14.12.2012 Views

Optimized control of the electrical machine - hofer powertrain GmbH

Optimized control of the electrical machine - hofer powertrain GmbH

Optimized control of the electrical machine - hofer powertrain GmbH

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Challenges <strong>of</strong> <strong>the</strong> Series Production <strong>of</strong> Electric Drive Systems<br />

Berlin, 2.12.2009<br />

Your Partner for<br />

energy-efficient <strong>powertrain</strong> systems<br />

www.h<strong>of</strong>er.de<br />

h<strong>of</strong>er <strong>powertrain</strong> <strong>GmbH</strong><br />

A company <strong>of</strong> h<strong>of</strong>er AG<br />

• 72644 Oberboihingen • Nürtinger Strasse 78<br />

• E-Mail: info@h<strong>of</strong>er.de<br />

• www.h<strong>of</strong>er.de


Challenges <strong>of</strong> <strong>the</strong> Series Production <strong>of</strong> Electric Drive Systems<br />

Content<br />

Introduction<br />

Electrical <strong>machine</strong>s<br />

Challenges <strong>of</strong> <strong>the</strong> <strong>electrical</strong> drive system<br />

Conclusion<br />

9th International CTI Symposium<br />

„Innovative Automotive Transmissions“<br />

www.h<strong>of</strong>er.de 2.12.09 / Schäfer<br />

2


Challenges <strong>of</strong> <strong>the</strong> Series Production <strong>of</strong> Electric Drive Systems<br />

Introduction<br />

The e-mobility will play a major role in <strong>the</strong> near future<br />

Especially <strong>electrical</strong> axle drives for hybrid- and <strong>electrical</strong> vehicles are in<br />

focus nowadays<br />

Because an <strong>electrical</strong> axle drive can be considered as a high dynamic<br />

torque-source/sink, special attention is required during <strong>the</strong> operation mode<br />

as well as in <strong>the</strong> failure mode<br />

The mass production costs for an <strong>electrical</strong> axle drive and <strong>the</strong> availability <strong>of</strong><br />

<strong>the</strong> related material will be very important<br />

9th International CTI Symposium<br />

„Innovative Automotive Transmissions“<br />

www.h<strong>of</strong>er.de 2.12.09 / Schäfer<br />

3


Challenges <strong>of</strong> <strong>the</strong> Series Production <strong>of</strong> Electric Drive Systems<br />

Introduction<br />

Electric drive system for a typical axle drive<br />

9th International CTI Symposium<br />

„Innovative Automotive Transmissions“<br />

www.h<strong>of</strong>er.de 2.12.09 / Schäfer<br />

4


Challenges <strong>of</strong> <strong>the</strong> Series Production <strong>of</strong> Electric Drive Systems<br />

Introduction<br />

9th International CTI Symposium<br />

„Innovative Automotive Transmissions“<br />

Typical performance characteristic<br />

This kind <strong>of</strong> characteristic can be achieved by using different <strong>electrical</strong><br />

<strong>machine</strong>s.<br />

www.h<strong>of</strong>er.de 2.12.09 / Schäfer<br />

5


Challenges <strong>of</strong> <strong>the</strong> Series Production <strong>of</strong> Electric Drive Systems<br />

Electrical <strong>machine</strong>s<br />

General requirements on <strong>electrical</strong> <strong>machine</strong>s<br />

Electrical <strong>machine</strong>s integrated into <strong>the</strong> <strong>powertrain</strong> have to fulfil <strong>the</strong> following<br />

requirements:<br />

low cost<br />

low weight / small installation space<br />

high efficiency<br />

long durability / low wear<br />

high availability <strong>of</strong> <strong>the</strong> material<br />

low influence in case <strong>of</strong> failure<br />

low noise and vibration level<br />

high grade <strong>of</strong> protection<br />

9th International CTI Symposium<br />

„Innovative Automotive Transmissions“<br />

www.h<strong>of</strong>er.de 2.12.09 / Schäfer<br />

6


Challenges <strong>of</strong> <strong>the</strong> Series Production <strong>of</strong> Electric Drive Systems<br />

Electrical <strong>machine</strong>s<br />

Three-phase <strong>machine</strong>s<br />

Electrical three-phase current <strong>machine</strong>s are particularly suitable for use in<br />

hybrid – and <strong>electrical</strong> vehicles.<br />

Asynchronous<br />

<strong>machine</strong><br />

with cage rotor<br />

9th International CTI Symposium<br />

„Innovative Automotive Transmissions“<br />

Three-phase <strong>machine</strong>s<br />

Synchronous <strong>machine</strong><br />

with permanent<br />

magnet excitation<br />

with separate<br />

excitation<br />

www.h<strong>of</strong>er.de 2.12.09 / Schäfer<br />

7


Challenges <strong>of</strong> <strong>the</strong> Series Production <strong>of</strong> Electric Drive Systems<br />

Electrical <strong>machine</strong>s<br />

Asynchronous <strong>machine</strong><br />

Block circuit diagram for such a drive<br />

Rotor design <strong>of</strong> an asynchronous <strong>machine</strong> with squirrel cage<br />

Electrical drive based on asynchronous <strong>machine</strong><br />

9th International CTI Symposium<br />

„Innovative Automotive Transmissions“<br />

Conductor bars<br />

Short circuit ring<br />

Rotor<br />

www.h<strong>of</strong>er.de 2.12.09 / Schäfer<br />

8


Challenges <strong>of</strong> <strong>the</strong> Series Production <strong>of</strong> Electric Drive Systems<br />

Electrical <strong>machine</strong>s<br />

Permanent magnet excited synchronous <strong>machine</strong><br />

Block circuit diagram <strong>of</strong> a permanent excited synchronous <strong>machine</strong><br />

Rotor design <strong>of</strong> permanent excited synchronous <strong>machine</strong>s<br />

Electrical drive based on permanent excited synchronous <strong>machine</strong><br />

9th International CTI Symposium<br />

„Innovative Automotive Transmissions“<br />

Permanent magnets<br />

Bandage<br />

Rotor<br />

PSM<br />

Permanent magnets<br />

www.h<strong>of</strong>er.de 2.12.09 / Schäfer<br />

9


Challenges <strong>of</strong> <strong>the</strong> Series Production <strong>of</strong> Electric Drive Systems<br />

Electrical <strong>machine</strong>s<br />

Current excited (separate excited) synchronous <strong>machine</strong><br />

Rotor design <strong>of</strong> a separately excited synchronous <strong>machine</strong><br />

Electrical drive based on a separately excited synchronous <strong>machine</strong><br />

9th International CTI Symposium<br />

„Innovative Automotive Transmissions“<br />

SM<br />

www.h<strong>of</strong>er.de 2.12.09 / Schäfer<br />

10


Challenges <strong>of</strong> <strong>the</strong> Series Production <strong>of</strong> Electric Drive Systems<br />

Electrical <strong>machine</strong>s<br />

Utilization <strong>of</strong> <strong>electrical</strong> <strong>machine</strong>s<br />

Important equations<br />

1. Equation:<br />

Fast running <strong>machine</strong>s <strong>the</strong>refore have a smaller size than <strong>machine</strong>s with lower<br />

speed at <strong>the</strong> same performance<br />

2. Equation:<br />

⋅ n<br />

The size <strong>of</strong> an electric <strong>machine</strong> will be determined by <strong>the</strong> required torque, if<br />

will be constant.<br />

9th International CTI Symposium<br />

„Innovative Automotive Transmissions“<br />

f<br />

f<br />

f<br />

s<br />

s<br />

s<br />

S<br />

π<br />

⋅ ⋅ D<br />

4<br />

⋅V<br />

= T<br />

Pmech<br />

=<br />

V ⋅ 2π<br />

2<br />

⋅l<br />

= T<br />

f s<br />

= Bˆ<br />

⋅ Aˆ<br />

Pmech: Mechanical power<br />

fs: Specific tangential force<br />

ns: B: ˆ<br />

Rotor speed<br />

Flux density peak value<br />

Â: Electrical loading peak value<br />

D: Diameter <strong>of</strong> <strong>the</strong> rotor<br />

l: Length <strong>of</strong> <strong>the</strong> rotor<br />

V: Rotor size<br />

T: Torque<br />

www.h<strong>of</strong>er.de 2.12.09 / Schäfer<br />

11<br />

f s


Challenges <strong>of</strong> <strong>the</strong> Series Production <strong>of</strong> Electric Drive Systems<br />

Electrical <strong>machine</strong>s<br />

Development process for an <strong>electrical</strong> <strong>machine</strong><br />

expert knowledge<br />

In addition to <strong>the</strong> above mentioned performance simulation also a dynamic simulation concerning<br />

<strong>the</strong> dynamic behavior <strong>of</strong> <strong>the</strong> electric drive – especially in case <strong>of</strong> failure – is required. This<br />

simulation is very important regarding <strong>the</strong> influence on <strong>the</strong> vehicle dynamic.<br />

9th International CTI Symposium<br />

„Innovative Automotive Transmissions“<br />

FEM<br />

mechanic<br />

calculation<br />

requirements<br />

E-drive<br />

EM<br />

analytical<br />

calculation<br />

FEM<br />

electro magnetic<br />

calculation<br />

no<br />

system<br />

simulation<br />

prototype<br />

test bench<br />

vehicle<br />

yes requirements<br />

fulfilled<br />

boundary conditions<br />

• power electronic<br />

• battery<br />

• installation space<br />

<strong>the</strong>rmal simulation<br />

EM-<strong>control</strong> strategy<br />

power electronics<br />

<strong>control</strong><br />

structure dynamic A.<br />

acoustics<br />

www.h<strong>of</strong>er.de 2.12.09 / Schäfer<br />

12


Challenges <strong>of</strong> <strong>the</strong> Series Production <strong>of</strong> Electric Drive Systems<br />

Electrical <strong>machine</strong>s<br />

<strong>Optimized</strong> <strong>control</strong> <strong>of</strong> <strong>the</strong> <strong>electrical</strong> <strong>machine</strong><br />

In principle all mentioned <strong>electrical</strong> <strong>machine</strong>s can be used. But especially for axle<br />

drives a high speed asynchronous <strong>machine</strong> in connection with a transmission<br />

with a high gear ratio is well suited for <strong>the</strong> following reasons:<br />

Very high robustness<br />

No safety issues in case <strong>of</strong> failure<br />

Needs aluminum inside <strong>the</strong> rotor instead <strong>of</strong> rear earth magnets, <strong>the</strong>refore no problem<br />

with availability <strong>of</strong> magnet materials<br />

Low cost solution compared to o<strong>the</strong>r solutions. Therefore well suited for mass<br />

production<br />

High overload capability<br />

Well suited for high speed applications<br />

No problems with acoustic noise<br />

Very low torque ripple compared to o<strong>the</strong>r solutions<br />

9th International CTI Symposium<br />

„Innovative Automotive Transmissions“<br />

www.h<strong>of</strong>er.de 2.12.09 / Schäfer<br />

13


Challenges <strong>of</strong> <strong>the</strong> Series Production <strong>of</strong> Electric Drive Systems<br />

Electrical <strong>machine</strong>s<br />

<strong>Optimized</strong> <strong>control</strong> <strong>of</strong> an ASM<br />

Temp<br />

_ref<br />

Motor/Generator/<br />

passive mode<br />

is_max<br />

Temp.<br />

compensation<br />

n_ref<br />

n_obs<br />

Map for optimal<br />

efficiency<br />

Flux on line<br />

optimization<br />

9th International CTI Symposium<br />

„Innovative Automotive Transmissions“<br />

Rs<br />

Rr<br />

feed forward<br />

rd_ref isd<br />

+<br />

isd_ref<br />

-<br />

isd_real<br />

_ref<br />

1 isq_ref<br />

isq<br />

+<br />

n rd<br />

-<br />

isq_real<br />

feed forward<br />

2<br />

is = isd + isq 2<br />

is Us Usq<br />

Usd<br />

2<br />

Uu<br />

Uv<br />

3<br />

isq<br />

isd<br />

Speed<br />

Observer<br />

Uw<br />

2<br />

3<br />

n_obs<br />

iu<br />

iv<br />

Control for optimal efficiency in<br />

complete speed range<br />

Air gap flux must be adjusted<br />

permanently to <strong>the</strong> driving situation<br />

(dynamic- efficiency mode, selection<br />

via CAN)<br />

Best voltage usage in field weakening<br />

(Optimal Pulse-Patterns )<br />

ϕrd = f ( U dc,<br />

Treq<br />

, ω)<br />

ϕ rd – Rotor flux<br />

U dc – dc-link/battery voltage<br />

T req – Reference torque<br />

ω<br />

– Rotor speed<br />

www.h<strong>of</strong>er.de 2.12.09 / Schäfer<br />

14


Challenges <strong>of</strong> <strong>the</strong> Series Production <strong>of</strong> Electric Drive Systems<br />

Electrical <strong>machine</strong>s<br />

<strong>Optimized</strong> <strong>control</strong> <strong>of</strong> a PSM/IPM Control <strong>of</strong> IPM Machine with consideration<br />

9th International CTI Symposium<br />

„Innovative Automotive Transmissions“<br />

<strong>of</strong> non-linear E-Machine Parameters<br />

Parameter Definition strategy Ld, Lq, Psi_p<br />

Best voltage usage in field weakening<br />

(Optimal Pulse-Patterns )<br />

www.h<strong>of</strong>er.de 2.12.09 / Schäfer<br />

15


Challenges <strong>of</strong> <strong>the</strong> Series Production <strong>of</strong> Electric Drive Systems<br />

Electrical <strong>machine</strong>s<br />

<strong>Optimized</strong> <strong>control</strong> <strong>of</strong> <strong>the</strong> <strong>electrical</strong> <strong>machine</strong><br />

Typical simulation <strong>of</strong> an <strong>electrical</strong> drive including a battery model<br />

Typical system simulation including <strong>electrical</strong> <strong>machine</strong>s, power electronics and battery<br />

based on a driving cycle (NEDC)<br />

9th International CTI Symposium<br />

„Innovative Automotive Transmissions“<br />

Tq_req_asm<br />

N<br />

2.5<br />

Battery model<br />

U_batt<br />

+<br />

-<br />

U_batt = 270 V<br />

R_batt = 0.4 X<br />

R_batt<br />

Gear<br />

Tq_req_psm<br />

N<br />

U_dc<br />

N_isg<br />

I_dc<br />

PSM<br />

ASM<br />

Tq<br />

I_ph<br />

P_dc<br />

I_dc_psm<br />

Tq<br />

I_ph<br />

P_dc<br />

U_dc I_dc_isg<br />

+ +<br />

I_dc_psm<br />

I_dc_isg<br />

Tq<br />

I_ph<br />

P_dc<br />

I_dc<br />

Tq<br />

I_ph<br />

P_dc<br />

I_dc<br />

Tq [Nm]<br />

Idc [A]<br />

200<br />

150<br />

100<br />

50<br />

0<br />

-50<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

-20<br />

Torque PSM<br />

-100<br />

900 950 1000 1050 1100 1150<br />

t[s]<br />

-40<br />

900 950 1000 1050 1100 1150<br />

t[s]<br />

I_dc PSM<br />

www.h<strong>of</strong>er.de 2.12.09 / Schäfer<br />

16


Challenges <strong>of</strong> <strong>the</strong> Series Production <strong>of</strong> Electric Drive Systems<br />

Challenges <strong>of</strong> <strong>the</strong> <strong>electrical</strong> drive system<br />

Electrical axle drives can be applied in hybrid vehicles as well as in pure <strong>electrical</strong><br />

vehicles. In a hybrid vehicle normally only one axis is electrified. In a pure <strong>electrical</strong><br />

vehicle all axis, even all wheels can be separately driven by an electric drive.<br />

B<br />

B<br />

G E E G<br />

Chassis<br />

G E E G<br />

Electrical vehicle with all wheel drives<br />

With this configuration it is possible to influence <strong>the</strong> longitudinal dynamic as well as <strong>the</strong><br />

transversal dynamic <strong>of</strong> <strong>the</strong> vehicle. With this concept it is possible to have a specific<br />

acceleration – or brake torque on each wheel, so called “torque vectoring”. Fur<strong>the</strong>rmore<br />

it is possible to compensate over steer or under steer with a brake intervention but also<br />

with a power boost in a range <strong>of</strong> some mille seconds.<br />

9th International CTI Symposium<br />

„Innovative Automotive Transmissions“<br />

B<br />

B<br />

Front<br />

wheels<br />

Rear<br />

wheels<br />

E: Electrical <strong>machine</strong><br />

B: Brake<br />

G: Gear - Box<br />

www.h<strong>of</strong>er.de 2.12.09 / Schäfer<br />

17


Challenges <strong>of</strong> <strong>the</strong> Series Production <strong>of</strong> Electric Drive Systems<br />

Challenges <strong>of</strong> <strong>the</strong> <strong>electrical</strong> drive system<br />

System behaviour in normal mode <strong>of</strong> <strong>the</strong> <strong>electrical</strong> drive<br />

As earlier mentioned only an axle drive will be considered.<br />

Mechanical model <strong>of</strong> an axle drive<br />

This model can be used for different investigations:<br />

Acoustic noise<br />

Bonanza – and jerk effect<br />

9th International CTI Symposium<br />

„Innovative Automotive Transmissions“<br />

Chassis<br />

Axle bearing<br />

Stator EM<br />

Rotor EM<br />

-<br />

EM<br />

T<br />

Gearbox<br />

Drive<br />

shaft<br />

c<br />

Vehicle<br />

-<br />

F<br />

www.h<strong>of</strong>er.de 2.12.09 / Schäfer<br />

18


Challenges <strong>of</strong> <strong>the</strong> Series Production <strong>of</strong> Electric Drive Systems<br />

Challenges <strong>of</strong> <strong>the</strong> <strong>electrical</strong> drive system<br />

Acoustic noise<br />

The main reason <strong>of</strong> acoustic noise <strong>of</strong> an <strong>electrical</strong> axle drive is normally <strong>the</strong> torque<br />

ripple <strong>of</strong> an <strong>electrical</strong> <strong>machine</strong>. The torque ripple depends on <strong>the</strong> kind <strong>of</strong> <strong>the</strong> <strong>electrical</strong><br />

<strong>machine</strong> but also on <strong>the</strong> design <strong>of</strong> <strong>the</strong> <strong>machine</strong>.<br />

The torque ripple will be transferred via different ways:<br />

From <strong>the</strong> rotor shaft to <strong>the</strong> gearbox<br />

From <strong>the</strong> stator housing via axle bearings to <strong>the</strong> chassis<br />

In both cases <strong>the</strong> torque ripple can generate acoustic noise.<br />

Fur<strong>the</strong>rmore <strong>the</strong> stator housing <strong>of</strong> <strong>the</strong> <strong>electrical</strong> <strong>machine</strong> can also generate structure<br />

borne noise caused by radial magnetic forces.<br />

9th International CTI Symposium<br />

„Innovative Automotive Transmissions“<br />

www.h<strong>of</strong>er.de 2.12.09 / Schäfer<br />

19


Challenges <strong>of</strong> <strong>the</strong> Series Production <strong>of</strong> Electric Drive Systems<br />

Challenges <strong>of</strong> <strong>the</strong> <strong>electrical</strong> drive system<br />

Dynamic drive <strong>control</strong><br />

The main task <strong>of</strong> <strong>the</strong> dynamic drive <strong>control</strong> is <strong>the</strong> active damping <strong>of</strong> oscillations within<br />

<strong>the</strong> drive train. The following boundary conditions have to be taken into account:<br />

On <strong>the</strong> one hand, an oscillation excitation by <strong>the</strong> driving<br />

torque <strong>of</strong> <strong>the</strong> electric drive shall be compensated. This is<br />

<strong>the</strong> case if a fast torque demand is required e.g. "Tip in".<br />

On <strong>the</strong> o<strong>the</strong>r hand also outer disturbances, e.g. caused by<br />

<strong>the</strong> wheels have to be considered.<br />

The reduction <strong>of</strong> <strong>the</strong> oscillations, shall not lead to a noticeable<br />

reduction <strong>of</strong> <strong>the</strong> torque dynamics which <strong>the</strong> driver perceives asbeing negative.<br />

In case <strong>of</strong> failure <strong>the</strong> vehicle dynamic should not be influenced noticeable.<br />

9th International CTI Symposium<br />

„Innovative Automotive Transmissions“<br />

Chassis<br />

Front<br />

wheels<br />

Rear<br />

wheels<br />

www.h<strong>of</strong>er.de 2.12.09 / Schäfer<br />

20<br />

B<br />

B<br />

G E E G<br />

G E E G<br />

B<br />

B


Challenges <strong>of</strong> <strong>the</strong> Series Production <strong>of</strong> Electric Drive Systems<br />

Challenges <strong>of</strong> <strong>the</strong> <strong>electrical</strong> drive system<br />

Dynamic drive <strong>control</strong><br />

Classical approach<br />

T ref<br />

filter<br />

Block circuit diagram <strong>of</strong> <strong>the</strong> <strong>control</strong>led system with a classic <strong>control</strong> concept<br />

9th International CTI Symposium<br />

„Innovative Automotive Transmissions“<br />

-<br />

feed-forward<br />

<strong>control</strong><br />

<strong>control</strong>ler<br />

T* em<br />

<strong>control</strong> plant<br />

inverter<br />

+ ASM<br />

filter<br />

T*<br />

disturbance<br />

drive train<br />

TS Ωwheel Ω Rotor<br />

www.h<strong>of</strong>er.de 2.12.09 / Schäfer<br />

21


Challenges <strong>of</strong> <strong>the</strong> Series Production <strong>of</strong> Electric Drive Systems<br />

Challenges <strong>of</strong> <strong>the</strong> <strong>electrical</strong> drive system<br />

Dynamic drive <strong>control</strong><br />

State variable <strong>control</strong><br />

In <strong>the</strong> <strong>control</strong> engineering <strong>the</strong> state variable <strong>control</strong> represents an alternative to <strong>the</strong><br />

classical methods. Starting point for this is a description <strong>of</strong> <strong>the</strong> system to be <strong>control</strong>led<br />

in <strong>the</strong> state space in which a linear time-invariant behavior is presupposed.<br />

T ref<br />

Model <strong>of</strong> an axle drive with state variable <strong>control</strong><br />

9th International CTI Symposium<br />

„Innovative Automotive Transmissions“<br />

VV<br />

preliminary<br />

filter<br />

T em<br />

-<br />

•<br />

x (t)<br />

1<br />

S<br />

x(0) + z (disturbance variable)<br />

x (t)<br />

BB CC<br />

RR<br />

A<br />

measurement<br />

www.h<strong>of</strong>er.de 2.12.09 / Schäfer<br />

22<br />

Ω R


Challenges <strong>of</strong> <strong>the</strong> Series Production <strong>of</strong> Electric Drive Systems<br />

Challenges <strong>of</strong> <strong>the</strong> <strong>electrical</strong> drive system<br />

Safety relevant aspects<br />

Possible failures within an electric drive<br />

9th International CTI Symposium<br />

„Innovative Automotive Transmissions“<br />

www.h<strong>of</strong>er.de 2.12.09 / Schäfer<br />

23


Challenges <strong>of</strong> <strong>the</strong> Series Production <strong>of</strong> Electric Drive Systems<br />

Challenges <strong>of</strong> <strong>the</strong> <strong>electrical</strong> drive system<br />

Safety relevant aspects by using a PSM/IPM for an axle drive<br />

Three-phase short circuit Two-phase short circuit<br />

9th International CTI Symposium<br />

„Innovative Automotive Transmissions“<br />

•n= const<br />

Braking torque Oscillation torque<br />

Idle speed /<br />

no load operation<br />

Dragging torque<br />

B<br />

B<br />

G E E G<br />

Chassis<br />

G E E G<br />

Front<br />

wheels<br />

Rear<br />

wheels<br />

www.h<strong>of</strong>er.de 2.12.09 / Schäfer<br />

24<br />

B<br />

B


Challenges <strong>of</strong> <strong>the</strong> Series Production <strong>of</strong> Electric Drive Systems<br />

Challenges <strong>of</strong> <strong>the</strong> <strong>electrical</strong> drive system<br />

Safety relevant aspects<br />

By using an <strong>electrical</strong> axle drive based on an asynchronous <strong>machine</strong> or a separately<br />

excited synchronous <strong>machine</strong> <strong>the</strong>re are no special measures in case <strong>of</strong> failure<br />

required<br />

By using an <strong>electrical</strong> axle drive based on a permanent magnet excited synchronous<br />

<strong>machine</strong> (PSM/IPM) <strong>the</strong> following measures are required in case <strong>of</strong> a three-<br />

phase/two-phase short circuit in order to avoid safety problems with <strong>the</strong> vehicle:<br />

Disconnecting <strong>the</strong> mechanical drive train by a fast switching clutch<br />

Disconnecting <strong>the</strong> terminals <strong>of</strong> <strong>the</strong> <strong>machine</strong> or disconnecting <strong>the</strong> star point <strong>of</strong> <strong>the</strong> threephase<br />

winding <strong>of</strong> <strong>the</strong> <strong>machine</strong><br />

9th International CTI Symposium<br />

„Innovative Automotive Transmissions“<br />

www.h<strong>of</strong>er.de 2.12.09 / Schäfer<br />

25


Challenges <strong>of</strong> <strong>the</strong> Series Production <strong>of</strong> Electric Drive Systems<br />

Conclusion<br />

Some important items have been considered in order to avoid serious problems with<br />

<strong>the</strong> mass production <strong>of</strong> hybrid– and <strong>electrical</strong> vehicles<br />

It is very important to consider <strong>the</strong> total vehicle system behavior in <strong>the</strong> operation<br />

mode as well as in <strong>the</strong> failure mode <strong>of</strong> an <strong>electrical</strong> axle drive<br />

It was shown, what kind <strong>of</strong> an <strong>electrical</strong> axle drive has a big potential for <strong>the</strong> future<br />

to fulfill <strong>the</strong> economic and technical requirements <strong>of</strong> hybrid- and <strong>electrical</strong> vehicles<br />

9th International CTI Symposium<br />

„Innovative Automotive Transmissions“<br />

www.h<strong>of</strong>er.de 2.12.09 / Schäfer<br />

26


Challenges <strong>of</strong> <strong>the</strong> Series Production <strong>of</strong> Electric Drive Systems<br />

Contact<br />

Your contact: Dr. Heinz Schaefer<br />

e-mail info@h<strong>of</strong>er.de<br />

9th International CTI Symposium<br />

„Innovative Automotive Transmissions“<br />

tel. +49 931 359335-0<br />

fax +49 931 359335-129<br />

Visit us at: www.h<strong>of</strong>er.de<br />

www.h<strong>of</strong>er.de 2.12.09 / Schäfer<br />

27

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!