</strong>g>corporated <str<strong>on</strong>g>in</str<strong>on</strong>g> silica end-capped polytetramethylene<br />

oxide (PTMO) exhibits the similar photochromism [335]. The mix<str<strong>on</strong>g>in</str<strong>on</strong>g>g of<br />

PEG with WO3 <str<strong>on</strong>g>in</str<strong>on</strong>g>duces drastic enhancement of photochromism as well as a better film<br />

formati<strong>on</strong> [337]. The photochromic sensitivity to UV light <str<strong>on</strong>g>in</str<strong>on</strong>g>creases with the amount of<br />

PEG added [337]. S<str<strong>on</strong>g>in</str<strong>on</strong>g>ce this enhancement effect is <str<strong>on</strong>g>in</str<strong>on</strong>g>dependent of the polymerizati<strong>on</strong><br />

degree of the additive PEG [338], it is suggested that it is the O–C–H structure, not<br />

O–H group, that plays a key role <str<strong>on</strong>g>in</str<strong>on</strong>g> the photochromic process. The b<strong>on</strong>d strength of<br />

C–H <str<strong>on</strong>g>in</str<strong>on</strong>g> O–C–H is much weaker than that of O–C <str<strong>on</strong>g>in</str<strong>on</strong>g> O–C–H or O–H. Thus, the hydrogen<br />

may be relatively easily released from C–H with oxidati<strong>on</strong> by photogenerated holes. This<br />

can expla<str<strong>on</strong>g>in</str<strong>on</strong>g> why ket<strong>on</strong>es <str<strong>on</strong>g>and</str<strong>on</strong>g> some carboxylic acids do not show any enhancement effect.<br />

So the efficient photochromism-enhanc<str<strong>on</strong>g>in</str<strong>on</strong>g>g additives should have the O–C–H structure.<br />

Polyv<str<strong>on</strong>g>in</str<strong>on</strong>g>yl pyrrolid<strong>on</strong>e (PVP) has also been used as the matrix <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> <str<strong>on</strong>g>materials</str<strong>on</strong>g>.<br />

PW 12/PVP [339], <str<strong>on</strong>g>and</str<strong>on</strong>g> H 12[EuP 5W 30O 110]/PVP [340], K 12[EuP 5W 30O 110]/PVP [341] <str<strong>on</strong>g>hybrid</str<strong>on</strong>g>


862 T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879<br />

films show similar photochromism to PW12/PAM. The photochromism is due to the<br />

reducti<strong>on</strong> of POM up<strong>on</strong> UV-light irradiati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g process can be <str<strong>on</strong>g>in</str<strong>on</strong>g>itiated by<br />

oxygen. Some authors have claimed [339,341] that PVP is oxidized after colorati<strong>on</strong> due<br />

to the electr<strong>on</strong> transfer between organic matrix <str<strong>on</strong>g>and</str<strong>on</strong>g> heteropolyani<strong>on</strong>. However, others<br />

[340] have argued that the photochromic mechanism is similar to that proposed for<br />

SAM th<str<strong>on</strong>g>in</str<strong>on</strong>g> films, i.e., formati<strong>on</strong> of a CT complex after colorati<strong>on</strong> (Eq. (5)), rather than<br />

the oxidizati<strong>on</strong> of PVP. It is noted that H 12[EuP 5W 30O 110]/PVP film can exhibit photolum<str<strong>on</strong>g>in</str<strong>on</strong>g>escent<br />

properties apart from the photochromism. After UV-light irradiati<strong>on</strong>, the<br />

<str<strong>on</strong>g>hybrid</str<strong>on</strong>g> film shows weaker emissi<strong>on</strong> than that without illum<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>.<br />

In additi<strong>on</strong>, PMo12 has been embedded <str<strong>on</strong>g>in</str<strong>on</strong>g> polycarb<strong>on</strong>ate (PC) [342] to prepare PMo12/<br />

PC complex, <str<strong>on</strong>g>in</str<strong>on</strong>g> which the C@O of PC <str<strong>on</strong>g>in</str<strong>on</strong>g>teracts with the hydrogen of molybdophosphoric<br />

acid to form hydrogen b<strong>on</strong>d. For this complex, a new absorpti<strong>on</strong> peak appears at ca.<br />

550 nm under irradiati<strong>on</strong> of sunlight due to the <strong>on</strong>e-electr<strong>on</strong> photoreducti<strong>on</strong> of Mo 6+ .<br />

3.3.3. POMs embedded <str<strong>on</strong>g>in</str<strong>on</strong>g> organic/silica matrices<br />

A series of nano<str<strong>on</strong>g>composite</str<strong>on</strong>g> films with reversible photochromism have been prepared<br />

through entrapp<str<strong>on</strong>g>in</str<strong>on</strong>g>g PMo12 [267], PW12 [267,343,344], or SiW12 [267,345] <str<strong>on</strong>g>in</str<strong>on</strong>g>to an<br />

organic/<str<strong>on</strong>g>in</str<strong>on</strong>g>organic matrix co-hydrolyzed from 3-am<str<strong>on</strong>g>in</str<strong>on</strong>g>opropyltriethoxysilane <str<strong>on</strong>g>and</str<strong>on</strong>g> tetraethylorthosilicate.<br />

PW12 has also been embedded <str<strong>on</strong>g>in</str<strong>on</strong>g> the matrix prepared from tetraethylorthosilicate<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> tetraethyleneglycol [346]. After SiW12 is entrapped <str<strong>on</strong>g>in</str<strong>on</strong>g>to the polymer prepared<br />

from methacrylamide <str<strong>on</strong>g>and</str<strong>on</strong>g> v<str<strong>on</strong>g>in</str<strong>on</strong>g>yltriethoxysilane, similarly, the resultant system can be<br />

reacted with tetraethylorthosilicate to form the nano<str<strong>on</strong>g>composite</str<strong>on</strong>g> [347]. It is claimed that<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> such a case the SiW12 is embedded <str<strong>on</strong>g>and</str<strong>on</strong>g> dispersed quite well <str<strong>on</strong>g>in</str<strong>on</strong>g> the organic/<str<strong>on</strong>g>in</str<strong>on</strong>g>organic<br />

matrices.<br />

The gel films prepared by such method are <str<strong>on</strong>g>in</str<strong>on</strong>g> amorphous state [267,343,344,348]. UV–<br />

Vis <str<strong>on</strong>g>and</str<strong>on</strong>g> IR spectra <str<strong>on</strong>g>in</str<strong>on</strong>g>dicate that the Kegg<str<strong>on</strong>g>in</str<strong>on</strong>g> type heteropolyani<strong>on</strong>s disperse uniformly <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the am<str<strong>on</strong>g>in</str<strong>on</strong>g>e-functi<strong>on</strong>alized silica gel skelet<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> there is a str<strong>on</strong>g <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong> (hydrogen<br />

b<strong>on</strong>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g, electrostatic <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> other n<strong>on</strong>-covalent forces) between the ani<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

organic cati<strong>on</strong> ðR–NH þ<br />

3 Þ [267,343–345,348]. Jude<str<strong>on</strong>g>in</str<strong>on</strong>g>ste<str<strong>on</strong>g>in</str<strong>on</strong>g> et al. [346] have claimed that<br />

chemical b<strong>on</strong>ds may also be formed <str<strong>on</strong>g>in</str<strong>on</strong>g> such <str<strong>on</strong>g>hybrid</str<strong>on</strong>g>s. For all samples, there is no absorpti<strong>on</strong><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> visible regi<strong>on</strong> before photoirradiati<strong>on</strong>. After exposure to the UV light, the color of<br />

<str<strong>on</strong>g>hybrid</str<strong>on</strong>g> film changes from colorless to blue due to the reducti<strong>on</strong> of ani<strong>on</strong> via a <strong>on</strong>e-electr<strong>on</strong><br />

step. Accord<str<strong>on</strong>g>in</str<strong>on</strong>g>gly, two broad absorpti<strong>on</strong> b<str<strong>on</strong>g>and</str<strong>on</strong>g>s appear <str<strong>on</strong>g>in</str<strong>on</strong>g> the UV–Vis spectra at 486 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

659–745 (for PW12 <str<strong>on</strong>g>hybrid</str<strong>on</strong>g>s) or 689–720 nm (for SiW12 <str<strong>on</strong>g>hybrid</str<strong>on</strong>g>s), respectively [267]. Like <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the case of PMo12/PAM <str<strong>on</strong>g>hybrid</str<strong>on</strong>g>s [264], they are respectively assigned to <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity-enhanced<br />

d–d transiti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> IVCT [230,320,349]. The former does not change with the irradiati<strong>on</strong><br />

time, while the latter undergoes a blue-shift with <str<strong>on</strong>g>in</str<strong>on</strong>g>creased irradiati<strong>on</strong> time as a result of<br />

the heteropolyani<strong>on</strong> reduced bey<strong>on</strong>d the <strong>on</strong>e-electr<strong>on</strong> stage [227]. However, the PMo12<br />

<str<strong>on</strong>g>hybrid</str<strong>on</strong>g> films show <strong>on</strong>ly <strong>on</strong>e broad b<str<strong>on</strong>g>and</str<strong>on</strong>g> at ca. 720 nm <str<strong>on</strong>g>in</str<strong>on</strong>g> the absorpti<strong>on</strong> spectra after<br />

UV irradiati<strong>on</strong> s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce the d–d b<str<strong>on</strong>g>and</str<strong>on</strong>g> is sometimes obscured by IVCT [230]. The photocolored<br />

samples can be bleached <str<strong>on</strong>g>in</str<strong>on</strong>g> the presence of oxygen <str<strong>on</strong>g>and</str<strong>on</strong>g> be recolored aga<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>on</strong> exposure<br />

to UV light. For PMo12 <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> films, a new absorpti<strong>on</strong> peak at ca. 872 nm appears<br />

ð5Þ


T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879 863<br />

dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g process <str<strong>on</strong>g>and</str<strong>on</strong>g> its c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>uous decrease <str<strong>on</strong>g>in</str<strong>on</strong>g> bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g speed is slower than<br />

that of the absorpti<strong>on</strong> peak at ca. 720 nm. This peak is ascribed to a sec<strong>on</strong>d IVCT whose<br />

energy is rather low for a d–d transiti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> is expected for the ‘‘extra-group’’ process<br />

[267,350,351]. It is noted that the reversibility of PW12 <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> films decreases with the colorati<strong>on</strong>–decolorati<strong>on</strong><br />

cycles due to the matrix-c<strong>on</strong>stra<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g effect of the rigid envir<strong>on</strong>ment<br />

[343]. In additi<strong>on</strong>, the organoam<str<strong>on</strong>g>in</str<strong>on</strong>g>o-modified silica <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> films c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g PMo 12 also<br />

exhibits thermochromic properties [348].<br />

3.3.4. POMs anchored to organic polymeric backb<strong>on</strong>e<br />

To allow a str<strong>on</strong>g electr<strong>on</strong>ic communicati<strong>on</strong> between the two units, the synthesis of<br />

related compounds <str<strong>on</strong>g>in</str<strong>on</strong>g> which the organic molecule is covalently l<str<strong>on</strong>g>in</str<strong>on</strong>g>ked to the polyani<strong>on</strong><br />

is thus pursued, i.e., <str<strong>on</strong>g>in</str<strong>on</strong>g> such <str<strong>on</strong>g>materials</str<strong>on</strong>g> a reversible photo<str<strong>on</strong>g>in</str<strong>on</strong>g>duced electr<strong>on</strong>-transfer process<br />

that does not <str<strong>on</strong>g>in</str<strong>on</strong>g>volve major structural changes or further chemical evoluti<strong>on</strong> must occur<br />

between an organic molecule <str<strong>on</strong>g>and</str<strong>on</strong>g> POM. Jude<str<strong>on</strong>g>in</str<strong>on</strong>g>ste<str<strong>on</strong>g>in</str<strong>on</strong>g> [252,352] has reported the synthesis<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> characterizati<strong>on</strong> of negatively charged macromolecules <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> organically functi<strong>on</strong>alized<br />

POMs through W–O–Si–C l<str<strong>on</strong>g>in</str<strong>on</strong>g>ks <str<strong>on</strong>g>and</str<strong>on</strong>g> anchored to an organic polymeric backb<strong>on</strong>e.<br />

First, the lacunar polyoxotungstate SiW11O 8<br />

39 , which formally derives from Kegg<str<strong>on</strong>g>in</str<strong>on</strong>g>’s<br />

structure by the remov<str<strong>on</strong>g>in</str<strong>on</strong>g>g of a ‘‘WO’’ fragment, reacts with trichloro or trialkoxysilanes<br />

to yield the modified polyoxotungstates, [SiW11O40(SiR)2] 4<br />

(R = v<str<strong>on</strong>g>in</str<strong>on</strong>g>yl, allyl, methacry,<br />

styryl), which can be isolated by crystallizati<strong>on</strong>. [SiW11O40(SiR)2] 4 units carry<str<strong>on</strong>g>in</str<strong>on</strong>g>g two<br />

reactive organic groups can be further polymerized <str<strong>on</strong>g>in</str<strong>on</strong>g> the presence of a radical <str<strong>on</strong>g>in</str<strong>on</strong>g>itiator<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> yields <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> polymers <str<strong>on</strong>g>in</str<strong>on</strong>g> which POM are l<str<strong>on</strong>g>in</str<strong>on</strong>g>ked by polymethacrylate or polystyrene<br />

cha<str<strong>on</strong>g>in</str<strong>on</strong>g>s [252,353]. The <str<strong>on</strong>g>in</str<strong>on</strong>g>organic/organic polymers with different spatial repetiti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

structures (l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear or branched <str<strong>on</strong>g>and</str<strong>on</strong>g> compact) are probably obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed (Fig. 32) [252] depend<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

<strong>on</strong> the polymerizati<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s. Up<strong>on</strong> UV irradiati<strong>on</strong>, both the soluti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> films<br />

can turn blue. Their visible spectrum is characterized by a wide absorpti<strong>on</strong> b<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> the visible-near-IR<br />

range centered <strong>on</strong> 1000 nm, which is characteristic of an <str<strong>on</strong>g>in</str<strong>on</strong>g>tervalence transiti<strong>on</strong><br />

W 5+ ! W 6+ <str<strong>on</strong>g>in</str<strong>on</strong>g> mixed valence POMs [354].<br />

Photochromic <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>organic/organic nano<str<strong>on</strong>g>composite</str<strong>on</strong>g>s <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> polyether cha<str<strong>on</strong>g>in</str<strong>on</strong>g>s<br />

with entrapped POMs <str<strong>on</strong>g>and</str<strong>on</strong>g> silica clusters have also been prepared from heteropolyoxometallates<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> (3-glycidyloxypropyl)trimethoxysilane [45,60,346,353]. The high solubility of<br />

POM molecules <str<strong>on</strong>g>in</str<strong>on</strong>g>side polyethylene oxide cha<str<strong>on</strong>g>in</str<strong>on</strong>g>s comes from the oxygen l<strong>on</strong>e pairs, which<br />

enables the nanoscale dispersi<strong>on</strong> of the comp<strong>on</strong>ents—polyether cha<str<strong>on</strong>g>in</str<strong>on</strong>g>s, silica clusters, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

POM species—lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g to a transparent material [45]. The matrix is made of organic <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>organic parts str<strong>on</strong>gly c<strong>on</strong>nected through stable carb<strong>on</strong>–silic<strong>on</strong> b<strong>on</strong>ds. The graft<str<strong>on</strong>g>in</str<strong>on</strong>g>g of<br />

the two phases leads to a str<strong>on</strong>g stability of these <str<strong>on</strong>g>materials</str<strong>on</strong>g> aga<str<strong>on</strong>g>in</str<strong>on</strong>g>st heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g (up to<br />

150 °C) or humid atmosphere. Photocorrelati<strong>on</strong> spectroscopy is used to probe the formati<strong>on</strong><br />

of gel framework <str<strong>on</strong>g>and</str<strong>on</strong>g> macrostructure. Forced Rayleigh scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g is used to study the<br />

dynamics of POM clusters <str<strong>on</strong>g>and</str<strong>on</strong>g> thereafter the microviscosity <str<strong>on</strong>g>and</str<strong>on</strong>g> microstructure <str<strong>on</strong>g>in</str<strong>on</strong>g>side the<br />

blends via the measurement of translati<strong>on</strong>al diffusi<strong>on</strong> coefficient of entrapped photoreactive<br />

targets, which do not experience the sol–gel transiti<strong>on</strong> but the system rigidificati<strong>on</strong><br />

with the loss of solvent [346]. In some mixture, the k<str<strong>on</strong>g>in</str<strong>on</strong>g>etics of the chemistry is fast <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

regard to gelati<strong>on</strong>. In other mixture, the gel formati<strong>on</strong> is rapid due to the formati<strong>on</strong> of silica<br />

clusters <str<strong>on</strong>g>and</str<strong>on</strong>g> polyether cha<str<strong>on</strong>g>in</str<strong>on</strong>g>s. For these <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> films, str<strong>on</strong>g blue colorati<strong>on</strong> is obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed<br />

under UV light, which is associated with <str<strong>on</strong>g>in</str<strong>on</strong>g>tramolecular electr<strong>on</strong> transfer <str<strong>on</strong>g>and</str<strong>on</strong>g> can be<br />

described as a polar<strong>on</strong>ic electr<strong>on</strong>-hopp<str<strong>on</strong>g>in</str<strong>on</strong>g>g process. The photochromism is the result of oxidati<strong>on</strong><br />

of the end group of polyether molecules by POMs to yield aldehydes RCHO (Eqs.


864 T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879<br />

Fig. 32. Proposed structures for SiW11SiR polymers (each POM is represented by <strong>on</strong>e black disk): (a) l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear<br />

structure; (b) branched, compact structure [252].<br />

(6)–(11)) [45]. For the colored films Mo et al. [60] have suggested to use Lorentz <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Gaussian oscillators to describe the optical behavior <str<strong>on</strong>g>in</str<strong>on</strong>g> the 400–1700 nm wavelength range<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> 700–4000 cm 1 wavenumber range, respectively. The behavior for amplitude grat<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

record<str<strong>on</strong>g>in</str<strong>on</strong>g>g dem<strong>on</strong>strates their potentiabilities as permanent or temporary holographic storage<br />

media depend<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> the atmosphere they are <str<strong>on</strong>g>in</str<strong>on</strong>g> [45].<br />

POM n ! hm POM n<br />

POM n ! k 1<br />

POM n<br />

POM n þ RCH2OH ! kQ<br />

POM ðnþ1Þ þ R _ CHOH þ H þ<br />

POM n þ R _ CHOH ! kR<br />

POM ðnþ1Þ þ RCHO þ H þ<br />

POM ðnþ1Þ þ R _ CHOH ! kR<br />

POM ðnþ2Þ þ RCHO þ H þ<br />

POM ðnþ2Þ þ POM n ! 2POM ðnþ1Þ<br />

(POM (n+2) + POM n 1 ! 2POM (n+1)<br />

for Eq. (11) <str<strong>on</strong>g>in</str<strong>on</strong>g> the orig<str<strong>on</strong>g>in</str<strong>on</strong>g>al paper [45].)<br />

3.3.5. Self-organized <str<strong>on</strong>g>hybrid</str<strong>on</strong>g>s <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> POMs <str<strong>on</strong>g>and</str<strong>on</strong>g> DODA<br />

A layered nano<str<strong>on</strong>g>composite</str<strong>on</strong>g> film with a f<str<strong>on</strong>g>in</str<strong>on</strong>g>e superlattice structure has been prepared by<br />

cast<str<strong>on</strong>g>in</str<strong>on</strong>g>g the soluti<strong>on</strong> of an i<strong>on</strong>ic complex formed by supramolecular self-organizati<strong>on</strong><br />

between a dimethyldioctadecylamm<strong>on</strong>ium (DODA) <str<strong>on</strong>g>and</str<strong>on</strong>g> a Kegg<str<strong>on</strong>g>in</str<strong>on</strong>g> type phosphomolybdate<br />

ani<strong>on</strong> ðPMo12O 3<br />

40 ; PMo12Þ [268,355] or a Daws<strong>on</strong> type 18-molybdophosphate ani<strong>on</strong><br />

ð6Þ<br />

ð7Þ<br />

ð8Þ<br />

ð9Þ<br />

ð10Þ<br />

ð11Þ


T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879 865<br />

Fig. 33. Schematic diagram of a possible structure of PMo 12/DODA <str<strong>on</strong>g>composite</str<strong>on</strong>g> film [268].<br />

ðP2Mo18O 6<br />

62 ; P2Mo18Þ [356,357] <strong>on</strong> a freshly cleaned substrate. It is claimed that the structure<br />

of polyani<strong>on</strong> is preserved <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>composite</str<strong>on</strong>g> film with a particular orientati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

multilayer. Each <str<strong>on</strong>g>in</str<strong>on</strong>g>organic layer c<strong>on</strong>sists of <strong>on</strong>e polyani<strong>on</strong> m<strong>on</strong>olayer <str<strong>on</strong>g>in</str<strong>on</strong>g>corporated <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the hydrophilic <str<strong>on</strong>g>in</str<strong>on</strong>g>terlayer with a d spac<str<strong>on</strong>g>in</str<strong>on</strong>g>g of 2.945 nm for PMo 12/DODA <str<strong>on</strong>g>hybrid</str<strong>on</strong>g><br />

(Fig. 33) [268] <str<strong>on</strong>g>and</str<strong>on</strong>g> of 3.591 nm for P2Mo18/DODA system (Fig. 34) [357]. It is said<br />

[268,355–357] that such an ordered <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> film may show a better photochromic resp<strong>on</strong>se<br />

Fig. 34. Schematic diagram of a possible structure of P2Mo18/DODA <str<strong>on</strong>g>composite</str<strong>on</strong>g> film [357].


866 T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879<br />

Fig. 35. Spectral changes at 400–1100 nm up<strong>on</strong> UV irradiati<strong>on</strong> of (A) PMo12-DODA <str<strong>on</strong>g>and</str<strong>on</strong>g> (B) P2Mo18-DODA<br />

<str<strong>on</strong>g>composite</str<strong>on</strong>g> film. Times (m<str<strong>on</strong>g>in</str<strong>on</strong>g>) are shown <str<strong>on</strong>g>in</str<strong>on</strong>g> the figures. Insets <str<strong>on</strong>g>in</str<strong>on</strong>g> (A): Spectral changes at 190–400 nm <str<strong>on</strong>g>and</str<strong>on</strong>g> EPR<br />

spectrum of the <str<strong>on</strong>g>composite</str<strong>on</strong>g> film (irradiati<strong>on</strong> time 40 m<str<strong>on</strong>g>in</str<strong>on</strong>g>) at 84 K. Inset <str<strong>on</strong>g>in</str<strong>on</strong>g> (B): unirradiated P2Mo18-DODA<br />

<str<strong>on</strong>g>composite</str<strong>on</strong>g> film at 190–400 nm [268,357].<br />

than that with a r<str<strong>on</strong>g>and</str<strong>on</strong>g>om orientati<strong>on</strong> of POMs (such as the film <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> polymeric<br />

matrix). After UV-light irradiati<strong>on</strong>, the film is colored with blue <str<strong>on</strong>g>and</str<strong>on</strong>g> a new broad absorpti<strong>on</strong><br />

b<str<strong>on</strong>g>and</str<strong>on</strong>g> with a maximum at ca. 770 nm for PMo 12/DODA (Fig. 35A) [268] <str<strong>on</strong>g>and</str<strong>on</strong>g> at ca.<br />

780–710 nm for P 2Mo 18/DODA <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> (Fig. 35B) [357]. In the meantime a shoulder at<br />

ca. 520 nm for PMo12/DODA or at ca. 580 nm for P2Mo18/DODA <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> is clearly<br />

observed. Those b<str<strong>on</strong>g>and</str<strong>on</strong>g>s are characteristic of reduced POM molecular species with d–d


<str<strong>on</strong>g>and</str<strong>on</strong>g>s at ca. 555 nm <str<strong>on</strong>g>and</str<strong>on</strong>g> IVCT (Mo 5+ ! Mo 6+ ) b<str<strong>on</strong>g>and</str<strong>on</strong>g>s at ca. 625–770 nm [230]. Apart<br />

from the reducti<strong>on</strong> of heteropolyani<strong>on</strong>s to heteropoly blues, DODA is oxidized <str<strong>on</strong>g>in</str<strong>on</strong>g>to<br />

<strong>on</strong>e or more compounds with carb<strong>on</strong>yl b<strong>on</strong>ds (C=O) <str<strong>on</strong>g>and</str<strong>on</strong>g> nitrogen–hydrogen b<strong>on</strong>ds<br />

(N–H). Bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g takes place when the film is <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>tact with ambient air or O2 <str<strong>on</strong>g>in</str<strong>on</strong>g> the dark<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> can be promoted by heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g. If the UV irradiated films are stored under <str<strong>on</strong>g>in</str<strong>on</strong>g>ert or vacuum<br />

atmosphere, it can reta<str<strong>on</strong>g>in</str<strong>on</strong>g> blue colorati<strong>on</strong> for a quite l<strong>on</strong>g time.<br />

3.4. Miscellaneous <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> <str<strong>on</strong>g>materials</str<strong>on</strong>g><br />

T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879 867<br />

3.4.1. TMOs/DMF systems<br />

The photochromic behavior of TMO th<str<strong>on</strong>g>in</str<strong>on</strong>g> film is very sensitive to the presence of hydrogen<br />

compounds dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the illum<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce the colorati<strong>on</strong> process is relevant to the photo<str<strong>on</strong>g>in</str<strong>on</strong>g>jecti<strong>on</strong><br />

of hydrogen [30,31]. Efficient photo<str<strong>on</strong>g>in</str<strong>on</strong>g>jecti<strong>on</strong> of hydrogen can be realized <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

some saturated TMOs with vacant d orbitals, such as WO 3, MoO 3, V 2O 5, Ta 2O 5,<br />

Nb 2O 5, etc. [30,31,358]. This may cause a photochromic resp<strong>on</strong>se. An improved photochromism<br />

has been observed <str<strong>on</strong>g>in</str<strong>on</strong>g> MoO 3 [121,138,359,360] <str<strong>on</strong>g>and</str<strong>on</strong>g> WO 3 [361–363] when they<br />

are illum<str<strong>on</strong>g>in</str<strong>on</strong>g>ated <str<strong>on</strong>g>in</str<strong>on</strong>g> the presence of alcohol. This is relevant to the formati<strong>on</strong> of organic radicals<br />

due to the oxidati<strong>on</strong> of adsorbed molecules by photogenerated holes. Another k<str<strong>on</strong>g>in</str<strong>on</strong>g>d of<br />

enhanced photochromism of MoO3 [364,365], WO3 [366,367] <str<strong>on</strong>g>and</str<strong>on</strong>g> V2O5 [365] films have<br />

been reported when these films are prepared by evaporat<str<strong>on</strong>g>in</str<strong>on</strong>g>g TMOs powder <str<strong>on</strong>g>in</str<strong>on</strong>g> a c<strong>on</strong>trolled<br />

DMF atmosphere, for which the molecules are adsorbed <strong>on</strong> film surface. The adsorpti<strong>on</strong><br />

of molecules <strong>on</strong> the oxide surface (without illum<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>) is accompanied by the formati<strong>on</strong><br />

of a d<strong>on</strong>or–acceptor b<strong>on</strong>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g between DMF molecules <str<strong>on</strong>g>and</str<strong>on</strong>g> coord<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>ally unsaturated<br />

surface metal cati<strong>on</strong>s [365]. An unshared electr<strong>on</strong> pair of an oxygen atom of molecules is<br />

pulled <str<strong>on</strong>g>in</str<strong>on</strong>g>to a vacant d orbital of the surface cati<strong>on</strong>, which can be facilitated by the localizati<strong>on</strong><br />

of the photogenerated hole near the adsorpti<strong>on</strong> center. The <str<strong>on</strong>g>in</str<strong>on</strong>g>tramolecular b<strong>on</strong>ds<br />

of the sorbate molecules are weakened <str<strong>on</strong>g>in</str<strong>on</strong>g> the process, lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g to a catalytic decompositi<strong>on</strong><br />

of the adsorbed molecules to form atomic hydrogen. Eventually, the photogenerated hole<br />

is captured by an electr<strong>on</strong> of the unshared pair form<str<strong>on</strong>g>in</str<strong>on</strong>g>g a positive charged molecule, which<br />

pre-determ<str<strong>on</strong>g>in</str<strong>on</strong>g>es <str<strong>on</strong>g>in</str<strong>on</strong>g> turn the possible splitt<str<strong>on</strong>g>in</str<strong>on</strong>g>g off of prot<strong>on</strong>s. Such detached hydrogen atoms<br />

can afterwards migrate <str<strong>on</strong>g>in</str<strong>on</strong>g>to the oxide lattice, giv<str<strong>on</strong>g>in</str<strong>on</strong>g>g rise to the formati<strong>on</strong> of local colored<br />

species. The photo<str<strong>on</strong>g>in</str<strong>on</strong>g>jecti<strong>on</strong> of hydrogen leads to the exchange of a hole with a prot<strong>on</strong>, prevent<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

the recomb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of the photogenerated carriers. For MoO3/DMF system, the<br />

amorphous film possesses significant photochromic sensitivity at low temperatures (35,<br />

90, 200, <str<strong>on</strong>g>and</str<strong>on</strong>g> 300 K) <str<strong>on</strong>g>in</str<strong>on</strong>g> an <str<strong>on</strong>g>in</str<strong>on</strong>g>ert atmosphere (such as <str<strong>on</strong>g>in</str<strong>on</strong>g> N2 gas), for which the photochromic<br />

process is ascribed to the populati<strong>on</strong> of different prot<strong>on</strong>ic states (bulky <str<strong>on</strong>g>and</str<strong>on</strong>g> surface<br />

states), which are relevant to the electr<strong>on</strong>ic color centers [364]. In additi<strong>on</strong>, the photochromism<br />

of hexatungstic acid (H 2W 6O 19) [368] <str<strong>on</strong>g>and</str<strong>on</strong>g> 11-tungstophosphate [369] <str<strong>on</strong>g>in</str<strong>on</strong>g> DMF<br />

soluti<strong>on</strong> have also been reported. It is said that [W 6O 19] 2 undergoes a two-electr<strong>on</strong><br />

photoreducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> DMF up<strong>on</strong> irradiati<strong>on</strong> to generate the blue species [W 6O 19] 4 .<br />

Although hydrogen can be directly photo<str<strong>on</strong>g>in</str<strong>on</strong>g>jected <str<strong>on</strong>g>in</str<strong>on</strong>g>to amorphous WO3 film, this process<br />

is <str<strong>on</strong>g>in</str<strong>on</strong>g>efficient <str<strong>on</strong>g>in</str<strong>on</strong>g> polycrystall<str<strong>on</strong>g>in</str<strong>on</strong>g>e WO3 films due to the small specific surface area <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

weak adsorptivity [366]. In additi<strong>on</strong>, the direct photo<str<strong>on</strong>g>in</str<strong>on</strong>g>jecti<strong>on</strong> of hydrogen is impossible<br />

for vanadium dioxide (VO2) because its d orbitals are not vacant, which makes d<strong>on</strong>or–<br />

acceptor b<strong>on</strong>d formati<strong>on</strong> impossible between the oxide surface <str<strong>on</strong>g>and</str<strong>on</strong>g> organic molecules<br />

[358]. A double-layer heterostructure has been c<strong>on</strong>structed to realize the photo<str<strong>on</strong>g>in</str<strong>on</strong>g>jecti<strong>on</strong><br />

of hydrogen <str<strong>on</strong>g>in</str<strong>on</strong>g>to VO 2 [358] or polycrystall<str<strong>on</strong>g>in</str<strong>on</strong>g>e WO 3 [366,367] films (Fig. 36) [367]. To carry


868 T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879<br />

Fig. 36. Structure for carry<str<strong>on</strong>g>in</str<strong>on</strong>g>g out of photo<str<strong>on</strong>g>in</str<strong>on</strong>g>jecti<strong>on</strong> of hydrogen with the help of a hydrogen <str<strong>on</strong>g>in</str<strong>on</strong>g>jector. Hydrogen<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>jector refers to amorphous WO 3, <str<strong>on</strong>g>and</str<strong>on</strong>g> hydrogen acceptor refers to VO 2 or polycrystall<str<strong>on</strong>g>in</str<strong>on</strong>g>e WO 3 [367].<br />

out the photo<str<strong>on</strong>g>in</str<strong>on</strong>g>jecti<strong>on</strong> of hydrogen, organic molecules c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g oxygen (such as aldehydes,<br />

alcohols, organic acids, etc.), 5 an element with an unshared electr<strong>on</strong> pair <str<strong>on</strong>g>in</str<strong>on</strong>g> a p<br />

orbital, are first adsorbed <strong>on</strong> the heterostructure surface (i.e., the surface of the amorphous<br />

layer). The hydrogen photodetached from the adsorbed molecules is first <str<strong>on</strong>g>in</str<strong>on</strong>g>jected <str<strong>on</strong>g>in</str<strong>on</strong>g>to the<br />

amorphous WO 3 layer, <str<strong>on</strong>g>and</str<strong>on</strong>g> then migrates <str<strong>on</strong>g>in</str<strong>on</strong>g>to the VO 2 or polycrystall<str<strong>on</strong>g>in</str<strong>on</strong>g>e WO 3 layer by<br />

the heterojuncti<strong>on</strong> field. When hydrogen is <str<strong>on</strong>g>in</str<strong>on</strong>g>jected, changes <str<strong>on</strong>g>in</str<strong>on</strong>g> the optical, electrical,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> structural properties of oxides [367] <str<strong>on</strong>g>and</str<strong>on</strong>g>, sometimes, even a semic<strong>on</strong>ductor–metal<br />

transiti<strong>on</strong>, are expected to occur at high <str<strong>on</strong>g>in</str<strong>on</strong>g>jecti<strong>on</strong> rates [370,371]. This might be of great<br />

significance for practical applicati<strong>on</strong>s.<br />

3.4.2. Molybdenum-oxide cluster/citric acid complexes<br />

UV-light-<str<strong>on</strong>g>in</str<strong>on</strong>g>duced colorati<strong>on</strong> has been observed <str<strong>on</strong>g>in</str<strong>on</strong>g> cluster systems of molybdenum<br />

oxide ([Mo7O24] 6 ) <str<strong>on</strong>g>in</str<strong>on</strong>g> aqueous soluti<strong>on</strong>s of citric acid [372,373]. Cluster is formed <str<strong>on</strong>g>in</str<strong>on</strong>g> solu-<br />

ti<strong>on</strong> due to the polymerizati<strong>on</strong> of [Mo7O24] 6<br />

i<strong>on</strong>s, which occurs after the prot<strong>on</strong> c<strong>on</strong>cen-<br />

trati<strong>on</strong> has reached a certa<str<strong>on</strong>g>in</str<strong>on</strong>g> level (for a given pH of the soluti<strong>on</strong>) [230]. Interest<str<strong>on</strong>g>in</str<strong>on</strong>g>gly, two<br />

different photochromism for the same system have been observed under illum<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> with<br />

365 <str<strong>on</strong>g>and</str<strong>on</strong>g> 380–420 nm, respectively. The former illum<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> creates an absorpti<strong>on</strong> b<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the regi<strong>on</strong> of 750 nm, whereas for the latter irradiati<strong>on</strong> absorpti<strong>on</strong> peak at 750 nm does<br />

not appear <str<strong>on</strong>g>and</str<strong>on</strong>g> the absorpti<strong>on</strong>-edge tail shifts toward l<strong>on</strong>ger wavelengths (Fig. 37)<br />

[373]. These phenomena have been expla<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> the fact that citric acid can act<br />

as a lig<str<strong>on</strong>g>and</str<strong>on</strong>g> to attach this complex of molybdenum oxide cluster. In additi<strong>on</strong>, it is noted<br />

that no changes <str<strong>on</strong>g>in</str<strong>on</strong>g> the optical spectra of the suspensi<strong>on</strong>s c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g>organic acids, such<br />

as HCl <str<strong>on</strong>g>and</str<strong>on</strong>g> HNO3, take place under UV-light irradiati<strong>on</strong> s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce no lig<str<strong>on</strong>g>and</str<strong>on</strong>g>s can be formed<br />

for them.<br />

Clusters may dem<strong>on</strong>strate a unique feature that differs substantially from those of the<br />

bulk <str<strong>on</strong>g>materials</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> molecules. Cluster is small enough to feel the changes occurr<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> its<br />

surface when a lig<str<strong>on</strong>g>and</str<strong>on</strong>g> becomes attached to it. Furthermore, the number of atoms compris<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

it is large enough to create a potential barrier that <str<strong>on</strong>g>in</str<strong>on</strong>g>hibits cluster transfer back to the<br />

ground state. This barrier appears <str<strong>on</strong>g>in</str<strong>on</strong>g> the atomic rearrangement as the transfer of photoexcited<br />

electr<strong>on</strong> changes the electr<strong>on</strong>ic structure of the complex [373]. Illum<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> with<br />

the light of 365 nm transfers organic acid <str<strong>on</strong>g>in</str<strong>on</strong>g> such a complex to an excited state. Then<br />

5 Kuboyama et al. [362] have reported that no photochromism had been observed for the tungstic acid gels <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the presence of aldehyde, carboxylic acid <str<strong>on</strong>g>and</str<strong>on</strong>g> ket<strong>on</strong>e. However, no explanati<strong>on</strong> is available about this.


T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879 869<br />

Fig. 37. Transmissi<strong>on</strong> spectra of soluti<strong>on</strong>s c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g><str<strong>on</strong>g>in</str<strong>on</strong>g>g molybdenum oxide cluster <str<strong>on</strong>g>and</str<strong>on</strong>g> citric acid. (A) Irradiati<strong>on</strong><br />

with a 365-nm light, <str<strong>on</strong>g>and</str<strong>on</strong>g> (B) irradiati<strong>on</strong> with a light of 380–420 nm. (1) start<str<strong>on</strong>g>in</str<strong>on</strong>g>g spectrum; (2) spectrum after<br />

irradiati<strong>on</strong> for 85 m<str<strong>on</strong>g>in</str<strong>on</strong>g>; (3) spectrum after completi<strong>on</strong> of irradiati<strong>on</strong> for 30 h. The arrow identifies the absorpti<strong>on</strong><br />

edge [373].<br />

the electr<strong>on</strong> is transferred from the organic compound to the metal atom, lead<str<strong>on</strong>g>in</str<strong>on</strong>g>g to a<br />

change <str<strong>on</strong>g>in</str<strong>on</strong>g> the oxidati<strong>on</strong> state of Mo atom <str<strong>on</strong>g>in</str<strong>on</strong>g> the cluster from Mo 6+ to Mo 5+ <str<strong>on</strong>g>and</str<strong>on</strong>g>, c<strong>on</strong>sequently,<br />

to the formati<strong>on</strong> of an absorpti<strong>on</strong> b<str<strong>on</strong>g>and</str<strong>on</strong>g> appear<str<strong>on</strong>g>in</str<strong>on</strong>g>g around 750 nm [373]. In the<br />

meantime the prot<strong>on</strong> is elim<str<strong>on</strong>g>in</str<strong>on</strong>g>ated from the cluster or from the acid attached to it. However,<br />

the photoexcitati<strong>on</strong> with the light of 380–420 nm changes the cluster c<strong>on</strong>formati<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> shifts the absorpti<strong>on</strong> edge caused by excitati<strong>on</strong> from the oxygen orbitals [373]. The<br />

different behavior of clusters after photoexcitati<strong>on</strong> for these two k<str<strong>on</strong>g>in</str<strong>on</strong>g>ds of photochromism<br />

agrees with that the electr<strong>on</strong> transfer resp<strong>on</strong>sible for the photochromic effect is a process<br />

sensitive to the differences <str<strong>on</strong>g>in</str<strong>on</strong>g> the complex structure <str<strong>on</strong>g>in</str<strong>on</strong>g>itiated by a relatively small change <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

the c<strong>on</strong>centrati<strong>on</strong> of the start<str<strong>on</strong>g>in</str<strong>on</strong>g>g chemical comp<strong>on</strong>ents [373].


870 T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879<br />

3.4.3. Molybdenum (VI) oxalate complexes<br />

Molybdenum (VI) oxalate complexes <str<strong>on</strong>g>in</str<strong>on</strong>g> the solid state can exhibit photochromic behavior<br />

<strong>on</strong> exposure to UV irradiati<strong>on</strong>, which was first observed by Rosenheim [374] about 110<br />

years ago <str<strong>on</strong>g>and</str<strong>on</strong>g> recently c<strong>on</strong>firmed by Mentzen <str<strong>on</strong>g>and</str<strong>on</strong>g> Sauterean [375].K2[MoO3(C2O4)] Æ H2O<br />

can change from colorless to p<str<strong>on</strong>g>in</str<strong>on</strong>g>k after successive UV irradiati<strong>on</strong> for 30 m<str<strong>on</strong>g>in</str<strong>on</strong>g>, <str<strong>on</strong>g>and</str<strong>on</strong>g> to<br />

brown for l<strong>on</strong>ger times [375]. At the same time, the absorpti<strong>on</strong> b<str<strong>on</strong>g>and</str<strong>on</strong>g> gradually shifts<br />

towards shorter wavelengths with <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g irradiati<strong>on</strong> time <str<strong>on</strong>g>and</str<strong>on</strong>g> stabilizes at 460 nm after<br />

6 h of irradiati<strong>on</strong> [375]. C<str<strong>on</strong>g>in</str<strong>on</strong>g>drić et al. [376] have reported that the reacti<strong>on</strong> of molybdenum<br />

(VI) oxide with oxalic acid or with alkali oxalate <str<strong>on</strong>g>and</str<strong>on</strong>g> alkali halides results <str<strong>on</strong>g>in</str<strong>on</strong>g> the formati<strong>on</strong><br />

of two series of molybdenum (VI) oxalate complexes: <strong>on</strong>e of the general formula<br />

M2[Mo2O5(C2O4)2(H2O)2] with a Mo2O5 core <str<strong>on</strong>g>and</str<strong>on</strong>g> the dimeric structure (M = Na, K,<br />

Rb, Cs), <str<strong>on</strong>g>and</str<strong>on</strong>g> another of the formula M2[MoO3(C2O4)] with a MoO3 core <str<strong>on</strong>g>and</str<strong>on</strong>g> an <str<strong>on</strong>g>in</str<strong>on</strong>g>f<str<strong>on</strong>g>in</str<strong>on</strong>g>ite<br />

polymeric structure. In both types of structures molybdenum i<strong>on</strong>s are six-coord<str<strong>on</strong>g>in</str<strong>on</strong>g>ated<br />

be<str<strong>on</strong>g>in</str<strong>on</strong>g>g surrounded by term<str<strong>on</strong>g>in</str<strong>on</strong>g>al oxo-oxygens, bridg<str<strong>on</strong>g>in</str<strong>on</strong>g>g oxygens <str<strong>on</strong>g>and</str<strong>on</strong>g> bidentate b<strong>on</strong>ded oxalate<br />

lig<str<strong>on</strong>g>and</str<strong>on</strong>g>s. When exposed to UV light, the former <str<strong>on</strong>g>in</str<strong>on</strong>g> the solid state exhibits photochromic<br />

behavior, chang<str<strong>on</strong>g>in</str<strong>on</strong>g>g color from colorless to green–brown as the c<strong>on</strong>sequence of partial<br />

reducti<strong>on</strong> of Mo 6+ to Mo 5+ <strong>on</strong>ly at the crystal surfaces. The latter exhibits remarkably less<br />

pr<strong>on</strong>ounced photochromism <str<strong>on</strong>g>and</str<strong>on</strong>g> changes to a very pale p<str<strong>on</strong>g>in</str<strong>on</strong>g>k, which might be caused by<br />

the polymeric nature of the complex ani<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> stabilizati<strong>on</strong> effect due to the <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>s<br />

between oxalate lig<str<strong>on</strong>g>and</str<strong>on</strong>g>s as well as between oxo-oxygen atoms [376]. In additi<strong>on</strong>, a class of<br />

compounds prepared from molybdenum (VI) oxide with oxalic acid <str<strong>on</strong>g>and</str<strong>on</strong>g> RCl (R = pyH<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> c-picH) or with tetramethylamm<strong>on</strong>ium oxalate complex—R 2[Mo 2O 5(C 2O 4) 2(H 2O) 2],<br />

[(CH 3) 4N] 2[MoO 3(C 2O 4)] <str<strong>on</strong>g>and</str<strong>on</strong>g> [(CH 3) 4N] 2[Mo 2O 5(C 2O 4) 2(H 2O) 2]—are also observed to<br />

show c<strong>on</strong>siderable photochromic effect due to the photoreducti<strong>on</strong> of Mo 6+ to Mo 5+ [377].<br />

4. C<strong>on</strong>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g remarks<br />

The design <str<strong>on</strong>g>and</str<strong>on</strong>g> synthesis of <str<strong>on</strong>g>composite</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>hybrid</str<strong>on</strong>g>s <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> TMOs or POMs are at<br />

the forefr<strong>on</strong>t of the <str<strong>on</strong>g>materials</str<strong>on</strong>g> chemistry research. Many such k<str<strong>on</strong>g>in</str<strong>on</strong>g>d of <str<strong>on</strong>g>composite</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>hybrid</str<strong>on</strong>g><br />

photochromic <str<strong>on</strong>g>materials</str<strong>on</strong>g> have been developed <str<strong>on</strong>g>and</str<strong>on</strong>g> some significant progresses have been<br />

made dur<str<strong>on</strong>g>in</str<strong>on</strong>g>g the past several decades. For the <str<strong>on</strong>g>composite</str<strong>on</strong>g> <str<strong>on</strong>g>materials</str<strong>on</strong>g> <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> TMOs, an<br />

improved photochromism has been achieved <str<strong>on</strong>g>in</str<strong>on</strong>g> the systems of WO 3 or MoO 3 modified<br />

by Au, Pt, or a sec<strong>on</strong>d TMO (Nb, Ta, Ti, Zn, Zr, etc.). Visible-light colorati<strong>on</strong> has been<br />

obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>in</str<strong>on</strong>g> the systems of CdS/WO3, CdS/MoO3, <str<strong>on</strong>g>and</str<strong>on</strong>g> TiO2/MoO3. The field-assisted<br />

photochromism has been put forward to suppress the thermal degradati<strong>on</strong> of photochromism<br />

for doped TMOs. Compared with the poor photochromic behavior of s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle POMs,<br />

the <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> <str<strong>on</strong>g>materials</str<strong>on</strong>g> <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> POMs may exhibit better photochromic resp<strong>on</strong>se, especially<br />

for the molybdenum-<str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong>es. An ultrath<str<strong>on</strong>g>in</str<strong>on</strong>g> (such as 70 nm) <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> multilayer film of<br />

H 3PMo 12O 40 or H 4SiMo 12O 40 coupled with 1,10-diam<str<strong>on</strong>g>in</str<strong>on</strong>g>odecane can exhibit photochromic<br />

characteristics comparable to that of a 1-lm MoO 3 film. Moreover, even an<br />

H3PMo12O40 m<strong>on</strong>olayer coupled with an am<str<strong>on</strong>g>in</str<strong>on</strong>g>e m<strong>on</strong>olayer (<strong>on</strong>ly about 2-nm thick) show<br />

an observable photochromic resp<strong>on</strong>se. Another strik<str<strong>on</strong>g>in</str<strong>on</strong>g>g achievement <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> <str<strong>on</strong>g>materials</str<strong>on</strong>g><br />

is that, unlike MoO3 <str<strong>on</strong>g>and</str<strong>on</strong>g> WO3, many of them show a good reversible photochromism<br />

even bleached by heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> the presence of oxygen. In additi<strong>on</strong>, the photochromic activity<br />

of a <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>creases with the positive-shift<str<strong>on</strong>g>in</str<strong>on</strong>g>g redox potential of POM or the decreas<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

b<str<strong>on</strong>g>in</str<strong>on</strong>g>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g energy of O 2p <str<strong>on</strong>g>in</str<strong>on</strong>g> POM, which is helpful <str<strong>on</strong>g>in</str<strong>on</strong>g> the design of novel <str<strong>on</strong>g>hybrid</str<strong>on</strong>g>s with good<br />

photochromic resp<strong>on</strong>se. F<str<strong>on</strong>g>in</str<strong>on</strong>g>ally but not the last, except the frequently-observed blue color


<str<strong>on</strong>g>in</str<strong>on</strong>g> TMOs <str<strong>on</strong>g>and</str<strong>on</strong>g> POMs, <str<strong>on</strong>g>composite</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>hybrid</str<strong>on</strong>g>s that can be photocolored to other color<br />

(brown, purple, green, p<str<strong>on</strong>g>in</str<strong>on</strong>g>k, etc.) have been developed so that the multicolor might be realized.<br />

Specifically, up<strong>on</strong> irradiati<strong>on</strong> Ag/TiO2 can change from the <str<strong>on</strong>g>in</str<strong>on</strong>g>itial brownish-gray to<br />

almost the same color as that of the <str<strong>on</strong>g>in</str<strong>on</strong>g>cident m<strong>on</strong>ochromatic visible light. The knowledge<br />

acquired through these studies will aid <str<strong>on</strong>g>in</str<strong>on</strong>g> the development of new <str<strong>on</strong>g>materials</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

improvement of present <strong>on</strong>es. This might underscore the opportunity of us<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>composite</str<strong>on</strong>g><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> <str<strong>on</strong>g>materials</str<strong>on</strong>g> as the phot<strong>on</strong>ic applicati<strong>on</strong>s as well as the m<str<strong>on</strong>g>in</str<strong>on</strong>g>iaturizati<strong>on</strong> of related<br />

devices. Specifically, the <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> photochromic <str<strong>on</strong>g>materials</str<strong>on</strong>g> have shown great promise <str<strong>on</strong>g>in</str<strong>on</strong>g> optical<br />

memory devices us<str<strong>on</strong>g>in</str<strong>on</strong>g>g blue light (such as 405 nm), which makes them the c<str<strong>on</strong>g>and</str<strong>on</strong>g>idates<br />

for the next generati<strong>on</strong> <str<strong>on</strong>g>materials</str<strong>on</strong>g> as <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> storage media. 6 By select<str<strong>on</strong>g>in</str<strong>on</strong>g>g different<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>organic photochromic <str<strong>on</strong>g>materials</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> their <str<strong>on</strong>g>in</str<strong>on</strong>g>organic or organic counterparts, choos<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

different preparati<strong>on</strong> methods, <str<strong>on</strong>g>and</str<strong>on</strong>g> adjust<str<strong>on</strong>g>in</str<strong>on</strong>g>g the irradiati<strong>on</strong> time, <str<strong>on</strong>g>in</str<strong>on</strong>g>tensity <str<strong>on</strong>g>and</str<strong>on</strong>g> wavelength,<br />

<strong>on</strong>e can optimize the desired photochromic behavior, <str<strong>on</strong>g>in</str<strong>on</strong>g>clud<str<strong>on</strong>g>in</str<strong>on</strong>g>g the different photo<str<strong>on</strong>g>in</str<strong>on</strong>g>duced<br />

color, of the <str<strong>on</strong>g>composite</str<strong>on</strong>g> or <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> <str<strong>on</strong>g>materials</str<strong>on</strong>g>. However, the design <str<strong>on</strong>g>and</str<strong>on</strong>g> synthesis<br />

of <str<strong>on</strong>g>composite</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>hybrid</str<strong>on</strong>g>s <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> TMOs or POMs are still <str<strong>on</strong>g>in</str<strong>on</strong>g> its <str<strong>on</strong>g>in</str<strong>on</strong>g>fancy <str<strong>on</strong>g>and</str<strong>on</strong>g> there are<br />

still many problems left for the <strong>on</strong>go<str<strong>on</strong>g>in</str<strong>on</strong>g>g research.<br />

So far <strong>on</strong>ly a general pattern of color<str<strong>on</strong>g>in</str<strong>on</strong>g>g process has been reliably established, while for<br />

the specific feature <str<strong>on</strong>g>and</str<strong>on</strong>g> mechanism of the photochromic process, even for s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle species of<br />

TMOs <str<strong>on</strong>g>and</str<strong>on</strong>g> POMs, discrepancy still exists am<strong>on</strong>g different authors. This needs the help<br />

from the researchers <str<strong>on</strong>g>in</str<strong>on</strong>g> physics, especially <str<strong>on</strong>g>in</str<strong>on</strong>g> solid state physics, photophysics, <str<strong>on</strong>g>and</str<strong>on</strong>g> experimental<br />

physics. The energy transfer between <str<strong>on</strong>g>in</str<strong>on</strong>g>organic chromophores <str<strong>on</strong>g>and</str<strong>on</strong>g> organic dyes, a<br />

related topic, should receive much more attenti<strong>on</strong>. The <str<strong>on</strong>g>hybrid</str<strong>on</strong>g> approach offers the opportunity<br />

to br<str<strong>on</strong>g>in</str<strong>on</strong>g>g these energy transfer systems <str<strong>on</strong>g>in</str<strong>on</strong>g>to solid state <str<strong>on</strong>g>and</str<strong>on</strong>g> might lead to the evoluti<strong>on</strong><br />

of novel photochromic <str<strong>on</strong>g>materials</str<strong>on</strong>g>. It is necessary to develop (more) new systems, for<br />

which the colored state can be bleached by optical excitati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>stead of thermal bleach<str<strong>on</strong>g>in</str<strong>on</strong>g>g.<br />

This is very important for the optical memory <str<strong>on</strong>g>materials</str<strong>on</strong>g>. It is also mean<str<strong>on</strong>g>in</str<strong>on</strong>g>gful to prepare<br />

(more) new <str<strong>on</strong>g>materials</str<strong>on</strong>g> that can exhibit multicolor photochromism. S<str<strong>on</strong>g>in</str<strong>on</strong>g>ce the optoelectr<strong>on</strong>ic<br />

characteristics of semic<strong>on</strong>ductor particles are drastically modified <str<strong>on</strong>g>in</str<strong>on</strong>g> the nanometer- <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

subnanometer-size regime, more attenti<strong>on</strong> might be paid to the semic<strong>on</strong>ductor-<str<strong>on</strong>g>based</str<strong>on</strong>g><br />

nano<str<strong>on</strong>g>composite</str<strong>on</strong>g>s, <str<strong>on</strong>g>in</str<strong>on</strong>g> which the <str<strong>on</strong>g>in</str<strong>on</strong>g>teracti<strong>on</strong>s at the <str<strong>on</strong>g>in</str<strong>on</strong>g>terface may be tuned <str<strong>on</strong>g>and</str<strong>on</strong>g>, c<strong>on</strong>sequently,<br />

the photochromic performance. Last but not the least, the photochromic resp<strong>on</strong>se<br />

time is also worth study<str<strong>on</strong>g>in</str<strong>on</strong>g>g s<str<strong>on</strong>g>in</str<strong>on</strong>g>ce, at least <str<strong>on</strong>g>in</str<strong>on</strong>g> pr<str<strong>on</strong>g>in</str<strong>on</strong>g>ciple, the <str<strong>on</strong>g>hybrid</str<strong>on</strong>g>s should have a quite fast<br />

photoresp<strong>on</strong>se speed. This is crucial for many practical applicati<strong>on</strong>s, such as <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong><br />

storage, data display, optical signal process<str<strong>on</strong>g>in</str<strong>on</strong>g>g, chemical switch, <str<strong>on</strong>g>and</str<strong>on</strong>g> the like.<br />

Acknowledgements<br />

T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879 871<br />

We are deeply <str<strong>on</strong>g>in</str<strong>on</strong>g>debted to all the colleagues <str<strong>on</strong>g>and</str<strong>on</strong>g> students <str<strong>on</strong>g>in</str<strong>on</strong>g> our group, <str<strong>on</strong>g>in</str<strong>on</strong>g>volved <str<strong>on</strong>g>in</str<strong>on</strong>g> the<br />

field of photochromism: Y<str<strong>on</strong>g>in</str<strong>on</strong>g>g Ma, Ya-An Cao, Wen-Sheng Yang, Y<strong>on</strong>g-An Yang,<br />

Zhao-Hui Chen, Guang-J<str<strong>on</strong>g>in</str<strong>on</strong>g> Zhang, Hao-Hao Ke, Zi-Sheng Guan, <str<strong>on</strong>g>and</str<strong>on</strong>g> Ke Shao, for<br />

fruitful collaborati<strong>on</strong>. F<str<strong>on</strong>g>in</str<strong>on</strong>g>ancial supports came from Nati<strong>on</strong>al Science Foundati<strong>on</strong> of<br />

Ch<str<strong>on</strong>g>in</str<strong>on</strong>g>a, Nati<strong>on</strong>al Research Fund for Fundamental Key Projects No. 973 (G19990330),<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Ch<str<strong>on</strong>g>in</str<strong>on</strong>g>ese Academy of Sciences.<br />

6 At the moment the memory density of CD disk is 650 MB with 780-nm laser as light source <str<strong>on</strong>g>and</str<strong>on</strong>g> that of DVD<br />

is 4.7 GB with 650-nm laser. If the light source moves to blue (405 nm), it can reach 40 GB for s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle layer <str<strong>on</strong>g>in</str<strong>on</strong>g> 12cm<br />

optical disk.


872 T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879<br />

References<br />

[1] <str<strong>on</strong>g>Photochromism</str<strong>on</strong>g>. In: Brown GH, editor. Techniques of chemistry, vol. 3. New York: Wiley-Interscience;<br />

1971.<br />

[2] Faughnan BW, Staebler DL, Kiss ZJ. Inorganic photochromic <str<strong>on</strong>g>materials</str<strong>on</strong>g>. In: Wolfe R, Kriessman CJ,<br />

editors. Applied Solid State Science, vol. 2. New York: Academic Press; 1971. p. 107.<br />

[3] Kiss ZJ. Phys Today 1970;23:42.<br />

[4] Crano JC, Guglielmetti RJ. Organic photochromic <str<strong>on</strong>g>and</str<strong>on</strong>g> thermochromic compounds. New York: Plenum<br />

Press; 1999.<br />

[5] Dori<strong>on</strong> GH, Wiebe AF. <str<strong>on</strong>g>Photochromism</str<strong>on</strong>g>. New York: The Focal Press; 1970.<br />

[6] Dürr H, Bouas-Laurent H. <str<strong>on</strong>g>Photochromism</str<strong>on</strong>g>: molecules <str<strong>on</strong>g>and</str<strong>on</strong>g> systems. Amsterdam: Elsevier; 2003.<br />

[7] Yao JN, Hashimoto K, Fujishima A. Nature 1992;355:624.<br />

[8] Kikuchi E, Hirota N, Fujishima A, Itoh K, Murabayashi M. J Electroanal Chem 1995;381:15.<br />

[9] Bange K. Solar Energy Maer Solar Cells 1999;58:1.<br />

[10] Chalkley Jr L. Chem Rev 1929;6:217.<br />

[11] Fritsche M. Comp Rend 1867;69:1035.<br />

[12] ter Meer E. Ann Chem 1876;181:1.<br />

[13] Orr JB. Chem News 1881;44:12.<br />

[14] Phips<strong>on</strong> TL. Chem News 1881;43:283.<br />

[15] Araujo R. Mol Cryst Liq Cryst 1997;297:1.<br />

[16] Brown BH, Shaw WG. Rev Pure Appl Chem 1961;11:1.<br />

[17] Cohen SD, Newman GA. J Photogr Sci 1967;15:290.<br />

[18] Exelby R, Gr<str<strong>on</strong>g>in</str<strong>on</strong>g>ter R. Chem Rev 1965;65:247–60.<br />

[19] Deb SK, Chopoorian JA. J Appl Phys 1966;37:4818.<br />

[20] Deb SK. Proc Roy Soc A 1968;304:211.<br />

[21] Deb SK. Appl Opt Suppl 1969;3:192.<br />

[22] Deb SK. Philos Mag 1973;27:801.<br />

[23] Bech<str<strong>on</strong>g>in</str<strong>on</strong>g>ger C, Wirth E, Leiderer P. Appl Phys Lett 1996;68:2834.<br />

[24] Bech<str<strong>on</strong>g>in</str<strong>on</strong>g>ger C, Burdis MS, Zhang JG. Solid State Commun 1997;101:753.<br />

[25] Colt<strong>on</strong> RJ, Guzman AM, Rabalais JW. Acc Chem Res 1978;11:170.<br />

[26] Fleisch TH, Zajac GW, Schre<str<strong>on</strong>g>in</str<strong>on</strong>g>er JO, Ma<str<strong>on</strong>g>in</str<strong>on</strong>g>s GJ. Appl Surf Sci 1986;26:488.<br />

[27] Gómez-Romero P, Casañ-Pastor N. J Phys Chem 1996;100:12448.<br />

[28] He T, Ma Y, Cao YA, Jiang P, Zhang XT, Yang WS, et al. Langmuir 2001;17:8024.<br />

[29] He T, Ma Y, Cao YA, Hu XL, Liu HM, Zhang GJ, et al. J Phys Chem B 2002;106:12670.<br />

[30] He T, Yao JN. J Photochem Photobiol C 2003;4:125.<br />

[31] He T, Yao JN. Res Chem Intermed 2004;30:459.<br />

[32] Highfield JG, Grätzel M. J Phys Chem 1988;92:464.<br />

[33] Matsuoka M, Ono K. Appl Phys Lett 1988;53:1393.<br />

[34] Santato C, Ulmann M, Augustynski J. Adv Mater 2001;13:511.<br />

[35] Yamase T. Chem Rev 1998;98:307.<br />

[36] Yang YA, Cao YW, Chen P, Loo BH, Yao JN. J Phys Chem Solids 1998;59:1667.<br />

[37] Yao JN, Loo BH, Hashimoto K, Fujishima A. Ber Bunsenges Phys Chem 1992;96:699.<br />

[38] Yao JN, Yang YA, Loo BH. J Phys Chem B 1998;102:1856.<br />

[39] Clemente-León M, Cor<strong>on</strong>ado E, Galán-Mascarós JR, Giménez-Saiz C, Gomez-García CJ, Fabre JM,<br />

et al. J Solid State Chem 2002;168:616.<br />

[40] Eckert H, Ward M. (Associate Editors) C<strong>on</strong>troll<str<strong>on</strong>g>in</str<strong>on</strong>g>g the length scale through ‘‘soft’’ chemistry: From<br />

organic–<str<strong>on</strong>g>in</str<strong>on</strong>g>organic nano<str<strong>on</strong>g>composite</str<strong>on</strong>g>s to functi<strong>on</strong>al <str<strong>on</strong>g>materials</str<strong>on</strong>g>. Chem Mater 2001;13:No. 10, thematic issue.<br />

[41] Jude<str<strong>on</strong>g>in</str<strong>on</strong>g>ste<str<strong>on</strong>g>in</str<strong>on</strong>g> P, Schmidt H. J Mater Chem 1996;6:511.<br />

[42] Rajeshwar K, de Tacc<strong>on</strong>i NR, Chenthamarakshan CR. Chem Mater 2001;13:2765.<br />

[43] Chen ZH, Yang YA, Qiu JB, Yao JN. Langmuir 2000;16:722.<br />

[44] Feng W, Zhang TR, Liu Y, Wei L, Lu R, Li TJ, et al. J Mater Res 2002;17:133.<br />

[45] Jude<str<strong>on</strong>g>in</str<strong>on</strong>g>ste<str<strong>on</strong>g>in</str<strong>on</strong>g> P, Oliveira PW, Krug H, Schmidt H. Adv Mater Opt Electr<strong>on</strong> 1997;7:123.<br />

[46] Ke HH, Shao K, He T, Zhang GJ, Yang WS, Yao JN. J Mater Sci Lett 2002;21:1257.<br />

[47] Moriguchi I, Fendler JH. Chem Mater 1998;10:2205.<br />

[48] Sanchez C, Lebeau B, Ribot F, In M. J Sol–Gel Sci Technol 2000;19:31.<br />

[49] Avellaneda CO, Bulhões LOS. Solid State I<strong>on</strong>ics 2003;165:117.


T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879 873<br />

[50] Elder SH, Cot FM, Su Y, Heald SM, Tyryshk<str<strong>on</strong>g>in</str<strong>on</strong>g> AM, Bowman MK, et al. J Am Chem Soc 2000;122:5138.<br />

[51] Xie RG, Zhuang JQ, Wang LL, Yang WS, Wang DJ, Li TJ, et al. Chem J Ch<str<strong>on</strong>g>in</str<strong>on</strong>g> Univ 2003;24:2086.<br />

[52] Yao JN, Loo BH, Hashimoto K, Fujishima A. Ber Bunsenges Phys Chem 1991;95:554.<br />

[53] Quevedo-Lopez MA, Ramirez-B<strong>on</strong> R, Orozco-Teran RA, Mendoza-G<strong>on</strong>zalez O. Th<str<strong>on</strong>g>in</str<strong>on</strong>g> Solid Films 1999;<br />

343/344:202.<br />

[54] Quevedo-Lopez MA, Reidy RF, Orozco-Teran RA, Mendoza-G<strong>on</strong>zalez O, Ramirez-B<strong>on</strong> R. J Mater Sci<br />

Mater Electr<strong>on</strong> 2000;11:151.<br />

[55] Naoi K, Ohko Y, Tatsuma T. J Am Chem Soc 2004;126:3664.<br />

[56] Naoi K, Ohko Y, Tatsuma T. Chem Commun 2005:1288.<br />

[57] Ohko Y, Tatsuma T, Fujii T, Naoi K, Niwa C, Kubota Y, et al. Nature Mater 2003;2:29.<br />

[58] Chen ZH, Yao JN. Acta Phys Chim S<str<strong>on</strong>g>in</str<strong>on</strong>g> 1999;15:865.<br />

[59] Chen ZH, Ma Y, Yao JN. Th<str<strong>on</strong>g>in</str<strong>on</strong>g> Solid Films 2001;384:160.<br />

[60] Mo YG, Dill<strong>on</strong> RO, Snyder PG, Tiwald TE. Th<str<strong>on</strong>g>in</str<strong>on</strong>g> Solid Films 1999;355/356:1.<br />

[61] Zhang GJ, He T, Ma Y, Chen ZH, Yang WS, Yao JN. Phys Chem Chem Phys 2003;5:2751.<br />

[62] Zhang GJ, Chen ZH, He T, Ke HH, Ma Y, Shao K, et al. J Phys Chem B 2004;108:6944.<br />

[63] Boilot JP, Chaput F, Gaco<str<strong>on</strong>g>in</str<strong>on</strong>g> T, Malier L, Canva M, Brun A, et al. CR Acad Sci Paris 1996;322:27.<br />

[64] Corriu RJP, Leclerq D. Angew Chem Int Ed Engl 1996;35:1420.<br />

[65] Komarnenl S. J Mater Chem 1992;2:1219.<br />

[66] Lebeau B, Sanchez C. Current Op<str<strong>on</strong>g>in</str<strong>on</strong>g> Solid State Mater Sci 1999;4:11.<br />

[67] Loy DA, Shea KJ. Chem Rev 1995;95:1431.<br />

[68] Z<str<strong>on</strong>g>in</str<strong>on</strong>g>k JI, Dunn B. In: Kle<str<strong>on</strong>g>in</str<strong>on</strong>g> LD, editor. Sol–gel optics: process<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> applicati<strong>on</strong>s. Dordrecht: Kluwer<br />

Academic Publishers; 1994. p. 303.<br />

[69] Faughnan BW, Cr<str<strong>on</strong>g>and</str<strong>on</strong>g>all RS, Heyman PM. RCA Rev 1975;36:177.<br />

[70] Faughnan BW, Cr<str<strong>on</strong>g>and</str<strong>on</strong>g>all RS. Electrochromic displays <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> WO3. In: Pankove JI, editor. Display<br />

devices. Topics <str<strong>on</strong>g>in</str<strong>on</strong>g> applied physics, vol. 40. Berl<str<strong>on</strong>g>in</str<strong>on</strong>g>: Spr<str<strong>on</strong>g>in</str<strong>on</strong>g>ger-Verlag; 1980. p. 181–211.<br />

[71] Schirmer OF, Wittwer V, Baur G, Br<str<strong>on</strong>g>and</str<strong>on</strong>g>t G. J Electrochem Soc 1977;124:749.<br />

[72] Bard AJ. Science 1980;207:139.<br />

[73] Rhoderick EH, Williams RH. Metal–semic<strong>on</strong>ductors c<strong>on</strong>tacts. 2nd ed. Oxford [Engl<str<strong>on</strong>g>and</str<strong>on</strong>g>]: Clared<strong>on</strong> Press;<br />

1988.<br />

[74] Yao JN, Loo BH. Solid State Commun 1998;105:479.<br />

[75] Yao JN. World Sci-Tech R&D 1998;20:121.<br />

[76] Yao JN, Yang YA. Prog Nat Sci 1999;9:153.<br />

[77] He T, Y<str<strong>on</strong>g>in</str<strong>on</strong>g> YH, Ma Y, Jiang P, Cao YA, Yao JN. Chem J Ch<str<strong>on</strong>g>in</str<strong>on</strong>g> Univ 2001;22:824.<br />

[78] He T, Ma Y, Cao YA, Yang WS, Yao JN. Phys Chem Chem Phys 2002;4:1637.<br />

[79] Bech<str<strong>on</strong>g>in</str<strong>on</strong>g>ger C, Herm<str<strong>on</strong>g>in</str<strong>on</strong>g>ghaus S, Leiderer P. Th<str<strong>on</strong>g>in</str<strong>on</strong>g> Solid Films 1994;239:156.<br />

[80] Fujii M, Kawai T, Nakamatsu H, Kawai S. J Chem Soc Chem Commun 1983;1428.<br />

[81] Kubo T, Nishikitani Y, Kuroda N, Matsuno M. Jpn J Appl Phys 1996;35:5361.<br />

[82] Shiyanovskaya I, Hepel M. J Electrochem Soc 1999;146:243.<br />

[83] Tennak<strong>on</strong>e K, Heperuma OA, B<str<strong>on</strong>g>and</str<strong>on</strong>g>ara JMS, Kiridena WCB. Semic<strong>on</strong>d Sci Technol 1992;7:423.<br />

[84] Bech<str<strong>on</strong>g>in</str<strong>on</strong>g>ger C, Oef<str<strong>on</strong>g>in</str<strong>on</strong>g>ger G, Herm<str<strong>on</strong>g>in</str<strong>on</strong>g>ghaus S, Leiderer P. J Appl Phys 1993;74:4527.<br />

[85] He T, Ma Y, Cao YA, Y<str<strong>on</strong>g>in</str<strong>on</strong>g> YH, Yang WS, Yao JN. Appl Surf Sci 2001;180:336.<br />

[86] Highfield JG, Pichat P. New J Chem 1989;13:61.<br />

[87] Bahnemann D, Hengle<str<strong>on</strong>g>in</str<strong>on</strong>g> A, Lilie J, Spanhel L. J Phys Chem 1984;88:709.<br />

[88] Bahnemann D, Hengle<str<strong>on</strong>g>in</str<strong>on</strong>g> A, Spanhel L. Faraday Discuss Chem Soc 1984;78:151.<br />

[89] Avudaithai M, Kutty TRN. Mater Res Bull 1988;23:1675.<br />

[90] Disdier J, Herrmann JM, Pichat P. J Chem Soc Faraday Trans I 1983;79:651.<br />

[91] Hengle<str<strong>on</strong>g>in</str<strong>on</strong>g> A. J Phys Chem 1982;86:2291.<br />

[92] Brus L. J Phys Chem 1986;90:2555.<br />

[93] Choi W, Term<str<strong>on</strong>g>in</str<strong>on</strong>g> A, Hoffman MR. J Phys Chem 1994;98:13669.<br />

[94] Dimitrijević NM, Savić D, Mićić OI, Nozik AJ. J Phys Chem 1984;88:4278.<br />

[95] Ohtani B, Okugawa Y, Nishimoto S, Kagiya T. J Phys Chem 1987;91:3550.<br />

[96] Sahyun MRV, Serp<strong>on</strong>e N. Langmuir 1997;13:5082.<br />

[97] Stathatos E, Lianos P. Langmuir 2000;16:2398.<br />

[98] He J, Ich<str<strong>on</strong>g>in</str<strong>on</strong>g>ose I, Fujikawa S, Kunitake T, Nakao A. Chem Commun 2002;1910.<br />

[99] Herrmann JM, Tahiri H, Ait-Ichou Y, Lassaletta G, G<strong>on</strong>zalez-Elipe AR, Fern<str<strong>on</strong>g>and</str<strong>on</strong>g>ez A. Appl Catal B 1997;<br />

13:219.


874 T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879<br />

[100] J<str<strong>on</strong>g>in</str<strong>on</strong>g> RC, Cao YW, Mirk<str<strong>on</strong>g>in</str<strong>on</strong>g> CA, Kelly KL, Schatz GC, Zheng JG. Science 2001;294:1901.<br />

[101] Mock JJ, Barbic M, Smith DR, Schultz DA, Schultz S. J Chem Phys 2002;116:6755.<br />

[102] Tian Y, Tatsuma T. Chem Commun 2004:1810.<br />

[103] Armistead WH, Stookey SD. Science 1964;144:150.<br />

[104] Engel CE. Photography for the scientist. L<strong>on</strong>d<strong>on</strong>: Academic Press; 1968.<br />

[105] Doremus RH. J Chem Phys 1965;42:414.<br />

[106] Faughnan BW, Cr<str<strong>on</strong>g>and</str<strong>on</strong>g>all RS. Appl Phys Lett 1977;31:834.<br />

[107] Hiruta Y, Kitao M, Yamada S. Jpn J Appl Phys 1984;23:1624.<br />

[108] D<strong>on</strong>nadieu A, Davazoglou D, Abdellaoui A. Th<str<strong>on</strong>g>in</str<strong>on</strong>g> Solid Films 1988;164:333.<br />

[109] Yosh<str<strong>on</strong>g>in</str<strong>on</strong>g>o T, Baba N, Yasuda K. Nipp<strong>on</strong> Kagaku Kaishi 1988;9:1525.<br />

[110] Ferr<strong>on</strong>i M, Guidi V, Com<str<strong>on</strong>g>in</str<strong>on</strong>g>i E, Sberveglieri G, Vomiero A, Della Mea G, et al. J Vac Sci Technol B 2003;<br />

21:1442.<br />

[111] Hoppmann G, Salje E. Opt Commun 1979;30:199.<br />

[112] Kitao M, Yamada S, Hiruta Y, Suzuki N, Urabe K. Appl Surf Sci 1988;33/34:812.<br />

[113] Salje E, Gehlig R, Viswanathan K. J Solid State Chem 1978;25:239.<br />

[114] Salje E, Carley AF, Roberts MW. J Solid State Chem 1979;29:237.<br />

[115] Yao JN. Sci Found Ch<str<strong>on</strong>g>in</str<strong>on</strong>g>a 1997;5:30.<br />

[116] Salje E, Hoppmann G. Philos Mag B 1981;43:105.<br />

[117] Granqvist CG. H<str<strong>on</strong>g>and</str<strong>on</strong>g>book of <str<strong>on</strong>g>in</str<strong>on</strong>g>organic electrochromic <str<strong>on</strong>g>materials</str<strong>on</strong>g>. Amsterdam: Elsevier; 1995.<br />

[118] M<strong>on</strong>k PMS, Bleazard S, Akhtar SP, Boutev<str<strong>on</strong>g>in</str<strong>on</strong>g> J. Phys Chem Chem Phys 2000;2:4415.<br />

[119] Mott NF. Adv Phys 1972;21:785.<br />

[120] Reichman B, Bard AJ. J Electrochem Soc 1979;126:583.<br />

[121] Yao JN, Loo BH, Fujishima A. Ber Bunsenges Phys Chem 1990;94:13.<br />

[122] Alcober C, Alvarez F, Bilmes SA, C<str<strong>on</strong>g>and</str<strong>on</strong>g>al RJ. J Mater Sci Lett 2002;21:501.<br />

[123] Chopoorian JA, Dori<strong>on</strong> GH, Model FS. J Inorg Nucl Chem 1966;28:83.<br />

[124] He T, Ma Y, Cao YA, Liu HM, Yang WS, Yao JN. J Colloids Interf Sci 2004;279:117.<br />

[125] He YP, Wu ZY, Fu LM, Li CR, Miao YM, Cao L, et al. Chem Mater 2003;15:4039.<br />

[126] Ohtani B, Atsumi T, Nishimoto S, Kagiya T. Chem Lett 1988:295.<br />

[127] Palgrave RG, Park<str<strong>on</strong>g>in</str<strong>on</strong>g> IP. J Mater Chem 2004;14:2864.<br />

[128] Tatsuma T, Saitoh S, Ngaotrakanwiwat P, Ohko Y, Fujishima A. Langmuir 2002;18:7777.<br />

[129] Ohko Y, Saitoh S, Tatsuma T, Fujishima A. Electrochem 2002;70:460.<br />

[130] Hagfeldt A, Grätzel M. Chem Rev 1995;95:49.<br />

[131] Kamat PV. Chem Rev 1993;93:267.<br />

[132] Hitchman ML. J Electroanal Chem 1977;85:135.<br />

[133] Nenadović MT, Rajh T, Mićić OI, Nozik AJ. J Phys Chem 1984;88:5827.<br />

[134] Bedja I, Hotch<str<strong>on</strong>g>and</str<strong>on</strong>g>ani S, Kamat PV. J Phys Chem 1993;97:11064.<br />

[135] Bech<str<strong>on</strong>g>in</str<strong>on</strong>g>ger C, Ferrere S, Zaban A, Sprague J, Gregg BA. Nature 1996;383(2):608.<br />

[136] Kullman L, Azens A, Granqvist CG. Solar Energy Mater Solar Cells 2000;61:189.<br />

[137] Wang ZC, Hu XF, Ulf H. J Mater Chem 2000;10:2396.<br />

[138] Pichat P, Mozzanega M, Hoang-Van C. J Phys Chem 1988;92:467.<br />

[139] Eibl S, Gates BC, Knöz<str<strong>on</strong>g>in</str<strong>on</strong>g>ger H. Langmuir 2001;17:107.<br />

[140] Marcì G, Palmisano L, Sclafani A, Venezia AM, Campostr<str<strong>on</strong>g>in</str<strong>on</strong>g>i R, Carturan G, et al. J Chem Soc Faraday<br />

Trans 1996;92:819.<br />

[141] Papp J, Soled S, Dwight K, Wold A. Chem Mater 1994;6:496.<br />

[142] Vermaire DC, van Berge PC. J Catal 1989;116:309.<br />

[143] Cahen D, Hodes G, Grätzel M, Guillemoles JF, Riess I. J Phys Chem B 2000;104:2053.<br />

[144] M<strong>on</strong>k PMS, Duffy JA, Ingram MD. Electrochim Acta 1993;38:2759.<br />

[145] Rao KS, Madhuri KV, Uthanna S, Hussa<str<strong>on</strong>g>in</str<strong>on</strong>g> OM, Julien C. Mater Sci Eng B 2003;100:79.<br />

[146] Elder SH, Su Y, Gao Y, Heald SM. Nanocrystall<str<strong>on</strong>g>in</str<strong>on</strong>g>e heterojuncti<strong>on</strong> <str<strong>on</strong>g>materials</str<strong>on</strong>g>. U.S. Patent 6,592,842, July<br />

15, 2003.<br />

[147] Haus JW, Shou HS, H<strong>on</strong>ma I, Komiyama H. Phys Rev B 1993;47:1359.<br />

[148] Kortan AR, Hull R, Opila RL, Bawendi MG, Steigerwald ML, Carroll PJ, et al. J Am Chem Soc 1990;112:<br />

1327.<br />

[149] Nozik AJ, Memm<str<strong>on</strong>g>in</str<strong>on</strong>g>g R. J Phys Chem 1996;100:13061.<br />

[150] Vigil O, Vasco E, Zelaya-Angel O. Mater Lett 1996;29:107.<br />

[151] Kamat PV, Dimitrijevic NM. Solar Energy 1990;44:83.


T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879 875<br />

[152] Sant PA, Kamat PV. Phys Chem Chem Phys 2002;4:198.<br />

[153] McTaggart FK, Bear J. J Appl Chem 1955;5:643.<br />

[154] Matsumoto T, Murakami Y, Takasu Y. Chem Lett 2000:348.<br />

[155] Clark W, Broadhead P. J Phys C 1970;3:1047.<br />

[156] Grätzel M, Howe RF. J Phys Chem 1990;94:2566.<br />

[157] Karv<str<strong>on</strong>g>in</str<strong>on</strong>g>en SM. Ind Eng Chem Res 2003;42:1035.<br />

[158] Makovskii FA. Sov Phys Solid State 1965;7:271.<br />

[159] Remy C. Process for the preparati<strong>on</strong> of photochromic titanium oxide, compound obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

compositi<strong>on</strong> compris<str<strong>on</strong>g>in</str<strong>on</strong>g>g it. U.S. Patent 6,224,884, May, 2001.<br />

[160] Weyl WA, Förl<str<strong>on</strong>g>and</str<strong>on</strong>g> T. Ind Eng Chem 1950;42:257.<br />

[161] Williams<strong>on</strong> WO. Nature 1937;140:238.<br />

[162] Williams<strong>on</strong> WO. Nature 1939;143:279.<br />

[163] Williams<strong>on</strong> WO. J M<str<strong>on</strong>g>in</str<strong>on</strong>g>er Soc L<strong>on</strong>d<strong>on</strong> 1940;25:513.<br />

[164] Ohno K, Kumagai S, Suzuki F, Tsujita N. Photochromic flesh-colored pigment <str<strong>on</strong>g>and</str<strong>on</strong>g> process for produc<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

the same. U.S. Patent 5,176,905, January 5, 1993.<br />

[165] Johns<strong>on</strong> J. J Am Ceram Soc 1953;36:97.<br />

[166] Weyl W. Ceram Age 1952;602:27.<br />

[167] Mart<str<strong>on</strong>g>in</str<strong>on</strong>g> ST, Morris<strong>on</strong> CL, Hoffmann MR. J Phys Chem 1994;98:13695.<br />

[168] Mart<str<strong>on</strong>g>in</str<strong>on</strong>g> ST, Herrmann H, Hoffmann MR. J Chem Soc Faraday Trans 1994;90:3315.<br />

[169] Berney RL, Cowan DL. Phys Rev B 1981;23:37.<br />

[170] Faughnan BW. Phys Rev B 1971;4:3623.<br />

[171] Multani M. Mater Res Bull 1984;19:25.<br />

[172] Ensign TC, Stokowski SE. Phys Rev B 1970;1:2799.<br />

[173] Faughnan BW, Kiss ZJ. Phys Rev Lett 1968;21:1331.<br />

[174] Huang MH, Xia JY, Xi YM, D<str<strong>on</strong>g>in</str<strong>on</strong>g>g CX. J Eur Ceram Soc 1997;17:1761.<br />

[175] Huang MH, Xia JY, Hu ZY, Huang JQ, D<str<strong>on</strong>g>in</str<strong>on</strong>g>g CX. J Ch<str<strong>on</strong>g>in</str<strong>on</strong>g> Ceram Soc 1997;25:25.<br />

[176] Koidl P, Blazey KW, Berl<str<strong>on</strong>g>in</str<strong>on</strong>g>ger W, Müller KA. Phys Rev B 1976;14:2703.<br />

[177] Kool ThW, Glasbeek M. J Phys C<strong>on</strong>dens Matter 1993;5:361.<br />

[178] Müller KA, v<strong>on</strong> Waldkirch Th, Berl<str<strong>on</strong>g>in</str<strong>on</strong>g>ger W, Faughnan BW. Solid State Commun 1971;9:1097.<br />

[179] Schirmer OF, Berl<str<strong>on</strong>g>in</str<strong>on</strong>g>ger W, Müller KA. Solid State Commun 1975;16:1289.<br />

[180] Müller KA, Berl<str<strong>on</strong>g>in</str<strong>on</strong>g>ger W, Rub<str<strong>on</strong>g>in</str<strong>on</strong>g>s RS. Phys Rev 1969;186:361.<br />

[181] Blazey KW, Schirmer OF, Berl<str<strong>on</strong>g>in</str<strong>on</strong>g>ger W, Müller KA. Solid State Commun 1975;16:589.<br />

[182] Mor<str<strong>on</strong>g>in</str<strong>on</strong>g> FJ, Oliver JR. Phys Rev B 1973;8:5847.<br />

[183] Müller KA, Aguilar M, Berl<str<strong>on</strong>g>in</str<strong>on</strong>g>ger W, Blazey KW. J Phys C<strong>on</strong>dens Mater 1990;2:2735.<br />

[184] MacNev<str<strong>on</strong>g>in</str<strong>on</strong>g> WM, Ogle PR. J Am Chem Soc 1954;76:3846.<br />

[185] Tanaka Y. Bull Chem Soc Jap 1941;16:455.<br />

[186] Bochkova TM, Volnyanskiĭ MD, Volnyanskiĭ DM, Shchet<str<strong>on</strong>g>in</str<strong>on</strong>g>k<str<strong>on</strong>g>in</str<strong>on</strong>g> VS. Phys Solid State 2003;45:244.<br />

[187] Ballmann W. Krist Tech 1980;15:367.<br />

[188] Van Loo W. Phys Stat Sol A 1975;27:565.<br />

[189] Van Loo W. Phys Stat Sol A 1975;28:227.<br />

[190] Kobayashi M, Usuki Y, Ishii M, Yazawa T, Hara K, Tanaka M, et al. Nucl Instr Meth A 1997;399:261.<br />

[191] Nikl M, Nitsch K, Hybler J, Chval J, Reiche P. Phys Stat Sol B 1996;196:K7.<br />

[192] Burachas S, Beloglovski S, Makov I, Saveliev Y, Ippolitov M, Manko V, et al. Nucl Instr Meth A 2003;<br />

505:656.<br />

[193] B<strong>on</strong>dar VG, Burachas SF, Katrunov KA, Mart<str<strong>on</strong>g>in</str<strong>on</strong>g>ov VP, Ryzhikov VD, Manko VI, et al. Nucl Instr Meth<br />

A 1998;411:376.<br />

[194] Baccaro S, Bohacek P, Borgia B, Cecilia A, Daf<str<strong>on</strong>g>in</str<strong>on</strong>g>ei I, Diemoz M, et al. Phys Stat Sol A 1997;160:R5.<br />

[195] Nagornaya L, Apanasenko A, Burachas S, Ryzhikov V, Tupitsyna I, Gr<str<strong>on</strong>g>in</str<strong>on</strong>g>yov B. IEEE Trans Nucl Sci<br />

2002;49:297.<br />

[196] Baccaro S, Bohacek P, Borgia B, Cecilia A, Croci S, Daf<str<strong>on</strong>g>in</str<strong>on</strong>g>ei I, et al. Phys Stat Sol A 1997;164:R9.<br />

[197] Lecoq P, Daf<str<strong>on</strong>g>in</str<strong>on</strong>g>ei I, Auffray E, Schneegans M, Korzhik MV, Missevitch OV, et al. Nucl Instr <str<strong>on</strong>g>and</str<strong>on</strong>g> Meth A<br />

1995;365:291.<br />

[198] Baccaro S, Bohacek P, Borgia B, Cecilia A, Ishii M, Kobayashi M, et al. Proceed<str<strong>on</strong>g>in</str<strong>on</strong>g>gs of <str<strong>on</strong>g>in</str<strong>on</strong>g>ternati<strong>on</strong>al<br />

c<strong>on</strong>ference <strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>organic sc<str<strong>on</strong>g>in</str<strong>on</strong>g>tillators <str<strong>on</strong>g>and</str<strong>on</strong>g> their applicati<strong>on</strong>s (SCINT’97). Shanghai, CAS; 1997. p. 203–6.<br />

[199] Sakka S. J Am Ceram Soc 1969;52:69.<br />

[200] Cr<strong>on</strong>emeyer DC, Beaubien NW. J Appl Phys 1964;35:1779.


876 T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879<br />

[201] Kobayashi K, Matsushima S, Okada G. Chem Lett 1992:515.<br />

[202] Kobayashi K, Maeda T, Matsushima S, Okada G. Jpn J Appl Phys 1992;31:L1079.<br />

[203] Kobayashi K, Udaka H, Matsushima S, Okada G. Jpn J Appl Phys 1993;32:3854.<br />

[204] Kobayashi K, Kumegawa K, Matsushima S, Okada G. Denki Kagaku 1995;63:527.<br />

[205] Weakliem HA. J Chem Phys 1962;36:2117.<br />

[206] Ieda M, Sawa G, Kato S. J Appl Phys 1971;42:3737.<br />

[207] Tutov EA, Baev AA. Appl Surf Sci 1995;90:303.<br />

[208] Tutov EA, Kukuev VI, Baev AA, Borm<strong>on</strong>tov EN, Domashevskaya ÉP. Sov Phys Tech Phys 1995;40:697<br />

[Zh Tekh Fiz 1995;65:117].<br />

[209] Holl<str<strong>on</strong>g>in</str<strong>on</strong>g>ger G, Duc TM, Deneuville A. Phys Rev Lett 1976;37:1564.<br />

[210] Kukuev VI, Tutov EA, Domashevskaya ÉP, Yanovskaya MI, Obv<str<strong>on</strong>g>in</str<strong>on</strong>g>tseva IE, Venevtsev YuN. Sov Phys<br />

Tech Phys 1987;32:1176 [Zh Tekh Fiz 1987;57:1957].<br />

[211] Gavrilyuk AI, Sekush<str<strong>on</strong>g>in</str<strong>on</strong>g> NA. Electrochromism <str<strong>on</strong>g>and</str<strong>on</strong>g> photochromism <str<strong>on</strong>g>in</str<strong>on</strong>g> tungsten <str<strong>on</strong>g>and</str<strong>on</strong>g> molybdenum<br />

oxides. Len<str<strong>on</strong>g>in</str<strong>on</strong>g>grad: Nauka; 1990.<br />

[212] L<str<strong>on</strong>g>in</str<strong>on</strong>g>dström H, Rensmo H, L<str<strong>on</strong>g>in</str<strong>on</strong>g>dquist S, Hagfeldt A, Henn<str<strong>on</strong>g>in</str<strong>on</strong>g>gss<strong>on</strong> A, Södergren S, et al. Th<str<strong>on</strong>g>in</str<strong>on</strong>g> Solid Films<br />

1998;323:141.<br />

[213] Orel B, Sˇtangar UL, Hutch<str<strong>on</strong>g>in</str<strong>on</strong>g>s MG, Kalcher K. J N<strong>on</strong>Cryst Solids 1994;175:251.<br />

[214] Sˇtangar UL, Orel B, Régis A, Colomban PH. J Sol–Gel Sci Technol 1997;8:965.<br />

[215] Tatsumisago M, H<strong>on</strong>jo H, Sakai Y, M<str<strong>on</strong>g>in</str<strong>on</strong>g>ami T. Solid State I<strong>on</strong>ics 1994;74:105.<br />

[216] Kostecki R, Richards<strong>on</strong> T, McLarn<strong>on</strong> F. J Electrochem Soc 1998;145:2380.<br />

[217] Corrigan DA, Knight SL. J Electrochem Soc 1989;136:613.<br />

[218] Torimoto T, Fox III RJ, Fox MA. J Electrochem Soc 1996;143:3712.<br />

[219] DeBerry DW, Viehbeck A. J Electrochem Soc 1983;130:249.<br />

[220] Nishizawa M, Kuwabata S, Y<strong>on</strong>eyama H. J Electrochem Soc 1996;143:3462.<br />

[221] Viehbeck A, DeBerry DW. J Electrochem Soc 1985;132:1369.<br />

[222] Ziegler JP, Lesniewski EK, Hemm<str<strong>on</strong>g>in</str<strong>on</strong>g>ger JC. J Appl Phys 1987;61:3099.<br />

[223] Ziegler JP, Hemm<str<strong>on</strong>g>in</str<strong>on</strong>g>ger JC. J Electrochem Soc 1987;134:358.<br />

[224] Nakane K, Yamashita T, Iwakura K, Suzuki F. J Appl Polym Sci 1999;74:133.<br />

[225] Baker LC. In: Kirschnerr S, editor. Advances <str<strong>on</strong>g>in</str<strong>on</strong>g> the chemistry of coord<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> compounds. New York:<br />

Macmillan; 1961. p. 604.<br />

[226] Gómez-Romero P, Lira-Cantú M. Adv Mater 1997;9:144.<br />

[227] Papac<strong>on</strong>stant<str<strong>on</strong>g>in</str<strong>on</strong>g>ou E. Chem Soc Rev 1989;18:1.<br />

[228] Fischer S, Kurad D, Mehmke J, Tytko KH. B<strong>on</strong>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> charge distributi<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> polyoxometalates: a b<strong>on</strong>d<br />

valence approach. In: M<str<strong>on</strong>g>in</str<strong>on</strong>g>gos DMP, editor. Structure <str<strong>on</strong>g>and</str<strong>on</strong>g> b<strong>on</strong>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g, vol. 93. Berl<str<strong>on</strong>g>in</str<strong>on</strong>g>: Spr<str<strong>on</strong>g>in</str<strong>on</strong>g>ger; 1999.<br />

[229] Katsoulis DE. Chem Rev 1998;98:359.<br />

[230] Pope MT. Heteropoly <str<strong>on</strong>g>and</str<strong>on</strong>g> isopoly oxometalatates. New York: Spr<str<strong>on</strong>g>in</str<strong>on</strong>g>ger-Verlag; 1983.<br />

[231] Pope MT, Müller A. Polyoxometalates: from plat<strong>on</strong>ic solid to anti-retroviral activity. Dordrecht: Kluwer<br />

Academic Publishers; 1994.<br />

[232] Varga Jr GM, Papac<strong>on</strong>stant<str<strong>on</strong>g>in</str<strong>on</strong>g>ou E, Pope MT. Inorg Chem 1970;9:662.<br />

[233] Eguchi K, Toyozawa Y, Yamazoe N, Seiyama T. J Catal 1983;83:32.<br />

[234] Taketa H, Katsuki S, Eguchi K, Seiyama T, Yamazoe N. J Phys Chem 1986;90:2959.<br />

[235] Barrows JN, James<strong>on</strong> GB, Pope MT. J Am Chem Soc 1985;107:1771.<br />

[236] Cheng XS, Su YC, Cheng CX. Acta Chim S<str<strong>on</strong>g>in</str<strong>on</strong>g> 2000;58:277.<br />

[237] Ermolenko LP, Delaire JA, Giannoti CJ. J Chem Soc Perk<str<strong>on</strong>g>in</str<strong>on</strong>g> Trans II 1997;2:25.<br />

[238] Hill CL, Bouchard DA. J Am Chem Soc 1985;107:5148.<br />

[239] Prosser-McCartha CM, Kadkhodayan M, Williams<strong>on</strong> M, Bouchard DA, Hill CL. J Chem Soc Chem<br />

Commun 1986:1747.<br />

[240] Renneke RF, Hill CL. J Am Chem Soc 1986;108:3528.<br />

[241] Renneke RF, Hill CL. J Am Chem Soc 1988;110:5461.<br />

[242] We<str<strong>on</strong>g>in</str<strong>on</strong>g>stock IA. Chem Rev 1998;98:113.<br />

[243] Yamase T, Usami T. J Chem Soc Dalt<strong>on</strong> Trans 1988:183.<br />

[244] Br<str<strong>on</strong>g>in</str<strong>on</strong>g>ker CJ, Scherrer GW. Sol–gel science, the physics <str<strong>on</strong>g>and</str<strong>on</strong>g> chemistry of sol–gel process<str<strong>on</strong>g>in</str<strong>on</strong>g>g. San Diego:<br />

Academic Press; 1990.<br />

[245] He T, Ma Y, Cao YA, Yang WS, Yao JN. J N<strong>on</strong>-Cryst Solids 2003;315:7.<br />

[246] Lev O, Tsi<strong>on</strong>sky M, Rab<str<strong>on</strong>g>in</str<strong>on</strong>g>ovich L, Giezer V, Sampath S, Pankratov I, et al. Anal Chem 1995;67:A22.<br />

[247] Sanchez C, Ribot F. New J Chem 1994;18:1007.


T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879 877<br />

[248] Levy D. Chem Mater 1997;9:2666.<br />

[249] Clemente-León M, Agricole B, M<str<strong>on</strong>g>in</str<strong>on</strong>g>gotaud C, Gómez-García CJ, Cor<strong>on</strong>ado E, Delhaes P. Angew Chem Int<br />

Ed Engl 1997;36:1114.<br />

[250] Clemente-León M, Agricole B, M<str<strong>on</strong>g>in</str<strong>on</strong>g>gotaud C, Gómez-García CJ, Cor<strong>on</strong>ado E, Delhaes P. Langmuir 1997;<br />

13:2340.<br />

[251] Kurth DG, Lehmann P, Volkmer D. Chem Eur J 2000;6:385.<br />

[252] Jude<str<strong>on</strong>g>in</str<strong>on</strong>g>ste<str<strong>on</strong>g>in</str<strong>on</strong>g> P. Chem Mater 1992;4:4.<br />

[253] Attanasio D, B<strong>on</strong>amico M, Fares V, Imperatori P, Suber L. J Chem Soc Dalt<strong>on</strong> Trans 1990:3221.<br />

[254] Attanasio D, B<strong>on</strong>amico M, Fares V, Suber L. J Chem Soc Dalt<strong>on</strong> Trans 1992:2523.<br />

[255] Attanasio D, Bachechi F. Adv Mater 1994;6:145.<br />

[256] Bi LH, Wang EB, Xu L, Huang RD. Inorg Chim Acta 2000;305:163.<br />

[257] Bi LH, Hussa<str<strong>on</strong>g>in</str<strong>on</strong>g> F, Kortz U, Sadakane M, Dickman MH. Chem Commun 2004:1420.<br />

[258] Gamelas JAF, Cavaleiro AMV, Gomes ED, Belsley M, Herdtweck E. Polyhedr<strong>on</strong> 2002;21:2537.<br />

[259] J<str<strong>on</strong>g>in</str<strong>on</strong>g> SR, Yao LF, Chen YX. Ch<str<strong>on</strong>g>in</str<strong>on</strong>g> J Inorg Chem 2001;17:289.<br />

[260] J<str<strong>on</strong>g>in</str<strong>on</strong>g> SR, Zhang LM, Liu SZ, Zhao WF. J Wuhan Univ Technol Mater Sci Ed 2004;19:21.<br />

[261] Ku ZJ, Liu SZ, Wang QR, Wang Z, Chen JY, Cao ZT. Hubei Daxue Xuebao 1998;20:157.<br />

[262] Shao K, Ma Y, Chen ZH, Zhang XT, He T, Yao JN, et al. Acta Chim S<str<strong>on</strong>g>in</str<strong>on</strong>g> 2001;59:1335.<br />

[263] Zhou YS, Wang EB, Peng J, Liu J, Hu CW, Huang RD, et al. Polyhedr<strong>on</strong> 1999;18:1419.<br />

[264] Feng W, Zhang TR, Liu Y, Lu R, Guan C, Zhao YY, et al. Mater Chem Phys 2002;77:294.<br />

[265] Feng W, Zhang TR, Liu J, Lu R, Zhao YY, Yao JN. J Mater Res 2003;18:709.<br />

[266] Yano S, Kurita K, Iwata K, Furukawa T, Kodomari M. Polymer 2003;44:3515.<br />

[267] Zhang TR, Feng W, Bao CY, Lu R, Zhang XT, Li TJ, et al. J Mater Res 2001;16:2256.<br />

[268] Zhang TR, Feng W, Fu YQ, Lu R, Bao CY, Zhang XT, et al. J Mater Chem 2002;12:1453.<br />

[269] Liu SZ, Ku ZJ, Wang Z, Chen JY. Ch<str<strong>on</strong>g>in</str<strong>on</strong>g> J Inorg Chem 1999;15:263.<br />

[270] Niu JY, You XZ, Duan CY, Fun HK, Zhou ZY. Inorg Chem 1996;35:4211.<br />

[271] Chemla DS, Oudar JL. Phys Rev B 1975;12:4534.<br />

[272] Zyss J. J Chem Phys 1979;71:909.<br />

[273] Yamase T, Ikawa T. Bull Chem Soc Jpn 1977;50:746.<br />

[274] Zhang GJ, Ke HH, He T, Xiao DB, Chen ZH, Yang WS, et al. J Mater Res 2004;19:496.<br />

[275] Yamase T, Ikawa T, Kokado H, Inoue E. Chem Lett 1973:615.<br />

[276] Chen ZH, Loo BH, Ma Y, Cao YW, Ibrahim A, Yao JN. Chem Phys Chem 2004;5:1020.<br />

[277] Chen ZH, Loo BH, Ma Y, Cao YW, He T, Yang WS, et al. Mater Res Bull 2004;39:1167.<br />

[278] Bi LH, X<str<strong>on</strong>g>in</str<strong>on</strong>g> MH, Wang EB, Huang RD. Chem J Ch<str<strong>on</strong>g>in</str<strong>on</strong>g> Univ 2001;22:883.<br />

[279] Niu JY, You XZ, Fun HK, Zhou ZY, Yip BC. Polyhedr<strong>on</strong> 1996;15:1003.<br />

[280] Liu SX, Wang CM, Li DH, Su ZM, Wang EB, Hu NH, et al. Acta Chim S<str<strong>on</strong>g>in</str<strong>on</strong>g> 2004;62:1305.<br />

[281] Roman P, Luque A, Aranzabe A, Gutierrezzorrilia JM. Polyhedr<strong>on</strong> 1992;11:2027.<br />

[282] Rhule JT, Hill CL, Judd DA, Sch<str<strong>on</strong>g>in</str<strong>on</strong>g>azi RF. Chem Rev 1998;98:327.<br />

[283] Crans DC, Mahroof-Tahir M, Anders<strong>on</strong> OP, Miller MM. Inorg Chem 1994;33:5586.<br />

[284] Crans DC. Comment Inorg Chem 1994;16:1.<br />

[285] Inoue M, Yamase T. Bull Chem Soc Jpn 1996;69:2863.<br />

[286] Liu JH, Peng J, Wang EB, Bi LH, Guo SR. J Mol Struct 2000;525:71.<br />

[287] Wang RY, Liu L, Jia DZ, Luo JM, Fan ZT. Chem J Ch<str<strong>on</strong>g>in</str<strong>on</strong>g> Univ 2004;25:2208.<br />

[288] X<str<strong>on</strong>g>in</str<strong>on</strong>g> FB, Pope MT. J Am Chem Soc 1996;118:7731.<br />

[289] Yamase T, Inoue M, Naruke H, Fukaya K. Chem Lett 1999:563.<br />

[290] Bi LH, He QZ, Jia Q, Wang EB. J Mol Struct 2001;597:83.<br />

[291] Han ZB, Wang EB, Luan GY, Li YG, Zhang H, Duan YB, et al. J Mater Chem 2002;12:1169.<br />

[292] Cheng XS, Su YC, Guan HM. Acta Chim S<str<strong>on</strong>g>in</str<strong>on</strong>g> 2000;58:1413.<br />

[293] Williams<strong>on</strong> M, Bouchard DA, Hill CL. Inorg Chem 1987;26:1436.<br />

[294] Hill CL, Bouchard DA, Kadkhodayan M, Williams<strong>on</strong> M, Schmidt JA, Hil<str<strong>on</strong>g>in</str<strong>on</strong>g>ski EF. J Am Chem Soc 1988;<br />

110:5471.<br />

[295] Zhang H, Duan LY, Lan Y, Wang EB, Hu CW. Inorg Chem 2003;42:8053.<br />

[296] Decher G, H<strong>on</strong>g JD, Schmitt J. Th<str<strong>on</strong>g>in</str<strong>on</strong>g> Solid Films 1992;210/211:831.<br />

[297] Decher G. In: Sauvage JP, Hosse<str<strong>on</strong>g>in</str<strong>on</strong>g>i MW, editors. Comprehensive supramolecular chemistry. Templat<str<strong>on</strong>g>in</str<strong>on</strong>g>g,<br />

self-assembly <str<strong>on</strong>g>and</str<strong>on</strong>g> self-organizati<strong>on</strong>, vol. 9. Oxford: Pergam<strong>on</strong> Press; 1996. p. 507.<br />

[298] Decher G, Schlenoff JB. Multilayer th<str<strong>on</strong>g>in</str<strong>on</strong>g> films: sequential assembly of nano<str<strong>on</strong>g>composite</str<strong>on</strong>g> <str<strong>on</strong>g>materials</str<strong>on</strong>g>.<br />

We<str<strong>on</strong>g>in</str<strong>on</strong>g>heim: Wiley-VCH; 2003.


878 T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879<br />

[299] Chen ZH, Ma Y, Yao JN. Acta Phys Chim S<str<strong>on</strong>g>in</str<strong>on</strong>g> 2000;16:1057.<br />

[300] Chen ZH, Qiu JB, Yang YA, Yao JN. Huaxue T<strong>on</strong>gbao 2000;11:33.<br />

[301] Chen ZH, Ma Y, He T, Xie RM, Shao K, Yang WS, et al. New J Chem 2002;26:621.<br />

[302] Chen ZH, Liu B, Yao JN. Photograph Sci Photochem 2000;18:198.<br />

[303] Chen ZH, Ma Y, Zhang XT, Liu B, Yao JN. J Colloid Interf Sci 2001;240:487.<br />

[304] Wang KZ, Gao LH. Mater Res Bull 2002;37:2447.<br />

[305] Jiang M, Wang EB, Wei G, Xu L, Kang ZH, Li Z. New J Chem 2003;27:1291.<br />

[306] Jiang M, Wang EB, Wei G, Xu L, Li Z. J Colloid Interf Sci 2004;275:596.<br />

[307] Molybdenum. In: Gmel<str<strong>on</strong>g>in</str<strong>on</strong>g> h<str<strong>on</strong>g>and</str<strong>on</strong>g>book of <str<strong>on</strong>g>in</str<strong>on</strong>g>organic chemistry, Suppl. Vol. B4. Berl<str<strong>on</strong>g>in</str<strong>on</strong>g>: Spr<str<strong>on</strong>g>in</str<strong>on</strong>g>ger; 1985.<br />

[308] Zhang JG, Bens<strong>on</strong> DK, Tracy CE, Deb SK, Cz<str<strong>on</strong>g>and</str<strong>on</strong>g>erna AW, Bech<str<strong>on</strong>g>in</str<strong>on</strong>g>ger C. J Electrochem Soc 1997;144:<br />

2022.<br />

[309] Feng W, Zhang TR, Liu Y, Lu R, Guan C, Zhao YY, et al. J Mater Sci Tech 2002;18:558.<br />

[310] Bard<str<strong>on</strong>g>in</str<strong>on</strong>g> BB, Bordawekar SV, Neurock M, Davis RJ. J Phys Chem B 1998;102:10817.<br />

[311] Bard<str<strong>on</strong>g>in</str<strong>on</strong>g> BB, Davis RJ, Neurock M. J Phys Chem B 2000;104:3556.<br />

[312] Gavrilyuk AI, Mansurov AA, Razikov AKh, Chudnovskii FA, Shaver IKh. Sov Phys Tech Phys<br />

1986;31:585 [Zh Tekh Fiz 1986;56:958].<br />

[313] Feng W, Zhang TR, Liu Y, Lu R, Zhao YY, Yao JN. J Mater Sci Lett 2002;21:497.<br />

[314] Feng W, Zhang TR, Liu Y, Lu R, Zhao YY, Yao JN. Chem J Ch<str<strong>on</strong>g>in</str<strong>on</strong>g> Univ 2000;21:1563.<br />

[315] Feng W, Zhang TR, Wei L, Lu R, Bai YB, Li TJ, et al. Mater Lett 2002;54:309.<br />

[316] Feng W, Zhang TR, Liu Y, Lu R, Zhao YY, Li TJ, et al. J Solid State Chem 2002;169:1.<br />

[317] Feng W, Zhang TR, Liu Y, Lu R, Zhao YY, Yao JN. Ch<str<strong>on</strong>g>in</str<strong>on</strong>g> Chem Lett 2002;13:460.<br />

[318] Feng W, Zhang TR, Liu Y, Lu R, Zhao YY, Yao JN. J Mater Sci 2003;38:1045.<br />

[319] Calhorda MJ. Chem Commun 2000:801.<br />

[320] Prados RA, Pope MT. Inorg Chem 1976;15:2547.<br />

[321] McNamara III WB, Didenko YT, Suslick KS. Nature 1999;401:772.<br />

[322] Suslick KS. Science 1990;247:1439.<br />

[323] Suslick KS, Choe SB, Cichowlas AA, Grnstaff MM. Nature 1991;353:414.<br />

[324] G<strong>on</strong>g J, Li XD, Shao CL, D<str<strong>on</strong>g>in</str<strong>on</strong>g>g B, Lee DR, Kim HY. Mater Chem Phys 2003;79:87.<br />

[325] Tang LH, Yue B, Zhu SS. Chem J Ch<str<strong>on</strong>g>in</str<strong>on</strong>g> Univ 1999;20:1349.<br />

[326] Wu QY, Wang HB, Y<str<strong>on</strong>g>in</str<strong>on</strong>g> CS, Meng GY. Mater Lett 2001;50:61.<br />

[327] Ohtani B, Adzuma S, Nishimoto S, Kagiya T. J Polymer Sci C Polymer Lett 1987;25:383.<br />

[328] Yumashev KV, Malyarevich AM, Posnov NN, Denisov IA, Mikhailov VP, Artemyev MV, et al. Chem<br />

Phys Lett 1998;288:567.<br />

[329] Yumashev KV, Malyarevich AM, Posnov NN, Denisov IA, Artemyev MV, Sviridov DV, et al. Quant<br />

Electr<strong>on</strong> 1998;28:710.<br />

[330] Yue B, Tang LH, Zhu SS, L<str<strong>on</strong>g>in</str<strong>on</strong>g> XR. Chem J Ch<str<strong>on</strong>g>in</str<strong>on</strong>g> Univ 1998;19:1453.<br />

[331] Yang GC, Pan Y, Gao FM, G<strong>on</strong>g J, Cui XJ, Shao CL, et al. Mater Lett 2005;59:450.<br />

[332] Yang GC, G<strong>on</strong>g J, Pan Y, Cui XJ, Shao CL, Guo YH, et al. J Phys D 2004;37:1987.<br />

[333] Howe RF, Grätzel M. J Phys Chem 1985;89:4495.<br />

[334] Kölle U, Moser J, Grätzel M. Inorg Chem 1985;24:2253.<br />

[335] Ikake H, Fukuda Y, Shimizu S, Kurita K, Yano S. Kobunshi R<strong>on</strong>bunshu (Jpn J Polym Sci Technol) 2002;<br />

59:608.<br />

[336] Akutsu Y, Shimizu S, Kurita K, Yano S. Rep Prog Polym Phys Jpn 1999;42:459.<br />

[337] Kuboyama K, Hara K, Matsushige K. Jpn J Appl Phys 1992;31:L1609.<br />

[338] Kuboyama K, Hara K, Matsushige K, Kai S. Jpn J Appl Phys 1997;36:L443.<br />

[339] Feng W, Zhang TR, Liu Y, Lu R, Zhao YY, Yao JN. Chem J Ch<str<strong>on</strong>g>in</str<strong>on</strong>g> Univ 2001;22:830.<br />

[340] Zhang HY, Xu L, Wang EB, Jiang M, Wu AG, Li Z. Mater Lett 2003;57:1417.<br />

[341] Zhang TR, Lu R, Liu XL, Zhao YY, Li TJ, Yao JN. J Solid State Chem 2003;172:458.<br />

[342] J<str<strong>on</strong>g>in</str<strong>on</strong>g> SR, Chen YX, Tian DY, Xu T, M<str<strong>on</strong>g>in</str<strong>on</strong>g>g SJ, Zhou SQ. Ch<str<strong>on</strong>g>in</str<strong>on</strong>g> J Inorg Chem 2002;18:383.<br />

[343] Zhang TR, Feng W, Lu R, Zhang XT, J<str<strong>on</strong>g>in</str<strong>on</strong>g> M, Li TJ, et al. Th<str<strong>on</strong>g>in</str<strong>on</strong>g> Solid Films 2002;402:237.<br />

[344] Zhang TR, Feng W, Lu R, Bao CY, Li TJ, Zhao YY, et al. Mater Chem Phys 2002;78:380.<br />

[345] Zhang TR, J<str<strong>on</strong>g>in</str<strong>on</strong>g> M, Feng W, Lu R, Bao CY, Zhao YY, et al. Chem J Ch<str<strong>on</strong>g>in</str<strong>on</strong>g> Univ 2002;23:1979.<br />

[346] Jude<str<strong>on</strong>g>in</str<strong>on</strong>g>ste<str<strong>on</strong>g>in</str<strong>on</strong>g> P, Oliveira PW, Krug H, Schmidt H. Chem Phys Lett 1994;220:35.<br />

[347] Huang Y, Pan QY, Cheng ZX, Zhang W, Xia W. Chem J Ch<str<strong>on</strong>g>in</str<strong>on</strong>g> Univ 2005;26:204.<br />

[348] Zhang TR, Feng W, Lu R, Bao CY, Li TJ, Zhao YY, et al. J Solid State Chem 2002;166:259.<br />

[349] Sanchez C, Livage J, Launay JP, Fournier M. J Am Chem Soc 1983;105:6817.


T. He, J. Yao / Progress <str<strong>on</strong>g>in</str<strong>on</strong>g> Materials Science 51 (2006) 810–879 879<br />

[350] Sanchez C, Livage J, Launay JP, Fournier M, Jeann<str<strong>on</strong>g>in</str<strong>on</strong>g> Y. J Am Chem Soc 1982;104:3194.<br />

[351] Fruchart JM, Herve G, Launay JP, Massart R. J Inorg Nucl Chem 1976;38:1627.<br />

[352] Jude<str<strong>on</strong>g>in</str<strong>on</strong>g>ste<str<strong>on</strong>g>in</str<strong>on</strong>g> P, Deprun C, Nadjo L. J Chem Soc Dalt<strong>on</strong> Trans 1991;8:1991.<br />

[353] Jude<str<strong>on</strong>g>in</str<strong>on</strong>g>ste<str<strong>on</strong>g>in</str<strong>on</strong>g> P, Schmidt H. J Sol–Gel Sci Tech 1994;3:189.<br />

[354] Chemsedd<str<strong>on</strong>g>in</str<strong>on</strong>g>e A, Sanchez C, Livage J, Launay JP, Fournier M. Inorg Chem 1984;23:2609.<br />

[355] Zhang TR, Feng W, Bao CY, Lu R, Li TJ, Zhao YY, et al. J Mater Sci Mater Electr<strong>on</strong> 2002;13:331.<br />

[356] Zhang TR, Feng W, Lu R, Bao CY, Zhao YY, Li TJ, et al. Chem J Ch<str<strong>on</strong>g>in</str<strong>on</strong>g> Univ 2002;23:297.<br />

[357] Zhang TR, Feng W, Lu R, Bao CY, Zhang XT, Li TJ, et al. Mater Chem Phys 2002;78:116.<br />

[358] Gavrilyuk AI, Lanskaya TG, Mansurov AA, Chudnovskii FA. Sov Phys Solid States 1984;26:117 [Fiz<br />

Tverd Tela (Len<str<strong>on</strong>g>in</str<strong>on</strong>g>grad) 1984;26:200].<br />

[359] Ji XH, Yang YA, Yao JN. Photograph Sci Photochem 1998;16:353.<br />

[360] Zhang YZ, Huang YS, Cao YZ, Kuai SL, Hu XF. Acta Chim S<str<strong>on</strong>g>in</str<strong>on</strong>g> 2001;59:2076.<br />

[361] Gavrilyuk AI, Zakharchenya BP, Chudnovskii FA. Sov Tech Phys Lett 1980;6:512 [Pis’ma Zh Tekh Fiz<br />

1980;6:1196].<br />

[362] Kuboyama K, Hara K, Matsushige K. Jpn J Appl Phys 1994;33:4135.<br />

[363] Leaustic A, Bab<strong>on</strong>neau F, Livage J. J Phys Chem 1986;90:4193.<br />

[364] Tritthart U, Gavrilyuk A, Gey W. Solid State Commun 1998;105:653.<br />

[365] Gavrilyuk AI, Mansurov AA, Chudnovskii FA. Sov Tech Phys Lett 1984;10:292 [Pis’ma Zh Tekh Fiz<br />

1984;10:693]..<br />

[366] Gavrilyuk AI, Lanskaya TG, Chudnovskii FA. Sov Phys Tech Phys 1987;32:964 [Zh Tekh Fiz 1987;57:<br />

1617].<br />

[367] Gavrilyuk AI. Electrochim Acta 1999;44:3027.<br />

[368] Yue B, L<str<strong>on</strong>g>in</str<strong>on</strong>g> XR, Zhu SS. Chem Res Ch<str<strong>on</strong>g>in</str<strong>on</strong>g> Univ 1995;11:264.<br />

[369] Yue B, Chen K, Liu HZ, Zhu SS, Xie GY. Chem Res Ch<str<strong>on</strong>g>in</str<strong>on</strong>g> Univ 1996;12:201.<br />

[370] Tritthart U, Gavrilyuk A, Gey W. Chech J Phys 1996;46:2495.<br />

[371] Wittwer V, Schirmer OF, Schlotter P. Solid State Commun 1978;25:977.<br />

[372] Andreev VN, Chudnovskii FA, Nikit<str<strong>on</strong>g>in</str<strong>on</strong>g> SE, Kozyrev SV. Mol Cryst Liq Cryst Sci Technol C Mol Mater<br />

1998;11:139.<br />

[373] Andreev VN, Nikit<str<strong>on</strong>g>in</str<strong>on</strong>g> SE, Klimov VA, Chudnovskii FA, Kozyrev SV, Leshchev DV. Phys Solid State 1999;<br />

41:1210.<br />

[374] Rosenheim A. Z Anorg Chem 1893;4:352.<br />

[375] Mentzen BF, Sautereau H. J Photochem 1981;15:169.<br />

[376] C<str<strong>on</strong>g>in</str<strong>on</strong>g>drić M, Strukan N, Vrdoljak V, Devčić M, Veksli Z, Kamenar B. Inorg Chim Acta 2000;304:260.<br />

[377] C<str<strong>on</strong>g>in</str<strong>on</strong>g>drić M, Strukan N, Vrdoljak V. Croat Chem Acta 1999;72:501.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!