26.06.2017 Views

Solar Enhanced Oil Recovery: Myth and Reality in Solar EOR

Learn all about solar enhanced oil recovery (solar EOR) and how to achieve the lowest possible steam and thermal EOR costs using Solarlite. Debunks the major myths about solar energy, EOR, solar steam, CSP and solar process heat. Avoid carbon taxes and dramatically reduce your carbon footprint. Also avoid locking your company into uncompetitive long-term EOR costs with inefficient technology. Steven Geiger #solar #solarEOR #EOR #enhancedoilrecovery #PDO_OM #KocOfficial #Saudi_Aramco #Aramco #Chevron #AeraEnergy #CaliforniaResources #AirResources #LCFS #PEMEX #ONGC_

Learn all about solar enhanced oil recovery (solar EOR) and how to achieve the lowest possible steam and thermal EOR costs using Solarlite. Debunks the major myths about solar energy, EOR, solar steam, CSP and solar process heat. Avoid carbon taxes and dramatically reduce your carbon footprint. Also avoid locking your company into uncompetitive long-term EOR costs with inefficient technology.

Steven Geiger #solar #solarEOR #EOR #enhancedoilrecovery #PDO_OM #KocOfficial #Saudi_Aramco #Aramco #Chevron #AeraEnergy #CaliforniaResources #AirResources #LCFS #PEMEX #ONGC_

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Solar</strong> Thermal for <strong>Oil</strong> Production<br />

<strong>and</strong> Industrial Process Heat<br />

Steven Geiger<br />

Director of Bus<strong>in</strong>ess Development, <strong>Solar</strong>lite<br />

MENA New Energy Conference, Dubai, April 25-26, 2017


Summary<br />

• Thermal <strong>EOR</strong> faces challenges from <strong>in</strong>sufficient gas supply &<br />

carbon risks<br />

• <strong>Solar</strong> steam can help reduce <strong>EOR</strong> cost, emissions, <strong>and</strong> risks<br />

• <strong>Solar</strong>lite provides the lowest-cost, highest-quality steam for <strong>EOR</strong><br />

• <strong>Solar</strong> <strong>EOR</strong> can also advance economic diversification, local job<br />

creation, <strong>and</strong> a better environment<br />

• Common equipment allows faster cost reductions<br />

- 1 -


What is S<strong>EOR</strong>?<br />

<strong>Solar</strong> <strong>Enhanced</strong> <strong>Oil</strong> <strong>Recovery</strong> (S<strong>EOR</strong>): generat<strong>in</strong>g cheaper steam with<br />

solar mirrors for st<strong>and</strong>ard thermal <strong>EOR</strong> projects<br />

St<strong>and</strong>ard<br />

Steam<br />

Boilers<br />

(OTSG)<br />

<strong>Solar</strong> mirrors<br />

simple tie-<strong>in</strong> to common steam<br />

header<br />

uses st<strong>and</strong>ard oilfield water<br />

<strong>Oil</strong> + water<br />

Separator<br />

Steam <strong>in</strong> reservoir<br />

Can reduce natural<br />

gas consumption by<br />

100%, but 25% is<br />

<strong>in</strong>itial target<br />

- 2 -


S<strong>EOR</strong> solves multiple problems<br />

• <strong>Oil</strong> reserves gett<strong>in</strong>g heavier <strong>and</strong> harder to extract<br />

• Many countries lack surplus gas (must burn diesel or crude)<br />

• Lowers <strong>EOR</strong> costs<br />

• Reduces fuel price volatility (often 60% of total <strong>EOR</strong> costs)<br />

• Reduces carbon tax risk <strong>and</strong> gas hedg<strong>in</strong>g, mak<strong>in</strong>g S<strong>EOR</strong> $3-4/barrel<br />

more competitive than traditional thermal <strong>EOR</strong><br />

S<strong>EOR</strong> offers $2-4/mmbtu gas equivalent price with<br />

zero volatility <strong>and</strong> zero emissions.<br />

- 3 -


Us<strong>in</strong>g two highly-proven & bankable technologies<br />

<strong>Solar</strong> mirrors<br />

produc<strong>in</strong>g steam<br />

Steam <strong>EOR</strong><br />

CSP power plant<br />

Egypt 1912<br />

CSP power plant<br />

Morocco 2015<br />

$3 billion bankf<strong>in</strong>anced<br />

60 years’ of cont<strong>in</strong>uous<br />

steamflood <strong>EOR</strong><br />

2 billion barrels of oil recovered<br />

from just one field<br />

- 4 -


Key S<strong>EOR</strong> markets<br />

S<strong>EOR</strong> requires:<br />

• heavy oil<br />

• high solar DNI<br />

• Lack of very cheap fuel, or possible carbon price<br />

70% of immediate market is <strong>in</strong> 4 countries:<br />

• Kuwait<br />

• Oman<br />

• California<br />

• Partition zone (Saudi/Kuwait)<br />

- 5 -


Kuwait<br />

Kuwait dry natural gas 2001-2013 (bcf)<br />

consumption<br />

• Major plans for S<strong>EOR</strong>; short on gas;<br />

import<strong>in</strong>g >3 mln MT LNG.<br />

production<br />

LNG<br />

imports<br />

• Needs heavy oil as light oil decl<strong>in</strong>es<br />

• $75 bln heavy-oil program<br />

X<br />

• KOC plans 270,000 bpd new heavy oil<br />

production by 2023, requir<strong>in</strong>g 0.9<br />

million bpd steam (19 GWth @ 100%<br />

S<strong>EOR</strong>)<br />

Kuwait<br />

oil fields<br />

• <strong>Solar</strong>lite won open tender to supply 1 st<br />

S<strong>EOR</strong> project to KOC<br />

- 6 -


Oman<br />

Oman oil production 1996-2015 (kbpd)<br />

<strong>EOR</strong><br />

<strong>in</strong>creas<strong>in</strong>g<br />

production<br />

• Decl<strong>in</strong><strong>in</strong>g oil production -> aggressive<br />

<strong>EOR</strong><br />

• World <strong>EOR</strong> leader, apply<strong>in</strong>g multiple<br />

technologies (steam, miscible,<br />

chemical, S<strong>EOR</strong>)<br />

• Gas-constra<strong>in</strong>ed; LNG exports may<br />

stop by 2024<br />

• Currently build<strong>in</strong>g 1 GWth S<strong>EOR</strong><br />

• >5 GWth S<strong>EOR</strong> possible by 2022<br />

- 7 -


California<br />

600<br />

California thermal <strong>EOR</strong> production<br />

(2015, kbpd)<br />

• 370,000 bpd oil requir<strong>in</strong>g ~1.4 mln<br />

bpd steam<br />

500<br />

400<br />

80<br />

<strong>Oil</strong><br />

Steam<br />

• Gas price


Four ma<strong>in</strong> possible technologies<br />

Parabolic<br />

trough<br />

L<strong>in</strong>ear<br />

fresnel<br />

Glasshouse<br />

<strong>Solar</strong> tower<br />

St<strong>and</strong>ard<br />

High-efficiency composite (<strong>Solar</strong>lite)<br />

- 9 -


Key requirements for solar <strong>EOR</strong> systems<br />

• Direct steam generation<br />

• W<strong>in</strong>d resistance<br />

• Reasonable clean<strong>in</strong>g requirements<br />

• Flexible, modular design<br />

• Low-cost steam<br />

- 10 -


Why <strong>Solar</strong>lite is the S<strong>EOR</strong> leader<br />

Process Advantage<br />

*<br />

• <strong>Solar</strong>lite pioneered Directsteam<br />

generation (DSG) <strong>and</strong><br />

built world’s-1 st commercial<br />

DSG power plant<br />

• Higher temperatures (550 C<br />

vs. 300 C)<br />

• Up to 100% steam quality vs.<br />

85% for st<strong>and</strong>ard OTSG<br />

• Safe & clean: only water<br />

• Most solar thermal<br />

companies use synthetic oil:<br />

lower temperature limits<br />

<strong>and</strong> unacceptable HSE/fire<br />

hazard <strong>in</strong> a live oilfield<br />

*actual CSP plant fire (Daggett, CA)<br />

• Modular blocks better<br />

suited to tight oilfield<br />

• Simply connect to<br />

common steam header<br />

• Greatly m<strong>in</strong>imizes<br />

execution risk<br />

• Modular for any size<br />

- 11 -


Why <strong>Solar</strong>lite is the S<strong>EOR</strong> leader<br />

Technology Advantage<br />

• Lightweight, rigid trough =<br />

excellent w<strong>in</strong>d performance<br />

• Th<strong>in</strong> mirror = higher<br />

reflectivity (>96%) & total<br />

efficiency (76.1%)<br />

• Composite = lower cost<br />

• Patents <strong>and</strong> IP protection<br />

• Custom DSG receiver<br />

• Selective coat<strong>in</strong>g = greater<br />

spectral absorption,<br />

efficiency<br />

• Lower thermal losses =<br />

cheaper steam<br />

• Electro-hydraulic drive<br />

• Greater accuracy<br />

• Fail-safe <strong>in</strong>dependent<br />

power<br />

- 12 -


Why <strong>Solar</strong>lite is the S<strong>EOR</strong> leader<br />

Cost Advantage<br />

Competitors suffer from:<br />

+<br />

Low-cost DSG<br />

Lightweight,<br />

rigid trough<br />

HSE risks<br />

Poor w<strong>in</strong>d performance<br />

(De-focus<strong>in</strong>g & twist<strong>in</strong>g)<br />

+<br />

=<br />

Low losses,<br />

high efficiency<br />

+<br />

Excellent w<strong>in</strong>d<br />

performance<br />

Lowest-cost, reliable steam<br />

$2-4/mmbtu gas equivalent<br />

20% loss from<br />

row shad<strong>in</strong>g<br />

X<br />

X<br />

Low efficiency & high losses<br />

from design limitations<br />

10% loss<br />

from glass<br />

10% loss from<br />

poor reflector<br />

- 13 -


Why <strong>Solar</strong>lite is the S<strong>EOR</strong> leader<br />

• Selected by KOC <strong>in</strong> November 2015 <strong>in</strong> an open<br />

tender to build Kuwait’s first solar <strong>EOR</strong> project<br />

• Beat all competitors <strong>in</strong>clud<strong>in</strong>g Abengoa,<br />

Glasspo<strong>in</strong>t, TSK, <strong>and</strong> others<br />

• <strong>Solar</strong> steam is essential to Kuwait’s $75 billion<br />

strategic heavy oil program, offer<strong>in</strong>g <strong>Solar</strong>lite a<br />

substantial opportunity<br />

- 14 -


Comparison of S<strong>EOR</strong> technologies<br />

Criteria<br />

<strong>Solar</strong>lite<br />

trough<br />

St<strong>and</strong>ard<br />

CSP trough<br />

Fresnel<br />

Glasshouse<br />

trough<br />

Comments<br />

Shad<strong>in</strong>g losses by structure low low low high Glasshouse structure reduces efficiency by 10%<br />

Shad<strong>in</strong>g losses by design low low moderate very high Glasshouse shad<strong>in</strong>g reduces efficiency another 20%<br />

Direct Steam Generation<br />

(High Pressure)<br />

Proven to<br />

110 bar<br />

unproven<br />

Proven at<br />

50 bar<br />

Proven to<br />

100 bar<br />

Commercial DSG experience is critical for S<strong>EOR</strong><br />

Commercially-deployed DSG yes pilot yes pilot Commercial DSG experience is critical for S<strong>EOR</strong><br />

High Temperature<br />

Proven to<br />

550C<br />

oil limit<br />

390C<br />

Proven to<br />

500C<br />

proven to<br />

312C<br />

W<strong>in</strong>d impact low high moderate very low<br />

Higher temperatures more valuable <strong>in</strong> <strong>EOR</strong><br />

CSP troughs de-focus/break <strong>in</strong> high w<strong>in</strong>ds, Fresnel<br />

mirrors also shake <strong>and</strong> de-focus<br />

Dust collection low low moderate high Fixed glasshouse collects 3-5x dust of mov<strong>in</strong>g trough<br />

Clean<strong>in</strong>g & abrasion easy/low easy/low moderate moderate<br />

Fresnel mirrors located <strong>in</strong> s<strong>and</strong> abrasion zone<br />

Daily clean<strong>in</strong>g = daily abrasion<br />

S<strong>and</strong> erosion low moderate moderate low Composite trough protect the mirrors<br />

Modular design Yes No Yes Yes Required for tight oilfield spaces<br />

Vacuum receiver Yes Yes possibly No<br />

Vacuum receivers <strong>in</strong>crease efficiency (less heat<br />

losses)<br />

Exist<strong>in</strong>g desert application Yes Yes Yes Yes<br />

Troughs <strong>in</strong>stalled <strong>in</strong> UAE, Egypt, Spa<strong>in</strong>, Morocco,<br />

USA deserts<br />

Cost of steam lowest high Medium high Rigid troughs + high efficiency = lowest steam cost<br />

- 15 -


<strong>Solar</strong>lite produces the lowest-cost steam<br />

Head-to-head comparison with Glasspo<strong>in</strong>t’s 1 GWth project <strong>in</strong> Amal, Oman<br />

<strong>Solar</strong>lite <strong>Solar</strong>lite<br />

Glasspo<strong>in</strong>t (same size)___ (same price)<br />

Project size: 1021 MWth 1021 MWth 1090 MWth<br />

Project price: $600 Million $560 Million $600 Million<br />

MT steam per day: 6000 MT 8700 MT 9290 MT<br />

<strong>Solar</strong>lite systems are 45% more efficient <strong>and</strong><br />

produce 55-70% more steam for the same price.<br />

Why burden your company / country with uncompetitive oil production?<br />

- 16 -


<strong>Solar</strong>lite’s modular design is best for tight oilfield spaces<br />

- 17 -


<strong>Myth</strong> <strong>and</strong> <strong>Reality</strong> <strong>in</strong> <strong>Solar</strong> <strong>EOR</strong><br />

• Many myths & deceptions created about S<strong>EOR</strong><br />

• Creates unnecessary confusion <strong>in</strong> oil community<br />

• Damages the advancement of S<strong>EOR</strong><br />

- 18 -


S<strong>EOR</strong> <strong>Myth</strong> #1<br />

“Open solar fields can’t survive harsh desert conditions”<br />

Fact<br />

• CSP was designed to work <strong>in</strong> open harsh deserts<br />

• Plants work<strong>in</strong>g normally <strong>in</strong> California, Spa<strong>in</strong>, <strong>and</strong> UAE deserts<br />

• the largest Middle East desert solar thermal plant is operat<strong>in</strong>g<br />

normally (SHAMS 1 <strong>in</strong> Abu Dhabi, 300 MWth)<br />

- 19 -


S<strong>EOR</strong> <strong>Myth</strong> #2<br />

“CSP can’t operate <strong>in</strong> high desert w<strong>in</strong>d conditions”<br />

Fact<br />

<strong>Solar</strong>lite operates efficiently up to 20 m/s w<strong>in</strong>dspeed (72 km/h)<br />

<strong>and</strong> survives 45 m/s w<strong>in</strong>dspeed (162 km/h)<br />

5 years of data from<br />

Spanish desert plant<br />

<strong>in</strong>dependently managed<br />

by DLR<br />

Here <strong>Solar</strong>lite temp<br />

proves stable at 400C<br />

with w<strong>in</strong>ds up to 10 m/s<br />

- 20 -


S<strong>EOR</strong> <strong>Myth</strong> #3<br />

“Dust <strong>and</strong> clean<strong>in</strong>g are such a problem <strong>in</strong> desert conditions”<br />

Fact<br />

• Cheap & trivial<br />

• Low-water<br />

• Robot clean<strong>in</strong>g<br />

• Only 1x per week<br />

- 21 -


S<strong>EOR</strong> <strong>Myth</strong> #3<br />

“Dust <strong>and</strong> clean<strong>in</strong>g are such a problem <strong>in</strong> desert conditions”<br />

• Remember, troughs spend most their life upside-down or vertical<br />

• In contrast, roofs are a dust magnet requir<strong>in</strong>g daily clean<strong>in</strong>g (abrasion)<br />

x<br />

Glasshouse<br />

50-60% of time 10-15% of time<br />

24/7 dust deposit<strong>in</strong>g<br />

- 22 -


Additional s<strong>and</strong> <strong>and</strong> dust control measures<br />

• A comb<strong>in</strong>ed w<strong>in</strong>d+dust fence is<br />

used where extreme dust control<br />

is required<br />

• Further reduces w<strong>in</strong>d load on<br />

solar collectors, allow<strong>in</strong>g full steam<br />

production <strong>in</strong> high w<strong>in</strong>d speeds<br />

• Clean<strong>in</strong>g <strong>in</strong>tervals are significantly<br />

reduced (once per week)<br />

- 23 -


S<strong>EOR</strong> <strong>Myth</strong> #4<br />

“Glass is cheap, so a glasshouse can make cheaper steam”<br />

Example: 1 GWth project <strong>in</strong> Amal, Oman<br />

<strong>Solar</strong>lite <strong>Solar</strong>lite<br />

Glasshouse (same size)___ (same price)<br />

Project size: 1021 MWth 1021 MWth 1090 MWth<br />

Project price: $600 Million $560 Million $600 Million<br />

MT steam per day: 6000 MT 8700 MT 9290 MT<br />

Fact<br />

<strong>Solar</strong>lite troughs produce 55-70% more steam<br />

for the same price (<strong>and</strong> higher quality steam)<br />

- 24 -


Side note<br />

Haven’t we seen this movie play out before <strong>in</strong> solar PV?<br />

Remember 2007-2008?<br />

• High polysilicon prices force search for alternatives<br />

• $ billions <strong>in</strong>vested <strong>in</strong> low-efficiency glass solutions (CIGS, CIS, a-Si, CdTe)<br />

based on a “glass is cheap” story<br />

What happened? Higher-efficiency PV absolutely crushed the lowefficiency<br />

glass-based solutions.<br />

And now history is repeat<strong>in</strong>g itself <strong>in</strong> solar thermal.<br />

- 25 -


S<strong>EOR</strong> <strong>Myth</strong> #5<br />

“Glasshouse design offers smallest S<strong>EOR</strong> footpr<strong>in</strong>t”<br />

Glasshouse footpr<strong>in</strong>t<br />

300 Ha<br />

6000 MT steam/day<br />

L<strong>and</strong> efficiency:<br />

0.05 Ha/MT steam/d<br />

<strong>Solar</strong>lite footpr<strong>in</strong>t<br />

216 Ha<br />

6000 MT steam / day<br />

L<strong>and</strong> efficiency:<br />

0.036 Ha/MT steam/d<br />

Fact<br />

<strong>Solar</strong>lite uses only 72% the l<strong>and</strong> required by a glasshouse<br />

- 26 -


Proven steam leadership <strong>in</strong> commercial plants<br />

<strong>Solar</strong>lite TSE-1 : World’s first commercial CSP power<br />

plant with Direct Steam Generation us<strong>in</strong>g PT<br />

• Electrical power: 5 MWe nom<strong>in</strong>al<br />

• <strong>Solar</strong> field thermal capacity: 19 MWth nom<strong>in</strong>al<br />

• Live steam temperature: 330 °C<br />

• Live steam pressure: 30 bar<br />

• Yearly Output: 7 to 9 GWh e (<strong>Solar</strong> radiation varies<br />

annually: up to ± 10 %)<br />

• Peak efficiency (solar to electric): 18%<br />

• <strong>Solar</strong> field area: 12 ha; Power block: 2.4 ha<br />

- 27 -


Proven high-temp & high-pressure steam generation<br />

<strong>Solar</strong>lite DUKE / DISS facility <strong>in</strong> Spa<strong>in</strong><br />

• Direct steam generation runn<strong>in</strong>g at 400-500°C <strong>and</strong> 110 bar s<strong>in</strong>ce 2012<br />

• 5 years of data, <strong>in</strong>dependently operated by experts (DLR of Germany)<br />

• Proven high-w<strong>in</strong>d performance<br />

- 28 -


<strong>Solar</strong>lite reference projects<br />

Project description<br />

Year<br />

Photo<br />

Capacity<br />

Location<br />

Type<br />

DUKE – 1 st DSG<br />

High temperature<br />

Parabolic Trough<br />

2012<br />

2,5<br />

MWth<br />

Spa<strong>in</strong><br />

Almeria<br />

Research<br />

World’s 1st<br />

commercial DSG<br />

CSP Parabolic<br />

Trough Power Plant<br />

2011<br />

19<br />

MWth<br />

5 MWel<br />

Kanchanaburi<br />

Thail<strong>and</strong><br />

Commercial<br />

<strong>Solar</strong> – Biomass<br />

Power Plant with<br />

solar Cool<strong>in</strong>g<br />

2009<br />

2012<br />

500<br />

kWth<br />

Phitsanulok<br />

Thail<strong>and</strong><br />

Research<br />

First commercial<br />

Parabolic Trough<br />

Plant <strong>in</strong> Germany –<br />

comb<strong>in</strong>ed with<br />

Biomass<br />

2007<br />

220<br />

kWth<br />

Woltow Duckwitz<br />

Germany<br />

Commercial<br />

- 29 -


W<strong>in</strong>d-proof construction <strong>and</strong> robust components<br />

The torsion pipe allows<br />

cont<strong>in</strong>uous operation<br />

under high w<strong>in</strong>d loads.<br />

←<br />

→<br />

The solid composite<br />

structure creates a rigid<br />

parabolic body, us<strong>in</strong>g<br />

less steel & allow<strong>in</strong>g<br />

superior optical focus<br />

<strong>and</strong> efficiency (76.1%)<br />

even <strong>in</strong> high w<strong>in</strong>ds due<br />

to superior h<strong>and</strong>l<strong>in</strong>g of<br />

torsional loads.<br />

- 30 -


W<strong>in</strong>d-proof construction <strong>and</strong> robust components<br />

Other CSP designs<br />

are sensitive to w<strong>in</strong>d<br />

loads.<br />

←<br />

→<br />

<strong>Solar</strong>lite composite<br />

troughs <strong>and</strong><br />

components<br />

withst<strong>and</strong> high<br />

w<strong>in</strong>ds <strong>and</strong> s<strong>and</strong><br />

abrasion.<br />

- 31 -


Ultra-rugged equipment, extreme test<strong>in</strong>g<br />

• a 1 kg rock was thrown at <strong>Solar</strong>lite mirrors<br />

• only localized cracks, easily repaired<br />

• no effect on performance<br />

• no possible damage possible to receivers (mirror sticks to trough)<br />

• Warn<strong>in</strong>g: do NOT try this on a glasshouse or regular CSP mirrors<br />

5 cm diameter crack<br />

- 32 -


Desert-ready, s<strong>and</strong>-proof construction with 30-year life<br />

• <strong>Solar</strong>lite troughs are manufactured with<br />

epoxy res<strong>in</strong> <strong>and</strong> glass fibers to create the<br />

highest stiffness <strong>and</strong> highest UV stability.<br />

The FRP material is completely covered<br />

with UV <strong>and</strong> scratch-resistant coat<strong>in</strong>g.<br />

• Longevity is > 30 years with excellent<br />

resistance to heat <strong>and</strong> moisture.<br />

• The material has a long track record<br />

surviv<strong>in</strong>g extreme conditions <strong>in</strong> ocean<br />

boats, yachts <strong>and</strong> surf boards.<br />

- 33 -


Easy management of s<strong>and</strong> accumulation <strong>and</strong> s<strong>and</strong> storms<br />

• S<strong>and</strong> accumulation is common, caused by drift<strong>in</strong>g w<strong>in</strong>d <strong>and</strong> s<strong>and</strong> storms<br />

• Solid base of the w<strong>in</strong>d fence prevents s<strong>and</strong> accumulat<strong>in</strong>g <strong>in</strong>side the solar field,<br />

<strong>and</strong> protects troughs from high w<strong>in</strong>ds<br />

• S<strong>and</strong> is easily removed from the fence base periodically<br />

• Largest operat<strong>in</strong>g solar thermal plant <strong>in</strong> a w<strong>in</strong>dy GCC desert uses a similar<br />

solution (300 MWth SHAMS1 <strong>in</strong> Abu Dhabi)<br />

Source: Shams Power Company<br />

- 34 -


The BIG PICTURE: the greater thermal universe<br />

• Same equipment<br />

S<strong>EOR</strong><br />

• Each a >50-500 GWth market<br />

• Scale economy accelerator:<br />

each benefits from scale<br />

achieved by the others<br />

CSP<br />

SIPH*<br />

* <strong>Solar</strong> <strong>in</strong>dustrial process heat<br />

- 35 -


U.S manufactur<strong>in</strong>g process energy<br />

Source: NREL, 2015<br />

- 36 -


U.S. <strong>in</strong>dustrial steam usage by temperature<br />

Potential market for <strong>Solar</strong>lite<br />

Source: NREL, 2015<br />

- 37 -


Best to start where there is a lot of sun<br />

- 38 -


California high DNI <strong>and</strong> gas costs allow solar <strong>in</strong>dustrial steam<br />

Source: NREL, 2015<br />

- 39 -


Cost<br />

The BIG PICTURE: the greater thermal universe<br />

Scale . . . creates SCALE . . .<br />

creates SCALE<br />

Today<br />

S<strong>EOR</strong>: $3-3.50/mmbtu<br />

CSP: 8c/KWh-e<br />

SIPH: 1.4c/KWh-th<br />

S<strong>EOR</strong>: $2.50/mmbtu<br />

CSP: 6c/KWh-e<br />

SIPH: 1-1.4c/KWh-th<br />

S<strong>EOR</strong>: $1.75/mmbtu<br />

CSP: 4-5c/KWh-e<br />

SIPH: 0.7-1.4c/KWh-th<br />

GWth<br />

3-5 10<br />

- 40 -


Jo<strong>in</strong> the solar steam leader &<br />

lock <strong>in</strong> the lowest cost<br />

possible for thermal <strong>EOR</strong>!<br />

www.solarlite.de<br />

- CONFIDENTIAL -

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!