13.12.2012 Views

Paraxial propagation of Mathieu beams through an apertured ABCD ...

Paraxial propagation of Mathieu beams through an apertured ABCD ...

Paraxial propagation of Mathieu beams through an apertured ABCD ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Abstract<br />

<strong>Paraxial</strong> <strong>propagation</strong> <strong>of</strong> <strong>Mathieu</strong> <strong>beams</strong> <strong>through</strong> <strong>an</strong><br />

<strong>apertured</strong> <strong>ABCD</strong> optical system<br />

A. Chafiq, Z. Hricha, A. Belafhal *<br />

Laboratoire de Physique Moléculaire, Département de Physique, Université Chouaïb Doukkali, Faculté des Sciences,<br />

B.P. 20, 24000 El Jadida, Morocco<br />

Received 17 J<strong>an</strong>uary 2005; received in revised form 18 March 2005; accepted 24 April 2005<br />

Based on the relationship between separable solutions <strong>of</strong> the Helmholtz equation, we exp<strong>an</strong>ded the fieldÕs amplitude<br />

associated with <strong>Mathieu</strong> <strong>beams</strong> in terms <strong>of</strong> Bessel <strong>beams</strong>. By using the exp<strong>an</strong>sion <strong>of</strong> the circ function into a finite sum <strong>of</strong><br />

complex Gaussi<strong>an</strong> functions, we derived <strong>an</strong> approximated <strong>an</strong>alytical expression <strong>of</strong> the amplitude distribution <strong>of</strong> <strong>Mathieu</strong><br />

<strong>beams</strong> at the output pl<strong>an</strong>e <strong>of</strong> <strong>an</strong>y <strong>apertured</strong> paraxial <strong>ABCD</strong> optical system. Some numerical calculations are<br />

performed <strong>an</strong>d it is shown that our approach c<strong>an</strong> substitute the usual numerical integration <strong>of</strong> the Helmholtz equation<br />

or the numerical calculation <strong>of</strong> the diffraction integral.<br />

Ó 2005 Elsevier B.V. All rights reserved.<br />

Keywords: Nondiffracting <strong>beams</strong>; <strong>Mathieu</strong> <strong>beams</strong>; Angular spectrum; Bessel <strong>beams</strong>; Collins formula; Aperture function<br />

1. Introduction<br />

Optics Communications 253 (2005) 223–230<br />

In recent years, the non-diffracting <strong>beams</strong> have received much attention in the optical domain. The interest<br />

in non-diffracting <strong>beams</strong> is due to the fact that, under ideal conditions, they propagate indefinitely without<br />

ch<strong>an</strong>ge in their tr<strong>an</strong>sverse shape. This kind <strong>of</strong> <strong>beams</strong> has been used in different applications such as<br />

wireless communications, metrology, laser surgery, non-linear optics, optical tweezers, <strong>an</strong>d so on.<br />

The <strong>beams</strong> in question are exact separable solutions <strong>of</strong> the Helmholtz equation expressed in different<br />

coordinate systems [1–3]. Among them, we have Bessel [4,5], cosine [6], <strong>Mathieu</strong> [7–9] <strong>an</strong>d Parabolic <strong>beams</strong><br />

[10], which c<strong>an</strong> be described as <strong>an</strong> adequate superposition <strong>of</strong> pl<strong>an</strong>e waves, whose vectors lie on a cone as it is<br />

* Corresponding author. Tel.: +212 68 50 43 44; fax: +212 23 35 34 54.<br />

E-mail address: pcn@iam.net.ma (A. Belafhal).<br />

0030-4018/$ - see front matter Ó 2005 Elsevier B.V. All rights reserved.<br />

doi:10.1016/j.optcom.2005.04.068<br />

www.elsevier.com/locate/optcom


224 A. Chafiq et al. / Optics Communications 253 (2005) 223–230<br />

imposed by the McCutchen theorem [11]. Recently, Gutiérrez-Vega et al. [7,8] have introduced <strong>an</strong>d demonstrated<br />

experimentally the existence <strong>of</strong> <strong>Mathieu</strong> <strong>beams</strong>, based on the resolution <strong>of</strong> Helmholtz equation<br />

in the elliptic cylindrical coordinates. These <strong>beams</strong> are the elliptical generalization <strong>of</strong> the Bessel <strong>beams</strong> as it<br />

was signalized in [12]. More recently, based on the scalar diffraction theory applied to the experimental<br />

DurninÕs setup, Dartora et al. [13] obtained a closed <strong>an</strong>alytical expression <strong>of</strong> the field associated with this<br />

class <strong>of</strong> <strong>beams</strong>. The adv<strong>an</strong>tage <strong>of</strong> this expression is that it leads to the relationship between <strong>Mathieu</strong> <strong>beams</strong><br />

<strong>an</strong>d Bessel <strong>beams</strong> expressed in cylindrical coordinates.<br />

On the other h<strong>an</strong>d, the technique <strong>of</strong> exp<strong>an</strong>ding the aperture function into a sum <strong>of</strong> complex Gaussi<strong>an</strong><br />

terms [14] have been used by m<strong>an</strong>y authors to derive approximate <strong>an</strong>alytical <strong>propagation</strong> equations <strong>an</strong>d<br />

factors <strong>of</strong> some <strong>beams</strong> propagating <strong>through</strong> <strong>an</strong> <strong>apertured</strong> paraxial optical systems [15–21]. The <strong>an</strong>alytical<br />

results obtained with this technique meet a good agreement with the numerical calculations for the far field<br />

region; but a slight difference appears in the near field.<br />

In the present work, we derive the <strong>an</strong>alytical exp<strong>an</strong>sion in Bessel terms <strong>of</strong> all modes associated with the<br />

<strong>Mathieu</strong> <strong>beams</strong> by using the Whittaker integral <strong>an</strong>d the <strong>an</strong>gular spectrum decomposition [22]. The paraxial<br />

<strong>propagation</strong> equations <strong>of</strong> <strong>Mathieu</strong> <strong>beams</strong> <strong>through</strong> <strong>an</strong> <strong>apertured</strong> paraxial <strong>ABCD</strong> optical system are deduced<br />

from those <strong>of</strong> Bessel <strong>beams</strong> for which the treatment <strong>of</strong> exp<strong>an</strong>ding the circ function in terms <strong>of</strong> complex<br />

Gaussi<strong>an</strong> terms is very well applied [15]. The paper is org<strong>an</strong>ized as follows: The <strong>an</strong>alytical expressions <strong>of</strong><br />

<strong>Mathieu</strong> <strong>beams</strong> in cylindrical coordinates as a function <strong>of</strong> Bessel <strong>beams</strong> are derived in Section 2. In Section<br />

3, we will present the amplitude distribution <strong>of</strong> the <strong>Mathieu</strong> <strong>beams</strong> at the output pl<strong>an</strong>e <strong>of</strong> <strong>an</strong> <strong>apertured</strong> paraxial<br />

<strong>ABCD</strong> optical system. Some numerical calculations <strong>an</strong>d <strong>an</strong>alysis related to the <strong>propagation</strong> <strong>of</strong> this<br />

<strong>beams</strong> in free space, <strong>an</strong>d <strong>through</strong> a thin lens <strong>an</strong>d fractional Fourier tr<strong>an</strong>sform will be given in Section 4.<br />

Finally, a conclusion is outlined in Section 5.<br />

2. Field expressions <strong>of</strong> <strong>Mathieu</strong> <strong>beams</strong> in cylindrical coordinates<br />

The representation in terms <strong>of</strong> pl<strong>an</strong>e waves <strong>of</strong> <strong>an</strong>y non-diffracting <strong>beams</strong> c<strong>an</strong> be given by the Whittaker<br />

integral [2,22],<br />

uðq; u; z; tÞ ¼expðikzz ixtÞ<br />

Z 2p<br />

0<br />

AðhÞ exp ½iktqcosðh uÞŠdh;<br />

ð1Þ<br />

where q, u, z are the cylindrical variables, h is the <strong>an</strong>gular variable in the x–y pl<strong>an</strong>e, A(h) is the <strong>an</strong>gular<br />

spectrum, <strong>an</strong>d kt = ksina0, kz = kcosa0 are the tr<strong>an</strong>sverse <strong>an</strong>d longitudinal components <strong>of</strong> the wave vector<br />

~ k. a0 is the semi-<strong>an</strong>gle <strong>of</strong> the cone on which lie the waveÕs vectors associated with the pl<strong>an</strong>e waves. For <strong>Mathieu</strong><br />

<strong>beams</strong>, the <strong>an</strong>gular spectrum associated with the even <strong>an</strong>d the odd modes are cem(h, q), sem(h, q),<br />

respectively, where m P 0 for even modes <strong>an</strong>d m P 1 for odd modes <strong>an</strong>d q is the elliptic parameter given<br />

by q ¼ h 2 k 2<br />

t =4, where h is the interfocal separation [23]. As it is known, the functions cem <strong>an</strong>d sem c<strong>an</strong> be<br />

expressed in term <strong>of</strong> Fourier series as:<br />

ce2nðg; qÞ ¼ P1<br />

8<br />

><<br />

>:<br />

A<br />

j¼0<br />

ð2nÞ<br />

2j ðqÞ cos 2jg;<br />

ce2nþ1ðg; qÞ ¼ P1<br />

j¼0<br />

se2nþ2ðg; qÞ ¼ P1<br />

j¼0<br />

se2nþ1ðg; qÞ ¼ P1<br />

j¼0<br />

A ð2nþ1Þ<br />

2jþ1 ðqÞ cosð2j þ 1Þg;<br />

B ð2nþ2Þ<br />

2jþ2 ðqÞ sinð2j þ 2Þg;<br />

B ð2nþ1Þ<br />

2jþ1 ðqÞ sinð2j þ 1Þg.<br />

ð2Þ


The coefficients A ð2nÞ<br />

2j<br />

ðqÞ; Að2nþ1Þ<br />

2jþ1<br />

ðqÞ; Bð2nþ2Þ<br />

2jþ2<br />

ðqÞ, <strong>an</strong>d Bð2nþ1Þ<br />

2jþ1 ðqÞ are characterized for each value <strong>of</strong> q by a set<br />

<strong>of</strong> recurrence relations.<br />

Replacing A(h) bycem(h, q) orsem(h, q), <strong>an</strong>d taking into account the following equalities [24]:<br />

Z 2p<br />

0<br />

expfi½ z cosðh uÞ nhŠgdh ¼ 2pð iÞ n expð inuÞJ nðzÞ; ð3aÞ<br />

J n½z expðilpÞŠ ¼ expðinlpÞJ nðzÞ; ð3bÞ<br />

<strong>an</strong>d<br />

J nðzÞ ¼ð 1Þ n J nðzÞ; ð3cÞ<br />

with J is the Bessel function <strong>of</strong> the first kind, <strong>an</strong>d n, l are two integers, one c<strong>an</strong> easily obtain the following<br />

field expressions associated with each mode <strong>of</strong> <strong>Mathieu</strong> <strong>beams</strong> in cylindrical coordinates:<br />

uc2nðq; u; q; z; tÞ ¼2p expðikzz ixtÞ P1<br />

8<br />

><<br />

A<br />

j¼0<br />

ð2nÞ<br />

2j ðqÞð 1Þj cosð2juÞJ 2jðktqÞ;<br />

uc2nþ1ðq; u; q; z; tÞ ¼2p expðikzz ixtÞ P1<br />

j¼0<br />

us2nþ2ðq; u; q; z; tÞ ¼2p expðikzz ixtÞ P1<br />

j¼0<br />

us2nþ1ðq; u; q; z; tÞ ¼2p expðikzz ixtÞ P1<br />

>:<br />

j¼0<br />

A ð2nþ1Þ<br />

2jþ1 ðqÞðiÞ2jþ1 cos½ð2j þ 1ÞuŠJ 2jþ1ðktqÞ;<br />

B ð2nþ2Þ<br />

2jþ2 ðqÞð 1Þjþ1 sin½ð2j þ 2ÞuŠJ 2jþ2ðktqÞ;<br />

B ð2nþ1Þ<br />

2jþ1 ðqÞðiÞ2jþ1 sin½ð2j þ 1ÞuŠJ 2jþ1ðktqÞ.<br />

From these expressions, we see that the <strong>Mathieu</strong> <strong>beams</strong> are <strong>an</strong> infinite sum <strong>of</strong> Bessel <strong>beams</strong> <strong>of</strong> various<br />

orders. Consequently, these relations will permit us to propagate <strong>an</strong>alytically <strong>Mathieu</strong> <strong>beams</strong> using the well<br />

known integralÕs diffraction <strong>an</strong>d the <strong>propagation</strong> properties <strong>of</strong> Bessel <strong>beams</strong>.<br />

3. <strong>Paraxial</strong> <strong>propagation</strong> <strong>of</strong> <strong>Mathieu</strong> <strong>beams</strong><br />

If we consider <strong>an</strong> <strong>apertured</strong> paraxial <strong>ABCD</strong> optical system illuminated by one family <strong>of</strong> <strong>Mathieu</strong> <strong>beams</strong><br />

<strong>of</strong> system (4), the <strong>propagation</strong> <strong>of</strong> this field <strong>through</strong> the considered system c<strong>an</strong> be studied by using the Collins<br />

formula [25]. For the sake <strong>of</strong> simplicity, we consider only the first family <strong>of</strong> the above <strong>beams</strong>, i.e., the<br />

even modes uc2n, the treatment <strong>of</strong> the other <strong>Mathieu</strong> family is the same. The relationship between the input<br />

<strong>an</strong>d the output field distributions is given by<br />

uc ð2Þ<br />

2n ðq 2; u 2; zÞ ¼<br />

ik<br />

2pB<br />

A. Chafiq et al. / Optics Communications 253 (2005) 223–230 225<br />

Z Z q0 2p<br />

0<br />

0<br />

q 1uc ð1Þ<br />

2n ðq 1; u 1; z ¼ 0Þ<br />

exp ikz þ i k<br />

2B Aq2 1 2q1q2 cosðu1 u2ÞþDq 2<br />

2 dq1 du1; ð5Þ<br />

where uc ð1Þ<br />

2n ðq1; u1; z ¼ 0Þ is the field distribution at the point (q1, u1) in the input pl<strong>an</strong>e z =0, <strong>an</strong>d<br />

uc ð2Þ<br />

2n ðq2; u2; zÞ is field distribution at the point (q2, u2) in the output pl<strong>an</strong>e located at z dist<strong>an</strong>ce A, B, C<br />

<strong>an</strong>d D are the elements <strong>of</strong> the tr<strong>an</strong>sfer matrix characterizing the optical system. k is the wave vector <strong>an</strong>d<br />

q0 is the radius <strong>of</strong> the input aperture. A const<strong>an</strong>t phase term in Eq. (5) has been omitted which has<br />

non-influence on the output intensity distribution.<br />

In the following, we use the non-dimensional variables r1 = q1/q0, r2 = q2/q0, a = ktq0 <strong>an</strong>d n = z/ld, where<br />

ld ¼ kq2 0 =2 is the diffraction length related to the aperture radius. To describe the finite size <strong>of</strong> the optical<br />

system, we introduce the aperture function:<br />

ð4Þ


226 A. Chafiq et al. / Optics Communications 253 (2005) 223–230<br />

Apðr1Þ ¼ 1; 0 6 r1<br />

0;<br />

6 1;<br />

r > 1.<br />

ð6Þ<br />

As it is well known, this function c<strong>an</strong> be exp<strong>an</strong>ded into a finite sum <strong>of</strong> complex Gaussi<strong>an</strong> functions,<br />

Apðr1Þ ¼ Xk¼10<br />

k¼1<br />

Ak expð Bkr 2<br />

1Þ; ð7Þ<br />

where A k <strong>an</strong>d B k are the exp<strong>an</strong>sion <strong>an</strong>d Gaussi<strong>an</strong> coefficients, respectively, which could be found by a computer<br />

optimization [14]. By inserting this aperture function in the integral <strong>of</strong> Eq. (5) <strong>an</strong>d by using the following<br />

result [23],<br />

Z 1<br />

0<br />

r1J lðar1ÞJ lðdr1Þ expð mr 2<br />

1 Þdr1 ¼ 1<br />

2m I l<br />

ad<br />

2m<br />

exp<br />

a 2 þ d 2<br />

4m<br />

; ð8Þ<br />

with j arg mj < p<br />

4 ,Rea > 0 <strong>an</strong>d Red > 0, where Il is the modified Bessel function <strong>of</strong> the first kind, <strong>an</strong>d after<br />

some algebraic calculations, the output field distribution reads,<br />

with<br />

uc ð2Þ<br />

2n ðq 2; u 2; zÞ ¼2p expðikz þ iDq 2<br />

X 1<br />

j¼0<br />

2 =B0 Þ Xk¼10<br />

k¼1<br />

A ð2nÞ<br />

2j ðqÞð 1Þj cosð2ju 2ÞJ 2jðiaq 2=BkB 0<br />

Akð1=A þ iBkB 0 Þ exp ðaB 0 Þ 2 þ 4q 2<br />

2 =4B0ðBkB 0<br />

h i<br />

iAÞ<br />

iAÞ; ð9Þ<br />

B 0 ¼ B=ld. ð10Þ<br />

This expression shows that the propagated <strong>beams</strong> preserve a similar exp<strong>an</strong>sion <strong>of</strong> <strong>Mathieu</strong> <strong>beams</strong>, with <strong>an</strong><br />

added exponential term characterizing the paraxial approximation.<br />

4. Numerical calculations <strong>an</strong>d <strong>an</strong>alysis<br />

In this section, we perform some numerical calculations using Eq. (9) <strong>an</strong>d we discuss the effect <strong>of</strong> the<br />

paraxial tr<strong>an</strong>sformation by <strong>an</strong> <strong>ABCD</strong> optical system on the truncated zeroth-order <strong>Mathieu</strong> beam for three<br />

particular cases: free space, thin lens <strong>an</strong>d Fractional Fourier tr<strong>an</strong>sform.<br />

We note that in the preliminarily stage, we have used Matlab functions to calculate the eigenvalues <strong>of</strong><br />

tridiagonal matrix associated with <strong>Mathieu</strong> equations <strong>an</strong>d the Gutiérrez-Vega et al. [26] routines for the<br />

calculation <strong>of</strong> the exp<strong>an</strong>sion coefficients in the series <strong>of</strong> Eq. (4). As it is known the exp<strong>an</strong>sion coefficients<br />

v<strong>an</strong>ish when the index j tends to infinity, so less th<strong>an</strong> twenty coefficients have been used in the following<br />

<strong>an</strong>d the coefficient that possesses the most signific<strong>an</strong>t weight<br />

examples. The ratio between the coefficient A ð0Þ<br />

40<br />

A ð0Þ<br />

2 is taken approximately equal to 10 25 ; with this ratio we c<strong>an</strong> calculate the series with a good accuracy.<br />

For each value <strong>of</strong> q, we have chosen the number <strong>of</strong> exp<strong>an</strong>sion coefficients that gives the desired ratio. In the<br />

special case <strong>of</strong> q = 0, the characteristic value is reduced to zero <strong>an</strong>d the exp<strong>an</strong>sion coefficients are reduced to<br />

A ð0Þ<br />

0<br />

<strong>an</strong>d the others Að0Þ<br />

2j v<strong>an</strong>ish.<br />

4.1. Free space <strong>propagation</strong><br />

The matrix tr<strong>an</strong>sfer associated with a free space is


A B<br />

C D<br />

¼ 1 z<br />

0 1<br />

A. Chafiq et al. / Optics Communications 253 (2005) 223–230 227<br />

. ð11Þ<br />

In Fig. 1, we present the three-dimensional intensity pattern evolution <strong>of</strong> the zeroth-order <strong>Mathieu</strong> beam<br />

<strong>through</strong> the <strong>apertured</strong> free space. These plots were performed with the following parameters: q = 20,<br />

kt =33· 10 3 m 1 <strong>an</strong>d q0 = 2 mm. It is seen that the obtained behaviors are in agreement with those performed<br />

numerically in [7,13].<br />

Fig. 1. Free space <strong>propagation</strong> <strong>of</strong> the truncated zeroth-order <strong>Mathieu</strong> beam for the parameters: q 0 = 2 mm, q = 20 <strong>an</strong>d k t =33· 10 3<br />

m 1 : (a) <strong>propagation</strong> in x–z pl<strong>an</strong>e. (b) <strong>propagation</strong> in y–z pl<strong>an</strong>e.<br />

Fig. 2. Focalization <strong>of</strong> truncated zeroth-order <strong>Mathieu</strong> beam by a thin lens <strong>of</strong> focal length f = 0.6 m for the parameters q 0 = 2 mm,<br />

q = 20 <strong>an</strong>d kt =15· 10 3 m 1 : (a) evolution in (x–z) pl<strong>an</strong>e. (b) evolution in (y–z) pl<strong>an</strong>e. (c) intensity distribution <strong>of</strong> truncated zerothorder<br />

<strong>Mathieu</strong> beam in focal pl<strong>an</strong>e. (d) intensity distribution <strong>of</strong> truncated zeroth-order Bessel beam in focal pl<strong>an</strong>e.


228 A. Chafiq et al. / Optics Communications 253 (2005) 223–230<br />

4.2. Propagation <strong>through</strong> <strong>an</strong> <strong>apertured</strong> thin lens<br />

This system is characterized by the following tr<strong>an</strong>sfer matrix:<br />

A B<br />

C D<br />

¼ 1 z=f z<br />

1=f 1<br />

; ð12Þ<br />

here f is the focal length <strong>of</strong> the thin lens. To illustrate the <strong>propagation</strong> <strong>of</strong> <strong>Mathieu</strong> beam <strong>through</strong> this system,<br />

we present in Fig. 2(a) <strong>an</strong>d (b) the evolution <strong>of</strong> the intensity distribution in the (x z) <strong>an</strong>d(y z)<br />

pl<strong>an</strong>es. We give also in Fig. 2(c) the feature <strong>of</strong> the beam intensity in the focal pl<strong>an</strong>e. For comparison,<br />

the behavior <strong>of</strong> the Bessel <strong>beams</strong> in the focal pl<strong>an</strong>e is shown in Fig. 2(d). All these numerical calculations<br />

are performed with the same parameters q <strong>an</strong>d q 0, the others parameters are k t =15· 10 3 m 1 <strong>an</strong>d f = 0.6<br />

m. From these figures, we found the well known results on the focalization <strong>of</strong> the non-diffracting <strong>beams</strong>.<br />

Particularly, the existence <strong>of</strong> two maxima <strong>of</strong> the intensity, these maxima are located before <strong>an</strong>d after the<br />

geometrical focal. The second peak <strong>of</strong> intensity behind the geometrical focal c<strong>an</strong> be used to reconstruct<br />

Fig. 3. Intensity distribution <strong>of</strong> truncated zeroth-order <strong>Mathieu</strong> beam in the output (y–z) pl<strong>an</strong>e <strong>of</strong> FRT system for f = 0.75 m, q0 =2<br />

mm, q = 20, kt =33· 10 3 m 1 . (a) p = 0.1; (b) p = 0.5; (c) p = 0.7; (d) p =1.


A. Chafiq et al. / Optics Communications 253 (2005) 223–230 229<br />

the beam with a desired pr<strong>of</strong>ile [27,28]. Fig. 2(c) <strong>an</strong>d (d) present the difference in the focal pl<strong>an</strong>e between the<br />

intensity distribution <strong>of</strong> zeroth-order <strong>Mathieu</strong> beam <strong>an</strong>d zeroth-order Bessel beam. These plots show in<br />

both cases the <strong>an</strong>gular spectrum associated with each beam, i.e., A(u) =ce0(u, q) for the <strong>Mathieu</strong> beam<br />

<strong>an</strong>d A(u)=cte for the Bessel beam.<br />

4.3. Propagation <strong>through</strong> <strong>an</strong> <strong>apertured</strong> fractional Fourier tr<strong>an</strong>sform<br />

As it is known, the fractional Fourier tr<strong>an</strong>sform (FRT), is <strong>an</strong> extension <strong>of</strong> the conventional Fourier tr<strong>an</strong>sform.<br />

It was introduced into optics by Namias [29] as a mathematical tool to solve theoretical problems.<br />

There are at least two ways to implement optically the FRT: the first is based on the use <strong>of</strong> the graded-index<br />

medium, <strong>an</strong>d the second uses the combination <strong>of</strong> lenses <strong>an</strong>d space [30–32]. The <strong>ABCD</strong> matrix associated with<br />

the p-order FRT is given by<br />

A B<br />

C D ¼<br />

cos u f sin u<br />

; ð13aÞ<br />

sin u=f cos u<br />

with<br />

u ¼ pp=2; ð13bÞ<br />

<strong>an</strong>d f is the st<strong>an</strong>dard focal length. The conventional Fourier tr<strong>an</strong>sform is obtained for p =4n + 1, where n is<br />

<strong>an</strong> integer.<br />

By inserting the coefficients <strong>of</strong> the matrix Eq. (13a) in Eq. (9) one c<strong>an</strong> obtain the intensity distribution<br />

<strong>of</strong> <strong>Mathieu</strong> <strong>beams</strong> in the output pl<strong>an</strong>e <strong>of</strong> FRT systems for different fractional order p. InFig. 3, we<br />

present the dependence <strong>of</strong> the beam intensity on p, for the following parameters f = 0.75 m, q, kt <strong>an</strong>d<br />

q0 are kept the same as in the paragraph 4.1. In Fig. 4, we have presented the variation <strong>of</strong> the intensity<br />

in the interval [ 0.2 mm, 0.2 mm], even <strong>through</strong> the radius <strong>of</strong> the aperture is always conserved, i.e.,<br />

q 0 = 2 mm. From the Figs. 3 <strong>an</strong>d 4, we deduce that the fractional order p has a strong influence on<br />

the shape <strong>of</strong> the output distribution intensity <strong>of</strong> the <strong>beams</strong> when we consider the (y z) pl<strong>an</strong>e as a pl<strong>an</strong>e<br />

<strong>of</strong> <strong>propagation</strong>. However, we have a simple ch<strong>an</strong>ge in the width <strong>of</strong> the <strong>beams</strong> intensity for the (x z)<br />

pl<strong>an</strong>e.<br />

Fig. 4. Intensity distribution <strong>of</strong> truncated zeroth-order <strong>Mathieu</strong> beam in the output (x–z) pl<strong>an</strong>e <strong>of</strong> FRT system for f = 0.75 m, q0 =2<br />

mm, q = 20, kt =33· 10 3 m 1 <strong>an</strong>d p 2 {0.1, 0.3, 0.5, 0.7}.


230 A. Chafiq et al. / Optics Communications 253 (2005) 223–230<br />

5. Conclusion<br />

Starting from the exp<strong>an</strong>sion <strong>of</strong> <strong>Mathieu</strong> <strong>beams</strong> in terms <strong>of</strong> pl<strong>an</strong>e waves, the <strong>an</strong>alytical expression <strong>of</strong> the<br />

overlaps between the <strong>Mathieu</strong> <strong>beams</strong> <strong>an</strong>d the Bessel <strong>beams</strong> was derived. Using Collins formula, we have<br />

derived the <strong>an</strong>alytical expression <strong>of</strong> the field distribution <strong>of</strong> the truncated <strong>Mathieu</strong> <strong>beams</strong> in the output<br />

pl<strong>an</strong>e <strong>of</strong> <strong>an</strong> <strong>apertured</strong> <strong>ABCD</strong> paraxial system. Numerical calculations were performed to illustrate the paraxial<br />

<strong>propagation</strong> <strong>of</strong> these <strong>beams</strong> <strong>through</strong> free space, <strong>an</strong> <strong>apertured</strong> thin lens, <strong>an</strong>d <strong>an</strong> <strong>apertured</strong> Fractional<br />

Fourier tr<strong>an</strong>sform. It is shown that our results provide more convenient for treating the <strong>propagation</strong> <strong>an</strong>d<br />

tr<strong>an</strong>sformation <strong>of</strong> this kind <strong>of</strong> <strong>beams</strong>.<br />

References<br />

[1] P.M. Morse, H. FeshbachMethods <strong>of</strong> Theoretical Physics, vol. 1, McGraw-hill, New York, 1953.<br />

[2] W. Miller Jr., in: G.C. Rota (Ed.), Encyclopedia <strong>of</strong> Mathematics <strong>an</strong>d Its Applications, vol. 4, Addison-Wesley, Reading, MA,<br />

1977.<br />

[3] E.G. Kalnins, W. Miller Jr., J. Math. Phys. 18 (1977) 271.<br />

[4] J. Durnin, J. Opt. Soc. Am. A 4 (1987) 651.<br />

[5] J. Durnin, J.J. Miceli Jr., J.H. Eberly, Phy. Rev. Lett. 58 (1987) 1499.<br />

[6] S. W<strong>an</strong>g, Q. Lin, X. Lu, Optik 100 (1995) 8.<br />

[7] J.C. Gutiérrez-Vega, M.D. Iturbe-Castillo, S. Chávez-Cerda, Opt. Lett. 25 (2000) 1493.<br />

[8] J.C. Gutiérrez-Vega, M.D. Iturbe-Castillo, G.A. Ramírez, E. Tepichin, R.M. Rodríguez-Dagnino, S. Chávez-Cerda, G.H.C.<br />

New, Opt. Commun. 195 (2001) 35.<br />

[9] A. Belafhal, Z. Hricha, Phy. Chem. News 16 (2004) 33.<br />

[10] M.A. B<strong>an</strong>dres, J.C. Gutiérrez-Vega, S. Chávez-Cerda, Opt. Lett. 29 (2004) 44.<br />

[11] G. Indebetouw, J. Opt. Soc. Am. A 6 (1989) 150.<br />

[12] S. Chávez-Cerda, M.J. Padgett, I. Allison, G.H.C. New, J.C. Gutiérrez-Vega, A.T. OÕNeil, I. MacVicar, J. Courtial, J. Opt. B:<br />

Qu<strong>an</strong>tum Semiclass. 4 (2002) S52.<br />

[13] C.A. Dartora, M. Zamboni-Rached, K.Z. Nóbrega, E. Recami, H.E. Hernández-Figueroa, Opt. Commun. 222 (2003) 75.<br />

[14] J.J. Wen, M.A. Breazeale, J. Acoust. Soc. Am. 83 (1988) 1752.<br />

[15] D. Deching, X. Liu, J. Opt. Soc. Am. A 16 (1999) 1286.<br />

[16] B. Lü, S. Luo, J. Mod. Opt. 48 (2001) 2169.<br />

[17] D. Zhao, H. Mao, H. Liu, F. Jing, Q. Zhu, X. Wei, Optik 114 (2003) 504.<br />

[18] D. Zhao, H. Mao, W. Zh<strong>an</strong>g, S. W<strong>an</strong>g, Opt. Commun. 224 (2003) 5.<br />

[19] B. Lü, X. Ji, J. Opt. A: Pure Appl. Opt. 6 (2004) 161.<br />

[20] D. Zhao, H. Mao, M. Shen, H. Liu, F. Jing, Q. Zhu, X. Wie, J. Opt. A: Pure Appl. Opt. 6 (2004) 148.<br />

[21] Z. Mei, D. Zhao, J. Opt. A: Pure Appl. Opt. 6 (2004) 1005.<br />

[22] J.A. Stratton, Electromagnetic Theory, McGraw-hill, New York, 1941.<br />

[23] I.S. Gradshteyn, I.M. Ryzhik, Tables <strong>of</strong> Integrals, Series, <strong>an</strong>d Products, fifth ed., Academic Press, New York, 1994.<br />

[24] J.P. Taché, Appl. Opt. 26 (1987) 2698.<br />

[25] S.A. Collins, J. Opt. Soc. Am. 60 (1970) 1168.<br />

[26] J.C. Gutiérrez-Vega, S. Chávez-Cerda, A. Meneses-Nava, R.M. Rodríguez-Dagnino, Theory <strong>an</strong>d Numerical Analysis <strong>of</strong> the<br />

<strong>Mathieu</strong> Functions, Monterrey, NL, México, 2003.<br />

[27] S. Chávez-Cerda, G.H.C. New, Opt. Commun. 181 (2000) 369.<br />

[28] J.C. Gutiérrez-Vega, R. Rodráguez-Masegosa, S. Chávez-Cerda, J. Opt. A: Pure Appl. Opt. 5 (2003) 276.<br />

[29] V. Namias, J. Inst. Math. Appl. 25 (1980) 241.<br />

[30] D. Mendlovic, H.M. Ozaktas, J. Opt. Soc. Am. A 10 (1993) 1875.<br />

[31] H.M. Ozaktas, D. Mendlovic, J. Opt. Soc. Am. A 10 (1993) 2522.<br />

[32] A.W. Lohm<strong>an</strong>n, D. Mendlovic, Z. Zalevsky, in: E. Wolf (Ed.), Progress in Optics, Elsevier, Amsterdam, 1998.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!