31.08.2017 Views

BA_finalohneMovies

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>BA</strong>CHELOR THESIS<br />

Methylation dynamics<br />

during Meiosis in<br />

Arabidopsis thaliana (L.)<br />

Frederike Schäfer<br />

Bachelor of Science Biology<br />

University of Hamburg<br />

handed in: August 2017<br />

1. Corrector: Prof. Dr. Arp Schnittger<br />

2. Corrector: Kostika Sofroni


Contents<br />

1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6<br />

2 Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6<br />

3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7<br />

3.1 General function of DNA methylation . . . . . . . . . . . . . . . . . . 7<br />

3.2 Establishment, maintenance and function of DNA methylation . . . . . 8<br />

3.3 Methylation during Meiosis . . . . . . . . . . . . . . . . . . . . . . . 13<br />

3.4 Visualization of Methylation - DYNAMET reporters . . . . . . . . . . 15<br />

3.5 Aim of this project . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17<br />

4 Material and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18<br />

4.1 Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18<br />

4.2 Molecular methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22<br />

4.3 Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25<br />

4.4 Confocal microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . 26<br />

5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28<br />

5.1 Detection of CG methylation with MBD6 −GFP . . . . . . . . . . . . . 28<br />

5.2 Detection of CHH methylation with SUVH9 −GFP . . . . . . . . . . . 38<br />

6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42<br />

6.1 Comparison of MBD6 −GFP and SUVH9 −GFP dynamics . . . . . . . . 42<br />

6.2 Dynamics of MBD6 −GFP . . . . . . . . . . . . . . . . . . . . . . . . 43<br />

6.3 Dynamics of SUVH9 −GFP . . . . . . . . . . . . . . . . . . . . . . . . 46<br />

6.4 General remarks on the use of fluorescent proteins . . . . . . . . . . . 48<br />

6.5 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49<br />

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49<br />

7 Eidesstaatliche Erklärung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57<br />

8 Supplementaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

8.1 Movies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

8.2 Additional graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

1


8.3 Duration of meiotic substages . . . . . . . . . . . . . . . . . . . . . .<br />

8.4 Vector Sequences and Maps . . . . . . . . . . . . . . . . . . . . . . .<br />

2


List of Figures<br />

1 RNA-directed DNA methylation pathway . . . . . . . . . . . . . . . . . . . . 9<br />

2 Structures of CMT3 and CMT2 . . . . . . . . . . . . . . . . . . . . . . . . . . 12<br />

3 mCG-Venus during male sporogenesis . . . . . . . . . . . . . . . . . . . . . . 16<br />

4 mCHH-Venus during male sporogenesis . . . . . . . . . . . . . . . . . . . . . 17<br />

5 Multisite Gateway Three-Fragment Vector construction . . . . . . . . . . . . . 23<br />

6 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27<br />

7 MBD6 −GFP during pre-meiosis . . . . . . . . . . . . . . . . . . . . . . . . . 29<br />

8 MBD6 −GFP xREC8 −mRUBY 3 during pre-meiosis . . . . . . . . . . . . . . . . . 29<br />

9 MBD6 −GFP x TagRFP− CENH3 in DE +/− during pre-meiosis . . . . . . . . . . . 30<br />

10 MBD6 −GFP during early prophase . . . . . . . . . . . . . . . . . . . . . . . . 31<br />

11 Colocalization of MBD6 −GFP with REC8 −mRUBY 3 . . . . . . . . . . . . . . . 32<br />

12 MBD6 −GFP during early to mid-prophase . . . . . . . . . . . . . . . . . . . . 33<br />

13 MBD6 −GFP xREC8 −mRUBY 3 during mid-prophase . . . . . . . . . . . . . . . . 33<br />

14 MBD6 −GFP xASY3 −TagRFP during Mid-prophase . . . . . . . . . . . . . . . . 34<br />

15 MBD6 −GFP x ASY3 −TagRFP during middle to end of prophase . . . . . . . . . 35<br />

16 MBD6 −GFP xASY3 −TagRFP during Prophase I to Metaphase I transition . . . . 35<br />

17 MBD6 −GFP during anaphase I to telophase I transition . . . . . . . . . . . . . 36<br />

18 MBD6 −GFP during prophase II to metaphase II transition . . . . . . . . . . . . 36<br />

19 MBD6 −GFP during metaphase II to telophase II transition . . . . . . . . . . . . 37<br />

20 SUVH9 −GFP during pre-meiosis . . . . . . . . . . . . . . . . . . . . . . . . . 38<br />

21 SUVH9 −GFP during early prophase . . . . . . . . . . . . . . . . . . . . . . . 39<br />

22 SUVH9 −GFP during prophase . . . . . . . . . . . . . . . . . . . . . . . . . . 40<br />

23 SUVH9 −GFP during meiosis I . . . . . . . . . . . . . . . . . . . . . . . . . . 41<br />

24 SUVH9 −GFP during meiosis II . . . . . . . . . . . . . . . . . . . . . . . . . . 41<br />

25 Localization of rRNA genes . . . . . . . . . . . . . . . . . . . . . . . . . . . 46<br />

26 MBD6 −GFP xREC8 −mRUBY 3 during meiosis I . . . . . . . . . . . . . . . . . .<br />

27 MBD6 −GFP xREC8 −mRUBY 3 during meiosis II . . . . . . . . . . . . . . . . . .<br />

3


28 Durations of meiotic stages . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

4


List of Tables<br />

1 Standard PCR mix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18<br />

2 Liquid LB medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19<br />

3 Solid LB medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19<br />

4 S.O.C medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19<br />

5 Magic buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19<br />

6 Used antibiotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20<br />

7 Table of used primers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20<br />

8 Table of vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20<br />

9 Table of double constructs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21<br />

10 List of chemicals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21<br />

11 Used equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22<br />

12 Ingredients for LR reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23<br />

13 Standard PCR cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24<br />

5


1 Abstract<br />

DNA methylation is an important epigenetic modification as it influences various cell functions<br />

by controlling gene expression. Moreover, adaptions to environmental changes can be inherited to<br />

future generations by alteration of DNA methylation. Little is known about the dynamics of DNA<br />

methylation during meiosis so far. Here, the dynamics of the two novel reporter lines MBD6 −GFP<br />

and SUVH9 −GFP for CG and CHH methylation respectively are investigated in detail during<br />

meiosis by live cell imaging of male meiocytes in A. thaliana. During pre-meiosis, the global<br />

DNA methylation is low and persists only in potentially centromeric and pericentromeric regions,<br />

but an increase is observed during meiosis. Both reporters displayed a distinct pattern. In addition<br />

to the methylation reporters, the meiocytes were simultaneously monitored with two meiotic<br />

reporter lines: ASY3 or REC8. Microscope and co-localization analysis revealed an influence of<br />

methylation on the formation of recombination events. Thus, the combination of meiotic and<br />

methylation reporter line is a novel and useful approach to describe the progression through<br />

meiosis and to understand the implication of methylation in this context better.<br />

2 Zusammenfassung<br />

DNA Methylierung ist eine bedeutsame epigenetische Modifikation, da sie durch Kontrolle der<br />

Genexpression vielfätige Funktionen der Zelle beeinflusst. Des Weiteren können Anpassungen an<br />

die Umwelt durch Vererbung veränderter DNA Methylierungsmuster an nachfolgende Generationen<br />

weiter gegeben werden. Aktuell ist wenig bekannt über die Dynamik von DNA Methylierung<br />

während der Meiose. Hier wurden die neuartigen Reporter MBD6 −GFP und SUVH9 −GFP für die<br />

Detektion von CG beziehungsweise CHH Methylierung genutzt, um Methylierungsdynamiken<br />

während der Meiose durch Lebendzellbeobachtung männlicher Meiozyten nachzuvollziehen.<br />

Während der Prämeiose stellte sich die DNA Methylierung als gering heraus, es erfolgte jedoch<br />

eine Zunahme im Laufe der Meiose. Beide Reporter zeigten ein spezifisches Muster. Ergänzend<br />

zu den Methylierungsreportern wurden die Meiozyten zeitgleich mit zwei meiotischen Reportern<br />

verfolgt: ASY3 oder REC8. Die Untersuchung durch Mikroskop- und Kolokalisationanalysen<br />

enthüllten einen Einfluss der DNA Methylierung auf die Formation von Rekombinationsreignissen.<br />

Daher ist die Kombination von meiotischen und Methylierungsreportern eine neuartige<br />

und sinnvolle Herangehensweise um den Ablauf der Meiose zu beschreiben und vor diesem<br />

Hintergrund den Einfluss von DNA Methylierung besser zu verstehen.<br />

6


3 Introduction<br />

3.1 General function of DNA methylation<br />

Function within the organism<br />

Although all cells of an organism embody the same set of genomic material, gene expression<br />

levels are tissue-specific and vary over time. This differential gene expression is crucial to maintain<br />

the architecture of complex organisms where different type of cells needs to fulfil diverse<br />

functions, requiring distinct and specific proteins. Thus, regulation of gene expression is the core<br />

function within the cell and the entire organism. It controls not only the cell differentiation but<br />

also governs the functions of the cell [Alberts et al., 2011a]. Epigenetic marks, such as DNA<br />

methylation and histone modifications play an important role in the control of gene expression. A<br />

required premise for gene expression is that the gene in charge lies within a region of loose chromatin<br />

called euchromatin. Thus, accession of transcription activators is assured. Tightly packed<br />

and transcriptionally silenced chromatin is called heterochromatin and affect pericentromeric<br />

and telomeric regions or terminally differentiated cells [Graw, 2015a]. Chromatin condensation<br />

is directly linked to epigenetic modifications. Histone modifications include acetylation,<br />

phosphorylation, ubiquitination and mono-, di- or trimethylation, which lead, depending on<br />

the placement, to chromatin compaction or loosening [Bannister and Kouzarides, 2011]. DNA<br />

methylation does not only induce heterochromatin formation, but also controls gene expression<br />

within euchromatin. Gene promoter methylation inactivates the respective gene as it hinders<br />

transcription factors from binding. Promoter methylation is rather rare but seems to play an<br />

important role in tissue-specific gene expression. In contrast, gene body methylation enhances<br />

gene expression by so far unknown mechanisms [Zhang et al., 2006]. Since genomic regions<br />

within heterochromatin are inactive, methylation-induced heterochromatin formation is important<br />

for genomic imprinting and control of small interfering RNA (siRNA) producing regions<br />

such as transposons [Zhang et al., 2006]. Transposon silencing is essential for genome stability.<br />

Due to their ability to "jump" within the genome, transposable elements are always a "risk" as<br />

they can copy themselves into different gene regions. This can lead to functional disruption<br />

of the corresponding gene [Alberts et al., 2011b]. Epigenetic modifications of the genome are<br />

not only useful to permanently change the transcriptional status of specific regions but also<br />

for more short-term changes. By controlling gene transcription, the cell can adapt to different<br />

environmental influences. As plants are stationary organisms, fluctuating adaption is the only<br />

solution to fast changing environments [Mathieu et al., 2007].<br />

7


Inheritance of environmental influences<br />

DNA methylation and other epigenetic marks do not only maintain phenotypic plasticity of the<br />

organism itself but also make these adaptations heritable to future generations, which is the most<br />

staggering feature of epigenetic regulation. This effect is known as adaptive transgenerational<br />

plasticity and serves the purpose to improve the offspring’s adaptation to the current environment.<br />

The parents inherit an epigenetic change to their progeny that is modified according to the<br />

conditions they experienced. This adaptation induces for example a higher stress tolerance.<br />

Adaptive stress-responses include abiotic stresses such as drought, heat or nutrient stress but<br />

also biotic stress like pathogen defense and herbivore damage. Inherited adaptations are passed<br />

on from maternal plants to the offspring via seed provisioning or storage of mRNAs, hormones<br />

and proteins in the seeds. Adaptations can also be transmitted by histone modifications and<br />

DNA methylation, persisting in multiple generations [Herman and Sultan, 2011]. Most abiotic<br />

and biotic stresses trigger a global DNA methylation and homologous recombination frequency<br />

(HRF) increase in the offspring. This will induce greater genetic variability in the resulting<br />

progeny, even if the offspring lives in non-stress conditions [Boyko et al., 2010].<br />

3.2 Establishment, maintenance and function of DNA methylation<br />

DNA methylation is the attachment of a methylgroup to a cytosine producing 5-methylcytosine.<br />

In plants, cytosines in a CG, CHG or CHH context (H=A,T or C) can be methylated [Chan et al., 2005].<br />

In most cases, this modification has a repressive effect. Furthermore, methylation is also<br />

found in gene bodies of highly expressed genes and thus hypothetically enhances transcription<br />

[Zilberman et al., 2007]. The different contexts are established and maintained by different<br />

pathways, probably due to their differential function.<br />

RdDM pathway<br />

Guidance of proteins by small interfering RNAs is an important function within the cell in order<br />

to modify transcriptional regulation at specific target regions. This does not only play a role in the<br />

post-transcriptionally silencing RNA interference pathway (RNAi) but also in the RNA-directed<br />

DNA methylation pathway (RdDM). Here, the methyltransferase DOMAINS REARRANGED<br />

METHYLTRANSFERASE 2 (DRM2) is guided by 24-nucleotide (nt) siRNAs to establish de<br />

novo DNA methylation in CG, CHG and CHH contexts at applicable siRNA-producing sites like<br />

transposons.<br />

8


Figure 1: RNA-directed DNA methylation pathway. The mechanisms of the RdDM pathway<br />

are complex and largely hypothesized. It is proposed that Pol IV produces ssRNA which is in<br />

turned used by RDR2 to generate dsRNA. DLC3 uses these transcripts to produce 24-nt siRNA<br />

that are then loaded onto AGO4. Overall multiple interactions, DRM2 in then recruited to sites<br />

where AGO4 and other components are present. Figure from [Law and Jacobsen, 2010].<br />

Due to its complexity, the exact mechanism and proteins implicated in the RdDM pathway<br />

remain widely unclear. This model connects most so far available data. The biogenesis of the<br />

24-nt siRNAs starts with the production of single stranded RNA transcripts corresponding to<br />

transposons and other repetitive elements mediated by RNA polymerase IV (Pol IV). RNA-<br />

DEPENDENT RNA POLYMERASE 2 (RDR2) generates double stranded RNAs from these<br />

transcripts, followed by the procession of 24-nt siRNAs by DICER-LIKE 3 (DLC3). The 24-nt<br />

siRNA can be loaded to Argonaute protein 4 (AGO4). AGO4 interacts with two subunits of the<br />

RNA polymerase Pol V, NUCLEAR RNA POLYMERASE E1 (NRPE1) and NRPE2, as well<br />

as DRM2. Pol V generates intergenic non-coding region (IGN) transcripts, which serve as a<br />

scaffold to recruit AGO4. AGO4 can also interact with SUPPRESSOR OF TY INSERTION<br />

5-LIKE (SPTL5). This association bridges siRNA and IGN producing sides via the interference<br />

of AGO4-bound siRNAs and IGNs. Another protein, INVOLVED IN DE NOVO2 (IDN2) will<br />

recognize this interactions und thus recruit DRM2 only to sites that produce both transcripts (see<br />

Fig. 1). RdDM is the main pathway to establish de novo DNA methylation at CG, CHG and<br />

CHH context and thus to induce heterochromatin formation [Law and Jacobsen, 2010].<br />

9


Maintenance and function of CG methylation<br />

CG methylation is the most frequent methylation context and is maintained by the methyltransferase<br />

METHYLTRANSFERASE 1 (MET1), the methylcytosine-binding proteins of the<br />

VARIANT IN METHYLATION (VIM) family and DEFICIENT IN DNA METHYLATION<br />

1 (DDM1), an ATPase and nucleosome remodeler of the SWI2/SNF2 family. In brief, newly<br />

synthesized DNA strands lack methylation, after DNA replication leaves previously symmetrically<br />

methylated CG sites hemimethylated, a circumstance that VIM proteins can detect via their<br />

mCG-binding SRA-domain. MET1 is then recruited by VIM and reestablishes the fully methylated<br />

state. DDM1 plays an essential role in maintaining CG methylation in heterochromatic<br />

transposable elements (TE) by making the chromatin accessible to MET1 and by overcoming<br />

the inhibiting effect of the linker histone H1. In euchromatin on the other hand, DDM1 is not a<br />

requirement for chromatin accessibility [Zemach et al., 2013].<br />

In plants, heritable and long-term adaptations are facilitated by CG methylation [Mathieu et<br />

al., 2007]. Thus, the plant uses CG methylation for genomic imprinting, transposon silencing,<br />

cell differentiation, tissue-specific gene expression and promoter and gene body methylation.<br />

[Chan et al., 2005, Song et al., 2005, To et al., 2015].<br />

Maintenance and function of non-CG methylation<br />

The maintenance of symmetrical CHG methylation is assured by a reinforcing loop between<br />

DNA methylation and histone 3 lysine 9 dimethylation (H3K9me2). This pathway involves the<br />

CHG methyltransferase CHROMOMETHYLASE 3 (CMT3) and the histone methyltransferase<br />

SUPPRESOR OF VARIEGATION 3-9 HOMOLOGUE 4 (SUVH4, also known as KYP), which<br />

is responsible for H3K9 dimethylation (H3K9me2). Two other histone methyltransferases,<br />

SUVH5 and SUVH6 also play a role in the global CHG methylation. CMT3 cannot only<br />

methylate DNA but also binds methylated histone H3 tails with its chromodomain. Thereby,<br />

it is recruited by histone 3 lysine 9 (H3K9) mono-, di- or trimethylation. SUVH4 on the<br />

other hand consists of a histone methylation domain and an SRA domain that can bind CHG<br />

methylation specifically. CMT3 also potentially controls CHH methylation at some loci. Recently,<br />

another chromomethylase, CMT2, was discovered. CMT2 plays a role in CHG and CHH<br />

maintenance, using the same reinforcing loop as CMT3 and thus working as a redundant CHG<br />

methyltransferase to CMT3 [Hume Stroud et al., 2014]. Both CMT2 and CMT3 need DDM1 to<br />

grant them access to the heterochromatin, similar as for MET1 in CG methylation maintenance<br />

[Zemach et al., 2013]. CHH methylation is not only maintained by CMT2 and CMT3 but the<br />

10


DRM2 methyltransferase contributes as well by constant de novo methylation by the RdDM<br />

pathway. On the contrary, DRM2 only plays a minor role in mCHG maintenance and has no<br />

effect on mCG preservation [Cao et al., 2003]. The SUVH9 protein, containing an SRA-domain,<br />

works within the RdDM pathway and may play a role to conserve DRM2 activity at asymmetric<br />

CHH sites [Johnson et al., 2008]. Non-CG methylation is exclusive to the plant kingdom and<br />

most likely evolved as a redundant pathway to ensure transposon silencing. Generally, non-CG<br />

methylation is less stable than CG methylation and it is not inherited [Dalakouras et al., 2012].<br />

Besides transposon silencing, it rather has a role in immediate, non-heritable stress responses<br />

[Mathieu et al., 2007]. Non-CG methylation can also be found in silent gene promoters and thus<br />

influence gene expression [Zhang et al., 2006].<br />

Mechanisms of Demethylation<br />

Mechanisms of demethylation are crucial to guarantee variable gene activation. Demethylation<br />

occurs passively by loss of methylation during replication or actively by removal of methylated<br />

cytosines [Law and Jacobsen, 2010]. Active demethylation in A. thaliana is carried out by the<br />

DNA glycosylases REPRESSOR OF SILENCING 1 (ROS1), DEMETER (DME), DEMETER-<br />

LIKE 2 (DML2) and DML3. All of these DNA glycosylases recognize methylated cytosines in a<br />

sequence independent manner and remove them by breaking the N-glycosidic bond and base<br />

excising at the DNA backbone. The repair of the DNA gap is carried out by a so far unknown<br />

DNA polymerase and lyase, but it is proposed that the base excision repair (BER) pathway is<br />

implicated. The process by which ROS1, DME, DML2 and DML3 find their specific target loci<br />

remains yet to be explored. In contrast to other DNA glycosylases, DME is specifically expressed<br />

in the central cell of the female gametophyte to establish imprinting during gametogenesis. Plants<br />

initiate imprinting by the removal of their respective methylations. DML2, DML3 and ROS1<br />

function redundantly in vegetative tissues such as roots and leaves. It is not yet fully understood<br />

what exactly their function is, but it is suggested that they protect genes from being methylated.<br />

These genes are close to heterochromatic regions and thus targeted by RdDM. Furthermore, they<br />

keep transposons in an adaptive but silenced state to enable reactivation during gametogenesis.<br />

Passive demethylation occurs during replication when the methyltransferases that are responsible<br />

for remethylation are not expressed. This process is observed in the endosperm of the female<br />

gametophyte where MET1 activity is suppressed to establish imprinting [Jullien et al., 2008].<br />

It is thought that passive demethylation works together with active demethylation as it aids<br />

DME function. A lack of MET1 results in hemimethylated DNA which improves DME activity<br />

and reduces the risk of DNA double strand break. The decrease of MET1 can also inhibit<br />

11


Figure 2: Structures of CMT3 and CMT2. Top. Structure of CMT3 with highlighted chromodomain<br />

(A) and S-adenosyl-L-methionine-dependent methyl transferase (B). Bottom. Structure<br />

of CMT2 with highlighted chromodomain (C) and S-adenosyl-L-methionine-dependent<br />

methyl transferase (D). Figure from SWISS-MODEL [Biasini et al., 2014, Kiefer et al., 2008,<br />

Arnold et al., 2006, Guex et al., 2009].<br />

instantaneous remethylation of newly demethylated DNA [Law and Jacobsen, 2010].<br />

12


3.3 Methylation during Meiosis<br />

Principles of Meiosis<br />

Meiosis is constituted of two consecutive divisions with the first one being a reductional division<br />

as the ploidy is reduced from diploid to haploid. The second division is equatorial, similar<br />

to a mitosis, in which the sister chromatids are segregated leading to four haploid daughter<br />

cells. Cyclin-dependent kinases (CDKs) are the main regulators of the cell cycle and meiotic<br />

progression. Throughout the cell cycle different proteins are specifically phosphorylated by<br />

CDKs in specific time points, making the right timing of CDK activity crucial for the cell cycle<br />

progression. CDKs can interact with activating cyclins and inhibiting KIP-RELATED PRO-<br />

TEINS (KRP). The CDK-cyclin complexes can mainly be inactivated by P-loop phosphorylation<br />

or activated by phosphorylation of their T-loop by CDK-activating kinases (CAKs). Different<br />

CDK mutants have been generated and described in order to better understand their role during<br />

cell cycle and meiosis [Dissmeyer et al., 2009]. Another important protein that works within the<br />

cell cycle control is RBR1-2. This protein is required for correct cell proliferation, including cell<br />

division and differentiation in gametic and accessory cell types [Johnston and Gruissem, 2009].<br />

Meiosis I starts with the alignment of homologous chromosomes in prophase I. In early prophase,<br />

during leptotene, the chromosomes start to condense, resulting in visibly condensed regions<br />

called chromocenters. Furthermore, as chromosome synapsis starts, the induction of double<br />

strand breaks will result in crossing-over formation later on. Proteins of the meiotic cohesion<br />

complex such as REC8 are important throughout prophase I, as they mediate the sister chromatid<br />

cohesion and chromosome organization [Yoon et al., 2016]. Another protein involved<br />

in sister chromatid and centromere cohesion is DYAD/SWI1, which mediates bivalent formation<br />

[Agashe et al., 2002]. The chromosome condensation and synapsis further proceeds in<br />

zygotene and the reparation of non-crossing over double strand breaks starts. The homologous<br />

chromosomes begin to align in several spots due to the formation of the synaptonemal<br />

complex, consisting of axial-element associated proteins such as ASY1, ASY3 and ZYP1.<br />

[Ferdous et al., 2012]. In pachytene, the homologous chromosomes are fully aligned and connected<br />

by the synaptonemal complex. Additionally, crossing-overs are present at previously<br />

induced and not repaired double strand breaks. During the last stage of prophase I, diakinesis,<br />

the synaptonemal complex disappears and the bivalents stay connected only in chiasmata regions.<br />

Chiasmata indicate regions of recombination, produced by crossing-overs. In metaphase I, the<br />

bivalents align in the equatorial plane and the spindle apparatus, constituted of microtubules,<br />

separates the five bivalents. In anaphase I, the homologous chromosomes segregate to the<br />

13


opposite poles of the cell. Then the two pools of chromosomes decondense and the organelle<br />

band separates them from one another during telophase I. Directly after, the chromatin condenses<br />

again in prophase II, followed by the alignment of the chromosomes in the equatorial plane<br />

during metaphase II. The sister chromatids are then separated in anaphase II. Once at the opposite<br />

poles of the cell, the chromatids decondense in telophase II and the tetrade splits, forming four<br />

haploid spores [Ross et al., 1996, Graw, 2015b].<br />

Influences of methylation on recombination<br />

Besides the reduction of the genetic content, recombination is another important process that<br />

occurs during meiosis. The frequency of recombination events is not steady within the genome<br />

as there are so called "crossing-over hot spots" where recombination occurs more frequently.<br />

The distribution of crossing-overs along the chromosomes is not random, depending on interference<br />

and homeostasis. Interference is the reciprocal influence that crossing-over hot<br />

spots have on their localization to each other, while homeostasis describes the appearance of<br />

crossing-over hot spots on a stable frequency, independent on double stand break frequency<br />

[Higgins et al., 2004, Martini et al., 2006]. Crossing-over hot spots depend on the histone variant<br />

H2A.Z and correlate with transcriptional start and termination sites, as well as accessible<br />

chromatin marks such as H3K4me3, low DNA methylation and low nucleosome density, represented<br />

by a low nucleosome occupation of the DNA [Choi et al., 2013]. High DNA methlyation,<br />

histone marks such as H3K9me2 and high nucleosome density on the other hand suppress recombination<br />

hot spots [Yelina et al., 2015]. This leads to a variable crossing-over distribution along<br />

the chromosomes. Heterochromatic regions, rich in transposons and repetitive elements, are<br />

usually heavily methylated and thus recombination suppressed, for example at the centromeres.<br />

Gene-rich regions on the other hand are within open chromatin and hence show an increased<br />

crossing-over frequency [Drouaud et al., 2007]. Loss of DNA methylation is sufficient to initiate<br />

remodeling of crossing-over hot spots, although the overall frequency of recombination events<br />

remain similar. An increase in centromeric recombination is related to a severe methylation<br />

loss in this region. Furthermore, pericentromeric crossing-overs are decreased and hot spots in<br />

euchromatic chromosome arms increased, probably due to homeostasis. Nevertheless, the exact<br />

reason and mechanisms remain to be uncovered [Yelina et al., 2012, Mirouze et al., 2012].<br />

14


Chromatin dynamics during premeiosis<br />

In plants, germline cells are established from and within somatic cells in floral organs in<br />

late development. Spore mother cells (SMCs) specialize from somatic precursor cells and by<br />

undergoing meiosis and two rounds of mitosis they form the multicellular gametophyte. This<br />

differentiation is accompanied by global chromatin reorganization, at least in the female SMCs.<br />

The depletion of H1 linker histones is one of the earliest signs of megaspore mother cell (MMC)<br />

differentiation. It comes along with global nucleosome remodeling, chromatin decondensation<br />

and loss of heterochromatin. The chromatin is shifted to a more active state, supported by the<br />

change in histone marks. The activating histone mark H3K4me3 is increased in MMCs while<br />

repressing H4K27me1, H3K27me3 and H3K9me1 decrease. The chromatin remodeling and<br />

global loss of heterochromatin may serve different purposes. First, SMC differentiation results<br />

from a change in gene expression due to the exit of the SMC from the somatic program. To<br />

undergo meiosis, meiotic genes have to be activated. It is indicated, that the RdDM pathway<br />

plays a role in the transition from somatic to meiotic program. Second, the spore cells need to be<br />

in a pluripotent state to form a multicellular gametophyte. Thus, the cell undergoes epigenetic<br />

reprogramming, meaning that epigenetic marks corresponding to the previous somatic cell<br />

function are erased. However, the methylome landscape was not observed in this context so far.<br />

The loss of heterochromatin also leads to TE reactivation in SMCs, although they seem to be<br />

contained by the RdDM pathway [She and Baroux, 2014].<br />

3.4 Visualization of Methylation - DYNAMET reporters<br />

Two reporter proteins were recently developed by Ingouff et al., (2017) to observe the changes<br />

of methylation patterns during gamete development by live cell imaging. To achieve this aim,<br />

two proteins with specific methylation-binding domains were used. One reporter targeted<br />

symmetrical CG methylation and the other asymmetrical CHH methylation.<br />

Symmetrical mCG - MBD6-GFP<br />

The A.thaliana protein METHYL-CpG-BINDING DOMAIN-CONTAINING PROTEIN 6<br />

(MBD6) possesses a methyl-binding-domain (MBD) that aims at symmetrical mCG. Once<br />

bound to mCG, MBD6 recruits histone deactylases and chromatin remodeling factors leading<br />

to chromatin compaction and hence transcriptional silencing. Thus, MBD6 works as a<br />

15


mediator between DNA methylation and chromatin state [Zemach and Grafi, 2003]. The MBDdomain<br />

alone is sufficient to bind methylated CG and was therefore used for the reporter design<br />

[Ingouff et al., 2017, Zemach and Grafi, 2003].<br />

The resulting reporter binds specifically to methylated CG sites and also accumulates at highly<br />

methylated transposable elements. As it also enriches at low methylated sites such as gene<br />

bodies, it cannot be used to measure the quantity of methylation [Ingouff et al., 2017].<br />

Figure 3: mCG-Venus during male sporogenesis. Signal of original DYNAMET mCG-Venus<br />

as designed by Ingouff et al.,(2017).<br />

Asymmetrical mCHH - SUVH9-GFP<br />

The SUVH9 protein binds specifically to CHH methylation and plays a role in the RdDM<br />

pathway of mCHH maintenance. Two domains of SUVH9 are of major importance: the<br />

methylcytosinebinding domain SRA and the SET domain, which aligns closest to known histone<br />

methyltransferasedomains, hinting a function within histone methylation. Nevertheless, the<br />

precise function of this domain remains to be uncovered as no histone methyltransferase activity<br />

was observed yet. The exact function of SUVH9 within the RdDM pathway is currently unknown<br />

but it is proposed that it may retain DMR2 at recently methylated sites or recruits an unknown<br />

component that is needed for DMR2 activity [Johnson et al., 2008]. The SRA-domain alone is<br />

not sufficient to bind methylated sites, therefore the whole SUVH9 protein was used to design<br />

the reporter. The final reporter binds mCHH in a highly specific and quantitative way. Hence it<br />

can be used as a quantitative measurement of methylation [Ingouff et al., 2017].<br />

16


Figure 4: mCHH-Venus during male sporogenesis. Signal of original DYNAMET mCHH-<br />

Venus as designed by Ingouff et al., (2017).<br />

3.5 Aim of this project<br />

Due to the lack of appropriate reporter proteins, observation of DNA methylation dynamics<br />

during meiosis with live cell imaging will be a novel approach. Thus, the prior aim of this<br />

project will be to test whether and to what extent male meiosis can be monitored with the<br />

above-mentioned reporters. Of special interest will be where and when methylation is present<br />

during pre-meiosis and meiosis. Furthermore, the observation of the overall dynamics throughout<br />

the meiotic cell division will be explored in detail. Due to the different binding-preferences of<br />

the two reporters, possible differences between CG and non-CG methylation will be important to<br />

analyse as well. The main question of interest will be to interpret and discuss these findings, in<br />

case of potential relevant information for recombination, gene expression or transposon silencing<br />

during male meiosis.<br />

17


4 Material and Methods<br />

4.1 Material<br />

Plant material<br />

All plants were from Columbio-0 ecotype. Seeds were put on 1/2 MS plates and into 21 ◦ C /<br />

18 ◦ C, 16 hour daylight light chambers with 50 % humidity for initial growth. After a week of<br />

growth, seedlings were then put on a 3:2:1 mix of soil, sand and granulate. The plants were kept<br />

in light chambers with 16 hour day cycle with 21 ◦ C, 67% humidity and 104 µmol illumination<br />

until ready for use.<br />

PCR mix<br />

Mix used for all polymerase chain reactions.<br />

Table 1: Standard PCR mix. Volume of Ingredients used for PCR mixes. Volumes are listed<br />

per 25 µl well.<br />

Ingredient<br />

Volume [µl]<br />

Water 10.5<br />

DreamTaq Green PCR master mix 12.5<br />

Forward Primer 0.5<br />

Reverse Primer 0.5<br />

Template DNA 1<br />

Agarose gel<br />

For gel electrophoresis, 3g of agarose were mixed with 300ml TE buffer and heated to obtain a<br />

1% agarose gel.<br />

1/2 Murashige-Skoog medium<br />

For seed inoculation, 1/2 MS medium was used. Per one liter OF water, 5g sucrose and 2.2g<br />

Basal salts were added and brought to ph=5.8. Per 250ml solution 2.5g agarose was added into a<br />

Schott bottle. The glass bottles were autoclaved and reheated for usage.<br />

18


LB medium<br />

Table 2: Liquid LB medium. Ingredients and Volumes for 1l liquid LB medium.<br />

Ingredient<br />

Trypton<br />

Yeast-extract<br />

NaCl<br />

Water<br />

Volume<br />

10g<br />

5g<br />

5g<br />

1l<br />

Table 3: Solid LB medium. Ingredients and volumes for 1l solid LB medium.<br />

Ingredient<br />

Trypton<br />

Yeast-Extract<br />

NaCl<br />

Water<br />

Agar-Agar<br />

Volume<br />

10g<br />

5g<br />

5g<br />

1l<br />

16g<br />

S.O.C. medium<br />

Table 4: S.O.C. medium<br />

Concentration Ingredient<br />

2.0 % Tryptone<br />

0.5 % Yeast-Extract<br />

10 mM Sodium chloride<br />

2.5 mM Kalium chloride<br />

10 mM Magnesium chloride<br />

10 mM Magnesium sulfate<br />

20 mM Glucose<br />

Magic buffer<br />

Table 5: Magic buffer. Ingredients for Magic buffer used for DNA extraction.<br />

Ingredient Concentration [mM] Mass per liter[g]<br />

Tris-HCl 150 6.057<br />

NaCl 300 17.532<br />

Sucrose 300 102.69<br />

19


Used antibiotics<br />

Table 6: Used antibiotics. List of used antibiotics with corresponding type of usage<br />

Antibiotic<br />

Spectomycin<br />

Hygromycin<br />

Carbenicilin<br />

Usage<br />

Selection for transformed E.coli and A. tumefaciens<br />

Selection for transformed A. thaliana seedlings<br />

Selection for transformed A. thaliana seedlings<br />

Primer sequences<br />

Primers were sent to production to Sigma-Aldrich Co.<br />

Table 7: Table of used primers. Primers used to check for successful LR reaction.<br />

Primer<br />

GFP_300F<br />

GFP_300R<br />

TagRFP_200F<br />

TagRFP_200R<br />

mRUBY3_250F<br />

mRUBY3_250R<br />

Sequence<br />

GAAGGGCATCGACTTCAAGG<br />

TTGAAGTCGATGCCCTTCAG<br />

CCTGATCTGCAACTTCAAGACCAC<br />

CATGAAGCTGGTAGCCAGGATGTC<br />

GAACACGGAGATGATGTATCCAGC<br />

TGGGAATGACTGCTTAAAGAAGTC<br />

Double constructs<br />

Each double construct consisted of a methylation and a meiosis gene. Both methylation reporters<br />

were combined with one of the two meiotic reporters and a centromeric reporter, resulting in<br />

six different double constructs (Tab. 9). The double constructions were produced by Multisite<br />

Gateway Three-Fragment Vector construction LR reaction using the vectors of table 8. The entry<br />

vectors derived from BP reactions with the pDONRp4p1r and pDONR221 vectors.<br />

All pDONR and destination vectors came with the kit used for Multisite Gateway Three-Fragment<br />

vector construciton.<br />

Sequences for every vector can be found in the supplementaries.<br />

Table 8: Table of vectors. Vectors used for LR reaction to establish double constructs.<br />

Number Vector<br />

1 pENTR2B-pHTR5-MBD-NLS-GFP 3’UTR<br />

2 pENTR2B-pHTR-SUVH9-NLS-GFP 3’UTR<br />

3 pENTR-PROREC8-REC8-mRUBY3 3’UTR<br />

4 pENTR-PROCENH3-TagRFP-CENH3 3’UTR<br />

5 pENTR-PROASY3-gASY3-TagRFP 3’UTR<br />

Besides the vectors in table 8, the destination vector R4pGwB501 was used.<br />

20


Table 9: Table of double constructs. Methylation reporter (top line) and meiotic reporter (first<br />

column) used for design of double constructs.<br />

Reporter MBD6-GFP SUVH9-GFP<br />

ASY3-RFP MBD6-GFPx ASY3-RFP SUVH9-GFPxASY3-RFP<br />

REC8-mRUBY MBD6-GFpxREC8-mRUBY SUVH9-GFPxREC8-mRUBY<br />

CENH3-RFP MBD6-GFPxCENH3-RFP SUVH9-GFPxCENH3-RFP<br />

List of chemicals<br />

Table 10: Chemicals. List of used chemicals and manufactures.<br />

Chemical<br />

Sucrose crystallized<br />

Agarose powdered food grade<br />

Murashige & Skoog Medium Basal salt mixture<br />

Neudomück<br />

Tryptone<br />

Yeast extract<br />

Sodium chloride<br />

TRIS<br />

EDTA<br />

Hydrochloric acid 37 %<br />

Potassium chloride<br />

Magnesium chloride<br />

Magnesium sulfate<br />

Glucose<br />

Manufacture<br />

Duchefa Biochemie<br />

AppliChem<br />

Duchefa Biochemie<br />

Progema<br />

Duchefa Biochemie<br />

Duchefa Biochemie<br />

Duchefa Biochemie<br />

Duchefa Biochemie<br />

VWR chemicals<br />

VWR chemicals<br />

Merck<br />

Applichem<br />

Applichem<br />

Duchefa Biochemie<br />

21


Equipment list<br />

Table 11: Used equipment.<br />

Equipment Product/Company<br />

Pipettes<br />

Eppendorf research plus<br />

Pipette tips Sarstedt<br />

Tubes 1.5 ml Eppendorf<br />

Falcon tubes 50ml Sarstedt<br />

PCR cycler Biometra Tadvanced<br />

Biometra Tprofessional<br />

Thermo cycler Eppendorf ThermoMixer C<br />

Mixer mill Retsch Mixer Mill M300<br />

PCR wells Sarstedt<br />

Starlab<br />

Gel chamber Thermo Fisher Scientif Owl EasyCast B1A/B2<br />

Peqlab<br />

Angewandte Gentechnologie Systeme GmbH<br />

Binocular Zeiss Stemi 508<br />

SZ-ST Olympus<br />

Microscope Zeiss LSM 880 with Airyscan<br />

4.2 Molecular methods<br />

Multisite Gateway Three-Fragment Vector construction<br />

Multisite Gateway Three-Fragment Vector construction relies on a bacterial recombination<br />

system. This recombinatory system consists of four recombination sites, called attB, attP, attR<br />

and attL, whereby attB and attP or attR and attL respectively can recombine with each other. If<br />

the recombination site lies downstream of the gene of interest, thus pointing away the gene, the<br />

site gets the appendage "r". The recombination of attB/attBr and attP/attPr result in a attL or<br />

attR site respectively. attL and attR sites produce a attB site (see Fig. 5).<br />

The Multisite Gateway Three-Fragment Vector construction was performed according to the<br />

protocol handed in with the kit. The mix for the LR reaction is shown in table 12. All vectors<br />

and enzyme mixes used for the Multisite Gateway Three-fragment vector construction came<br />

with the respective kit by Invitrogen.<br />

22


Figure 5: Multisite Gateway Three-Fragment Vector construction According to the protocol<br />

by Invitrogen - Life Technologies [Invitrogen, 2012]. Since a double construct is supposed to<br />

be produced, the Multisite Gateway reaction was carried out using two fragments. The PCR<br />

fragments are cloned into pDONOR vectors using a BP reaction, resulting in the two entry<br />

clones. A LR reaction is used to recombine the genes into the destination vector, producing the<br />

expression clone. Figure from [Invitrogen, 2012].<br />

Table 12: LR reaction. Mix for Multisite Gateway Three-Fragment LR reaction.<br />

Ingredient Volume µl<br />

each entry vector 1<br />

destination vector 1<br />

TE buffer 2.5<br />

LR Clonase II 0.5<br />

Plasmid extraction<br />

Plasmids were extracted from Escherichia coli with the GeneAid Mini Plasmid Kit. The kit was<br />

used according to the instructions handed in with the kit.<br />

23


Transformation check<br />

All transformations of Escherichia coli were checked by PCR using the standard PCR mix<br />

(Tab. 1) and PCR cycle () with corresponding primer pairs according to table 7 and ruand a gel<br />

electrophoresis on 1% agarose gel. The gels were run on 120V for 30-45mins.<br />

Table 13: PCR cycle. Standard PCR cycle used for all PCRs.<br />

Step Temperature Duration<br />

1 95 ◦ C 2 min<br />

2 95 ◦ C 30 sec<br />

3 55 ◦ C 30 sec<br />

4 72 ◦ C 1 min<br />

5 72 ◦ C 10 min<br />

6 4 ◦ C ∞<br />

Steps 2-4 were repeated 30 times.<br />

DNA extraction<br />

To extract DNA from leaves, 250 µl Magic buffer, one bead and one leaf were put into each well<br />

of a deep well-plate. It was then shaked for 5 minutes at a mixer mill at 25 1/s. 50 µl of the DNA<br />

extract is transferred from the deep well-plate to new PCR DNA well and kept in the freezer at<br />

-40 ◦ C.<br />

Seed sterilization<br />

Seeds for sterilization were filled into eppendorf tubes on a rack and put into a vacuum desiccator.<br />

The lids were opened. A 50ml beaker was filled with 30ml bleach (7.5 %) and 1 ml HCl and put<br />

next to the rack . The desiccator was closed and a vacuum produced. The seeds remained in the<br />

desiccator about three hours. The lids were then closed and the rack put on a clean bench with<br />

opened lids for at least 20-30 mins.<br />

Plant screening<br />

Plant seeds were screened for transgenic plants by using 1/2 MS medium with 0.015% Hygromycin<br />

and 0.05 % Carbenicilin.<br />

24


4.3 Transformation<br />

Transformation of Escherichia coli<br />

5 µl of plasmid DNA was added to One shot of TOP10 chemically competent E.Coli carrying<br />

Kanamycin resistance. It was then incubated on ice for 30 minutes, followed by a heat shock<br />

of 42 ◦ C for 30 seconds. Afterwards, the bacteria were placed on ice for 2 minutes. 250 µl of<br />

S0.O.C. medium was pre-warmed and added to the bacteria. The mix was shaken at 725 rpm<br />

for 1 hour at 37 ◦ C and then spread on a 0.1 % Spectomycin selection plate prior to incubate<br />

overnight incubation 37 ◦ C.<br />

Transformation of Agrobacterium tumefaciens<br />

1 µg of extracted plasmid were added to frozen competent A. tumefaciens and incubated for<br />

5 min at 37 ◦ C. After 2 min the mix was gently mixed. Immediately after heat incubation, the<br />

sample was incubated on ice for 15 - 30 mins. 1 ml of LB medium was added and the mix was<br />

incubated at 28 ◦ C for 1 - 3 hours. Afterwards the culture was centrifuged at maximum speed for<br />

1 min, followed by the resuspension of the pellet in 100 µl LB medium. The culture was plated<br />

on an LB selection plate with 0.1 % Spectomycin and incubated at 28 ◦ C for 2 days.<br />

Glycerol stock of A.tumefaciens<br />

For a better storage, a glycerol stock of A. tumefaciens was made. Afterwards, one colony was<br />

picked from the LB selection plate and then transferred into a tube with 3 ml LB medium and<br />

0.1 % Spectomycin. The culture was incubated at 28 ◦ C overnight. 700 µl of the grown culture<br />

was mixed with 300 µl glycerol and stored on -80 ◦ until further use.<br />

Transformation of Arabidopsis thaliana<br />

Liquid culture To transform Arabidopsis thaliana, a liquid culture of the transgenic Agrobacterium<br />

tumefaciens glycerol stock was used. A toothpick was dipped into the glycerol stock and<br />

put into a tube with LB medium and 0.1 % Spectomycin. The culture was incubated for 24 hours<br />

at 28 ◦ C. After incubation, 500 µl of the bacteria culture was transferred in a 100ml LB medium<br />

with 0.1% Spectomycin. The mix was again incubated at 28 ◦ C overnight.<br />

25


Floral Dip To transform Arabidopsis thaliana, a variation of the method "Floral Dip" was used<br />

[Clough and Bent, 1998]. According to the protocol, all siliques and open flowers of the plants<br />

were cut. The grown bacteria on the liquid A. tumefaciens culture was centrifuged at 4000rpm<br />

for 5 minutes at room temperature. The supernatant was discarded. The pellet was resuspended<br />

in a water solution consisting of 300ml water, 15g crystallized sucrose and 200 µl Silwett. The<br />

prepared plants were fully immersed into the water solution for 10 seconds and put into darkness<br />

for 24 - 48 hours.<br />

4.4 Confocal microscopy<br />

The microscope analysis of all transgenic A. thaliana plants was done with the Zeiss LSM 880<br />

with the Airyscan Unit. This microscope is equipped with a Argon Laser containing the exitation<br />

wave length for GFP at 488nm, Diode Laser (DPSS) for the RFP exitation at 561 nm and a<br />

Helium-Neon to collect the autofluorescence at 633nm. For image acquisition and processing<br />

the software ZEN black was used. Excitation laser powers were kept between 2% and 3% during<br />

the acquisition to minimize photo bleaching. The time lapse interval used was 10 minutes during<br />

prophase I and 5-8 minutes after metaphase I. For the image acquisition two seperate channels<br />

were used and two different detectors assured the correct separation of the GFP emission from<br />

the RFP and autofluorescence.<br />

Signal checking<br />

Before the live cell imaging experiment, the transgene expression in the plants were checked<br />

for proper protein localization. For that purpose, a bunch of flower buds was taken in whole<br />

and sorted by size (Fig. 6 left) . Flower buds of the right size were opened, petals and sepals<br />

removed. The anthers were transferred to a water drop on a microscope slide and covered with a<br />

coverslip. For image acquisition, the 40x1.0DIC objective was used.<br />

Live cell imaging<br />

For live cell imaging a bunch of flower buds containing the stem were removed from the plant.<br />

One flower bud of the right size was chosen and the others were removed from the stem. The<br />

outer petal was dissected from the remaining flower bud and the sample was transferred to a<br />

small petri dish with 1% agar and 1/2 MS medium. The sample was then fixed with a drop of<br />

26


1% Agarose without covering the anthers themselves. For acquisition, the petri dish was filled<br />

with water (Fig. 6 right) and the 40x1.0DIC water immersion objective was used.<br />

Figure 6: Sample preparation. Left: Orientation for anther size collection. For male live cell<br />

imaging, the highlighted anthers are in the right stages. Right: Anther preparation for live cell<br />

imaging. Picture provided by Maria Prusicki.<br />

27


5 Results<br />

The prior aim of this study is to monitor the two DNA methylation reporter lines MBD6 −GFP and<br />

SUVH9 −GFP to follow DNA methylation dynamics during male meiosis. For this purpose, each<br />

methylation reporter line was combined with a meiotic reporter: ASY3 −TagRFP or REC8 −mRUBY 3<br />

by using Multisite Gateway Three-Fragment vector construction as described in the material<br />

and methods. After successful transformation of the A. thaliana Columbia-0 plants with these<br />

double constructs, the T 1 seeds were collected, sterilized, screened and the seedlings put on soil.<br />

After three to four weeks of growth under controlled conditions, the plants were used for live<br />

cell imaging.<br />

5.1 Detection of CG methylation with MBD6 −GFP<br />

Fluorescent reporter lines are one of the most useful tools for investigating dynamic protein<br />

localization over time in living organisms. The combination of several reporter lines is crucial<br />

to understand and describe the methylation pattern during meiosis. For this purpose, the<br />

symmetrical CG methylation reporter line MBD6 −GFP was combined with the meiotic reporter<br />

line ASY3 −TagRFP or REC8 −mRUBY 3 . The meiotic stage was defined by the cell shape and the<br />

meiotic reporters ASY3 −TagRFP or REC8 −mRUBY 3 .<br />

During pre-meiosis, the meiocyte cell shape is very squared, the nucleus visible in the bright field<br />

and the nucleolus central. During this stage, ASY3 −TagRFP is not expressed yet, REC8 −mRUBY 3<br />

shows a very diffuse signal throughout the nucleus and more interestingly, MBD6 −GFP is<br />

specifically expressed in several spots localized near the nuclear envelope (Fig. 7, Fig. 8). We hypothesized<br />

that these dots could be centromeric or telomeric regions. Therefore, the centromeric<br />

reporter line TagRFP− CENH3 was used in addition to MBD6 −GFP to study the colocalization of<br />

these proteins (Fig. 9). The layers of tapetum cells around the meiocytes show a similar pattern<br />

but their methylation level is higher compared to the meiocytes (Fig. 8 ).<br />

28


Figure 7: MBD6 −GFP during pre-meiosis. Signal of MBD6 −GFP (A) before the start of<br />

meiosis. Premeiosis is indicated by the squared shape of cells (B). The detected methylation is<br />

low, compared to surrounding somatic cells. MBD6 −GFP is localized at the nuclear envelope<br />

(C).<br />

Figure 8: MBD6 −GFP xREC8 −mRUBY 3 during pre-meiosis. Premeiosis can be defined by global<br />

REC8 −mRUBY 3 distribution in the nucleus, central position of the nucleolus (A) and squared cell<br />

shape (C). The dots of MBD6 −GFP indicate methylated regions (B). MBD6 −GFP is localized<br />

near the nuclear envelope (D).<br />

Observation of MBD6 −GFP and TagRFP− CENH3 revealed partial colocalization of the proteins<br />

(Fig. 9 E: Pearson’s R=0.61 ) as indicated by a yellow merged signal (Fig.9 Top right). The<br />

analysis of signal intensities in overlapping regions (white square) shows a strong colocalization<br />

(Fig 9 Bottom right). Some CG methylation can be found apart from centromeres.<br />

29


Figure 9: MBD6 −GFP x TagRFP− CENH3 in DE +/− during pre-meiosis. Top right:<br />

MBD6 −GFP and TagRFP− CENH3 partially colocalize during pre-meiosis. Bottom right: The<br />

signal intensities of colocalizing regions (square) peak around the same regions. Left: (E) 2D<br />

histogram of MBD6 −GFP and TagRFP− CENH3 partial overlap. Pearson’s R=0.61, Mander’s M1=<br />

0.754, Mander’s M2=0.75.<br />

In early meiosis, the axial element of the synaptonemal complex ASY3 −TagRFP starts its expression<br />

and localizes in the nucleus as well as REC8 −mRUBY 3 , which starts to show a specific<br />

localization at the chromosomes (thin strands). Furthermore, the nucleolus is not central anymore<br />

but lateral and close to the nuclear envelope. The nucleolar signal of MBD6 −GFP is diffuse and<br />

thus different from the nuclear MBD6 −GFP . Generally, the level of MBD6 −GFP increases as<br />

previously observed dots extent to thin threads along the chromosomes. Although the expression<br />

of all three proteins increased, MBD6 −GFP shows no colocalization with ASY3 −TagRFP or<br />

REC8 −mRUBY 3 (Fig. 10).<br />

30


Figure 10: MBD6 −GFP xREC8 −mRUBY 3 or ASY3 −TagRFP during early prophase. A:<br />

MBD6 −GFP xREC8 −mRUBY 3 show the lateral positioning of the nucleolus and thin strands of<br />

chromosomes. B: MBD6 −GFP xASY3 −TagRFP displays a global signal of ASY3 (left). Both<br />

show an extension of methylation by short threads (red arrows A: left, B: middle). The tapetum<br />

cells are highly methylated compared to the meiocytes (white arrow).<br />

Further condensation of the chromosomes in early to mid-prophase is displayed by thickening<br />

and extending strands of ASY3 −TagRFP and REC8 −mRUBY 3 . The expression of MBD6 −GFP<br />

increases likewise, indicated by the expansion of methylated spots as well as lengthening of<br />

threads. Moreover, REC8 −mRUBY 3 colocalizes with MBD6 −GFP (Fig. 11) while ASY3 −TagRFP<br />

does not (Fig. 12A, B: right).<br />

31


Figure 11: Colocalization of MBD6 −GFP with REC8 −mRUBY 3 and ASY3 −TagRFP . Left: 2D<br />

histogram of the partial overlap of MBD6 −GFP and REC8 −mRUBY 3 during early to mid-prophase.<br />

Pearson’s R=0.71, Mander’s M1= 0.377, Mander’s M2= 0.59. Middle: 2D histogram of the<br />

partial overlap of MBD6 −GFP and REC8 −mRUBY 3 during mid-prophase. Pearson’s R= 0.6,<br />

Mander’s M1= 0.195, Mander’s M2= 0.51. Right: 2D histogram of the partial overlap of<br />

MBD6 −GFP with ASY3 −TagRFP during the middle to end of prophase. Pearson’s R=0.64,<br />

Mander’s M1= 0.728, Mander’s M2= 0.459.<br />

The process of further chromosome condensation and alignment of ASY3 −TagRFP and REC8 −mRUBY 3<br />

progresses until the end of prophase I where the chromosomes are fully condensed. Simultaneously,<br />

MBD6 −GFP expression increases as well, visualized by the extension of the threads<br />

along the chromosomes as well as areal accumulation of CG methylation near the nucleolus<br />

(Fig. 13 - Fig 15). Figure 14 shows the lack of colocalization during mid-prophase where<br />

MBD6 −GFP forms clear strands that do not overlap with ASY3 −TagRFP (see white arrows). Strikingly,<br />

MBD6 −GFP partially colocalizes with ASY3 −TagRFP by the middle to end of prophase<br />

(Fig. 15, Fig. 11 right).<br />

32


Figure 12: MBD6 −GFP xASY3 −TagRFP or REC8 −mRUBY 3 during early to mid-prophase.<br />

MBD6 −GFP shows increasing CG methylation. The increase is characterized by extension<br />

of existing spots and threads as well as appearance of new spots (A: left, B: left). Early to<br />

mid-prophase is characterized by strengthening of ASY3 −TagRFP and REC8 −mRUBY 3 signals,<br />

forming thicker strands (A: middle, B: middle). The merged image shows a yellow signal from<br />

the co-localizing MBD6 −GFP and REC8 −mRUBY 3 proteins (B: right)<br />

Figure 13: MBD6 −GFP xREC8 −mRUBY 3 during mid-prophase. MBD6 −GFP shows extending<br />

spots of methylation (A). The stage can be defined by clear strands of chromosomes, visualized<br />

by REC8 −mRUBY 3 (B). Colocalization between MBD6 −GFP and REC8 −mRUBY 3 is displayed by<br />

a yellow signal in the merged picture (C).<br />

33


Figure 14: MBD6 −GFP xASY3 −TagRFP during mid-prophase. MBD6 −GFP visualizes methylation<br />

spreading along chromosomes throughout the meiocyte. Areas of accumulated CG<br />

methylation can be noticed near nucleoli (I-K red arrows). Chromosomes are illustrated by<br />

aligning ASY3 −TagRFP , which does not colocalize with MBD6 −GFP (H, K white arrows).<br />

34


Figure 15: MBD6 −GFP x ASY3 −TagRFP during middle to late prophase The chromosomes are<br />

in a highly condensed form (B) and heavily methylated (A). MBD6 −GFP and ASY3 −TagRFP<br />

colocalize, displayed by a yellow signal in the merged picture (C).<br />

Figure 16: MBD6 −GFP xASY3 −TagRFP during Prophase I to Metaphase I transition. At the<br />

end of prophase I the chromosomes are higly condensed and methylated (A-C). They then align<br />

in the equatorial plane in metaphase I (D-N).<br />

At the transition to metaphase I, the chromosomes are highly condensed and visible as methylated<br />

dots starting to align to the equatorial plane of the cell. As the synaptonemal complex disappears<br />

in mid to end of prophase, ASY3 −TagRFP is visible as small dots, reflecting protein degradation<br />

(Fig. 16).<br />

Further proceeding to anaphase I, the chromosomes remain visible. The homologous chromosomes<br />

are separated and segregate towards the opposite poles of the cell (Fig. 17 C-H).<br />

The transition into telophase I is presented by the reappearing of the diffuse circular signal of<br />

35


MBD6 −GFP , indicating the reappearance of the nucleus and the nuclear envelope (Fig. 17 I-L).<br />

The second meiotic division continues with prophase II, metaphase II, anaphase II and telophase<br />

II, following the same dynamics as the first meiotic division with the main difference being the<br />

separation of sister chromatids instead of homologous chromosomes (Fig. 18, Fig. 19).<br />

Figure 17: MBD6 −GFP during anaphase I to telophase I transition. MBD6 −GFP follows the<br />

chromosome movement in anaphase II (C-H) as well as in telophase II (I-L).<br />

Figure 18: MBD6 −GFP during prophase II to metaphase II transition. The disappearing<br />

nuclear envelope, displayed by the loss circular MBD6 −GFP signal, indicates the end of prophase<br />

II (B-C). MBD6 −GFP stays attached to the chromosomes during their alignment in the equatorial<br />

plane (D-N.)<br />

36


Figure 19: MBD6 −GFP during metaphase II to telophase II transition. The chromosomes<br />

remain CG methylated throughout meiosis II. MBD6 −GFP follows the alignment of the chromosomes<br />

in the equatorial plane (A-D), the separation of the sister chromatids and their movement<br />

to the opposite end of the cell (E-I) as well as theit reorganization in telophase II (J-P).<br />

In conclusion, CG methylation, visualized with MBD6 −GFP , is present at the chromosomes<br />

throughout meiosis. The methylation is low during pre-meiosis and represented by a dot-like pattern.<br />

When the cell progresses into prophase I, MBD6 −GFP aligns along the chromosome strands.<br />

Additionally, it co-localizes with REC8 −mRUBY 3 in mid-prophase and with ASY3 −TagRFP by the<br />

middle to end of prophase. Further on, the MBD6 −GFP signal remains strong until the end of<br />

meiosis at telophase II.<br />

In addition, a preliminary analysis of the duration of meiotic substages was done. The obtained<br />

data are presented in the Supplementaries.<br />

37


5.2 Detection of CHH methylation with SUVH9 −GFP<br />

To detect asymmetrical CHH methylation, SUVH9 −GFP was used as reporter protein coupled<br />

with ASY3 −TagRFP as a meiotic reporter. Another variant of the double construct using<br />

REC8 −mRUBY 3 did not work as no signal was obtained from any plant. As SUVH9 −GFP did not<br />

show any specific localization at potential centromeric regions, it was not used in combination<br />

with TagRFP− CENH3 due to a lack of achievable informative content.<br />

As described previously, pre-meiosis was defined by central localization of the nucleolus and<br />

squared cell shape (Fig. 20). During this stage, SUVH9 −GFP gives a global signal for asymmetrical<br />

CHH methylation with a lower intensity in the meiocytes compared to the surrounding<br />

tapetum cells (Fig. 20).<br />

Figure 20: SUVH9 −GFP during pre-meiosis. CHH methylation is visualized by SUVH9 −GFP<br />

(A). The pre-meiotic stage can be defined by the central positioning of the nucleolus (C), as well<br />

as by the lack of expression of meiotic ASY3 −TagRFP (not shown).<br />

The expression of ASY3 −TagRFP and the lateral positioning of the nucleolus represent the<br />

transition to early prophase I (Fig. 21). By then, SUVH9 −GFP displays a diffuse distribution<br />

of CHH methylation that increases gradually in intensity towards the end of prophase I (Fig.<br />

21, 22). When the cell reaches metaphase I, a faint diffuse signal appears in the cytoplasm and<br />

persists until the end of telophase II (Fig. 22 C, Fig. 23, Fig. 24). In the nucleus, no distinct<br />

CHH methylation pattern can be observed from metaphase I to telophase I. After telophase I,<br />

SUVH9 −GFP localizes again in the two newly established nuclei (Fig. 23).<br />

38


Figure 21: SUVH9 −GFP during early prophase. ASY3 −TagRFP shows a mainly diffuse signal<br />

with thin theads (B). The nucleolus is in lateral position. Asymmetrical CHH methylation is<br />

shows an unspecific pattern in the nucleus (A).<br />

Further on, SUVH9 −GFP shows similar dynamics in meiosis II, as it gives no distinct nuclear<br />

pattern once the nuclear envelope disappeared. In metaphase II, it is notably not localized in the<br />

organelle band. The signal then reappears in the four nuclei in telophase II (Fig. 24).<br />

As a conclusion, SUVH9 −GFP is highly dynamic during meiosis. It is present in the nucleus<br />

when a nuclear envelope is established thus during pre-meiosis, prophase and telophase. Once<br />

the cell enters metaphase I, a diffuse signal appears in the cytoplasm and remains until telophase<br />

II.<br />

39


Figure 22: SUVH9 −GFP during prophase. A: Early to mid-prophase. The ASY3 −TagRFP<br />

signal increases, the chromosomes are further condensing. SUVH9 −GFP shows a global signal<br />

in the nucleus. B: Mid-prophase. ASY3 −TagRFP keeps further aligning to the condensing<br />

chromosomes. CHH methylation in the nucleus remains global. C: Middle to late prophase.<br />

(left) ASY3 −TagRFP is completely aligned to fully condensed chromosomes. The CHH pattern<br />

remains unchanged. (right) Metaphase I. The SUVH9 −GFP signal in the nucleus disappeared<br />

and shows faint fluorescence in the cytoplasm.<br />

40


Figure 23: SUVH9 −GFP during meiosis I. The beginning of metaphase I is characterized by<br />

the reduction of ASY3 −GFP to red dots (C). SUVH9 −GFP gives a global signal in the nucleus<br />

during interkinesis and prophase II and then disappears in metaphase II (B-F). An observable<br />

signal of SUVH9 −GFP in the nuclei is present in telophase II (G-I).<br />

Figure 24: SUVH9 −GFP during meiosis II. In prophase II SUVH9 −GFP displays a diffuse CHH<br />

methylation pattern in the nucleus as well as a lower level signal in the cytoplasm(A-B). The<br />

nucleolar signal disappears in metaphase II. A specific region, free of SUVH9 −GFP is observed<br />

in the middle of the two chromosome pools (C-I). After nuclear envelope formation in telophase<br />

II within the daughter cells, SUVH9 −GFP localizes within these nuclei, shown by a bright signal<br />

(K-T).<br />

41


6 Discussion<br />

6.1 Comparison of MBD6 −GFP and SUVH9 −GFP dynamics<br />

MBD6 −GFP and SUVH9 −GFP were developed to specifically bind to CG and CHH methylation,<br />

respectively. Thus, a difference in binding patterns was expected as both mainly bind to<br />

heterochromatic regions but CG is more widespread than CHH methylation. Furthermore, gene<br />

body methylation is almost exclusively at CG sites [To et al., 2015].<br />

The binding behaviours of MBD6 −GFP and SUVH9 −GFP are significantly different. Generally,<br />

MBD6 −GFP aligns to chromosomes with a low background signal (Fig. 14). In contrast,<br />

SUVH9 −GFP gives a more global signal (Fig. 22).<br />

During pre-meiosis, they both show low levels of methylation, although MBD6 −GFP shows<br />

additional spots of accumulated CG methylation that are missing with SUVH9 −GFP (Fig. 7, Fig.<br />

20). From these observations it can be concluded that meiocytes are generally low methylated<br />

during pre-meiosis, lacking CG and CHH methylation compared to somatic cells.<br />

Another similarity is that methylation in both contexts increases throughout prophase I, indicated<br />

by increased signals of their respective reporters. The gain of the signal is displayed differently<br />

by the two reporters. While MBD6 −GFP starts forming strands by aligning to the chromosomes<br />

(Fig. 15), SUVH9 −GFP increases in intensity without any change in the global distribution (Fig.<br />

22).<br />

A difference between the two reporters is observed when the cell enters metaphase I. MBD6 −GFP<br />

sticks to the chromosomes following their alignment to the cell equatorial plane in metaphase I as<br />

well as during their segregation in anaphase I. The nuclear reorganization in telophase throughout<br />

meiosis I and meiosis II does not affect this methylation pattern (Fig. 16 - Fig. 19). SUVH9 −GFP<br />

on the other hand disappears from the nucleus as soon as the cell proceeds to metaphase I/II and<br />

is found in the cytoplasm instead. Furthermore, the signal of SUVH9 −GFP reappears when the<br />

nucleus is reestablished in telophase I/II (Fig. 23, Fig. 24). Thus, no chromosome dynamics can<br />

be observed with SUVH9 −GFP .<br />

In summary, both reporters reflect several changes of methylation levels from pre-meiosis to<br />

the end of prophase I. MBD6 −GFP is a good chromosome marker and can be used as a meiotic<br />

hallmark especially during prophase-metaphase-anaphase transitions. It furthermore gives only<br />

a low background signal indicating high binding activity. SUVH9 −GFP can hardly be used to<br />

follow chromosome dynamics as it gives a rather diffuse signal and vanishes from the nucleus<br />

from metaphase I/II to telophase I/II.<br />

42


6.2 Dynamics of MBD6 −GFP<br />

The dynamics of CG methylation were observable due to the good binding activity of MBD6 −GFP<br />

to the chromosomes throughout meiosis. This allowed monitoring of chromosome dynamics as<br />

well.<br />

CG methylation is low during pre-meiosis<br />

Although no pre-meiotic marker was used, pre-meiosis was defined by central localization<br />

of the nucleolus, squared cell shape, a diffuse distribution of REC8 −mRUBY 3 and the lack of<br />

ASY3 −TagRFP expression. Compared to the surrounding somatic cells, the level of CG methylation<br />

in the meiocytes is low (Fig. 7, Fig. 8). Single clear dots, potentially centromeric or<br />

telomeric regions, localized close to the nuclear envelope or nucleolus during pre-meiosis.<br />

The overall low methylation can have various reasons. Since the DNA undergoes replication prior<br />

to meiosis, the low signal of MBD6 −GFP may indicate a hemimethylated state of the DNA produced<br />

by newly synthesized and thus unmethylated DNA strands. This hemimethylation would be<br />

undetectable for MBD6 −GFP . Furthermore, it is known from literature that transposable elements<br />

are activated during gamete development. These transposons that so far escaped the silencing by<br />

the RdDM pathway can now get activated. The reactivation ensures the production of siRNAs that<br />

were already silenced by RdDM pathway and thus reinforces transposon silencing. This process<br />

allegedly takes place during gametogenesis [Law and Jacobsen, 2010]. Nevertheless, it may take<br />

place during sporogenesis as well, as usually silenced transposable elements are transcribed during<br />

prophase [Gutierrez-Marcos and Dickinson, 2012]. This seems reasonable since the genome<br />

is already in a demethylated state after replication and this favorable environment allows the<br />

activation of the transposons. This is further supported by the general loss of heterochromatin in<br />

the spore mother cell, induced by epigenetic reprogramming and the change of genetic program.<br />

Although it was suggested that transposons may be kept silent by other pathways than heterochromatin<br />

formation, no specific mechanisms were identified yet. Meiotic genes are activated in the<br />

SMC during mitosis-meiosis transition, a process that is controlled by epigenetic modifications.<br />

To rebuild pluripotency for the later gametophyte, epigenetic marks of the somatic program need<br />

to be removed [She and Baroux, 2014, Gutierrez-Marcos and Dickinson, 2012].<br />

By using MBD6 −GFP we observed that the CG methylation is low during pre-meiosis. This<br />

demethylation can occur passively or actively. It may serve a distinct purpose like transposon<br />

silencing and epigenetic reprogramming but it also can be a residue of previous DNA<br />

43


eplication.<br />

CG methylation at pericentromeric heterochromatin<br />

MBD6 −GFP partially colocalizes with TagRFP− CENH3 (Fig. 9). Since TagRFP− CENH3 displays<br />

the localization of the centromeres, the dots of CG methylation observed during pre-meiosis may<br />

display centromeric and pericentromeric heterochromatin. The lack of the full overlap may imply<br />

CG hypomethylation of CENH3-binding chromatin domains as reported by [Zhang et al., 2008].<br />

On the other hand, the missing full overlap can simply indicate a steric hindrance of the reporters,<br />

making it impossible for TagRFP− CENH3 and MBD6 −GFP to bind at the same regions. Thus, no<br />

valid statement can be made about the methylation level at the centromere with these reporters.<br />

Furthermore, regions of CG methylation that do not associate with centromeres can be observed.<br />

These dots may display other heterochromatic regions of the genome like telomeres.<br />

Moreover, the spots of CG methylation seem to always localize at the nuclear envelope or<br />

nucleolus (Fig. 7, Fig. 8). The association with the nuclear envelope fits to previous observations<br />

of centromeres being attached to the nuclear periphery during mitotic interphase and may suggest<br />

similar mechanisms in pre-meiosis. The impression of centromeres being at the nucleolus may<br />

be a side effect of this specific point of view and spatial positioning of the nucleus as the images<br />

are only displayed in a 2D view. [Fang and Spector, 2005]. Thus it can be assumed that all of<br />

the centromeres localize at the nuclear envelope.<br />

CG methylation during meiosis<br />

While the CG methylation was low during pre-meiosis, it accumulates throughout prophase I.<br />

The increase is small in early prophase I, shown by slightly extending methylation along the<br />

chromosomes. But at the end of prophase I, they are highly methylated as the methylation<br />

stretches along most chromosome regions. This impression of high methylation can either<br />

originate from the very condensed form of the chromosomes at this point of time without a real<br />

increase in methylation or from an active gain of methylation. Active methylation may have<br />

the purpose to reestablish symmetric CG methylation previously lost due to DNA replication or<br />

silence transposons that were activated in pre-meiosis. A combination of active remethylation<br />

and high chromosome condensation is a possible explanation as well. Throughout meiosis, the<br />

chromosomes remain in their highly condensed and methylated state.<br />

Not only the methylation increases with ongoing prophase I, but also the alignment of REC8 −mRUBY 3<br />

and ASY3 −TagRFP reveals a dynamic pattern. Towards the end of prophase I, they are fully<br />

44


aligned to the chromosomes, visualized as thick strands. As both of them extent along the chromosomes,<br />

REC8 −mRUBY 3 partially colocalizes with MBD6 −GFP in early to mid-prophase while<br />

ASY3 −TagRFP does not until the middle to end of prophase (Fig. 12 and 15). In mid-prophase,<br />

it is clearly observable, that ASY3 −TagRFP does not align in methylated regions in contrast<br />

to REC8 −mRUBY 3 (Fig. 13 and 14 white arrow). ASY3 mainly plays a role in crossing-over<br />

induction and the formation of the synaptonemal complex. In regions where ASY3 is aligned,<br />

recombination is possible or the other way around, ASY3 aligns to regions where recombination<br />

is available. It can be possible that ASY3 does not align to heavily methylated regions, as<br />

they might be recombination-suppressed regions. Furthermore, the timing of recombination<br />

initiation plays an important role in crossing-over formation. Regions with early initiation of<br />

recombination show a preference in crossing-over formation [Lambing et al., 2017]. This may<br />

explain why methylated region are excluded from ASY3 −TagRFP alignment until late prophase I<br />

as they are not supposed to recombine. Moreover, methylation may also suppress ASY3 −TagRFP<br />

alignment for the same reasons. REC8 −mRUBY 3 on the other hand seems to be less influenced by<br />

CG methylation than ASY3 −TagRFP . This is probably due to its primary role in sister chromatid<br />

cohesion, a function that should be less impaired by methylation as methylated regions have<br />

to keep their cohesion as well. Nevertheless, it has to be noted that the lack of colocalization<br />

can be a consequence of steric hindrance between MBD6 −GFP and ASY3 −TagRFP . It can not<br />

be observed whether the two reporter proteins influence each other in their binding activity.<br />

Clearly visible is also the signal of MBD6 −GFP at the nucleolus (Fig. 10 - Fig. 15). Around the<br />

nucleolus, nucleolar organizer regions (NORs) accumulate. They contain the rRNA genes for<br />

ribosome biosynthesis. rRNA genes are widely variable and their expression largely depends on<br />

the current needs of the cell. On average, about half of the rRNA genes are active. Inactive rRNA<br />

genes are DNA methylated at CG contexts. The spatial distribution of the NORs with rRNA<br />

genes depends on the active or inactive state of the chromatin. Active rRNA genes are localized<br />

within the nucleolus while inactive rRNA genes are excluded, resulting in the localization of the<br />

respective NORs outside of the nucleolus (Fig. 25). Although all active rRNA genes are within<br />

the nucleolus, not all genes that are within the nucleolus are active. About 20 % of the genes<br />

are inactive and heavily methylated. Presumably, they are moved to the nucleolus due to the<br />

close neighborhood with active genes [Pontvianne et al., 2013]. Thus, the MBD6 −GFP signal in<br />

the nucleolus most likely reflects these heavily methylated rRNA genes. The signal around the<br />

nucleolus may originiate from the NORs of inactive and highly CG methylated rRNA genes that<br />

accumulate externally. This external accumulation can also explain the color difference between<br />

nucleolar and nucleus methylation.<br />

45


Figure 25: Localization of rRNA genes. A: Active, thus unmethylated rRNA genes are localized<br />

inside the nucleolus. Methylated, silenced rRNA genes locate in the nucleoplasm. B: Silenced<br />

rRNA genes form condensed knobs outside the nucleolus while active genes are transcribed<br />

inside the nucleolus. Figure from [Pontvianne et al., 2013]<br />

Binding activity of MBD6 −GFP<br />

MBD6 −GFP has a high binding activity. It is constantly bound to chromosomes and consequently<br />

gives low to no background signal. Thus it is a good chromosome reporter line.<br />

Ingouff et al., (2017) estimated the binding specificity of MBD6 −GFP with various tests. While<br />

binding to CHH methylation was disproved, binding to CHG methylation was not ruled out.<br />

Furthermore, comparison of MBD6 −GFP ChIP data with MeDIP data set indicates a high<br />

correlation. But since MeDIP data recognize methylation in all contexts, this is not sufficient to<br />

prove that MBD6 −GFP only binds methylated CG, even if CG is the most commonly methylated<br />

context in A. thaliana. Hence, it can not be concluded that MBD6 −GFP exclusively binds to CG<br />

methylation.<br />

MBD6 −GFP detects methylation but cannot be used for quantitative measurements. It does enrich<br />

at heavily methylated transposable elements but also at low methylated gene bodies. Therefore,<br />

MBD6 −GFP cannot be used to make definitive statements of quantitative methylation levels at<br />

certain regions. Still it can be used to observe overall changes in methylation levels.<br />

6.3 Dynamics of SUVH9 −GFP<br />

SUVH9 −GFP gives a diffuse global signal in the nucleus for CHH methylation in pre-meiosis,<br />

prophase and telophase.<br />

46


Low signal of SUVH9 −GFP during pre-meiosis<br />

In pre-meiosis, the signal of SUVH9 −GFP is low compared to the surrounding somatic cells,<br />

indicating a low CHH methylation (Fig. 20). Since CG methylation was reduced as well<br />

during this phase, a general reduction of methylation is hinted. CHH methylation is mainly<br />

used in heterochromatin formation, thus playing a role in transposon silencing. The low signal<br />

in pre-meiosis may be due to the above mentioned derepression of transposons to reestablish<br />

silencing by the RdDM pathway with the purpose to "catch" previously active transposons.<br />

This reassurance pathway of transposon silencing fits to the general knowledge about the great<br />

importance of transposable element inactivation in plants. Allegedly, non-CG methylation<br />

developed for that purpose [Kato et al., 2003]. The low CHH methylation may also result from<br />

previous DNA replication and the slow remethylation of newly replicated strands which in case<br />

of CHH methylation, equals de novo methylation. Little is known about how fast methylation<br />

of newly replicated DNA strands occurs after replication. Since a demethylated state due<br />

to replication would promote transposon activation, a combination of both is also possible.<br />

As CHH methylation is probably also involved in gene expression control and non-heritable<br />

stress responses, epigenetic reprogramming may contribute to the lack of DNA methylation as<br />

well.<br />

SUVH9 −GFP during meiosis<br />

Throughout prophase I, the signal of SUVH9 −GFP increases in intensity, hinting an increase<br />

of CHH methylation (Fig. 22). This gain in CHH methylation may be explained by either<br />

remethylation after DNA replication or silencing of pre-meiotically active transposons.<br />

When reaching metaphase I/II, the signal of SUVH9 −GFP quickly disappears within the nucleus.<br />

Instead, it can be observed in the cytoplasm (Fig. 23). Either demethylation or release of the<br />

protein from the DNA can explain this change. Demethylation would indicate a highly dynamic<br />

behavior of CHH methylation throughout meiosis, as the vanishing can be observed both during<br />

metaphase I and metaphase II with an instant remethylation in interkinesis/prophase II and<br />

telophase II, respectively. Alternatively, the loss of signal in the nucleus may be due to the<br />

release of the protein instead of demethylation. The SUVH9 −GFP protein may be transferred<br />

to the cytoplasm to not disrupt the chromosome separation. Clearly visible, the protein is not<br />

localized in the organelle band that forms between the dividing cells but in the cytoplasm of<br />

the respective cells (Fig. 24). Within the cytoplasm, SUVH9 −GFP may be degraded and thus<br />

displays a lower signal. Another possibility is that the protein is protected from degradation by<br />

47


storage in vesicles to be then re-used in telophase. Compared to the nucleus, the lower signal<br />

intensity observed in the cytoplasm may then be due to the greater spatial distribution of the<br />

protein-containing vesicles within the cytoplasm.<br />

Binding activity of SUVH9 −GFP<br />

It is difficult to understand the global-wide localization of SUVH9 −GFP in the nucleus. A<br />

diffuse distribution may indicate that the reporter protein is not binding properly to the DNA, the<br />

localization of the protein in nucleus however disproves this as unbound protein would localize<br />

in the cytoplasm. The disappearance of SUVH9 −GFP from the nucleus in metaphase I/II is most<br />

likely due to protein release from the chromosomes and following degradation or protection in<br />

vesicles.<br />

In summary, SUVH9 −GFP can be a useful reporter to measure CHH methylation level altough its<br />

global distribution and protein dynamics cannot be fully explained. All interpretations have to be<br />

taken with caution but still may give useful informations about the behavior of CHH methylation<br />

during meiosis for future studies.<br />

6.4 General remarks on the use of fluorescent proteins<br />

Double constructs are a useful instrument for observation of the dynamics and interplay of two<br />

proteins. In this study, they were used to stage the cells with a known meiotic reporter while the<br />

focus was on the observation of the methylation reporters with unknown dynamics. Still, the<br />

functionality of these double constructs is not guarantied. The usual procedure of testing the<br />

functionality of the constructs by introducing them into their respective mutant plants cannot<br />

be applied. Producing double mutants for both proteins is often lethal for the plants. Thus a<br />

negative influence of the reporter proteins to each other cannot be ruled out. Functionality of a<br />

transgene within the plant does not guarantee its workability as part of a double construct.<br />

An additional point that has to be considered is that the constructs were introduced into wildtype<br />

plants which also express their endogenous protein variant. Furthermore, the transgenes were<br />

combined with enhancing promoters to induce an increased expression. Combining these two<br />

factors it is clear that the quantity of the protein within the plant is above physiological conditions.<br />

Since protein levels are usually strictly controlled by multiple pathways within each cell, this<br />

may lead to changes in the protein expression.<br />

48


Another problem lies within the nature of fluorescent proteins. While using them, it has to be<br />

assumed that they behave like an unmodified protein. Nevertheless, there is the possibility of the<br />

protein behaving differently due to the tag. The binding specificity and interaction ability can be<br />

influenced. This is escpecially the case for fluorophores that are expressed under the control of<br />

an enhancing promotor [Crivat and Taraska, 2012]. Thus, observations made with fluorescence<br />

proteins should be backed up with other study methods.<br />

6.5 Outlook<br />

Additional studies will be needed to confirm the findings and further explore the methylation<br />

dynamics. For this purpose, different mutants can be used to observe whether changes occur.<br />

Mutants with meiosis defects would be suitable like rbr1-2, dyad or the CDKA;1 mutants DE<br />

and DB-dead to check for changes in the methylation dynamics connected to meiotic disruptions.<br />

Plants that are defective in methylation establishment may be interesting as well, MET1 and<br />

DDM1 would be good candidates. Furthermore, monitoring of the female meiosis with these<br />

reporters and mutant lines could be done. Currently this is not possible due to a lack of methods.<br />

Generally, it may be useful to further explore the binding activity and specificity of both reporters.<br />

All findings made within this study should be backed up with other study methods such as<br />

expression analysis. For example, the observed demethylation with subsequent remethylation<br />

could be supported by expression analysis of respective demethylases ROS1, DML2 and DML3<br />

and methyltransferase MET1 or activity of the RdDM pathway.<br />

6.6 Conclusion<br />

In summary, it can be stated that CG and presumably also CHH methylation are highly dynamic<br />

throughout pre-meiosis and meiosis. In pre-meiosis, the chromosomes are CG methylated at<br />

pericentromeric heterochromatin and few centromere-independent heterochromatic regions. By<br />

the beginning of the prophase, the methylation level increases until the chromosomes reach<br />

a highly methylated state at the end of prophase. CG methylation may have an influence on<br />

alignment of recombination-associated proteins such as ASY3, as it does not align to methylated<br />

regions until mid to late prophase. The chromosomes remain heavily CG methylated until the<br />

end of meiosis. Thus, MBD6 −GFP is a useful reporter to follow chromosome movements and<br />

methylation dynamics, although a context-related binding unspecificity cannot be eliminated.<br />

On the contrary, SUVH9 −GFP turned out to be useful for CHH methylation observations but not<br />

49


for chromosome movements since the signal was diffuse throughout monitoring. Further studies<br />

will be required to confirm the findings.<br />

50


Bibliography<br />

[Agashe et al., 2002] Agashe, B., Prasad, C. K., and Siddiqi, I. (2002). Identification and<br />

analysis of DYAD: a gene required for meiotic chromosome organisation and female meiotic<br />

progression in Arabidopsis. Development, 129(16):3935–3943.<br />

[Alberts et al., 2011a] Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., , and Walter, P.<br />

(2011a). Molekularbiologie der Zelle, chapter 7, pages 461–561. Wiley-VCH.<br />

[Alberts et al., 2011b] Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., , and Walter, P.<br />

(2011b). Molekularbiologie der Zelle, chapter 5, pages 293–366. Wiley-VCH.<br />

[Armstrong et al., 2003] Armstrong, S. J., Franklin, F. C. H., and Jones, G. H. (2003). A meiotic<br />

time-course for Arabidopsis thaliana. Sexual Plant Reproduction, 16(3):141–149.<br />

[Arnold et al., 2006] Arnold, K., Bordoli, L., Kopp, J., and Schwede, T. (2006). The SWISS-<br />

MODEL workspace: a web-based environment for protein structure homology modelling.<br />

Bioinformatics, 22(2):195–201.<br />

[Bannister and Kouzarides, 2011] Bannister, A. J. and Kouzarides, T. (2011). Regulation of<br />

chromatin by histone modifications. Cell research, 21(3):381.<br />

[Biasini et al., 2014] Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt,<br />

T., Kiefer, F., Cassarino, T. G., Bertoni, M., Bordoli, L., et al. (2014). SWISS-MODEL:<br />

modelling protein tertiary and quaternary structure using evolutionary information. Nucleic<br />

acids research, 42(W1):W252–W258.<br />

[Boyko et al., 2010] Boyko, A., Blevins, T., Yao, Y., Golubov, A., Bilichak, A., Ilnytskyy,<br />

Y., Hollander, J., Meins Jr, F., and Kovalchuk, I. (2010). Transgenerational adaptation of<br />

Arabidopsis to stress requires DNA methylation and the function of Dicer-like proteins. PloS<br />

one, 5(3):e9514.<br />

51


[Cao et al., 2003] Cao, X., Aufsatz, W., Zilberman, D., Mette, M. F., Huang, M. S., Matzke, M.,<br />

and Jacobsen, S. E. (2003). Role of the DRM and CMT3 methyltransferases in RNA-directed<br />

DNA methylation. Current biology, 13(24):2212–2217.<br />

[Chan et al., 2005] Chan, S. W.-L., Henderson, I. R., and Jacobsen, S. E. (2005). Gardening the<br />

genome: DNA methylation in Arabidopsis thaliana. Nature Reviews Genetics, 6(5):351–360.<br />

[Choi et al., 2013] Choi, K., Zhao, X., Kelly, K. A., Venn, O., Higgins, J. D., Yelina, N. E.,<br />

Hardcastle, T. J., Ziolkowski, P. A., Copenhaver, G. P., Franklin, F. C. H., et al. (2013).<br />

Arabidopsis meiotic crossover hot spots overlap with H2A. Z nucleosomes at gene promoters.<br />

Nature genetics, 45(11):1327–1336.<br />

[Clough and Bent, 1998] Clough, S. J. and Bent, A. F. (1998). Floral dip: a simplified method<br />

for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal,<br />

16(6):735–743.<br />

[Crivat and Taraska, 2012] Crivat, G. and Taraska, J. W. (2012). Imaging proteins inside cells<br />

with fluorescent tags. Trends in biotechnology, 30(1):8–16.<br />

[Dalakouras et al., 2012] Dalakouras, A., Dadami, E., Zwiebel, M., Krczal, G., and Wassenegger,<br />

M. (2012). Transgenerational maintenance of transgene body CG but not CHG and CHH<br />

methylation. Epigenetics, 7(9):1071–1078.<br />

[Dissmeyer et al., 2009] Dissmeyer, N., Weimer, A. K., Pusch, S., De Schutter, K., Kamei, C.<br />

L. A., Nowack, M. K., Novak, B., Duan, G.-L., Zhu, Y.-G., De Veylder, L., et al. (2009).<br />

Control of cell proliferation, organ growth, and DNA damage response operate independently<br />

of dephosphorylation of the Arabidopsis Cdk1 homolog CDKA; 1. The Plant Cell,<br />

21(11):3641–3654.<br />

[Drouaud et al., 2007] Drouaud, J., Mercier, R., Chelysheva, L., Bérard, A., Falque, M., Martin,<br />

O., Zanni, V., Brunel, D., and Mézard, C. (2007). Sex-specific crossover distributions and<br />

variations in interference level along Arabidopsis thaliana chromosome 4. PLoS genetics,<br />

3(6):e106.<br />

[Fang and Spector, 2005] Fang, Y. and Spector, D. L. (2005). Centromere positioning and<br />

dynamics in living Arabidopsis plants. Molecular biology of the cell, 16(12):5710–5718.<br />

[Ferdous et al., 2012] Ferdous, M., Higgins, J. D., Osman, K., Lambing, C., Roitinger, E.,<br />

Mechtler, K., Armstrong, S. J., Perry, R., Pradillo, M., Cuñado, N., et al. (2012). Inter-<br />

52


homolog crossing-over and synapsis in Arabidopsis meiosis are dependent on the chromosome<br />

axis protein AtASY3. PLoS genetics, 8(2):e1002507.<br />

[Graw, 2015a] Graw, J. (2015a). Genetik, chapter 8, pages 292–335. Springer Spektrum.<br />

[Graw, 2015b] Graw, J. (2015b). Genetik, chapter 6, pages 213–260. Springer Spektrum.<br />

[Guex et al., 2009] Guex, N., Peitsch, M. C., and Schwede, T. (2009). Automated comparative<br />

protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: a historical<br />

perspective. Electrophoresis, 30(S1).<br />

[Gutierrez-Marcos and Dickinson, 2012] Gutierrez-Marcos, J. F. and Dickinson, H. G. (2012).<br />

Epigenetic reprogramming in plant reproductive lineages. Plant and Cell Physiology,<br />

53(5):817–823.<br />

[Herman and Sultan, 2011] Herman, J. J. and Sultan, S. E. (2011). Adaptive transgenerational<br />

plasticity in plants: case studies, mechanisms, and implications for natural populations.<br />

Frontiers in plant science, 2.<br />

[Higgins et al., 2004] Higgins, J. D., Armstrong, S. J., Franklin, F. C. H., and Jones, G. H.<br />

(2004). The Arabidopsis MutS homolog AtMSH4 functions at an early step in recombination:<br />

evidence for two classes of recombination in Arabidopsis. Genes & development, 18(20):2557–<br />

2570.<br />

[Hume Stroud et al., 2014] Hume Stroud, T. D., Du, J., Zhong, X., Feng, S., Johnson, L., Patel,<br />

D. J., and Jacobsen, S. E. (2014). The roles of non-CG methylation in Arabidopsis. Nature<br />

structural & molecular biology, 21(1):64.<br />

[Ingouff et al., 2017] Ingouff, M., Selles, B., Michaud, C., Vu, T. M., Berger, F., Schorn, A. J.,<br />

Autran, D., Van Durme, M., Nowack, M. K., Martienssen, R. A., et al. (2017). Live-cell<br />

analysis of DNA methylation during sexual reproduction in Arabidopsis reveals context and<br />

sex-specific dynamics controlled by noncanonical RdDM. Genes & development, 31(1):72–<br />

83.<br />

[Invitrogen, 2012] Invitrogen (2012). Multisite Gateway Three-Fragment Vector Construction<br />

Kit.<br />

[Johnson et al., 2008] Johnson, L. M., Law, J. A., Khattar, A., Henderson, I. R., and Jacobsen,<br />

S. E. (2008). SRA-domain proteins required for DRM2-mediated de novo DNA methylation.<br />

PLoS genetics, 4(11):e1000280.<br />

53


[Johnston and Gruissem, 2009] Johnston, A. J. and Gruissem, W. (2009). Gametophyte differentiation<br />

and imprinting control in plants: Crosstalk between RBR and chromatin. Communicative<br />

& integrative biology, 2(2):144–146.<br />

[Jullien et al., 2008] Jullien, P. E., Mosquna, A., Ingouff, M., Sakata, T., Ohad, N., and Berger,<br />

F. (2008). Retinoblastoma and its binding partner MSI1 control imprinting in Arabidopsis.<br />

PLoS biology, 6(8):e194.<br />

[Kato et al., 2003] Kato, M., Miura, A., Bender, J., Jacobsen, S. E., and Kakutani, T. (2003).<br />

Role of CG and non-CG methylation in immobilization of transposons in Arabidopsis. Current<br />

Biology, 13(5):421–426.<br />

[Kiefer et al., 2008] Kiefer, F., Arnold, K., Künzli, M., Bordoli, L., and Schwede, T. (2008).<br />

The SWISS-MODEL Repository and associated resources. Nucleic acids research,<br />

37(suppl_1):D387–D392.<br />

[Lambing et al., 2017] Lambing, C., Franklin, F. C. H., and Wang, C.-J. R. (2017). Understanding<br />

and manipulating meiotic recombination in plants. Plant physiology, 173(3):1530–1542.<br />

[Law and Jacobsen, 2010] Law, J. A. and Jacobsen, S. E. (2010). Establishing, maintaining<br />

and modifying DNA methylation patterns in plants and animals. Nature Reviews Genetics,<br />

11(3):204–220.<br />

[Martini et al., 2006] Martini, E., Diaz, R. L., Hunter, N., and Keeney, S. (2006). Crossover<br />

homeostasis in yeast meiosis. Cell, 126(2):285–295.<br />

[Mathieu et al., 2007] Mathieu, O., Reinders, J., Čaikovski, M., Smathajitt, C., and Paszkowski,<br />

J. (2007). Transgenerational Stability of the Arabidopsis Epigenome is coordinated by CG<br />

methylation. Cell, 130(5):851 – 862.<br />

[Mirouze et al., 2012] Mirouze, M., Lieberman-Lazarovich, M., Aversano, R., Bucher, E., Nicolet,<br />

J., Reinders, J., and Paszkowski, J. (2012). Loss of DNA methylation affects the recombination<br />

landscape in Arabidopsis. Proceedings of the National Academy of Sciences,<br />

109(15):5880–5885.<br />

[Pontvianne et al., 2013] Pontvianne, F., Blevins, T., Chandrasekhara, C., Mozgová, I., Hassel,<br />

C., Pontes, O. M., Tucker, S., Mokroš, P., Muchová, V., Fajkus, J., et al. (2013). Subnuclear<br />

partitioning of rRNA genes between the nucleolus and nucleoplasm reflects alternative<br />

epiallelic states. Genes & development, 27(14):1545–1550.<br />

54


[Ross et al., 1996] Ross, K., Fransz, P., and Jones, G. (1996). A light microscopic atlas of<br />

meiosis in Arabidopsis thaliana. Chromosome research, 4(7):507–516.<br />

[She and Baroux, 2014] She, W. and Baroux, C. (2014). Chromatin dynamics during plant<br />

sexual reproduction. Frontiers in plant science, 5.<br />

[Song et al., 2005] Song, F., Smith, J. F., Kimura, M. T., Morrow, A. D., Matsuyama, T., Nagase,<br />

H., and Held, W. A. (2005). Association of tissue-specific differentially methylated regions<br />

TDMs with differential gene expression. Proceedings of the National Academy of Sciences of<br />

the United States of America, 102(9):3336–3341.<br />

[To et al., 2015] To, T. K., Saze, H., , and Kakutani, T. (2015).<br />

transcribed regions. Plant Physiology, 168:1219–1225.<br />

DNA methylation within<br />

[Yelina et al., 2012] Yelina, N. E., Choi, K., Chelysheva, L., Macaulay, M., De Snoo, B.,<br />

Wijnker, E., Miller, N., Drouaud, J., Grelon, M., Copenhaver, G. P., et al. (2012). Epigenetic<br />

remodeling of meiotic crossover frequency in Arabidopsis thaliana DNA methyltransferase<br />

mutants. PLoS genetics, 8(8):e1002844.<br />

[Yelina et al., 2015] Yelina, N. E., Lambing, C., Hardcastle, T. J., Zhao, X., Santos, B., and<br />

Henderson, I. R. (2015). DNA methylation epigenetically silences crossover hot spots<br />

and controls chromosomal domains of meiotic recombination in Arabidopsis. Genes &<br />

development, 29(20):2183–2202.<br />

[Yoon et al., 2016] Yoon, S.-W., Lee, M.-S., Xaver, M., Zhang, L., Hong, S.-G., Kong, Y.-J.,<br />

Cho, H.-R., Kleckner, N., and Kim, K. P. (2016). Meiotic prophase roles of REC8 in crossover<br />

recombination and chromosome structure. Nucleic acids research, 44(19):9296–9314.<br />

[Zemach and Grafi, 2003] Zemach, A. and Grafi, G. (2003). Characterization of Arabidopsis<br />

thaliana methyl-CpG-binding domain MBD proteins. The Plant Journal, 34(5):565–572.<br />

[Zemach et al., 2013] Zemach, A., Kim, M. Y., Hsieh, P.-H., Coleman-Derr, D., Eshed-Williams,<br />

L., Thao, K., Harmer, S. L., and Zilberman, D. (2013). The Arabidopsis nucleosome remodeler<br />

DDM1 allows DNA methyltransferases to access H1-containing heterochromatin. Cell,<br />

153(1):193–205.<br />

[Zhang et al., 2008] Zhang, W., Lee, H.-R., Koo, D.-H., and Jiang, J. (2008). Epigenetic<br />

modification of centromeric chromatin: hypomethylation of DNA sequences in the CENH3-<br />

associated chromatin in Arabidopsis thaliana and maize. The Plant Cell, 20(1):25–34.<br />

55


[Zhang et al., 2006] Zhang, X., Yazaki, J., Sundaresan, A., Cokus, S., Chan, S. W.-L., Chen, H.,<br />

Henderson, I. R., Shinn, P., Pellegrini, M., Jacobsen, S. E., and Ecker, J. (2006). Genome-wide<br />

High-Resolution Mapping and Functional Analysis of DNA methylation in Arabidopsis. Cell,<br />

126(6):1189 – 1201.<br />

[Zilberman et al., 2007] Zilberman, D., Gehring, M., Tran, R. K., Ballinger, T., and Henikoff,<br />

S. (2007). Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an<br />

interdependence between methylation and transcription. Nature genetics, 39(1):61–69.<br />

56


7 Eidesstaatliche Erklärung<br />

Hiermit erkläre ich an Eides statt, dass die vorliegende Arbeit von mir selbständig verfasst<br />

wurde und ich keine anderen als die angegebenen Hilfsmittel – insbesondere keine im Quellenverzeichnis<br />

nicht benannten Internetquellen – benutzt habe und die Arbeit von mir vorher<br />

nicht einem anderen Prüfungsverfahren eingereicht wurde. Die eingereichte schriftliche Fassung<br />

entspricht der auf dem elektronischen Speichermedium. Ich bin damit einverstanden, dass die<br />

Bachelorarbeit veröffentlicht wird.<br />

57


8 Supplementaries<br />

8.1 Movies<br />

MBD6 −GFP xASY3 −TagRFP


MBD6 −GFP xREC8 −TagRFP


SUVH9 −GFP xASY3 −TagRFP


8.2 Additional graphics<br />

Figure 26: MBD6 −GFP xREC8 −mRUBY 3 during meiosis I Disappearance of the nuclear envelope<br />

represents the end of prophase I (A-C). The chromosomes align in the equatorial plane during<br />

metaphase (D-F) and are segregated in anaphase I (G-H). The nuclear envelope reappears in<br />

telophase I, represented by the diffuse circular signal of MBD6 −GFP (I).


Figure 27: MBD6 −GFP xREC8 −mRUBY 3 during meiosis II The transition to metaphase II is<br />

represented by the diappearing nuclear envelope (A-D). The chromosome alignment in the<br />

equatorial plane(E) to be then seperated in anaphase II (F-G). In telophase II, the nuclear<br />

envelope reappears, visualized by the circular signal of MBD6 −GFP (H-L).<br />

8.3 Duration of meiotic substages<br />

By comparing the duration of the different meiotic substages, differences between the anthers can<br />

be observed. Within the anthers themself, the meiocytes progress synchronized through meiosis<br />

with just minor deviations. All meiocytes spent the most time during telophase I/prophase II.<br />

Furthermore, the greatest difference in duration can be noted at this stage, as anthers 1 and 2<br />

spend 128 minutes and 125 minutes at this stage respectively, while anther 3 remains 55 minutes<br />

and anther 4 took 40 minutes until further progression. It has to be noted that anther 1 and<br />

2 originate from the same plant and were observed simultaneously. On the contrary, no such<br />

deviation can be noted within the other phases. Metaphase I and II are of similar lengths in<br />

all meiocytes, between 25 minutes and 35 minutes. Moreover, anaphase I and II show similar<br />

durations as well, both ranging between 10 minutes and 20 minutes in all meiocytes (Fig. 28.)<br />

Thus, the overall time course from entrance to metaphase I to telophase II ranges between 120<br />

min and 222 min. These observations fit to values from the literature, that report completion of<br />

meiosis within 180 mins once metaphase I is reached [Armstrong et al., 2003]. The deviation<br />

from this value of up to 42 mins, shown by anthers 1 and 2, may be due to differences in room<br />

temperature at the time of observation. This distribution of substage lengths is as expected<br />

and reasonable, considering the processes that take place during the respective phases. In<br />

telophase I/prophase II nuclear reorganization takes place including chromatin decondensation<br />

and subsequent condensation to proceed to metaphase. During metaphase on the other hand,


the chromosomes need to organize in the equatorial plane, which may take more time then the<br />

following separation in anaphase.<br />

Figure 28: Lengths of meiotic stages. Duration of meiotic substages devided by observed<br />

anthers. Anther 1 and anther 2 consisted of 13 meiocytes each, anther 3 inherited 6 meiocytes<br />

and within anther 4 3 meiocytes were observed. The progression of meiosis within the anthers<br />

was synchronized with deviations of only a few minutes. These deviations are negligible.<br />

8.4 Vector Sequences and Maps<br />

SUVH9 −GFP<br />

pENTR2B-pHTR5-SUVH9-NLS-GFP-RBCS


CTTTCCTGCG TTATCCCCTG ATTCTGTGGA TAACCGTATT ACCGCTAGCA TGGATC-<br />

TCGG GGACGTCTAA CTACTAAGCG AGAGTAGGGA ACTGCCAGGC ATCAAATAAA<br />

ACGAAAGGCT CAGTCGGAAG ACTGGGCCTT TCGTTTTATC TGTTGTTTGT CGGT-<br />

GAACGC TCTCCTGAGT AGGACAAATC CGCCGGGAGC GGATTTGAAC GTTGTGAAGC<br />

AACGGCCCGG AGGGTGGCGG GCAGGACGCC CGCCATAAAC TGCCAGGCAT CAAAC-<br />

TAAGC AGAAGGCCAT CCTGACGGAT GGCCTTTTTG CGTTTCTACA AACTCTTCCT<br />

GTTAGTTAGT TACTTAAGCT CGGGCCCCAA ATAATGATTT TATTTTGACT GATAGT-<br />

GACC TGTTCGTTGC AACAAATTGA TAAGCAATGC TTTTTTATAA TGCCAACTTT<br />

GTACAAAAAA GCAGGCTGGC GCCGGAACCA ATTCAGTCGA CTGGATCCtc cggatccaga<br />

tccgatataa caaaatttga atcgcacaga tcgatctctt tggagattct atacctagaa aatggagacg attttcaaat ctctgtaaaa<br />

attctggttt cttcttgacg gaagaagacg acgactccaa tatttcggtt agtactgaac cggaaagtttgactggtgca accaatttaa<br />

tgtaccgtac gtaacgcacc aatcggattt tgtattcaat gggccttatc tgtgagccca ttaattgatg tgacggccta aactaaatcc<br />

gaacggttta tttcagcgat ccgcgacggt ttgtattcag ccaatagcaa tcaattatgt agcagtggtg atcctcgtca aaccagtaaa<br />

gctagatctg gaccgttgaa ttggtgcaag aaagcacatg ttgtgatatt tttacccgta cgattagaaa acttgagaaa cacattgata<br />

atcgataaaa accgtccgat catataaatc cgctttacca tcgttgccca taaattaata tcaatagccg tacacgcgtg aagactgaca<br />

atattatctt tttcgaattc ggagctcaag tttgaaattc ggagaagcta gagagttttc tgaggtacga ttcttcgatc ctctttgatt<br />

ttcctggaaa tattttttcg gtgatcgtga aactactgga atcgctcgat aggtggtacg aaattaggcgagattagttt ctattcttgg<br />

ccattatctt gtttcttcgc cgaatgatct tccggataaa gattttaggt tagagatgaa tcgtatagct agatttcatc accagatagt<br />

ttctttgtct agaatctctg aaattctcga tagttttcac atgtgtaaat agattgttct tattcggcga ttgttgatta gggttttgat<br />

tttcttgatt atgcgattgc aattagggat tttctttggt tttgtgttga tcttacgatacattccggca attgaatacg tatggatcta<br />

aatcttgtta atttgttgaa cagggtacca acaGTGGATC Catgggttct tctcacattc ctcttgatcc gtctctaaat ccgtcacctt<br />

cactgatccc aaagcttgaa ccagtcactg aatcaaccca aaacttggcc tttcaacttc caaacacaaa cccacaagcc


ctaatttcat cagccgtctc cgatttcaac gaagccacag acttttcctc agattacaac accgtcgccg agtcagcccg gtctgctttc<br />

gctcaacggc ttcaacgtca cgatgatgtt gcggttcttg attccttaac cggagcaatc gtaccggttg aggagaatcc ggaaccggaa<br />

ccgaatcctt actcaaccag tgactcttca ccgtcggttg ctactcaacg acctagaccg cagccacgtt cgtcggagct<br />

agtgaggatc actgatgttg gacctgaaag tgagagacag tttcgtgaac atgtgaggaa gacgagaatg atttatgatt ctcttaggat<br />

gtttttgatg atggaagaag ctaaacgtaa tggggttggt ggaagaagag ctagagctga tggtaaagct ggtaaagctg<br />

gttcaatgat gagagattgt atgttgtgga tgaatcgtga taaacgaatc gtcggttcga ttcccggtgt tcaagttggg gatatcttct<br />

tctttaggtt tgagttatgt gtcatgggct tacatggaca ccctcaatct gggatcgatt ttcttacagg gagtcttagt tctaatgggg<br />

agccaatagc tactagtgtg attgtttctg gtgggtatga ggatgatgat gatcaaggag atgtgattat gtatacaggt cagggtggac<br />

aagataggct tggaaggcaa gctgaacatc agaggctgga aggtggaaac cttgcgatgg aacggagtat gtattatggg<br />

attgaagtga gagttattag agggttgaag tatgagaatg aggtttctag tagagtttat gtttatgatg ggttgtttag gattgttgat<br />

tcttggtttg atgttgggaa gtctggtttc ggtgtgttta aatatcggttggagaggatt gaaggacagg ctgagatggg tagttcggtg<br />

ttgaagtttg ctaggactcttaagactaat ccattgtctg tgaggccgag aggttacatc aatttcgata tctcgaatgg gaaggagaat<br />

gttcctgtct atttgtttaa cgacattgac agcgatcaag aacctttgtattatgagtat cttgcgcaaa cttcgtttcc tcctggctta<br />

tttgttcagc aaagtggtaatgcaagtgga tgtgactgtg tcaatggttg tggcagtggc tgcctttgtg aagccaagaa ttcaggtgag<br />

attgcttatg attataatgg gacgctaata agacagaaac cgttgataca tgaatgtgga tcagcgtgtc agtgccctcc aagctgtcga<br />

aaccgtgtga ctcaaaaggg tttgaggaat aggctagaag tgtttaggtc actggaaacg ggttggggag ttcggtcttt<br />

ggatgtatta catgctggtg cttttatttg tgagtatgct ggggttgctt tgacaagggaacaagccaac attctgacca tgaacggtga<br />

tacattggta tatcctgctc gtttctcttctgcgagatgg gaagattggg gagatctgtc tcaggtcctt gctgatttcg agcggccttc<br />

ttatcctgat attcctccgg ttgatttcgc aatggatgtg tccaagatga ggaatgttgc ttgttacata agccacagta ctgatccgaa<br />

tgtcattgtc cagtttgtac tccatgatca caacagtctc atgttcccta gagtcatgct tttcgctgct gaaaacatcc ctcccatgac<br />

tgagctcagc cttgattacg gagtagttga tgattggaac gccaagcttg ccatttgtaa tggcggcggc ggccctaaga agaagagaaa<br />

ggttggTACC GGctccatgg tgagcaaggg cgaggagctg ttcaccgggg tggtgcccat cctggtcgag ctggacggcg<br />

acgtaaacgg ccacaagttc agcgtgtccg gcgagggcga gggcgatgcc acctacggca agctgaccct gaagttcatc<br />

tgcaccaccg gcaagctgcc cgtgccctgg cccaccctcg tgaccacctt cacctacggc gtgcagtgct tcagccgcta ccccgaccac<br />

atgaagcagc acgacttctt caagtccgcc atgcccgaag gctacgtcca ggagcgcacc atcttcttca aggacgacgg<br />

caactacaag acccgcgccg aggtgaagtt cgagggcgac accctggtga accgcatcga gctgaagggc atcgacttca<br />

aggaggacgg caacatcctg gggcacaagc tggagtacaa ctacaacagc cacaacgtct atatcatggc cgacaagcag<br />

aagaacggca tcaaggtgaa cttcaagatc cgccacaaca tcgaggacgg cagcgtgcag ctcgccgacc actaccagca gaacaccccc<br />

atcggcgacg gccccgtgct gctgcccgac aaccactacc tgagcacccagtccaagctg agcaaagacc ccaacgagaa<br />

gcgcgatcac atggtcctgc tggagttcgt gaccgccgcc gggatcactc acggcatgga cgagctgtac aagtcaggtg<br />

gatcctagat aacctttacc ttcattccct gtaaattggt accctgcaaa gctttcgttc gtatcatcgg tttcgacaac gttcgtcaag<br />

ttcaatgcat cagtttcatt gcgcacacac cagaatccta ctgagtttga gtattatggc attgggaaaa ctgtttttct tgtaccattt<br />

gttgtgcttg taatttactg tgttttttat tcggttttcg ctatcgaact gtgaaatgga aatggatgga gaagagttaatgaatgatat<br />

ggtccttttg ttcattctca aattaatatt atttgttttttctcttattt gttgtgtgtt gaatttgaaa ttataagaga tatgcaaaca ttttgttttg


agtaaaaatg tgtcaaatcg tggcctctaa tgaccgaagt taatatgagg agtaaaacac ttgtagttgt accattatgc ttattcacta<br />

ggcaacaaat atattttcag acctagaaaa gctgcaaatg ttactgaata caagtatgtc ctcttgtgtt ttagacattt atgaactttc<br />

ctttatgtaa ttttccagaa tccttgtcag attctaatca ttgctttata attatagtta tactcatgga tttgtagttg agtatgaaaa tattttttaa<br />

tgcattttatgacttgccaa ttgattgaca acatgcatca atcgGCGGCC GCACTCGAGA TATCTAGACC<br />

CAGCTTTCTT GTACAAAGTT GGCATTATAA GAAAGCATTG CTTATCAATT TGTTG-<br />

CAACG AACAGGTCAC TATCAGTCAA AATAAAATCA TTATTTGCCA TCCAGCTGCA<br />

GCTCTGGCCC GTGTCTCAAA ATCTCTGATG TTACATTGCA CAAGATAAAA ATATAT-<br />

CATC ATGAACAATA AAACTGTCTG CTTACATAAA CAGTAATACA AGGGGTGTTA<br />

TGAGCCATAT TCAACGGGAA ACGTCGAGGC CGCGATTAAA TTCCAACATG GAT-<br />

GCTGATT TATATGGGTA TAAATGG GCT CGCGATAATG TCGGGCAATC AGGTGC-<br />

GACA ATCTATCGCT TGTATGGGAA GCCCGATGCG CCAGAGTTGT TTCTGAAACA<br />

TGGCAAAGGT AGCGTTGCCA ATGATGTTAC AGATGAGATG GTCAGACTAA ACTG-<br />

GCTGAC GGAATTTATG CCTCTTCCGA CCATCAAGCA TTTTATCCGT ACTCCTGATG<br />

ATGCATGGTT ACTCACCACT GCGATCCCCG GAAAAACAGC ATTCCAGGTA TTAGAA-<br />

GAAT ATCCTGATTC AGGTGAAAAT ATTGTTGATG CGCTGGCAGT GTTCCTGCGC CG-<br />

GTTGCATT CGATTCCTGT TTGTAATTGT CCTTTTAACA GCGATCGCGT ATTTCGTCTC<br />

GCTCAGGCGC AATCACGAAT GAATAACGGT TTGGTTGATG CGAGTGATTT TGAT-<br />

GACGAG CGTAATGGCT GGCCTGTTGA ACAAGTCTGG AAAGAAATGC ATAAACTTTT<br />

GCCATTCTCA CCGGATTCAG TCGTCACTCA TGGTGATTTC TCACTTGATA ACCT-<br />

TATTTT TGACGAGGGG AAATTAATAG GTTGTATTGA TGTTGGACGA GTCGGAATCG<br />

CAGACCGATA CCAGGATCTT GCCATCCTAT GGAACTGCCT CGGTGAGTTT TCTC-<br />

CTTCAT TACAGAAACG GCTTTTTCAA AAATATGGTA TTGATAATCC TGATATGAAT<br />

AAATTGCAGT TTCATTTGAT GCTCGATGAG TTTTTCTAAT CAGAATTGGT TAATTG-<br />

GTTG TAACATTATT CAGATTGGGC CCCGTTCCAC TGAGCGTCAG ACCCCGTAGA<br />

AAAGATCAAA GGATCTTCTT GAGATCCTTT TTTTCTGCGC GTAATCTGCT GCTTG-<br />

CAAAC AAAAAAACCA CCGCTACCAG CGGTGGTTTG TTTGCCGGAT CAAGAGC-<br />

TAC CAACTCTTTT TCCGAAGGTA ACTGGCTTCA GCAGAGCGCA GATACCAAAT<br />

ACTGTTCTTC TAGTGTAGCC GTAGTTAGGC CACCACTTCA AGAACTCTGT AGCAC-<br />

CGCCT ACATACCTCG CTCTGCTAAT CCTGTTACCA GTGGCTGCTG CCAGTGGCGA<br />

TAAGTCGTGT CTTACCGGGT TGGACTCAAG ACGATAGTTA CCGGATAAGG CGCAGCG-<br />

GTC GGGCTGAACG GGGGGTTCGT GCACACAGCC CAGCTTGGAG CGAACGACCT<br />

ACACCGAACT GAGATACCTA CAGCGTGAGC TATGAGAAAG CGCCACGCTT CCC-<br />

GAAGGGA GAAAGGCGGA CAGGTATCCG GTAAGCGGCA GGGTCGGAAC AGGA-<br />

GAGCGC ACGAGGGAGC TTCCAGGGGG AAACGCCTGG TATCTTTATA GTCCTGTCGG


GTTTCGCCAC CTCTGACTTG AGCGTCGATT TTTGTGATGC TCGTCAGGGG GGCG-<br />

GAGCCT ATGGAAAAAC GCCAGCAACG CGGCCTTTTT ACGGTTCCTG GCCTTTTGCT<br />

GGCCTTTTGC TCACATGTT<br />

MBD6 −GFP<br />

pENTR2B-pHTR5-MBD-NLS-GFP-RBCS<br />

CTTTCCTGCG TTATCCCCTG ATTCTGTGGA TAACCGTATT ACCGCTAGCA TGGATC-<br />

TCGG GGACGTCTAA CTACTAAGCG AGAGTAGGGA ACTGCCAGGC ATCAAATAAA<br />

ACGAAAGGCT CAGTCGGAAG ACTGGGCCTT TCGTTTTATC TGTTGTTTGT CGGT-<br />

GAACGC TCTCCTGAGT AGGACAAATC CGCCGGGAGC GGATTTGAAC GTTGTGAAGC<br />

AACGGCCCGG AGGGTGGCGG GCAGGACGCC CGCCATAAAC TGCCAGGCAT CAAAC-<br />

TAAGC AGAAGGCCAT CCTGACGGAT GGCCTTTTTG CGTTTCTACA AACTCTTCCT<br />

GTTAGTTAGT TACTTAAGCT CGGGCCCCAA ATAATGATTT TATTTTGACT GATAGT-<br />

GACC TGTTCGTTGC AACAAATTGA TAAGCAATGC TTTTTTATAA TGCCAACTTT<br />

GTACAAAAAA GCAGGCTGGC GCCGGAACCA ATTCAGTCGA CTGGATCCtc cggatccaga<br />

tccgatataa caaaatttga atcgcacaga tcgatctctttggagattct atacctagaa aatggagacg attttcaaat ctctgtaaaa<br />

attctggtttcttcttgacg gaagaagacg acgactccaa tatttcggtt agtactgaac cggaaagttt gactggtgca accaatttaa<br />

tgtaccgtac gtaacgcacc aatcggattt tgtattcaatgggccttatc tgtgagccca ttaattgatg tgacggccta aactaaatcc<br />

gaacggtttatttcagcgat ccgcgacggt ttgtattcag ccaatagcaa tcaattatgt agcagtggtgatcctcgtca<br />

aaccagtaaa gctagatctg gaccgttgaa ttggtgcaag aaagcacatgttgtgatatt tttacccgta cgattagaaa acttgagaaa<br />

cacattgata atcgataaaaaccgtccgat catataaatc cgctttacca tcgttgccca taaattaata tcaatagccgtacacgcgtg<br />

aagactgaca atattatctt tttcgaattc ggagctcaag tttgaaattcggagaagcta gagagttttc tgaggtacga ttcttcgatc<br />

ctctttgatt ttcctggaaatattttttcg gtgatcgtga aactactgga atcgctcgat aggtggtacg aaattaggcgagattagttt


ctattcttgg ccattatctt gtttcttcgc cgaatgatct tccggataaagattttaggt tagagatgaa tcgtatagct agatttcatc accagatagt<br />

ttctttgtctagaatctctg aaattctcga tagttttcac atgtgtaaat agattgttct tattcggcgattgttgatta gggttttgat<br />

tttcttgatt atgcgattgc aattagggat tttctttggt tttgtgttga tcttacgata cattccggca attgaatacg tatggatcta<br />

aatcttgttaatttgttgaa cagggtacca acaatgcaaa ctgagtcaaa atctcgaaaa cgggctgctc ccggggacaa ctggttaccg<br />

ccgggctgga gggtcgagga caaaatccgc acatcgggcg caactgcagg atctgttgac aaatattact atgagcccaa<br />

cactggacgt aagttccgaa gccgcacgga agtattatat tatcttgagc agggtacgag caagcgcggg actaaaaaag<br />

cggaaaatac ttacttcaac ccggatcact tcgagggcgg cggcggccag acggaatcga agtcgcggaa gcgtgcggcg<br />

cctggagata attggttgcc tcctggttgg agagttgaag ataagattcg aacttccggt gccacagctg gttcggtgga taagtactat<br />

tacgaaccaa atacaggacg taagtttcgg tccaggactg aggtgctgta ctacttggaa catggaactt ctaaaagagg<br />

caccaagaaa gctgagaata catatttcaa tccagaccat tttgaaggcg gcggcggccc taagaagaag agaaaggttg<br />

gctccatggt gagcaagggc gaggagctgt tcaccggggt ggtgcccatc ctggtcgagc tggacggcga cgtaaacggc<br />

cacaagttca gcgtgtccgg cgagggcgag ggcgatgcca cctacggcaa gctgaccctg aagttcatct gcaccaccgg<br />

caagctgccc gtgccctggc ccaccctcgt gaccaccttc acctacggcg tgcagtgctt cagccgctac cccgaccaca<br />

tgaagcagca cgacttcttc aagtccgcca tgcccgaagg ctacgtccag gagcgcacca tcttcttcaa ggacgacggc<br />

aactacaaga cccgcgccga ggtgaagttc gagggcgaca ccctggtgaa ccgcatcgag ctgaagggca tcgacttcaa<br />

ggaggacggc aacatcctgg ggcacaagct ggagtacaac tacaacagccacaacgtcta tatcatggcc gacaagcaga<br />

agaacggcat caaggtgaac ttcaagatcc gccacaacat cgaggacggc agcgtgcagc tcgccgacca ctaccagcag<br />

aacaccccca tcggcgacgg ccccgtgctg ctgcccgaca accactacct gagcacccag tccaagctga gcaaagaccc<br />

caacgagaag cgcgatcaca tggtcctgct ggagttcgtg accgccgccg ggatcactca cggcatggac gagctgtaca<br />

agtcaggtgg atcctagata acctttacct tcattccctg taaattggta ccctgcaaag ctttcgttcg tatcatcggt ttcgacaacg<br />

ttcgtcaagt tcaatgcatc agtttcattg cgcacacacc agaatcctac tgagtttgag tattatggca ttgggaaaac tgtttttctt<br />

gtaccatttg ttgtgcttgt aatttactgt gttttttatt cggttttcgc tatcgaactg tgaaatggaa atggatggag aagagttaat gaatgatatg<br />

gtccttttgt tcattctcaa attaatatta tttgtttttt ctcttatttg ttgtgtgttg aatttgaaat tataagagat atgcaaacat<br />

tttgttttga gtaaaaatgt gtcaaatcgt ggcctctaat gaccgaagtt aatatgagga gtaaaacact tgtagttgta ccattatgct<br />

tattcactag gcaacaaata tattttcaga cctagaaaag ctgcaaatgt tactgaatac aagtatgtcc tcttgtgttt tagacattta<br />

tgaactttcc tttatgtaat tttccagaat ccttgtcaga ttctaatcat tgctttataa ttatagttat actcatggat ttgtagttga gtatgaaaat<br />

attttttaat gcattttatg acttgccaat tgattgacaa catgcatcaa tcgGCGGCCG CACTCGAGAT ATC-<br />

TAGACCC AGCTTTCTTG TACAAAGTTG GCATTATAAG AAAGCATTGC TTATCAATTT<br />

GTTGCAACGA ACAGGTCACT ATCAGTCAAA ATAAAATCAT TATTTGCCAT CCAGCT-<br />

GCAG CTCTGGCCCG TGTCTCAAAA TCTCTGATGT TACATTGCAC AAGATAAAAA<br />

TATATCATCA TGAACAATAA AACTGTCTGC TTACATAAAC AGTAATACAA GGGGT-<br />

GTTAT GAGCCATATT CAACGGGAAA CGTCGAGGCC GCGATTAAAT TCCAACATGG<br />

ATGCTGATTT ATATGGGTAT AAATGGGCTC GCGATAATGT CGGGCAATCA GGTGC-<br />

GACAA TCTATCGCTT GTATGGGAAG CCCGATGCGC CAGAGTTGTT TCTGAAACAT


GGCAAAGGTA GCGTTGCCAA TGATGTTACA GATGAGATGG TCAGACTAAA CTG-<br />

GCTGACG GAATTTATGC CTCTTCCGAC CATCAAGCAT TTTATCCGTA CTCCTGATGA<br />

TGCATGGTTA CTCACCACTG CGATCCCCGG AAAAACAGCA TTCCAGGTAT TAGAA-<br />

GAATA TCCTGATTCA GGTGAAAATA TTGTTGATGC GCTGGCAGTG TTCCTGCGCC<br />

GGTTGCATTC GATTCCTGTT TGTAATTGTC CTTTTAACAG CGATCGCGTA TTTCGTC-<br />

TCG CTCAGGCGCA ATCACGAATGAATAACGGTT TGGTTGATGC GAGTGATTTT GAT-<br />

GACGAGC GTAATGGCTG GCCTGTTGAA CAAGTCTGGA AAGAAATGCA TAAACTT-<br />

TTG CCATTCTCAC CGGATTCAGT CGTCACTCAT GGTGATTTCT CACTTGATAA CCTT-<br />

ATTTTT GACGAGGGGA AATTAATAGG TTGTATTGAT GTTGGACGAG TCGGAATCGC<br />

AGACCGATAC CAGGATCTTG CCATCCTATG GAACTGCCTC GGTGAGTTTT CTC-<br />

CTTCATT ACAGAAACGG CTTTTTCAAA AATATGGTAT TGATAATCCT GATATGAATA<br />

AATTGCAGTT TCATTTGATG CTCGATGAGT TTTTCTAATC AGAATTGGTT AATTG-<br />

GTTGT AACATTATTC AGATTGGGCC CCGTTCCACT GAGCGTCAGA CCCCGTAGAA<br />

AAGATCAAAG GATCTTCTTG AGATCCTTTT TTTCTGCGCG TAATCTGCTG CTTG-<br />

CAAACA AAAAAACCAC CGCTACCAGC GGTGGTTTGT TTGCCGGATC AAGAGC-<br />

TACC AACTCTTTTT CCGAAGGTAA CTGGCTTCAG CAGAGCGCAG ATACCAAATA<br />

CTGTTCTTCT AGTGTAGCCG TAGTTAGGCC ACCACTTCAA GAACTCTGTA GCAC-<br />

CGCCTA CATACCTCGC TCTGCTAATC CTGTTACCAG TGGCTGCTGC CAGTGGCGAT<br />

AAGTCGTGTC TTACCGGGTT GGACTCAAGA CGATAGTTAC CGGATAAGGC GCAGCG-<br />

GTCG GGCTGAACGG GGGGTTCGTG CACACAGCCC AGCTTGGAGC GAACGAC-<br />

CTA CACCGAACTG AGATACCTAC AGCGTGAGCT ATGAGAAAGC GCCACGCTTC<br />

CCGAAGGGAG AAAGGCGGAC AGGTATCCGG TAAGCGGCAG GGTCGGAACA GGA-<br />

GAGCGCA CGAGGGAGCT TCCAGGGGGA AACGCCTGGT ATCTTTATAG TCCTGT-<br />

CGGG TTTCGCCACC TCTGACTTGA GCGTCGATTT TTGTGATGCT CGTCAGGGGG<br />

GCGGAGCCTA TGGAAAAACG CCAGCAACGC GGCCTTTTTA CGGTTCCTGG CCTTT-<br />

TGCTG GCCTTTTGCT CACATGTT<br />

REC8 −mRUBY 3<br />

pENTR-proREC8-REC8-mRUBY3 3’ UTR


CTTTCCTGCG TTATCCCCTG ATTCTGTGGA TAACCGTATT ACCGCCTTTG AGTGA-<br />

GCTGA TACC GCTCGC CGCAGCCGAA CGACCGAGCG CAGCGAGTCA GTGAGC-<br />

GAGG AAGCGGAAGA GCGCCCAATA CGCAAACCGC CTCTCCCCGC GCGTTGGCCG<br />

ATTCATTAAT GCAGCTGGCA CGACAGGTTT CCCGACTGGA AAGCGGGCAG TGAGCG-<br />

CAAC GCAATTAATA CGCGTACCGC TAGCCAGGAA GAGTTTGTAG AAACGCAAAA<br />

AGGCCATCCG TCAGGATGGC CTTCTGCTTA GTTTGATGCC TGGCAGTTTA TGGCGGG<br />

CGT CCTGCCCGCC ACCCTCCGGG CCGTTGCTTC ACAACGTTCA AATCCGCTCC<br />

CGGCGGATTT GTCCTACTCA GGAGAGCGTT CACCGACAAA CAACAGATAA AAC-<br />

GAAAGGC CCAGTCTTCC GACTGAGCCT TTCGTTTTAT TTGATGCCTG GCAGTTC-<br />

CCT ACTCTCGCGT TAACGCTAGC ATGGATGTTT TCCCAGTCAC GACGTTGTAA AAC-<br />

GACGGCC AGTCTTAAGC TCGGGCCCCA AATAATGATT TTATTTTGAC TGATAGT-<br />

GAC CTGTTCGTTG CAACAAATTG ATGAGCAATG CTTTTTTATA ATGCCAACTT TG-<br />

TACAAAAA AGCAGGCTCC GCGGCCGCCC CCTTCACCCC AGCCAAGACA TTGT-<br />

GATCTT CAACCTCCAT CCAACCCTCT GAGTCTTGTC TGCTATAAAC TTGGATCAAA<br />

GCCTCTCCAT CTGAATGTGT CTCATTCAAG GCGTGTGAAA CATTCGTCAC GAG-<br />

CATATAC GTATCCTTGT CGTTGGTTAA CCCTCTAAGA GTAGAAGTGA TCACTGTAAG<br />

AGGATATGTC CGCTGGTGCA CGACTCGATT CACCGGTTTA CCCGATTCAG AAGT-<br />

CACCTC CACGATCCGT TCGGTCTTCA CTCTCTGCTC AACCCTCTTG TATGTTCCGT<br />

TTTTCTCGAA CCTCACCAAG CTGTCAACCT TGAACATGCT CTTGACCATG GTG-<br />

GTCAGAT TACCTTTACT TGATCTAACC CAGCCATCAT ATTCACTACT TACCTCTGCT<br />

TCAACCTTAA ACGACCCATC AAGCTGTTCA AGCTGTTCTT GTCTCATCAT ATGCC-<br />

GACTC GGGCTATCAT AAAGTCTAGA CCCAGCTTCA ACATTCGAAG ACCCGTGATC<br />

TAACCAGAGG TGCAAATTAG CGTCCACAAG CCAGTATGAT ATCCCATCGT TGACCC-


CAAA CGCAAACTCA TGAGACTTTC CATCTAAAAG CAACCCGAGA AATGGCGTCA<br />

AGTCCATGTC ATAGGAAGGT AGATTGAAGG CACCGATTGC TACAACTGGT TCCCA-<br />

GAACA AGGGATTGAT TCCACCAGTA AAGATCACCG GAAATGGCAC CTCGGATCCC<br />

ACGTATCTCC CATCTATCTT AACAAAAACT TCCCGGTATG CACCATTGCC ACGCC-<br />

CGGTT GTTAGATTGT TCGTTCTGAT ATAAGAATTT GGCGGGTTTG AATACCAGAA<br />

CTCATCGTTT CCATGGAACG ATACATATAG TTCCAGCACA ATCTGACGAG TGTTG-<br />

GACGG AATTTGAATT CCTTTTGAGT AAGTTTCTCT GGGGTTCTCG ATCATGAACC<br />

AGAACCCTCT GTTCCCTCCG TCACATACCG GAATTATCAA ATCCGCAGGG GTTTGAT<br />

CTC TTTTCTGGGA ATCCACAAAC CCTAATCTGT TACTAATCTT CAAATTTGAC GCAAT<br />

AGGAT TGAATTCGTA GAAGATGAGG GTGACATTGA TATGATAGAT GCCTGTGTAA<br />

ACATCGTTGA CTATGTTCTC AAGCATCATT GTGACATTTA AATCGGATCT CATAAA-<br />

GAGC GAGGAATACC TAGAGACGTC TTTCCGAACA TTCCAGAAGA TTCCGGATGG<br />

ACTCGGCTCC GCCGTACTGG TGCGAAGTAG CTCCACTCCG CCGAGCCACA AGC-<br />

CGGAGAT ACGATCGTAC TGATCGCCAC TCGAGGCGGC GCGTAGGTCA AGTACAA-<br />

CAT AAGACCACGG CGGCGATATG CAGCTGGAAG GGGGAGTGTA TGGAGTGGTA<br />

AAAGGAGGTC TGTTGATGGT GTTGGCGAAT GAATGGCGGA AGAGGACATG CGAG-<br />

CATGAC GGCGTTAGCT GATCGGACGG TAGGGGCCGC CTGAGCTCCT CGTACTC-<br />

CTG AGGCTCGACC GGTGACCGGA GACAAGTCGA AGCCGATCTA AGGAATCGAT<br />

CCGGCGAGGA AGGACGAGAA ACGGCGGTAG CAGTGAGAAA AGCAAGTGTG AA-<br />

GAAGAACT TAACGGCGCC GTTTTGATTT TCTGGCATga tagcttctgtgtttttgatt atccgagctc<br />

gccgatgcga acttcaatgg agactggaga gagagaagggacgtaattaa acaccaaagc gtttttatat ttcggagaat caactacgtg<br />

tcgtttgaca tcctaaattg gcagatagta gaaaggaaAT GTTGAGACTG GAGAGTTTGA TAG-<br />

TAACAGT GTGGGGACCA GCGACGgtaa cggaattcga aatttatttt agcgtcacgt gtggttacttataatctgtg<br />

cacgtgtcaa aataagagag ggctactagt gacactttcg tcactgtcacttaattttag cctttctcct gacatgctta ctctctcctc<br />

tcccgctacg atcactgcgagttttccctt cttaagctct catggcggct tcataaatct atatacagac aaatttacacataaagaaac<br />

gcattaaaaa aactatttac tcagattcag cttcttctcc acgcaaagac tcgcttctct ttttttctct tcctgagttt ggattttttt<br />

tgcttgagct gaatcatgttttattctcac cagCTTCTAG CTCGAAAAGC TCCGTTGGGT CAGATATGgt<br />

gagtcaaattctatcagtga aacgttttcc gattatcacg atgattttgc aacctctgtt tctgtatctgtttttgaaat cggctgggaa<br />

cttccttgtc gcgatcaagc acttgtcact gcttcaaatcgtcactgcga tttccattga ttgatctgta tatggattat tagtgaatgc<br />

atagagtaaa atctctaaac tctgtttttg atttttcttc ttcttaagGA TGGCCGCTAC ATTGCACGCG AAGAT-<br />

CAACC GGAAGAAACT AGATAAGCTC GATATCATTC AAATCTGgtg agaggagatg agatagtgtt<br />

cgcccttttt ttgggtttta ctctgcttcg atttttttgg tgttcctgccatgaaaacga acgttgattt ttccattttt gttggttact<br />

ttactcttac agCGAAGAGATTTTGAATCC GTCGGTTCCG ATGGCTCTTA GACTCTCCGG<br />

GATTCTTATG Ggtatgcttttgctcatcgg attttttttt tcctcagttc ttcacattct gggttcttca atgttttgtttattcgatag


GTGGTGTTGT GATTGTTTAT GAGAGGAAAG TGAAGCTCCT ATTCGgtaattttctgattc aaatcatttt<br />

tgaattttgg gatttaagtt tacactctcc tctttttctg atgagactct gctctttttc tgggttttat tttccgtcaa tatttcagAT<br />

GATGTTAATC GCTTTCTGgt aatcaaatct tctccgatcc tcttctattt tttgtttccc cgtcaaaatc atattcacgt<br />

acctcgattt ctggattttc acatgtgttt atttttctca gGTTGAAATT AATGGAGCTT GGCGCACAAA<br />

ATCTGTTCCG GATCCCACTT TACTACCTAA AGGAAAAACC CATGCCAGgt aatgtcacat<br />

cttcttcctt gaaggagctt ctcatgccat tgaaggattctgaaggatca aatcgtaaac ataagaacat tgtcgtgaag aataatagaa<br />

atgattggcgtgttggattt ttttgtttgc agGAAAGAGG CTGTTACATT GCCTGAGAAC GAA-<br />

GAAGCTG ATTTTGGAGA TTTTGAACAG ACTCGTAATG TTCCTAAATT TGGCAATTAC<br />

ATGGATTTTCAGCAGACTTT TATTTCCATG gtaatcaact caattccctg tgaattctag attgaattgggtatttattt<br />

tctttctacg tctcaatatt catcaattcg tagaattgtg gcttgaactc tccaacctaa aacagtgtat aagatataga aaaatcagta<br />

gccatcattc ttcattgcccataaaagtgg agtaaataag ttggcgcata aagggcacct aagacttggt ctaactcaag catgtggttt<br />

atgagtagcc tcattttagt ctacaggtga atatttcaaa ggaaaatctt tttggaactt gaagcatatg aactcaaacc aaaatcattt<br />

gaacatcgct taagattttgacgtgtaacc tatgggctgt ggaaatggac aatgcacaaa agatgcaact gttaatgtga attgatcata<br />

gtagtgttca tctccttgta taccaatgat tactcgtgtg catcttcagt tgatctaatt cattgcgtgg ttttatctct ttgcagCGGT<br />

TAGATGAATC CCATGTTAAC AATAACCCCG AGCCAGAAGA TCTTGGACAG CAGTTC-<br />

CATC AAGgtgagta tcttgagaca aaacctttgt gagtatacga catgttaata acttacattt atccgcttgt caatttctgt<br />

aacattctca gCTGATGCCG AGAATATCAC ACTCTTTGAG TATCATGGTT CATTCCAGAC<br />

CAACAATGAA ACATATGATC GTTTTGAAAG gtgagctttc aatcccacta tctatcttcagtctttaatt<br />

cccagatttt aaaccttctc gaataactgt tgaaggtaga agttgtagcg tttcactatt tctgtatttt ctttcatcca cctttcagca<br />

aaaagctggt gatgatttgt tctattctat tctgcttttt aatggcatct cagATTTGAC ATCGAAGGAG ATGAT-<br />

GAAACACAGATGAAC TCCAATCCAA GAGAAGGCGC TGAAATACCT ACAACTCTCA<br />

TCCCATCACCACCTCGTCAT CATGACATTC CCGAAGgtag atagttatgt cactcttccc ttctataatc<br />

gtgacatctg gttattgtat ggggatatga atttttgagt caaagatgaa attgttttca atttttaaat agtgttaagt ttatgaagcc<br />

aataacaatg acttgggcga gtctcttgta taataatcat gtatgtgacc tgggaatgta tttttgttga agcttctgaa tgatatgaac<br />

actgagcttc gtgaacagag cagaacaaat ttactaatct ttagccatct gcagGAGTCA ACCCCACAAG<br />

CCCTCAGCGC CAGGAGCAAC AGGAGAATCG TAGGGACGGA TTTGCTGAGCAGATG-<br />

GAGGA ACAAAACATA CCGGACAAAG AGgtattttc acttactagg aataccctca tctagtagaa aatacattga<br />

attgggtttt gttctgcatg cagGAACACG ATAGACCACAACCAGCGAAA AAGAGAGCAA<br />

GAAAGACAGC TACTTCAGCG ATGGATTATG AGCAAACTAT TATCGCTGGT CATGTT-<br />

TACC AGTCATGGCT CCAGGATACT TCTGACATTC TCTGTAGGGGGGAAAAGAGA<br />

AAGgttcaaa tttttgaact cattggcctt tattgtatta actggtgctc atgttggcct tacatctgac atctttttgt agGTTC-<br />

GAGG AACTATCCGG CCAGACATGGAAAGTTTCAA ACGTGCGAAT ATGCCACCTA<br />

CACAACTCTT TGAAAAGGAC AGTTCTTACCCGCCTCAGCT TTACCAGCTT TGGT-<br />

CAAAGA ATACTCAAGT TCTTCAAACC TCATCATCTG gtctctctct atccataact gttggttttt


tgttttctcc ttgttgaaac gaatctgaca tttggaaatg tcgatacagA ATCTCGACAT CCTGATCTCC GT-<br />

GCGGAACA ATCTCCAGGG TTTGTTCAGG AGAGAATGCA TAACCACCAT CAAACA-<br />

GACC ATgtaagtcg cggaagcata ttctttcctg aaagtttagt atcaataaga gaaaggcaca tttcatattc tctctaacagaatgtggatt<br />

tatgcagCAT GAGCGCAGTG ACACAAGCTC CCAAAATCTT GATAGTCCCG<br />

CAGAAATACT CCGGACAGTT CGTACTGGGA AAGGTGCTTC AGTAGAAAGC ATGATG-<br />

GCTGGATCTCGAGC AAGCCCTGAA ACTATTAACC GCCAGGCTGC TGATATTAAT<br />

GTCACGCCATTCTATTCTGg ttaaaagctt ctctatttta tccagtcttc agatcatagc ttggtattgt ggaatattta<br />

gcgtaagtta tttgattttc atgggaatta cagGAGATGA TGTGAGATCC ATGCCTAGTA CACCATC-<br />

CGC ACGTGGAGCA GCTTCAATTA ACAACATAGA GATCAGCTCT AAAAGgttaa gaacacatct<br />

aagtttctct gatactaaaa ccaatagtaa cttacaaacagttttccat tggaagacga tcactaaatc ttcttctgct taccaaatca<br />

gTCGCATGCCCAATAGAAAA AGACCAAATT CCTCACCAAG AAGAGGACTC<br />

GAACCAGTGG CGGAAGAGAGACCGTGGGAG CACCGTGAAT ATGAGTTTGA GTTTTC<br />

AATG TTACCTGAAA AACGCTTCACAGCCGATAAA Ggtagaagtt tttaattgtc ttttgatcct atacaacttt<br />

caaaaacacc atcttacaaa ccttaacgtg gcttcttttt cacagAAATA CTATTTGAAA CTGCATCTA-<br />

CACAGACTCAA AAGCCAGTGT GCAATCAATC AGACGAGATG ATAACAGATA GCAT-<br />

CAAAAGgtaagagatt caaaattatc tgccaaatct atatactgag taacaatgat gagatctataaacgaaacac agTCAC-<br />

CTGA AGACACACTT TGAAACACCT GGAGCTCCTC AAGTGGAATCTCTTAACAAG<br />

CTCGCTGTTG GAATGGACAG AAACGCTGCA GCTAAACTCT TCTTCCAATCCTGTGgtact<br />

aacttctact tcaacttaat ttcactttct ttgagcataa aaaaacctgactatgattat tgtttatatg tccagTGTTA GC-<br />

TACTCGCG GAGTCATCAA GGTAAACCAAGCAGAGCCTT ATGGGGACAT TCTCATTGC<br />

A AGAGGACCCA ACATGCCCGG Gtgtacaggagtaccgcccc gtccggtcct gcccgtcacc gagatcagcg<br />

gagagttcat ggtgtccaagggcgaggagc tgatcaagga gaacatgagg atgaaagtcg ttatggaggg aagcgtgaacggtcaccagt<br />

tcaagtgcac cggcgaggga gaggggcgtc catacgaggg agtccaaactatgaggatca aagtgattga aggaggccca<br />

ctccctttcg ccttcgacat cttggctacctctttcatgt acggctcccg caccttcatc aagtaccccg ccgatatccc<br />

ggacttcttt aagcagtcat tcccagaggg tttcacctgg gagagagtca cacgttacga ggacggcggagttgtgaccg tcactcag<br />

ga caccagcctg gaggatggcg agctggttta caatgtgaaagtccgcgggg tgaacttccc ctccaacgga cctgtcatgc<br />

aaaagaagac caagggctgg gaaccgaaca cggagatgat gtatccagcc gacggtggcc tcaggggata caccgacatt<br />

gcactcaaag tggacggcgg cgggcacttg cattgcaact tcgttaccac ttaccgctcg aagaagaccg tcggaaatat caagatgccc<br />

ggagtgcacg ccgtcgatca ccgtcttgag aggatcgagg agagcgacaa cgaaacctac gtggttcagc gcgaagtcgc<br />

tgtggccaagtactccaacc tgggtggagg catggacgag ctttacaagt gaCCCGGGTA Aggtttgatttctaaattat<br />

aaaagattct ggtgaaccga ttatccatag ttgttttgct tttcatattctagcagagag agttcgtaga cttttttaag ttataaagag<br />

caagcgttct ttacccaaattcctctgttt ggtccttttg ttatatggtt attagtacct catacatcat cacatcctagctttgtccga<br />

aaacatctga aactaatttt tacattattc tataatttaa gtattttactcgcatatatt gagtcttctt agaagatgta ttgaacagag<br />

cataaacaaa acaatagtttaatatatact ccgttgacaa agaaaatggt ggcagtcacg taataagccg caactgcccc-


catttcatac aatacatgta taatcttcat aattagtcgc tcacacgttt catacaatttgtcaaatttc tcaaaaaatt aaactaatta<br />

cacaatcaaa taccagcctc tatatgtttctatatatacg catatttctt acccctgaat cacacaAAGG GTGGGCGCGC<br />

CGACCCAGCTTTCTTGTACA AAGTTGGCAT TATAAGAAAG CATTGCTTAT CAATTTGT<br />

TG CAACGAACAG GTCACTATCA GTCAAAATAA AATCATTATT TGCCATCCAG CT-<br />

GATATCCC CTATAGTGAGTCGTATTACA TGGTCATAGC TGTTTCCTGG CAGCTCTGGC<br />

CCGTGTCTCA AAATCTCTGATGTTACATTG CACAAGATAA AAATATATCA TCATGAA-<br />

CAA TAAAACTGTC TGCTTACATAAACAGTAATA CAAGGGGTGT TATGAGCCAT ATTC<br />

AACGGG AAACGTCGAG GCCGCGATTA AATTCCAACA TGGATGCTGA TTTATATGGG<br />

TATAAATGG G CTCGCGATAA TGTCGGGCAA TCAGGTGCGA CAATCTATCG CTTG-<br />

TATGGG AAGCCCGATG CGCCAGAGTT GTTTCTGAAA CATGGCAAAG GTAGCGTTGC<br />

CAATGATGTT ACAGATGAGA TGGTCAGACT AAACTGGCTG ACGGAATTTA TGC-<br />

CTCTTCC GACCATCAAG CATTTTATCC GTACTCCTGA TGATGCATGG TTACTCACCA<br />

CTGCGATCCC CGGAAAAACA GCATTCCAGG TATTAGAAGA ATATCCTGAT TCAGGT-<br />

GAAA ATATTGTTGA TGCGCTGGCA GTGTTCCTGC GCCGGTTGCA TTCGATTCCT<br />

GTTTGTAATT GTCCTTTTAA CAGCGATCGC GTATTTCGTC TCGCTCAGGC GCAAT-<br />

CACGA ATGAATAACG GTTTGGTTGA TGCGAGTGAT TTTGATGACG AGCGTAATGG<br />

CTGGCCTGTT GAACAAGTCT GGAAAGAAAT GCATAAACTT TTGCCATTCT CACCG-<br />

GATTC AGTCGTCACT CATGGTGATT TCTCACTTGA TAACCTTATT TTTGACGAGG<br />

GGAAATTAAT AGGTTGTATT GATGTTGGAC GAGTCGGAAT CGCAGACCGA TACCAGG<br />

ATC TTGCCATCCT ATGGAACTGC CTCGGTGAGT TTTCTCCTTC ATTACAGAAA CG-<br />

GCTTTTTC AAAAATATGG TATTGATAAT CCTGATATGA ATAAATTGCA GTTTCATTTG<br />

ATGCTCGATG AGTTTTTCTA ATCAGAATTG GTTAATTGGT TGTAACACTG GCAGAG-<br />

CATT ACGCTGACTT GACGGGACGG CGCAAGCTCA TGACCAAAAT CCCTTAACGT<br />

GAGTTACGCG TCGTTCCACT GAGCGTCAGA CCCCGTAGAA AAGATCAAAG GATCTT<br />

CTTG AGATCCTTTT TTTCTGCGCG TAATCTGCTG CTTGCAAACA AAAAAACCAC<br />

CGCTACCAGC GGTGGTTTGT TTGCCGGATC AAGAGCTACC AACTCTTTTT CCGAAG-<br />

GTAA CTGGCTTCAG CAGAGCGCAG ATACCAAATA CTGTCCTTCT AGTGTAGCCG<br />

TAGTTAGGCC ACCACTTCAA GAACTCTGTA GCACCGCCTA CATACCTCGC TCTGC-<br />

TAATC CTGTTACCAG TGGCTGCTGC CAGTGGCGAT AAGTCGTGTC TTACCGGGTT<br />

GGACTCAAGA CGATAGTTAC CGGATAAGGC GCAGCGGTCG GGCTGAACGG GGGGTT<br />

CGTG CACACAGCCC AGCTTGGAGC GAACGACCTA CACCGAACTG AGATACCTAC<br />

AGCGTGAGCA TTGAGAAAGC GCCACGCTTC CCGAAGGGAG AAAGGCGGAC AG-<br />

GTATCCGG TAAGCGGCAG GGTCGGAACA GGAGAGCGCA CGAGGGAGCT TCCAGGG<br />

GGA AACGCCTGGT ATCTTTATAG TCCTGTCGGG TTTCGCCACC TCTGACTTGA GCGT


CGATTT TTGTGATGCT CGTCAGGGGG GCGGAGCCTA TGGAAAAACG CCAGCAACGC<br />

GGCCTTTTTA CGGTTCCTGG CCTTTTGCTG GCCTTTTGCT CACATGTT<br />

ASY3 −TagRFP<br />

pENTR-progASY3-gASY3-TagRFP 3’UTR<br />

ctttcctgcg ttatcccctg attctgtgga taaccgtatt accgcctttg agtgagctgataccgctcgc cgcagccgaa cgaccgagcg<br />

cagcgagtca gtgagcgagg aagcggaagagcgcccaata cgcaaaccgc ctctccccgc gcgttggccg attcattaat<br />

gcagctggca cgacaggttt cccgactgga aagcgggcag tgagcgcaac gcaattaata cgcgtaccgctagccaggaa<br />

gagtttgtag aaacgcaaaa aggccatccg tcaggatggc cttctgcttagtttgatgcc tggcagttta tggcgggcgt cctgcccgcc<br />

accctccggg ccgttgcttcacaacgttca aatccgctcc cggcggattt gtcctactca ggagagcgtt caccgacaaa<br />

caacagataa aacgaaaggc ccagtcttcc gactgagcct ttcgttttat ttgatgcctggcagttccct actctcgcgt taacgctagc<br />

atggatgttt tcccagtcac gacgttgtaaaacgacggcc agtcttaagc tcgggcccga gttaacgcta ccatggagct<br />

ccaaataatgattttatttt gactgatagt gacctgttcg ttgcaacaaa ttgataagca atgcttttttataatgccaa ctttGTATAG<br />

AAAAGTTGTA cgaattattt cttcgttgat atcgtatataaaatttaaaa ctcatagaat ttctattcaa aaagtaattg gtgattaaat<br />

gaatggagtg cctatatatg tatttttttt ttcttgcaat caattttgat ttagaatttg catgcatgat atttttttaa tattttttta<br />

tcctttaata attttttttt atattatcta aagttgtatt tgtattcctt acataaagtt tggttacttt catctctaag gtaaactgct aatattaaag<br />

aaagtaattt aatggaagca aaaagtgtta aaatatgtaa tataatttga atggaagagt agcccccgag ggcaatcaag<br />

tggaggtctt ccatggttag gatgcagaag cttaatacgt ttatatagat agataaacaa tagcctccat aaagtaaaag atacttgcat<br />

gcgtgcgtgt aggtattgag tcgagatgtt acgtgcgtgt ctttttatag atactatata ttattggttc ttctaaatcc ttaaaaatgt taagattacg<br />

cacgcaattc atgaattgta tatagattta ccaaatcttg aattgatttt aaatttctta caaagcaaat acactggtag tgtgacattt<br />

tgtccctgtg gattctgtat gacgtaatct cgttcctcac attatgacac ttaatcgagt gttttttttt ccctatcatt ttttttgtaa atttatcctc<br />

tacaaattat gtatgtttgt gaactattaa atacgatgtt gatatatata tatatatata tataaactat ataataaata agtgaattat


tttacgagta tggatcataa ataaaacatg gaataacaat agaatgtttg ttaaatagaa ctcaaattaa tgatcagtta tgtacagtcc<br />

ggccttaggc ccaggcacta cccacttggg ccgggcctgg ttatgtagca tatatataaa cgctagtcac cgggatagtt ggacttggat<br />

ggctctagcc tgacccgtca aagtttaacg gaaacttgac atatgcaaag accgtctccg tttgaacttt gaagcgattg<br />

aaattttttg agaggcgaat taaggcgcca aaattttgag aatgataagt agattacgac acatgtactc acctcaatct gacggttacg<br />

atgcaatgta aatacgaaga aatctcaggg ttaaaatcgt ccaaatgttc ggcgtcgtgt atacgcaatt cagctacaga cagtgtttgt<br />

tacacaccat tttgagaaat ctaaattttc attttccccc gcttctctcc tagaaatttc gaatttctgc ttctctctct ctctatcagt tttctcagat<br />

cttattccag ttaatattcc ggcgatcttc tttctctctt tgatcactta attcttcacc ggaatcagag agtcagggct ttcgcacttg<br />

tacccgcgag ctttgattag gtaatttctt agccaatgat accatcgctc gattttctct gttttcgttt tcgattcatg gctcgttact<br />

ctcatattca gtgataagtc gtcgcgatct atgccccctt tcgttaaatt ggtgttatcg tctcgatttt gagtttagta ccagcgttat<br />

agtgttgtct ttgcataatc ggagagtttt ggtatgaaat tcgttgctag agatatcaca tctcgctagt tgttcatcgt ttcaagcatc<br />

tattatctgc tgcttctctt gttttcgtca tattatccag atctagcacc ttcttatttt gggattttct attaccaaat tttttatccg agtgttagaa<br />

atttaccatt cctaatgatt aatttatcat ccattatcgc tgaatatagc ctgcgttgta ctgctttact tctctgtttg tgttgctatt<br />

cagaaattat atgagtgatt aggtgttcgt tgatatttac attctttttc ccagcagaat tgttaacctt gtggtgatac atttcaggaa<br />

aagATGAGCG ACTATAGAAG CTTCGGCAGT AACTACCATC CATCAAGTCA ATCTA-<br />

GAAAG ATTTCTATAG GAGTTATGGC TGATTCACAA CCGAAAAGGA ATCTTGTGCC<br />

AGATAAGGAT GATGGAGATG TTATTGCTAG AGTAGAAAAG TTGAAATCAG CCAC-<br />

CGTAAC TGAATTACAG GCGAACAAGA AAGAGAAAAG TGATTTAGCT GCCAAG-<br />

CAAA GGAATTCAGC TCAGGTCACA GGACATGTGA CCTCACCTTG GAGGTCTCCG<br />

AGATCGTCTC ATCGGAAATT AGGGACTCTT GAGAGTGTTC TTTGTAAGCA AACATC-<br />

TAGT TTGTCTGGTA GCAAAGGATT AAACAAGGGA CTTAATGGAG CACATCAGAC<br />

ACCAGCTCGT GAATCATTTC AAAACTGTCC CATTTCGAGT CCTCAGCACA GTCTTG-<br />

GTGA GCTGAATGGT GGCAGGAACG ATAGAGTGAT GGATAGGAGT CCAGAGAGGA<br />

TGGAAGAACC TCCATCTGCA GTCTTGCAGC AAAAGGTTGC CTCACAGAGA GAGAA-<br />

GATGG ATAAGCCAGG GAAGGAGACA AATGGAACTA CTGATGTTTT GAGATCAAAA<br />

CTGTGGGAGA TATTGGGAAA AGCTTCACCA GCAAATAATG AAGATGTGAA CTCT-<br />

GAGACC CCAGAAGTTG AGAAGACCAA CTTCAAGTTG AGTCAAGACA AGGGTTCAA<br />

A TGATGATCCT CTTATTAAGC CTAGACACAA TTCAGATTCT ATCGAAACTG ATTCT-<br />

GAAAG CCCTGAAAAT GCTACCAGAA GGCCAGTAAC CAGATCTTTG TTGCAGAGGA<br />

GGGTAGGAGC CAAAGGTGTC CAGAAGAAAA CCAAAGCTGG TGCCAACTTA GGTCG-<br />

CAAGT GCACAGAACA AGTAAATAGT GTATTTTCTT TTGAGGAAGG TTTGCGCGGA<br />

AAAATTGGCA CTGCTGTGAA TTCCAGTGTT ATGCCAAAGA AACAAAGGGG TAGAA-<br />

GAAAA AACACTGTTG TAAAATGCCG TAAGGCTCAT TCTCGAAAAA AGGATGAAGC<br />

TGATTGGAGT CGGAAGGAGG CGAGCAAGAG CAATACTCCA CCACGTTCTG AAAG-<br />

CACAGA AACTGGCAAA AGATCTTCAT CTTCAGACAA AAAGGGAAGT TCCCAT-


GACC TTCATCCACA GAGCAAAGCC CGGAAACAGA AACCAGATAT TAGCACAAGG<br />

GAAGGAGATT TTCATCCATC GCCAGAAGCT GAGGCAGCAG CTCTGCCAGA GAT-<br />

GTCCCAG GGATTATCTA AAAATGGCGA TAAACATGAA CGGCCGAGTA ATATTTTCAG<br />

GGAAAAGTCT GTTGAGCCAG AAAACGAATT CCAGAGTCCA ACCTTTGGAT ATAAAG-<br />

CACC AATCTCAAGT CCTTCCCCAT GTTGTTCTCC AGAAGCATCT CCTTTGCAAC<br />

CTAGGAATAT TAGTCCCACA TTAGATGAGA CGGAAACACC AATATTTAGC TTCG-<br />

GTACTA AGAAAACCTC TCAAGGGACA ACAGGCCAAG CGTCAGATAC AGAAAA-<br />

GAGA TTGCCTgtaa ccttcataaa ctgaagcggc tttatctata cttaagttgc atattgactt tatatactcc tctttgactt<br />

ttgtgtttac ttatttattt tcagGATTTC TTGGAGAAGA AAAGAGATTA TTCTTTCAGA AGA-<br />

GAAAGTT CTCCTGAGCC AAATGAAGAT TTAGTTCTGT CTGATCCGTC GTCTGAT-<br />

GAG CGAGACTCAG ATGGTTCAAG AGAAGATTCA CCAGTGTTAG GCCATAACAT<br />

CAgtatgctt cttaattctt atcctagacc atataaaaac tggaggatct tattttcttc ttaacagaat ccatgttttg cttattctat<br />

tgatcttctg attcagGCCC CGAAGAAAGA GAAACTGCCA ATTGGACTAA TGAGAGATCT<br />

ATGTTAGGCC CTAGCTCAGT TAAACGGAAC TCTAACCTTA AGGGCATTGG ACGT-<br />

GTCGTG TTAAGTCCTC CCTCCCCTTT GTCAAAAGgt ataatgctca tttgtatgtc actgttgtgg<br />

gtttatatac tgcaccctca tttgttttgt cctggaaact gagcagGGAT CGATAAAACT GATTCCTTCC AG-<br />

CATTGTTC AGAGATGGAT GAGGATGAAG ATGAAGGCTT GGGAAGgtct cttgtagata taactaatat<br />

tacgtgtcta tctttaatct ttgttcctgt cttaagttga ttatttacca tgtctcagGG CTGTTGCATT GTTCGC-<br />

TATG GCTCTTCAAA ACTTTGAGAG AAAACTGAAA TCTGCAGCTG AAAAGAAGTC<br />

CTCAGAAATT ATAGCATCAG TCTCCGAGGA GATACATCTG GAGTTGGAGA ATAT-<br />

CAAGTC CCATATCATA ACAGAAGCgt atgtttgtat aatttattct gcattctttc ttttaaatta tcaatcaaag<br />

atcttgttaa ttatggtaca gGGGAAAGAC AAGTAACCTA GCCAAAACTA AGAGAAAGCA TGC-<br />

CGAAACA AGATTACAAG gtacatcaac acattatatc ttaatagtta atactgtact cgaattcaca gtcatgaaca ttaagaaagc<br />

ttagaagttc aaatatacta tctttgcagt ttaatcctga ttcaaggtag tagatcggaa atttgatatc aagtattact ctttagattg<br />

catttagtct tgaagtactc accatcttgc ttcattcttg tgctttcatg tctctttgat tagacacaca cacacaccta actatacttt<br />

cggctctaac atagacatga aacttgcatt taacatagtt atatcaagac aaagctaaat gctcaattca ttcctatgtg gagaataata<br />

aaaaattgag ctgtgtattg ttgtggaaca tgagagtctg gaaatgtctc catatttcca ctcattgaat aaaaatatgc aagatccgtt<br />

ctgatctatt gtgttcactg ataatatcta atcgtctaac agAGCAAGAA GAGAAAATGA GAATGATCCA<br />

TGAAAAGTTC AAGGACGATG TCAGCCATCA TCTTGAAGAT TTTAAGAGTA CTATC-<br />

GAAGA GCTTGAAGCA AACCAGTCAG AGCTGAAAGG AAGCATAAAG AAGCAAAgta<br />

tgttaacttc tgtaattcct gcttttacta caacgaattc taacactaga aatacttgaa acatatgatg ttatcaaagt tagattcttc atggcaagat<br />

agttttaata taataatagc aggaggacaa gtatttccta aactcacttg ataacttttt atctctctat gacagGAACA<br />

TCACACCAAA AACTCATTGC ACATTTTGAA GGAGGCATCG AGACAAAACT GGAC-<br />

GATGCG ACCAAAAGAA TCGATTCTGT AAACAAGgca agtcattgtt ctgcttctta agagtcagat tc-


taaaaatg gttaaatcat gaattcaaaa gcacaactta aaaatgacgt attggtttac agTCTGCGAG AGGAAAGATG<br />

CTGCAGCTGA AGATGATTGT CGCAGAATGT TTGAGGGATG ATCCCGGGgg tggcggtgga<br />

tcaggcggag gtgggagtgg tggtggcgga tctATGGTGT CTAAGGGCGA AGAGCTGATT AAGGA-<br />

GAACA TGCACATGAA GCTGTACATG GAGGGCACCG TGAACAACCA CCACTTCAAG<br />

TGCACATCCG AGGGCGAAGG CAAGCCCTAC GAGGGCACCC AGACCATGAG AAT-<br />

CAAGGTG GTCGAGGGCG GCCCTCTCCC CTTCGCCTTC GACATCCTGG CTACCAGCTT<br />

CATGTACGGC AGCAGAACCT TCATCAACCA CACCCAGGGC ATCCCCGACT TCTT-<br />

TAAGCA GTCCTTCCCT GAGGGCTTCA CATGGGAGAG AGTCACCACA TACGAA-<br />

GACG GGGGCGTGCT GACCGCTACC CAGGACACCA GCCTCCAGGA CGGCTGCCTC<br />

ATCTACAACG TCAAGATCAG AGGGGTGAAC TTCCCATCCA ACGGCCCTGT GATGCA-<br />

GAAG AAAACACTCG GCTGGGAGGC CAACACCGAG ATGCTGTACC CCGCTGACGG<br />

CGGCCTGGAA GGCAGAACCG ACATGGCCCT GAAGCTCGTG GGCGGGGGCC AC-<br />

CTGATCTG CAACTTCAAG ACCACATACA GATCCAAGAA ACCCGCTAAG AACCT-<br />

CAAGA TGCCCGGCGT CTACTATGTG GACCACAGAC TGGAAAGAAT CAAGGAGGCC<br />

GACAAAGAGA CCTACGTCGA GCAGCACGAG GTGGCTGTGG CCAGATACTG CGAC-<br />

CTCCCT AGCAAACTGG GGCACAAACT TAATggaggt ggaCCCGGGT GAACAAGTTT<br />

gtacaaaaaa gttgaacgag aaacgtaaaa tgatataaat atcaatatat taaattagat tttgcataaa aaacagacta cataatactg<br />

taaaacacaa catatgcagt cactatgaac caactactta gatggtatta gtgacctgta gaattcgagc tctagagctg<br />

cagggcggcc gcgatatccc ctatagtgag tcgtattaca tggtcatagc tgtttcctgg cagctctggc ccgtgtctca aaatctctga<br />

tgttacattg cacaagataa aaatatatca tcatgaacaa taaaactgtc tgcttacata aacagtaata caaggggtgt tatgagccat<br />

attcaacggg aaacgtcgag gccgcgatta aattccaaca tggatgctga tttatatggg tataaatggg ctcgcgataa<br />

tgtcgggcaa tcaggtgcga caatctatcg cttgtatggg aagcccgatg cgccagagtt gtttctgaaa catggcaaag gtagcgtt<br />

gc caatgatgtt acagatgaga tggtcagact aaactggctg acggaattta tgcctcttcc gaccatcaag cattttatcc gtactcctga<br />

tgatgcatgg ttactcacca ctgcgatccc cggaaaaaca gcattccagg tattagaaga atatcctgat tcaggtgaaa<br />

atattgttga tgcgctggca gtgttcctgc gccggttgca ttcgattcct gtttgtaatt gtccttttaa cagcgatcgc gtatttcgtc<br />

tcgctcaggc gcaatcacga atgaataacg gtttggttga tgcgagtgat tttgatgacg agcgtaatgg ctggcctgtt gaacaagtct<br />

ggaaagaaat gcataaactt ttgccattct caccggattc agtcgtcact catggtgatt tctcacttga taaccttatt tttgacgagg<br />

ggaaattaat aggttgtatt gatgttggac gagtcggaat cgcagaccga taccaggatc ttgccatcct atggaactgc<br />

ctcggtgagt tttctccttc attacagaaa cggctttttc aaaaatatgg tattgataat cctgatatga ataaattgca gtttcatttg<br />

atgctcgatg agtttttcta atcagaattg gttaattggt tgtaacactg gcagagcatt acgctgactt gacgggacgg cgcaagctca<br />

tgaccaaaat cccttaacgt gagttacgcg tcgttccact gagcgtcaga ccccgtagaa aagatcaaag gatcttcttg agatcctttt<br />

tttctgcgcg taatctgctg cttgcaaaca aaaaaaccac cgctaccagc ggtggtttgt ttgccggatc aagagctacc<br />

aactcttttt ccgaaggtaa ctggcttcag cagagcgcag ataccaaata ctgtccttct agtgtagccg tagttaggcc accacttcaa<br />

gaactctgta gcaccgccta catacctcgc tctgctaatc ctgttaccag tggctgctgc cagtggcgat aagtcgtgtc ttaccgggtt


ggactcaaga cgatagttac cggataaggc gcagcggtcg ggctgaacgg ggggttcgtg cacacagccc agcttggagc<br />

gaacgaccta caccgaactg agatacctac agcgtgagca ttgagaaagc gccacgcttc ccgaagggag aaaggcggac<br />

aggtatccgg taagcggcag ggtcggaaca ggagagcgca cgagggagct tccaggggga aacgcctggt atctttatag tcctgtcggg<br />

tttcgccacc tctgacttga gcgtcgattt ttgtgatgct cgtcaggggg gcggagccta tggaaaaacg ccagcaacgc<br />

ggccttttta cggttcctgg ccttttgctg gccttttgct cacatgtt<br />

TagRFP− CENH3<br />

pENTR-proCENH3-TagRFP-CENH3 3’UTR<br />

CTTTCCTGCG TTATCCCCTG ATTCTGTGGA TAACCGTATT ACCGCCTTTG AGTG-<br />

AGCTGA TACCGCTCGC CGCAGCCGAA CGACCGAGCG CAGCGAGTCA GTGAGC-<br />

GAGG AAGCGGAAGA GCGCCCAATA CGCAAACCGC CTCTCCCCGC GCGTTGGCCG<br />

ATTCATTAAT GCAGCTGGCA CGACAGGTTT CCCGACTGGA AAGCGGGCAG TGAGCG-<br />

CAAC GCAATTAATA CGCGTACCGC TAGCCAGGAA GAGTTTGTAG AAACGCAAAA<br />

AGGCCATCCG TCAGGATGGC CTTCTGCTTA GTTTGATGCC TGGCAGTTTA TGGCGGG<br />

CGT CCTGCCCGCC ACCCTCCGGG CCGTTGCTTC ACAACGTTCA AATCCGCTCC<br />

CGGCGGATTT GTCCTACTCA GGAGAGCGTT CACCGACAAA CAACAGATAA AAC-<br />

GAAAGGC CCAGTCTTCC GACTGAGCCT TTCGTTTTAT TTGATGCCTG GCAGTTC-<br />

CCT ACTCTCGCGT TAACGCTAGC ATGGATGTTT TCCCAGTCAC GACGTTGTAA AAC-<br />

GACGGCC AGTCTTAAGC TCGGGCCCCA AATAATGATT TTATTTTGAC TGATAGT-<br />

GAC CTGTTCGTTG CAACAAATTG ATGAGCAATG CTTTTTTATA ATGCCAACTT TG-<br />

TACAAAAA AGCAGGCTCC GCGGCCGCCC CCTTCACCgc ttctccaatc taccactaat ttcacccttttcgtaccatt<br />

ttctccatga tccgtcaatt ttgatcccaa ccatcgattt agggttttttcccccaaatc tctgtttaac gattgat-


tat aattgatttt ttttagGTTT GGTCACTTGT ACGGAGATTT GATCAGCCGC AGAAATACAA<br />

ACCGTTTGTG AGCAGATGTA CAGTAATCGG TGATCCTGAA ATCGGCAGTC TTAGA-<br />

GAAGT CAATGTTAAA TCTGGTCTTC CTGCAACAAC ATCTACTGAG AGATTAGAAC<br />

TTCTTGATGA TGAAGAACAC ATCCTCGGTA TCAAAATCAT CGGTGGTGAT CACA-<br />

GACTTA AGgtacagcg agagaaatca aatctcattg atgtttgttt atatgcagat tctcattgat tgtttgtttg cagAAT-<br />

TACT CGTCGATTTT GACGGTTCAT CCGGAGATAA TCGAGGGAAG AGCAGGAACG<br />

ATGGTGATTG AATCGTTTGT AGTTGATGTT CCTCAAGGTA ACACAAAGGA TGA-<br />

GACTTGC TACTTTGTTG AAGCACTTAT CAGATGTAAT CTCAAGTCAC TAGCAGATGT<br />

TTCTGAAAGA TTGGCTTCTC AGGACATTAC TCAGTGAact acataatcaa tgaacaaggg cattgaag<br />

tg aagtatcaat tccagtttgt gatataatca atattcttca ggattttttt ggtttggcct agatatatat atagatatct atcctcggta<br />

atgaccagtc taaaaagatg tacatattgt cccaatggtg aagttttgat gtaagatatc tcctggtggt ttgttatttg tagatatttt tgtaaacaat<br />

gtaaatgtga atggtttatg atgtataata tatagttcac aaaagatgtt tctgtagact tcagattcca cttctctatt gaacagaacc<br />

tatgattgga tgctgagaac ttgtaaagaa tctgaggcag aaagttgaaa aactgtgtca atttcattaa cttgaaaaga<br />

tgagcataaa ttgggagaga gagagagaga caaagatttt gaattgaggt ttaacggtaa aacacacaaa acctattccc ctctgtttcc<br />

aattttcatc taaacaaaca ggtacatatt tgaatgtaat attgtataca gaccaggggt aaaacaggaa ctaaagaagg<br />

ctaacaatcg agtcgaaccc tctatgtgaa gccacaggtt tagtgcaaat tgtaataagt tgttcagaga gactcttgac tgaaacaaat<br />

tgtgaagcag attcgatttt aaaatcaaaa tttgagtgtc gagcgggaaa gtaaaagttc cgctccaatc ttctaatctt<br />

ttcgtatcta gcgggaaatt tctcagcagg tgactttcat aatcgcagtt ttcgtcgatt ctcttttccg attttacgat tcctctctct ctctcatggt<br />

gcgatttctc cagcagtaaa aatcaCCCGG GGGTGGCATG GTGTCTAAGG GCGAAGAGCT<br />

GATTAAGGAG AACATGCACA TGAAGCTGTA CATGGAGGGC ACCGTGAACA ACCAC-<br />

CACTT CAAGTGCACA TCCGAGGGCG AAGGCAAGCC CTACGAGGGC ACCCAGACCA<br />

TGAGAATCAA GGTGGTCGAG GGCGGCCCTC TCCCCTTCGC CTTCGACATC CTG-<br />

GCTACCA GCTTCATGTA CGGCAGCAGA ACCTTCATCA ACCACACCCA GGGCATC-<br />

CCC GACTTCTTTA AGCAGTCCTT CCCTGAGGGC TTCACATGGG AGAGAGTCAC CA-<br />

CATACGAA GACGGGGGCG TGCTGACCGC TACCCAGGAC ACCAGCCTCC AGGACG-<br />

GCTG CCTCATCTAC AACGTCAAGA TCAGAGGGGT GAACTTCCCA TCCAACGGCC<br />

CTGTGATGCA GAAGAAAACA CTCGGCTGGG AGGCCAACAC CGAGATGCTG TACCC-<br />

CGCTG ACGGCGGCCT GGAAGGCAGA AcCGACATGG CCCTGAAGCT CGTGGGCGGG<br />

GGCCACCTGA TCTGCAACTT CAAGACCACA TACAGATCCA AGAAACCCGC TAA-<br />

GAACCTC AAGATGCCCG GCGTCTACTA TGTGGACCAC AGACTGGAAA GAATCAAGG<br />

A GGCCGACAAA GAGACCTACG TCGAGCAGCA CGAGGTGGCT GTGGCCAGAT ACT-<br />

GCGACCT CCCTAGCAAA CTGGGGCACA AACTTAATgg tggcggtgga tcaggcggag gtgggagtgg<br />

aggtggaggg tctCCCGGGA TGGCGAGAAC CAAGCATCGC GTTACCAGGT CACAAC-<br />

CTCG GAATCAAACT Ggtatcttaa atctgctttc tctttcaatt tttacttctg attttaccca gaattttagg ttttttattt


cgattttgtt aaccctagat ttcgaatctg aaatttgtag ATGCCGCCGG TGCTTCATCT TCTCAGGCGG<br />

CAGGTCCAAC TACGgtacgg catctttttc cgtcttaggg tttccaatgt ttcttccttt tatcgttatg atcaaatttg tttatctatc<br />

gaaattgaag ACCCCGACAA GGAGAGGCGG TGAAGGTGGA GATAATACTC AA-<br />

CAAAgtga gttttttata tttgaagtct tttttttccc tcttttcatc tcttttgttt gtgaagttat tcttttgtaa catctgcagC AAATC-<br />

CTACA ACTTCACCAG CTACTGGTAC AAGGgtaaga tttttgtgac cattgcttat gaactgcttc aactttgatt<br />

tcgttattaa gctgacaaaa ttctcgtttt ggtttgtcaa gAGAGGGGCT AAGAGATCCA GACAGGCTAT GC-<br />

CACGAGgt ttgttttaaa aaaaaaacca atctcttgtg atatccctga gaatacagga cacttagtgt gtttaaaact aatcttcggt<br />

gttgtccttg tagGCTCACA GAAGAAGTCT TATCGATACA GGCCAGGAAC CGTTGCTCTA<br />

AAAGAGATTC GCCATTTCCA GAAGCAGACA AACCTTCTTA TTCCGGCTGC CAGTTTC<br />

ATA AGAGAAgtta gttactcttt ttcttaccag ccataataag tttcacagct taacaatatt catatatact aacagaggca<br />

caagcctttt ggtgtttaat gtggctagtt ttaggatttg cacaccccac acatatctga gcatcaatgc agtgtacata gtgagtgata<br />

tagcaattta actaaaattc agagtaatcg tgaggccaac cctccttgtt taaggagtgt gtaatctagt ttgtctttga ggttatgagc<br />

tcatagattc agaaccatat gattcctgta gctacaaaac tcaacatgaa tcgtcagtga tgtggaaatg ctgatttgtg<br />

ttacaaacaa actattttac attgtttttc cagGTGAGAA GTATAACCCA TATGTTGGCC CCTCCCCAAA<br />

TCAATCGTTG GACAGCTGAA GCTCTTGTTG CTCTTCAAGA Ggtaccaatc cttcaacttt ttctttatac<br />

gaatgtatga atatagatat agagatagtc acacatttca actaatgtca ttccccttga tgaccaatca acctaatcac<br />

acaaattctt tgtggtagGC GGCAGAAGAT TACTTGGTTG GTTTGTTCTC AGATTCAATG CTCT-<br />

GTGCTA TCCATGCAAG ACGTGTTACT CTAAgtaagt actctaaaag aagacatttt tcagtctcaa cttaggaatc<br />

acaagcatac attttatatc cctttgaatc attagttact tgaatatcat atataaaatg cttatctata tctgtttttt gttcatatca<br />

gTGAGAAAAG ACTTTGAACT TGCACGCCGG CTTGGAGGAA AAGGCAGACC ATG-<br />

GTGAtag aaaactcact cactattcac atctcttaca ttgtaagtga ggatcgaata gttaacaaca agtgtgtcgt aggttgtata<br />

aggttattct ctccttgtct cttggtgatg catgtccttt tattttacta aatgatctga ccaaaacctt cttttgaaac ataactggaa acccgaattt<br />

ggtttgattc caatatctag gctgtaaaac ttctttctct atgtgtgttt ctatctgctt ttcgttggat ctgattgttt tccattgaga<br />

ttccacttga caaaaacgtt tctttcgtta agttctaact tccaaaggtt catgtatata taatttgaag cctcagttag aaagggttgt<br />

gattgaaaga agaaaaaaaa agtaagagga agatttgaaa gaacatgtgt tttgggaggg ctttagtaga aatatctctc agacgagtga<br />

cgagtggatt cccaattaca acttgtcaag gcatattaaa aaggttgaga tatccttagc acttcaaatt taaataattc<br />

atattgattt ttagtgataa ttcgcataaa acatttgtga tatcatagtg ttgtcactaa aaaaaacact ataaattttc gaaaagctcg<br />

aatttcgaat ttggtgatat ttatttcatt gtcaactctt ttaagttgcc tctttttctt gggttctcta tagtctcttt tgttttgttt tttacatcct<br />

ttatgatctc tctctgtaca ttcgtaaaaa ttgaatgcag accgaaaaaa ctaaacagaa acgaggatgg caaaagttgg atgcgcccat<br />

gaatcatgca acacaatggt cccaagttcc caacagattc attcgcaaaa attcagagta gaccgaaaga aaaaacaaat<br />

tgtagtatta taaaaaaaaa gaaagaaaga ggatgggtca agtgaaggc tcatgaatca tgcgatggtc ccaacaaatt aaatgaaata<br />

taaaatccac gtgtcatgtt cagttgcaac tgcaAAGGGT GGGCGCGCCG ACCCAGCTTT CTTG-<br />

TACAAA GTTGGCATTA TAAGAAAGCA TTGCTTATCA ATTTGTTGCA ACGAACAGGT<br />

CACTATCAGT CAAAATAAAA TCATTATTTG CCATCCAGCT GATATCCCCT ATAGT-


GAGTC GTATTACATG GTCATAGCTG TTTCCTGGCA GCTCTGGCCC GTGTCTCAAA<br />

ATCTCTGATG TTACATTGCA CAAGATAAAA ATATATCATC ATGAACAATA AAACT-<br />

GTCTG CTTACATAAA CAGTAATACA AGGGGTGTTA TGAGCCATAT TCAACGGGAA<br />

ACGTCGAGGC CGCGATTAAA TTCCAACATG GATGCTGATT TATATGGGTA TAAATGGG<br />

CT CGCGATAATG TCGGGCAATC AGGTGCGACA ATCTATCGCT TGTATGGGAA GC-<br />

CCGATGCG CCAGAGTTGT TTCTGAAACA TGGCAAAGGT AGCGTTGCCA ATGAT-<br />

GTTAC AGATGAGATG GTCAGACTAA ACTGGCTGAC GGAATTTATG CCTCTTCCGA<br />

CCATCAAGCA TTTTATCCGT ACTCCTGATG ATGCATGGTT ACTCACCACT GCGATC-<br />

CCCG GAAAAACAGC ATTCCAGGTA TTAGAAGAAT ATCCTGATTC AGGTGAAAAT<br />

ATTGTTGATG CGCTGGCAGT GTTCCTGCGC CGGTTGCATT CGATTCCTGT TTGTAATT<br />

GT CCTTTTAACA GCGATCGCGT ATTTCGTCTC GCTCAGGCGC AATCACGAAT GAATA<br />

ACGGT TTGGTTGATG CGAGTGATTT TGATGACGAG CGTAATGGCT GGCCTGTTGA<br />

ACAAGTCTGG AAAGAAATGC ATAAACTTTT GCCATTCTCA CCGGATTCAG TCGT-<br />

CACTCA TGGTGATTTC TCACTTGATA ACCTTATTTT TGACGAGGGG AAATTAATAG<br />

GTTGTATTGA TGTTGGACGA GTCGGAATCG CAGACCGATA CCAGGATCTT GCCATC-<br />

CTAT GGAACTGCCT CGGTGAGTTT TCTCCTTCAT TACAGAAACG GCTTTTTCAA<br />

AAATATGGTA TTGATAATCC TGATATGAAT AAATTGCAGT TTCATTTGAT GCTCGAT-<br />

GAG TTTTTCTAAT CAGAATTGGT TAATTGGTTG TAACACTGGC AGAGCATTAC GCT-<br />

GACTTGA CGGGACGGCG CAAGCTCATG ACCAAAATCC CTTAACGTGA GTTACGCGTC<br />

GTTCCACTGA GCGTCAGACC CCGTAGAAAA GATCAAAGGA TCTTCTTGAG ATC-<br />

CTTTTTT TCTGCGCGTA ATCTGCTGCT TGCAAACAAA AAAACCACCG CTACCAGCGG<br />

TGGTTTGTTT GCCGGATCAA GAGCTACCAA CTCTTTTTCC GAAGGTAACT GGCTTCAG<br />

CA GAGCGCAGAT ACCAAATACT GTCCTTCTAG TGTAGCCGTA GTTAGGCCAC CACTT<br />

CAAGA ACTCTGTAGC ACCGCCTACA TACCTCGCTC TGCTAATCCT GTTACCAGTG<br />

GCTGCTGCCA GTGGCGATAA GTCGTGTCTT ACCGGGTTGG ACTCAAGACG ATAGT-<br />

TACCG GATAAGGCGC AGCGGTCGGG CTGAACGGGG GGTTCGTGCA CACAGCCCAG<br />

CTTGGAGCGA ACGACCTACA CCGAACTGAG ATACCTACAG CGTGAGCATT GAGAAA<br />

GCGC CACGCTTCCC GAAGGGAGAA AGGCGGACAG GTATCCGGTA AGCGGCAGGG<br />

TCGGAACAGG AGAGCGCACG AGGGAGCTTC CAGGGGGAAA CGCCTGGTAT CTT-<br />

TATAGTC CTGTCGGGTT TCGCCACCTC TGACTTGAGC GTCGATTTTT GTGATGCTCG<br />

TCAGGGGGGC GGAGCCTATG GAAAAACGCC AGCAACGCGG CCTTTTTACG GTTC-<br />

CTGGCC TTTTGCTGGC CTTTTGCTCA CATGTT


Destination vector<br />

R4pGWB501<br />

tttcacgccc ttttaaatat ccgattattc taataaacgc tcttttctct taggtttacc cgccaatata tcctgtcaaa cactgatagt<br />

ttaaactgaa ggcgggaaac gacaatctga tccaagctca agctgctcta gcattcgcca ttcaggctgc gcaactgttg ggaagggc<br />

ga tcggtgcggg cctcttcgct attacgccag ctggcgaaag ggggatgtgc tgcaaggcga ttaagttggg taacgccagg<br />

gttttcccag tcacgacgtt gtaaaacgac ggccagtgcc aagcttgtgg atcccccatc acaactttgt atagaaaagt tgaacgagaa<br />

acgtaaaatg atataaatat caatatatta aattagattt tgcataaaaa acagactaca taatactgta aaacacaaca<br />

tatccagtca ctatggcggc cacatttaaa tgtcgagggg ccgcattagg caccccaggc tttacacttt atgcttccgg ctcgtataat<br />

gtgtggattt tgagttagga tccgtcgaga ttttcaggag ctaaggaagc taaaatggag aaaaaaatca ctggatatac<br />

caccgttgat atatcccaat ggcatcgtaa agaacatttt gaggcatttc agtcagttgc tcaatgtacc tataaccaga ccgttcagct<br />

ggatattacg gcctttttaa agaccgtaaa gaaaaataag cacaagtttt atccggcctt tattcacatt cttgcccgcc tgatgaatgc<br />

tcatccggaa ttccgtatgg caatgaaaga cggtgagctg gtgatatggg atagtgttca cccttgttac accgttttcc atgagcaaac<br />

tgaaacgttt tcatcgctct ggagtgaata ccacgacgat ttccggcagt ttctacacat atattcgcaa gatgtggcgt gttacggtga<br />

aaacctggcc tatttcccta aagggtttat tgagaatatg tttttcgtct cagccaatcc ctgggtgagt ttcaccagtt ttgatttaaa<br />

cgtggccaat atggacaact tcttcgcccc cgttttcacc atgggcaaat attatacgca aggcgacaag gtgctgatgc cgctggcgat<br />

tcaggttcat catgccgttt gtgatggctt ccatgtcggc agaatgctta atgaattaca acagtactgc gatgagtggc<br />

agggcggggc gtaaagatct ggatccggct tactaaaagc cagataacag tatgcgtatt tgcgcgctga tttttgcggt ataagaatat<br />

atactgatat gtatacccga agtatgtcaa aaagaggtgt gctatgaagc agcgtattac agtgacagtt gacagcgaca<br />

gctatcagtt gctcaaggca tatatgatgt caatatctcc ggtctggtaa gcacaaccat gcagaatgaa gcccgtcgtc tgcgtgccga<br />

acgctggaaa gcggaaaatc aggaagggat ggctgaggtc gcccggttta ttgaaatgaa cggctctttt gctgacgaga<br />

acaggggctg gtgaaatgca gtttaaggtt tacacctata aaagagagag ccgttatcgt ctgtttgtgg atgtacagag tgatattatt<br />

gacacgcccg ggcgacggat ggtgatcccc ctggccagtg cacgtctgct gtcagataaa gtctcccgtg aactttaccc<br />

ggtggtgcat atcggggatg aaagctggcg catgatgacc accgatatgg ccagtgtgcc ggtctccgtt atcggggaag aagtg-


gctga tctcagccac cgcgaaaatg acatcaaaaa cgccattaac ctgatgttct ggggaatata aatgtcaggc tcccttatac<br />

acagccagtc tgcaggtcga ccatagtgac tggatatgtt gtgttttaca gtattatgta gtctgttttt tatgcaaaat ctaatttaat<br />

atattgatat ttatatcatt ttacgtttct cgttcagctt tcttgtacaa agtggttgat aacagcgctt agagctcgaa tttccccgat<br />

cgttcaaaca tttggcaata aagtttctta agattgaatc ctgttgccgg tcttgcgatg attatcatat aatttctgtt gaattacgtt<br />

aagcatgtaa taattaacat gtaatgcatg acgttattta tgagatgggt ttttatgatt agagtcccgc aattatacat ttaatacgcg<br />

atagaaaaca aaatatagcg cgcaaactag gataaattat cgcgcgcggt gtcatctatg ttactagatc gggaattggt tccggaacca<br />

attcgtaatc atgtcatagc tgtttcctgt gtgaaattgt tatccgctca caattccaca caacatacga gccggaagca<br />

taaagtgtaa agcctggggt gcctaatgag tgagctaact cacattaggc tgaattaggc gcgcctattt ctattaattc ccgatctagt<br />

aacatagatg acaccgcgcg cgataattta tcctagtttg cgcgctatat tttgttttct atcgcgtatt aaatgtataa ttgcgggact<br />

ctaatcataa aaacccatct cataaataac gtcatgcatt acatgttaat tattacatgc ttaacgtaat tcaacagaaa ttatatgata<br />

atcatcgcaa gaccggcaac aggattcaat cttaagaaac tttattgcca aatgtttgaa cgatcgggga aattcggggg atcgatcccg<br />

cgaactgtgg acgagaactg tgccaccaag cgtaaggccg ttctctcgca tttgccttgc taggctcgcg cgagttgctg<br />

gctgaggcgt tctcgaaatc agctcttgtt cggtcggcat ctactctatt cctttgccct cggacgagtg ctggggcgtc ggtttccact<br />

atcggcgagt acttctacac agccatcggt ccagacggcc gcgcttctgc gggcgatttg tgtacgcccg acagtcccgg ctccggatcg<br />

gacgattgcg tcgcatcgac cctgcgccca agctgcatca tcgaaattgc cgtcaaccaa gctctgatag agttggtcaa<br />

gaccaatgcg gagcatatac gcccggagcc gcggcgatcc tgcaagctcc ggatgcctcc gctcgaagta gcgcgtctgc<br />

tgctccatac aagccaacca cggcctccag aagaagatgt tggcgacctc gtattgggaa tccccgaaca tcgcctcgct ccagtcaatg<br />

accgctgtta tgcggccatt gtccgtcagg acattgttgg agccgaaatc cgcgtgcacg aggtgccgga cttcggggca<br />

gtcctcggcc caaagcatca gctcatcgag agcctgcgcg acggacgcac tgacggtgtc gtccatcaca gtttgccagt gatacacatg<br />

gggatcagca atcgcgcata tgaaatcacg ccatgtagtg tattgaccga ttccttgcgg tccgaatggg ccgaacccgc<br />

tcgtctggct aagatcggcc gcagcgatcg catccatggc ctccgcgacc ggctgcagaa cagcgggcag ttcggtttca<br />

ggcaggtctt gcaacgtgac accctgtgca cggcgggaga tgcaataggt caggctctcg ctgaatgccc caatgtcaag cacttccgga<br />

atcgggagcg cggccgatgc aaagtgccga taaacataac gatctttgta gaaaccatcg gcgcagctat ttacccgcag<br />

gacatatcca cgccctccta catcgaagct gaaagcacgagattcttcgc cctccgagag ctgcatcagg tcggagacgc tgtcgaactt<br />

ttcgatcaga aacttctcga cagacgtcgc ggtgagttca ggctttttca tatcttattg ccccccggga tcagatctgg<br />

attgagagtg aatatgagac tctaattgga taccgagggg aatttatgga acgtcagtgg agcatttttg acaagaaata tttgctagct<br />

gatagtgacc ttaggcgact tttgaacgcg caataatggt ttctgacgta tgtgcttagc tcattaaact ccagaaaccc gcggctgagt<br />

ggctccttca acgttgcggt tctgtcagtt ccaaacgtaa aacggcttgt cccgcgtcat cggcgggggt cataacgtga<br />

ctcccttaat tctccgctca tgatcttgat cccctgcgcc atcagatcct tggcggcaag aaagccatcc agtttacttt gcagggcttc<br />

ccaaccttac cagagggcgc cccagctggc aattccggtt cgcttgctgt ccataaaacc gcccagtcta gctatcgcca tgtaagccca<br />

ctgcaagcta cctgctttct ctttgcgctt gcgttttccc ttgtccagat agcccagtag ctgacattca tccggggtca<br />

gcaccgtttc tgcggactgg ctttctacgt gttccgcttc ctttagcagc ccttgcgccc tgagtgcttg cggcagcgtg aagctgatcc<br />

gtcgagatta atagaaataa attcagccta attcggcgtt aattcagtac attaaaaacg tccgcaatgt gttattaagt<br />

tgtctaagcg tcaatttgtt tacaccacaa tatatcctgc caccagccag ccaacagctc cccgaccggc agctcggcac aaaat-


cacca ctcgatacag gcagcccatc agtccgggac ggcgtcagcg ggagagccgt tgtaaggcgg cagactttgc tcatgttacc<br />

gatgctattc ggaagaacgg caactaagct gccgggtttg aaacacggat gatctcgcgg agggtagcat gttgattgta acgatgacag<br />

agcgttgctg cctgtgatca attcgggcac gaacccagtg gacataagcc tgttcggttc gtaagctgta atgcaagtag<br />

cgtatgcgct cacgcaactg gtccagaacc ttgaccgaac gcagcggtgg taacggcgca gtggcggttt tcatggcttg ttatgactgt<br />

ttttttgggg tacagtctat gcctcgggca tccaagcagc aagcgcgtta cgccgtgggt cgatgtttga tgttatggag<br />

cagcaacgat gttacgcagc agggcagtcg ccctaaaaca aagttaaaca tcatggggga agcggtgatc gccgaagtat<br />

cgactcaact atcagaggta gttggcgtca tcgagcgcca tctcgaaccg acgttgctgg ccgtacattt gtacggctcc gcagtggatg<br />

gcggcctgaa gccacacagt gatattgatt tgctggttac ggtgaccgta aggcttgatg aaacaacgcg gcgagctttg<br />

atcaacgacc ttttggaaac ttcggcttcc cctggagaga gcgagattct ccgcgctgta gaagtcacca ttgttgtgca cgacgacatc<br />

attccgtggc gttatccagc taagcgcgaa ctgcaatttg gagaatggca gcgcaatgac attcttgcag gtatcttcga<br />

gccagccacg atcgacattg atctggctat cttgctgaca aaagcaagag aacatagcgt tgccttggta ggtccagcgg cggaggaact<br />

ctttgatccg gttcctgaac aggatctatt tgaggcgcta aatgaaacct taacgctatg gaactcgccg cccgactggg<br />

ctggcgatga gcgaaatgta gtgcttacgt tgtcccgcat ttggtacagc gcagtaaccg gcaaaatcgc gccgaaggat gtcgctgccg<br />

actgggcaat ggagcgcctg ccggcccagt atcagcccgt catacttgaa gctagacagg cttatcttgg acaagaagaa<br />

gatcgcttgg cctcgcgcgc agatcagttg gaagaatttg tccactacgt gaaaggcgag atcaccaagg tagtcggcaa ataatgtcta<br />

gctagaaatt cgttcaagcc gacgccgctt cgcggcgcgg cttaactcaa gcgttagatg cactaagcac ataattgctc<br />

acagccaaac tatcaggtca agtctgcttt tattattttt aagcgtgcat aataagccct acacaaattg ggagatatat catgcatgac<br />

caaaatccct taacgtgagt tttcgttcca ctgagcgtca gaccccgtag aaaagatcaa aggatcttct tgagatcctt tttttctgcg<br />

cgtaatctgc tgcttgcaaa caaaaaaacc accgctacca gcggtggttt gtttgccgga tcaagagcta ccaactcttt ttccgaaggt<br />

aactggcttc agcagagcgc agataccaaa tactgtcctt ctagtgtagc cgtagttagg ccaccacttc aagaactctg<br />

tagcaccgcc tacatacctc gctctgctaa tcctgttacc agtggctgct gccagtggcg ataagtcgtg tcttaccggg ttggactcaa<br />

gacgatagtt accggataag gcgcagcggt cgggctgaac ggggggttcg tgcacacagc ccagcttgga gcgaacgacc<br />

tacaccgaac tgagatacct acagcgtgag ctatgagaaa gcgccacgct tcccgaaggg agaaaggcgg acaggtatcc<br />

ggtaagcggc agggtcggaa caggagagcg cacgagggag cttccagggg gaaacgcctg gtatctttat agtcctgtcg<br />

ggtttcgcca cctctgactt gagcgtcgat ttttgtgatg ctcgtcaggg gggcggagcc tatggaaaaa cgccagcaac gcggcctttt<br />

tacggttcct ggccttttgc tggccttttg ctcacatgtt ctttcctgcg ttatcccctg attctgtgga taaccgtatt accgcctttg<br />

agtgagctga taccgctcgc cgcagccgaa cgaccgagcg cagcgagtca gtgagcgagg aagcggaaga gcgcctgatg<br />

cggtattttc tccttacgca tctgtgcggt atttcacacc gcatatggtg cactctcagt acaatctgct ctgatgccgc atagttaagc<br />

cagtatacac tccgctatcg ctacgtgact gggtcatggc tgcgccccga cacccgccaa cacccgctga cgcgccctga<br />

cgggcttgtc tgctcccggc atccgcttac agacaagctg tgaccgtctc cgggagctgc atgtgtcaga ggttttcacc gtcatcaccg<br />

aaacgcgcga ggcagggtgc cttgatgtgg gcgccggcgg tcgagtggcg acggcgcggc ttgtccgcgc cctggtagat<br />

tgcctggccg taggccagcc atttttgagc ggccagcggc cgcgataggc cgacgcgaag cggcggggcg tagggagcgc<br />

agcgaccgaa gggtaggcgc tttttgcagc tcttcggctg tgcgctggcc agacagttat gcacaggcca ggcgggtttt aagagtttta<br />

ataagtttta aagagtttta ggcggaaaaa tcgccttttt tctcttttat atcagtcact tacatgtgtg accggttccc aatg-


tacggc tttgggttcc caatgtacgg gttccggttc ccaatgtacg gctttgggtt cccaatgtac gtgctatcca caggaaagag<br />

accttttcga cctttttccc ctgctagggc aatttgccct agcatctgct ccgtacatta ggaaccggcg gatgcttcgc cctcgatcag<br />

gttgcggtag cgcatgacta ggatcgggcc agcctgcccc gcctcctcct tcaaatcgta ctccggcagg tcatttgacc<br />

cgatcagctt gcgcacggtg aaacagaact tcttgaactc tccggcgctg ccactgcgtt cgtagatcgt cttgaacaac catctggctt<br />

ctgccttgcc tgcggcgcgg cgtgccaggc ggtagagaaa acggccgatg ccgggatcga tcaaaaagta atcggggtga<br />

accgtcagca cgtccgggtt cttgccttct gtgatctcgc ggtacatcca atcagctagc tcgatctcga tgtactccgg ccgcccggtt<br />

tcgctcttta cgatcttgta gcggctaatc aaggcttcac cctcggatac cgtcaccagg cggccgttct tggccttctt cgtacgctgc<br />

atggcaacgt gcgtggtgtt taaccgaatg caggtttcta ccaggtcgtc tttctgcttt ccgccatcgg ctcgccggca<br />

gaacttgagt acgtccgcaa cgtgtggacg gaacacgcgg ccgggcttgt ctcccttccc ttcccggtat cggttcatgg attcggttag<br />

atgggaaacc gccatcagta ccaggtcgta atcccacaca ctggccatgc cggccggccc tgcggaaacc tctacgtgcc<br />

cgtctggaag ctcgtagcgg atcacctcgc cagctcgtcg gtcacgcttc gacagacgga aaacggccac gtccatgatg ctgcgactat<br />

cgcgggtgcc cacgtcatag agcatcggaa cgaaaaaatc tggttgctcg tcgcccttgg gcggcttcct aatcgacggc<br />

gcaccggctg ccggcggttg ccgggattct ttgcggattc gatcagcggc cgcttgccac gattcaccgg ggcgtgcttc tgcctcgatg<br />

cgttgccgct gggcggcctg cgcggccttc aacttctcca ccaggtcatc acccagcgcc gcgccgattt gtaccgggcc<br />

ggatggtttg cgaccgctca cgccgattcc tcgggcttgg gggttccagt gccattgcag ggccggcaga caacccagcc gcttacgcct<br />

ggccaaccgc ccgttcctcc acacatgggg cattccacgg cgtcggtgcc tggttgttct tgattttcca tgccgcctcc<br />

tttagccgct aaaattcatc tactcattta ttcatttgct catttactct ggtagctgcg cgatgtattc agatagcagc tcggtaatgg<br />

tcttgccttg gcgtaccgcg tacatcttca gcttggtgtg atcctccgcc ggcaactgaa agttgacccg cttcatggct ggcgtgtctg<br />

ccaggctggc caacgttgca gccttgctgc tgcgtgcgct cggacggccg gcacttagcg tgtttgtgct tttgctcatt<br />

ttctctttac ctcattaact caaatgagtt ttgatttaat ttcagcggcc agcgcctgga cctcgcgggc agcgtcgccc tcgggttctg<br />

attcaagaac ggttgtgccg gcggcggcag tgcctgggta gctcacgcgc tgcgtgatac gggactcaag aatgggcagc<br />

tcgtacccgg ccagcgcctc ggcaacctca ccgccgatgc gcgtgccttt gatcgcccgc gacacgacaa aggccgcttg tagccttcca<br />

tccgtgacct caatgcgctg cttaaccagc tccaccaggt cggcggtggc ccatatgtcg taagggcttg gctgcaccgg<br />

aatcagcacg aagtcggctg ccttgatcgc ggacacagcc aagtccgccg cctggggcgc tccgtcgatc actacgaagt cgcgccggcc<br />

gatggccttc acgtcgcggt caatcgtcgg gcggtcgatg ccgacaacgg ttagcggttg atcttcccgc acggccgccc<br />

aatcgcgggc actgccctgg ggatcggaat cgactaacag aacatcggcc ccggcgagtt gcagggcgcg ggctagatgg<br />

gttgcgatgg tcgtcttgcc tgacccgcct ttctggttaa gtacagcgat aaccttcatg cgttcccctt gcgtatttgt ttatttactc<br />

atcgcatcat atacgcagcg accgcatgac gcaagctgtt ttactcaaat acacatcacc tttttagacg gcggcgctcg gtttcttcag<br />

cggccaagct ggccggccag gccgccagct tggcatcaga caaaccggcc aggatttcat gcagccgcac ggttgagacg<br />

tgcgcgggcg gctcgaacac gtacccggcc gcgatcatct ccgcctcgat ctcttcggta atgaaaaacg gttcgtcctg gccgtcctgg<br />

tgcggtttca tgcttgttcc tcttggcgtt cattctcggc ggccgccagg gcgtcggcct cggtcaatgc gtcctcacgg<br />

aaggcaccgc gccgcctggc ctcggtgggc gtcacttcct cgctgcgctc aagtgcgcgg tacagggtcg agcgatgcac<br />

gccaagcagt gcagccgcct ctttcacggt gcggccttcc tggtcgatca gctcgcgggc gtgcgcgatc tgtgccgggg<br />

tgagggtagg gcgggggcca aacttcacgc ctcgggcctt ggcggcctcg cgcccgctcc gggtgcggtc gatgattagg


gaacgctcga actcggcaat gccggcgaac acggtcaaca ccatgcggcc ggccggcgtg gtggtgtcgg cccacggctc<br />

tgccaggcta cgcaggcccg cgccggcctc ctggatgcgc tcggcaatgt ccagtaggtc gcgggtgctg cgggccaggc<br />

ggtctagcct ggtcactgtc acaacgtcgc cagggcgtag gtggtcaagc atcctggcca gctccgggcg gtcgcgcctg<br />

gtgccggtga tcttctcgga aaacagcttg gtgcagccgg ccgcgtgcag ttcggcccgt tggttggtca agtcctggtc gtcggtgctg<br />

acgcgggcat agcccagcag gccagcggcg gcgctcttgt tcatggcgta atgtctccgg ttctagtcgc aagtattcta<br />

ctttatgcga ctaaaacacg cgacaagaaa acgccaggaa aagggcaggg cggcagcctg tcgcgtaact taggacttgt gcgacatgtc<br />

gttttcagaa gacggctgca ctgaacgtca gaagccgact gcactatagc agcggagggg ttggatcaaa gtactttgat<br />

cccgagggga accctgtggt tggcatgcac atacaaatgg acgaacggat aaacct<br />

pDONR P4-P1r


pDONR221

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!