14.12.2012 Views

Institute of Solid State Physics Institut für Festkörperphysik 2009 ...

Institute of Solid State Physics Institut für Festkörperphysik 2009 ...

Institute of Solid State Physics Institut für Festkörperphysik 2009 ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Technische Universität Berlin<br />

1<br />

<strong><strong>Institut</strong>e</strong> <strong>of</strong> <strong>Solid</strong> <strong>State</strong> <strong>Physics</strong><br />

<strong>Institut</strong> <strong>für</strong> <strong>Festkörperphysik</strong><br />

<strong>2009</strong> – 2010<br />

Hardenbergstr. 36<br />

D-10623 Berlin<br />

Germany<br />

Phone: (30) 314-220 01<br />

Fax: (30) 314-220 64<br />

E-Mail: ifkp@physik.tu-berlin.de


Front Cover<br />

InAs/GaAs submonolayer nanostructures<br />

Design: Dr. Sven Rodt, AG Bimberg<br />

Back Cover<br />

Some <strong>of</strong> the larger projects and agencies funding our work, <strong>2009</strong> - 2010.<br />

Layout: Dipl.-Phys. Philip Wolf, AG Bimberg<br />

Explanation <strong>of</strong> the Acronyms on the Back Cover:<br />

100 x 100 Optics: “100 Mbit/sec for 100 Million Users”<br />

is a project <strong>of</strong> the “Fund for Future Development <strong>of</strong> the <strong>State</strong> <strong>of</strong> Berlin”<br />

VISIT: “Vertically Integrated Systems for Information Transfer”<br />

is an EU FP7 STREP<br />

PolarCon: “Polarization Field Control in Nitride Light Emitters"<br />

Transregional Research Group funded by the German Research Foundation (DFG)<br />

RAINBOW: "High quality material and intrinsic properties <strong>of</strong> InN and indium rich nitride<br />

Alloys" is an EU Marie Curie Initial Training Network (ITN)<br />

AGeNT: “Arbeitsgemeinschaft der Nanotechnologie-Kompetenzzentren Deutschlands”<br />

The “Association <strong>of</strong> the Nanotechnology Centers <strong>of</strong> Competence in Germany”<br />

is funded by the Federal Ministry for Education and Research (BMBF)<br />

3<br />

Berlin WideBaSe: “III Nitrides Wide Bandgap Semiconductors”<br />

is an innovative regional growth core, funded by the German Federal Ministry for Education<br />

and Research (BMBF)<br />

SFB 787: “Semiconductor NanoPhotonics”<br />

is the Collaborative Research Center 787 <strong>of</strong> German Research Foundation (DFG)<br />

FEMTOBLUE “Blue Femtosecond Laser Implemented with Group-III Nitrides”<br />

is an EU 7th FWP (Seventh Framework Programme) project<br />

NATO: „ Electrically driven Quantum Dot single Photon Sources for Data Encryption “<br />

is a joint project funded by the NATO Science for Peace and Security Programme<br />

HiTrans: „Grundlagen <strong>für</strong> hochbitratige Transceiver <strong>für</strong> Optical Interconnect Anwendungen“<br />

is a joint project within the ProFIT-programme funded by the <strong>State</strong> <strong>of</strong> Berlin<br />

QD2D: „Coupling <strong>of</strong> Single Quantum Dots to Two-Dimensional Systems<br />

is a NanoSci ERA-project funded by the EU-FP 7 - Marie Curie-Work Programme and DFG<br />

SANDiE: „ Self-Assembled Semiconductor Nanostructures for new Devices in Photonics and<br />

Electronics “ is a Network <strong>of</strong> Excellence-project <strong>of</strong> the EU -FP 6 - Nano Material Programme<br />

(NMP)


CONTENTS<br />

4<br />

1. PREFACE 7<br />

2. PRIZES AND AWARDS 11<br />

3. DISSERTATIONS 13<br />

4. STRUCTURE AND STAFF OF THE INSTITUTE 21<br />

4.1 Office <strong>of</strong> the Executive Director (01.01.2010) 21<br />

4.2 Departments <strong>of</strong> the <strong><strong>Institut</strong>e</strong> 21<br />

4.3 Workshops 21<br />

4.4 Center <strong>of</strong> NanoPhotonics 22<br />

4.5 Affiliated Scientific Units 23<br />

4.6 External and Retired Faculty Members <strong>of</strong> the <strong><strong>Institut</strong>e</strong> 27<br />

4.7 Honorary, Adjunct and Guest Pr<strong>of</strong>essors, Humboldt Awardees and Fellows 27<br />

5. FOREIGN GUESTS 29<br />

6. PARTICIPATION IN COMMITEES 33<br />

6.1 Program and Advisory Committee 33<br />

6.2 Editorial Duties / Boards <strong>of</strong> <strong><strong>Institut</strong>e</strong>s and Companies 35<br />

7. TEACHING 37<br />

8. PATENTS 39<br />

9. SCIENTIFIC ACTIVITIES 41<br />

9.1 Department I<br />

Pr<strong>of</strong>. Dr. phil. nat. Dieter Bimberg 41<br />

9.1.1 Staff 41<br />

9.1.2 Summary <strong>of</strong> Activities 44<br />

9.1.3 Publications 51<br />

9.1.4 Invited Talks 63<br />

9.1.5 Diploma Theses 66


5<br />

9.2. Department II 67<br />

9.2.a Department IIa<br />

Pr<strong>of</strong>. Dr. rer. nat. Christian Thomsen 67<br />

9.2a.1 Staff 67<br />

9.2a.2 Summary <strong>of</strong> Activities 69<br />

9.2a.3 Publications 70<br />

9.2a.4 Invited Talks 73<br />

9.2a.5 Diploma Theses 75<br />

9.2.b Department IIb<br />

Pr<strong>of</strong>. Dr. rer. nat. Janina Maultzsch 77<br />

9.2b.1 Staff 77<br />

9.2b.2 Summary <strong>of</strong> Activities 77<br />

9.2b.3 Publications 79<br />

9.2b.4 Invited Talks 80<br />

9.2.c Department IIc<br />

Pr<strong>of</strong>. Dr. Axel H<strong>of</strong>fmann<br />

Pr<strong>of</strong>. em. Dr.-Ing. Dr. h.c. mult. Immanuel Broser 81<br />

9.2c.1 Staff 81<br />

9.2c.2 Summary <strong>of</strong> Activities 82<br />

9.2c.3 Publications 84<br />

9.2c.4 Invited Talks 89<br />

9.2b.5 Diploma Theses 90<br />

9.3 Department III<br />

Pr<strong>of</strong>. Dr. rer. nat. Mario Dähne<br />

Pr<strong>of</strong>. em. Dr.-Ing. Hans-Eckhart Gumlich 91<br />

9.3.1 Staff 91<br />

9.3.2 Summary <strong>of</strong> Activities 92<br />

9.3.3 Publications 96<br />

9.3.4 Invited Talks 98<br />

9.3.5 Diploma Theses 100<br />

9.4 Department IV<br />

Pr<strong>of</strong>. Dr. rer. nat. Michael Kneissl<br />

Pr<strong>of</strong>. Dr. rer. nat. Wolfgang Richter (retired) 101<br />

9.4.1 Staff 101<br />

9.4.2 Summary <strong>of</strong> Activities 103<br />

9.4.3 Books 108<br />

9.4.4 Publications 108<br />

9.4.5 Invited Talks 113<br />

9.4.6 Diploma, Master-, and Bachelor Theses 116


1. PREFACE<br />

7<br />

The <strong><strong>Institut</strong>e</strong> <strong>of</strong> <strong>Solid</strong> <strong>State</strong> <strong>Physics</strong> presents its eleventh biannual progress report in an<br />

advanced lay-out. Founded in 1974 the <strong><strong>Institut</strong>e</strong> is located since 1985 in the Eugene Paul<br />

Wigner Building at Hardenbergstraße, next to the center <strong>of</strong> Berlin. There it disposes <strong>of</strong><br />

spacious lecture halls, seminar rooms and state-<strong>of</strong>-the-art laboratories. Our scientific work is<br />

focussed on epitaxial growth <strong>of</strong> compound semiconductor hetero- and nanostructures,<br />

research on novel materials like carbon nanotubes, physics <strong>of</strong> semiconductor and carbon<br />

nanostructures, as well as physics and technology <strong>of</strong> nano-photonic and –electronic devices<br />

and systems. Development <strong>of</strong> nanoscopic measurement techniques, like<br />

cathodoluminescence, cross-section scanning tunneling microscopy, near field scanning<br />

optical microscopy, microphoto-luminescence, and micro-Raman are essential and common<br />

basis <strong>of</strong> the research activities <strong>of</strong> our four scientific departments.<br />

In the “Center <strong>of</strong> NanoPhotonics” CNP, affiliated to the institute, novel devices like Single<br />

and Entangled Photon Emitters, high bit rate and energy efficient Vertical<br />

Surface Emitting Lasers, QD high speed Edge Emitters and Semiconductor Optical<br />

Amplifiers, high power Photonic Band Crystal Lasers, Nan<strong>of</strong>lash memories, ultraviolet<br />

LEDs, GaN-based external cavity surface emitting lasers, and high power blue and green laser<br />

diodes… are developed, based on a multitude <strong>of</strong> <strong>of</strong>ten complex heterostructures. Most<br />

modern education and research on devices and their technology are <strong>of</strong>fered here to our<br />

students and PhD candidates. In addition, the CNP provides assistance to small and medium<br />

size companies and has acted in the last 2 years as incubator for three start-ups: VI Systems in<br />

Berlin, PBC Lasers in Berlin, and Azzurro Semiconductors in Magdeburg.<br />

The Berlin government agreed to the joint proposal <strong>of</strong> our faculty and the president for the<br />

creation <strong>of</strong> both, a new chair on “Quantum Devices” and an additional Junior Pr<strong>of</strong>essorship<br />

on “Optoelectronic Devices” at the institute. Both positions are expected to be filled in the<br />

first half <strong>of</strong> 2011.<br />

The success <strong>of</strong> the institute and the large number <strong>of</strong> students, PhD candidates and postdocs it<br />

employs, depends now since more than a decade mostly on external financial resources. The<br />

funding from TUB and our state government in Berlin covers less than 20 % <strong>of</strong> cost <strong>of</strong><br />

consumables and equipment. The most important funding agency continues to be the German<br />

Research Foundation (DFG). The Collaborative Research Center (CRC) “Semiconductor<br />

Nanophotonics” (Sfb 787), and its Integrated Research Training Group are located at the


8<br />

institute. The CRC is funded since January 1st, 2008 for four years, and showed an excellent<br />

start. Cooperation on nanostructure and photonic device research with colleagues from five<br />

other institutions in Berlin (Humboldt University, Ferdinand-Braun-<strong><strong>Institut</strong>e</strong>, Heinrich-Hertz-<br />

<strong><strong>Institut</strong>e</strong>, Weierstraß-<strong><strong>Institut</strong>e</strong>, Konrad-Zuse-Center) and the University <strong>of</strong> Magdeburg<br />

presents the basis <strong>of</strong> the CRC 787. In summer 2011 the CRC hopes for getting a<br />

recommendation by its reviewers towards a prolongation until end <strong>of</strong> 2015. In addition, single<br />

projects focussing e.g., on collaboration with Russia, on Nanomemories, on GaN-based<br />

Semiconductor Disk Lasers, and the electronic structure <strong>of</strong> InGaN surfaces were funded by<br />

DFG. We are also participating in the transregional DFG research group 957 (PolarCon) in<br />

which laser and light emitting devices on semipolar GaN surfaces are investigated at TU<br />

Berlin.<br />

Complementary and very important funding came from the government <strong>of</strong> the <strong>State</strong> <strong>of</strong> Berlin<br />

in the framework <strong>of</strong> its “Zukunftsfonds” and ProFIT Programs. 100 x 100 Optics, HiTrans,…<br />

are some <strong>of</strong> the projects. The European Union within its FP 7 Program and the NATO<br />

Program “Science for Peace” funded the programs VISIT, QD 2D, PROPHET, FemtoBlue,<br />

RAINBOW, and Cyber Security, respectively. Half <strong>of</strong> these programs are also coordinated by<br />

TUB.<br />

The national competence center CC NanOp (Nano-Optoelectronics), established already in<br />

October 1998, presented again a very effective and successful means for initiating important<br />

national and European programs on nanodevices. Many <strong>of</strong> these projects emerged from small<br />

scale projects, so called “Machbarkeitsstudien”, financed by the Federal Ministry <strong>of</strong><br />

Education and Research (BMBF) via NanOp. TUB therefore decided to continue its support<br />

<strong>of</strong> CC NanOp until end <strong>of</strong> 2011. Based on this decision, the BMBF decided to entrust TUB<br />

with the coordination <strong>of</strong> all National Centers <strong>of</strong> Competence in Nanotechnology within a new<br />

body called AGeNT, presently also funded until end <strong>of</strong> 2011.<br />

The European Union Center <strong>of</strong> Excellence “SANDiE” in the field <strong>of</strong> semiconductor<br />

nanostructures, which was c<strong>of</strong>ounded by us, received a continuation <strong>of</strong> its operation in a<br />

second phase until 2012. Strong links to leading international optoelectronic and<br />

communication companies like Aixtron, INTEL, Jenoptik, Oclaro, OSRAM Opto<br />

Semiconductors, and Sentech have been established within the framework <strong>of</strong> this program.<br />

We congratulate to the bestowal <strong>of</strong> an Alexander von Humboldt Award to Pr<strong>of</strong>essor Shun-<br />

Lien Chuang from University <strong>of</strong> Illinois at Urbana - Champaign, who joined us beginning <strong>of</strong><br />

<strong>2009</strong>, developing with his host a very successful program on novel “metal clad (some times


9<br />

called “plasmonic”) surface emitting lasers”. Pr<strong>of</strong>essor Gadi Eisenstein, Technion Haifa,<br />

Humboldt Awardee 2006/7 continues to be in Berlin part <strong>of</strong> each year and supports<br />

enormously our work on high sped devices. We are every grateful to him. Dr. Chongyan Liu<br />

from Nanyang Technological University in Singapore and Dr. Abdul Kadir from the Tata<br />

<strong><strong>Institut</strong>e</strong> for Fundamental Research in Mumbai received Alexander von Humboldt<br />

Fellowships in <strong>2009</strong> and are both presently working here.<br />

Pr<strong>of</strong>. Janina Maultzsch received in <strong>2009</strong> a particularly well funded and highly competitive EU<br />

Junior Researcher Starting Grant. We are very proud on her.<br />

A particularly important new development <strong>of</strong> the last two years was that a number <strong>of</strong><br />

postdoctoral scientists and Ph.D. candidates have joined us with full financial support <strong>of</strong> their<br />

home governments based on the excellent research conducted by the institute.<br />

We are very grateful to all our sponsors, their administrators and cooperating industry for<br />

their continuous help and encouragement.<br />

In order to protect our intellectual property better than in the past and to have a better basis for<br />

cooperation with the industry, we filed and obtained an appreciable number <strong>of</strong> patents. The<br />

support by our local patent agency IPAL proved here to be <strong>of</strong> outmost importance.<br />

The scientific part <strong>of</strong> the present report will certainly provide sufficient evidence that the<br />

funding we received carried excellent results. Particular appreciation <strong>of</strong> our scientific<br />

achievements was expressed by the bestowal <strong>of</strong> a number <strong>of</strong> awards to students and postdocs<br />

listed in part 2 <strong>of</strong> the report.<br />

<strong>Physics</strong> is a science not bound to a country or to borders. This ”discovery” led to an<br />

increasing number <strong>of</strong> our students and scientists in the past to pursue their research for longer<br />

time like a year at foreign universities in Tokyo, Los Angeles, Glasgow, Texas, Berkeley, …<br />

to mention only a few. We would like to thank particularly their local hosts. We will further<br />

encourage our co-workers to combine the challenges <strong>of</strong> different cultures and languages with<br />

achievements in their scientific work.<br />

Scientific contacts with further institutions at many different locations in Europe, Japan or<br />

USA continued to flourish. Especially strong collaborations including short time exchange <strong>of</strong><br />

scientists developed or continued to research institutions and universities in Beijing,<br />

Cambridge, Cork, Göteborg, Novosibirsk, South Carolina, St. Petersburg, Taipei,… to<br />

mention only a few.


10<br />

Additional and particularly large burdens were taken over by all <strong>of</strong> the faculty staff <strong>of</strong> the<br />

institute in order to serve TUB and the scientific community as members or chairmen <strong>of</strong><br />

committees on the local, national and international scale, e.g., within advisory or program<br />

committees.<br />

The reelection <strong>of</strong> Pr<strong>of</strong>. Christian Thomsen as Dean <strong>of</strong> the Faculty <strong>of</strong> Mathematics and Science<br />

in spring <strong>2009</strong> and his devotion for developing multimedia eLearning and eResearch should<br />

be particularly mentioned here.<br />

Finally, the enthusiasm and the dedication <strong>of</strong> all <strong>of</strong> our collaborators at the institute should be<br />

honoured, being fundamental to our success. The key element for future progress <strong>of</strong> the<br />

institute continues to be their motivation to generate new ideas and to work hard.<br />

This report will<br />

- give an overview <strong>of</strong> the formal structure <strong>of</strong> the institute and list staff and students<br />

- summarize our teaching activities in order to provide information on our involvement in<br />

the education <strong>of</strong> young students and scientists<br />

- summarize the scientific activities <strong>of</strong> our research groups, including lists <strong>of</strong> the<br />

approximately 200 scientific papers we published or which have been accepted for<br />

publication within the past 24 months.<br />

Dieter Bimberg<br />

Executive Director<br />

March 2011<br />

Postscriptum<br />

After having served as excecutive director <strong>of</strong> the institute for more than two decades,<br />

initiating a complete restructuring <strong>of</strong> its research directions, creating state-<strong>of</strong>-the-art MOCVD<br />

laboratories and the Center <strong>of</strong> NanoPhotonics amongst many other things I retired from this<br />

position in April 2011. I wish my successor, Michael Kneissl, all the success he will need to<br />

guide the institute through the next years.


2. PRIZES AND AWARDS<br />

11<br />

Pr<strong>of</strong>. Dr. Dieter Bimberg William-Streifer Scientific Achievement Award<br />

as “Pioneer <strong>of</strong> Semiconductor Nanophotonics”<br />

IEEE Society, Denver, Colorado, USA, November 2010<br />

Dipl.-Phys. Gordon Callsen Physik-Studienpreis 2010 der Wilhelm und Else Heraeus-<br />

Stiftung<br />

Magnus-Haus Berlin, Germany, Juli 2010<br />

Dipl.-Phys. Gerrit Fiol Chorafas-Prize <strong>2009</strong> for his investigation <strong>of</strong> the<br />

“Quantum Dot Lasers for Short Pulse Generation“<br />

Dimitri N. Chorafas Foundation,<br />

Luzern, Switzerland, July <strong>2009</strong><br />

Dipl.-Phys. Tim Germann CHORAFAS-Prize <strong>of</strong> the year 2010 for his investigation<br />

<strong>of</strong> “Quantum Dot Semiconductor Disk-Lasers “<br />

Dimitri N. Chorafas Foundation,<br />

Luzern, Switzerland, August 2010<br />

Dr. Lena Ivanova Best Poster Award<br />

International Nano-Optoelectronic Workshop (iNOW)<br />

Stockholm, Sweden, and Berlin, Germany, August <strong>2009</strong><br />

Dr. Lena Ivanova SKM-Dissertationspreis,<br />

Sektion Kondensierte Materie (SKM) der Deutschen<br />

Physikalischen Gesellschaft (DPG)<br />

Regensburg, Germany, March 2010<br />

Dipl.-Phys. Raimund Kremzow Best Poster Award (1st Prize)<br />

International Nano-Optoelectronic Workshop (iNOW)<br />

Stockholm, Sweden, and Berlin, Germany, August <strong>2009</strong><br />

M.Sc.-Phys. Neysha Lobo Honorable Mention Best Poster Award<br />

International Nano-Optoelectronic Workshop (iNOW)<br />

Stockholm, Sweden, and Berlin, Germany, August <strong>2009</strong><br />

Dr. Andreas Marent Nanowissenschaftspreis 2010 by AGeNT-D<br />

(second place) together with Dr. Martin P. Geller<br />

Pr<strong>of</strong>. Dr. Janina Maultzsch ERC Starting Independent Researcher Grant 2010<br />

European Research Council, ERC, July 2010


Dr. Alex Mutig SANDiE-PhD-Preis 2010<br />

SANDiE-Network <strong>of</strong> Excellence,<br />

September 2010, Valencia, Spain<br />

Dr. Alex Mutig Springer PhD-Prize<br />

for his thesis “High Speed VCSELs for Optical<br />

Interconnects” in the book series Springer Thesis,<br />

Heidelberg, January 2011<br />

12<br />

Dipl.-Phys. Erik Stock 1 st place in Section 1: Nanoelectronics, Nanophotonics,<br />

Nanomaterials for Electronics, Magnetic Systems, and<br />

Optics, Photovoltaics for his paper:<br />

”GHz Electrically driven microcavity single photon<br />

source”<br />

Second International Competition <strong>of</strong> Scientific Papers in<br />

Nanotechnology for Young Researchers at Rusnanotech<br />

<strong>2009</strong>, Moscow, Russia, October <strong>2009</strong><br />

Dr. Hagen Telg Carl-Ramsauer Prize 2010 for his excellent dissertation,<br />

Berlin, Germany, November 2010<br />

Dr. Tim Wernicke Honorable Mention Best Poster Award, iNOW-<br />

International Nano-Optoelectronic Workshop (iNOW)<br />

Stockholm, Sweden, and Berlin, Germany, August <strong>2009</strong><br />

Dr. Tim Wernicke Chorafas Prize for his dissertation on “Growth <strong>of</strong> non-and<br />

semipolar InAlGaN heterostructures for high efficiency<br />

light emitters”, Berlin, Germany, October 2010


3. DISSERTATIONS<br />

Department I<br />

13<br />

Dr. Till Warming Elektronische Struktur angeregter Zustände einzelner<br />

InAs-Quantenpunkte<br />

Electronic structure <strong>of</strong> excited states <strong>of</strong> single InAs quantum<br />

dots<br />

20.02.<strong>2009</strong><br />

Photo excitation spectroscopy and resonant<br />

photoluminescence spectroscopy were combined to<br />

unambiguously identify the main excitation and<br />

recombination channels <strong>of</strong> single quantum dots, as well as the<br />

corresponding energy levels. By comparison with theoretical<br />

results, the impact <strong>of</strong> exchange interaction and the resulting<br />

fine-structure splitting can be deduced – one <strong>of</strong> the key<br />

parameters for single-QD devices.<br />

Thesis reviewers: D. Bimberg, A. H<strong>of</strong>fmann (TUB) and<br />

J. Christen (Otto-von-Guericke University, Magdeburg)<br />

Dr. Konstantin Pötschke Untersuchungen zur Bildung von Quantenpunkten im<br />

Stranski-Krastanow und im Submonolagen Wachstumsmodus<br />

Formation <strong>of</strong> quantum dots in Stranski-Krastanow and<br />

Submonolayer growth mode<br />

27.02.<strong>2009</strong><br />

In this work, Konstantin Pötschke extended the understanding<br />

<strong>of</strong> the formation <strong>of</strong> InAs quantum dots in the Stranski-<br />

Krastanow growth mode. For the first time, the influence <strong>of</strong><br />

all main growth parameters on the luminescence properties <strong>of</strong><br />

InAs/GaAs nanostructures, grown in the submonolayer<br />

growth mode, was studied comprehensively and<br />

systematically, and the electronic and optical properties <strong>of</strong><br />

these structures were discussed.<br />

Thesis reviewers: D. Bimberg and A. Krost (Otto-von-<br />

Guericke University, Magdeburg)


14<br />

Dr. Anatol Lochmann Entwicklung und Untersuchung quantenpunktbasierter<br />

Einzelphotonenquellen<br />

Development and investigation <strong>of</strong> quantum dot based single<br />

photon sources<br />

30.04.2010<br />

This thesis presents the development and implementation <strong>of</strong><br />

various novel and patented concepts <strong>of</strong> single photon sources.<br />

The first approach for single photon sources based on<br />

electrically-driven QDs is the use <strong>of</strong> a micron-size aluminumoxide<br />

aperture.<br />

In this device, only one electron and one hole at a time tunnel<br />

into one QD. The next step was the development <strong>of</strong> a<br />

Resonant Cavity LED-type (RCLED) single photon source in<br />

order to increase the output coupling efficiency and the QD<br />

emission rate.<br />

Furthermore, detailed numerical device modeling was<br />

performed, in order to do a systematic optimization process <strong>of</strong><br />

the device design.<br />

As the result, the presently fastest electrically pumped,<br />

quantum dot based single photon sources could be realized.<br />

Thesis reviewers: D. Bimberg and A. H<strong>of</strong>fmann (TUB)<br />

Dr. Thorsten Kettler Halbleiterlaser hoher Brillanz<br />

High Brightness Semiconductor Lasers<br />

04.05.2010<br />

In his dissertation Thorsten Kettler studied photonic-bandcrystal<br />

(PBC) lasers, a new approach to obtain high output<br />

powers with extremely low vertical far-field divergence,<br />

excellent beam quality and therewith a high brightness <strong>of</strong> the<br />

emitted beam. PBC lasers have a broad waveguide in vertical<br />

direction, composed <strong>of</strong> alternating layers with different<br />

refractive index. These layers build a one-dimensional<br />

photonic crystal, discriminating higher-order modes so that<br />

single-mode emission can be reached in spite <strong>of</strong> the large<br />

near-field dimension. Thorsten processed and characterized<br />

single lasers as well as laser arrays built <strong>of</strong> optically coupled<br />

and uncoupled emitters. These lasers showed vertical far-field<br />

divergences down to 6°, single-mode lasers demonstrated<br />

output powers up to 3.5 W.<br />

Thesis reviewers: D. Bimberg and M. Weyers (Ferdinand-<br />

Braun-<strong>Institut</strong>, Berlin)


Dr. Alex Mutig Oberflächenemittierende Quantenpunktlaser<br />

High-speed VCSELs for optical interconnects<br />

15.07.2010<br />

15<br />

In his doctorate Alex Mutig focused on the research <strong>of</strong> highspeed<br />

850 nm and 980 nm vertical-cavity surface-emitting<br />

lasers (VCSEL). He was able to achieve highly recognized<br />

world-record performance like data rates up to 40 Gbit/s or<br />

highly temperature-stable devices. His research included all<br />

aspects from device design, manufacturing in a class 10 cleanroom,<br />

high-speed characterization to thorough data analysis.<br />

His thesis was awarded with the Springer Prize and published<br />

as a book within the series “Springer Theses: Recognizing<br />

Outstanding PhD Research”.<br />

Thesis reviewers: D. Bimberg and S.L. Chuang (University <strong>of</strong><br />

Illinois, USA)<br />

Dr. Andreas Marent Entwicklung einer neuartigen Quantenpunkt-<br />

Speicherzelle<br />

Development <strong>of</strong> a novel quantum dot memory cell<br />

22.10.2010<br />

In this work the charge carrier dynamics in quantum dot based<br />

memory structures has been investigated experimentally as<br />

well as theoretically and prototypes <strong>of</strong> a novel memory<br />

concept have been implemented.<br />

The work is divided in two parts:<br />

1. Development and application <strong>of</strong> measurement techniques<br />

and simulation methods to investigate the memory operations<br />

(storage, writing and erasing) in quantum dot based memory<br />

structures.<br />

2. Development <strong>of</strong> quantum dot based memory concepts<br />

which fulfill the prerequisites <strong>of</strong> the ultimate memory (storage<br />

time > 10 years and write time < 10 ns) and the<br />

implementation <strong>of</strong> these concepts by prototypes.<br />

Thesis reviewers: D. Bimberg and J. Christen (Otto-von-<br />

Guericke University, Magdeburg)


16<br />

Dr. Erik Stock Self-organized quantum dots for single photon sources<br />

03.12.2010<br />

In his thesis Erik Stock studied self organized quantum dots<br />

for their application as sources for single photons and<br />

entangled photon pairs.<br />

Prototypes <strong>of</strong> electrically pumped single photon devices could<br />

be driven with a pumping rate <strong>of</strong> up to 1 GHz, still<br />

demonstrating non-classical light emission. The<br />

characterization <strong>of</strong> quantum dots grown on (111) GaAs<br />

substrates showed a strongly reduced fine-structure splitting<br />

in comparison to (001) grown QDs, making these new<br />

quantum dots a promising candidate for the generation <strong>of</strong><br />

entangled photons. The first observation <strong>of</strong> a LO-phonon<br />

replica from a single InGaAs QD demonstrates the influence<br />

<strong>of</strong> the wavefunction on the phonon coupling.<br />

Thesis reviewers: D. Bimberg and V. Gaysler (<strong><strong>Institut</strong>e</strong> <strong>of</strong><br />

Semiconductor Phyiscs, Novosibirsk, Russian Federation)


Department II<br />

Dr. Holger Lange Optical phonons in colloidal CdSe nanorods<br />

05.11.<strong>2009</strong><br />

Dr. Hagen Telg Raman studies on individual nanotubes and nanotube<br />

ensembles – vibrational properties and scattering<br />

efficiencies<br />

06.11.<strong>2009</strong><br />

17<br />

Dr. Stephan Brunken Metallsulfid-unterstützte Kristallisation von stark (001)texturierten<br />

Wolframsulfidschichten<br />

25.11.<strong>2009</strong><br />

Dr. Thomas König Investigation <strong>of</strong> Defects on MgO Films grown on Ag(001)-<br />

Combined Dynamic Force and Scanning Tunneling<br />

Microscopy Study<br />

01.07.2010<br />

Dr. Marcel Mohr Electronic and Vibrational Properties <strong>of</strong> Carbon and<br />

CdSe nanostructures<br />

23.07.2010<br />

Dr. Dirk Heinrich Strukturbildung in Ferr<strong>of</strong>luiden unter Einfluss<br />

magnetischer Felder<br />

02.09.2010<br />

Dr- Matthias Müller Electronic properties <strong>of</strong> functionalized carbon nanotubes<br />

08.12.2010<br />

Dr. Munise Cobet Ellipsometric Study <strong>of</strong> ZnO from multimode formation <strong>of</strong><br />

exciton-polartons tot he core-level regime<br />

12.07.2010<br />

Dr. Markus R. Wagner Fundamentel properties <strong>of</strong> excitons and phonons in ZnO:<br />

A spectroscopic study <strong>of</strong>t he dynamics, polarity, and<br />

effects <strong>of</strong> external fields<br />

09.12.2010


Department III<br />

18<br />

Dr. Kai Hodeck Development <strong>of</strong> a scanning nearfield optical microscope<br />

for low-temperature investigations <strong>of</strong> semiconductor<br />

nanostructures<br />

19.02.<strong>2009</strong><br />

Using a home-built scanning nearfield optical microscope<br />

(SNOM), the photoluminescence <strong>of</strong> single quantum dots was<br />

investigated under varying excitation intensity at different<br />

temperatures between 5 K and 300 K. The homogeneous<br />

thermal line broadening was studied in detail, and the binding<br />

energies <strong>of</strong> exciton complexes such as biexcitons and trions<br />

could be determined.<br />

Dr. Lena Ivanova Nitrogen containing III-V semiconductor surfaces and<br />

nanostructures studied by scanning tunneling microscopy<br />

and spectroscopy<br />

01.09.<strong>2009</strong><br />

Using cross-sectional scanning tunnelling microscopy<br />

(XSTM) and spectroscopy (XSTS), different nitrogen<br />

containing III-V semiconductor surfaces and nanostructures<br />

were studied. In diluted GaAsN single nitrogen atoms could<br />

be identified, a splitting <strong>of</strong> the GaAs conduction band could<br />

be observed in the density <strong>of</strong> states, and nitrogen-containing<br />

InAs quantum dots were found to be strongly dissolved. In<br />

atomically-resolved experiments at the GaN(1100) cleavage<br />

surface the intrinsic surface states were found to be outside<br />

the fundamental band gap, different dislocation types could<br />

be characterized in detail, and doping modulation effects<br />

could be detected.<br />

Dr. Jan Grabowski On the evolution <strong>of</strong> InAs thin films grown by molecular<br />

beam epitaxy on the GaAs(001) surface<br />

14.12.2010<br />

Thin InAs films were grown on GaAs(001) by molecular<br />

beam epitaxy and studied by in-situ scanning tunnelling<br />

microscopy (STM). A three-step evolution <strong>of</strong> the InAs<br />

wetting layer was found, starting with In agglomerations on<br />

the GaAs surface, followed by the formation <strong>of</strong> a (4×3)<br />

reconstructed In2/3Ga1/3As monolayer, on which a (2×4)<br />

reconstructed InAs monolayer was grown. Afterwards the<br />

formation <strong>of</strong> InAs quantum dots occurred and the critical<br />

thickness could be determined to 1.42 InAs monolayers.


Department IV<br />

19<br />

Theodor Herrmann Optische Spektroskopie an Metallen und<br />

ferromagnetischen Filmen<br />

02.11.<strong>2009</strong><br />

Metal surfaces show superstructures that can be detected via<br />

electron diffraction or optical anisotropy. Optical anisotropies<br />

can be also caused by applying a magnetic field in certain<br />

geometries (MOKE: magneto-optical Kerr effect). To<br />

separate the surface anisotropies from the MOKE signals,<br />

knowledge <strong>of</strong> the clean and covered surfaces is required.<br />

.<br />

Marc Gluba Atomare und elektronische Struktur von<br />

Akzeptorkomplexen und Oberflächen des Zinkoxids<br />

06.07.2010<br />

ZnO semiconductors exhibit a strong background n-type<br />

conductivity. Therefore, the p-doping <strong>of</strong> ZnO poses great<br />

difficulties. Different causes for the inability to achieve<br />

reproducible p-type doping in ZnO were investigated,<br />

particularly the formation <strong>of</strong> intrinsic point defects,<br />

compensation, and the formation <strong>of</strong> molecular nitrogen.<br />

Tim Wernicke Wachstum von nicht- und semipolaren InAlGaN-<br />

Heterostrukturen <strong>für</strong> hocheffiziente Lichtemitter<br />

15.07.2010<br />

Non- and semipolar nitrides do not exhibit the polarization<br />

fields across quantum wells that reduce oscillator strength<br />

and peak gain as in conventional polar nitride devices.<br />

Different concepts for heteroepitaxial and homoepitaxial<br />

growth <strong>of</strong> non- and semipolar GaN were compared. Bulk<br />

GaN substrates exhibit the best properties and were used to<br />

demonstrate nonpolar current injection LEDs and violet and<br />

blue optically pumped non- and semipolar laser structures<br />

with low thresholds.


20<br />

Raimund Kremzow In situ Rastertunnelmikroskopie an V-III-Halbleiternanostrukturen<br />

während der Metallorganischen Gasphasenepitaxie<br />

22.10.2010<br />

A scanning tunneling microscope (STM) was attached to a<br />

metal-organic vapor phase system, to follow the development<br />

<strong>of</strong> the surface topography with atomic resolution. During the<br />

work the setup was extended by a spectroscopic ellipsometer.<br />

Using this setup the first ever study <strong>of</strong> Ostwald ripening <strong>of</strong><br />

InAs quantum dot in MOVPE was performed.


21<br />

4. STRUCTURE AND STAFF OF THE INSTITUTE<br />

4.1 Office <strong>of</strong> the Executive Director (01.01.2010)<br />

Pr<strong>of</strong>. Dr. phil. nat. Dieter Bimberg (executive director)<br />

Pr<strong>of</strong>. Dr. rer. nat. Christian Thomsen (deputy executive director)<br />

Pr<strong>of</strong>. Dr. rer. nat. Mario Dähne (deputy executive director)<br />

Pr<strong>of</strong>. Dr. rer. nat. Michael Kneissl (deputy executive director)<br />

Pr<strong>of</strong>. Dr. rer. nat. Axel H<strong>of</strong>fmann (chief operating <strong>of</strong>ficer)<br />

Ines Rudolph (administrative assistant)<br />

4.2 Departments <strong>of</strong> the <strong><strong>Institut</strong>e</strong><br />

Department I: Pr<strong>of</strong>. Dr. phil. nat. Dieter Bimberg<br />

Department IIa: Pr<strong>of</strong>. Dr. rer. nat. Christian Thomsen<br />

Department IIb: Pr<strong>of</strong>. Dr. rer. nat. Janina Maultzsch<br />

Department IIc: Pr<strong>of</strong>. Dr. Axel H<strong>of</strong>fmann<br />

Pr<strong>of</strong>. em. Dr.-Ing. Dr. h.c. mult. Immanuel Broser<br />

Department III: Pr<strong>of</strong>. Dr. rer. nat. Mario Dähne<br />

Pr<strong>of</strong>. em. Dr.-Ing. Hans-Eckhart Gumlich<br />

Department IV: Pr<strong>of</strong>. Dr. rer. nat. Michael Kneissl<br />

Pr<strong>of</strong>. Dr. rer. nat. Wolfgang Richter (retired since 01.04.2005)<br />

4.3 Workshops<br />

Chief operating <strong>of</strong>ficer<br />

Pr<strong>of</strong>. Dr. Axel H<strong>of</strong>fmann<br />

Mechanical workshop<br />

Werner Kaczmarek (head)<br />

Rainer Noethen<br />

Wolfgang Pieper<br />

Daniela Beiße<br />

Marco Haupt<br />

Electronic workshop<br />

Norbert Lindner<br />

Glasstechnical workshop<br />

Norbert Zielinski


4.4 Center <strong>of</strong> NanoPhotonics<br />

Executive director<br />

Pr<strong>of</strong>. Dr. phil. nat. Dieter Bimberg<br />

Chief operating <strong>of</strong>ficer<br />

Pr<strong>of</strong>. Dr. Udo W. Pohl<br />

22<br />

Chief technology <strong>of</strong>ficers<br />

Dr. André Strittmatter (Epitaxy, Department I)<br />

Dr. Werner H<strong>of</strong>mann (Processing, Department I)<br />

Technical staff<br />

Ilona Gründler (Department I, until November 2010)<br />

Dipl.-Krist. Kathrin Schatke (Department I)<br />

Dipl.-Ing. Bernhard Tierock (Department I)<br />

The Center <strong>of</strong> Nano-Photonics provides support to the institute departments by growth,<br />

processing, and analysis <strong>of</strong> materials and structures. Growth facilities are based on metalorganic<br />

vapor phase epitaxy (MOCVD), and processing facilities include dry etching, plasma<br />

deposition, and optical lithography. A second-generation furnace for the selective oxidation <strong>of</strong><br />

AlAs to AlOx was developed, enabling precise control in the fabrication <strong>of</strong> current apertures<br />

in vertical emitters like VCSELs and single-photon emitters.<br />

For two novel kinds <strong>of</strong> vertical-cavity surface-emitting lasers a pro<strong>of</strong>-<strong>of</strong>-concept was successfully<br />

demonstrated: VCSELs with a monolithically integrated electro-optical modulator<br />

(EOM VCSELs), and microlasers with a metal-coated cavity. EOM VCSELs with precisely<br />

tuned cavities comprising up to 400 layers were grown using MOCVD, and processed to<br />

three-terminal devices. The first EOM VCSELs proved a promising dominant fraction <strong>of</strong> the<br />

modulation originating from the EO effect, a low power consumption, and open-eye operation<br />

in data transmission at 10 Gb/s. The second type <strong>of</strong> device aims at the development <strong>of</strong> nanolasers.<br />

Lateral coating <strong>of</strong> vertical emitting pillar structures by metal allows for realizing very<br />

small modal volume, albeit accompanied by the introduction <strong>of</strong> optical losses. High-gain<br />

structures comprising optical feedback were grown using MOCVD and processed to flip-chip<br />

microlasers in cooperation with the University <strong>of</strong> Illinois. For the first time CW-lasing <strong>of</strong> such<br />

metal-coated devices at room temperature was accomplished. Output power in the µW range<br />

was achieved with devices <strong>of</strong> 2 µm diameter.<br />

The new oxidation facility enabled a processing scheme with submicron oxide apertures for<br />

efficient single-photon sources with a resonant-cavity. Single-photon emission could be<br />

proved for pulsed devices with 1 GHz repitition rate. The improved oxidation control is also<br />

employed for implementing novel VCSEL designs with reduced parasitics and bandwith well<br />

above 20 GHz.


4.5 Affiliated Scientific Units<br />

Collaborative Research Centre (Sfb 787) <strong>of</strong> the National Science Foundation DFG<br />

“Semiconductor Nanophotonics: Materials, Models, Devices”<br />

Chairman<br />

Pr<strong>of</strong>. Dr. Michael Kneissl, <strong><strong>Institut</strong>e</strong> <strong>of</strong> <strong>Solid</strong> <strong>State</strong> <strong>Physics</strong>, TU Berlin<br />

Vice chairman<br />

Pr<strong>of</strong>. Dr. Dieter Bimberg, <strong><strong>Institut</strong>e</strong> <strong>of</strong> <strong>Solid</strong> <strong>State</strong> <strong>Physics</strong>, TU Berlin<br />

Board <strong>of</strong> directors<br />

Pr<strong>of</strong>. Dr. Andreas Knorr, <strong><strong>Institut</strong>e</strong> for Theoretical <strong>Physics</strong>, TU Berlin<br />

Pr<strong>of</strong>. Dr. Klaus Petermann, Department <strong>of</strong> Electrical Engineering, TU Berlin<br />

Pr<strong>of</strong>. Dr. Jürgen Sprekels, Weierstraß <strong><strong>Institut</strong>e</strong> for Applied Analysis and Stochastics<br />

Chief operating <strong>of</strong>ficer<br />

Dipl.-Phys. Ronny Kirste<br />

Administrative assistant<br />

Doreen Nitzsche<br />

23<br />

In 2008 the new Collaborative Research Centre 787 (Sonderforschungsbereich 787)<br />

"Semiconductor Nanophotonics: Materials, Models, Devices" has been established. The<br />

CRC 787 also includes the Integrated Research Training Group “Semiconductor<br />

Nanophotonics” that currently has a membership <strong>of</strong> more than 65 Ph.D. students with various<br />

scientific backgrounds ranging from mathematics, physics to electrical engineering. Covering<br />

the first four years (2008-2011), the Deutsche Forschungsgemeinschaft (DFG) is supporting<br />

the CRC 787 with more than 11 million Euros. The CRC 787 combines three complementary<br />

research areas: materials, models and devices to develop novel photonic and nanophotonic<br />

devices. In the area <strong>of</strong> materials, the research activities are focusing on the material systems<br />

GaAs, InP, and GaN which are the most relevant for photonic devices. Thereby the main<br />

objectives are the investigation <strong>of</strong> new growth mechanisms as well as the fabrication <strong>of</strong><br />

integrated nanostructures like quantum wells, quantum dots and sub-monolayer structures.<br />

Based on the development <strong>of</strong> new materials and the expertise on the physics <strong>of</strong> nanostructures<br />

we will investigate, fabricate and characterize a number <strong>of</strong> novel nanophotonic devices. These<br />

include, e.g. the development <strong>of</strong> electrically driven, quantum-dot based single photon sources<br />

for quantum cryptography, ultra-fast VCSELs for terabit data communication and high<br />

brilliance lasers from the infrared to the green spectral range. Additionally, edge emitter lasers<br />

and amplifiers for the generation and amplification <strong>of</strong> ultra-short optical pulses at highest<br />

frequencies are being developed. The interdisciplinary character and the strong educational<br />

networking between the different project partners are important features <strong>of</strong> the Integrated<br />

Research Training Group “Semiconductor Nanophotonics” which features a number <strong>of</strong><br />

educational <strong>of</strong>ferings as well as national and international educational activities like the<br />

International Nano-Optoelectronics Workshop iNOW. Another goal <strong>of</strong> the integrated graduate<br />

school is to encourage the participation <strong>of</strong> female students in the area nanophotonics and to<br />

support them in their scientific careers. The CRC 787 is comprised <strong>of</strong> a total <strong>of</strong> 16 projects


24<br />

from six institutions: The Technische Universität Berlin (Chair University), the Humboldt-<br />

Universität zu Berlin, the Otto-von-Guericke-University Magdeburg as well as the Ferdinand-<br />

Braun-<strong>Institut</strong>, Leibniz-<strong>Institut</strong> <strong>für</strong> Höchstfrequenztechnik, the Fraunh<strong>of</strong>er <strong>Institut</strong> <strong>für</strong><br />

Nachrichtentechnik (Heinrich-Hertz-<strong><strong>Institut</strong>e</strong>), the Weierstraß-<strong><strong>Institut</strong>e</strong> for Applied Analysis<br />

and Stochastics and the Konrad-Zuse-Zentrum <strong>für</strong> Informationstechnik.<br />

Photo <strong>of</strong> the members <strong>of</strong> the Integrated Research Training Group “Semiconductor Nanophotonics” during the<br />

block seminar in Graal-Müritz 2010.


Association <strong>of</strong> German Nanotechnology Centers <strong>of</strong> Competence - AGeNT-D:<br />

Arbeitsgemeinschaft der Nanotechnologie-Kompetenzzentren Deutschlands<br />

Chairman<br />

Pr<strong>of</strong>. Dr. Dieter Bimberg<br />

Steering committee<br />

Dr. Andreas Baar (NMN e.V.)<br />

Hr. Alexander Bracht (Hessen NT)<br />

Pr<strong>of</strong>. Harald Fuchs (CeNTech)<br />

Pr<strong>of</strong>. Wolfgang Heckl (Deutsches Museum)<br />

Dr. Regine Hedderich (NanoMat)<br />

Dr. Andreas Leson (UFS)<br />

Pr<strong>of</strong>. Frank Löffler (UPOB e.V.)<br />

Pr<strong>of</strong>. Roland Wiesendanger (INCH)<br />

Pr<strong>of</strong>. Christiane Ziegler (NanoBioNet e.V.)<br />

Chief operating <strong>of</strong>ficer<br />

Dr. Sven Rodt<br />

Administrative assistant<br />

Doreen Nitzsche<br />

25<br />

AGeNT-D is the German network <strong>of</strong> nanotech clusters. It comprises nine competence centres<br />

and two nanotech networks from all over Germany to cover the whole spectrum <strong>of</strong><br />

nanotechnology. AGeNT-D promotes R&D, creates synergies and increases national and<br />

international visibility <strong>of</strong> nanotechnology in Germany.


National Competence Center on NanoOptoelectronics <strong>of</strong> the Federal Ministry <strong>of</strong><br />

Education and Research (bmb+f) - NanOp<br />

Chairman<br />

Pr<strong>of</strong>. Dr. Dieter Bimberg<br />

Steering committee<br />

Pr<strong>of</strong>. Alfred Forchel (U Würzburg)<br />

Dr. Norbert Grote (HHI FhG)<br />

Dr. Klaus Schulz (Sodaja Consulting)<br />

Chief operating <strong>of</strong>ficer<br />

Dr. Sven Rodt<br />

Administrative assistant<br />

Doreen Nitzsche<br />

26<br />

NanOp is the German national network for the application <strong>of</strong> lateral nanostructures,<br />

nanoanalytical techniques and optoelectronics. It unites 44 nationally and internationally<br />

leading research and development groups, technical and venture capital companies from<br />

Germany and the A. F. I<strong>of</strong>fe <strong><strong>Institut</strong>e</strong> from St. Petersburg, Russia.<br />

NanOp has two goals: to speed up research and development in the field <strong>of</strong> nanotechnologies<br />

for Optoelectronics and to transfer the results to production.<br />

Multimedia Center for eLearning and eResearch (MuLF)<br />

Executive director <strong>of</strong> the Center<br />

Pr<strong>of</strong>. Dr. rer. nat. Chistian Thomsen<br />

Pr<strong>of</strong>. Dr. rer. nat. Lars Knipping<br />

Staff<br />

Dipl.-Phys. Dirk Heinrich<br />

Sabine Morgner<br />

The Multimedia Center for eLearning and eResearch (MuLF) as a center in our faculty is<br />

responsible for central tasks in the area <strong>of</strong> information technology-based support <strong>of</strong> teaching.<br />

Achievements are, e.g., the information system for students (ISIS), the introduction <strong>of</strong><br />

electronic chalk, the management system for examinations (MOSES), the electronic eprint<br />

server, or the electronic management system for the "Lange Nacht der Wissenschaften".<br />

Severeal thousand <strong>of</strong> students across the university are using these services. MuLF advises<br />

newcomers to Eteaching and <strong>of</strong>fers training for the optimal use <strong>of</strong> the new media at<br />

university. Furthermore, MuLF coordinated the multimedia equipment in the lecture rooms at<br />

the university. Scientifically the center coordinates projects, like, e.g., BeLearning or LiLa,<br />

two European-community funded teaching and research projects[d1].


27<br />

4.6 External and Retired Faculty Members <strong>of</strong> the <strong><strong>Institut</strong>e</strong><br />

S-Pr<strong>of</strong>. Dr. Norbert Esser, <strong><strong>Institut</strong>e</strong> for Analytical Sciences (ISAS) Berlin<br />

apl. Pr<strong>of</strong>. Dr. Rudolf Germer, University <strong>of</strong> Applied Sciences (FHTW) Berlin<br />

apl. Pr<strong>of</strong>. Dr. Holger Grahn, Paul-Drude-<strong><strong>Institut</strong>e</strong> (PDI) Berlin<br />

Priv.-Doz. Dr. Thorsten U. Kampen, Fritz-Haber-<strong><strong>Institut</strong>e</strong> (FHI) Berlin<br />

S-Pr<strong>of</strong>. Dr. Bella Lake, Hahn-Meitner-<strong><strong>Institut</strong>e</strong> (HZB) Berlin<br />

apl. Pr<strong>of</strong>. Dr. Hans-Joachim Lewerenz, Hahn-Meitner-<strong><strong>Institut</strong>e</strong> (HZB) Berlin<br />

apl. Pr<strong>of</strong>. Dr. Michael Meißner, Hahn-Meitner-<strong><strong>Institut</strong>e</strong> (HZB) Berlin<br />

apl. Pr<strong>of</strong>. Dr. Norbert Nickel, Hahn-Meitner-<strong><strong>Institut</strong>e</strong> (HZB) Berlin<br />

Priv.-Doz. Dr. Harm-Hinrich Rotermund, Fritz-Haber-<strong><strong>Institut</strong>e</strong> (FHI) Berlin<br />

Priv.-Doz. Dr. Konrad Siemensmeyer, Hahn-Meitner-<strong><strong>Institut</strong>e</strong> (HZB) Berlin<br />

S-Pr<strong>of</strong>. Dr. Michael Steiner, Hahn-Meitner-<strong><strong>Institut</strong>e</strong> (HZB), Berlin<br />

S-Pr<strong>of</strong>. Dr. Alan Tennant, Hahn-Meitner-<strong><strong>Institut</strong>e</strong> (HZB) Berlin<br />

apl. Pr<strong>of</strong>. Dr. Wolfgang Treimer, University <strong>of</strong> Applied Sciences (TFH) Berlin<br />

4.7 Honorary, Adjunct and Guest Pr<strong>of</strong>essors, Humboldt Awardees and Fellows<br />

Department I<br />

Pr<strong>of</strong>. Dr. Shun-Lien Chuang, University <strong>of</strong> Illinois, Urbana-Champaign, USA,<br />

Humboldt Awardee<br />

Pr<strong>of</strong>. Dr. Gadi Eisenstein, Technion – Israel <strong><strong>Institut</strong>e</strong> <strong>of</strong> Technology, Haifa, Israel,<br />

Humboldt Awardee<br />

Pr<strong>of</strong>. Dr. Hongbo Lan, Shandong University, Jinan, China, Chinese Scholarship<br />

Dr. Chongyang Liu, Agency for Science, Technology and Research (A*STAR), Singapore,<br />

Humboldt Fellow<br />

Department II<br />

Pr<strong>of</strong>. John Robertson, University <strong>of</strong> Cambridge, United Kingdom,<br />

Humboldt Awardee<br />

Department IV<br />

Dr. Abdul Kadir, Tata <strong><strong>Institut</strong>e</strong> <strong>of</strong> Fundamental Research, Mumbai, India<br />

Humboldt Fellow


5. FOREIGN GUESTS<br />

Department I<br />

29<br />

Ismail Firat Arikan, Istanbul University, Istanbul, Turkey<br />

01.09.<strong>2009</strong>-28.02.2010<br />

Dr. Sergey Blokhin, A.F. I<strong>of</strong>fe Physico-Technical <strong><strong>Institut</strong>e</strong>, St. Petersburg, Russia<br />

08.01.-07.02.<strong>2009</strong><br />

Jeroen Devreese, University <strong>of</strong> Antwerp, Belgium<br />

23.01.<strong>2009</strong> – 06.02.<strong>2009</strong><br />

M.Sc. Wenjuan Fan, Tsinghua University, Beijing, China<br />

11.01.2010-27.01.2010<br />

Pr<strong>of</strong>. Dr. Vladimir Gaysler, Russian Academy <strong>of</strong> Sciences, Novosibirsk, Russia,<br />

15.03.<strong>2009</strong>-22.03.<strong>2009</strong>, 28.11.<strong>2009</strong>-05.12.<strong>2009</strong>,<br />

21.04.2010-01.05.2010, 02.10.2010 -05.10.2010<br />

Dr. Nikita Gordeev, A.F. I<strong>of</strong>fe Physico-Technical <strong><strong>Institut</strong>e</strong>, St. Petersburg, Russia<br />

13.04.<strong>2009</strong>-25.04.<strong>2009</strong><br />

Pr<strong>of</strong>. Dr. Zhibiao Hao, Tsinghua University, Beijing, China<br />

11.01.2010-14.01.2010<br />

Dr. Leonid Karachinsky, A.F. I<strong>of</strong>fe Physico-Technical <strong><strong>Institut</strong>e</strong>, St. Petersburg, Russia<br />

30.08.<strong>2009</strong>-14.09.<strong>2009</strong><br />

M.Sc. Andrey Krasivichev, Academic <strong>Physics</strong> and Technology University, St. Petersburg,<br />

Russia, 01.11.<strong>2009</strong>-15.11.<strong>2009</strong>, 06.07.2010-02.08.2010<br />

Pr<strong>of</strong>. Dr. Yi Luo, Tsinghua University, Beijing, China<br />

11.01.2010-14.01.2010<br />

M.Sc. Alexey Nadtochy, A.F. I<strong>of</strong>fe Physico-Technical <strong><strong>Institut</strong>e</strong>, St. Petersburg, Russia<br />

01.03.<strong>2009</strong>-30.05.<strong>2009</strong>, 15.03.2010-09.05.2010, 18.10.2010-19.12.2010<br />

Pr<strong>of</strong>. Dr. Nurten Öncan, Istanbul University, Istanbul, Turkey<br />

04.07.<strong>2009</strong>-12.07.<strong>2009</strong><br />

M.Sc. Alexey Payusov, A.F. I<strong>of</strong>fe Physico-Technical <strong><strong>Institut</strong>e</strong>, St. Petersburg, Russia<br />

30.08.<strong>2009</strong>-30.11.<strong>2009</strong><br />

Dr. Belal Salameh, Tafila Technical University, Tafila, Jordania<br />

14.06.<strong>2009</strong>-14.08.<strong>2009</strong>, 06.06.2010-26.08.2010<br />

Dr. Yumian Su, Singapore<br />

01.01.<strong>2009</strong>-31.12.2010<br />

Dr. Alexander Uskov, Lebebev Physical <strong><strong>Institut</strong>e</strong>, Moscow, Russia<br />

01.10.<strong>2009</strong>-15.12.<strong>2009</strong>, 16.04.2010-30.06.2010<br />

Türkan Üstun, University <strong>of</strong> Ankara, Turkey<br />

15.02.2010-31.07.2010


Alluri Avinash Varma, Indian <strong><strong>Institut</strong>e</strong> <strong>of</strong> Technology, Kanpur, India<br />

01.10.<strong>2009</strong>-31.05.2010<br />

Department II<br />

Dr. Konstantin Batrakov, Belarus <strong>State</strong> University, Minsk, Belarus<br />

01.01.-31.07.<strong>2009</strong><br />

30<br />

Pr<strong>of</strong>. Dr. Nikolaus Dietz, Georgia <strong>State</strong> University, Atlanta, USA<br />

15.-17.06.<strong>2009</strong>, 28.05.-04.06.2010<br />

Pr<strong>of</strong>. Dr. Steven Durbin, University <strong>of</strong> Canterbury, Christchurch, New Zealand<br />

17.-21.03.2010<br />

Dr. Alexander Efros, U.S. Naval Research Laboratory (NRL), Washington, USA,<br />

18.-25.01.<strong>2009</strong><br />

Dr. Konstantin Gartsmann, Weizmann <strong><strong>Institut</strong>e</strong> <strong>of</strong> Science, Rehovot, Israel<br />

23.11.-07.12.2010<br />

Dr. Alejandro Goni, <strong>Institut</strong> de Ciencia de Materials de Barcelona, Spain<br />

05.-20.04.<strong>2009</strong>, 25.06.-06.07.<strong>2009</strong><br />

Franc Güell, <strong>Institut</strong> de Ciencia de Materials de Barcelona, Spain<br />

01.-05.02.2010<br />

Pr<strong>of</strong>. Dr. Oleg Kibis, <strong>State</strong> Technical University, Novosibirsk, Russia<br />

01.06.-31.07.<strong>2009</strong>, 01.06.-31.08.2010<br />

Dr. Jebreel Koshman, Al-Hussein Bin Talal University, Amman, Jordan<br />

26.02.-31.03.<strong>2009</strong>, 10.06.-10.09.2010<br />

Dr. Polina Kuzhir, Belarusian <strong>State</strong> University, Minsk, Belarus<br />

01.-30.06.<strong>2009</strong><br />

Pr<strong>of</strong>. Dr. Sergey Maksimenko, Belarusian <strong>State</strong> University, Minsk, Belarus<br />

01.06.-31.07.<strong>2009</strong>, 01.-31.12.<strong>2009</strong>, 01.-30.06.2010<br />

Pr<strong>of</strong>. Dr. Bruno K. Meyer, Justus-Liebig-Universität Gießen, Germany<br />

20.-22.02.<strong>2009</strong><br />

Pr<strong>of</strong>. Dr. Matthew Philips, University <strong>of</strong> Technology, Sydney, Australia<br />

12.-17.06.<strong>2009</strong>, 21.-25.09.<strong>2009</strong>, 29.06.-04.07.2010<br />

Dr. Anna Rodina, I<strong>of</strong>fe Physical Technical <strong><strong>Institut</strong>e</strong>, St. Petersburg, Russia<br />

13.-25.01.<strong>2009</strong>, 10.-23.08.<strong>2009</strong>, 14.-22.03.2010, 31.07.-28.08.2010<br />

Pr<strong>of</strong>. Dr. Zlatko Sitar, North Carolina <strong>State</strong> University, Raleigh, USA<br />

10.-13.11.<strong>2009</strong><br />

Dr. Gregory Slepyan, Belarusn <strong>State</strong> University, Minsk, Belarus<br />

01.06.-31.07.<strong>2009</strong><br />

Pr<strong>of</strong>. Dr. Tadeusz Suski, Unipress, Warschau, Poland<br />

18.-20.05.<strong>2009</strong>


31<br />

Dr. Filip Tuomisto, Helsinki University <strong>of</strong> Technology, Finland<br />

14.-20.01.<strong>2009</strong><br />

Jielei Wang, Department <strong>of</strong> Electronics and Engineering, Georgia <strong>State</strong> University, Atlanta<br />

USA<br />

16.-31.05.2010<br />

Department III<br />

Frédérick Delgrange, ISEN, Lille, France<br />

Mai-September 2010<br />

Dr. Ph. Ebert, Forschungszentrum Jülich<br />

September <strong>2009</strong>, November <strong>2009</strong>, April 2010, June 2010, November 2010<br />

Dr. F. Grosse, Paul-Drude-<strong>Institut</strong> Berlin<br />

September 2010<br />

Pr<strong>of</strong>. Dr. C. K. Shih, University <strong>of</strong> Texas at Austin, USA<br />

May <strong>2009</strong><br />

Pr<strong>of</strong>. Dr. A. Smith, Ohio University, USA<br />

June 2010<br />

Dr. M. Ternes, Max-Planck-<strong>Institut</strong> <strong>für</strong> <strong>Festkörperphysik</strong>, Stuttgart<br />

February <strong>2009</strong><br />

Dr. R. Timm, Lund University, Sweden<br />

Dezember 2010<br />

Pr<strong>of</strong>. Dr. S. Tsukamoto, Anan National College <strong>of</strong> Technology, Tokushima, Japan<br />

August 2010<br />

Department IV<br />

Dipl. Phys. Steven Albert, Univ. Polytec. Madrid, Spain<br />

03.-08.10.2010<br />

Dr. Ryan Banal, National <strong><strong>Institut</strong>e</strong> <strong>of</strong> Genetics, Kawakami Laboratory, Kyoto Daigaku,<br />

Japan,<br />

13.-16.06.<strong>2009</strong><br />

Pr<strong>of</strong>. Dr. Arnab Bhattacharya, Tata <strong><strong>Institut</strong>e</strong> <strong>of</strong> Fundamental Research, Mumbai, India,<br />

01.-18.06.<strong>2009</strong>, 24.-30.06.2010<br />

Dr. Sandhya Chandola, The University <strong>of</strong> Dublin, Trinity College, Dublin, Ireland,<br />

01.01.-31.12.<strong>2009</strong><br />

Pr<strong>of</strong>. Dr. Weng Chow, Sandia National Laboratories, Albuquerque, New Mexico, USA,<br />

06.10.-07.11.<strong>2009</strong>, 26.10.-20.11.2010<br />

Dipl.-Phys. Franscesco Ivaldi, Polish Academy <strong>of</strong> Science, Warzawa, Poland,<br />

13.- 17.07.<strong>2009</strong>, 03.- 08.10.2010


Dr. Abdul Kadir, Tata <strong><strong>Institut</strong>e</strong> <strong>of</strong> Fundamental Research, Mumbai, India,<br />

24.05.-15.07.<strong>2009</strong>, 10.09.-31.12.2010<br />

Dr. Slawomir Kret, Polish Academy <strong>of</strong> Science, Warzawa, Poland<br />

13.-17.07.<strong>2009</strong><br />

32<br />

Dr. Michelle Moram, University <strong>of</strong> Cambridge, Cambridge, UK<br />

02.-06.06.<strong>2009</strong><br />

Pr<strong>of</strong>. Dr. Dimitra Papadimitriou, <strong><strong>Institut</strong>e</strong> <strong>of</strong> <strong>Physics</strong>, National Technical University <strong>of</strong><br />

Athens, Greece<br />

11.-22.02.<strong>2009</strong>, 03.-28.08.<strong>2009</strong>, 14.04.-08.05.2010, 04.07.-31.08.2010<br />

Dr. Joachim Piprek, NUSOD <strong><strong>Institut</strong>e</strong> LLC, Newark, USA,<br />

08.-14.11.<strong>2009</strong>, 19.-23.04.2010<br />

Pr<strong>of</strong>. Dr. O. Pulci, Università degli Studi di Roma II ‘Tor Vergata’, Roma, Italy<br />

19.08.-04.09.2010<br />

Dipl. Phys. Linda Riele, Università degli Studi di Roma II ‘Tor Vergata’, Roma, Italy<br />

01.-22.01.2010, 16.08.-21.08.2010, 03.-08.10.2010<br />

Dr. Eugen, Speiser, Università degli Studi di Roma II ‘Tor Vergata’, Roma, Italy<br />

09.-16.02. <strong>2009</strong><br />

Dr. Tomohiro Yamaguchi, National <strong><strong>Institut</strong>e</strong> <strong>of</strong> Genetics, Kawakami Laboratory, Kyoto<br />

Daigaku, Japan<br />

13.-16.06.<strong>2009</strong>


6. PARTICIPATION IN COMMITEES<br />

6.1 Program and Advisory Committee<br />

Dieter Bimberg<br />

33<br />

Member <strong>of</strong> the International Advisory and Program Committee <strong>of</strong> the “LEOS-Winter Topical<br />

Meeting”, Innsbruck, Austria, January, 12 – 14, <strong>2009</strong><br />

Member <strong>of</strong> the International Advisory Committee <strong>of</strong> the “17 th International Symposium<br />

Nanostructures: <strong>Physics</strong> and Technology”, Minsk, Belarus, June 22 – 26, <strong>2009</strong><br />

Member <strong>of</strong> the International Advisory and Program Committee <strong>of</strong> the “12 th International<br />

Conference on the Formation <strong>of</strong> Semiconductor Interfaces” (ICFSI-12), Weimar, Germany,<br />

July 5 – 10, <strong>2009</strong><br />

Chair <strong>of</strong> the Program Committee <strong>of</strong> the “International Nano-Optoelectronics Workshop”<br />

(iNOW), Stockholm, Swedn, Berlin, Germany, August 2-15, <strong>2009</strong><br />

Chair <strong>of</strong> the Program Committee <strong>of</strong> “Nanotech Europe <strong>2009</strong>”, Berlin, Germany,<br />

September 28 – 30, <strong>2009</strong><br />

Member <strong>of</strong> the Program Committee <strong>of</strong> the “Collaborative Conference on Interacting<br />

Nanostructures” (CCIN), San Diego, CA, USA, November 9 – 13, <strong>2009</strong><br />

Member <strong>of</strong> the Program Committee <strong>of</strong> the Symposium “Semiconductor Lasers and Laser<br />

Dynamics Conference” within Photonics Europe, Brussels, Belgium, April 12 – 16, 2010<br />

Member <strong>of</strong> the International Advisory Committee <strong>of</strong> the “12th International Ceramics<br />

Congress” (CIMTEC 2010), Montecatini Terme, Italy, June 6 – 11, 2010<br />

Member <strong>of</strong> the International Advisory Committee <strong>of</strong> the “18 th International Symposium<br />

Nanostructures: <strong>Physics</strong> and Technology”, St. Petersburg Russian Federation,<br />

June 21 – 26, 2010<br />

Member <strong>of</strong> the Program Committee <strong>of</strong> “The 2010 Villa Conference on Interaction among<br />

Nanostructures” (VCIAN-2010). Santorini, Greece, June 21 – 27, 2010<br />

Member <strong>of</strong> the International Advisory Committee <strong>of</strong> the “International Conference on<br />

Superlattices, Nanostructures and Nanodevices” (ICSNN-2010), Beijing, China,<br />

July 18 – August 3, 2010<br />

Member <strong>of</strong> the Program Committee <strong>of</strong> the “International Nano-Optoelectronics Workshop”<br />

(iNOW), Beijing, China, August 1 – 15, 2010<br />

Axel H<strong>of</strong>fmann<br />

Member <strong>of</strong> the Program Committee <strong>of</strong> the “SPIE Photonics West”, San Jose, California,<br />

USA, January <strong>2009</strong><br />

Member <strong>of</strong> Member <strong>of</strong> the Program Committee <strong>of</strong> the “Frühjahrstagung der Deutschen<br />

Physikalischen Gesellschaft (DPG)”, Berlin, Germany, March <strong>2009</strong><br />

Chairman <strong>of</strong> the “E-MRS Spring Meeting <strong>2009</strong>” (E-MRS <strong>2009</strong>), Strasbourg, France, May <strong>2009</strong>


Member <strong>of</strong> the Organization Committee <strong>of</strong> the Int. Nano-Optoelectronical Workshop<br />

(INOW), Berlin, Germany, July <strong>2009</strong><br />

34<br />

Member <strong>of</strong> the Program Committee <strong>of</strong> the “SPIE Photonics West”, San Francisco, California,<br />

USA, January 2010<br />

Member <strong>of</strong> the Intern. Advisory Committee, PLMCN X, X. International Conference on<br />

<strong>Physics</strong> <strong>of</strong> Light-Matter Coupling in Nanostructures, Cuernavaca, Mexico, February 2010<br />

Member <strong>of</strong> the Program Committee <strong>of</strong> the “Frühjahrstagung der Deutschen Physikalischen<br />

Gesellschaft (DPG)”, Berlin, Germany, March 2010<br />

Member <strong>of</strong> the Advisory Committee <strong>of</strong> the “8’th International Symposium on Semiconductor<br />

Light Emitting Devices (ISSLED)”, Beijing, China, May 2010<br />

Member <strong>of</strong> the Program Committee <strong>of</strong> the “ISGN 3”, Montpellier, France, July 2010<br />

Member <strong>of</strong> the Advisory Committee <strong>of</strong> the “International Workshop on Nitride<br />

Semiconductors (IWN)”, Tempa, USA, September 2010<br />

Michael Kneissl<br />

Member <strong>of</strong> the Program Committee <strong>of</strong> “Novel In-Plane Semiconductor Lasers VIII”, San<br />

Francisco, USA, January <strong>2009</strong><br />

Member <strong>of</strong> the local Organizing Committee <strong>of</strong> the “International Nano-Optoelectronics<br />

Workshop (i-NOW <strong>2009</strong>)”, Berlin, August <strong>2009</strong><br />

Member <strong>of</strong> the Organizing Committee <strong>of</strong> the E-MRS <strong>2009</strong> Fall Meeting Symposium on ”InN<br />

materials and alloys”, Warsaw, Poland, September <strong>2009</strong><br />

Conference chair <strong>of</strong> the “DGKK <strong>2009</strong>”, Epitaxy Workshop <strong>of</strong> “The German Association for<br />

Crystal Growth” (DGKK), Berlin, December <strong>2009</strong><br />

Member <strong>of</strong> the Program Committee <strong>of</strong> “Novel In-Plane Semiconductor Lasers IX”, San<br />

Francisco, USA, January 2010<br />

Member <strong>of</strong> the Program Committee <strong>of</strong> the “International Workshop on Nitride<br />

semiconductors” (IWN 2010), Tampa, Florida, USA, September 2010<br />

Janina Maultzsch<br />

Member <strong>of</strong> the organizing committee: “Electronic Properties <strong>of</strong> Novel Materials”, Kirchberg,<br />

Austria, 07.-14.03.<strong>2009</strong><br />

Member <strong>of</strong> the organizing committee: “Electronic Properties <strong>of</strong> Novel Materials”, Kirchberg,<br />

Austria, 06.-13.03.2010<br />

Markus Pristovsek<br />

Member <strong>of</strong> the Program Committee <strong>of</strong> "SemiconNano <strong>2009</strong>", Tokushima, Japan, August <strong>2009</strong><br />

Christian Thomsen<br />

Organiser and member <strong>of</strong> the committee: “Electronic Properties <strong>of</strong> Novel Materials”,<br />

Kirchberg, Austria, 07.-14.03.<strong>2009</strong><br />

Organiser and member <strong>of</strong> the committee: “Electronic Properties <strong>of</strong> Novel Materials”,<br />

Kirchberg, Austria, 06.-13.03.2010


35<br />

6.2 Editorial Duties / Boards <strong>of</strong> <strong><strong>Institut</strong>e</strong>s and Companies<br />

Dieter Bimberg<br />

International Editorial Advisory Board "Opto-Electronics Review" (O-ER) Warsaw, Poland<br />

Editorial Board, IET Optoelectronics Journal, U.K.<br />

Editorial Board, “Research Letters in <strong>Physics</strong>”, USA/Egypt<br />

International Board <strong>of</strong> Editors, “Semiconductor News”, Pakistan<br />

Assoicate Editor, IEEE Photonics Journal, Fort Collins, Colorado, USA<br />

Chairman Scientific Advisory Board, VI Systems GmbH, Berlin, Germany<br />

Chairman <strong>of</strong> the Board, PBC Lasers GmbH, Berlin, Germany<br />

Member <strong>of</strong> the International Advisory Board <strong>of</strong> “Skolkovo Foundation”<br />

Member <strong>of</strong> the Board “Technopark Skolkovo Ltd.”<br />

Axel H<strong>of</strong>fmann<br />

Editorial Board <strong>of</strong> “physica status solidi (c)”, WILEY-VCH, Weinheim, Germany<br />

Michael Kneissl<br />

Guest Editor <strong>of</strong> a special issue on “Nonpolar Nitrides” to be published in Semiconductor<br />

Science & Technology, IOP Publishing<br />

Guest editor for the Proceedings <strong>of</strong> the “International Workshop on Nitride<br />

semiconductors”´(IWN 2010), Physica Status <strong>Solid</strong>i, Wiley<br />

Member or the Board <strong>of</strong> the Zentraleinrichtung Elektronenmikroskopie “ZELMI”<br />

Christian Thomsen<br />

Editor physica status solidi<br />

Editor <strong>Solid</strong> <strong>State</strong> Communications<br />

Physica status solidi – Rapid Research Letters<br />

IWEPNM <strong>2009</strong>, 23 rd International Winterschool on Electronic Properties <strong>of</strong> Novel Materials:<br />

Molecular Nanostructures<br />

IWEPNM 2010, 24 th International Winterschool on Electronic Properties <strong>of</strong> Novel Materials:<br />

Molecular Nanostructures


7. TEACHING<br />

Internal faculty members<br />

Lab Course in Methods <strong>of</strong> Applied <strong>Physics</strong> I and II<br />

D. Bimberg<br />

Lab Course in Advanced Experimental <strong>Physics</strong><br />

D. Bimberg, M. Dähne, A. H<strong>of</strong>fmann, M. Kneissl, J. Maultzsch, C. Thomsen<br />

Applied <strong>Physics</strong> I + II<br />

D. Bimberg, A. H<strong>of</strong>fmann, W. H<strong>of</strong>mann, U.W. Pohl, M. Weyers<br />

Seminar on Photonics: Materials, Devices, Systems<br />

D. Bimberg, A. H<strong>of</strong>fmann, U.W. Pohl, A. Strittmatter<br />

Selected Topics <strong>of</strong> <strong>Solid</strong> <strong>State</strong> <strong>Physics</strong><br />

D. Bimberg, C. Thomsen<br />

Semiconductor Epitaxy<br />

U. W. Pohl<br />

Experimental <strong>Physics</strong> I, II<br />

M. Dähne<br />

Experimental <strong>Physics</strong> V – Introduction to <strong>Solid</strong> <strong>State</strong> <strong>Physics</strong><br />

M. Dähne<br />

Seminar on Surfaces, Interfaces and Nanostructures<br />

M. Dähne, H. Eisele, J. Grabowski, L. Ivanova, A. Lenz<br />

Experimental Methods<br />

M. Dähne (organizator)<br />

Applied <strong>Physics</strong> I: LEED<br />

H. Eisele<br />

Advanced Lab Course: STM<br />

A. Lenz<br />

Exercises for Experimental <strong>Physics</strong> V<br />

L. Ivanova, J. Grabowski (<strong>2009</strong>/10) ; C. Prohl, M. Franz (2010/11)<br />

Further Education: Instrumental Analytic, Course 6<br />

M. Dähne, M. Franz, C. Prohl<br />

Macroscopic Quantum Phenomena in <strong>Solid</strong> <strong>State</strong> <strong>Physics</strong><br />

A. H<strong>of</strong>fmann<br />

Modern Methods <strong>of</strong> <strong>Solid</strong> <strong>State</strong> <strong>Physics</strong><br />

A. H<strong>of</strong>fmann<br />

<strong>Solid</strong> <strong>State</strong> <strong>Physics</strong> I + II<br />

M. Kneissl, P. Vogt, M. Pristovsek, N. Nickel, H.-J. Lewerenz<br />

Lab course in <strong>Solid</strong> <strong>State</strong> <strong>Physics</strong> I + II<br />

M. Kneissl, P. Vogt<br />

Seminar series “<strong>Physics</strong> <strong>of</strong> Semiconductor Interfaces and Heterostructures”<br />

M. Kneissl, P.Vogt, M. Pristovsek<br />

37<br />

Seminar series “Modern Concepts in Optoelectronics”<br />

M. Kneissl, M. Pristovsek


38<br />

Lab Course in Advanced Experimental <strong>Physics</strong><br />

M. Kneissl, D. Bimberg, M. Dähne, C. Thomsen<br />

Group Theory in <strong>Solid</strong> <strong>State</strong> <strong>Physics</strong><br />

J. Maultzsch<br />

Introduction to <strong>Physics</strong> for Engineering Students I + II<br />

C. Thomsen<br />

Special Topics in <strong>Physics</strong> for Engineering Students<br />

C. Thomsen<br />

Special Topics in Carbon Nanotubes and Graphene<br />

C. Thomsen & J. Maultzsch<br />

External faculty members<br />

Ultrasonics and Phonons<br />

R. Germer<br />

Introduction to classical physics for engineers<br />

H. Grahn<br />

Organic Semiconductors: performance, production, applications<br />

T. Kampen<br />

Photonic Processes in nanoscience<br />

H.-J. Lewerenz<br />

Surface Physical Research on Energy Converted Semiconductor Structures<br />

H.-J. Lewerenz<br />

Hydrogen in <strong>Solid</strong> <strong>State</strong>s<br />

N. Nickel<br />

Neutrons as an Efficient Tool to Investigate Condensed Matter<br />

K. Siemensmeyer, B. Lake<br />

Neutron Scattering I<br />

K. Siemensmeyer, B. Lake<br />

31 st Berlin School on Neutron Scattering<br />

A. Tennant, B. Lake<br />

Advanced Magnetism<br />

A. Tennant<br />

Selective Sections <strong>of</strong> Neutron Scattering<br />

A. Tennant<br />

Introduction to <strong>Physics</strong> for Engineering Students<br />

C. Thomsen, H. Grahn<br />

Introduction to X-ray- and Neutron Computed Tomography<br />

W. Treimer


8. PATENTS<br />

Speicherzelle und Verfahren zum Speichern von Daten<br />

Memory cell, and the method for storing data<br />

USA Patentanmeldung AZ: 12/518,223 (08.06.<strong>2009</strong>)<br />

Koreanische Patentanmeldung AZ: 10-<strong>2009</strong>-7014186 (07.07.<strong>2009</strong>)<br />

Japanische Patentanmeldung AZ: 2010-512012 (16.04.2010)<br />

Martin Geller, Andreas Marent, Dieter Bimberg<br />

Tuning von VCSEL-Kavitäten und Quantenpunktresonanzen durch extern erzeugte<br />

Verspannung mittels piezoelektrischer Aktuatoren<br />

US Patentanmeldung Nr. 12/891,437 (27.09.2010)<br />

Andrei Schliwa, Erik Stock, Dieter Bimberg<br />

Photonenpaarquelle und Verfahren zu deren Herstellung<br />

Internationale Patentanmeldung Nr. PCT/DE <strong>2009</strong>/001025 (20.07.<strong>2009</strong>)<br />

Erteilung deutsches Patent: Nr. 10 2008 036 400.2-33 (21.01.2010)<br />

Momme Winkelnkemper, Andrei Schliwa, Dieter Bimberg<br />

Method for fabricating large area and highly ordered quantum dot array<br />

USA Patentanmeldung AZ: 12/662,661 (27.04.2010)<br />

Hongbo Lan, Udo W. Pohl, Dieter Bimberg<br />

Speicherzelle auf Basis von Nanostrukturen aus Verbindungshalbleitern<br />

USA Patentanmeldung AZ: US 12/970,744 (16.12.2010)<br />

Andreas Marent, Martin Geller, Dieter Bimberg, Tobias Nowozin<br />

P-Kontakt und Leuchtdiode <strong>für</strong> den ultravioletten Spektralbereich<br />

PCT/EP2010/060333<br />

Pr<strong>of</strong>. Dr. M. Kneissl, PD Dr. M. Weyers, Dr. Sven Einfeldt, Dr. Hernan Rodriguez<br />

39


9. SCIENTIFIC ACTIVITIES<br />

9.1 Department I<br />

Pr<strong>of</strong>. Dr. phil. nat. Dieter Bimberg<br />

9.1.1 Staff<br />

Secretary<br />

Ulrike Grupe<br />

Technical Staff<br />

Jörg Döhring<br />

Ilona Gründler (until 30.11.2010)<br />

Dipl.-Ing. Bernd Ludwig (until 30.06.2010)<br />

Dipl.-Krist. Kathrin Schatke<br />

Dipl.-Ing. Bernhard Tierock<br />

Permanent Guest Scientists<br />

Pr<strong>of</strong>. Dr. Jürgen Christen<br />

Pr<strong>of</strong>. Dr. Shun-Lien Chuang<br />

Priv.-Doz. Dr. Armin Dadgar<br />

Pr<strong>of</strong>. Dr. Gadi Eisenstein<br />

Pr<strong>of</strong>. Dr. Wolfgang Gehlh<strong>of</strong>f<br />

Pr<strong>of</strong>. Dr. Alois Krost<br />

Pr<strong>of</strong>. Dr. Nicolai N. Ledentsov<br />

Dr. Vitali A. Shchukin<br />

Principal Scientists<br />

Pr<strong>of</strong>. Dr. Udo W. Pohl<br />

Dr. Werner H<strong>of</strong>mann<br />

Dr. André Strittmatter<br />

Senior Scientists<br />

Dr. Vladimir Kalosha<br />

Dr. Thorsten Kettler (until 31.10.2010)<br />

Dr. Anatol Lochmann (until 31.10.2010)<br />

Dr. Andreas Marent<br />

Dr. Alex Mutig (until 31.10.2010)<br />

Dr. Konstantin Pötschke (until 30.09.<strong>2009</strong>)<br />

Dr. Sven Rodt<br />

Dr. Andrei Schliwa (until 31.08.2010)<br />

Dr. Erik Stock<br />

41


42<br />

Dr. Till Warming (until 31.12.<strong>2009</strong>)<br />

Dr. Momme Winkelnkemper (until 31.12.<strong>2009</strong>)<br />

PhD Candidates<br />

Dipl.-Phys. Dejan Arsenijević<br />

Dipl.-Phys. Gerrit Fiol<br />

Dipl.-Phys. Tim Germann<br />

Dipl.-Phys. Ole Hitzemann<br />

Dipl.-Phys. Gerald Hönig<br />

Dipl.-Phys. Thorsten Kettler (until 04.05.2010)<br />

Dipl.-Phys. Anatol Lochmann (until 30.04.2010)<br />

Dipl.-Phys. Andreas Marent (until 22.10.2010)<br />

Dipl.-Phys. Christian Meuer<br />

Dipl.-Phys. Philip Moser<br />

Dipl.-Phys. Alex Mutig (until 15.07.2010)<br />

Dipl.-Phys. Tobias Nowozin<br />

Dipl.-Phys. Irina Ostapenko<br />

Dipl.-Phys. Kristijan Posilovic<br />

Dipl.-Phys. Konstantin Pötschke (until 27.02.<strong>2009</strong>)<br />

Dipl.-Phys. Holger Schmeckebier<br />

Dipl.-Phys. Jan-Hindrik Schulze<br />

Dipl.-Phys. Erik Stock (until 03.12.2010)<br />

Dipl.-Phys. Gernot Stracke<br />

Dipl.-Phys. Mirko Stubenrauch<br />

Dipl.-Phys. Waldemar Unrau<br />

Dipl.-Phys. Till Warming (until 20.02.<strong>2009</strong>)<br />

Diploma Students<br />

Dejan Arsenijević (until 16.02.<strong>2009</strong>)<br />

Alexander Dreismann<br />

Johannes Gelze (28.07.<strong>2009</strong>)<br />

Alexander Glacki<br />

Annika Högner (until 22.12.2010)<br />

Gerald Hönig (until16.10.<strong>2009</strong>)<br />

Gunter Larisch<br />

Gang Lou (until 18.10.<strong>2009</strong>)<br />

Benjamin Maier (until 22.10.2010)<br />

Murat Öztürk<br />

Holger Schmeckebier (until 19.06.<strong>2009</strong>)<br />

Daniel Seidlitz (until 15.01.2010)


Jan Amaru Töfflinger (until 18.03.2010)<br />

Peter Benedikt Weber (until 03.06.<strong>2009</strong>)<br />

Philip Wolf (until 08.07.2010)<br />

Master Students<br />

Leo Bonato<br />

Alissa Wiengarten<br />

Martin Winterfeldt<br />

Bachelor Students<br />

Moritz Kleinert (until 14.06.2010)<br />

Luzy Krüger<br />

Peter Schneider<br />

Tristan Visentin (until 07.10.2010)<br />

Martin Winterfeldt (until 02.12.<strong>2009</strong>)<br />

43


9.1.2 Summary <strong>of</strong> Activities<br />

44<br />

The activities <strong>of</strong> the department are grouped into five mutually connected research areas with<br />

complementary objectives:<br />

- Nanostructures: Growth and <strong>Physics</strong>,<br />

- Surface Emitters: VCSELs, Single/Entangled Photon Emitters, Silicon Photonics,<br />

- Edge Emitters: High Frequency Lasers and Amplifiers, High Brightness Lasers,<br />

- Nan<strong>of</strong>lash Memories,<br />

- Magnetic Resonance.<br />

A few <strong>of</strong> the highlights <strong>of</strong> the last two years are emphasized in the summary below. For an<br />

exhaustive overview on our activities see the list <strong>of</strong> publications, which can be easily<br />

retrieved in the internet.<br />

A quantitatively correct theoretical description <strong>of</strong> the electronic structure <strong>of</strong> quantum dots,<br />

including exchange and correlation effects to describe the excitonic fine-structure splitting,<br />

on surfaces <strong>of</strong> varying orientation in arsenides and nitrides, presents a major theoretical<br />

challenge. Using the configuration interaction approach in conjunction with eight-band k·p<br />

theory, including first and second order piezoelectric fields, we predict that the confinement<br />

potential <strong>of</strong> InAs/GaAs quantum dots grown on (111) planes is not lowered by piezoelectric<br />

effects, in contrast to such quantum dots grown on (001) planes. The piezoelectric fields for<br />

these two configurations are shown in figure 1. Thus the excitonic fine structure splitting<br />

vanishes for InAs QDs grown on GaAs (111)-planes as long as no additional symmetry<br />

lowering effects are present. Micro-PL experiments confirm the predictions.<br />

Figure 1: Piezoelectric potentials for lens-shaped InAs/GaAs quantum dots grown on GaAs(111)B and<br />

GaAs(001) substrates.<br />

Surprisingly the excitonic fine-structure splitting was observed in Micro-PL experiments<br />

on GaN/AlN quantum dots also. Here it reaches huge values <strong>of</strong> up to 7 meV. The size<br />

dependence <strong>of</strong> the FSS is found to be inverse to that observed for InAs/GaAs QDs. A<br />

shape/strain anisotropy is revealed as being the origin <strong>of</strong> the large FSS for small GaN/AlN<br />

QDs.<br />

Thus InAs/GaAs QDs grown on (111) surfaces are identified as ideal sources <strong>of</strong> entangled<br />

photon pairs. GaN/AlN QDs emitting in the UV might enable the realization <strong>of</strong> roomtemperature<br />

single-q-bit emitters for quantum cryptography and communication.


45<br />

The sensitivities <strong>of</strong> our µ-photoluminescence excitation (µ-PLE) and µ-photoluminescence<br />

(µPL) spectroscopy set-ups were largely improved, such that by a combination <strong>of</strong> both<br />

methods for the first time ever the energy distances between single hole levels <strong>of</strong> single<br />

InGaAs QDs could be experimentally determined. Appreciable heavy-hole light-hole<br />

coupling was found to be decisive to explain the observed nonzero h1-h2-splitting. A number<br />

<strong>of</strong> trion transitions forbidden in the virtual crystal approximation (VCA) are experimentally<br />

observed. Describing the atomic distribution in a QD by a much more realistic granulated<br />

crystal model (Fig. 2) strict selection rules <strong>of</strong> the VCA are lifted and the experimental results<br />

are explained.<br />

Figure 2: Representations <strong>of</strong> an InAs/GaAs QD in the virtual crystal approximation and in the granulated crystal<br />

model.<br />

Break-throughs in devices <strong>of</strong>ten happen when creative intelligence and time is invested in the<br />

design <strong>of</strong> improved or novel device technologies or set-ups for their characterization.<br />

Controlled fabrication <strong>of</strong> single and multiple oxide apertures is <strong>of</strong> fundamental importance<br />

for the performance <strong>of</strong> vertical light emitters, VCSELs and single/entangled photon emitters.<br />

We put into operation at the Center <strong>of</strong> NanoPhotonics a second generation and largely<br />

improved set-ups for fabricating such oxide apertures, including in-situ control, and<br />

immediately recognized the merits <strong>of</strong> better process control by a multitude <strong>of</strong> improved<br />

device parameters.<br />

Characterizing all <strong>of</strong> the 5000+ surface emitters on a 2 inch wafer is hardly possible, if no<br />

automatic procedure is used. We constructed a fully s<strong>of</strong>tware controlled device mapper, who<br />

delivers after about 20 hours the essential I-V and I-L characteristics, including derived<br />

quantities like threshold current for all <strong>of</strong> the devices <strong>of</strong> a wafer. Thus selection <strong>of</strong> the “best”<br />

is possible.<br />

High frequencies and bit rates up to elevated temperatures like 85°C and sometimes 120°C<br />

are essential for applications <strong>of</strong> VCSELs in data communication. Our own work focused on<br />

the two wavelengths, 850 nm and 980 nm, presently competing with each other all over the<br />

world, becoming the dominant one for systems ranging from a few cm to about 100 m. For<br />

850 nm VCSELs we reported record 40 Gbit/s error-free transmission with a bit error rate<br />

(BER) smaller than 10 -12 (Fig. 3). Introduction <strong>of</strong> multimode apertures leads to another<br />

record: 25 Gbit/s error-free transmission at 85°C for 980 nm. Detailed analysis <strong>of</strong> the<br />

various fundamental physical parameters that limit high bit-rate performance like relaxation<br />

resonance frequency, damping factor, D-factor, K-factor, parasitic cut-<strong>of</strong>f frequency, and<br />

others indicate that further design advances will enable operation at still higher<br />

temperatures and bit rates. 22 Gbit/s operation <strong>of</strong> long wavelength 1.55 µm VCSELs was<br />

additionally demonstrated in collaboration with the group <strong>of</strong> Pr<strong>of</strong>essor Amann from TU<br />

Munich.


46<br />

Figure 3: Bit-error rate measurement for a 850 nm VCSEL at 75 °C.<br />

Based on our design experience <strong>of</strong> VCSELS we developed a new generation <strong>of</strong> single-q-bit<br />

emitters on demand based on resonant cavity LEDs using an oxide aperture confining the<br />

current to a single InAs quantum dot. The Purcell-effect enhances the emission intensity,<br />

reduces the exciton lifetime and enables the first experimental demonstration <strong>of</strong> a modulation<br />

frequency <strong>of</strong> 1 GHz. Improved high frequency design <strong>of</strong> the devices (Fig. 4) will lead to still<br />

higher cut-<strong>of</strong>f frequencies.<br />

Figure 4: Schematic view <strong>of</strong> our new high-frequency design for single-photon emitters.


47<br />

The footprint <strong>of</strong> a VCSEL is only about 1% <strong>of</strong> that <strong>of</strong> edge emitting lasers. Yet it is too large<br />

for future heterogeneous integration <strong>of</strong> light emitters with silicon ICs, in particular for parallel<br />

optical links operating at bit rates larger than 1 Tbit/s with minimum power consumption. A<br />

radically different design approach for surface emitters is based on metal cavities (see Fig. 5),<br />

occupying a surface area <strong>of</strong> about 1% <strong>of</strong> that <strong>of</strong> a VCSEL. Integrated modeling, growth,<br />

processing and characterization <strong>of</strong> such devices were pursued together with the group <strong>of</strong><br />

Pr<strong>of</strong>essor S.-L. Chuang from U.I. Urbana, and led to immediate success. For the first time<br />

room-temperature operation <strong>of</strong> such devices, having a diameter <strong>of</strong> 2 µm, was achieved<br />

resulting in an output power <strong>of</strong> close to 8 µW. The devices were flip-chip mounted on Sisubstrates,<br />

showing an extremely low thermal impedance. Such devices might present in the<br />

future a cornerstone <strong>of</strong> Si-photonics.<br />

Figure 5: Schematics <strong>of</strong> our metal-cavity microlaser. The fabricated device has an active region <strong>of</strong> multiple (14)<br />

quantum wells sandwiched between a silver metal reflector on p-doped GaAs/AlGaAs layers and an n-doped<br />

DBR (flip-chip bonded upside down on a gold coated silicon substrate). The device is surrounded by silicon<br />

nitride and silver on the sidewalls to form a closed optical microcavity. The GaAs substrate below the<br />

DBR/InGaP (etch stop layer) has been removed, and the physical size is 2.0 µm in diameter and 2.5 µm in total<br />

thickness.<br />

QD-based mode-locked lasers driven under optimized conditions still show pulse widths<br />

being much larger than the Fourier-transform limit given by the Gaussian broadened gain<br />

width <strong>of</strong> such lasers. A detailed investigation <strong>of</strong> the chirp showed the broadening to be<br />

essentially caused by a linearly chirped emission, excluding a number <strong>of</strong> different exotic<br />

explanations found in the literature. We compensated the chirp and obtained 40 GHz pulses <strong>of</strong><br />

only 0.7 ps width. By multiplexing finally a pulse comb <strong>of</strong> 0.7 ps pulses at 160 GHz was<br />

demonstrated (see Fig. 6).


48<br />

Figure 6: Autocorrelation measurement (left) and retrieved pulse comb (right) <strong>of</strong> the hybrid mode-locked device<br />

demonstrating a pulse comb <strong>of</strong> 0.7 ps pulses at 160 GHz.<br />

Previous investigations <strong>of</strong> QD-based semiconductor optical amplifiers (SOAs) showed<br />

saturated linear chip gain <strong>of</strong> up to 35 dB at 1.3 µm. Many future all-optical networks will be<br />

based on the operation <strong>of</strong> optical devices at high frequencies in a nonlinear range. Wavelength<br />

conversion presents a particular challenge. We demonstrated for the first time wavelength<br />

conversion by 10 nm up to 80 Gbit/s <strong>of</strong> return-to-zero (RZ) on-<strong>of</strong>f-keying (OOK) signals<br />

with a BER smaller than 10 -9 using a QD SOA in combination with a delay interferometer<br />

(DI). Figure 7 shows the BER measurement and the corresponding converted eye diagram <strong>of</strong><br />

a pseudo-random binary sequence (PRBS) 2 31 -1 RZ OOK data signal at 80 Gbit/s<br />

representing successful conversion <strong>of</strong> 80 Gbit/s OOK data signals.<br />

Fig. 7: (a) Eye diagram <strong>of</strong> the converted 80 Gbit/s data signal at 1320 nm after the DI showing an extinction ratio<br />

<strong>of</strong> 9.3 dB. (b) Bit error rate versus received power for 80 Gbit/s RZ-OOK wavelength conversion from 1310 nm<br />

to 1320 nm (FSR: free spectral range).


49<br />

Increasing output power and brightness <strong>of</strong> edge emitting semiconductor lasers (EELs) to<br />

values far above presently obtained ones is challenging, since known commercial concepts<br />

are not believed to have such potential, and rewarding, since many important scientific and<br />

commercial applications, like scribing or cutting, could be covered by inexpensive and energy<br />

efficient light sources. We have designed, fabricated and measured the performance <strong>of</strong> two<br />

novel design types <strong>of</strong> EELs, photonic-band-crystal lasers (PBC) and tilted-wave lasers<br />

(TWL), with unconventional waveguides and lateral arrays there<strong>of</strong>. Both concepts are<br />

patented. The PBC structure which contains an embedded higher-order mode filter allows us<br />

to expand the ground mode across the entire waveguide. An almost symmetric far field <strong>of</strong> 7°<br />

results with more than 2 W cw output power and a M 2 -value <strong>of</strong> 1.5. The brightness is 1x10 8<br />

Wsr -1 cm -2 , more than one order <strong>of</strong> magnitude larger than reported, yet. Under pulsed<br />

conditions the brightness and peak power are still four times larger. First modeling results<br />

indicate the potential <strong>of</strong> coherent coupling <strong>of</strong> stripes, as shown in figure 8 for three stripes.<br />

Figure 8: PBC laser stripes that show coherent coupling <strong>of</strong> three stripes for small lateral distances.<br />

The „New Scientist“ hailed results <strong>of</strong> our nan<strong>of</strong>lash research program (based on our own<br />

patents) as the potential “holy grail” <strong>of</strong> future semiconductor nano-memories. 10 6 years <strong>of</strong><br />

hole storage time was extrapolated for GaSb/AlAs QD-memory structures (see Fig. 9) from<br />

our present results <strong>of</strong> about 2 s presently obtained for InAs/AlGaAs-QD hole memories.<br />

Write-times much below 1 ns are expected, governed by the ultrafast relaxation time <strong>of</strong> holes,<br />

that are independent <strong>of</strong> the storage time <strong>of</strong> the carriers. Six nanoseconds, yet controlled by<br />

device parasitic, are observed.


Figure 9: Estimated storage times for different QD systems as a function <strong>of</strong> localization energy.<br />

EPR activities<br />

50<br />

Diluted magnetic semiconductors (MS) that exhibit ferromagnetism at room temperature are<br />

essential for the development <strong>of</strong> semiconductor spintronics. According to theoretical<br />

predictions transition metal (TM)-doped A II B IV C V 2 chalcopyrite and the II-VI semiconductor<br />

ZnO are promising compounds <strong>of</strong> such applications. The magnetic resonance studies <strong>of</strong> native<br />

defects and their transition energies, investigations <strong>of</strong> isolated TM on the two different cation<br />

lattice sites in the ternary compounds, on exchanged coupled pairs as well as the interaction <strong>of</strong><br />

TMs with native defects were critically analysed and compared with theoretical predictions.<br />

New results about the incorporation <strong>of</strong> TMs in ZnO nanowires and colloidal ZnO<br />

nanocrystals (NCs) were obtained. We proved that the TM-doped colloidal ZnO nanocrystals<br />

exhibit a core-shell structure revealed by the relative intensity <strong>of</strong> the EPR spectra and by the<br />

performed surface modifications. The incorporation <strong>of</strong> Li on Zn sites in ZnO NCs was<br />

demonstrated by the detection both <strong>of</strong> the axial and non-axial Li defects. The interest <strong>of</strong> Li as<br />

dopant in ZnO is based on both its possible ability to act as a p-dopant in ZnO, as well as on<br />

the fact that Li is a major impurity in ZnO growth. Besides, new electrically-detected electron<br />

paramagnetic resonance (EDEPR) and optically-detected magnetic resonance (ODMR) results<br />

<strong>of</strong> impurity centres in nanostructures inserted in silicon microcavities were received.


9.1.3 Publications<br />

a) Nanostructures: Growth and <strong>Physics</strong><br />

51<br />

1. Few-particle energies versus geometry and composition <strong>of</strong> InxGa1-xAs/GaAs selforganized<br />

quantum dots<br />

A. Schliwa, M. Winkelnkemper, and D. Bimberg<br />

Physical Review B 79, 075443 (<strong>2009</strong>)<br />

2. Hole-hole and electron-hole exchange interactions in single InAs/GaAs quantum<br />

dots<br />

T. Warming, E. Siebert, A. Schliwa, E. Stock, R. Zimmermann, and D. Bimberg<br />

Physical Review B 79, 125316 (<strong>2009</strong>)<br />

3. In(Ga)As/GaAs quantum dots grown on a (111) surface as ideal sources <strong>of</strong><br />

entangled photon pairs<br />

A. Schliwa, M. Winkelnkemper, A. Lochmann, E. Stock, and D. Bimberg<br />

Physical Review B 80, 161307 (<strong>2009</strong>)<br />

4. InGaAs quantum dots coupled to a reservoir <strong>of</strong> nonequilibrium free carriers<br />

J. Gomis-Bresco, S. Dommers, V.V. Temnov, U. Woggon, J. Martinez-Pastor,<br />

M. Laemmlin, D. Bimberg<br />

IEEE Journal <strong>of</strong> Quantum Electronics 45 (9), 1121 (<strong>2009</strong>)<br />

5. Limits <strong>of</strong> In(Ga)As/GaAs quantum dot growth<br />

A. Lenz, H. Eisele, R. Timm, L. Ivanova, R.L. Sellin, H.Y. Liu, M. Hopkinson,<br />

U.W. Pohl, D. Bimberg, and M. Dähne<br />

Phys. Stat. Sol. (b) 246, 717 (<strong>2009</strong>)<br />

6. Quantenpunkte: Design-Atome in Halbleitern<br />

S. Rodt, D. Bimberg<br />

Welt der Physik 7118 (<strong>2009</strong>)<br />

7. Quantenpunkte: Technische Anwendungen der «künstlichen Atome»<br />

S. Rodt, D. Bimberg<br />

Welt der Physik 7122 (<strong>2009</strong>)<br />

8. Quantum dots for single- and entangled-photon emitters<br />

D. Bimberg, E. Stock, A. Lochmann, A. Schliwa<br />

IEEE Photonics Journal 1 (1), 57 (<strong>2009</strong>)<br />

9. Self-assembled quantum dots with tunable thickness <strong>of</strong> the wetting layer:<br />

Role <strong>of</strong> vertical confinement on interlevel spacing<br />

L. Wang, V. Křápek, F. Ding, F. Horton, A. Schliwa, D. Bimberg, A. Rastelli, and<br />

O.G. Schmidt<br />

Physical Review B 80, 85309 (<strong>2009</strong>)<br />

10. Spectroscopic access to single-hole energies in InAs/GaAs quantum dots<br />

E. Siebert, T. Warming, A. Schliwa, E. Stock, M. Winkelnkemper, S. Rodt,<br />

and D. Bimberg<br />

Physical Review B 79, 205321 (<strong>2009</strong>)


11. A tribute to Zhores Ivanovitch Alferov, a pioneer who changed our way <strong>of</strong> daily<br />

life<br />

D. Bimberg<br />

Semiconductor Science Technology 26, 010301 (2010)<br />

12. Atomic structure <strong>of</strong> buried InAs sub-monolayer depositions in GaAs<br />

A. Lenz, H. Eisele, J. Becker, L. Ivanova, E. Lenz, F. Luckert, K. Pötschke,<br />

A. Strittmatter, U.W. Pohl, D. Bimberg, and M. Dähne<br />

Appl. Phys. Express 3, 105602 (2010)<br />

13. Band parameters and strain effects in ZnO and group-III nitrides<br />

Q. Yan, P. Rinke, M.Winkelnkemper, A Qteish, D. Bimberg , M. Scheffler,<br />

and C.G. Van deWalle<br />

Semiconductor Science Technology 26, 014037 (2010)<br />

52<br />

14. Confined states <strong>of</strong> individual type-II GaSb/GaAs quantum rings studied by crosssectional<br />

scanning tunneling spectroscopy<br />

R. Timm, H. Eisele, A. Lenz, L. Ivanova, V. Vossebürger, T. Warming, D. Bimberg,<br />

I. Farrer, D.A. Ritchie, and M. Dähne<br />

NanoLetters 10, 3972 (2010)<br />

15. Effect <strong>of</strong> the shape <strong>of</strong> InAs nanostructures on the characteristics <strong>of</strong> InP-based<br />

buried heterostructure semiconductor optical amplifiers<br />

D. Franke, J. Kreissl, W. Rehbein, F. Wenning, H. Kuenzel, U.W. Pohl,<br />

and D. Bimberg<br />

Appl. Phys. Express 4, 014101 (2010)<br />

16. Exciton fine-structure splitting in GaN/AlN quantum dots<br />

C. Kindel, S. Kako, T. Kawano, H. Oishi, Y. Arakawa, G. Hönig, M. Winkelnkemper,<br />

A. Schliwa, A. H<strong>of</strong>fmann, and D. Bimberg<br />

Physical Review B 81, 241309 (2010)<br />

17. Experimental investigation and modeling <strong>of</strong> the fine structure splitting <strong>of</strong> neutral<br />

excitons in strain-free GaAs/AlxGa1-xAs quantum dots<br />

J.D. Plumh<strong>of</strong>, V. Křápek, L. Wang, A. Schliwa, D. Bimberg, A. Rastelli,<br />

and O.G. Schmidt<br />

Physical Review B 81, 121309 (2010)<br />

18. In(Ga)As quantum dots grown on GaAs(111) substrates for entangled photons<br />

pairs<br />

I.A. Ostapenko, E. Stock, T. Warming, S. Rodt, A. Schliwa, M. Öztürk, J.A. Töfflinger,<br />

A. Lochmann, D. Bimberg, A.I. Toropov, S.A. Moshchenko, D.V. Dmitriev,<br />

V A. Haisler<br />

Journal <strong>of</strong> <strong>Physics</strong>: Conf. Ser. (Robert A Taylor, Ed.) 245, 012003 (2010)<br />

19. Large internal dipole moment in InGaN/GaN quantum dots<br />

I. A. Ostapenko, G. Hönig, C. Kindel, S. Rodt, A. Strittmatter, A. H<strong>of</strong>fmann,<br />

D. Bimberg<br />

Appl. Phys. Lett. 97, 063103 (2010)


20. Nachruf auf Ulrich M. Gösele<br />

D. Bimberg, O. Engström, H. Föll, F. Spaepen, K. Urban, E. Weber<br />

Physik Journal 9, 48 (2010)<br />

53<br />

21. Optical imaging <strong>of</strong> electrical carrier injection into individual InAs quantum dots<br />

A. Baumgartner, E. Stock, A. Patanè, L. Eaves, M. Henini, and D. Bimberg<br />

Physical Review Letters 105, 257401 (2010)<br />

22. Photon statistics <strong>of</strong> a single quantum dot in a microcavity<br />

Y. Su, M. Richter, A. Knorr, D. Bimberg, and A. Carmele<br />

Physica Status <strong>Solid</strong>i - Rapid Research Letters 4, 289 (2010)<br />

23. Self-organized quantum dots for single photon emitters<br />

E. Stock<br />

Proc. <strong>of</strong> 18th Int. Symp. “Nanostructures: <strong>Physics</strong> and Technology”, St. Petersburg,<br />

Russia, June 2010 (Zh.I. Alferov, L. Esaki, Eds.), 359 (2010)<br />

24. Semiconductor quantum dots: Same, same, but different<br />

D. Bimberg<br />

International Symposium Semiconductor Heterostructures:, St. Petersburg, March 2010<br />

(2010)<br />

25. Single photon sources based on semiconductor quantum dots<br />

D. Bimberg, E. Stock<br />

Photonics Society Winter Topicals Meeting Series (WTM), 2010 IEEE , 141 (2010)<br />

26. Single-photon emission from InGaAs quantum dots grown on (111) GaAs<br />

E. Stock, T. Warming, I. Ostapenko, S. Rodt, A. Schliwa, J.A. Töfflinger, A.<br />

Lochmann, A.I. Toropov, S.A. Moshchenko, D.V. Dmitriev, V.A. Haisler,<br />

and D. Bimberg<br />

Appl. Phys. Lett. 96, 093112 (2010)<br />

27. Theory <strong>of</strong> single quantum dot lasers: Pauli-blocking-enhanced anti-bunching<br />

Y. Su, A. Carmele, M. Richter, K. Lüdge, E. Schöll, D. Bimberg and A. Knorr<br />

Semiconductor Science Technology 26 (1), 014015 (2010)<br />

28. Time-resolved amplified spontaneous emission in quantum dots<br />

J. Gomis-Bresco, S. Dommers-Völkel, O. Schöps, Y. Kaptan, O. Dyatlova, D. Bimberg,<br />

and U. Woggon<br />

Appl. Phys. Lett. 97, 251106 (2010)<br />

b) Surface Emitters: VCSELs, Single Entangled Photon Emitters, Silicon Photonics<br />

29. 120°C 20 Gbit/s operation <strong>of</strong> 980 nm VCSEL based on sub-monolayer growth<br />

F. Hopfer, A. Mutig, G. Fiol, P. Moser, D. Arsenijević, V.A. Shchukin, N.N. Ledentsov,<br />

S.S. Mikhrin, I.L. Krestnikov, D.A. Livshits, A.R. Kovsh, M. Kuntz, and D. Bimberg<br />

Proc. <strong>of</strong> SPIE: Vertical-Cavity Surface-Emitting Lasers XIII (K. D. Choquette, Chun<br />

Le, Eds.) 7229, 710 (<strong>2009</strong>)


54<br />

30. 20 Gbit/s error free transmission with ~850 nm GaAs-based vertical cavity surface<br />

emitting lasers (VCSELs) containing InAs-GaAs submonolayer quantum dot<br />

insertions<br />

J.A. Lott, V.A. Shchukin, N.N. Ledentsov, A. Stinz, F. Hopfer, A. Mutig, G. Fiol,<br />

D. Bimberg, S.A. Blokhin, L.Y. Karachinsky, I.I. Novikov, M.V. Maximov,<br />

N.D. Zakharov, and P. Werner<br />

Proc. <strong>of</strong> SPIE: <strong>Physics</strong> and Simulation <strong>of</strong> Optoelectronic Devices XVII (M. Osinski,<br />

B. Witzigmann, F. Henneberger, Y. Arakawa, Eds.) 7211, 721114 (<strong>2009</strong>)<br />

31. 22 Gb/s long wavelength VCSELs<br />

W. H<strong>of</strong>mann, M. Müller, A. Nadtochiy, C. Meltzer, A. Mutig, G. Böhm, J. Rosskopf,<br />

D. Bimberg, M.-C. Amann, and C. Chang-Hasnain<br />

Optics Express 17, 17547 (<strong>2009</strong>)<br />

32. 32 Gbit/s multimode fibre transmission using high-speed, low current density 850<br />

nm VCSEL<br />

P. Westbergh, J.S. Gustavsson, A. Haglund, A. Larsson, F. Hopfer, G. Fiol,<br />

D. Bimberg, and A. Joel<br />

Electronics Letters 45, 366 (<strong>2009</strong>)<br />

33. Electrically pumped, micro-cavity based single photon source driven at 1 GHz<br />

A. Lochmann, E. Stock, J.A. Töfflinger, W. Unrau, A. Toropov, A. Bakarov,<br />

V. Haisler, and D. Bimberg<br />

Electronics Letters 45, 566 (<strong>2009</strong>)<br />

34. Frequency response <strong>of</strong> large aperture oxide-confined 850 nm vertical cavity<br />

surface emitting lasers<br />

A. Mutig, S.A. Blokhin, A.M. Nadtochiy, G. Fiol, J.A. Lott, V.A. Shchukin,<br />

N.N. Ledentsov, and D. Bimberg<br />

Appl. Phys. Lett. 95, 131101 (<strong>2009</strong>)<br />

35. Modeling highly efficient RCLED-type quantum dot based single photon emitters<br />

M.C. Münnix, A. Lochmann, D. Bimberg, and V.A. Haisler<br />

IEEE Journal <strong>of</strong> Quantum Electronics 45, 1084 (<strong>2009</strong>)<br />

36. Oxide-confined 850 nm VCSELs operating at bit rates up to 40 Gbit/s<br />

S.A. Blokhin, J.A. Lott, A. Mutig, G. Fiol, N.N. Ledentsov, M.V. Maximov,<br />

A.M. Nadtochiy, V.A. Shchukin, and D. Bimberg<br />

Electronics Letters 45, 501 (<strong>2009</strong>)<br />

37. Polarization switching in quantum-dot vertical-cavity surface-emitting lasers<br />

L. Olejniczak, M. Sciamanna, H. Thienpont, K. Panajotov, A. Mutig, F. Hopfer,<br />

and D. Bimberg<br />

IEEE Photonics Technology Letters 21, 1008 (<strong>2009</strong>)<br />

38. Temperature-dependent small-signal analysis <strong>of</strong> high-speed high-temperature<br />

stable 980 nm VCSELs<br />

A. Mutig, G. Fiol, K. Pötschke, P. Moser, D. Arsenijević, V.A. Shchukin, N.N.<br />

Ledentsov, S.S. Mikhrin, I.L. Krestnikov, D.A. Livshits, A.R. Kovsh, F. Hopfer,<br />

and D. Bimberg<br />

IEEE Journal <strong>of</strong> Selected Topics in Quantum Electronics 15, 679 (<strong>2009</strong>)


55<br />

39. 1.55 µm high-speed VCSELs enabling error-free fiber-transmission up to 25 Gbit/s<br />

M. Müller, W. H<strong>of</strong>mann, A. Nadtochiy, A. Mutig, G. Bohm, M. Ortsiefer, D. Bimberg,<br />

and M.-C. Amann<br />

Proc. <strong>of</strong> Int. Semiconductor Laser Conference (ISLC 2010), Kyoto, Japan, September<br />

2010 , 156 (2010)<br />

40. 40 Gbit/s error-free operation <strong>of</strong> oxide-confined 850 nm VCSEL<br />

P. Westbergh, J.S. Gustavsson, B. Kögel, A. Haglund, A. Larsson, A. Mutig,<br />

A. Nadtochiy, D. Bimberg and A. Joel<br />

Electronics Letters 46, 1014 (2010)<br />

41. 850 nm VCSEL operating error-free at 40 Gbit/s<br />

P. Westbergh, J.S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig,<br />

A. Nadtochiy, and D. Bimberg<br />

Proc. <strong>of</strong> Int. Semiconductor Laser Conference (ISLC 2010), Kyoto, Japan,<br />

September 2010 , 154 (2010)<br />

42. A small form-factor and low-cost opto-electronic package for short-reach 40 Gbit/s<br />

serial speed optical data links<br />

J.- R. Kropp, J.A. Lott, N.N. Ledentsov, P. Otruba, K. Drögemüller, G. Fiol,<br />

D. Bimberg, I. Ndip, R. Erxleben, U. Maaß, M. Klein, G. Lang, H. Oppermann,<br />

H. Schröder and H. Reichl<br />

Electronic System-Integration Technology Conference (ESTC), (2010)<br />

43. Characteristics <strong>of</strong> metal-cavity surface-emitting microlaser<br />

C.-Y. Lu, S.-W. Chang, and S. L. Chuang, T.D. Germann, U.W. Pohl, and D. Bimberg<br />

2010 IEEE Photonics Society 23rd Annual Meeting IEEE Catalog: CFP10LEO (CDR),<br />

240 (2010)<br />

44. Comparison between two types <strong>of</strong> photonic-crystal cavities for single photon<br />

emitters<br />

W. Fan, Z. Hao, E. Stock, J. Kang, Y. Luo, and D. Bimberg<br />

Semiconductor Science Technology 26, 014014 (2010)<br />

45. CW substrate-free metal-cavity surface microemitters at 300 K<br />

C.-Y. Lu, S.-W. Chang, S.L. Chuang, T.D Germann, U.W. Pohl and D. Bimberg<br />

Semiconductor Science Technology 26, 014012 (2010)<br />

46. Evolution <strong>of</strong> high-speed long-wavelength vertical-cavity surface-emitting lasers<br />

W. H<strong>of</strong>mann<br />

Semiconductor Science Technology 26, 014011 (2010)<br />

47. Frequence response <strong>of</strong> oxide-confined 850 nm VCSELs<br />

S.A. Blokhin, A. Mutig, A.M. Nadtochiy, G. Fiol, J.A. Lott, V.A. Shchukin,<br />

N.N. Ledentsov, D. Bimberg<br />

Proc. <strong>of</strong> 18th Int. Symp. “Nanostructures: <strong>Physics</strong> and Technology”, St. Petersburg,<br />

Russia, June 2010 (Zh.I. Alferov, L. Esaki, Eds.), 35 (2010)


56<br />

48. Highly temperature-stable modulation characteristics multioxide-aperture highspeed<br />

980 nm vertical cavity surface emitting lasers<br />

A. Mutig, J.A. Lott, S.A. Blokhin, P. Wolf, P. Moser, W.A.M. Nadtochiy, A. Payusov,<br />

and D. Bimberg<br />

Appl. Phys. Lett. 97, 151101 (2010)<br />

49. High-speed 850 nm oxide confined VCSELs for DATACOM applications<br />

A. Mutig, S.S. Blokhin, A.A. Nadtochiy, G. Fiol, J.A. Lott, V.A. Shchukin,<br />

N.N. Ledenstov, D. Bimberg<br />

Proc. <strong>of</strong> SPIE: Vertical-Cavity Surface-Emitting Lasers XIV, edited by James<br />

K. Guenter, Kent D. Choquette 7615, 76150N (2010)<br />

50. High-speed 850 nm VCSELs for 40 Gb/s transmission<br />

J. Gustavsson, P. Westbergh, K. Szczerba, Å. Haglund, A. Larsson, M. Karlsson,<br />

P. Andrekson, F. Hopfer, G. Fiol, D. Bimberg, B.-E. Olsson, A. Kristiansson, S. Healy,<br />

E. O'Reilly, A. Joel<br />

Proc. <strong>of</strong> SPIE: Semiconductor Lasers and Laser Dynamics IV (Krassimir Panajotov;<br />

Marc Sciamanna; Angel A. Valle; Rainer Michalzik, Eds.) 7720, 772002 (2010)<br />

51. High-speed 980 nm VCSELs for very short reach optical interconnects<br />

A. Mutig, J. Lott, S. Blokhin, P. Moser, P. Wolf, W. H<strong>of</strong>mann, A. Nadtochiy,<br />

A. Payusov, and D. Bimberg<br />

Proc. <strong>of</strong> Int. Semiconductor Laser Conference (ISLC 2010), Kyoto, Japan,<br />

September 2010 , 158 (2010)<br />

52. High-speed single-photon source based on self-organized quantum dots<br />

E. Stock, W. Unrau, A. Lochmann, J. A. Töfflinger, M. Öztürk, A.I. Toropov,<br />

A.K. Bakarov, V.A. Haisler and D. Bimberg<br />

Semiconductor Science Technology 26, 014003 (2010)<br />

53. Metal-cavity surface-emitting microlaser at room temperature<br />

C.-Y. Lu, S.-W. Chang, S. L. Chuang, T.D. Germann, and D. Bimberg<br />

Appl. Phys. Lett. 96, 251101 (2010)<br />

54. Monolithic electro-optically modulated vertical cavity surface emitting laser with<br />

10 Gb/s open-eye operation<br />

T. D. Germann A. Strittmatter A. Mutig A.M. Nadtochiy J.A. Lott S.A. Blokhin<br />

L.Ya. Karachinsky V.A. Shchukin N.N. Ledentsov U.W. Pohl and D. Bimberg<br />

Physica Status <strong>Solid</strong>i C 7 (10), 2552 (2010)<br />

55. Optical components for very short reach applications at 40 Gb/s and beyond<br />

N.N. Ledentsov, J.A. Lott, V.A. Shchukin, A. Mutig, T.D. Germann, S.A. Blokhin,<br />

A.M. Nadtochiy, L.Y. Karachinsky, D. Bimberg<br />

Proc. <strong>of</strong> SPIE: <strong>Physics</strong> and Simulation <strong>of</strong> Optoelectronic Devices XVIII, edited by<br />

Bernd Witzigmann, Fritz Henneberger, Yasuhiko Arakawa, Marek Osinski 7597,<br />

7597F (2010)<br />

56. Oxide confined 850 nm VCSELs for high speed datacom applications<br />

P. Moser, A. Mutig, J.A. Lott, S.A. Blokhin, G. Fiol, A.M. Nadtochiy, N.N. Ledentsov<br />

and D. Bimberg<br />

Proc. <strong>of</strong> SPIE: Semiconductor Lasers and Laser Dynamics IV (Krassimir Panajotov;<br />

Marc Sciamanna; Angel A. Valle; Rainer Michalzik, Eds.) 7720, 77201W (2010)


57. Polarization switching and polarization mode hopping in quantum dot verticalcavity<br />

surface-emitting lasers<br />

L. Olejniczak, K. Panajotov, H. Thienpont, M. Sciamanna, A. Mutig, F. Hopfer,<br />

D. Bimberg<br />

Proc. <strong>of</strong> SPIE: Semiconductor Lasers and Laser Dynamics IV (Krassimir Panajotov;<br />

Marc Sciamanna; Angel A. Valle; Rainer Michalzik, Eds.) 7720, 77201G (2010)<br />

58. Quantum dots for single and entangled photon emitters<br />

E. Stock, D. Bimberg, A. Lochmann, A. Schliwa, W. Unrau, M. Münnix, S. Rodt,<br />

A.I. Toropov, A. Bakarov, A.K. Kalagin, and V.A. Haisler<br />

Proc. <strong>of</strong> SPIE: Quantum Dots and Nanostructures: Synthesis, Characterization, and<br />

Modeling VII, Kurt G. Eyink, Frank Szmulowicz, Diana L. Huffaker (Eds.) 7610,<br />

7610G (2010)<br />

59. Substrate-free metal cavity surface-emitting laser with CW operation at room<br />

temperature<br />

C.-Y. Lu, S.-W. Chang, and S.L. Chuang, T.D. Germann and D. Bimberg<br />

Proc. <strong>of</strong> Int. Semiconductor Laser Conference (ISLC 2010), Kyoto, Japan,<br />

September 2010 , 15 (2010)<br />

60. Ultrafast VCSELs for Datacom<br />

D. Bimberg<br />

IEEE Photonics Journal 2, 273 (2010)<br />

c) Edge Emitters: High-Frequency Lasers and Amplifiers, High-Brightness Lasers<br />

57<br />

61. High-brightness and ultranarrow-beam 850 nm GaAs/AlGaAs photonic band<br />

crystal lasers and single-mode arrays<br />

T. Kettler, K. Posilovic, L.Ya. Karachinsky, P. Ressel, A. Ginolas, J. Fricke, U.W.Pohl,<br />

V.A. Shchukin, N.N. Ledentsov, D. Bimberg, J. Jönsson, M. Weyers, G. Erbert, and<br />

G. Tränkle<br />

IEEE Journal <strong>of</strong> Selected Topics in Quantum Electronics 15, 901 (<strong>2009</strong>)<br />

62. High-speed small-signal cross-gain modulation in quantum-dot semiconductor<br />

optical amplifiers at 1.3 µm<br />

C. Meuer, J. Kim, M. Laemmlin, S. Liebich, G. Eisenstein, R. Bonk, T. Vallaitis,<br />

J. Leuthold, A. Kovsh, I. Krestnikov, and D. Bimberg<br />

IEEE Journal <strong>of</strong> Selected Topics in Quantum Electronics 15, 749 (<strong>2009</strong>)<br />

63. Quantum dot semiconductor lasers <strong>of</strong> the 1.3 µm wavelength range with high<br />

temperature stability <strong>of</strong> the lasing wavelength (0.2 nm/K)<br />

L.Ya. Karachinsky, I.I. Novikov, Y.M. Shernyakov, N.Y. Gordeev, A.S. Payusov,<br />

M.V. Maximov, S.S. Mikhrin, M.B. Lifshits, V.A. Shchukin, P.S. Kop'ev,<br />

N.N. Ledentsov, and D. Bimberg<br />

Semiconductors 43, 680 (<strong>2009</strong>)<br />

64. Quantum-dot semiconductor mode-locked lasers and amplifiers at 40 GHz<br />

G. Fiol, C. Meuer, H. Schmeckebier, D. Arsenijević, S. Liebich, M. Laemmlin,<br />

M. Kuntz, and D. Bimberg<br />

IEEE Journal <strong>of</strong> Quantum Electronics 45, 1429 (<strong>2009</strong>)


65. Role <strong>of</strong> carrier reservoirs on the slow phase recovery <strong>of</strong> quantum dot<br />

semiconductor optical amplifiers<br />

J. Kim, C. Meuer, D. Bimberg, and G. Eisenstein<br />

Appl. Phys. Lett. 94, 41112 (<strong>2009</strong>)<br />

58<br />

66. Small-signal cross-gain modulation and crosstalk characteristics <strong>of</strong> quantum-dot<br />

semiconductor optical amplifiers at 1.3 µm<br />

J. Kim , M. Laemmlin, C. Meuer, S. Liebich, D. Bimberg, and G. Eisenstein<br />

Phys. Stat. Sol. (b) 246, 864 (<strong>2009</strong>)<br />

67. Theoretical and experimental study <strong>of</strong> high-speed small-signal cross-gain<br />

modulation <strong>of</strong> quantum-dot semiconductor optical amplifiers<br />

J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, G. Eisenstein<br />

IEEE Journal <strong>of</strong> Quantum Electronics 45, 240 (<strong>2009</strong>)<br />

68. Ultrahigh speed nanophotonics<br />

D. Bimberg, G. Fiol, C. Meuer, D. Arsenijević, J. Kim, S. Liebich, M. Laemmlin,<br />

M. Kuntz, H. Schmeckebier, and G. Eisenstein<br />

Proc. <strong>of</strong> SPIE: <strong>Physics</strong> and Simulation <strong>of</strong> Optoelectronic Devices XVII (M. Osinski,<br />

B. Witzigmann, F. Henneberger, Y. Arakawa, Eds.) 7211, 721117 (<strong>2009</strong>)<br />

69. 1.3 µm range 40 GHz quantum-dot mode-locked laser under external continuous<br />

wave light injection or optical feedback<br />

G. Fiol, M. Kleinert, D. Arsenijević and D. Bimberg<br />

Semiconductor Science Technology 26, 014006 (2010)<br />

70. 10.7 W peak power picosecond pulses from high-brightness photonic band crystal<br />

laser diode<br />

S. Riecke, K. Posilovic, T. Kettler, D. Seidlitz, V.A. Shchukin, N.N. Ledentsov,<br />

K. Lauritsen and D. Bimberg<br />

Electronics Letters 46, 1393 (2010)<br />

71. 40 GHz and 160 GHz mode-locked quantum-dot laser showing pulse width <strong>of</strong> 750<br />

fs at 1.3 µm<br />

H. Schmeckebier, G. Fiol, C. Meuer, D. Arsenijević, D. Bimberg<br />

Proc. <strong>of</strong> SPIE: Semiconductor Lasers and Laser Dynamics IV (Krassimir Panajotov;<br />

Marc Sciamanna; Angel A. Valle; Rainer Michalzik, Eds.) 7720, 772010 (2010)<br />

72. 80 Gb/s multi-wavelength booster amplification in an InGaAs/GaAs quantum-dot<br />

semiconductor optical amplifier<br />

C. Schmidt-Langhorst, C. Meuer, A. Galperin, H. Schmeckebier, R. Ludwig, D. Puris,<br />

D. Bimberg, K. Petermann, C. Schubert<br />

Proc. <strong>of</strong> ECOC 2010 - European Conference and Exhibition on Optical Communication<br />

IEEE Catalog Number: CFP10425-ART, Mo.1.F.6 (2010)<br />

73. Complete pulse characterization <strong>of</strong> quantum-dot mode-locked lasers suitable for<br />

optical communication up to 160 Gbit/s<br />

H. Schmeckebier, G. Fiol, C. Meuer, D. Arsenijević, and D. Bimberg<br />

Optics Express 18, 3415 (2010)


59<br />

74. Cross-gain modulation and four-wave mixing for wavelength conversion in<br />

undoped and p-doped 1.3-µm quantum dot semiconductor optical amplifiers<br />

C. Meuer, H. Schmeckebier, G. Fiol, D. Arsenijević, J. Kim, G. Eisenstein, D. Bimberg<br />

IEEE Photonics Journal 2, 141 (2010)<br />

75. Dynamical regimes in a monolithic passively mode-locked quantum dot laser<br />

A.G. Vladimirov, U. Bandelow, G. Fiol, D. Arsenijević, M. Kleinert, D. Bimberg,<br />

A. Pimenov, and D. Rachinskii<br />

Journal <strong>of</strong> the Optical Society <strong>of</strong> America B-Optical <strong>Physics</strong> 27, 2102 (2010)<br />

76. Effect <strong>of</strong> inhomogeneous broadening on gain and phase recovery <strong>of</strong> quantum-dot<br />

semiconductor optical amplifiers<br />

J. Kim, C. Meuer, D. Bimberg, and G. Eisenstein<br />

IEEE Journal <strong>of</strong> Quantum Electronics 46, 1670 (2010)<br />

77. Finite element simulation <strong>of</strong> the optical modes <strong>of</strong> semiconductor lasers<br />

J. Pomplun, S. Burger, F. Schmidt, A. Schliwa, D. Bimberg, A. Pietrzak, H. Wenzel,<br />

and G. Ebert<br />

Physica Status <strong>Solid</strong>i B 247, 846 (2010)<br />

78. Four-wave mixing in 1.3 µm quantum-dot semiconductor optical amplifiers<br />

D. Bimberg, C. Meuer, G. Fiol, H. Schmeckebier and D. Arsenijević<br />

Proc. <strong>of</strong> ICTON 2010 IEEE Catalog Number: CFP10485-USB (CD-ROM), We.D4.21<br />

(2010)<br />

79. High-power high-brightness semiconductor lasers based on novel waveguide<br />

concepts<br />

D. Bimberg, K. Posilovic, V. Kalosha, T. Kettler, D. Seidlitz, V.A. Shchukin,<br />

N.N. Ledentsov, N.Y. Gordeev, L.Y. Karachinsky, I.I. Novikov, M.V. Maximov,<br />

Y.M. Shernyakov, A.V. Chunareva, F. Bugge, M. Weyers<br />

Proc. <strong>of</strong> SPIE: Novel In-Plane Semiconductor Lasers IX, edited by Alexey A. Belyanin,<br />

Peter M. Smowton 7616, 76161 (2010)<br />

80. Hybrid mode-locking in a 40 GHz monolithic quantum dot laser<br />

G. Fiol, D. Arsenijević, D. Bimberg, A.G. Vladimirov, M. Wolfrum, E.A. Viktorov, and<br />

P. Mandel<br />

Appl. Phys. Lett. 96, 011104 (2010)<br />

81. Influence <strong>of</strong> the pump wavelength on the gain and phase recovery <strong>of</strong> quantum-dot<br />

semiconductor optical amplifiers<br />

J. Kim, C. Meuer, D. Bimberg, and G. Eisenstein<br />

Semiconductor Science Technology 26, 014007 (2010)<br />

82. Large-signal response <strong>of</strong> semiconductor quantum-dot lasers<br />

K. Ludge, R. Aust, G. Fiol, M. Stubenrauch, D. Arsenijević, D. Bimberg, and E. Schöll<br />

IEEE Journal <strong>of</strong> Quantum Electronics 46, 1755 (2010)<br />

83. Linear and nonlinear semiconductor optical amplifiers<br />

J. Leuthold, R. Bonk, T. Vallaitis, A. Marculescu, W. Freude, C. Meuer, D. Bimberg,<br />

R. Brenot, F. Lelarge, G.-H. Duan<br />

Optical Fiber Communication Conference, OSA Technical Digest (CD) (2010)


60<br />

84. Linear and nonlinear semiconductor optical amplifiers<br />

W. Freude, R. Bonk, T. Vallaitis, A. Marculescu, A. Kapoor, E.K. Sharma, C. Meuer,<br />

D. Bimberg, R. Brenot, F. Lelarge, G.-H. Duan, C. Koos, J. Leuthold<br />

Proc. <strong>of</strong> ICTON 2010 IEEE Catalog Number: CFP10485-USB (CD-ROM), We.D4.11<br />

(2010)<br />

85. Locking characteristics <strong>of</strong> a 40GHz hybrid mode-locked monolithic quantum dot<br />

laser<br />

A.G. Vladimirov, M. Wolfrum, G. Fiol, D. Arsenijević, D. Bimberg, E. Viktorov,<br />

P. Mandel, D. Rachinskii<br />

Proc. <strong>of</strong> SPIE: Semiconductor Lasers and Laser Dynamics IV (Krassimir Panajotov;<br />

Marc Sciamanna; Angel A. Valle; Rainer Michalzik, Eds.) 7720, 77200Y (2010)<br />

86. Looking on the bright side<br />

S. Riecke, K. Posilovic, T. Kettler, D. Seidlitz, V.A. Shchukin, N.N. Ledentsov,<br />

K. Lauritsen and D. Bimberg<br />

Electronics Letters 46, 1357 (2010)<br />

87. Modeling <strong>of</strong> photonic crystal based high power high brightness semiconductor<br />

lasers<br />

V. Shchukin, N. Ledentsov, V. Kalosha, T. Kettler, K. Posilovic, D. Seidlitz ,<br />

D. Bimberg, N.Yu. Gordeev, L.Ya. Karachinsky, I.I. Novikov, Y.M. Shernyakov,<br />

A.V. Chunareva, M.V. Maximov<br />

Proc. <strong>of</strong> SPIE: <strong>Physics</strong> and Simulation <strong>of</strong> Optoelectronic Devices XVIII, edited by<br />

Bernd Witzigmann, Fritz Henneberger, Yasuhiko Arakawa, Marek Osinski 7597,<br />

75971A (2010)<br />

88. Numerical simulation <strong>of</strong> temporal and spectral variation <strong>of</strong> gain and phase<br />

recovery in quantum-dot semiconductor optical amplifiers<br />

J. Kim, C. Meuer, D. Bimberg, and G. Eisenstein<br />

IEEE Journal <strong>of</strong> Quantum Electronics 46, 405 (2010)<br />

89. Optical and electrical power dynamic range <strong>of</strong> semiconductor optical amplifiers in<br />

radio-over-fiber networks<br />

S. Koenig, J. Pfeifle, R. Bonk, T. Vallaitis, C. Meuer, D. Bimberg, C. Koos, W. Freude,<br />

J. Leuthold<br />

Proc. <strong>of</strong> ECOC 2010 - European Conference and Exhibition on Optical Communication<br />

IEEE Catalog Number: CFP10425-ART, Th.10.B.6 (2010)<br />

90. Quantum dot semiconductor optical amplifiers at 1.3 µm for applications in alloptical<br />

communication networks<br />

H. Schmeckebier, C. Meuer, D. Bimberg, C. Schmidt-Langhorst, A. Galperin, and<br />

C. Schubert<br />

Semiconductor Science Technology 26, 014009 (2010)<br />

91. Tilted waveguide and PBC lasers: Novel cavity designs for narrow far-fields and<br />

high brightness<br />

D. Bimberg, K. Posilovic, V. Kalosha, T. Kettler, D. Seidlitz, V.A. Shchukin,<br />

N.N. Ledentsov, S. Riecke, K. Lauritsen, F. Bugge and M. Weyers<br />

2010 IEEE Photonics Society 23rd Annual Meeting IEEE Catalog: CFP10LEO (CDR),<br />

475 (2010)


d) Nan<strong>of</strong>lash Memories<br />

92. A novel nonvolatile memory based on self-organized quantum dots<br />

A. Marent, M. Geller, D. Bimberg<br />

Microelectronics Journal 40, 492 (<strong>2009</strong>)<br />

93. Hole-based memory operation in an InAs/GaAs quantum dot heterostructure<br />

A. Marent, T. Nowozin, J. Gelze, F. Luckert, and D. Bimberg<br />

Appl. Phys. Lett. 95, 242114 (<strong>2009</strong>)<br />

61<br />

94. Temperature and electric field dependence <strong>of</strong> the carrier emission processes in a<br />

quantum dot-based memory structure<br />

T. Nowozin, A. Marent, M. Geller, D. Bimberg, N. Akçay, and N. Öncan<br />

Appl. Phys. Lett. 94, 42108 (<strong>2009</strong>)<br />

95. Nanomemories using self-organized quantum dots<br />

M. Geller, A. Marent, D. Bimberg<br />

Handbook <strong>of</strong> Nanophotonics. Nanoelectronics and Nanophotonics (K. Sattler, ed.),<br />

chapter 2 (2010)<br />

96. The QD-Flash: A quantum dot-based memory device<br />

A. Marent, T. Nowozin, M. Geller and D. Bimberg<br />

Semiconductor Science and Technology 26, 14026 (2010)<br />

e) Magnetic Resonance Investigations<br />

97. Magnetic and structural properties <strong>of</strong> transition metal doped zinc-oxide<br />

nanostructures<br />

A.O. Ankiewicz, W. Gehlh<strong>of</strong>f, J.S. Martins, A.S. Pereira, S. Pereira, A. H<strong>of</strong>fmann,<br />

E.M. Kaidashev, A. Rahm, M. Lorenz, M. Grundmann, M.C. Carmo, T. Trindade,<br />

N.A. Sobolev<br />

Phys. Stat. Sol. (b) 4, 766 (<strong>2009</strong>)<br />

98. EPR identification <strong>of</strong> intrinsic and transition metal-related defects in ZnGeP2 and<br />

other II-IV-V2 compounds<br />

W. Gehlh<strong>of</strong>f, A. H<strong>of</strong>fmann<br />

Physica B 404, 4942 (<strong>2009</strong>)<br />

99. EDEPR <strong>of</strong> impurity centers embedded in silicon microcavities<br />

N.T. Bagraev, W. Gehlh<strong>of</strong>f, D.S. Gets, L.E. Klyachkin, A.A. Kudryavtsev,<br />

A.M. Malyarenko, V.A. Mashkov, V.V. Romanov<br />

Physica B 404, 5140 (<strong>2009</strong>)<br />

100. A systematic study on zinc oxide materials containing group I metals (Li, Na,K) -<br />

Synthesis from organometallic precursors, characterization, and properties<br />

S. Polarz, A. Orlov, A. H<strong>of</strong>fmann, M.R. Wagner, C. Rauch, R. Kirste, W. Gehlh<strong>of</strong>f,<br />

Y. Aksu, M. Driess, M.W.E. van den Berg, and M. Lehmann<br />

Chemistry <strong>of</strong> Materials 21, 3889 (<strong>2009</strong>)


62<br />

101. Lithium related deep and shallow acceptors in Li-doped ZnO nanocrystals<br />

C. Rauch, W. Gehlh<strong>of</strong>f, M. R. Wagner, E. Malguth, G. Callsen, R. Kirste, B. Salameh,<br />

A. H<strong>of</strong>fmann, S. Polarz, Y. Aksu, and M. Driess<br />

Journal <strong>of</strong> Applied <strong>Physics</strong> 107, 24311 (2010)<br />

102. EDESR and ODMR <strong>of</strong> impurity centers in nanostructures inserted in silicon<br />

microcavities<br />

N.T. Bagraev, V.A. Mashkov, E.Yu. Danilovsky, W. Gehlh<strong>of</strong>f, D.S. Gets,<br />

L.E. Klyachkin, A.A. Kudryavtsev, R.V. Kuzmin, A.M. Malyarenko und<br />

V.V. Romanov<br />

Applied Magnetic Resonance 39, 113 (2010)


9.1.4 Invited Talks<br />

63<br />

D. Bimberg Ultrahigh speed nanophotonics<br />

IEEE/LEOS Winter Topical Meeting Series on Nonlinear Dynamics<br />

in Photonics Systems, Innsbruck, Austria, January <strong>2009</strong><br />

D. Bimberg Nano-VCSELs for the terabus<br />

17th International Symposium Nanostructures: <strong>Physics</strong> and<br />

Technology, Minsk, Belarus, June <strong>2009</strong><br />

D. Bimberg High speed single photon emitters for quantum communication,<br />

Rusnanotech <strong>2009</strong> - The Second Nanotechnology International<br />

Forum, Moscow, Russia, October <strong>2009</strong><br />

D. Bimberg Quantum dots for single and entangled photon emitters<br />

Conference 7610: Quantum Dots and Nanostructures: Synthesis,<br />

Characterization, and Modeling VII at SPIE Photonics West,<br />

San Francisco, California, USA, January 2010<br />

D. Bimberg High-power high-brightness semiconductor lasers based on novel<br />

concepts<br />

Conference 7616: Novel In-Plane Semiconductor Lasers IX at SPIE<br />

Photonics West,<br />

San Francisco, California, USA, January 2010<br />

D. Bimberg Our daily life with semiconductor lasers<br />

DPG Frühjahrstagung der Sektion AMOP,<br />

Hannover, Germany, March 2010<br />

D. Bimberg Semiconductor quantum dots: Same, same, but different<br />

International Symposium Semiconductor Heterostructures:<br />

<strong>Physics</strong>, Technology, Applications,<br />

St. Petersburg, Russia, March 2010<br />

D. Bimberg Our daily life with semiconductor lasers<br />

DPG-Frühjahrstagung der Sektion Kondensierte Materie (SKM),<br />

Regensburg, Germany, March 2010<br />

D. Bimberg Flying Q-bits and entangled photons enabling quantum<br />

cryptography<br />

2010 Villa Conference on Interaction Among Nanostructures<br />

(VCIAN-2010) Santorini, Greece, June 2010<br />

D. Bimberg Our daily life with semiconductor lasers<br />

International Nano-Optoelectronic Workshop, ( iNow 2010),<br />

Beijing and Changchun, China, August 2010


D. Bimberg Nanophotonics for future Datacom and Ethernet networks<br />

International Workshop on High Speed Semiconductor Lasers<br />

(HSSL), Wroclaw, Poland, October 2010<br />

64<br />

D. Bimberg Tilted waveguide and PBC lasers: Novel cavity designs for narrow<br />

far-fields and high brightness<br />

IEEE Photonics Society 23rd Annual Meeting,<br />

Denver, USA, November 2010<br />

S.L. Chuang Metal-cavity nanolasers<br />

2010 Villa Conference on Interaction Among Nanostructures<br />

(VCIAN-2010) Santorini, Greece, June 2010<br />

G. Fiol QD monolithic mode locked lasers<br />

Nonlinear Dynamics in Quantum Dot Devices (Minisymposium)<br />

Weierstrass <strong><strong>Institut</strong>e</strong> for Applied Analysis and Stochastics (WIAS),<br />

Berlin, Germany, November <strong>2009</strong><br />

T. Germann MOVPE <strong>of</strong> a metal-cavity surface-emitting laser operating CW<br />

at room-temperature<br />

15th International Conference on Metal Organic Vapor Phase Epitaxy,<br />

Lake Tahoe, USA, May 2010<br />

W. H<strong>of</strong>mann Long-wavelength vertical-cavity surface-emitting lasers with a<br />

high-contrast grating<br />

DPG-Frühjahrstagung der Sektion Kondensierte Materie (SKM),<br />

Regensburg, Germany, March 2010<br />

V. Kalosha High-brightness edge-emitting semiconductor lasers based on<br />

concepts <strong>of</strong> photonic band crystal and titled wave lasers<br />

DPG-Frühjahrstagung der Sektion Kondensierte Materie (SKM),<br />

Regensburg, Germany, March 2010<br />

A. Lochmann Cavity-enhanced emission in electrically driven quantum dot<br />

single-photon-emitters<br />

SPIE-Europe Microtechnologies for the New Millenium, (EMT-09),<br />

Dresden, Germany, May <strong>2009</strong><br />

A. Marent Quantum dot flash memories: The best <strong>of</strong> two worlds<br />

DPG-Frühjahrstagung der Sektion Kondensierte Materie (SKM),<br />

Regensburg, Germany, March 2010<br />

A. Marent Self-organized quantum dots for novel nano-memories<br />

International Conference on Superlattices, Nanostructures and<br />

Nanodevices (ICSNN-2010), Beijing, China, July 2010


C. Meuer Influence <strong>of</strong> p-doping in quantum dot semiconductor optical<br />

amplifiers at 1.3 μm<br />

11 th International Conference on Transparent Optical Networks<br />

(ICTON <strong>2009</strong>), S. Miguel, Azores, Portugal, June/July <strong>2009</strong><br />

65<br />

C. Meuer Four-wave mixing in 1.3 µm quantum-dot semiconductor optical<br />

amplifiers<br />

12th International Conference on Transparent Optical Networks<br />

(ICTON 2010), München, Germany, June 2010<br />

A. Mutig Nano-VCSELs for the Terabus<br />

17th International Symposium "Nanostructure: <strong>Physics</strong> and<br />

Technology"<br />

St. Petersburg, Russia, June <strong>2009</strong><br />

A. Mutig High-speed 850 nm oxide confined VCSELs for DATACOM<br />

applications<br />

Conference 7615: Vertical-Cavity Surface-Emitting Lasers XIV at<br />

SPIE Photonics West, San Francisco, California, USA, January 2010<br />

U. Pohl Metal-cavity surface-emitting microlaser<br />

Int. Conf. on the <strong>Physics</strong> <strong>of</strong> Semiconductors (ICPS 2010), Seoul,<br />

Korea, July 2010<br />

A. Schliwa Single photon sources based on semiconductor quantum dots<br />

WTM 2010 IEEE Photonics Society Winter Topical on<br />

Semiconductor Nanolasers, Palma de Mallorca, Spain, January 2010<br />

H. Schmeckebier 160 GHz sub-picosecond mode-locked quantum-dot laser pulses<br />

European Semiconductor Laser Workshop 2010, Pavia, Italy,<br />

September 2010<br />

A. Strittmatter Green light-emitting diodes and laser heterostructures on semipolar<br />

GaN(11-22)/sapphire substrates<br />

DPG-Frühjahrstagung der Sektion Kondensierte Materie (SKM),<br />

Regensburg, Germany, March 2010<br />

E. Stock Self-organized quantum dots as single and entangled photon<br />

emitters<br />

DPG-Frühjahrstagung der Sektion Kondensierte Materie (SKM),<br />

Regensburg, Germany, March 2010<br />

E. Stock Self-organized quantum dots for single photon emitters<br />

18th International Symposium Nanostructures: <strong>Physics</strong> and<br />

Technology , St. Petersburg, Russia, June 2010


9.1.5 Diploma Theses<br />

66<br />

Dejan Arsenijević Erzeugung ultrakurzer optischer Pulse mit Quantenpunktlasern<br />

16.02.<strong>2009</strong><br />

Johannes Gelze Ladungsträgerdynamik in Quantenpunkt-basierten<br />

Speicherbausteinen<br />

28.07.<strong>2009</strong><br />

Annika Högner Quantenpunktbasierte Speicherbausteine<br />

21.12.2010<br />

Gerald Hönig Mehrteilchen-Zustände in Nitrid-basierten Quantenpunkten<br />

16.10.<strong>2009</strong><br />

Benjamin Mayer Automatisierte Erfassung der Fundamentaldaten von<br />

VCSEL-Wafern<br />

22.10.2010<br />

Gang Lou Epitaxie vergrabener GaAs-basierter Laserstrukturen<br />

18.10.<strong>2009</strong><br />

Holger Schmeckebier Analyse von optischen Pulsen modengekoppelter<br />

Quantenpunkt-Halbleiterlaser<br />

19.06.<strong>2009</strong><br />

Daniel Seidlitz Wellenlängenstabilisierte Halbleiterlaser auf Basis neuer<br />

Wellenleiterkonzepte<br />

15.01.2010<br />

Jan Amaru Töfflinger Quantenpunkte <strong>für</strong> Einzelphotonenemitter<br />

18.03.2010<br />

Peter Benedikt Weber High-speed vertical cavity emitting lasers<br />

03.06.<strong>2009</strong><br />

Philip Wolf Prozessierung und Charakterisierung von oberflächenemittierenden<br />

Lasern<br />

08.07.2010


9.2. Department II<br />

67<br />

Department IIa: Pr<strong>of</strong>. Dr. rer. nat. Christian Thomsen<br />

Department IIb: Pr<strong>of</strong>. Dr. rer. nat. Janina Maultzsch<br />

Department IIc: Pr<strong>of</strong>. Dr. Axel H<strong>of</strong>fmann<br />

Pr<strong>of</strong>. em. Dr.-Ing. Dr. h.c. mult. Immanuel Broser<br />

9.2.a Department IIa<br />

Pr<strong>of</strong>. Dr. rer. nat. Christian Thomsen<br />

9.2a.1 Staff<br />

Secretary<br />

Mandy Neumann<br />

Technical Staff<br />

Sabine Morgner<br />

Ing.grad. Heiner Perls<br />

Michael Mayer<br />

Senior Scientists<br />

Dr. Dirk Heinrich<br />

Dr. Holger Lange<br />

Dr. Marcel Mohr<br />

Dr. Niculina Peica<br />

Dr. Harald Scheel<br />

Dr. Andrei Schliwa<br />

PhD Candidates (status <strong>of</strong> 31.12.2010: thesis completed = c)<br />

Dipl.-Phys. Sevak Khachadorian<br />

Dipl.-Phys. Marcel Mohr (c)<br />

Dipl.-Phys. Matthias Müller (c)<br />

Dipl.-Phys. Grit Petschick<br />

Dipl.-Phys. Nils Rosenkranz<br />

Dipl.-Phys. Andrei Schliwa (c)<br />

Dipl.-Phys. Norman Tschirner


Diploma and Teacher Students (status <strong>of</strong> 31.12.2010: thesis completed = c)<br />

Jeffrey Bronsert<br />

Juri Brunnmeier<br />

Max Bügler (c)<br />

Ralf Dornath<br />

Sebastian Gade<br />

Roland Gillen<br />

Stefan Grützner<br />

Frederike Kneer<br />

Ronny Kirste (c)<br />

Thomas Kure<br />

Jakob Löber<br />

Andreas Moschini<br />

Felix Nippert<br />

Christian Nitschke<br />

Nadine Oswald<br />

Thomas Plocke (c)<br />

Nils Scheuschner<br />

Maria-Astrid Schröter<br />

Moritz Schubotz<br />

Franz Schulze<br />

Sebastian Siewert<br />

Sergej Solopow<br />

Matthias Sturm<br />

Mehmet Can Ucar<br />

Asmus Vierck<br />

Mario Wegner<br />

Marina Zajnulina<br />

68


9.2a.2 Summary <strong>of</strong> Activities<br />

69<br />

The activity <strong>of</strong> this group is centered on optical spectroscopy <strong>of</strong> carbon nanotubes, wide and<br />

narrow-gap semiconductors nanostructures, 2D electron gases, quantum dots, semiconductor<br />

core-shell nanodots and ferr<strong>of</strong>luids. Emphasis in the work on carbon nanotubes was put on<br />

the understanding <strong>of</strong> the electroni properties and how they compare to those <strong>of</strong> graphene and<br />

graphene nanoribbons. There is close collaboration with the group <strong>of</strong> Pr<strong>of</strong>. Janina Maultzsch<br />

on these topics. As part <strong>of</strong> the investigations in the Cluster <strong>of</strong> Excellence “Catalysis” we<br />

expanded our investigations to functionalized carbon nanotubes. In the nanostructure-related<br />

project <strong>of</strong> the Sonderforschungsbereich 787 investigations focused on Raman and firspectroscopy<br />

<strong>of</strong> quantum dots and their luminescence properties as far as they are related to<br />

device applications. Our investigations <strong>of</strong> Si nanowires covered the difference on properties<br />

<strong>of</strong> nanowires compared to the bulk material. We investigated Si nanowires under large<br />

hydrostatic pressure. Our work on surfacted ferr<strong>of</strong>luids continues. In this period we covered<br />

mostly the behavior <strong>of</strong> ion-stabilized ferr<strong>of</strong>luids in an applied magnetic field. These fluids -<br />

aside from physics research - are <strong>of</strong> interest for medical applications.<br />

We continued to expand our laboratory with remotely controlled experiments (remoteFarm)<br />

which are used in the education <strong>of</strong> – in particular – engineering students. These experiments<br />

are controlled over the internet and available on a 24/7 basis. Modern control and evaluation<br />

s<strong>of</strong>tware allow experimenting from a remote location and contribute to the excellence in<br />

teaching at TU Berlin. Our remoteFarm is increasingly becoming used in international<br />

projects as best practice laboratory.


9.2a.3 Publications<br />

70<br />

1. Theory <strong>of</strong> multiwall carbon nanotubes as waveguides and antennas in the infrared<br />

and the visible regimes<br />

M. V. Shuba, G. Ya. Slepyan, S. A. Maksimenko, C. Thomsen, A. Lakhtakia<br />

Phys. Rev. B 79, 155403 (<strong>2009</strong>)<br />

2. Geometry dependence <strong>of</strong> the phonon modes in CdSe nanorods<br />

Holger Lange, Mikhail Artemyev, Ulrike Woggon, Christian Thomsen<br />

Nanotechnology 20, 045705 (<strong>2009</strong>)<br />

3. Carbon nanotube as a nanoscale Cherenkov-type light emitter – nanoFEL<br />

K. G. Batrakov, S.A. Maksimenko, P.P. Kuzhir, C. Thomsen<br />

Phys. Rev. B 79, 125408 (<strong>2009</strong>)<br />

4. Phonons in bulk CdSe and CdSe nanowires<br />

M. Mohr and C. Thomsen<br />

Nanotechnology 20, 115707 (<strong>2009</strong>)<br />

5. Geometry dependence <strong>of</strong> the phonon modes in CdSe nanorods<br />

Holger Lange, Mikhail Artemyev, Ulrike Woggon, Christian Thomsen<br />

Nanotechnology 20, 045705 (<strong>2009</strong>)<br />

6. Longitudinal optical phonons in metallic and semiconducting carbon nanotubes<br />

M. Fouquet, H. Telg, J. Maultzsch, Y. Wu, B. Chandra, J. Hone, T. F. Heinz, and<br />

C. Thomsen<br />

Phys. Rev. Lett. 102, 075501 (<strong>2009</strong>)<br />

7. Chemical vapor deposition <strong>of</strong> carbon layers on Si {001} substrates<br />

T.I. Milenov, P.M. Rafailov, G.V. Avdeev, C. Thomsen<br />

J. Optoelectronics and Advanced Materials 11, 1273-1276 (<strong>2009</strong>)<br />

8. Spectroscopic studies on electrochemically doped and functionalized singel-walled<br />

carbon nanotubes<br />

P. M. Rafailov, T. I. Milenov, M. Monev, G. V. Avdeev, C. Thomsen, U. Dettlaff-<br />

Weglikowska, S. Roth<br />

J. Optoelectronics and Advanced Materials 11, 1339-1342 (<strong>2009</strong>)<br />

9. Vibrational properties <strong>of</strong> graphene nanoribbons by first-principles calculations<br />

Roland Gillen, Marcel Mohr, Christian Thomsen, Janina Maultzsch<br />

Phys. Rev. B 80, 155418 (<strong>2009</strong>)<br />

10. Lattice distortions in a crystal caused by doping with copper<br />

A.V. Egorysheva, T.I. Milenov, P.M. Rafailov, C. Thomsen, R. Petrova, V.M. Skorikov<br />

and M.M. Gospodinov<br />

<strong>Solid</strong> <strong>State</strong> Comm. 149, 1616-1618 (<strong>2009</strong>)<br />

11. Resonance Raman study <strong>of</strong> the superoxide reductase from Archaeoglobus fulgidus,<br />

E12 mutants and a ’natural variant’<br />

S. Todorovic, J.V. Rodrigues, A.F. Pinto, C. Thomsen, P. Hildebrandt, M. Teixeira,<br />

D.H. Murgida<br />

Phys. Chem. Chem. Phys. 11, 1809-1815 (<strong>2009</strong>).


12. Victor-spaces: virtual and remote experiments in cooperative knowledge spaces<br />

S. Cikic, S. Jeschke, N. Ludwig, U. Sinha, C. Thomsen<br />

in: Grid enabled remote instrumentation; Series: Signals and Communication<br />

Technology 329-343 (<strong>2009</strong>)<br />

71<br />

13. Networking Resources for Research and Scientific Education in Nanoscience and<br />

Nanotechnologies<br />

S. Jeschke, N. Natho, O. Pfeiffer, C. Thomsen<br />

2008 International Conference on Nanoscience and Nanotechnology (Australian<br />

Research Council, Melbourne, 2008), 234-237<br />

14. Acetylene: a key growth precursor for single-walled carbon nanotube forests<br />

G. Zhong, S. H<strong>of</strong>mann, F. Yan, H. Telg, J. Warner, D. Eder, C. Thomsen, W. Milne, J.<br />

Robertson<br />

J. Phys. Chem. B, 113, 17321 (<strong>2009</strong>)<br />

15. Two-dimensional electronic and vibrational band structure <strong>of</strong> uniaxially strained<br />

graphene from ab initio calculations<br />

M. Mohr, K. Papagelis, J. Maultzsch, C. Thomsen<br />

Phys. Rev. B 80, 205410 (<strong>2009</strong>)<br />

16. Kohn anomaly and electron-phonon interaction at the K-derived point <strong>of</strong> the<br />

Brillouin zone <strong>of</strong> metallic nanotubes<br />

P. Rafailov, J. Maultzsch, C. Thomsen, U. Dettlaff-Weglikowska, S. Roth<br />

Nano Lett. 9, 3343-3348 (<strong>2009</strong>)<br />

17. Resonance Raman spectra <strong>of</strong> -carotene in solution and in photosystems revisited:<br />

an experimental and theoretical study<br />

Norman Tschirner, Matthias Schenderlein, Katharina Brose, Eberhard Schlodder, Maria<br />

Andrea Mroginski, Christian Thomsen and Peter Hildebrandt<br />

Phys. Chem. Chem. Phys. 11, 11471-11478 (<strong>2009</strong>)<br />

18. Use <strong>of</strong> carbon nanotubes for VLSI interconnects<br />

J. Robertson, G. Zhong, S. H<strong>of</strong>mann, B.C. Bayer, C.S. Esconjauregui, H. Telg and C.<br />

Thomsen<br />

Diamond and Related Materials 18, 957-962 (<strong>2009</strong>)<br />

19. Thin-walled Er3+:Y2O3 nanotubes showing up-converted fluorescence<br />

Christoph Erk, S<strong>of</strong>ia Martin Caba, Holger Lange, Stefan Werner, Christian Thomsen,<br />

Martin Steinhart, Andreas Berger and Sabine Schlecht<br />

Phys. Chem. Chem. Phys. 11, 3623-3627 (<strong>2009</strong>)<br />

20. Polariton effects in the dielectric function <strong>of</strong> ZnO excitons obtained by<br />

ellipsometry<br />

M. Cobet, C. Cobet, M.R. Wagner, N. Esser, C. Thomsen, and A. H<strong>of</strong>fmann<br />

Appl. Phys. Lett. 96, 031904 (2010)<br />

21. Electronic properties <strong>of</strong> propylamine-functionalized single-walled carbon<br />

nanotubes<br />

M. Müller, R. Meinke, J. Maultzsch, Z. Syrgiannis, F. Hauke, A. Pekker, K. Kamaras,<br />

A. Hirsch, C. Thomsen<br />

ChemPhysChem 11, 2444 (2010)


72<br />

22. Terahertz conductivity peak <strong>of</strong> composite materials containing single-wall carbon<br />

nanotubes: theory and interpretation <strong>of</strong> experiment<br />

G. Slepyan, M. Shuba, S. Maksimenko, C. Thomsen, A. Lakhtakia<br />

Phys. Rev. B 81, 205423 (2010)<br />

23. Symmetry based analysis <strong>of</strong> the Kohn anomaly and electron-phonon interaction in<br />

graphene and carbon nanotubes<br />

I. Milocevic, N. Kepcija, E. Dobardzic, M. Mohr, J. Maultzsch, C. Thomsen, M.<br />

Damnjanovic<br />

Phys. Rev. B 81, 233410 (2010)<br />

24. Electron-phonon coupling in grapheme<br />

I. Milocevic, N. Kepcija, E. Dobardzic, M. Damnjanovic M. Mohr, J. Maultzsch, C.<br />

Thomsen<br />

Int. J. <strong>of</strong> Modern <strong>Physics</strong> B, 24, 655-660 (2010)<br />

25. Observation <strong>of</strong> excitonic effects in metallic single-walled carbon nanotubes<br />

P. May, H. Telg, G. Zhong, J. Robertson, C. Thomsen, and J. Maultzsch<br />

Phys. Rev. B 82, 195412 (2010).


9.2a.4 Invited Talks<br />

73<br />

R. Gillen Ab initio calculations <strong>of</strong> the phonon spectra <strong>of</strong> graphene<br />

nanoribbons<br />

Frühjahrstagung der Deutschen Physikalischen Gesellschaft, Dresden,<br />

Germany, March <strong>2009</strong><br />

R. Gillen Vibrational properties <strong>of</strong> graphene<br />

NanoLabFor-Project Meeting, Faculty <strong>of</strong> <strong>Physics</strong>, University <strong>of</strong><br />

Belgrade, Serbia, June <strong>2009</strong><br />

S. Khachadorian Deployment <strong>of</strong> Remote Experiments: OnPReX Course at TU<br />

Berlin<br />

IEEE-EDUCON Engineering Education Conference, Madrid, Spain,<br />

April 2010<br />

P. Kusch Temperature dependent Raman scattering experiments <strong>of</strong> CdSe<br />

nanorods<br />

Frühjahrstagung der Deutschen Physikalischen Gesellschaft, Dresden,<br />

Germany, March <strong>2009</strong><br />

R. Meinke Resonant Raman scattering on chemically functionalized carbon<br />

nanotubes<br />

Frühjahrstagung der Deutschen Physikalischen Gesellschaft, Dresden,<br />

Germany, March <strong>2009</strong><br />

M. Mohr Exploring the two-dimensional Brillouin zone <strong>of</strong> the electronic<br />

and the vibrational band structure <strong>of</strong> uniaxially strained graphene<br />

NanoLabFor-Project Meeting, Faculty <strong>of</strong> <strong>Physics</strong>, University <strong>of</strong><br />

Belgrade, Serbia, June <strong>2009</strong><br />

M. Mohr Electronic and vibrational properties <strong>of</strong> graphene under strain<br />

International Winterschool on Electronic Properties <strong>of</strong> Novel<br />

Materials (IWEPNM), Kirchberg, Austria, March 2010<br />

N. Rosenkranz Molecular Dynamics Simulations <strong>of</strong> interactin carbon pico- and<br />

nanotubes<br />

NanoLabFor-Project Meeting, Faculty <strong>of</strong> <strong>Physics</strong>, University <strong>of</strong><br />

Belgrade, Serbia, June <strong>2009</strong><br />

H. Telg Characterization <strong>of</strong> isolated metallic and semiconducting<br />

nanotubes by Raman spectroscopy<br />

International Winterschool on Electronic Properties <strong>of</strong> Novel<br />

Materials (IWEPNM), Kirchberg, Austria, March <strong>2009</strong><br />

H. Telg Characterization <strong>of</strong> isolated metallic and semiconducting<br />

nanotubes by Raman spectroscopy<br />

European Materials Research Society, <strong>2009</strong> Spring Meeting,<br />

Strasbourg, France, June <strong>2009</strong>


74<br />

H. Telg Resonant Raman spectroscopy on carbon nanotubes<br />

Electronic and Optical Properties <strong>of</strong> Molecular Nanostructures, KIT,<br />

Karlsruhe, Germany, June <strong>2009</strong><br />

H. Telg In situ characterization <strong>of</strong> carbon nanotubes<br />

Technotubes Project Meeting, Paris, France, September <strong>2009</strong><br />

C. Thomsen Vibrational modes in graphene and semiconductor nanorods<br />

Wonton <strong>2009</strong><br />

Matsushima, Japan, June <strong>2009</strong><br />

C. Thomsen Phonons in graphene and carbon nanotubes<br />

ICREA Workshop on Phonon Engineering 2010, Barcelona, Spain,<br />

May 2010<br />

C. Thomsen Vibrational properties <strong>of</strong> graphene and graphene nanoribbons<br />

Symposium “Optical and Vibrational Spectroscopies”, Queretaro,<br />

Mexico, August 2010<br />

M. Wagner Magneto-optic and recombination dynamic <strong>of</strong> complex bound<br />

excitons in homoepitaxially grown ZnO epilayers<br />

Photonics West <strong>2009</strong>, San Jose, USA, January <strong>2009</strong>


9.2a.5 Diploma Theses<br />

75<br />

Fabian Gericke Optische Untersuchungen an phasenveränderbaren Materialien<br />

wie Ge2Sb2Te5 und deren Schaltverhalten<br />

27.06.2010<br />

Roland Gillen Schwingungseigenschaften von Graphen Nanoribbons anhand<br />

von ab initio Berechnungen<br />

12.04.<strong>2009</strong><br />

Philipp Hummel IR spectroscopic studies <strong>of</strong> hydrogenanes<br />

06.01.2010<br />

Patryk Kusch Temperaturabhängigkeit der Scheingungseigenschaften vonCdSe<br />

Nanorods<br />

14.05.2010<br />

Reinhard Meinke Optische Übergänge in Amin-funktionalisierten Kohlenst<strong>of</strong>f-<br />

Nanoröhren<br />

24.07.2010


9.2.b Department IIb<br />

Pr<strong>of</strong>. Dr. rer. nat. Janina Maultzsch<br />

9.2b.1 Staff<br />

Secretary<br />

Mandy Neumann<br />

Technical Staff<br />

Sabine Morgner<br />

Ing.grad. Heiner Perls<br />

Michael Mayer<br />

77<br />

PhD Candidates (status <strong>of</strong> 31.12.2010: thesis completed = c)<br />

Dipl.-Phys. Katharina Brose<br />

Dipl.-Phys. Jan Laudenbach<br />

Dipl.-Phys. Patrick May<br />

Diploma and Teacher Students (status <strong>of</strong> 31.12.2010: thesis completed = c)<br />

Nils Scheuschner<br />

Felix Herziger<br />

9.2b.2 Summary <strong>of</strong> Activities<br />

Our research activities focus on the physical properties <strong>of</strong> nanostructures, in particular carbon<br />

nanotubes, graphene and nanoribbons, Si clusters, as well as biomolecules such as carotene<br />

and photosystemII. We study their optical, vibrational and electronic properties and the<br />

interaction between their electronic and vibrational system.<br />

Our research on carbon nanotubes focused on exciton-phonon coupling and on chemically<br />

functionalized nanotubes. The exciton-phonon coupling strength was investigated by resonant<br />

Raman scattering. We found a distinct dependence <strong>of</strong> the coupling strength on the chiral angle<br />

<strong>of</strong> nanotubes (see figure), which is important to know when studying the abundance <strong>of</strong><br />

specific (n,m) nanotubes in enriched samples. Furthermore, we presented experimental<br />

evidence for ~50 meV exciton binding energy in metallic carbon nanotubes. In our nanotube<br />

activities we collaborate closely with AG Thomsen.


78<br />

From: H. Telg, C. Thomsen, and J. Maultzsch, Journal <strong>of</strong> Nanophotonics 4, 041660 (2010).<br />

For graphene nanoribbons we studied symmetry and vibrational properties by ab-initio<br />

calculations. We determined the symmetry properties <strong>of</strong> armchair and zigzag nanoribbons and<br />

identified the Raman active modes, in particular the width-dependent breathing-like mode<br />

(see figure). Our predictions have been recently confirmed on well-defined, chemically<br />

synthesized nanoribbons.<br />

From: R. Gillen, M. Mohr, and J. Maultzsch, Phys. Rev. B 81, 205426 (2010).


9.2b.3 Publications<br />

1. Longitudinal optical phonons in metallic and semiconducting carbon nanotubes<br />

M. Fouquet, H. Telg, J. Maultzsch, Y. Wu, B. Chandra, J. Hone, T. F. Heinz, and<br />

C. Thomsen<br />

Phys. Rev. Lett., 102, 075501 (<strong>2009</strong>)<br />

2. Vibrational properties <strong>of</strong> graphene nanoribbons by first-principles calculations<br />

Roland Gillen, Marcel Mohr, Christian Thomsen, Janina Maultzsch<br />

Phys. Rev. B, 80, 155418 (<strong>2009</strong>)<br />

79<br />

3. Two-dimensional electronic and vibrational band structure <strong>of</strong> uniaxially strained<br />

graphene from ab initio calculations<br />

M. Mohr, K. Papagelis, J. Maultzsch, C. Thomsen<br />

Phys. Rev. B, 80, 205410 (<strong>2009</strong>)<br />

4. Kohn anomaly and electron-phonon interaction at the K-derived point <strong>of</strong> the<br />

Brillouin zone <strong>of</strong> metallic nanotubes<br />

P. Rafailov, J. Maultzsch, C. Thomsen, U. Dettlaff-Weglikowska, S. Roth<br />

Nano Lett., 9, 3343-3348 (<strong>2009</strong>)<br />

5. Electronic properties <strong>of</strong> propylamine-functionalized single-walled carbon<br />

nanotubes<br />

M. Müller, R. Meinke, J. Maultzsch, Z. Syrgiannis, F. Hauke, A. Pekker, K. Kamaras,<br />

A. Hirsch, C. Thomsen<br />

submitted to ChemPhysChem (01/10)<br />

6. Symmetry based analysis <strong>of</strong> the Kohn anomaly and electron-phonon interaction in<br />

graphene and carbon nanotubes<br />

I. Milocevic, N. Kepcija, E. Dobardzic, M. Mohr, J. Maultzsch, C. Thomsen, M.<br />

Damnjanovic<br />

Phys. Rev. B, in print (2010)<br />

7. Electron-phonon coupling in grapheme<br />

I. Milocevic, N. Kepcija, E. Dobardzic, M. Damnjanovic M. Mohr, J. Maultzsch, C.<br />

Thomsen<br />

Int. J. <strong>of</strong> Modern <strong>Physics</strong> B, 24, 655-660 (2010)<br />

8. Excitonic Rayleigh scattering spectra <strong>of</strong> metallic single-walled carbon nanotubes<br />

Ermin Malic, Janina Maultzsch, Stephanie Reich, and Andreas Knorr<br />

Phys. Rev. B 82, 115439 (2010).<br />

9. Observation <strong>of</strong> excitonic effects in metallic single-walled carbon nanotubes<br />

P. May, H. Telg, G. Zhong, J. Robertson, C. Thomsen, and J. Maultzsch<br />

Phys. Rev. B 82, 195412 (2010).<br />

10. Raman intensities <strong>of</strong> the radial-breathing mode in carbon nanotubes: the excitonphonon<br />

coupling as a function <strong>of</strong> (n1, n2)<br />

H. Telg, C. Thomsen, and J. Maultzsch<br />

Journal <strong>of</strong> Nanophotonics 4, 041660 (2010)


80<br />

11. Observation <strong>of</strong> Breathing-like Modes in an Individual Multiwalled Carbon<br />

Nanotube<br />

C. Spudat, M. Müller, L. Houben, J. Maultzsch, K. Goss, C. Thomsen, C. M. Schneider,<br />

and C. Meyer<br />

Nano Lett. 10, 4470 (2010)<br />

12. Excitonic absorption spectra <strong>of</strong> metallic single-walled carbon nanotubes<br />

Ermin Malic, Janina Maultzsch, Stephanie Reich, and Andreas Knorr<br />

Phys. Rev. B 82, 035433 (2010)<br />

13. Symmetry properties <strong>of</strong> vibrational modes in graphene nanoribbons<br />

R. Gillen, M. Mohr, and J. Maultzsch<br />

Phys. Rev. B 81, 205426 (2010)<br />

14. Time-resolved Raman spectroscopy <strong>of</strong> optical phonons in graphite: Phonon<br />

anharmonic coupling and anomalous stiffening<br />

H. Yan, D. Song, K.F. Mak, I. Chatzakis, J. Maultzsch, and T. F. Heinz<br />

Phys. Rev. B 80, 121403(R) (<strong>2009</strong>)<br />

9.2b.4 Invited Talks<br />

J. Maultzsch Vibrational properties <strong>of</strong> carbon nanotubes and graphene<br />

nanoribbons<br />

ACS (American Chemical Society) Meeting, Washington, DC,<br />

August 16-20, <strong>2009</strong><br />

J. Maultzsch Vibrational properties <strong>of</strong> graphene nanoribbons<br />

IWEPNM 2010, Kirchberg, Austria, March 6-13, 2010


81<br />

9.2.c Department IIc<br />

Pr<strong>of</strong>. Dr. Axel H<strong>of</strong>fmann<br />

Pr<strong>of</strong>. em. Dr.-Ing. Dr. h.c. mult. Immanuel Broser<br />

9.2c.1 Staff<br />

Secretary<br />

Ines Rudolph<br />

Senior Scientists<br />

Dr. Sebaz Reparaz<br />

Dr. Markus Wagner<br />

PhD Candidates (status <strong>of</strong> 31.12.2010: thesis completed = c)<br />

Dipl.-Phys. Miran Alic<br />

Dipl.-Phys. Max Bügler<br />

Dipl.-Phys. Gordon Callsen<br />

Dipl.-Phys. Munise Cobet (10.07.2010)<br />

Dipl.-Phys. Ute Haboeck<br />

Dipl.-Phys. Ronny Kirste<br />

Dipl.-Phys. Martin Kaiser<br />

Dipl.-Phys. Christian Kindel<br />

Dipl.-Phys. Gordon Callsen<br />

Dipl.-Phys. Christian Nennstiel<br />

Dipl.-Phys. Stefan Werner<br />

Dipl.-Phys. Patrick Zimmer<br />

Diploma Students (status <strong>of</strong> 31.12.2010: thesis completed = c)<br />

Miran Alic (c)<br />

Dorian Alden<br />

Max Bügler (c)<br />

Gordon Callsen<br />

Ole Hitzemann (c)<br />

Martin Kaiser ( c )<br />

Thomas Kure<br />

Thomas Switaiski<br />

Stefan Mohn


Christian Nennstiel (c)<br />

Christian Rauch (c)<br />

Thomas Switaiski (c)<br />

Jan-Henrik Schulze (c)<br />

9.2c.2 Summary <strong>of</strong> Activities<br />

82<br />

The main research activities focus on the optical, vibronical and structural properties <strong>of</strong> II-VI<br />

and III-V semiconductors with special emphasis on ZnO-, AlN-, InN- and GaN-based<br />

structures. The investigations are carried out on single crystals, epitaxially grown homo- and<br />

heterostructures, and especially low-dimensional structures like quantum wells,<br />

nanowires, and quantum dots.<br />

Excitonic complexes as a representative <strong>of</strong> the optical properties play an outstanding role in<br />

the analysis <strong>of</strong> semiconductors. Excitonic excitation and relaxation mechanisms and the<br />

dynamics <strong>of</strong> these processes are in the center <strong>of</strong> our interest which facilitates deep insight into<br />

the physics <strong>of</strong> nitride- and oxide-based bulk and nanostructured material. Knowledge <strong>of</strong> the<br />

energetic structure and relaxation mechanisms <strong>of</strong> free and bound excitons allows precise<br />

analysis <strong>of</strong> defects created during e.g. growth, annealing, and doping procedures. Especially,<br />

the analysis <strong>of</strong> extended structural defect centers in ZnO yielded novel insight based on<br />

studies conducted in our research group. Fundamental distinctions in the optical signature <strong>of</strong><br />

extended structural defect centers allow their separation from common e.g. dopant-related<br />

point defects.<br />

All investigations are carried out in close cooperation with research groups aiming for the<br />

development and optimization <strong>of</strong> e.g. new optoelectronic devices like blue light-emitting<br />

diodes and lasers based on wide bandgap II-VI and III-V semiconductors. Cooperations have<br />

been established with many research groups in Germany, Switzerland, Spain, France, Russia,<br />

Belarus, Australia, China, UK, USA and Japan. The essential physical topics include:<br />

exciton polaritons and bound excitons in bulk crystals and excitonic complexes in low<br />

dimensional structures based on GaN, InN, AlN, InGaN, AlGaN, InGaAs and ZnO,<br />

shallow and deep centers,<br />

recombination dynamics and non-radiative processes,<br />

non-linear optical effects <strong>of</strong> pure and doped wide bandgap semiconductors,<br />

coherent dynamics,<br />

analysis <strong>of</strong> doping and dopant compensation mechanisms,<br />

functionalization <strong>of</strong> nanostructures,<br />

cavity-like properties <strong>of</strong> nanowires, and<br />

determination <strong>of</strong> deformation potentials.


83<br />

The problem <strong>of</strong> p-dopant compensation and passivation in GaN-, AlGaN- and ZnO-based<br />

structures attracts a lot <strong>of</strong> current attention. Intensive studies were dedicated to the behavior <strong>of</strong><br />

donor-acceptor pair emissions <strong>of</strong> highly p-doped ZnO- and GaN-layers. Furthermore, the<br />

study <strong>of</strong> coherent processes especially with highly spatially localized excitation is a further<br />

issue in our research. Coherent lifetimes react very sensitively to defect structures and can<br />

thus help to optimize growth, annealing and doping techniques. Four-wave mixing techniques<br />

could be applied to epitaxial layers <strong>of</strong> different II-VI compounds to receive non-linear<br />

quantum beats. We have shown that they originate either from zero-field split excited states <strong>of</strong><br />

one complex or from interference between two different bound excitons.<br />

The finalized construction <strong>of</strong> two either IR or UV optimized µTRPL setups facilitates<br />

analysis and imaging <strong>of</strong> nanostructures with only diffraction limited spatial resolution. As a<br />

result we were able to clearly resolve and analyze the spatial distribution <strong>of</strong> excitonic<br />

lifetimes in e.g. cavity-like single ZnO nanowires which resulted several remarkable<br />

publications. Additionally, the effect <strong>of</strong> functionalization <strong>of</strong> nanostructures with organic<br />

molecules was studied with main focus on the occurring drastic excitonic lifetime changes.<br />

Further future effords will be dedicated to the highly promising field <strong>of</strong> nanostructure<br />

functionalization because <strong>of</strong> the outstandingly promising future applications in gas sensors,<br />

catalytic processes and optoelectronics.<br />

However, the µTRPL technique does not only allow such characterization <strong>of</strong> one-dimensional<br />

structures, even quasi zero-dimenstional structures like individual quantum dots can be<br />

analyzed. The purpose <strong>of</strong> the Sfb 787 project headed by Axel H<strong>of</strong>fmann and Christian<br />

Thomsen is to study the influence <strong>of</strong> the electron-phonon interaction in low-dimensional<br />

semiconductor systems. Here, our main focus is the investigation <strong>of</strong> the dynamical properties<br />

<strong>of</strong> excitonic states in II-VI and III-V quantum dots based on the µTRPL technique. The<br />

collaboration with Yasuhiko Arakawa from the University <strong>of</strong> Tokyo resulted in a still ongoing<br />

research exchange which originated several publications dealing with the characterization <strong>of</strong><br />

single GaN quantum dots. The large internal fields <strong>of</strong> such quantum dots make them an<br />

outstanding candidate for future optoelectronic applications with main focus on secure and<br />

efficient high speed data transmission.<br />

In contrast to such directly application oriented characterization <strong>of</strong> e.g. quantum dots we also<br />

participate in the determination <strong>of</strong> very fundamental material parameters like deformation<br />

potentials. Especially the phonon deformation potentials in nitrides and ZnO have caught<br />

our recent interest due to their lack or partly inconsistency in the literature. Raman<br />

measurements under the application <strong>of</strong> hydrostatic as also uniaxial stress allowed us to clarify<br />

and publish in the literature still missing and by the scientific community higly appreciated<br />

values. Only the close international collaboration with Zlatko Sitar from the North Carolina<br />

<strong>State</strong> University and Alejandro Goñi from the ICMAB realized the access to state <strong>of</strong> the art<br />

material and for the high pressure measurements required equipment.


9.2c.3 Publications<br />

1. Bound and free excitons in ZnO: optical selection rules in the absence and<br />

presence <strong>of</strong> time reversal symmetry<br />

M.R. Wagner, H.W. Kunert, A.G.J. Machatine, A. H<strong>of</strong>fmann, P. Niyongabo, J.<br />

Malherbe, J. Barnas<br />

Microelectronics Journal Volume 40, 289 (<strong>2009</strong>)<br />

84<br />

2. Influence <strong>of</strong> substrate surface polarity on homoepitaxial growth <strong>of</strong> ZnO layers by<br />

chemical vapour deposition<br />

M. R. Wagner, T.P. Bartel, R. Kirste, A. H<strong>of</strong>fmann, J. Sann, S. Lautenschläger, B. K.<br />

Meyer, C. Kieselowski<br />

Phys. Rev. B 79 (<strong>2009</strong>), 035307<br />

3. A systematic study on ZnO Materials containing group I materials (Li,Na,K)synthesis<br />

from precursors, characterization, and properties<br />

S. Polarz, A. Orlov, A. H<strong>of</strong>fmann, M.R. Wagner, C. Rauch, R. Kirste, W. Gelh<strong>of</strong>f, Y.<br />

Aksu, M. Driess, M. W. van den Berg,M. Lehmann<br />

Chem. Mat. 21 (<strong>2009</strong>), 3889<br />

4. Wave propagation <strong>of</strong> Rabi oscillations in one-dimensional quantum dot chain<br />

G. Ya Slepyan, Y.D. Yerchak, S.A. Maksimenko, A. H<strong>of</strong>fmann<br />

Phys. Lett. A 373 (<strong>2009</strong>), 1374<br />

5. Matter coupling to strong electromagnetic fields in two-level quantum systems<br />

with broken inversion symmetry<br />

O.V. Kibis, G. Ya Slepyan, S.A. Maksimenko, A. H<strong>of</strong>fmann<br />

Phys. Rev. Lett. 102 (<strong>2009</strong>), 023601<br />

6. Magnetic and structural properties <strong>of</strong> transition metal doped zinc-oxide<br />

nanostructures<br />

A.O. Ankiewicz, W. Gehlh<strong>of</strong>f, J.S. Martins, A. S. Pereira, S. Pereira, A. H<strong>of</strong>fmann,<br />

E. M. Kaidashev, A. Rahm, M. Lorenz, M. Grundmann, M. C. Carmo, T. Trindade,<br />

N. A. Sobolev<br />

phys. stat. sol. (b) 246 (<strong>2009</strong>), 776<br />

7. Nitrogen incorporation in homoepitaxial ZnO CVD epilayers<br />

S. Lautenschlaeger, S. Eisermann, B.K. Meyer, G. Callsen, M.R. Wagner, A. H<strong>of</strong>fmann<br />

phys. stat. sol. RRL, 3 (<strong>2009</strong>), 16-18<br />

8. Strong coupling <strong>of</strong> light with one-dimensional quantum dot chain from Rabi<br />

oscillations to Rabi waves<br />

G. Ya Slepyan, Y.D. Yerchak, S.A. Maksimenko, A. H<strong>of</strong>fmann<br />

<strong>Physics</strong>, Chemistry and Aplication <strong>of</strong> Nanostructures 3 (<strong>2009</strong>), 12071<br />

9. �7 valence band symmetry related hole fine splitting <strong>of</strong> boundexcitons in ZnO<br />

observed in magneto-optical studies<br />

Markus R. Wagner, Jan- Hindrik Schulze, Ronny Kirste, Munise Cobet, Axel<br />

H<strong>of</strong>fmann, Christian Rauch, Anna V. Rodina, B.K. Meyer, Uwe Röder, Klaus Thonke<br />

Phys. Rev. B 80 (<strong>2009</strong>), 205203


85<br />

10. Phonons and electronic states <strong>of</strong> ZnO, Al2O3 and Ge in the presence <strong>of</strong> time<br />

reversal symmetry<br />

A. G.J. Mechatine, H.W. Kunert, A. H<strong>of</strong>fmann, J. Malherbe, J. Barnas, R. Seguin, M.R.<br />

Wagner, P. Niyongabo, N. Nephale<br />

Journal <strong>of</strong> <strong>Physics</strong> Conference Series 92 (<strong>2009</strong>), 12071<br />

11. EPR identification <strong>of</strong> intrinsic and transition metal-related defects in ZnGeP2 and<br />

other II-IV-V2 compounds<br />

W. Gehlh<strong>of</strong>f, A. H<strong>of</strong>fmann<br />

Physica B 404 (<strong>2009</strong>), 4942<br />

12. Light-matter coupling in nanostructures without an inversion center<br />

O.V. Kibis, G. Ya Slepyan, S. A. Maksimenko, A. H<strong>of</strong>fmann<br />

Superlattice and Microstructures 47 (2010), 216<br />

13. Polariton effects in the dielectric function <strong>of</strong> ZnO excitons obtained by<br />

ellipsometry<br />

M. Cobet, C. Cobet, M.R. Wagner, N. Esser, C. Thomsen, A. H<strong>of</strong>fmann<br />

Applied <strong>Physics</strong> Letters 96 (2010), 031904<br />

14. Optical spectra <strong>of</strong> ZnO in the far UV: First Principle Calculations and<br />

Ellipsometric measurements<br />

Paola Gori, Munise Rakel, Christoph Cobet, Wolfgang Richter, Norbert Esser, Axel<br />

H<strong>of</strong>fmann, Rodolfo Del Sole, Antonio Cricenti, Olivia Pulci<br />

Phys. Rev. B 81 (2010), 125207<br />

15. Size-dependent recombination dynamics in ZnO nanowires<br />

J. S. Reparaz, F. Güell, M. R. Wagner, A. H<strong>of</strong>fmann, A. Cornet, J. R. Morante,<br />

Appl. Phys. Lett. 96 (2010), 053105<br />

16. Lithium related deep and shallow acceptors in Li- doped ZnO nanocrystals<br />

C. Rauch, W. Gelh<strong>of</strong>f, M.R. Wagner, E. Malguth, G. Callsen, R. Kirste, B. Salameh,<br />

A. H<strong>of</strong>fmann, S. Polarz, Y. Aksu, M. Driess<br />

J. Appl. Phys. 107 (2010), 024311<br />

17. Identification <strong>of</strong> a donor related recombination channel in ZnO thin films<br />

Matthias Brandt, Holger von Wenckstern, Gabriele Benndorf, Martin Lange, Christ<strong>of</strong> P.<br />

Dietrich, Christian Kranert, Chris Sturm, Rüdiger Schmidt-Grund, Holger Hochmuth,<br />

Michael Lorenz, Marius Grundmann, Markus R. Wagner, Miran Alic, Christian<br />

Nenstiel, and Axel H<strong>of</strong>fmann<br />

Phys. Rev. B 81 (2010), 073306<br />

18. Theory <strong>of</strong> time-resolved Raman scattering and fluorescence emission from<br />

semiconductor quantum dots<br />

Julia Kabuß, Stefan Werner, Axel H<strong>of</strong>fmann, Peter Hildebrandt, Andreas Knorr,<br />

Marten Richter<br />

Phys. Rev. B 81 (2010), 075314


19. Growth temperature - phase stability relation in In1-xGaxN epilayers grown by<br />

high-pressure CVD<br />

G. Durkaya, M. Alevli, M. Buegler, R. Atalay, S. Gamage, M. Kaiser, R. Kirste, A.<br />

H<strong>of</strong>fmann, M. Jamil, I. Ferguson and N. Dietz<br />

Mater. Res. Soc. Symp. Proc. Vol. 1202 © 2010<br />

Materials Research Society 1202-I5.21-1<br />

20. Clebsch-Gordan coefficients for scattering tensors in ZnO<br />

H. W. Kunert, M. R. Wagner, A. G. J. Machatine, P. Niyoganbo, J. Malherbe,<br />

A. H<strong>of</strong>fmann, J. Barnas, W. Florek<br />

phys. stat. sol. (b) 247 (2010), 1802<br />

21. Strong electron-photon coupling in one-dimensional quantum dot chain:<br />

Rabi waves and Rabi wavepackets<br />

G. Ya. Slepyan, Y. D. Yerchak, A. H<strong>of</strong>fmann, and F. G. Bass<br />

Phys. Rev. B 81 (2010), 085115<br />

86<br />

22. E-MRS <strong>2009</strong> Spring Meeting, Symposium J: Groupe III Nitride Semiconductors,<br />

Strassburg, France, Proceedings, Guest editors: Olivier Briot, Axel H<strong>of</strong>fmann,<br />

Yasushi Nanishi, Fernando A. Ponce<br />

phys. stat. sol (c) 7, (2010), Wiley-VCH<br />

23. Zinc Oxide- From fundamental properties towards novel application:<br />

Influence <strong>of</strong> external fields<br />

Markus R. Wagner and Axel H<strong>of</strong>fmann<br />

Chapter 8: Springer series in materials sciences 120 (2010), p 201<br />

ed. Claus Franz Klingshirn, Bruno K. Meyer, Andreas Waag, Axel H<strong>of</strong>fmann, Jean<br />

Geurts<br />

24. Zinc Oxide- From fundamental properties towards novel application:<br />

Deep centres in ZnO<br />

Axel H<strong>of</strong>mann, Enno Malguth and B.K. Meyer<br />

Chapter 10: Springer series in materials sciences 120 (2010), p 233<br />

ed. Claus Franz Klingshirn, Bruno K. Meyer, Andreas Waag, Axel H<strong>of</strong>fmann, Jean<br />

Geurts<br />

25. Recombination dynamics in ZnO nanowires: surface states vs. mode quality factor<br />

J. S. Reparaz, F. Güell, M. R. Wagner, G. Callsen, R. Kirste, C. Claramunt,<br />

J. R. Morante, and A. H<strong>of</strong>fmann<br />

Appl. Phys. Lett. 97 (2010), 133116<br />

26. Spectral identification <strong>of</strong> impurities and native defects in ZnO<br />

B.K. Meyer, D.M. Meyer, J. Stehr, A. H<strong>of</strong>fmann<br />

Wiley-VCH Buch über ZnO ed. C. Litton (2010)<br />

27. Reduction <strong>of</strong> the transverse effective charge <strong>of</strong> optical phonons in ZnO under<br />

pressure<br />

J.S. Reparaz, L. R. Muniz, M. R. Wagner, A. R. Goni, M. I. Alonso, A. H<strong>of</strong>fmann,<br />

B.K. Meyer<br />

App. Phys. Lett. 96 (2010), 231906


87<br />

28. Exciton fine-structure splitting in GaN/AlN quantum dots<br />

C. Kindel, S. Kako, T. Kawano, H. Oiishi, Y. Arakawa, G. Hönig, M. Winkelnkemper,<br />

A. Schliwa, A. H<strong>of</strong>fmann, D. Bimberg<br />

Physical Review B 81 (2010), 241309 (R)<br />

29. Molecular precursor route to a metastable from <strong>of</strong> zinc oxide<br />

Carlos Lizandara Pueyo, Stephan Siroky, Steve Landsmann, Maurits W. E. van den<br />

Berg, Markus R. Wagner, Juan S. Reparaz, Axel H<strong>of</strong>fmann, Sebastian Polarz<br />

Chem. Mater. 22 (2010), 4263<br />

30. Optical properties <strong>of</strong> InN grown on templates with controlled surface polarities<br />

Ronny Kirste, Markus R. Wagner, Jan H. Schulze, Andre Strittmatter, Ramon Colazzo,<br />

Zlatko Sitar, Mustafa Alevli, Nikolaus Dietz, Axel H<strong>of</strong>fmann<br />

phys.stat sol. (a) 207 (2010), 2351<br />

31. Large internal dipole moment in InGaN/GaN quantum dots<br />

Irina A. Ostapenko, Gerald Hönig, Christian Kindel, Sven Rodt, Andre Strittmatter,<br />

Axel H<strong>of</strong>fmann, Dieter Bimberg<br />

Appl. Phys. Lett. 97 (2010), 063103<br />

32. The influence <strong>of</strong> group V/III molar precursor ratio on the structural properties <strong>of</strong><br />

InGaN layers grown by HPCVD<br />

G. Durkaya, M. Buegler, R. Atalay, I. Senevirathna, M. Alevli, O. Hitzemann, M.<br />

Kaiser, R. Kirste, A. H<strong>of</strong>fmann, N. Dietz<br />

phys. stat. sol. (a) 207 (2010), 1379<br />

33. Reactor pressure: growth temperature relation for InN epilayers grown by highpressure<br />

CVD<br />

M. Buegler, S. Gamage, R. Atalay, J. Wang, I. Senevirathna, R. Kirste, T. Xu, M. Jamil,<br />

I. Ferguson, J. Tweedie, R. Collazo, A. H<strong>of</strong>fmann, Z. Sitar, N. Dietz<br />

Proc. SPIE 7784 (2010), 77840F<br />

34. Excited state properties <strong>of</strong> donor bound excitons in ZnO<br />

Bruno. K. Meyer, Joachim Sann, Sebastian Eisermann, Stefan Lautenschlaeger,<br />

Markus R. Wagner, Martin Kaiser, Gordon Callsen, Juan S. Reparaz A. H<strong>of</strong>fmann<br />

Phys. Rev. B 82 (2010), 115207<br />

35. Shape anisotropy influencing functional properties: trigonal prismatic ZnO<br />

nanoparticals as an example<br />

Carlos Lizandara Pueyo, Stephan Siroky, Markus R. Wagner, Axel H<strong>of</strong>fmann, Juan S.<br />

Reparaz, Michael Lehmann, Sebastian Polarz<br />

Advance Functional Materials 21 (2011), 295<br />

36. Raman and photoluminescence spectroscopic detection <strong>of</strong> surface-bound Li+O2-<br />

defect sites in Li-doped ZnO nanocrystals derived from molecular precursors<br />

Ronny Kirste, Yilmaz Aksu, Markus R. Wagner, Sevak Khachadorian, Surajit Jana,<br />

Matthias Driess, Christian Thomsen, Axel H<strong>of</strong>fmann<br />

Chem. Phys. Chem. 12 (2011), 1189


88<br />

37. Determination <strong>of</strong> phonon deformation potentials in wurtzite GaN and ZnO by<br />

uniaxial pressure dependent Raman measurements<br />

G. Callsen, J. S. Reparaz, M. R. Wagner, R. Kirste, C. Nenstiel, A. H<strong>of</strong>fmann, and M.<br />

R. Phillips<br />

Appl. Phys. Lett. 98 (2011), 061906<br />

38. Acoustic and optical phonon scattering in a single In(Ga)As quantum dot<br />

Erik Stock, Matthias-Rene Dachner, Till Warming, Andrei Schliwa, Anatol Lochmann,<br />

Axel H<strong>of</strong>fmann, Aleksandr I. Toropov, Askhat K. Kakarov, Ilya A. Derebzov, Marten<br />

Richter, Vladimir A. Haisler, Andreas Knorr, Dieter Bimberg,<br />

Phys. Rev. B 83 (2011), 041304(R)<br />

39. Comment on the paper pss (a) 205, 1872: Paramagnetic and ferromagnetic<br />

resonance studies on dilute magnetic semiconductors on GaN<br />

W. Gehlh<strong>of</strong>f, B. Salameh, A. H<strong>of</strong>fmann<br />

phys. stat. sol. (a) 207 (2011), 1379


9.2c.4 Invited Talks<br />

Axel H<strong>of</strong>fmann Spatially and time resolved spectroscopy <strong>of</strong> excitons and<br />

phonons in low dimensional semiconductors<br />

School <strong>of</strong> Nanostructures, Santiago de Cuba, January <strong>2009</strong><br />

Axel H<strong>of</strong>fmann Optical and vibrational properties <strong>of</strong> high quality ZnO<br />

substrates under uniaxial pressure<br />

SPIE Photonic West <strong>2009</strong>, San Jose, USA, January <strong>2009</strong><br />

Axel H<strong>of</strong>fmann Single dot spectroscopy- nitrides vs. arsenides<br />

PLMNC 9 Lecce, Italy, April <strong>2009</strong><br />

Axel H<strong>of</strong>fmann Optical and vibrational properties <strong>of</strong> high quality ZnO<br />

substrates<br />

MRS Fall Meeting 2010, Boston, USA, December <strong>2009</strong><br />

Axel H<strong>of</strong>fmann Radiative and nonradative decay in group III nitrides<br />

SPIE 2010, San Francisco, USA, January 2010<br />

Axel H<strong>of</strong>fmann Radiative and nonradative decay in group III nitrides<br />

Sinople 2010, Berlin, Germany, March 2010<br />

89<br />

Axel H<strong>of</strong>fmann InAs- and GaN- quantum dots: Similarities and differences<br />

CIMTEC 2010, Montecantini Terme, Italy, June 2010<br />

Axel H<strong>of</strong>fmann Towards real-world quantum communication: Quantum<br />

dots as non-classical light sources<br />

ISGN3, Montpellier, France, July 2010<br />

Axel H<strong>of</strong>fmann Optical and vibrational properties <strong>of</strong> high quality ZnO<br />

substrates<br />

Int. Workshop <strong>of</strong> ZnO 2010, Changchun, China, August 2010<br />

Axel H<strong>of</strong>fmann Quantum dots as non-classical light sources: The interplay<br />

between polarization effects and electron-hole exchange<br />

INOW 2010, Changchun, China, August 2010<br />

Axel H<strong>of</strong>fmann Case study <strong>of</strong> successful Australian–European<br />

collaborations<br />

BMBF workshop, Bonn, Germany, November 2010


9.2b.5 Diploma Theses<br />

Miran Alic Zeitaufgelöste Untersuchungen an niederdimensionalen III-V<br />

Halbleitern<br />

21.12.<strong>2009</strong><br />

Gordon Callsen Optische Eigenschaften von niederdimensionaln<br />

Halbleiterstrukturen<br />

23.06.<strong>2009</strong><br />

Ole Hitzemann Untersuchungen an verdünnten magnetischen Halbleitern als<br />

Materialien <strong>für</strong> die Spintronik<br />

25.05.2010<br />

Martin Kaiser Optische Eigenschaften tiefer Zentren in Breitbandhalbleitern<br />

26.02.2010<br />

Christian Nenstiel Lumineszenz und Hochanregungsmechanismen in Gruppe-III<br />

Nitriden<br />

20.07.<strong>2009</strong><br />

90<br />

Jan-Hindrik Schulze Dynamische Eigenschaften von Breitband-Halbleitern in äußeren<br />

Feldern<br />

29.05.<strong>2009</strong><br />

Thomas Switaiski Mikrophotolumineszenzuntersuchungen an Quantenpunkten<br />

06.07.<strong>2009</strong>


91<br />

9.3 Department III<br />

Pr<strong>of</strong>. Dr. rer. nat. Mario Dähne<br />

Pr<strong>of</strong>. em. Dr.-Ing. Hans-Eckhart Gumlich<br />

9.3.1 Staff<br />

Secretary<br />

Angela Berner (part time)<br />

Technical Staff<br />

Gerhard Pruskil<br />

Senior Scientists<br />

Dr. Holger Eisele<br />

Dr. Lena Ivanova (until 06.06.2010)<br />

Dr. Andrea Lenz<br />

Dr. Rainer Timm (until 31.01.<strong>2009</strong>)<br />

PhD Candidates (status <strong>of</strong> 31.12.2010 - thesis completed = c)<br />

Dipl.-Phys. Martin Franz<br />

Dipl.-Phys. Jan Grabowski (c)<br />

Dipl.-Phys. Kai Hodeck (c)<br />

Dipl.-Phys. Lena Ivanova (c)<br />

Dipl.-Phys. Christopher Prohl<br />

Diploma and Master Students (status <strong>of</strong> 31.12.2010 – thesis completed = c)<br />

Stephan Appelfeller<br />

Martin Franz (c)<br />

Florian Genz (c)<br />

Britta Höpfner (c)<br />

Nadine Oswald (c)<br />

Christopher Prohl (c)<br />

Matthias Vetterlein (c)


9.3.2 Summary <strong>of</strong> Activities<br />

92<br />

The main research subject <strong>of</strong> the group <strong>of</strong> Mario Dähne is the investigation <strong>of</strong> the structural<br />

and (local) electronical properties <strong>of</strong> semiconductor surfaces, interfaces, and nanostructures.<br />

In the experiments, special emphasis lies on the use <strong>of</strong> local probes, such as scanningtunneling<br />

microscopy (STM) and spectroscopy (STS) and – for studies <strong>of</strong> buried structures –<br />

cross-sectional scanning-tunneling microscopy (XSTM) and spectroscopy (XSTS).<br />

Complementary information on the electronic band structure is obtained from angle-resolved<br />

photoelectron spectroscopy (ARPES) with synchrotron radiation at the Berlin storage ring<br />

BESSY. All experiments are performed in ultra-high vacuum (UHV).<br />

There are three experimental setups:<br />

1. An STM chamber with a preparation chamber containing LEED, sputter gun and effusion<br />

cells<br />

2. A chamber designed especially for XSTM experiments<br />

3. A III-V MBE chamber with in-situ STM analysis, provided by Pr<strong>of</strong>. Jacobi from the Fritz-<br />

Haber-<strong>Institut</strong><br />

For ARPES experiments, chambers provided by cooperation partners are used.<br />

The most important recent results are given in the following:<br />

1. Silicide thin films, nanowires, and clusters<br />

Using STM and ARPES, the formation and properties <strong>of</strong> lanthanide silicide nanostructures on<br />

Si surfaces were investigated in detail [3,6,16]. Both two-dimensional and one-dimensional<br />

electronic properties could be found for silicide nanowires. Using a display-type toroidal<br />

electron spectrometer developed by LaTrobe University in Bundoora, Australia, we were able<br />

to map the two-dimensional energy surfaces. Here a very similar two-dimensional dispersion<br />

was found both for silicide thin films on Si(111) and for nanowires on Si(557) [6,14], which<br />

could be related to hexagonal disilicide monolayers. The figure shows the structure <strong>of</strong> the<br />

nanowires on Si(557) and their Fermi surface.<br />

Currently, the formation, structure, and electronic properties <strong>of</strong> silicide clusters grown on Si<br />

surfaces are studied.<br />

2. Initial stages <strong>of</strong> InAs quantum-dot growth<br />

In the MBE-STM chamber, the atomic structure <strong>of</strong> the evolving InAs wetting layer on the<br />

GaAs(001)-c(4×4) surface was studied up to quantum-dot formation [8,11,15]. The wetting<br />

layer was found to develop in a three-stage process, starting with In agglomerations, which<br />

transform at about 0.67 ML into a (4×3) reconstructed In2/3Ga1/3As monolayer, as shown in


93<br />

the figure. Further on, the In2/3Ga1/3As monolayer is covered by a (2×4) reconstructed InAs<br />

film. After 1.42 ML InAs exposure, the critical thickness for quantum-dot formation is<br />

reached.<br />

3. Atomic structure <strong>of</strong> InAs/GaAs submonolayer nanostructures<br />

Using XSTM the atomic structure <strong>of</strong> submonolayer InAs nanostructures embedded in GaAs<br />

was studied [18]. The samples were grown in Department I using MOCVD. Rather small<br />

structures with very high densities in the 10 12 /cm 2 range were observed. A strong vertical<br />

segregation with segregation lengths around 1 nm was found. The figure shows the XSTM<br />

image <strong>of</strong> a stack with 5 layers each containing 0.5 ML InAs separated by 16 layers <strong>of</strong> GaAs<br />

together with the variation <strong>of</strong> the local lattice constant and therewith <strong>of</strong> the local<br />

stoichiometry, allowing a quantitative analysis <strong>of</strong> the segregation. In the case <strong>of</strong> thin GaAs<br />

spacer layers, this leads to vertically coherent InGaAs structures instead <strong>of</strong> the nominally<br />

assumed InAs/GaAs stacks.<br />

4. Formation <strong>of</strong> InAs quantum dashes in InGaAsP<br />

In a cooperation with the Heinrich-Hertz-<strong>Institut</strong>, using XSTM we studied InAs embedded<br />

within InGaAsP layers lattice matched on InP bulk material. Here we observed zero-dimensional<br />

nanostructures strongly elongated along [110] direction, so-called quantum dashes<br />

[7,13]. This observation is in contrast to the InAs/GaAs system, where smaller quantum dots<br />

are formed, exhibiting a rather 4-fold structural symmetry. The figure shows cross-sectional<br />

images <strong>of</strong> the InAs/InGaAsP/InP(001) quantum dashes taken at both perpendicular cleavage<br />

planes. The quantum dashes, marked by ellipses, have an almost binary InAs composition and


94<br />

a truncated pyramidal shape. Their lengths and widths were found to lie around 60 nm and<br />

15 nm, respectively, resulting in lateral aspect ratios around 4. The quaternary matrix material<br />

surrounding the dashes is characterized by a lateral decomposition resulting in InAs-rich and<br />

GaP-rich columns, which are correlated with the positions <strong>of</strong> the quantum dashes, as marked<br />

by the dashed lines.<br />

5. Influence <strong>of</strong> nitrogen on the properties <strong>of</strong> arsenide nanostructures<br />

In cooperation with the Paul-Drude-<strong>Institut</strong> and the Tyndall <strong><strong>Institut</strong>e</strong> in Cork, Ireland, the socalled<br />

diluted nitrides were studied [12,17]. Using XSTM it was found that nitrogen exposure<br />

during InAs quantum-dot growth leads to a strong dilution by Ga from the capping layer <strong>of</strong><br />

otherwise compact InAs quantum dots. The figure shows InAs quantum dots grown without<br />

(left) and with (right) nitrogen exposure. It is observed that the indium even segregates into<br />

the substrate upon nitrogen exposure. Furthermore, the density <strong>of</strong> states <strong>of</strong> diluted GaAsN<br />

was measured using XSTS. Here the influence <strong>of</strong> nitrogen on the GaAs conduction band<br />

states could be studied in detail. It could be shown that the second band gap predicted by the<br />

so-called BAC model does not exist, but there is an energy interval <strong>of</strong> reduced DOS, which<br />

could be modelled well by an advanced theoretical approach contributed by the group from<br />

the Tyndall <strong><strong>Institut</strong>e</strong> in Cork.<br />

6. Electronic structure <strong>of</strong> GaSb quantum rings embedded in GaAs<br />

The structural and local electronic properties <strong>of</strong> GaSb nanostructures on GaAs(001) were<br />

studied in a cooperation with the University <strong>of</strong> Cambridge, UK, and the Carnegie Mellon<br />

University in Pittsburgh, USA [5,19]. As shown in the XSTM image in the figure, here<br />

mostly GaSb ring structures are observed, which are filled by almost pure GaAs, in contrast to<br />

the more compact InAs/GaAs quantum dots. The GaSb quantum rings revealed a type-II band


95<br />

<strong>of</strong>fset typical for the GaSb/GaAs system, as shown in the XSTS spectra in the figure.<br />

Furthermore, the contrast in XSTM images at type-II systems was studied in detail involving<br />

the effects <strong>of</strong> tip-induced band bending.<br />

7. Structure and electronic properties <strong>of</strong> non-polar GaN surfaces<br />

Using XSTM and XSTS, we studied the atomic structure and electronic properties <strong>of</strong> the nonpolar<br />

GaN(1010) cleavage surface [1,4,9,14] in cooperation with the Forschungszentrum<br />

Jülich and with Osram Opto-Semiconductors GmbH. We were able to achieve atomic<br />

resolution on the GaN(1010) surface and found that the surface is unreconstructed. As shown<br />

on the left side <strong>of</strong> the figure there are no intrinsic surface states within the fundamental band<br />

gap. Furthermore we found different dislocation types and could derive their burgers vectors,<br />

line directions, and charge states. An example for an uncharged perfect screw dislocation is<br />

shown on the right side <strong>of</strong> the figure. In addition, we could observe a modulation <strong>of</strong> the Si<br />

doping concentration during growth along the [0001] direction.<br />

8. Electronic Structure <strong>of</strong> the InN(1120) surface<br />

Using XSTS we studied the (1120) surface <strong>of</strong> monocrystalline InN [Appl. Phys. Lett. 98,<br />

062103 (2011)], in collaboration with both the Forschungszentrum Jülich and the National<br />

Tsing Hua University, Taiwan. We could derive a band gap <strong>of</strong> 0.7 eV for InN using only<br />

direct electronic measurements. Moreover, it could be shown that the assumed generality <strong>of</strong><br />

an electron accumulation on InN surfaces is absent in the case <strong>of</strong> stoichiometric non-polar<br />

surfaces. In this case, the Fermi level is found within the fundmental band gap, indicating that<br />

the electron accumulation is not an intrinsic property <strong>of</strong> InN, but can be assigned to<br />

decomposition and/or adsorbance <strong>of</strong> molecules from the air. Furthermore, it could be shown<br />

that the fundamental bulk band gap is free <strong>of</strong> intrinsic surface states at the (1120) surface.


9.3.3 Publications<br />

1. Electronic properties <strong>of</strong> dislocations in GaN investigated by scanning tunneling<br />

microscopy,<br />

Ph. Ebert, L. Ivanova, S. Borisova, H. Eisele, A. Laubsch, and M. Dähne,<br />

Appl. Phys. Lett. 94, 062104 (<strong>2009</strong>).<br />

2. Limits <strong>of</strong> In(Ga)As/GaAs quantum dot growth,<br />

A. Lenz, H. Eisele, R. Timm, L. Ivanova, R.L. Sellin, H.-Y. Liu, M. Hopkinson, U.W.<br />

Pohl, D. Bimberg, and M. Dähne,<br />

Phys. Stat. Sol. (b) 246, 717 (<strong>2009</strong>).<br />

3. Structural and electronic properties <strong>of</strong> rare-earth silicide nanowires on Si(557),<br />

M. Wanke, K. Löser, G. Pruskil, and M. Dähne,<br />

Phys. Rev. B 79, 155428 (<strong>2009</strong>).<br />

4. Doping modulation in GaN imaged by cross-sectional scanning tunneling<br />

microscopy,<br />

H. Eisele, L. Ivanova, S. Borisova, M. Dähne, M. Winkelnkemper, and Ph. Ebert,<br />

Appl. Phys. Lett. 94, 162110 (<strong>2009</strong>).<br />

5. Contrast mechanisms in cross-sectional scanning tunneling microscopy <strong>of</strong><br />

GaSb/GaAs type-II nanostructures,<br />

R. Timm, R.M. Feenstra, H. Eisele, A. Lenz, L. Ivanova, E. Lenz, and M. Dähne,<br />

J. Appl. Phys. 105, 093718 (<strong>2009</strong>).<br />

6. Energy surfaces <strong>of</strong> rare-earth silicide films on Si(111),<br />

M. Wanke, M. Franz, M. Vetterlein, G. Pruskil, B. Höpfner, C. Prohl, I. Engelhardt, P.<br />

Stojanov, E. Huwald, J. Riley, and M. Dähne,<br />

Surf. Sci. 603, 2808 (<strong>2009</strong>).<br />

96<br />

7. Formation <strong>of</strong> InAs/InGaAsP quantum dashes on InP(001),<br />

A. Lenz, F. Genz, H. Eisele, L. Ivanova, R. Timm, D. Franke, H. Künzel, U.W. Pohl, and<br />

M. Dähne,<br />

Appl. Phys. Lett. 95, 203105 (<strong>2009</strong>).<br />

8. Evolution <strong>of</strong> the InAs wetting layer on GaAs(001)c(4x4) on the atomic scale,<br />

J. Grabowski, C. Prohl, B. Höpfner, M. Dähne, and H. Eisele, Appl. Phys. Lett. 95,<br />

233118 (<strong>2009</strong>).<br />

9. Scanning tunneling microscopy on unpinned GaN(1100) surfaces: Invisibility <strong>of</strong><br />

valence-band states,<br />

Ph. Ebert, L. Ivanova, and H. Eisele,<br />

Phys. Rev. B 80, 085316 (<strong>2009</strong>).<br />

10. Adsorbate-induced restructuring <strong>of</strong> Pb mesas grown on vicinal Si(111) in the<br />

quantum regime,<br />

A.A. Khajetoorians, W. Zhu, J. Kim, S. Qin, H. Eisele, Z. Zhang, and C.-K. Shih,<br />

Phys. Rev. B 80, 245426 (<strong>2009</strong>).


11. Atomic structure <strong>of</strong> the (4x3) reconstructed InGaAs monolayer on GaAs(001),<br />

H. Eisele, B. Höpfner, C. Prohl, J. Grabowski, and M. Dähne,<br />

Surf. Sci. 604, 283 (2010).<br />

97<br />

12. Effect <strong>of</strong> nitrogen on the InAs/GaAs quantum dot formation,<br />

L. Ivanova, H. Eisele, A. Lenz, R. Timm, O. Schumann, L. Geelhaar, H. Riechert, and M.<br />

Dähne,<br />

Phys. Stat. Sol. (c) 7, 355 (2010).<br />

13. InAs nanostructures on InGaAsP/InP(001): Interaction <strong>of</strong> InAs quantum dash<br />

formation with InGaAsP decomposition,<br />

F. Genz, A. Lenz, H. Eisele, L. Ivanova, R. Timm, U.W. Pohl, M. Dähne, D. Franke, and<br />

H. Künzel,<br />

J. Vac. Sci. Technol. B 28, C5E1 (2010).<br />

14. Cross-sectional scanning tunneling microscopy and spectroscopy <strong>of</strong> non-polar<br />

GaN(1100) surfaces,<br />

H. Eisele, S. Borisova, L. Ivanova, M. Dähne, and Ph. Ebert,<br />

J. Vac. Sci. Technol. B 28, C5G11 (2010).<br />

15. Atomic structure and strain <strong>of</strong> the InAs wetting layer growing on GaAs(001),<br />

C. Prohl, B. Höpfner, J. Grabowski, M. Dähne, and H. Eisele,<br />

J. Vac. Sci. Technol. B 28, C5E13 (2010).<br />

16. Electronic properties <strong>of</strong> dysprosium silicide nanowires on Si(557),<br />

M. Wanke, M. Franz, M. Vetterlein, G. Pruskil, C. Prohl, B. Höpfner, P. Stojanov, E.<br />

Huwald, J. Riley, and M. Dähne,<br />

J. Appl. Phys. 108, 064304 (2010).<br />

17. Direct measurement and analysis <strong>of</strong> the conduction band density <strong>of</strong> states in diluted<br />

GaAs1-xNx alloys,<br />

L. Ivanova, H. Eisele, M.P. Vaughan, Ph. Ebert, A. Lenz, R. Timm, O. Schumann, L.<br />

Geelhaar, M. Dähne, S. Fahy, H. Riechert, and E.P. O’Reilly,<br />

Phys. Rev. B 82, 161201(R) (2010).<br />

18. Atomic structure <strong>of</strong> buried InAs sub-monolayer depositions in GaAs,<br />

A. Lenz, H. Eisele, J. Becker, L. Ivanova, E. Lenz, F. Luckert, K. Pötschke, A.<br />

Strittmatter, U.W. Pohl, D. Bimberg, and M. Dähne,<br />

Appl. Phys. Express 3, 105602 (2010).<br />

19. Confined states <strong>of</strong> individual type-II GaSb/GaAs quantum rings studied by crosssectional<br />

scanning tunneling spectroscopy,<br />

R. Timm, H. Eisele, A. Lenz, L. Ivanova, V. Vossebürger, T. Warming, D. Bimberg, I.<br />

Farrer, D.A. Ritchie, and M. Dähne,<br />

Nano Lett. 10, 3972 (2010).


9.3.4 Invited Talks<br />

M. Dähne Rare earth silicide nanowires on silicon surfaces<br />

DPG Frühjahrstagung, Regensburg, 21.-26. March 2010<br />

H. Eisele Scanning Tunneling Microscopy for Semiconductor Analysis,<br />

<strong>Solid</strong> state physics colloquium, Tyndall National <strong><strong>Institut</strong>e</strong>, Cork,<br />

Ireland, February <strong>2009</strong><br />

98<br />

H. Eisele The 2D-3D and Quantum Dot-Quantum Ring Phase Transitions<br />

during Growth <strong>of</strong> InAs/GaAs and GaSb/GaAs Nanostructures<br />

International Conference on the Formation <strong>of</strong> Semiconductor<br />

Interfaces, Weimar, July <strong>2009</strong><br />

H. Eisele Material deposition and reorganization during growth and<br />

capping <strong>of</strong> GaAs-based nanostructures<br />

SemicoNano <strong>2009</strong>, Anan, Japan, August <strong>2009</strong><br />

H. Eisele Cross-sectional scanning tunnelling microscopy <strong>of</strong> non-polar GaN<br />

surfaces<br />

Abschlusskolloquium, DFG-Schwerpunkt Nitride, Universität<br />

Bremen, October <strong>2009</strong><br />

H. Eisele XSTM and XSTS for the analysis <strong>of</strong> semiconductor<br />

nanostructures<br />

Festkörperkolloquium, Universität Marburg, December <strong>2009</strong><br />

H. Eisele Cross-sectional scanning tunneling microscopy study <strong>of</strong> non-polar<br />

GaN(1100) surfaces<br />

International Workshop on Nitride Semiconductors, Tampa/FL,<br />

19. – 23. Sep. 2010<br />

H. Eisele Cross-sectional scanning tunneling microscopy <strong>of</strong> pure and<br />

diluted nitride semiconductors<br />

18th International Vacuum Congress, Beijing, 23. – 27. Aug. 2010.<br />

H. Eisele Semiconductor nano-structure analysis with scanning tunneling<br />

microscopy<br />

Paul-Drude-<strong><strong>Institut</strong>e</strong>, Berlin, 21. Jun. 2010<br />

H. Eisele Nanostructure analysis using STM<br />

Blockseminar 2010 <strong>of</strong> the Graduiertenkolleg <strong>of</strong> the Sfb 787, TU<br />

Berlin, Graal-Müritz, 9. – 11. May 2010.<br />

H. Eisele Cross-sectional STM and plane-view STM for the<br />

characterization <strong>of</strong> III-V semiconductor nanostructures<br />

University <strong>of</strong> California at Los Angeles, Los Angeles/CA, 1. Feb.<br />

2010.


99<br />

H. Eisele Nature <strong>of</strong> surface states and dislocations on non-polar GaN(1100)<br />

surfaces investigated by scanning tunneling microscopy<br />

Palo Alto Research Center, Palo Alto/CA, 28. Jan. 2010<br />

H. Eisele Cross-sectional scanning tunneling microscopy <strong>of</strong> non-polar GaN<br />

surfaces<br />

Department <strong>of</strong> <strong>Physics</strong>, Carnegie-Mellon-University, Pittsburgh/PA,<br />

19. Jan. 2010<br />

H. Eisele Cross-sectional scanning tunneling microscopy <strong>of</strong> non-polar GaN<br />

surfaces<br />

Center <strong>of</strong> High Technology Materials, University <strong>of</strong> New Mexico,<br />

Albuquerque/NM, 15. Jan. 2010.<br />

H.-E. Gumlich Moderne Physiker: Ihre Haltung zum Glauben an Gott,<br />

Lehrerfortbildung <strong>für</strong> Ethik-Lehrer, Martin-Luther-Universität Halle-<br />

Wittenberg, June <strong>2009</strong><br />

L. Ivanova Characterization <strong>of</strong> GaAsN Quantum Wells, GaInNAs by<br />

Scanning Tunneling Microscopy<br />

<strong>Solid</strong> state physics colloquium, Ohio University, Athens, USA,<br />

November <strong>2009</strong><br />

L. Ivanova Structural and Electronic Properties <strong>of</strong> non-polar GaN(1-100)<br />

Surfaces<br />

<strong>Solid</strong> <strong>State</strong> physics colloquium, University <strong>of</strong> Michigan, Ann Arbor,<br />

USA, November <strong>2009</strong><br />

L. Ivanova GaAsN/GaAs Semiconductors Studied by Scanning Tunneling<br />

Microscopy<br />

Festkörperkolloquium, Universität Marburg, December <strong>2009</strong><br />

A. Lenz Structural investigation on III-V semiconductor heterostructures<br />

and magic clusters on Si(111)(7x7)<br />

<strong>Solid</strong> state physics colloquium, LaTrobe University, Bundoora,<br />

Australia, August <strong>2009</strong>


9.3.5 Diploma Theses<br />

100<br />

Martin Franz Atomare Struktur von Silizid-Nanodrähten<br />

30.01.<strong>2009</strong><br />

Florian Genz Atomare Struktur von phoshpidbasierten<br />

Halbleiternanostrukturen<br />

21.07.<strong>2009</strong><br />

Britta Höpfner Strukturelle Eigenschaften des InAs/GaAs-Systems vor und nach<br />

der Quantenpunktentstehung<br />

08.03.<strong>2009</strong><br />

Nadine Oswald Atomare Struktur von stickst<strong>of</strong>fhaltigen III-V-Halbleiternanostrukturen<br />

07.12.<strong>2009</strong><br />

Christopher Prohl Strukturelle Eigenschaften von Submonolagen-Bedeckungen im<br />

InAs/GaAs-Quantenpunktsystem<br />

06.03.<strong>2009</strong><br />

Matthias Vetterlein Überwachsen von Silizid-Nanodrähten mit Silizium<br />

09.03.<strong>2009</strong>


101<br />

9.4 Department IV<br />

Pr<strong>of</strong>. Dr. rer. nat. Michael Kneissl<br />

Pr<strong>of</strong>. Dr. rer. nat. Wolfgang Richter (retired)<br />

9.4.1 Staff<br />

Secretary<br />

Claudia Hinrichs<br />

Technical Staff<br />

Matthias Dreier<br />

Engelbert Eder<br />

Senior Scientists<br />

Dr. Markus Pristovsek<br />

Dr. Patrick Vogt<br />

Dr. Tim Wernicke<br />

Dr. Abdul Kadir<br />

PhD Candidates (status <strong>of</strong> 31.12.2010 – thesis completed = c)<br />

Dipl.-Phys. Konrad Bellmann<br />

Dipl.-Phys. Thomas Bruhn<br />

Dipl.-Phys. Ralph Debusmann<br />

Dipl.-Phys. Duc Dinh<br />

Dipl.-Phys. Marcel Ewald<br />

Dipl.-Phys. Martin Frentrup<br />

Dipl.-Phys. Christian Friedrich<br />

Dipl.-Phys. Tim Kolbe<br />

Dipl.-Phys. Raimund Kremzow (c), until 30.11.2010<br />

Dipl.-Phys. Martin Leyer<br />

M. Sc. Neysha Lobo<br />

Dipl.-Phys. Martin Martens<br />

Dipl.-Phys. Christian Meißner<br />

Dipl.-Phys. Simon Ploch<br />

Dipl.-Phys. Jens Raß<br />

Dipl.-Phys. Luca Redaelli<br />

Dipl.-Phys. Jessica Schlegel<br />

Dipl.-Phys. Daria Skuridina<br />

Dipl.-Phys. Joachim Stellmach<br />

Dipl.-Phys. Jan-Robert Van Look


102<br />

Diploma, Master and Bachelor Students (status <strong>of</strong> 31.12.2010 – thesis completed = c)<br />

Eric Bauch (c)<br />

Amelie Biermann (c)<br />

Fabian Budack<br />

Florian Duge<br />

Johannes Falkenburg<br />

Martin Frentrup (c)<br />

Martin Guttmann, B.Sc. (c.)<br />

Marc H<strong>of</strong>fmann (c)<br />

Michael Högele (c)<br />

Michael Hoppe (c)<br />

André Kruse (c)<br />

Gunnar Kusch<br />

Igor Kuznecov (c)<br />

Martin Martens (c)<br />

Frank Mehnke<br />

Christoph Reich<br />

Linda Riele (c)<br />

Marc-Antonius Rothe<br />

Özgür Savas (c)<br />

Julia Schmermbeck, M.Sc.<br />

Matthias Schmies (c)<br />

Tilman Schwaner<br />

Katrin Sedlmeier (c)<br />

Toni Sembdner (c)<br />

Sergej Solopow<br />

Marcus Stascheit<br />

Christian Ulbrich, B.Sc. (c)<br />

Alexander Wolf, B.Sc. (c)


9.4.2 Summary <strong>of</strong> Activities<br />

103<br />

The “Experimental Nanophysics and Photonics” group is exploring a wide range <strong>of</strong> topics<br />

including metalorganic vapor phase epitaxy (MOVPE) <strong>of</strong> group III-nitride compounds and<br />

nanostructures, the study <strong>of</strong> optical and electronic properties <strong>of</strong> semiconductor surfaces and<br />

interfaces, and the development <strong>of</strong> novel optoelectronic devices. The material system AlN-<br />

GaN-InN covers an extraordinarily wide wavelength range, that includes the entire visible<br />

spectrum and ranges from the deep ultraviolet (UV) to the near infrared. This exceptional<br />

versatility makes InAlGaN heterostructures exceedingly interesting for numerous new device<br />

applications. These include near and deep ultraviolet (UV) InAlGaN light emitting diodes<br />

(LEDs), high power and high brilliance blue-green laser diodes, GaN-based semiconductor<br />

disk lasers (SCDL), vertical cavity surface emitting lasers (VCSELs) and single photon<br />

emitter (SPE). These new devices are key enabler for numerous applications, including e.g.<br />

the purification <strong>of</strong> drinking water, phototherapy, medical diagnostics, laser projection<br />

displays, and quantum cryptography. The research activities in the “Experimental<br />

Nanophysics and Photonics” group are conducted in close collaboration with the GaN<br />

Optoelectronics Business Area at the Ferdinand-Braun-<strong>Institut</strong>, Leibniz <strong>Institut</strong> <strong>für</strong><br />

Höchstfrequenztechnik (FBH) located on the Science and Technology Campus in Berlin-<br />

Adlersh<strong>of</strong>. By combining competencies in both basic and applied research, our goal is to<br />

establish a European centre <strong>of</strong> excellence in the field <strong>of</strong> nitride materials growth and devices.<br />

The research activities are being supported by a number <strong>of</strong> research grants. This includes the<br />

project “Materials for high brilliance green laser diodes” which is funded by the German<br />

Research Foundation (DFG) as part <strong>of</strong> the Collaborative Research Centre (SFB 787)<br />

“Semiconductor Nanophotonics”. In addition, the development <strong>of</strong> InGaN quantum well<br />

laser heterostructures on semipolar growth surfaces is supported within the DFG research<br />

group “Polarisation field control in nitride light emitters” (FOR 957). We have also<br />

obtained a number <strong>of</strong> individual grants from the German Research Foundation (DFG). These<br />

include the development <strong>of</strong> GaN-based semiconductor disk lasers (SCDL) for emission in the<br />

blue-violet wavelength range, the investigation <strong>of</strong> nanostructure growth during metalorganic<br />

vapour phase epitaxy by in-situ scanning tunnelling microscopy, and the investigation <strong>of</strong><br />

atomic structure <strong>of</strong> InGaN surfaces. Funded by the German Federal Ministry <strong>of</strong> Education and<br />

Research (BMBF) the joint research project „Deep UV LEDs“ was established, which<br />

targets the development <strong>of</strong> highly efficient light emitting diodes in the UVB and UVC<br />

spectral range. In July <strong>2009</strong> a new BMBF funded regional growth core “Berlin WideBaSe”<br />

was launched. The research activities within Berlin WideBaSe are focused on the<br />

development, manufacturing and distribution <strong>of</strong> wide bandgap semiconductor optoelectronic<br />

and electronic devices. Berlin WideBaSe combines the know-how and technical resources <strong>of</strong><br />

ten small and medium size companies as well as three research institutes in Berlin. In the<br />

context <strong>of</strong> the European Union the “RAINBOW” Initial Training Network (ITN) has been<br />

established with the goal to develop high quality InN layers and heterostructures for<br />

applications in solar cells and high frequency electronics. In addition the new EU STREP<br />

project “FemtoBlue” has been launched in September <strong>2009</strong> to develop short-pulse multisection<br />

blue laser diodes.<br />

The activities <strong>of</strong> the Experimental Nanophysics and Photonics Group are organized in three<br />

closely coupled research areas with complementary objectives:<br />

- metalorganic vapour phase epitaxy <strong>of</strong> nitride based nano- and heterostructures<br />

- the development <strong>of</strong> novel nanophotonic devices<br />

- the characterization <strong>of</strong> surfaces and interfaces


104<br />

Epitaxy <strong>of</strong> nitride based materials and nanostructures<br />

A major step in advancing our growth capability was the establishment <strong>of</strong> a new 3x2”<br />

Thomas Swan Close-Coupled Showerhead MOVPE reactor for the growth <strong>of</strong> III-nitride<br />

heterostructures, which complements our existing single wafer Epigress and Aixtron MOVPE<br />

systems. One <strong>of</strong> our goals in the area <strong>of</strong> epitaxy is to obtain a better understanding <strong>of</strong> the<br />

fundamental growth processes in MOVPE by using in-situ characterization techniques like<br />

spectroscopic ellipsometry, reflectometry and wafer curvature measurements. A fundamental<br />

challenge for the growth <strong>of</strong> nitride semiconductor alloys InGaN and AlGaN is the large strain<br />

at heterointerfaces due to the lattice mismatch. Apart from the limits imposed by strain, e.g.<br />

the formation <strong>of</strong> misfit dislocation or 3D growth, strain also effects the efficiency <strong>of</strong> light<br />

emitting devices, e.g. due to the quantum-confined Stark effect (QCSE). To accommodate<br />

strain in AlGaN layers grown on AlN/sapphire templates for LEDs emitting in the UV region,<br />

we have successfully developed short period superlattice structures. The superlattice structure<br />

enables crack-free growth in the entire composition range, giving a largely relaxed AlGaN<br />

template for devices. Such AlGaN templates also exhibit significantly reduced threading<br />

dislocation densities in comparison to AlN templates and <strong>of</strong>fer the possibility for strain<br />

engineering. In the InGaN system we determined the critical thickness for relaxation and 2D<br />

to 3D transition on GaN templates and the effects on surface structure, alloy composition and<br />

defect density. The strain can be used by the formation <strong>of</strong> Quantum dots due to the strain<br />

induced Stranski-Krastanov growth mode. Furthermore such quantum dots can be used for<br />

single photon emitter as well as for lasers. We demonstrated control <strong>of</strong> quantum dot size and<br />

density over 2 orders <strong>of</strong> magnitude. Another novel approach is the growth <strong>of</strong> AlGaN and<br />

InGaN in so called semi- or nonpolar crystal orientations. These orientations are tilted with<br />

respect to the [0001] direction. Therefore, quantum wells on such crystal planes exhibit<br />

reduced polarization fields. First suitable substrates and growth parameters <strong>of</strong> the binary<br />

alloys InN, GaN and AlN needed to be established. Additionally, the use <strong>of</strong> foreign substrates<br />

can lead to the formation <strong>of</strong> domains with different crystal orientation. We demonstrated the<br />

growth <strong>of</strong> single phase semipolar InN, GaN and AlN as well as AlGaN in the whole<br />

composition range. Furthermore basic properties that define the growth are studied. They are<br />

very different to the (0001) surface. Desorption and adatom mobilities are anisotropic and<br />

depend strongly on the surface orientation.<br />

Intensity (counts)<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

320mA 500ms<br />

511nm<br />

350 400 450 500 550 600 650<br />

emission wavelength (nm)<br />

Pulsed electroluminescense <strong>of</strong> a threefold<br />

InGaN/GaN quantum well just below 3D<br />

transition (23% 2.5 nm).<br />

2µm x 2µm Atomic Force Microscopy <strong>of</strong><br />

low density InGaN quantum dots with an<br />

indium content <strong>of</strong> about 23 %.


105<br />

Nitride bases devices: From UV LEDs to blue-green lasers<br />

The research pr<strong>of</strong>ile <strong>of</strong> the group includes a strong emphasis on nanophotonic devices based<br />

on III-nitride wide bandgap semiconductors. The activities include the development<br />

technology base for the growth and fabrication <strong>of</strong> light emitting diodes (LEDs) and laser<br />

diodes (LDs) as well as developing concepts for next generation short wavelength light<br />

sources. A new field <strong>of</strong> devices, solarblind UV photodetectors, is also currently studied<br />

utilizing epitaxy, device fabrication, characterization and simulation. The growth and<br />

fabrication processes <strong>of</strong> LED devices were successfully established as demonstrated by LEDs<br />

in the emitting in the green spectral range near 500 nm down to deep UVB LEDs emitting at<br />

320 nm and first devices emitting below 300 nm. More complex and challenging growth and<br />

fabrication processes for LDs were also successfully established as demonstrated by 405 nm<br />

current-injection ridge-waveguide LDs under cw operation, current-injection LDs under<br />

pulsed operation from 400 nm to 435 nm as well as optically pumped laser structures from<br />

326 nm to 470 nm. This technology base and the establishment <strong>of</strong> into state-<strong>of</strong>-the art devices<br />

build the foundation for the development <strong>of</strong> novel concepts for LEDs and LDs.<br />

Photographic images <strong>of</strong> semipolar (20-21) InGaN MQW LED chips<br />

emitting at 430 nm (left) and 500 nm (right).<br />

The novel concepts that are under investigation aim for the extension <strong>of</strong> the wavelength range<br />

<strong>of</strong> LEDs and LDs as well as improving the efficiency and open up new applications. New<br />

applications are targeted by the development <strong>of</strong> multi-section laser diodes for ps-pulse<br />

generation. Also the development <strong>of</strong> semiconductor disk lasers opens up new applications due<br />

to the high pulse peak power and the high beam quality as well as the scalability and the<br />

possibility to include nonlinear optical element into the cavity. Semiconductor disk lasers<br />

with peak pulse output power <strong>of</strong> more than 300 W and an emission wavelength <strong>of</strong> 393 nm<br />

have been demonstrated. Meanwhile first semiconductor disk lasers with an emission<br />

wavelength <strong>of</strong> 420 nm have also been realized. In order to push the lasing wavelength towards<br />

the green spectral region, the growth <strong>of</strong> quantum dot active regions is studied. Also the bluegreen<br />

wavelength region is targeted by lasers on non- and semipolar growth facets. Such<br />

structures suffer less from the quantum-confined Stark effect enabling higher material gain.<br />

Hereby the studies also revealed different incorporation efficiencies <strong>of</strong> indium into the active<br />

region allowing for more favourable growth conditions <strong>of</strong> long wavelength active regions. On<br />

the short wavelength side deep UV LEDs in the UV-B and UV-C range are studied. Epitaxy<br />

<strong>of</strong> such devices requires low defect density templates as described in the previous section and<br />

the ability to control n- and p-doping in AlGaN with high Al-content. 320 nm UV LEDs with<br />

milli-Watt emission power and 298 nm LEDs have been demonstrated. For the fabrication<br />

process the biggest issues are light extraction and heat dissipation. To solve these issues<br />

heterostructure design, simulation and growth as well as chip design and device fabrication


106<br />

interact strongly. The resulting concepts <strong>of</strong> flip-chip UV-LEDs with interdigitated fingercontacts,<br />

micropixel contacts or nanopixel contacts have proven to increase output power in a<br />

broad spectral range from 380 – 320 nm.<br />

(a) (b)<br />

(a) Photographic image <strong>of</strong> a 380 nm flip-chip UV-LED with micropixel contacts. (b) Emission spectra <strong>of</strong><br />

InGaN RPG disk laser below and above the threshold. The inset shows the far-field intensity distribution.<br />

The beam divergence is approximately 20 mrad.<br />

Surface Science Research<br />

Self-assembled ultra-thin molecular layers on solid substrates have emerged to an important<br />

material system for novel applications like biosensors or lab-on-the-chip concepts. For such<br />

applications a pr<strong>of</strong>ound understanding <strong>of</strong> the interfacial structure and formation between the<br />

two material systems is required. We investigate the interface reactions between organic<br />

molecules and semiconductor surfaces including the technologically important III-nitrides. In<br />

particular we aim for an understanding <strong>of</strong> the general factors that determine the moleculesemiconductor<br />

interaction on an atomic scale. In the past two years we were able to<br />

demonstrate that the adsorption <strong>of</strong> molecules can cause a complex modification <strong>of</strong> the surface<br />

electronic properties <strong>of</strong> semiconductor materials, depending on the exact structural aspects <strong>of</strong><br />

the respective interface formation. We have developed and established optical techniques for<br />

the non-destructive in-situ monitoring <strong>of</strong> molecular film growth in a sub-monolayer range.<br />

We could show that molecular orbitals <strong>of</strong> ordered organic films can be observed as optical<br />

anisotropies with RAS measurements. We have successfully demonstrated that a new UV-<br />

RAS setup (operating up to 9.5 eV) allows a direct observation <strong>of</strong> molecular orbitals <strong>of</strong> small<br />

molecules. By the help <strong>of</strong> the UV-RAS we could realize the controlled preparation <strong>of</strong> organic<br />

sub-monolayers on GaAs(001) surfaces. At these ultra-thin layers we could correlate the RAS<br />

signatures with transitions between electronic states <strong>of</strong> the molecules as determined by single<br />

molecule spectroscopy by STS. Our measurements show that the electronic properties <strong>of</strong><br />

adsorbed molecules depend significantly on their respective bonding mechanism<br />

(chemisorption or physisorption). The bonding mechanism on the other hand is determined by<br />

molecular properties (electrophilicity and aromaticity) as well as surface properties (dimer<br />

structure and stoichiometry). Based on these insights into the nature <strong>of</strong> organic/inorganic<br />

bonding mechanisms we are extending our investigations to the characterization <strong>of</strong> organic<br />

adsorbate layers on other III-V materials and particularly group-III nitrides (InN, GaN,<br />

InGaN) and 2D nano-materials, e.g. 2D silicon. For this purpose well defined III-nitride<br />

surface structures are needed. We therefore explore the atomic surface structure <strong>of</strong> these<br />

materials upon subsequent molecule adsorption. On InxGa1-xN (0001) (0≤x≤1) we established<br />

the preparation <strong>of</strong> clean reconstructed surfaces with (1x1), (1+1/6), (2x2) and (√3x√3)R30°


107<br />

symmetries under ultra-high vacuum conditions. The amount <strong>of</strong> surface-indium determines<br />

the atomic and electronic structure <strong>of</strong> these surfaces giving rise to also influence the interface<br />

formation with molecular layers.<br />

Left: UV-RAS spectra <strong>of</strong> pyrrole adsorbed on GaAs(001)(4x2) (orange line) and the clean GaAs surface (grey<br />

line). Right: Single molecule STS spectrum <strong>of</strong> adsorbed pyrrole (shown in the inset STM image) indicating<br />

possible UV transitions that could contribute to the UV-RAS anisotropies.


108<br />

9.4.3 Books<br />

Blue and green-emitting laser diodes<br />

Michael Kneissl & Jens Raß<br />

book chapter to be published in Landolt-Börnstein VIII-Vol. B Part III – Laser System<br />

(2010). – IN PRINT.<br />

9.4.4 Publications<br />

1. Emission characteristics <strong>of</strong> InGaN multi quantum well light emitting diodes with<br />

differently strained InAlGaN barriers<br />

T. Kolbe, A. Knauer, H. Wenzel, S. Einfeldt, V. Küller, P. Vogt, M. Weyers, M.<br />

Kneissl<br />

phys. stat .sol. (c) 6, No. S2, S889-S892 (<strong>2009</strong>)<br />

2. Optimization <strong>of</strong> InGaN/(In,Al,Ga)N based near UV-LEDs by MQW strain<br />

balancing with in-situ wafer bow sensor<br />

A. Knauer, T. Kolbe, S. Einfeldt, M. Weyers, M. Kneissl, and T. Zettler<br />

phys. stat .sol. (a) 206, 211-214 (<strong>2009</strong>)<br />

3. Epitaxial Lateral Overgrowth on (2-1-10) a-Plane GaN with [0-111] Oriented<br />

Stripes<br />

T. Wernicke, U. Zeimer, C. Netzel, F. Brunner, A. Knauer, M. Weyers, M. Kneissl<br />

J. Crystal Growth 311, 2895(<strong>2009</strong>)<br />

4. MOVPE growth for UV-LEDs<br />

A. Knauer, F. Brunner, T. Kolbe V. Küller, H. Rodriguez. S. Einfeldt, M. Weyers and<br />

M. Kneissl<br />

Proc. SPIE 7231, 72310G (<strong>2009</strong>)<br />

5. Ultraviolet laser diodes on AlN and sapphire substrates<br />

Michael Kneissl, Zhihong Yang, Mark Teepe, Noble M. Johnson<br />

Proc. SPIE 7230, 7230-13 (<strong>2009</strong>)<br />

6. Growth mode <strong>of</strong> InGaN on GaN (0001) in MOVPE<br />

M. Pristovsek, J. Stellmach, M. Leyer, M. Kneissl<br />

phys. stat .sol. (c), 1– 5 (<strong>2009</strong>) / DOI 10.1002/pssc.200880915<br />

7. Volmer-Weber growth mode <strong>of</strong> InN quantum dots on GaN by MOVPE<br />

Christian Meissner, Simon Ploch, Markus Pristovsek, Michael Kneissl<br />

phys. stat .sol. (c), 6, S2, S545 (<strong>2009</strong>). (DOI 10.1002/pssc.200880872)<br />

8. Growth Mode and Shape <strong>of</strong> InN Quantum Dots and Nanostructures grown by<br />

Metal Organic Vapour Phase Epitaxy<br />

S. Ploch, C. Meissner, M. Pristovsek, M. Kneissl<br />

phys. stat .sol. c 6, s574 (2008)./ DOI 10.1002/pssc.200880938<br />

9. Adsorption geometry <strong>of</strong> hydrocarbon ring molecules on GaAs(001)c4x4<br />

R. Paßmann, T. Bruhn, T.A. Nilson, B. O. Fimland, M. Kneissl, N. Esser, P.Vogt<br />

Phys. Status <strong>Solid</strong>i B 246 (Feature Article), 1504-1509 (<strong>2009</strong>) /DOI<br />

10.1002/pssb.<strong>2009</strong>45178


109<br />

10. Bonding configuration <strong>of</strong> cyclopentene on InP(001)(2x4) surface<br />

Regina Passmann, Priscila Favero, Wolf Gero Schmidt, Ronei Miotto, Walter Braun,<br />

Wolfgang Richter, Michael Kneissl, Norbert Esser and Patrick Vogt<br />

Phys. Rev. B 80, 125303 (<strong>2009</strong>)<br />

11. Polarization <strong>of</strong> eigenmodes in laser diode waveguides on semipolar and nonpolar<br />

GaN<br />

Jens Raß Tim Wernicke, Wolfgang G. Scheibenzuber, Ulrich T. Schwarz, Jan Kupec,<br />

Bernd Witzigmann, Patrick Vogt, Sven Einfeldt, Markus Weyers, Michael Kneissl<br />

phys. stat. sol. (RRL) 4, 1-3 (2010). (DOI 10.1002/pssr.<strong>2009</strong>03325)<br />

12. Adsorption <strong>of</strong> cyclopentene on GaAs(001) and InP(001), a comparative study by<br />

synchrotron-based core level spectroscopy<br />

R. Paßmann, T. Bruhn, B. O. Fimland, W. Richter, M. Kneissl, N. Esser, P. Vogt<br />

World Scientific WSPC - Proceedings <strong>of</strong> the workshop on synchrotron radiation and<br />

nano-structures 1, (<strong>2009</strong>), ISBN-13: 978-981-4280-83-9<br />

13. Structure investigations <strong>of</strong> nonpolar GaN layers<br />

W. Neumann, A. Mogilatenko, T. Wernicke, E. Richter, M. Weyers, M. Kneissl<br />

J. Microsc. 237, 308 (<strong>2009</strong>)<br />

14. Deep UV nitride-based light emitting diodes – applications and challenges<br />

M. Kneissl, T. Kolbe, N. Lobo, J. Stellmach, A. Knauer, V. Küller, H. Rodriguez, S.<br />

Einfeldt, M. Weyers<br />

Proceedings <strong>of</strong> the 6 th China International Forum on <strong>Solid</strong> <strong>State</strong> Lighting (<strong>2009</strong>)<br />

15. Laser Scribing for Facet Fabrication <strong>of</strong> InGaN MQW Diode Lasers on<br />

Sapphire Substrates<br />

J. R. van Look, S. Einfeldt, V. H<strong>of</strong>fmann, A. Knauer, M. Weyers, P. Vogt and M.<br />

Kneissl<br />

IEEE Photonics Technology Letters 22 (6), 416 (2010)<br />

16. Adsorbate-induced modification <strong>of</strong> the surface electric field at GaAs(001)-c(4x4)<br />

measured via the linear electro-optic effect<br />

T. Bruhn, R. Paßmann, B. O. Fimland, M. Kneissl, N. Esser, P. Vogt<br />

phys. stat. sol. (b) 247 (8), 1941 (2010).<br />

17. Internal efficiency <strong>of</strong> InGaN light-emitting diodes: Beyond a quasi-equilibrium<br />

model<br />

W. W. Chow, M. H. Crawford and J. Y. Tsao, M. Kneissl<br />

Appl. Phys. Lett. 97, 121105 (2010).<br />

18. InGaN/GaN Disk Laser for Blue-Violet Emission Wavelengths<br />

R. Debusmann, N. Dhidah, V. H<strong>of</strong>fmann, L. Weixelbaum, U. Brauch, T. Graf, M.<br />

Weyers, M. Kneissl<br />

IEEE Photonics Technology Letters 22 (9), 652 (2010).<br />

19. Growth <strong>of</strong> semipolar (10-1-3) InN on m-plane sapphire using MOVPE<br />

Duc Dinh, M. Pristovsek, R. Kremzow, M. Kneissl<br />

phys. stat. sol. (RRL) 4, No. 5–6, 127 (2010).<br />

20. Well width study <strong>of</strong> InGaN multiple quantum well structures for blue-green<br />

emitters<br />

V. H<strong>of</strong>fmann, C. Netzel, U. Zeimer, A. Knauer, S. Einfeldt, F. Bertram, M. Weyers, G.<br />

Tränkle, M. Kneissl<br />

J. <strong>of</strong> Crystal Growth (2010), doi:10.1016/j.jcrysgro.2010.09.013


110<br />

21. Uniformity <strong>of</strong> the wafer surface temperature during MOVPE growth <strong>of</strong> GaNbased<br />

laser diode structures on GaN and sapphire substrate<br />

V. H<strong>of</strong>fmann, A. Knauer, C. Brunner, S. Einfeldt, M. Weyers, G.Tränkle, K. Haberland,<br />

J.-T. Zettler, M. Kneissl<br />

J. <strong>of</strong> Crystal Growth (2010), doi:10.1016/j.jcrysgro.2010.09.048<br />

22. Advances in InAlGaN-based deep UV light emitting diode technologies<br />

M. Kneissl, T. Kolbe, N. Lobo, J. Stellmach, A. Knauer, V. Kueller, H. Rodriguez, S.<br />

Einfeldt, M. Weyers<br />

Proceedings <strong>of</strong> the 12 th International Symposium on the Science and Technology <strong>of</strong><br />

Light Sources and the 3 rd International Conference on White LEDs and <strong>Solid</strong> <strong>State</strong><br />

Lighting, LS-WLED 2010, 265-268 (2010).<br />

23. (In)AlGaN deep ultraviolet light emitting diodes with optimized quantum well<br />

width<br />

T. Kolbe, T. Sembdner, A. Knauer, V. Küller, H. Rodriguez S. Einfeldt, P. Vogt, M.<br />

Weyers and M. Kneissl<br />

phys. stat. sol. (a) 207, 2198-2200 (2010).<br />

24. Optical polarization characteristics <strong>of</strong> ultraviolet (In)(Al)GaN multiple quantum<br />

well light emitting diodes<br />

T. Kolbe, A. Knauer, C. Chua, Z. Yang, H. Rodrigues, S. Einfeldt, P. Vogt, N.M.<br />

Johnson, M. Weyers and M. Kneissl<br />

Appl. Phys. Lett. 97, 171105 (2010).<br />

25. Carrier injection in InAlGaN single and multi-quantum-well ultraviolet<br />

light emitting diodes<br />

T. Kolbe, T. Sembdner, A. Knauer, V. Küller, H. Rodriguez S. Einfeldt, P. Vogt, M.<br />

Weyers and M. Kneissl<br />

phys. stat. sol. (c) 7, 2196-2198 (2010).<br />

26. Metalorganic Vapor Phase Epitaxy <strong>of</strong> InN on GaN using tertiary-butylhydrazine<br />

as Nitrogen Source<br />

R. Kremzow, M. Pristovsek, J. Stellmach, Ö. Savaş, M. Kneissl<br />

Journal <strong>of</strong> Crystal Growth (2010), DIO:10.1016/j.jcrysgro.2010.03.019<br />

27. Growth <strong>of</strong> AlGaN and AlN on Patterned AlN/Sapphire Templates<br />

V. Küller, A. Knauer, F. Brunner, U. Zeimer, H. Rodriguez, M. Weyers, and M. Kneissl<br />

Journal <strong>of</strong> Crystal Growth (2010), doi:10.1016/j.jcrysgro.2010.06.040<br />

28. Enhancement <strong>of</strong> light extraction in UV LEDs using nanopixel contact design with<br />

Al reflector<br />

N. Lobo, H. Rodriguez, A. Knauer, M. Hoppe, S. Einfeldt, P. Vogt , M. Weyers and M.<br />

Kneissl<br />

Appl. Phys. Lett. 96, 081109 (2010).<br />

29. Effects <strong>of</strong> low charge carrier wave function overlap on internal quantum efficiency<br />

in GaInN quantum wells<br />

Carsten Netzel, Veit H<strong>of</strong>fmann, Tim Wernicke, Arne Knauer, Markus Weyers, Hans<br />

Wenzel, and Michael Kneissl<br />

phys. stat. sol. (c) 7, 1872 (2010).


111<br />

30. Influence <strong>of</strong> the wave function overlap in GaInN quantum wells on the<br />

temperature and excitation power dependent photoluminescence intensity<br />

C. Netzel, V. H<strong>of</strong>fmann, T. Wernicke, A. Knauer, M. Weyers, M. Kneissl, and N.<br />

Szabo<br />

Journal <strong>of</strong> Applied <strong>Physics</strong> 107, 033510 (2010).<br />

31. Orientation control <strong>of</strong> GaN {11-22} and {10-13} grown on (10-10) sapphire by<br />

metal-organic vapor phase epitaxy<br />

S. Ploch, M. Frentrup, T. Wernicke, M. Pristovsek, M. Weyers, M. Kneissl<br />

J Cryst. Growth, 312, 2171 (2010).<br />

32. Determination <strong>of</strong> the complex linear electro-optic coefficient <strong>of</strong> GaAs and InP<br />

M. Pristovsek<br />

physica status solidi (b) 247 (2010) 1974-1978 DOI:10.1002/pssb.<strong>2009</strong>83950<br />

33. Facet formation for laser diodes on nonpolar and semipolar GaN<br />

Jens Raß, Tim Wernicke, Raimund Kremzow, Wilfred John, Sven Einfeldt, Patrick<br />

Vogt, Markus Weyers, Michael Kneissl<br />

phys. stat. sol. (a) 207, 1361–1364 (2010) / DOI 10.1002/pssa.<strong>2009</strong>83425<br />

34. GaN-based Ultraviolet Light-Emitting Diodes with Multifinger Contacts<br />

H. Rodriguez, N. Lobo, S. Einfeldt, A. Knauer, M. Weyers and M. Kneissl<br />

phys. stat. sol. (a), (2010), DOI: 10.1002/pssa.201026193<br />

35. Application <strong>of</strong> GaN-based deep ultraviolet light emitting diodes – UV-LEDs –<br />

for Water disinfection<br />

M.A. Würtele, T. Kolbe, A. Külberg, M. Lipsz, M. Weyers, M. Kneissl, M. Jekel<br />

Water Research 45, 1481 (2011).<br />

36. Optical and structural properties <strong>of</strong> InGaN/(AlIn)GaN multiple quantum wells<br />

grown at different temperatures and In supply<br />

U. Zeimer, U. Jahn, V. H<strong>of</strong>fmann, M. Weyers, M. Kneissl<br />

Journal <strong>of</strong> Electronic Materials, Vol. 39, 677 (2010),<br />

37. High aluminium content and high growth rates <strong>of</strong> AlGaN in a close-coupled<br />

showerhead MOVPE reactor<br />

J. Stellmach, M. Pristovsek, Ö. Savas, J. Schlegel, E. V. Yakovlev, M. Kneissl<br />

Journal <strong>of</strong> Crystal Growth 315, 229 (2011).<br />

38. MOCVD growth <strong>of</strong> InGaN/GaN QDs for green emitters<br />

A. Kadir, Ch. Meissner T. Schwaner, M. Pristovsek, M. Kneissl<br />

Proc. <strong>of</strong> the Photonics 2010. New Delhi: Viva Books Private Ltd, 2010, S. 231-231<br />

39. Surface morphology <strong>of</strong> homoepitaxial GaN grown on non and semipolar GaN<br />

substrates<br />

Tim Wernicke, Simon Ploch, Veit H<strong>of</strong>fmann, Arne Knauer, Markus Weyers, and<br />

Michael Kneissl<br />

phys. stat. sol. (b) 248, No. 3, 574 (2011).<br />

40. Crystall orientation <strong>of</strong> GaN layers on (10-10) Sapphire<br />

M. Frentrup, S. Ploch, M. Pristovsek, M. Kneissl<br />

phys. stat. sol. (b) 248, No.3, 583 (2011)<br />

41. Application <strong>of</strong> GaN-based deep ultraviolet light emitting diodes – UV-LEDs – for<br />

Water disinfection<br />

M.A. Würtele, T. Kolbe, A. Külberg, M. Lipsz, M. Weyers, M. Kneissl, M. Jekel<br />

Water Research 45, 1481 (2011).


112<br />

42. Advances in group III-nitride based deep UV light emitting diode technology<br />

M. Kneissl, T. Kolbe, C. Chua, V. Kueller, N. Lobo, J. Stellmach, A. Knauer, H.<br />

Rodriguez, S. Einfeldt, Z. Yang, N. M. Johnson, M. Weyers<br />

Semicond. Sci. Technol. 26, 014036 (2011).<br />

43. Adsorbate-induced modification <strong>of</strong> the surface band bending at GaAs(001)<br />

surfaces<br />

T. Bruhn, B. O. Fimland, M. Kneissl, N. Esser, P. Vogt<br />

Phys. Rev. B 83, 045307 (2011)<br />

44. High aluminium content and high growth rates <strong>of</strong> AlGaN in a close-coupled<br />

showerhead MOVPE reactor<br />

J. Stellmach M. Pristovsek, Ö. Savas, J. Schlegel, E. V. Yakovlev, M. Kneissl<br />

Journal <strong>of</strong> Crystal Growth 315, 229 (2011).<br />

45. Polarization dependent photoluminescence studies <strong>of</strong> semipolar and nonpolar<br />

InGaN quantum wells<br />

L. Schade, U.T. Schwarz, T. Wernicke, M. Weyers, M. Kneissl<br />

phys. stat. sol. (b) 248, No.3, 638 (2011).<br />

46. Growth Mechanism <strong>of</strong> Embedded Self-Organized InN Quantum Dots on GaN<br />

(0001)<br />

in MOVPE<br />

F. Ivaldi, J. Domagala, S. Kret, Ch. Meissner, M. Pristovsek, M. Högele, and M.<br />

Kneissl<br />

Jpn. J. <strong>of</strong> Appl. Phys. 50, No. 3, 031004 (2011).<br />

47. Optical polarization <strong>of</strong> UV-A and UV-B (In)(Al)GaN multiple quantum well<br />

light emitting diodes<br />

T. Kolbe, A. Knauer, J. Stellmach, C. Chua, Z. Yang, H. Rodrigues, S. Einfeldt, P.<br />

Vogt, N.M. Johnson, M. Weyers and M. Kneissl<br />

Proc. SPIE 7939, 79391G (2011).<br />

48. AlGaN-based Ultraviolet Lasers - Applications and Materials Challenges<br />

Michael Kneissl, Tim Kolbe, Jessica Schlegel, Joachim Stellmach, Chris Chua, Zhihong<br />

Yang, Arne Knauer, Markus Weyers, Noble M. Johnson<br />

Technical Digest, CLEO: 2011 (Optical Society <strong>of</strong> America, Washington, DC, 2011),<br />

JTuB1 (2011).<br />

49. In-situ optical spectroscopy and electronic properties <strong>of</strong> pyrrole sub-monolayers<br />

on Ga-rich GaAs(001)<br />

T. Bruhn, B. O. Fimland, M. Kneissl, N. Esser, P. Vogt<br />

J. Nanoparticle Research (2011) , DOI: 10.1007/s11051-011-0340-0<br />

50. Direct observation <strong>of</strong> dimer flipping at H-terminated InP and GaP (001) surfaces<br />

P. Kleinschmidt, H. Döscher, P. Vogt, T. Hannappel<br />

Phys. Rev. B 83, 155316 (2011)


9.4.5 Invited Talks<br />

113<br />

Pr<strong>of</strong>. Dr. Michael Kneissl Ultraviolet Laser Diodes on AlN and Saphire Substrats<br />

SPIE Photonics West <strong>2009</strong>, San Jose, Germany, January <strong>2009</strong><br />

Pr<strong>of</strong>. Dr. Michael Kneissl Semiconductor Nanophotonics Research at TU Berlin<br />

Seminar at Middle East Technical University (METU), Ankara,<br />

Turkey, April <strong>2009</strong><br />

Pr<strong>of</strong>. Dr. Michael Kneissl Deep UV nitride-based light emitting diodes Applications<br />

and Challenges<br />

China <strong>Solid</strong> <strong>State</strong> Lighting Conference <strong>2009</strong>, Shenzen, China,<br />

October <strong>2009</strong><br />

Pr<strong>of</strong>. Dr. Michael Kneissl Ultraviolet LEDs and Lasers - Applications and Challenges<br />

iNOW <strong>2009</strong>, Stockholm, Sweden, August <strong>2009</strong><br />

Pr<strong>of</strong>. Dr. Michael Kneissl From UV LEDs to green lasers – Challenges and progress in<br />

the development <strong>of</strong> GaN based light emitters<br />

Seminar at Varian Semiconductor Equipment Associates,<br />

Gloucester, MA, USA, November <strong>2009</strong><br />

Pr<strong>of</strong>. Dr. Michael Kneissl MOVPE <strong>of</strong> (In)AlGaN materials for UV light emitters<br />

Aixtron Workshop <strong>2009</strong>, Shenzen, China, October <strong>2009</strong><br />

Pr<strong>of</strong>. Dr. Michael Kneissl Advances in InAlGaN-based deep UV light emitting diode<br />

technologies<br />

3rd International Conference on White LEDs and <strong>Solid</strong> <strong>State</strong><br />

Lighting LS12-WhiteLED3, Eindhoven, Netherlands, July 2010<br />

Pr<strong>of</strong>. Dr. Michael Kneissl Advances and applications <strong>of</strong> GaN-based UV light emitting<br />

diode technologies<br />

International Nano-Optoelectronics Workshop (iNOW 2010),<br />

Beijing, China, August 2010<br />

Pr<strong>of</strong>. Dr. Michael Kneissl Group III-nitride based UV light emitters – applications and<br />

materials challenges<br />

Seminar at the Paul Drude <strong>Institut</strong> <strong>für</strong> Festkörperelektronik,<br />

Berlin, Germany, March 2010<br />

Pr<strong>of</strong>. Dr. Michael Kneissl InAlGaN-based UV LEDs - Applications and Challenges<br />

Physikalisches Kolloquium, Otto-von-Guericke University,<br />

Magdeburg, Germany, May 2010<br />

Pr<strong>of</strong>. Dr. Michael Kneissl Fortschritte bei der Entwicklung von LEDs im ultravioletten<br />

Spektralbereich<br />

VDI Fachtagung LED, Düsseldorf, Germany, November 2010


114<br />

Pr<strong>of</strong>. Dr. Michael Kneissl LEDs im fernen UV - Stand und mögliche Anwendungen<br />

FutureLED Workshop, Berlin, Germany, May 2010<br />

Dr. Abdul Kadir Growth mechanism <strong>of</strong> InGaN quantum dots by<br />

metalorganic vapour phase epitaxy<br />

Alexander von Humboldt Network Meeting, Duisburg,<br />

April 2010<br />

Dr. Markus Pristovsek Advanced In-situ Monitoring <strong>of</strong> Metal Organic Vapour<br />

Phase Epitaxy<br />

SemicoNano, Tokushima, Japan, August <strong>2009</strong><br />

Dr. Markus Pristovsek Metal-Organic Vapour Phase Epitaxy <strong>of</strong> Indium Nitride<br />

Universidad Politécnica de Madrid (ETSIT-UPM), Madrid,<br />

Spain, August 2010<br />

Dr. Markus Pristovsek In-situ Monitoring <strong>of</strong> Doping with Reflectance Anisotropy<br />

Spectrocopy<br />

3rd NanoCharm Workshop on Non-Destructive Real Time<br />

Process Control, Berlin, Germany, October 2010<br />

Dr. Patrick Vogt Adsorption <strong>of</strong> small organic ring molecules on III-V(001)<br />

surfaces<br />

Epioptics-11, Erice, Italy, July 2010<br />

Dr. Patrick Vogt Organic/inorganic interfaces: basic concepts<br />

Epioptics-11, Erice, Italy, July.2010<br />

Dr. Patrick Vogt Devices based on InGaAs Quantum Dots<br />

PV-Technology Development & Market-Trends,<br />

National Technical University <strong>of</strong> Athens (Ethniko Metsovio<br />

Polytechnio), Athinai (Athen), Greece, October 2010<br />

Dr. Patrick Vogt Growth and Characterization <strong>of</strong> In(Ga)N Compounds for<br />

Device Applications<br />

PV-Technology Development & Market-Trends,<br />

National Technical University <strong>of</strong> Athens (Ethniko Metsovio<br />

Polytechnio), Athinai (Athen), Greece, October 2010<br />

Dr. Tim Wernicke Growth <strong>of</strong> nonpolar nitrides: the substrate dilemma<br />

DPG Frühjahrstagung <strong>2009</strong>, Dresden, Deutschland, March <strong>2009</strong><br />

Dr. Tim Wernicke Growth <strong>of</strong> nonpolar nitrides: the substrate dilemma<br />

Seminar at the University <strong>of</strong> Cambridge, UK, July <strong>2009</strong><br />

Dr. Tim Wernicke In-incorporation on semipolar surfaces for blue-green lasers<br />

Seminar at the IAF, Freiburg, July 2010<br />

Dr. Tim Wernicke In-incorporation on semipolar surfaces for blue-green lasers<br />

E-MRS Fall meeting, Warschau, Poland, September 2010


115<br />

Dr. Tim Wernicke Semipolar quantum wells for lasers<br />

PolarCoN Summerschool, Ulm, Germany, October 2010<br />

Dipl.-Phys. Tim Kolbe Water disinfection with GaN-based deep ultraviolet light<br />

emitting diodes<br />

nANO meets water II, Oberhausen, Germany, Fraunh<strong>of</strong>er<br />

UMSICHT, November 2010<br />

Dipl.-Phys. Simon Ploch Growth <strong>of</strong> semipolar InN, GaN and AlN on m-plane<br />

sapphire<br />

PolarCoN Summerschool, Günzburg, Germany, October 2010


116<br />

9.4.6 Diploma, Master-, and Bachelor Theses<br />

Eric Bauch Nitrogen-Vacancy defects in diamond for sub-millimeter<br />

magnetometry<br />

28.07.2010<br />

Amelie Biermann Morphologie und atomare Struktur von In(Ga)N Oberflächen<br />

12.10.2010<br />

Martin Frentrup Epitaxie und Charakterisierung von nicht- und semipolaren<br />

Galliumnitrid-Heterostrukturen<br />

17.03.2010<br />

Marc H<strong>of</strong>fmann GaAs-basierte Tunneldioden<br />

18.07.<strong>2009</strong><br />

Michael Högele Epitaxie und Charakterisierung von InGaN<br />

Quantenpunktstrukturen<br />

30.10.<strong>2009</strong><br />

Michael Hoppe Elektrooptische und elektrothermische Untersuchungen an<br />

Leuchtdioden im ultravioletten Spektralbereich<br />

03.09.2010<br />

André Kruse Wachstumsmodi von InGaN Schichten in der Metallorganischen<br />

Gasphasenepitaxie<br />

28.07.2010<br />

Igor Kuznecov Metallorganische Gasphasenepitaxie von AlGaN-Schichten mit<br />

hohem Aluminiumgehalt<br />

12.11.2010<br />

Martin Martens Optoelektronische Eigenschaften und spektrale Empfindlichkeit<br />

von AlGaN-basierten Photodetektoren<br />

03.09.2010<br />

Linda Riele Bindungsstruktur und Selbstorganisation von Metall-<br />

Phtalocyaninen auf GaAs(001)-Oberflächen<br />

10.10.<strong>2009</strong><br />

Özgür Savas Dotierung und Charakterisierung von (Al)GaN Schichten<br />

hergestellt mittels Metallorganischer Gasphasenepitaxie<br />

06.05.<strong>2009</strong><br />

Matthias Schmies In-Situ Rastertunnelmikroskopie an Nanostrukturen in der<br />

Metallorganischen Gasphasenexpitaxie<br />

02.03.2010<br />

Katrin Sedlmeier CuInxGa(1-x) Se2 Nanokristalle: Wachstum mittels chemischer<br />

Gasphasenabscheidung und Charakterisierung<br />

11.08.2010<br />

Toni Sembdner Analyse der Lumineszens- und Strom-Spannungs-Charakteristik<br />

von Lichtemittern im UV Spektralbereich<br />

17.03.2010<br />

Alexander Wolf, B.Sc. Charakterisierung von AlGaN-basierten MSM Photodetektoren<br />

mit unterschiedlichen Fingerkontakt-Geometrien<br />

21.12.2010

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!