10.03.2018 Views

Electrical Experiments Book

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Approved SOPL Study Guide<br />

Lessons In Electric Circuits, Volume 6 – <strong>Experiments</strong>


FirstEdition,lastupdateJanuary18,2010


2


LessonsInElectricCircuits,VolumeVI–<strong>Experiments</strong><br />

ByTonyR.Kuphaldt<br />

FirstEdition,lastupdateJanuary18,2010


i<br />

c○2002-2011,TonyR.Kuphaldt<br />

ThisbookispublishedunderthetermsandconditionsoftheDesignScienceLicense.These<br />

termsandconditionsallowforfreecopying,distribution,and/ormodificationofthisdocument<br />

bythegeneralpublic.ThefullDesignScienceLicensetextisincludedinthelastchapter.<br />

Asanopenandcollaborativelydevelopedtext,thisbookisdistributedinthehopethat<br />

itwillbeuseful,butWITHOUTANYWARRANTY;withouteventheimpliedwarrantyof<br />

MERCHANTABILITYorFITNESSFORAPARTICULARPURPOSE.SeetheDesignScience<br />

Licenseformoredetails.<br />

AvailableinitsentiretyaspartoftheOpen<strong>Book</strong>Projectcollectionat:<br />

openbookproject.net/electricCircuits<br />

PRINTINGHISTORY<br />

• FirstEdition:PrintedinApril2002.SourcefileswritteninSubMLformat.SubMLisa<br />

simplemarkuplanguagedesignedtoeasilyconverttoothermarkupslikeL A TEX,HTML,<br />

orDoc<strong>Book</strong>usingnothingbutsearch-and-replacesubstitutions.


ii


Contents<br />

1 INTRODUCTION 1<br />

1.1 Electronicsasscience . ................................. 1<br />

1.2 Settingupahomelab . ................................. 3<br />

1.3 Contributors........................................ 14<br />

2 BASICCONCEPTSANDTESTEQUIPMENT 15<br />

2.1 Voltmeterusage...................................... 15<br />

2.2 Ohmmeterusage ..................................... 21<br />

2.3 Averysimplecircuit ................................... 28<br />

2.4 Ammeterusage ...................................... 35<br />

2.5 Ohm’sLaw......................................... 42<br />

2.6 Nonlinearresistance ................................... 45<br />

2.7 Powerdissipation..................................... 48<br />

2.8 Circuitwithaswitch................................... 53<br />

2.9 Electromagnetism .................................... 55<br />

2.10 Electromagneticinduction................................ 57<br />

3 DCCIRCUITS 59<br />

3.1 Introduction........................................ 59<br />

3.2 Seriesbatteries ...................................... 60<br />

3.3 Parallelbatteries ..................................... 63<br />

3.4 Voltagedivider ...................................... 67<br />

3.5 Currentdivider ...................................... 78<br />

3.6 Potentiometerasavoltagedivider ........................... 87<br />

3.7 Potentiometerasarheostat............................... 93<br />

3.8 Precisionpotentiometer ................................. 99<br />

3.9 Rheostatrangelimiting ................................. 102<br />

3.10 Thermoelectricity..................................... 109<br />

3.11 Makeyourownmultimeter ............................... 112<br />

3.12 Sensitivevoltagedetector ................................ 117<br />

3.13 Potentiometricvoltmeter ................................ 122<br />

3.14 4-wireresistancemeasurement............................. 127<br />

3.15 Averysimplecomputer ................................. 131<br />

3.16 Potatobattery. ...................................... 136<br />

iii


iv<br />

CONTENTS<br />

3.17 Capacitorcharginganddischarging .......................... 138<br />

3.18 Rate-of-changeindicator................................. 142<br />

4 ACCIRCUITS 145<br />

4.1 Introduction........................................ 145<br />

4.2 Transformer–powersupply .............................. 147<br />

4.3 Buildatransformer ................................... 151<br />

4.4 Variableinductor ..................................... 153<br />

4.5 Sensitiveaudiodetector ................................. 155<br />

4.6 SensingACmagneticfields ............................... 160<br />

4.7 SensingACelectricfields ................................ 162<br />

4.8 Automotivealternator . ................................. 164<br />

4.9 Inductionmotor...................................... 170<br />

4.10 Inductionmotor,large . ................................. 174<br />

4.11 Phaseshift......................................... 177<br />

4.12 Soundcancellation .................................... 180<br />

4.13 Musicalkeyboardasasignalgenerator ........................ 183<br />

4.14 PCOscilloscope ...................................... 186<br />

4.15 Waveformanalysis .................................... 189<br />

4.16 Inductor-capacitor”tank”circuit . ........................... 191<br />

4.17 Signalcoupling ...................................... 194<br />

5 DISCRETESEMICONDUCTORCIRCUITS 201<br />

5.1 Introduction........................................ 202<br />

5.2 Commutatingdiode ................................... 203<br />

5.3 Half-waverectifier .................................... 205<br />

5.4 Full-wavecenter-taprectifier .............................. 213<br />

5.5 Full-wavebridgerectifier ................................ 218<br />

5.6 Rectifier/filtercircuit................................... 221<br />

5.7 Voltageregulator ..................................... 227<br />

5.8 Transistorasaswitch . ................................. 230<br />

5.9 Staticelectricitysensor ................................. 235<br />

5.10 Pulsed-lightsensor .................................... 238<br />

5.11 Voltagefollower...................................... 241<br />

5.12 Common-emitteramplifier ............................... 246<br />

5.13 Multi-stageamplifier................................... 251<br />

5.14 Currentmirror ...................................... 255<br />

5.15 JFETcurrentregulator ................................. 261<br />

5.16 Differentialamplifier................................... 266<br />

5.17 Simpleop-amp ...................................... 269<br />

5.18 Audiooscillator ...................................... 274<br />

5.19 Vacuumtubeaudioamplifier .............................. 277<br />

Bibliography ........................................... 288


CONTENTS<br />

v<br />

6 ANALOGINTEGRATEDCIRCUITS 289<br />

6.1 Introduction........................................ 289<br />

6.2 Voltagecomparator.................................... 291<br />

6.3 Precisionvoltagefollower ................................ 294<br />

6.4 Noninvertingamplifier. ................................. 298<br />

6.5 High-impedancevoltmeter ............................... 301<br />

6.6 Integrator ......................................... 305<br />

6.7 555audiooscillator.................................... 311<br />

6.8 555rampgenerator ................................... 314<br />

6.9 PWMpowercontroller . ................................. 317<br />

6.10 ClassBaudioamplifier ................................. 321<br />

7 DIGITALINTEGRATEDCIRCUITS 331<br />

7.1 Introduction........................................ 331<br />

7.2 Basicgatefunction .................................... 333<br />

7.3 NORgateS-Rlatch.................................... 337<br />

7.4 NANDgateS-Renabledlatch ............................. 341<br />

7.5 NANDgateS-Rflip-flop ................................. 343<br />

7.6 LEDsequencer ...................................... 347<br />

7.7 Simplecombinationlock................................. 356<br />

7.8 3-bitbinarycounter ................................... 359<br />

7.9 7-segmentdisplay .................................... 361<br />

8 555TIMERCIRCUITS 365<br />

8.1 The555IC......................................... 365<br />

8.2 555SchmittTrigger ................................... 366<br />

8.3 555HYSTERETICOSCILLATOR ........................... 370<br />

8.4 555MONOSTABLEMULTIVIBRATOR . ...................... 374<br />

8.5 CMOS555LONGDURATIONMINIMUMPARTSREDLEDFLASHER .... 380<br />

8.6 CMOS555LONGDURATIONBLUELEDFLASHER ............... 385<br />

8.7 CMOS555LONGDURATIONFLYBACKLEDFLASHER . ........... 389<br />

8.8 HOWTOMAKEANINDUCTOR ........................... 392<br />

8.9 CMOS555LONGDURATIONREDLEDFLASHER................ 395<br />

A-1ABOUTTHISBOOK 399<br />

A-2CONTRIBUTORLIST 405<br />

A-3DESIGNSCIENCELICENSE 409<br />

INDEX 412


Chapter1<br />

INTRODUCTION<br />

Contents<br />

1.1 Electronicsasscience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1<br />

1.2 Settingupahomelab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3<br />

1.2.1 Workarea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3<br />

1.2.2 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3<br />

1.2.3 Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12<br />

1.3 Contributors...................................... 14<br />

1.1 Electronicsasscience<br />

Electronicsisascience,andaveryaccessiblescienceatthat. Withotherareasofscientific<br />

study,expensiveequipmentisgenerallyrequiredtoperformanynon-trivialexperiments.Not<br />

sowithelectronics. Manyadvancedconceptsmaybeexploredusingpartsandequipment<br />

totalingunderafewhundredUSdollars. Thisisgood,becausehands-onexperimentationis<br />

vitaltogainingscientificknowledgeaboutanysubject.<br />

WhenIstartedwritingLessonsInElectricCircuits,myintentwastocreateatextbook<br />

suitableforintroductorycollegeuse.However,beingmostlyself-taughtinelectronicsmyself,<br />

Iknewthevalueofagoodtextbooktohobbyistsandexperimentersnotenrolledinanyformal<br />

electronicscourse.Manypeopleselflesslyvolunteeredtheirtimeandexpertiseinhelpingme<br />

learnelectronicswhenIwasyounger,andmyintentistohonortheirserviceandlovebygiving<br />

backtotheworldwhattheygavetome.<br />

Inorderforsomeonetoteachthemselvesasciencesuchaselectronics,theymustengagein<br />

hands-onexperimentation.Knowledgegleanedfrombooksalonehaslimiteduse,especiallyin<br />

scientificendeavors.Ifmycontributiontosocietyistobecomplete,Imustincludeaguideto<br />

experimentationalongwiththetext(s)ontheory,sothattheindividuallearningontheirown<br />

hasaresourcetoguidetheirexperimentaladventures.<br />

Aformallaboratorycourseforcollegeelectronicsstudyrequiresanenormousamountof<br />

worktoprepare,andusuallymustbebasedaroundspecificpartsandequipmentsothatthe<br />

1


2 CHAPTER1. INTRODUCTION<br />

experimentswillbesufficientdetailed,withresultssufficientlyprecisetoallowforrigorous<br />

comparisonbetweenexperimentalandtheoreticaldata.Aprocessofassessment,articulated<br />

throughaqualifiedinstructor,isalsovitaltoguaranteethatacertainleveloflearninghas<br />

takenplace. Peerreview(comparisonofexperimentalresultswiththeworkofothers)isanotherimportantcomponentofcollege-levellaboratorystudy,andhelpstoimprovethequality<br />

oflearning.SinceIcannotmeetthesecriteriathroughthemediumofabook,itisimpractical<br />

formetopresentacompletelaboratorycoursehere.Intheinterestofkeepingthisexperiment<br />

guidereasonablylow-costforpeopletofollow,andpracticalfordeploymentovertheinternet,I<br />

amforcedtodesigntheexperimentsatalowerlevelthanwhatwouldbeexpectedforacollege<br />

labcourse.<br />

Theexperimentsinthisvolumebeginatalevelappropriateforsomeonewithnoelectronics<br />

knowledge,andprogresstohigherlevels.Theystressqualitativeknowledgeoverquantitative<br />

knowledge,althoughtheycouldserveastemplatesformorerigorouscoursework. Ifthere<br />

isanyportionofLessonsInElectricCircuitsthatwillremain”incomplete,”itisthisone: I<br />

fullyintendtocontinueaddingexperimentsadinfinitumsoastoprovidetheexperimenteror<br />

hobbyistwithawealthofideastoexplorethescienceofelectronics. Thisvolumeofthebook<br />

seriesisalsotheeasiesttocontributeto,forthosewhowouldliketohelpmeinprovidingfree<br />

informationtopeoplelearningelectronics. Itdoesn’ttakeatremendousefforttodescribean<br />

experimentortwo,andIwillgladlyincludeitifyouemailittome,givingyoufullcreditfor<br />

thework.RefertoAppendix2fordetailsoncontributingtothisbook.<br />

Whenperformingtheseexperiments,feelfreetoexplorebytryingdifferentcircuitconstructionandmeasurementtechniques.Ifsomethingisn’tworkingasthetextdescribesitshould,<br />

don’tgiveup! It’sprobablyduetoasimpleprobleminconstruction(loosewire,wrongcomponentvalue)ortestequipmentsetup.Itcanbefrustratingworkingthroughtheseproblems<br />

onyourown,buttheknowledgegainedby”troubleshooting”acircuityourselfisatleastas<br />

importantastheknowledgegainedbyaproperlyfunctioningexperiment. Thisisoneofthe<br />

mostimportantreasonswhyexperimentationissovitaltoyourscientificeducation:thereal<br />

problemsyouwillinvariablyencounterinexperimentationchallengeyoutodeveloppractical<br />

problem-solvingskills.<br />

Inmanyoftheseexperiments,IofferpartnumbersforRadioShackbrandcomponents.This<br />

isnotanendorsementofRadioShack,butsimplyaconvenientreferencetoanelectronicsupply<br />

companywell-knowninNorthAmerica.Oftentimes,componentsofbetterqualityandlower<br />

pricemaybeobtainedthroughmail-ordercompaniesandother,lesser-knownsupplyhouses.I<br />

stronglyrecommendthatexperimentersobtainsomeofthemoreexpensivecomponentssuch<br />

astransformers(seetheACchapter)bysalvagingthemfromdiscardedelectricalappliances,<br />

bothforeconomicandecologicalreasons.<br />

Allexperimentsshowninthisbookaredesignedwithsafetyinmind.Itisnearlyimpossible<br />

toshockorotherwisehurtyourselfbybattery-poweredexperimentsorothercircuitsoflow<br />

voltage.However,hazardsdoexistbuildinganythingwithyourowntwohands.Wherethere<br />

isagreater-than-normallevelofdangerinanexperiment,Itakeeffortstodirectthereader’s<br />

attentiontowardit.However,itisunfortunatelynecessaryinthislitigioussocietytodisclaim<br />

anyandallliabilityfortheoutcomeofanyexperimentpresentedhere. Neithermyselfnor<br />

anycontributorsbearresponsibilityforinjuriesresultingfromtheconstructionoruseofany<br />

oftheseprojects,fromthemis-handlingofelectricitybytheexperimenter,orfromanyother<br />

unsafepracticesleadingtoinjury.Performtheseexperimentsatyourownrisk!


1.2. SETTINGUPAHOMELAB 3<br />

1.2 Settingupahomelab<br />

Inordertobuildthecircuitsdescribedinthisvolume,youwillneedasmallworkarea,as<br />

wellasafewtoolsandcriticalsupplies.Thissectiondescribesthesetupofahomeelectronics<br />

laboratory.<br />

1.2.1 Workarea<br />

Aworkareashouldconsistofalargeworkbench,desk,ortable(preferablywooden)forperformingcircuitassembly,withhouseholdelectricalpower(120voltsAC)readilyaccessibleto<br />

powersolderingequipment,powersupplies,andanytestequipment. Inexpensivedesksintendedforcomputerusefunctionverywellforthispurpose.Avoidametal-surfacedesk,asthe<br />

electricalconductivityofametalsurfacecreatesbothashockhazardandtheverydistinctpossibilityofunintentional”shortcircuits”developingfromcircuitcomponentstouchingthemetal<br />

tabletop. Vinylandplasticbenchsurfacesaretobeavoidedfortheirabilitytogenerateand<br />

storelargestatic-electriccharges,whichmaydamagesensitiveelectroniccomponents. Also,<br />

thesematerialsmelteasilywhenexposedtohotsolderingironsandmoltensolderdroplets.<br />

Ifyoucannotobtainawooden-surfaceworkbench,youmayturnanyformoftableordesk<br />

intoonebylayingapieceofplywoodontop.Ifyouarereasonablyskilledwithwoodworking<br />

tools,youmayconstructyourowndeskusingplywoodand2x4boards.<br />

Theworkareashouldbewell-litandcomfortable. Ihaveasmallradiosetuponmyown<br />

workbenchforlisteningtomusicornewsasIexperiment. Myownworkbenchhasa”power<br />

strip”receptacleandswitchassemblymountedtotheunderside,intowhichIplugall120<br />

voltdevices. Itisconvenienttohaveasingleswitchforshuttingoffallpowerincaseofan<br />

accidentalshort-circuit!<br />

1.2.2 Tools<br />

Afewtoolsarerequiredforbasicelectronicswork.Mostofthesetoolsareinexpensiveandeasy<br />

toobtain.Ifyoudesiretokeepthecostaslowaspossible,youmightwanttosearchforthem<br />

atthriftstoresandpawnshopsbeforebuyingthemnew.Asyoucantellfromthephotographs,<br />

someofmyowntoolsareratheroldbutfunctionwellnonetheless.<br />

Firstandforemostinyourtoolcollectionisamultimeter.Thisisanelectricalinstrument<br />

designedtomeasurevoltage,current,resistance,andoftenothervariablesaswell.Multimetersaremanufacturedinbothdigitalandanalogform.<br />

Adigitalmultimeterispreferredfor<br />

precisionwork,butanalogmetersarealsousefulforgaininganintuitiveunderstandingof<br />

instrumentsensitivityandrange.<br />

MyowndigitalmultimeterisaFlukemodel27,purchasedin1987:<br />

Digitalmultimeter


4 CHAPTER1. INTRODUCTION<br />

======================================<br />

Mostanalogmultimeterssoldtodayarequiteinexpensive,andnotnecessarilyprecision<br />

testinstruments.Irecommendhavingbothdigitalandanalogmetertypesinyourtoolcollection,spendingaslittlemoneyaspossibleontheanalogmultimeterandinvestinginagoodqualitydigitalmultimeter(IhighlyrecommendtheFlukebrand).<br />

AtestinstrumentIhavefoundindispensableinmyhomeworkisasensitivevoltagedetector,orsensitiveaudiodetector,describedinnearlyidenticalexperimentsintwochapters<br />

ofthisbookvolume. Itisnothingmorethanasensitizedsetofaudioheadphones,equipped<br />

withanattenuator(volumecontrol)andlimitingdiodestolimitsoundintensityfromstrong<br />

signals.Itspurposeistoaudiblyindicatethepresenceoflow-intensityvoltagesignals,DCor<br />

AC.Intheabsenceofanoscilloscope,thisisamostvaluabletool,becauseitallowsyoutolistentoanelectronicsignal,andtherebydeterminesomethingofitsnature.Fewtoolsengender<br />

anintuitivecomprehensionoffrequencyandamplitudeasthis! Iciteitsuseinmanyofthe<br />

experimentsshowninthisvolume,soIstronglyencouragethatyoubuildyourown. Second<br />

onlytoamultimeter,itisthemostusefulpieceoftestequipmentinthecollectionofthebudget<br />

electronicsexperimenter.<br />

Sensitivevoltage/audiodetector


1.2. SETTINGUPAHOMELAB 5<br />

Asyoucansee,Ibuiltmydetectorusingscrapparts(householdelectricalswitch/receptacle<br />

boxfortheenclosure,sectionofbrownlampcordforthetestleads).Evensomeoftheinternal<br />

componentsweresalvagedfromscrap(thestep-downtransformerandheadphonejackwere<br />

takenfromanoldradio,purchasedinnon-workingconditionfromathriftstore). Theentirething,includingtheheadphonespurchasedsecond-hand,costnomorethan$15tobuild.<br />

Ofcourse,onecouldtakemuchgreatercareinchoosingconstructionmaterials(metalbox,<br />

shieldedtestprobecable),butitprobablywouldn’timproveitsperformancesignificantly.<br />

Thesinglemostinfluentialcomponentwithregardtodetectorsensitivityistheheadphone<br />

assembly:generallyspeaking,thegreaterthe”dB”ratingoftheheadphones,thebetterthey<br />

willfunctionforthispurpose.Sincetheheadphonesneednotbemodifiedforuseinthedetector<br />

circuit,andtheycanbeunpluggedfromit,youmightjustifythepurchaseofmoreexpensive,<br />

high-qualityheadphonesbyusingthemaspartofahomeentertainment(audio/video)system.<br />

======================================<br />

Alsoessentialisasolderlessbreadboard,sometimescalledaprototypingboard,orprotoboard.<br />

Thisdeviceallowsyoutoquicklyjoinelectroniccomponentstooneanotherwithout<br />

havingtosoldercomponentterminalsandwirestogether.<br />

Solderlessbreadboard


6 CHAPTER1. INTRODUCTION<br />

======================================<br />

Whenworkingwithwire,youneedatoolto”strip”theplasticinsulationofftheendsso<br />

thatbarecoppermetalisexposed. Thistooliscalledawirestripper,anditisaspecialform<br />

ofplierwithseveralknife-edgedholesinthejawareasizedjustrightforcuttingthroughthe<br />

plasticinsulationandnotthecopper,foramultitudeofwiresizes,orgauges.Shownhereare<br />

twodifferentsizesofwirestrippingpliers:<br />

Wirestrippingpliers<br />

======================================<br />

Inordertomakequick,temporaryconnectionsbetweensomeelectroniccomponents,you<br />

needjumperwireswithsmall”alligator-jaw”clipsateachend.Thesemaybepurchasedcomplete,orassembledfromclipsandwires.<br />

Jumperwires(assoldbyRadioShack)


1.2. SETTINGUPAHOMELAB 7<br />

Jumperwires(home-made)<br />

Thehome-madejumperwireswithlarge,uninsulated(baremetal)alligatorclipsareokay<br />

tousesolongascareistakentoavoidanyunintentionalcontactbetweenthebareclipsand<br />

anyotherwiresorcomponents. Foruseincrowdedbreadboardcircuits,jumperwireswith<br />

insulated(rubber-covered)clipslikethejumpershownfromRadioShackaremuchpreferred.<br />

======================================<br />

Needle-nosepliersaredesignedtograspsmallobjects,andareespeciallyusefulforpushing<br />

wiresintostubbornbreadboardholes.<br />

Needle-nosepliers


8 CHAPTER1. INTRODUCTION<br />

======================================<br />

Notoolsetwouldbecompletewithoutscrewdrivers,andIrecommendacomplementary<br />

pair(3/16inchslottedand#2Phillips)asthestartingpointforyourcollection.Youmaylater<br />

finditusefultoinvestinasetofjeweler’sscrewdriversforworkwithverysmallscrewsand<br />

screw-headadjustments.<br />

Screwdrivers<br />

======================================<br />

Forprojectsinvolvingprinted-circuitboardassemblyorrepair,asmallsolderingironanda<br />

spoolof”rosin-core”solderareessentialtools.Irecommenda25wattsolderingiron,nolarger<br />

forprintedcircuitboardwork,andthethinnestsolderyoucanfind. Donotuse”acid-core”<br />

solder!Acid-coresolderisintendedforthesolderingofcoppertubes(plumbing),whereasmall<br />

amountofacidhelpstocleanthecopperofsurfaceimpuritiesandprovideastrongerbond.If<br />

usedforelectricalwork,theresidualacidwillcausewirestocorrode. Also,youshouldavoid<br />

soldercontainingthemetallead,optinginsteadforsilver-alloysolder. Ifyoudonotalready<br />

wearglasses,apairofsafetyglassesishighlyrecommendedwhilesoldering,topreventbitsof


1.2. SETTINGUPAHOMELAB 9<br />

moltensolderfromaccidentlylandinginyoureyeshouldawirereleasefromthejointduring<br />

thesolderingprocessandflingbitsofsoldertowardyou.<br />

Solderingironandsolder(”rosincore”)<br />

======================================<br />

Projectsrequiringthejoiningoflargewiresbysolderingwillnecessitateamorepowerful<br />

heatsourcethana25wattsolderingiron.Asolderinggunisapracticaloption.<br />

Solderinggun<br />

======================================<br />

Knives,likescrewdrivers,areessentialtoolsforallkindsofwork. Forsafety’ssake,I<br />

recommenda”utility”knifewithretractingblade.Theseknivesarealsoadvantageoustohave<br />

fortheirabilitytoacceptreplacementblades.<br />

Utilityknife


10 CHAPTER1. INTRODUCTION<br />

======================================<br />

Pliersotherthantheneedle-nosetypeareusefulfortheassemblyanddisassemblyofelectronicdevicechassis.<br />

TwotypesIrecommendareslip-jointandadjustable-joint(”Channellock”).<br />

Slip-jointpliers<br />

Adjustable-jointpliers


1.2. SETTINGUPAHOMELAB 11<br />

======================================<br />

Drillingmayberequiredfortheassemblyoflargeprojects. Althoughpowerdrillswork<br />

well,Ihavefoundthatasimplehand-crankdrilldoesaremarkablejobdrillingthroughplastic,<br />

wood,andmostmetals.Itiscertainlysaferandquieterthanapowerdrill,andcostsquitea<br />

bitless.<br />

Handdrill<br />

Asthewearonmydrillindicates,itisanoften-usedtoolaroundmyhome!<br />

======================================<br />

Someexperimentswillrequireasourceofaudio-frequencyvoltagesignals.Normally,this<br />

typeofsignalisgeneratedinanelectronicslaboratorybyadevicecalledasignalgenerator<br />

orfunctiongenerator. Whilebuildingsuchadeviceisnotimpossible(nordifficult!),itoften<br />

requirestheuseofanoscilloscopetofine-tune,andoscilloscopesareusuallyoutsidethebudgetaryrangeofthehomeexperimenter.Arelativelyinexpensivealternativetoacommercial<br />

signalgeneratorisanelectronickeyboardofthemusicaltype.Youneednotbeamusicianto<br />

operateoneforthepurposesofgeneratinganaudiosignal(justpressanykeyontheboard!),


12 CHAPTER1. INTRODUCTION<br />

andtheymaybeobtainedquitereadilyatsecond-handstoresforsubstantiallylessthannew<br />

price.Theelectronicsignalgeneratedbythekeyboardisconductedtoyourcircuitviaaheadphonecablepluggedintothe”headphones”jack.Moredetailsregardingtheuseofa”Musical<br />

KeyboardasaSignalGenerator”maybefoundintheexperimentofthatnameinchapter4<br />

(AC).<br />

1.2.3 Supplies<br />

Wireusedinsolderlessbreadboardsmustbe22-gauge,solidcopper. Spoolsofthiswireare<br />

availablefromelectronicsupplystoresandsomehardwarestores,indifferentinsulationcolors.<br />

Insulationcolorhasnobearingonthewire’sperformance,butdifferentcolorsaresometimes<br />

usefulfor”color-coding”wirefunctionsinacomplexcircuit.<br />

Spoolof22-gauge,solidcopperwire<br />

Notehowthelast1/4inchorsoofthecopperwireprotrudingfromthespoolhasbeen<br />

”stripped”ofitsplasticinsulation.<br />

======================================<br />

Analternativetosolderlessbreadboardcircuitconstructioniswire-wrap,where30-gauge<br />

(verythin!)solidcopperwireistightlywrappedaroundtheterminalsofcomponentsinserted<br />

throughtheholesofafiberglassboard.Nosolderingisrequired,andtheconnectionsmadeare<br />

atleastasdurableassolderedconnections,perhapsmore.Wire-wrappingrequiresaspoolof<br />

thisverythinwire,andaspecialwrappingtool,thesimplestkindresemblingasmallscrewdriver.<br />

Wire-wrapwireandwrappingtool


1.2. SETTINGUPAHOMELAB 13<br />

======================================<br />

Largewire(14gaugeandbigger)maybeneededforbuildingcircuitsthatcarrysignificant<br />

levelsofcurrent.Thoughelectricalwireofpracticallyanygaugemaybepurchasedonspools,<br />

Ihavefoundaveryinexpensivesourceofstranded(flexible),copperwire,availableatany<br />

hardwarestore:cheapextensioncords.Typicallycomprisedofthreewirescoloredwhite,black,<br />

andgreen,extensioncordsareoftensoldatpriceslessthantheretailcostoftheconstituent<br />

wirealone. Thisisespeciallytrueifthecordispurchasedonsale! Also,anextensioncord<br />

providesyouwithapairof120voltconnectors:male(plug)andfemale(receptacle)thatmay<br />

beusedforprojectspoweredby120volts.<br />

Extensioncord,inpackage<br />

Toextractthewires,carefullycuttheouterlayerofplasticinsulationawayusingautility<br />

knife.Withpractice,youmayfindyoucanpeelawaytheouterinsulationbymakingashort<br />

cutinitatoneendofthecable,thengraspingthewireswithonehandandtheinsulation<br />

withtheotherandpullingthemapart.Thisis,ofcourse,muchpreferabletoslicingtheentire<br />

lengthoftheinsulationwithaknife,bothforsafety’ssakeandforthesakeofavoidingcutsin


14 CHAPTER1. INTRODUCTION<br />

theindividualwires’insulation.<br />

======================================<br />

Duringthecourseofbuildingmanycircuits,youwillaccumulatealargenumberofsmall<br />

components. Onetechniqueforkeepingthesecomponentsorganizedistokeepthemina<br />

plastic”organizer”boxlikethetypeusedforfishingtackle.<br />

Componentbox<br />

Inthisviewofoneofmycomponentboxes,youcanseeplentyof1/8wattresistors,transistors,diodes,andevenafew8-pinintegratedcircuits(”chips”).<br />

Labelsforeachcompartment<br />

weremadewithapermanentinkmarker.<br />

1.3 Contributors<br />

Contributorstothischapterarelistedinchronologicalorderoftheircontributions,frommost<br />

recenttofirst.SeeAppendix2(ContributorList)fordatesandcontactinformation.<br />

MichaelWarner(April9,2002): Suggestionsforasectiondescribinghomelaboratory<br />

setup.


Chapter2<br />

BASICCONCEPTSANDTEST<br />

EQUIPMENT<br />

Contents<br />

2.1 Voltmeterusage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15<br />

2.2 Ohmmeterusage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21<br />

2.3 Averysimplecircuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28<br />

2.4 Ammeterusage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35<br />

2.5 Ohm’sLaw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42<br />

2.6 Nonlinearresistance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45<br />

2.7 Powerdissipation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48<br />

2.8 Circuitwithaswitch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53<br />

2.9 Electromagnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55<br />

2.10 Electromagneticinduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57<br />

2.1 Voltmeterusage<br />

PARTSANDMATERIALS<br />

• Multimeter,digitaloranalog<br />

• Assortedbatteries<br />

• Onelight-emittingdiode(RadioShackcatalog#276-026orequivalent)<br />

• Small”hobby”motor,permanent-magnettype(RadioShackcatalog#273-223orequivalent)<br />

15


16 CHAPTER2. BASICCONCEPTSANDTESTEQUIPMENT<br />

• Twojumperwireswith”alligatorclip”ends(RadioShackcatalog#278-1156,278-1157,<br />

orequivalent)<br />

Amultimeterisanelectricalinstrumentcapableofmeasuringvoltage,current,andresistance.<br />

Digitalmultimetershavenumericaldisplays,likedigitalclocks,forindicatingthe<br />

quantityofvoltage,current,orresistance. Analogmultimetersindicatethesequantitiesby<br />

meansofamovingpointeroveraprintedscale.<br />

Analogmultimeterstendtobelessexpensivethandigitalmultimeters,andmorebeneficial<br />

aslearningtoolsforthefirst-timestudentofelectricity.Istronglyrecommendpurchasingan<br />

analogmultimeterbeforepurchasingadigitalmultimeter,buttoeventuallyhavebothinyour<br />

toolkitfortheseexperiments.<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume1,chapter1:”BasicConceptsofElectricity”<br />

LessonsInElectricCircuits,Volume1,chapter8:”DCMeteringCircuits”<br />

LEARNINGOBJECTIVES<br />

• Howtomeasurevoltage<br />

• Characteristicsofvoltage:existingbetweentwopoints<br />

• Selectionofpropermeterrange<br />

ILLUSTRATION


2.1. VOLTMETERUSAGE 17<br />

Digital<br />

multimeter<br />

V<br />

V<br />

OFF<br />

A<br />

A<br />

Analog<br />

multimeter<br />

A<br />

COM<br />

- +<br />

Test leads<br />

Test leads<br />

Test probes<br />

Test probes<br />

+ -<br />

6-volt "lantern"<br />

battery<br />

Light-emitting<br />

diode ("LED")<br />

1.5-volt "D-cell"<br />

battery<br />

Permanentmagnet<br />

motor<br />

INSTRUCTIONS


18 CHAPTER2. BASICCONCEPTSANDTESTEQUIPMENT<br />

Inalltheexperimentsinthisbook,youwillbeusingsomesortoftestequipmenttomeasure<br />

aspectsofelectricityyoucannotdirectlysee,feel,hear,taste,orsmell.Electricity–atleastin<br />

small,safequantities–isinsensiblebyourhumanbodies.Yourmostfundamental”eyes”inthe<br />

worldofelectricityandelectronicswillbeadevicecalledamultimeter.Multimetersindicate<br />

thepresenceof,andmeasurethequantityof,electricalpropertiessuchasvoltage,current,and<br />

resistance.Inthisexperiment,youwillfamiliarizeyourselfwiththemeasurementofvoltage.<br />

Voltageisthemeasureofelectrical”push”readytomotivateelectronstomovethrougha<br />

conductor.Inscientificterms,itisthespecificenergyperunitcharge,mathematicallydefined<br />

asjoulespercoulomb.Itisanalogoustopressureinafluidsystem:theforcethatmovesfluid<br />

throughapipe,andismeasuredintheunitoftheVolt(V).<br />

Yourmultimetershouldcomewithsomebasicinstructions.Readthemwell!Ifyourmultimeterisdigital,itwillrequireasmallbatterytooperate.<br />

Ifitisanalog,itdoesnotneeda<br />

batterytomeasurevoltage.<br />

Somedigitalmultimetersareautoranging. Anautorangingmeterhasonlyafewselectorswitch(dial)positions.<br />

Manual-rangingmetershaveseveraldifferentselectorpositions<br />

foreachbasicquantity: severalforvoltage,severalforcurrent,andseveralforresistance.<br />

Autorangingisusuallyfoundononlythemoreexpensivedigitalmeters,andistomanual<br />

rangingasanautomatictransmissionistoamanualtransmissioninacar. Anautoranging<br />

meter”shiftsgears”automaticallytofindthebestmeasurementrangetodisplaytheparticular<br />

quantitybeingmeasured.<br />

Setyourmultimeter’sselectorswitchtothehighest-value”DCvolt”positionavailable.AutorangingmultimetersmayonlyhaveasinglepositionforDCvoltage,inwhichcaseyouneed<br />

tosettheswitchtothatoneposition. Touchtheredtestprobetothepositive(+)sideofa<br />

battery,andtheblacktestprobetothenegative(-)sideofthesamebattery.Themetershould<br />

nowprovideyouwithsomesortofindication.Reversethetestprobeconnectionstothebattery<br />

ifthemeter’sindicationisnegative(onananalogmeter,anegativevalueisindicatedbythe<br />

pointerdeflectingleftinsteadofright).<br />

Ifyourmeterisamanual-rangetype,andtheselectorswitchhasbeensettoahigh-range<br />

position,theindicationwillbesmall. MovetheselectorswitchtothenextlowerDCvoltage<br />

rangesettingandreconnecttothebattery.Theindicationshouldbestrongernow,asindicated<br />

byagreaterdeflectionoftheanalogmeterpointer(needle),ormoreactivedigitsonthedigital<br />

meterdisplay. Forthebestresults,movetheselectorswitchtothelowest-rangesettingthat<br />

doesnot”over-range”themeter. Anover-rangedanalogmeterissaidtobe”pegged,”asthe<br />

needlewillbeforcedallthewaytotheright-handsideofthescale,pastthefull-rangescale<br />

value.Anover-rangeddigitalmetersometimesdisplaystheletters”OL”,oraseriesofdashed<br />

lines.Thisindicationismanufacturer-specific.<br />

Whathappensifyouonlytouchonemetertestprobetooneendofabattery?Howdoesthe<br />

meterhavetoconnecttothebatteryinordertoprovideanindication?Whatdoesthistellus<br />

aboutvoltmeteruseandthenatureofvoltage? Istheresuchathingasvoltage”at”asingle<br />

point?<br />

Besuretomeasuremorethanonesizeofbattery,andlearnhowtoselectthebestvoltage<br />

rangeonthemultimetertogiveyoumaximumindicationwithoutover-ranging.<br />

NowswitchyourmultimetertothelowestDCvoltagerangeavailable,andtouchthemeter’s<br />

testprobestotheterminals(wireleads)ofthelight-emittingdiode(LED).AnLEDisdesigned<br />

toproducelightwhenpoweredbyasmallamountofelectricity,butLEDsalsohappento<br />

generateDCvoltagewhenexposedtolight,somewhatlikeasolarcell.PointtheLEDtoward


2.1. VOLTMETERUSAGE 19<br />

abrightsourceoflightwithyourmultimeterconnectedtoit,andnotethemeter’sindication:<br />

Light source<br />

LED<br />

- +<br />

Batteriesdevelopelectricalvoltagethroughchemicalreactions. Whenabattery”dies,”it<br />

hasexhausteditsoriginalstoreofchemical”fuel.”TheLED,however,doesnotrelyonan<br />

internal”fuel”togeneratevoltage;rather,itconvertsopticalenergyintoelectricalenergy.So<br />

longasthereislighttoilluminatetheLED,itwillproducevoltage.<br />

Anothersourceofvoltagethroughenergyconversionagenerator. Thesmallelectricmotorspecifiedinthe”PartsandMaterials”listfunctionsasanelectricalgeneratorifitsshaft<br />

isturnedbyamechanicalforce. Connectyourvoltmeter(yourmultimeter,settothe”volt”<br />

function)tothemotor’sterminalsjustasyouconnectedittotheLED’sterminals,andspin<br />

theshaftwithyourfingers. Themetershouldindicatevoltagebymeansofneedledeflection<br />

(analog)ornumericalreadout(digital).<br />

Ifyoufinditdifficulttomaintainbothmetertestprobesinconnectionwiththemotor’s<br />

terminalswhilesimultaneouslyspinningtheshaftwithyourfingers,youmayusealligator<br />

clip”jumper”wireslikethis:<br />

Jumper<br />

wire<br />

Alligator<br />

clip<br />

- +<br />

Motor


20 CHAPTER2. BASICCONCEPTSANDTESTEQUIPMENT<br />

Determinetherelationshipbetweenvoltageandgeneratorshaftspeed? Reversethegenerator’sdirectionofrotationandnotethechangeinmeterindication.Whenyoureverseshaft<br />

rotation,youchangethepolarityofthevoltagecreatedbythegenerator.Thevoltmeterindicatespolaritybydirectionofneedledirection(analog)orsignofnumericalindication(digital).<br />

Whentheredtestleadispositive(+)andtheblacktestleadnegative(-),themeterwillregister<br />

voltageinthenormaldirection. Iftheappliedvoltageisofthereversepolarity(negativeon<br />

redandpositiveonblack),themeterwillindicate”backwards.”


2.2. OHMMETERUSAGE 21<br />

2.2 Ohmmeterusage<br />

PARTSANDMATERIALS<br />

• Multimeter,digitaloranalog<br />

• Assortedresistors(RadioShackcatalog#271-312isa500-pieceassortment)<br />

• Rectifyingdiode(1N4001orequivalent;RadioShackcatalog#276-1101)<br />

• CadmiumSulphidephotocell(RadioShackcatalog#276-1657)<br />

• Breadboard(RadioShackcatalog#276-174orequivalent)<br />

• Jumperwires<br />

• Paper<br />

• Pencil<br />

• Glassofwater<br />

• Tablesalt<br />

Thisexperimentdescribeshowtomeasuretheelectricalresistanceofseveralobjects.You<br />

neednotpossessallitemslistedaboveinordertoeffectivelylearnaboutresistance. Conversely,youneednotlimityourexperimentstotheseitems.However,besuretonevermeasuretheresistanceofanyelectrically”live”objectorcircuit.Inotherwords,donotattemptto<br />

measuretheresistanceofabatteryoranyothersourceofsubstantialvoltageusingamultimetersettotheresistance(”ohms”)function.Failingtoheedthiswarningwilllikelyresultin<br />

meterdamageandevenpersonalinjury.<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume1,chapter1:”BasicConceptsofElectricity”<br />

LessonsInElectricCircuits,Volume1,chapter8:”DCMeteringCircuits”<br />

LEARNINGOBJECTIVES<br />

• Determinationandcomprehensionof”electricalcontinuity”<br />

• Determinationandcomprehensionof”electricallycommonpoints”<br />

• Howtomeasureresistance<br />

• Characteristicsofresistance:existingbetweentwopoints<br />

• Selectionofpropermeterrange<br />

• Relativeconductivityofvariouscomponentsandmaterials


22 CHAPTER2. BASICCONCEPTSANDTESTEQUIPMENT<br />

ILLUSTRATION<br />

Incandescent<br />

lamp<br />

Photocell<br />

Diode<br />

Resistor<br />

Resistor<br />

INSTRUCTIONS<br />

Resistanceisthemeasureofelectrical”friction”aselectronsmovethroughaconductor.It<br />

ismeasuredintheunitofthe”Ohm,”thatunitsymbolizedbythecapitalGreekletteromega<br />

(Ω).<br />

Setyourmultimetertothehighestresistancerangeavailable. Theresistancefunctionis<br />

usuallydenotedbytheunitsymbolforresistance:theGreekletteromega(Ω),orsometimes<br />

bytheword”ohms.”Touchthetwotestprobesofyourmetertogether. Whenyoudo,the<br />

metershouldregister0ohmsofresistance. Ifyouareusingananalogmeter,youwillnotice<br />

theneedledeflectfull-scalewhentheprobesaretouchedtogether,andreturntoitsresting<br />

positionwhentheprobesarepulledapart. Theresistancescaleonananalogmultimeteris<br />

reverse-printedfromtheotherscales:zeroresistanceinindicatedatthefarright-handsideof<br />

thescale,andinfiniteresistanceisindicatedatthefarleft-handside.Thereshouldalsobea<br />

smalladjustmentknobor”wheel”ontheanalogmultimetertocalibrateitfor”zero”ohmsof<br />

resistance.Touchthetestprobestogetherandmovethisadjustmentuntiltheneedleexactly<br />

pointstozeroattheright-handendofthescale.<br />

Althoughyourmultimeteriscapableofprovidingquantitativevaluesofmeasuredresistance,itisalsousefulforqualitativetestsofcontinuity:whetherornotthereisacontinuous<br />

electricalconnectionfromonepointtoanother. Youcan,forinstance,testthecontinuityof<br />

apieceofwirebyconnectingthemeterprobestooppositeendsofthewireandcheckingto<br />

seethetheneedlemovesfull-scale.Whatwouldwesayaboutapieceofwireiftheohmmeter<br />

needledidn’tmoveatallwhentheprobeswereconnectedtooppositeends?<br />

Digitalmultimeterssettothe”resistance”modeindicatenon-continuitybydisplayingsome<br />

non-numericalindicationonthedisplay. Somemodelssay”OL”(Open-Loop),whileothers<br />

displaydashedlines.<br />

Useyourmetertodeterminecontinuitybetweentheholesonabreadboard:adeviceused<br />

fortemporaryconstructionofcircuits,wherecomponentterminalsareinsertedintoholesona<br />

plasticgrid,metalspringclipsunderneatheachholeconnectingcertainholestoothers. Use<br />

smallpiecesof22-gaugesolidcopperwire,insertedintotheholesofthebreadboard,toconnect<br />

themetertothesespringclipssothatyoucantestforcontinuity:


2.2. OHMMETERUSAGE 23<br />

Continuity!<br />

Analog<br />

meter<br />

- +<br />

22-gauge wire<br />

22-gauge wire<br />

Breadboard


24 CHAPTER2. BASICCONCEPTSANDTESTEQUIPMENT<br />

No continuity<br />

Analog<br />

meter<br />

- +<br />

22-gauge wire<br />

22-gauge wire<br />

Breadboard<br />

Animportantconceptinelectricity,closelyrelatedtoelectricalcontinuity,isthatofpoints<br />

beingelectricallycommontoeachother.<strong>Electrical</strong>lycommonpointsarepointsofcontactona<br />

deviceorinacircuitthathavenegligible(extremelysmall)resistancebetweenthem.Wecould<br />

say,then,thatpointswithinabreadboardcolumn(verticalintheillustrations)areelectrically<br />

commontoeachother,becausethereiselectricalcontinuitybetweenthem.Conversely,breadboardpointswithinarow(horizontalintheillustrations)arenotelectricallycommon,because<br />

thereisnocontinuitybetweenthem.Continuitydescribeswhatisbetweenpointsofcontact,<br />

whilecommonalitydescribeshowthepointsthemselvesrelatetoeachother.<br />

Likecontinuity,commonalityisaqualitativeassessment,basedonarelativecomparisonof<br />

resistancebetweenotherpointsinacircuit.Itisanimportantconcepttograsp,becausethere<br />

arecertainfactsregardingvoltageinrelationtoelectricallycommonpointsthatarevaluable<br />

incircuitanalysisandtroubleshooting,thefirstonebeingthattherewillneverbesubstantial<br />

voltagedroppedbetweenpointsthatareelectricallycommontoeachother.<br />

Selecta10,000ohm(10kΩ)resistorfromyourpartsassortment.Thisresistancevalueis<br />

indicatedbyaseriesofcolorbands:Brown,Black,Orange,andthenanothercolorrepresenting<br />

theprecisionoftheresistor,Gold(+/-5%)orSilver(+/-10%).Someresistorshavenocolorfor<br />

precision,whichmarksthemas+/-20%. Otherresistorsusefivecolorbandstodenotetheir<br />

valueandprecision,inwhichcasethecolorsfora10kΩresistorwillbeBrown,Black,Black,


2.2. OHMMETERUSAGE 25<br />

Red,andafifthcolorforprecision.<br />

Connectthemeter’stestprobesacrosstheresistorassuch,andnoteitsindicationonthe<br />

resistancescale:<br />

Analog<br />

meter<br />

Resistor<br />

- +<br />

Iftheneedlepointsveryclosetozero,youneedtoselectalowerresistancerangeonthe<br />

meter,justasyouneededtoselectanappropriatevoltagerangewhenreadingthevoltageofa<br />

battery.<br />

Ifyouareusingadigitalmultimeter,youshouldseeanumericalfigurecloseto10shown<br />

onthedisplay,withasmall”k”symbolontheright-handsidedenotingthemetricprefixfor<br />

”kilo”(thousand). Somedigitalmetersaremanually-ranged,andrequireappropriaterange<br />

selectionjustastheanalogmeter.Ifyoursislikethis,experimentwithdifferentrangeswitch<br />

positionsandseewhichonegivesyouthebestindication.<br />

Tryreversingthetestprobeconnectionsontheresistor.Doesthischangethemeter’sindicationatall?Whatdoesthistellusabouttheresistanceofaresistor?Whathappenswhenyou<br />

onlytouchoneprobetotheresistor?Whatdoesthistellusaboutthenatureofresistance,and<br />

howitismeasured? Howdoesthiscomparewithvoltagemeasurement,andwhathappened<br />

whenwetriedtomeasurebatteryvoltagebytouchingonlyoneprobetothebattery?<br />

Whenyoutouchthemeterprobestotheresistorterminals,trynottotouchbothprobe<br />

tipstoyourfingers. Ifyoudo,youwillbemeasuringtheparallelcombinationoftheresistor<br />

andyourownbody,whichwilltendtomakethemeterindicationlowerthanitshouldbe!<br />

Whenmeasuringa10kΩresistor,thiserrorwillbeminimal,butitmaybemoreseverewhen<br />

measuringothervaluesofresistor.<br />

Youmaysafelymeasuretheresistanceofyourownbodybyholdingoneprobetipwiththe<br />

fingersofonehand,andtheotherprobetipwiththefingersoftheotherhand. Note: be<br />

verycarefulwiththeprobes,astheyareoftensharpenedtoaneedle-point. Holdtheprobe<br />

tipsalongtheirlength,notattheverypoints!Youmayneedtoadjustthemeterrangeagain<br />

aftermeasuringthe10kΩresistor,asyourbodyresistancetendstobegreaterthan10,000


26 CHAPTER2. BASICCONCEPTSANDTESTEQUIPMENT<br />

ohmshand-to-hand.Trywettingyourfingerswithwaterandre-measuringresistancewiththe<br />

meter.Whatimpactdoesthishaveontheindication?Trywettingyourfingerswithsaltwater<br />

preparedusingtheglassofwaterandtablesalt,andre-measuringresistance. Whatimpact<br />

doesthishaveonyourbody’sresistanceasmeasuredbythemeter?<br />

Resistanceisthemeasureoffrictiontoelectronflowthroughanobject.Thelessresistance<br />

thereisbetweentwopoints,theharderitisforelectronstomove(flow)betweenthosetwo<br />

points.Giventhatelectricshockiscausedbyalargeflowofelectronsthroughaperson’sbody,<br />

andincreasedbodyresistanceactsasasafeguardbymakingitmoredifficultforelectronsto<br />

flowthroughus,whatcanweascertainaboutelectricalsafetyfromtheresistancereadings<br />

obtainedwithwetfingers?Doeswaterincreaseordecreaseshockhazardtopeople?<br />

Measuretheresistanceofarectifyingdiodewithananalogmeter. Tryreversingthetest<br />

probeconnectionstothediodeandre-measureresistance.Whatstrikesyouasbeingremarkableaboutthediode,especiallyincontrasttotheresistor?<br />

Takeapieceofpaperanddrawaveryheavyblackmarkonitwithapencil(notapen!).<br />

Measureresistanceontheblackstripwithyourmeter,placingtheprobetipsateachendof<br />

themarklikethis:<br />

- +<br />

Paper<br />

Mark made with pencil<br />

Movetheprobetipsclosertogetherontheblackmarkandnotethechangeinresistance<br />

value.Doesitincreaseordecreasewithdecreasedprobespacing?Iftheresultsareinconsistent,youneedtoredrawthemarkwithmoreandheavierpencilstrokes,sothatitisconsistent


2.2. OHMMETERUSAGE 27<br />

initsdensity.Whatdoesthisteachyouaboutresistanceversuslengthofaconductivematerial?<br />

Connectyourmetertotheterminalsofacadmium-sulphide(CdS)photocellandmeasure<br />

thechangeinresistancecreatedbydifferencesinlightexposure. Justaswiththelightemittingdiode(LED)ofthevoltmeterexperiment,youmaywanttousealligator-clipjumper<br />

wirestomakeconnectionwiththecomponent,leavingyourhandsfreetoholdthephotocellto<br />

alightsourceand/orchangemeterranges:<br />

Light source<br />

Photocell<br />

- +<br />

Experimentwithmeasuringtheresistanceofseveraldifferenttypesofmaterials,justbe<br />

surenottotrymeasureanythingthatproducessubstantialvoltage,likeabattery.Suggestions<br />

formaterialstomeasureare:fabric,plastic,wood,metal,cleanwater,dirtywater,saltwater,<br />

glass,diamond(onadiamondringorotherpieceofjewelry),paper,rubber,andoil.


28 CHAPTER2. BASICCONCEPTSANDTESTEQUIPMENT<br />

2.3 Averysimplecircuit<br />

PARTSANDMATERIALS<br />

• 6-voltbattery<br />

• 6-voltincandescentlamp<br />

• Jumperwires<br />

• Breadboard<br />

• Terminalstrip<br />

Fromthisexperimenton,amultimeterisassumedtobenecessaryandwillnotbeincluded<br />

intherequiredlistofpartsandmaterials.Inallsubsequentillustrations,adigitalmultimeter<br />

willbeshowninsteadofananalogmeterunlessthereissomeparticularreasontousean<br />

analogmeter. Youareencouragedtousebothtypesofmeterstogainfamiliaritywiththe<br />

operationofeachintheseexperiments.<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume1,chapter1:”BasicConceptsofElectricity”<br />

LEARNINGOBJECTIVES<br />

• Essentialconfigurationneededtomakeacircuit<br />

• Normalvoltagedropsinanoperatingcircuit<br />

• Importanceofcontinuitytoacircuit<br />

• Workingdefinitionsof”open”and”short”circuits<br />

• Breadboardusage<br />

• Terminalstripusage<br />

SCHEMATICDIAGRAM<br />

Battery<br />

Lamp<br />

ILLUSTRATION


2.3. AVERYSIMPLECIRCUIT 29<br />

Battery<br />

+ -<br />

Lamp<br />

INSTRUCTIONS<br />

Thisisthesimplestcompletecircuitinthiscollectionofexperiments: abatteryandan<br />

incandescentlamp.Connectthelamptothebatteryasshownintheillustration,andthelamp<br />

shouldlight,assumingthebatteryandlamparebothingoodconditionandtheyarematched<br />

tooneanotherintermsofvoltage.<br />

Ifthereisa”break”(discontinuity)anywhereinthecircuit,thelampwillfailtolight.Itdoes<br />

notmatterwheresuchabreakoccurs!Manystudentsassumethatbecauseelectronsleavethe<br />

negative(-)sideofthebatteryandcontinuethroughthecircuittothepositive(+)side,thatthe<br />

wireconnectingthenegativeterminalofthebatterytothelampismoreimportanttocircuit<br />

operationthantheotherwireprovidingareturnpathforelectronsbacktothebattery.Thisis<br />

nottrue!<br />

Battery<br />

+ - No light!<br />

Lamp<br />

break in circuit<br />

Battery<br />

+ - break in circuit<br />

No light!<br />

Lamp


30 CHAPTER2. BASICCONCEPTSANDTESTEQUIPMENT<br />

break in circuit<br />

Battery<br />

+ - No light!<br />

Lamp<br />

break in circuit<br />

Battery<br />

+ - No light!<br />

Lamp<br />

Usingyourmultimetersettotheappropriate”DCvolt”range,measurevoltageacrossthe<br />

battery,acrossthelamp,andacrosseachjumperwire. Familiarizeyourselfwiththenormal<br />

voltagesinafunctioningcircuit.<br />

Now,”break”thecircuitatonepointandre-measurevoltagebetweenthesamesetsof<br />

points,additionallymeasuringvoltageacrossthebreaklikethis:


2.3. AVERYSIMPLECIRCUIT 31<br />

V<br />

A<br />

V<br />

OFF<br />

A<br />

A<br />

COM<br />

Battery<br />

+ - No light!<br />

Lamp<br />

Whatvoltagesmeasurethesameasbefore?Whatvoltagesaredifferentsinceintroducing<br />

thebreak?Howmuchvoltageismanifest,ordroppedacrossthebreak?Whatisthepolarity<br />

ofthevoltagedropacrossthebreak,asindicatedbythemeter?<br />

Re-connectthejumperwiretothelamp,andbreakthecircuitinanotherplace. Measure<br />

allvoltage”drops”again,familiarizingyourselfwiththevoltagesofan”open”circuit.<br />

Constructthesamecircuitonabreadboard,takingcaretoplacethelampandwiresinto<br />

thebreadboardinsuchawaythatcontinuitywillbemaintained.Theexampleshownhereis<br />

onlythat:anexample,nottheonlywaytobuildacircuitonabreadboard:


32 CHAPTER2. BASICCONCEPTSANDTESTEQUIPMENT<br />

+ - Breadboard<br />

Experimentwithdifferentconfigurationsonthebreadboard,pluggingthelampintodifferentholes.Ifyouencounterasituationwherethelamprefusestolightupandtheconnecting<br />

wiresaregettingwarm,youprobablyhaveasituationknownasashortcircuit,wherealowerresistancepaththanthelampbypassescurrentaroundthelamp,preventingenoughvoltage<br />

frombeingdroppedacrossthelamptolightitup.Hereisanexampleofashortcircuitmade<br />

onabreadboard:


2.3. AVERYSIMPLECIRCUIT 33<br />

+ - Breadboard<br />

No light!<br />

"shorting"<br />

wire<br />

Hereisanexampleofanaccidentalshortcircuitofthetypetypicallymadebystudents<br />

unfamiliarwithbreadboardusage:<br />

+ - Breadboard<br />

No light!


34 CHAPTER2. BASICCONCEPTSANDTESTEQUIPMENT<br />

Herethereisno”shorting”wirepresentonthebreadboard,yetthereisashortcircuit,and<br />

thelamprefusestolight. Basedonyourunderstandingofbreadboardholeconnections,can<br />

youdeterminewherethe”short”isinthiscircuit?<br />

Shortcircuitsaregenerallytobeavoided,astheyresultinveryhighratesofelectron<br />

flow,causingwirestoheatupandbatterypowersourcestodeplete. Ifthepowersourceis<br />

substantialenough,ashortcircuitmaycauseheatofexplosiveproportionstomanifest,causing<br />

equipmentdamageandhazardtonearbypersonnel. Thisiswhathappenswhenatreelimb<br />

”shorts”acrosswiresonapowerline: thelimb–beingcomposedofwetwood–actsasa<br />

low-resistancepathtoelectriccurrent,resultinginheatandsparks.<br />

Youmayalsobuildthebattery/lampcircuitonaterminalstrip: alengthofinsulating<br />

materialwithmetalbarsandscrewstoattachwiresandcomponentterminalsto.Hereisan<br />

exampleofhowthiscircuitmightbeconstructedonaterminalstrip:<br />

+ -<br />

Terminal<br />

strip


2.4. AMMETERUSAGE 35<br />

2.4 Ammeterusage<br />

PARTSANDMATERIALS<br />

• 6-voltbattery<br />

• 6-voltincandescentlamp<br />

Basiccircuitconstructioncomponentssuchasbreadboard,terminalstrip,andjumperwires<br />

arealsoassumedtobeavailablefromnowon,leavingonlycomponentsandmaterialsunique<br />

totheprojectlistedunder”PartsandMaterials.”<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume1,chapter1:”BasicConceptsofElectricity”<br />

LessonsInElectricCircuits,Volume1,chapter8:”DCMeteringCircuits”<br />

LEARNINGOBJECTIVES<br />

• Howtomeasurecurrentwithamultimeter<br />

• Howtocheckamultimeter’sinternalfuse<br />

• Selectionofpropermeterrange<br />

SCHEMATICDIAGRAM<br />

Ammeter<br />

A<br />

Battery<br />

Lamp<br />

ILLUSTRATION


36 CHAPTER2. BASICCONCEPTSANDTESTEQUIPMENT<br />

V<br />

A<br />

V<br />

OFF<br />

A<br />

Battery<br />

A COM<br />

+ -<br />

Lamp<br />

INSTRUCTIONS<br />

Currentisthemeasureoftherateofelectron”flow”inacircuit.Itismeasuredintheunit<br />

oftheAmpere,simplycalled”Amp,”(A).<br />

Themostcommonwaytomeasurecurrentinacircuitistobreakthecircuitopenandinsert<br />

an”ammeter”inseries(in-line)withthecircuitsothatallelectronsflowingthroughthecircuit<br />

alsohavetogothroughthemeter. Becausemeasuringcurrentinthismannerrequiresthe<br />

meterbemadepartofthecircuit,itisamoredifficulttypeofmeasurementtomakethan<br />

eithervoltageorresistance.<br />

Somedigitalmeters,liketheunitshownintheillustration,haveaseparatejacktoinsert<br />

theredtestleadplugwhenmeasuringcurrent. Othermeters,likemostinexpensiveanalogmeters,usethesamejacksformeasuringvoltage,resistance,andcurrent.<br />

Consultyour<br />

owner’smanualontheparticularmodelofmeteryouownfordetailsonmeasuringcurrent.<br />

Whenanammeterisplacedinserieswithacircuit,itideallydropsnovoltageascurrent<br />

goesthroughit.Inotherwords,itactsverymuchlikeapieceofwire,withverylittleresistance<br />

fromonetestprobetotheother.Consequently,anammeterwillactasashortcircuitifplaced<br />

inparallel(acrosstheterminalsof)asubstantialsourceofvoltage.Ifthisisdone,asurgein<br />

currentwillresult,potentiallydamagingthemeter:


2.4. AMMETERUSAGE 37<br />

V<br />

A<br />

V<br />

OFF<br />

A<br />

Battery<br />

COM<br />

current<br />

surge<br />

+ -<br />

current<br />

surge<br />

SHORT CIRCUIT !<br />

A<br />

Ammetersaregenerallyprotectedfromexcessivecurrentbymeansofasmallfuselocated<br />

insidethemeterhousing.Iftheammeterisaccidentlyconnectedacrossasubstantialvoltage<br />

source,theresultantsurgeincurrentwill”blow”thefuseandrenderthemeterincapableof<br />

measuringcurrentuntilthefuseisreplaced.Beverycarefultoavoidthisscenario!<br />

Youmaytesttheconditionofamultimeter’sfusebyswitchingittotheresistancemodeand<br />

measuringcontinuitythroughthetestleads(andthroughthefuse). Onameterwherethe<br />

sametestleadjacksareusedforbothresistanceandcurrentmeasurement,simplyleavethe<br />

testleadplugswheretheyareandtouchthetwoprobestogether.Onameterwheredifferent<br />

jacksareused,thisishowyouinsertthetestleadplugstocheckthefuse:


38 CHAPTER2. BASICCONCEPTSANDTESTEQUIPMENT<br />

Low resistance<br />

indication = good fuse<br />

High resistance<br />

indication = "blown" fuse<br />

V<br />

A<br />

V<br />

OFF<br />

A<br />

A<br />

COM<br />

Internal<br />

location of<br />

fuse<br />

touch probes together<br />

Buildtheone-battery,one-lampcircuitusingjumperwirestoconnectthebatterytothe<br />

lamp,andverifythatthelamplightsupbeforeconnectingthemeterinserieswithit.Then,<br />

breakthecircuitopenatanypointandconnectthemeter’stestprobestothetwopointsof<br />

thebreaktomeasurecurrent.Asusual,ifyourmeterismanually-ranged,beginbyselecting<br />

thehighestrangeforcurrent,thenmovetheselectorswitchtolowerrangepositionsuntilthe<br />

strongestindicationisobtainedonthemeterdisplaywithoutover-rangingit.Ifthemeterindicationis”backwards,”(leftmotiononanalogneedle,ornegativereadingonadigitaldisplay),<br />

thenreversethetestprobeconnectionsandtryagain.Whentheammeterindicatesanormal<br />

reading(not”backwards”),electronsareenteringtheblacktestleadandexitingthered.This<br />

ishowyoudeterminedirectionofcurrentusingameter.<br />

Fora6-voltbatteryandasmalllamp,thecircuitcurrentwillbeintherangeofthousandths<br />

ofanamp,ormilliamps.Digitalmetersoftenshowasmallletter”m”intheright-handsideof<br />

thedisplaytoindicatethismetricprefix.<br />

Trybreakingthecircuitatsomeotherpointandinsertingthemeterthereinstead.What<br />

doyounoticeabouttheamountofcurrentmeasured?Whydoyouthinkthisis?<br />

Re-constructthecircuitonabreadboardlikethis:


2.4. AMMETERUSAGE 39<br />

+ - Breadboard<br />

Studentsoftengetconfusedwhenconnectinganammetertoabreadboardcircuit.Howcan<br />

themeterbeconnectedsoastointerceptallthecircuit’scurrentandnotcreateashortcircuit?<br />

Oneeasymethodthatguaranteessuccessisthis:<br />

• Identifywhatwireorcomponentterminalyouwishtomeasurecurrentthrough.<br />

• Pullthatwireorterminaloutofthebreadboardhole.Leaveithanginginmid-air.<br />

• Insertasparepieceofwireintotheholeyoujustpulledtheotherwireorterminaloutof.<br />

Leavetheotherendofthiswirehanginginmid-air.<br />

• Connecttheammeterbetweenthetwounconnectedwireends(thetwothatwerehanging<br />

inmid-air). Youarenowassuredofmeasuringcurrentthroughthewireorterminal<br />

initiallyidentified.


40 CHAPTER2. BASICCONCEPTSANDTESTEQUIPMENT<br />

m<br />

wire pulled<br />

out of<br />

breadboard<br />

V<br />

V<br />

OFF<br />

A<br />

A<br />

+ - A COM<br />

spare wire<br />

Again,measurecurrentthroughdifferentwiresinthiscircuit,followingthesameconnectionprocedureoutlinedabove.<br />

Whatdoyounoticeaboutthesecurrentmeasurements? The<br />

resultsinthebreadboardcircuitshouldbethesameastheresultsinthefree-form(nobreadboard)circuit.<br />

Buildingthesamecircuitonaterminalstripshouldalsoyieldsimilarresults:


2.4. AMMETERUSAGE 41<br />

m<br />

V<br />

A<br />

+ -<br />

V<br />

OFF<br />

A<br />

A<br />

COM<br />

Terminal<br />

strip<br />

Thecurrentfigureof24.70milliamps(24.70mA)shownintheillustrationsisanarbitrary<br />

quantity,reasonableforasmallincandescentlamp.Ifthecurrentforyourcircuitisadifferent<br />

value,thatisokay,solongasthelampisfunctioningwhenthemeterisconnected. Ifthe<br />

lamprefusestolightwhenthemeterisconnectedtothecircuit,andthemeterregistersa<br />

muchgreaterreading,youprobablyhaveashort-circuitconditionthroughthemeter.Ifyour<br />

lamprefusestolightwhenthemeterisconnectedinthecircuit,andthemeterregisterszero<br />

current,you’veprobablyblownthefuseinsidethemeter.Checktheconditionofyourmeter’s<br />

fuseasdescribedpreviouslyinthissectionandreplacethefuseifnecessary.


42 CHAPTER2. BASICCONCEPTSANDTESTEQUIPMENT<br />

2.5 Ohm’sLaw<br />

PARTSANDMATERIALS<br />

• Calculator(orpencilandpaperfordoingarithmetic)<br />

• 6-voltbattery<br />

• Assortmentofresistorsbetween1KΩand100kΩinvalue<br />

I’mpurposelyrestrictingtheresistancevaluesbetween1kΩand100kΩforthesakeof<br />

obtainingaccuratevoltageandcurrentreadingswithyourmeter. Withverylowresistance<br />

values,theinternalresistanceoftheammeterhasasignificantimpactonmeasurementaccuracy.<br />

Veryhighresistancevaluescancauseproblemsforvoltagemeasurement,theinternal<br />

resistanceofthevoltmetersubstantiallychangingcircuitresistancewhenitisconnectedin<br />

parallelwithahigh-valueresistor.<br />

Attherecommendedresistancevalues,therewillstillbeasmallamountofmeasurement<br />

errorduetothe”impact”ofthemeter,butnotenoughtocauseseriousdisagreementwith<br />

calculatedvalues.<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume1,chapter2:”Ohm’sLaw”<br />

LEARNINGOBJECTIVES<br />

• Voltmeteruse<br />

• Ammeteruse<br />

• Ohmmeteruse<br />

• UseofOhm’sLaw<br />

SCHEMATICDIAGRAM<br />

Ammeter<br />

A<br />

Battery<br />

Resistor V Voltmeter<br />

ILLUSTRATION


2.5. OHM’SLAW 43<br />

Ammeter<br />

V<br />

A<br />

+ -<br />

V<br />

OFF<br />

A<br />

A<br />

COM<br />

Terminal<br />

strip<br />

Resistor<br />

V<br />

A<br />

Voltmeter<br />

V<br />

OFF<br />

A<br />

A<br />

COM<br />

INSTRUCTIONS<br />

Selectaresistorfromtheassortment,andmeasureitsresistancewithyourmultimeterset<br />

totheappropriateresistancerange.Besurenottoholdtheresistorterminalswhenmeasuring<br />

resistance,orelseyourhand-to-handbodyresistancewillinfluencethemeasurement!Record<br />

thisresistancevalueforfutureuse.<br />

Buildaone-battery,one-resistorcircuit.Aterminalstripisshownintheillustration,but<br />

anyformofcircuitconstructionisokay.Setyourmultimetertotheappropriatevoltagerange<br />

andmeasurevoltageacrosstheresistorasitisbeingpoweredbythebattery. Recordthis<br />

voltagevaluealongwiththeresistancevaluepreviouslymeasured.<br />

Setyourmultimetertothehighestcurrentrangeavailable.Breakthecircuitandconnect<br />

theammeterwithinthatbreak,soitbecomesapartofthecircuit,inserieswiththebattery<br />

andresistor.Selectthebestcurrentrange:whicheveronegivesthestrongestmeterindication


44 CHAPTER2. BASICCONCEPTSANDTESTEQUIPMENT<br />

withoutover-rangingthemeter. Ifyourmultimeterisautoranging,ofcourse,youneednot<br />

botherwithsettingranges. Recordthiscurrentvaluealongwiththeresistanceandvoltage<br />

valuespreviouslyrecorded.<br />

Takingthemeasuredfiguresforvoltageandresistance,usetheOhm’sLawequationto<br />

calculatecircuitcurrent.Comparethiscalculatedfigurewiththemeasuredfigureforcircuit<br />

current:<br />

Ohm’s Law<br />

(solving for current)<br />

I = E R<br />

Where,<br />

E = Voltage in volts<br />

I = Current in amps<br />

R = Resistance in ohms<br />

Takingthemeasuredfiguresforvoltageandcurrent,usetheOhm’sLawequationtocalculatecircuitresistance.<br />

Comparethiscalculatedfigurewiththemeasuredfigureforcircuit<br />

resistance:<br />

Ohm’s Law<br />

(solving for resistance)<br />

R =<br />

E<br />

I<br />

Finally,takingthemeasuredfiguresforresistanceandcurrent,usetheOhm’sLawequationtocalculatecircuitvoltage.<br />

Comparethiscalculatedfigurewiththemeasuredfigurefor<br />

circuitvoltage:<br />

Ohm’s Law<br />

(solving for voltage)<br />

E = IR<br />

Thereshouldbecloseagreementbetweenallmeasuredandallcalculatedfigures. Any<br />

differencesinrespectivequantitiesofvoltage,current,orresistancearemostlikelydueto<br />

meterinaccuracies. Thesedifferencesshouldberathersmall,nomorethanseveralpercent.<br />

Somemeters,ofcourse,aremoreaccuratethanothers!<br />

Substitutedifferentresistorsinthecircuitandre-takeallresistance,voltage,andcurrent<br />

measurements.Re-calculatethesefiguresandcheckforagreementwiththeexperimentaldata<br />

(measuredquantities). Alsonotethesimplemathematicalrelationshipbetweenchangesin<br />

resistorvalueandchangesincircuitcurrent.Voltageshouldremainapproximatelythesame<br />

foranyresistorsizeinsertedintothecircuit,becauseitisthenatureofabatterytomaintain<br />

voltageataconstantlevel.


2.6. NONLINEARRESISTANCE 45<br />

2.6 Nonlinearresistance<br />

PARTSANDMATERIALS<br />

• Calculator(orpencilandpaperfordoingarithmetic)<br />

• 6-voltbattery<br />

• Low-voltageincandescentlamp(RadioShackcatalog#272-1130orequivalent)<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume1,chapter2:”Ohm’sLaw”<br />

LEARNINGOBJECTIVES<br />

• Voltmeteruse<br />

• Ammeteruse<br />

• Ohmmeteruse<br />

• UseofOhm’sLaw<br />

• Realizationthatsomeresistancesareunstable!<br />

• Scientificmethod<br />

SCHEMATICDIAGRAM<br />

Ammeter<br />

A<br />

Battery<br />

Lamp<br />

V<br />

Voltmeter<br />

ILLUSTRATION


46 CHAPTER2. BASICCONCEPTSANDTESTEQUIPMENT<br />

Ammeter<br />

V<br />

A<br />

+ -<br />

V<br />

OFF<br />

A<br />

A<br />

COM<br />

Terminal<br />

strip<br />

Lamp<br />

V<br />

A<br />

Voltmeter<br />

V<br />

OFF<br />

A<br />

A<br />

COM<br />

INSTRUCTIONS<br />

Measuretheresistanceofthelampwithyourmultimeter.Thisresistancefigureisdueto<br />

thethinmetal”filament”insidethelamp.Ithassubstantiallymoreresistancethanajumper<br />

wire,butlessthananyoftheresistorsfromthelastexperiment.Recordthisresistancevalue<br />

forfutureuse.<br />

Buildaone-battery,one-lampcircuit.Setyourmultimetertotheappropriatevoltagerange<br />

andmeasurevoltageacrossthelampasitisenergized(lit). Recordthisvoltagevaluealong<br />

withtheresistancevaluepreviouslymeasured.<br />

Setyourmultimetertothehighestcurrentrangeavailable.Breakthecircuitandconnect<br />

theammeterwithinthatbreak,soitbecomesapartofthecircuit,inserieswiththebattery<br />

andlamp. Selectthebestcurrentrange:whicheveronegivesthestrongestmeterindication<br />

withoutover-rangingthemeter. Ifyourmultimeterisautoranging,ofcourse,youneednot


2.6. NONLINEARRESISTANCE 47<br />

botherwithsettingranges. Recordthiscurrentvaluealongwiththeresistanceandvoltage<br />

valuespreviouslyrecorded.<br />

Takingthemeasuredfiguresforvoltageandresistance,usetheOhm’sLawequationto<br />

calculatecircuitcurrent.Comparethiscalculatedfigurewiththemeasuredfigureforcircuit<br />

current:<br />

Ohm’s Law<br />

(solving for current)<br />

I = E R<br />

Where,<br />

E = Voltage in volts<br />

I = Current in amps<br />

R = Resistance in ohms<br />

Whatyoushouldfindisamarkeddifferencebetweenmeasuredcurrentandcalculated<br />

current:thecalculatedfigureismuchgreater.Whyisthis?<br />

Tomakethingsmoreinteresting,trymeasuringthelamp’sresistanceagain,thistimeusingadifferentmodelofmeter.Youwillneedtodisconnectthelampfromthebatterycircuitin<br />

ordertoobtainaresistancereading,becausevoltagesoutsideofthemeterinterferewithresistancemeasurement.Thisisageneralrulethatshouldberemembered:measureresistance<br />

onlyonanunpoweredcomponent!<br />

Usingadifferentohmmeter,thelampwillprobablyregisterasadifferentvalueofresistance.Usually,analogmetersgivehigherlampresistancereadingsthandigitalmeters.<br />

Thisbehaviorisverydifferentfromthatoftheresistorsinthelastexperiment.Why?What<br />

factor(s)mightinfluencetheresistanceofthelampfilament,andhowmightthosefactorsbe<br />

differentbetweenconditionsoflitandunlit,orbetweenresistancemeasurementstakenwith<br />

differenttypesofmeters?<br />

Thisproblemisagoodtestcasefortheapplicationofscientificmethod.Onceyou’vethought<br />

ofapossiblereasonforthelamp’sresistancechangingbetweenlitandunlitconditions,tryto<br />

duplicatethatcausebysomeothermeans. Forexample,ifyouthinkthelampresistance<br />

mightchangeasitisexposedtolight(itsownlight,whenlit),andthatthisaccountsforthe<br />

differencebetweenthemeasuredandcalculatedcircuitcurrents,tryexposingthelamptoan<br />

externalsourceoflightwhilemeasuringitsresistance.Ifyoumeasuresubstantialresistance<br />

changeasaresultoflightexposure,thenyourhypothesishassomeevidentialsupport.Ifnot,<br />

thenyourhypothesishasbeenfalsified,andanothercausemustberesponsibleforthechange<br />

incircuitcurrent.


48 CHAPTER2. BASICCONCEPTSANDTESTEQUIPMENT<br />

2.7 Powerdissipation<br />

PARTSANDMATERIALS<br />

• Calculator(orpencilandpaperfordoingarithmetic)<br />

• 6voltbattery<br />

• Two1/4wattresistors:10 Ωand330 Ω.<br />

• Smallthermometer<br />

Theresistorvaluesneednotbeexact,butwithinfivepercentofthefiguresspecified(+/-0.5<br />

Ωforthe10 Ωresistor;+/-16.5 Ωforthe330 Ωresistor).Colorcodesfor5%tolerance10 Ωand<br />

330 Ωresistorsareasfollows: Brown,Black,Black,Gold(10,+/-5%),andOrange,Orange,<br />

Brown,Gold(330,+/-5%).<br />

Donotuseanybatterysizeotherthan6voltsforthisexperiment.<br />

Thethermometershouldbeassmallaspossible,tofacilitaterapiddetectionofheatproducedbytheresistor.Irecommendamedicalthermometer,thetypeusedtotakebodytemperature.<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume1,chapter2:”Ohm’sLaw”<br />

LEARNINGOBJECTIVES<br />

• Voltmeteruse<br />

• Ammeteruse<br />

• Ohmmeteruse<br />

• UseofJoule’sLaw<br />

• Importanceofcomponentpowerratings<br />

• Significanceofelectricallycommonpoints<br />

SCHEMATICDIAGRAM<br />

ILLUSTRATION


2.7. POWERDISSIPATION 49<br />

Thermometer<br />

+ - Caution: do not hold resistor with<br />

your fingers while powered!<br />

INSTRUCTIONS<br />

Measureeachresistor’sresistancewithyourohmmeter,notingtheexactvaluesonapiece<br />

ofpaperforlaterreference.<br />

Connectthe330 Ωresistortothe6voltbatteryusingapairofjumperwiresasshownin<br />

theillustration.Connectthejumperwirestotheresistorterminalsbeforeconnectingtheother<br />

endstothebattery. Thiswillensureyourfingersarenottouchingtheresistorwhenbattery<br />

powerisapplied.<br />

YoumightbewonderingwhyIadvisenobodilycontactwiththepoweredresistor. This<br />

isbecauseitwillbecomehotwhenpoweredbythebattery. Youwillusethethermometerto<br />

measurethetemperatureofeachresistorwhenpowered.<br />

Withthe330 Ωresistorconnectedtothebattery,measurevoltagewithavoltmeter. In<br />

measuringvoltage,thereismorethanonewaytoobtainaproperreading. Voltagemaybe<br />

measureddirectlyacrossthebattery,ordirectlyacrosstheresistor.Batteryvoltageisthesame<br />

asresistorvoltageinthiscircuit,sincethosetwocomponentssharethesamesetofelectrically<br />

commonpoints:onesideoftheresistorisdirectlyconnectedtoonesideofthebattery,andthe<br />

othersideoftheresistorisdirectlyconnectedtotheothersideofthebattery.


50 CHAPTER2. BASICCONCEPTSANDTESTEQUIPMENT<br />

V<br />

A<br />

V<br />

OFF<br />

A<br />

COM<br />

common<br />

+ -<br />

electrically<br />

A<br />

points<br />

electrically common<br />

points<br />

Allpointsofcontactalongtheupperwireintheillustration(coloredred)areelectrically<br />

commontoeachother. Allpointsofcontactalongthelowerwire(coloredblack)arelikewise<br />

electricallycommontoeachother.Voltagemeasuredbetweenanypointontheupperwireand<br />

anypointonthelowerwireshouldbethesame.Voltagemeasuredbetweenanytwocommon<br />

points,however,shouldbezero.<br />

Usinganammeter,measurecurrentthroughthecircuit. Again,thereisnoone”correct”<br />

waytomeasurecurrent,solongastheammeterisplacedwithintheflow-pathofelectrons<br />

throughtheresistorandnotacrossasourceofvoltage.Todothis,makeabreakinthecircuit,<br />

andplacetheammeterwithinthatbreak: connectthetwotestprobestothetwowireor<br />

terminalendsleftopenfromthebreak.Oneviableoptionisshowninthefollowingillustration:


2.7. POWERDISSIPATION 51<br />

V<br />

A<br />

V<br />

OFF<br />

A<br />

+ - COM<br />

A<br />

Nowthatyou’vemeasuredandrecordedresistorresistance,circuitvoltage,andcircuitcurrent,youarereadytocalculatepowerdissipation.Whereasvoltageisthemeasureofelectrical<br />

”push”motivatingelectronstomovethroughacircuit,andcurrentisthemeasureofelectron<br />

flowrate,poweristhemeasureofwork-rate:howfastworkisbeingdoneinthecircuit.Ittakes<br />

acertainamountofworktopushelectronsthrougharesistance,andpowerisadescriptionof<br />

howrapidlythatworkistakingplace.Inmathematicalequations,powerissymbolizedbythe<br />

letter”P”andmeasuredintheunitoftheWatt(W).<br />

Powermaybecalculatedbyanyoneofthreeequations–collectivelyreferredtoasJoule’s<br />

Law–givenanytwooutofthreequantitiesofvoltage,current,andresistance:<br />

Joule’s Law<br />

(solving for power)<br />

P = IE<br />

P = I 2 R<br />

P = E2<br />

R<br />

Trycalculatingpowerinthiscircuit,usingthethreemeasuredvaluesofvoltage,current,<br />

andresistance. Anywayyoucalculateit,thepowerdissipationfigureshouldberoughlythe<br />

same. Assumingabatterywith6.000voltsandaresistorofexactly330 Ω,thepowerdissi-


52 CHAPTER2. BASICCONCEPTSANDTESTEQUIPMENT<br />

pationwillbe0.1090909watts,or109.0909milli-watts(mW),touseametricprefix. Since<br />

theresistorhasapowerratingof1/4watt(0.25watts,or250mW),itismorethancapableof<br />

sustainingthislevelofpowerdissipation. Becausetheactualpowerlevelisalmosthalfthe<br />

ratedpower,theresistorshouldbecomenoticeablywarmbutitshouldnotoverheat.Touchthe<br />

thermometerendtothemiddleoftheresistorandseehowwarmitgets.<br />

Thepowerratingofanyelectricalcomponentdoesnottellushowmuchpoweritwilldissipate,butsimplyhowmuchpoweritmaydissipatewithoutsustainingdamage.Iftheactual<br />

amountofdissipatedpowerexceedsacomponent’spowerrating,thatcomponentwillincrease<br />

temperaturetothepointofdamage.<br />

Toillustrate,disconnectthe330 Ωresistorandreplaceitwiththe10 Ωresistor. Again,<br />

avoidtouchingtheresistoroncethecircuitiscomplete,asitwillheatuprapidly. Thesafest<br />

waytodothisistodisconnectonejumperwirefromabatteryterminal,thendisconnectthe<br />

330 Ωresistorfromthetwoalligatorclips,thenconnectthe10 Ωresistorbetweenthetwoclips,<br />

andfinallyreconnectthejumperwirebacktothebatteryterminal.<br />

Caution: keepthe10 Ωresistorawayfromanyflammablematerialswhenitis<br />

poweredbythebattery!<br />

Youmaynothaveenoughtimetotakevoltageandcurrentmeasurementsbeforetheresistorbeginstosmoke.Atthefirstsignofdistress,disconnectoneofthejumperwiresfroma<br />

batteryterminaltointerruptcircuitcurrent,andgivetheresistorafewmomentstocooldown.<br />

Withpowerstilldisconnected,measuretheresistor’sresistancewithanohmmeterandnote<br />

anysubstantialdeviationfromitsoriginalvalue. Iftheresistorstillmeasureswithin+/-5%<br />

ofitsadvertisedvalue(between9.5and10.5 Ω),re-connectthejumperwireandletitsmokea<br />

bitmore.<br />

Whattrenddoyounoticewiththeresistor’svalueasitisdamagedmoreandmoreby<br />

overpowering? Itistypicalofresistorstofailwithagreater-than-normalresistancewhen<br />

overheated. Thisisoftenaself-protectivemodeoffailure,asanincreasedresistanceresults<br />

inlesscurrentand(generally)lesspowerdissipation,coolingitdownagain. However,the<br />

resistor’snormalresistancevaluewillnotreturnifsufficientlydamaged.<br />

PerformingsomeJoule’sLawcalculationsforresistorpoweragain,wefindthata10 Ω<br />

resistorconnectedtoa6voltbatterydissipatesabout3.6wattsofpower,about14.4timesits<br />

ratedpowerdissipation.Littlewonderitsmokessoquicklyafterconnectiontothebattery!


2.8. CIRCUITWITHASWITCH 53<br />

2.8 Circuitwithaswitch<br />

PARTSANDMATERIALS<br />

• 6-voltbattery<br />

• Low-voltageincandescentlamp(RadioShackcatalog#272-1130orequivalent)<br />

• Longlengthsofwire,22-gaugeorlarger<br />

• Householdlightswitch(thesearereadilyavailableatanyhardwarestore)<br />

Householdlightswitchesareabargainforstudentsofbasicelectricity. Theyarereadily<br />

available,veryinexpensive,andalmostimpossibletodamagewithbatterypower.Donotget<br />

”dimmer”switches,justthesimpleon-off”toggle”varietyusedforordinaryhouseholdwallmountedlightcontrols.<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume1,chapter1:”BasicConceptsofElectricity”<br />

LEARNINGOBJECTIVES<br />

• Switchbehavior<br />

• Usinganohmmetertocheckswitchaction<br />

SCHEMATICDIAGRAM<br />

Switch<br />

ILLUSTRATION


54 CHAPTER2. BASICCONCEPTSANDTESTEQUIPMENT<br />

Switch<br />

+ -<br />

INSTRUCTIONS<br />

Buildaone-battery,one-switch,one-lampcircuitasshownintheschematicdiagramandin<br />

theillustration.Thiscircuitismostimpressivewhenthewiresarelong,asitshowshowthe<br />

switchisabletocontrolcircuitcurrentnomatterhowphysicallylargethecircuitmaybe.<br />

Measurevoltageacrossthebattery,acrosstheswitch(measurefromonescrewterminalto<br />

anotherwiththevoltmeter),andacrossthelampwiththeswitchinbothpositions.Whenthe<br />

switchisturnedoff,itissaidtobeopen,andthelampwillgooutjustthesameasifawire<br />

werepulledloosefromaterminal. Asbefore,anybreakinthecircuitatanylocationcauses<br />

thelamptoimmediatelyde-energize(darken).


2.9. ELECTROMAGNETISM 55<br />

2.9 Electromagnetism<br />

PARTSANDMATERIALS<br />

• 6-voltbattery<br />

• Magneticcompass<br />

• Smallpermanentmagnet<br />

• Spoolof28-gaugemagnetwire<br />

• Largebolt,nail,orsteelrod<br />

• <strong>Electrical</strong>tape<br />

Magnetwireisatermforthin-gaugecopperwirewithenamelinsulationinsteadofrubber<br />

orplasticinsulation.Itssmallsizeandverythininsulationallowformany”turns”tobewound<br />

inacompactcoil. Youwillneedenoughmagnetwiretowraphundredsofturnsaroundthe<br />

bolt,nail,orotherrod-shapedsteelform.<br />

Besuretoselectabolt,nail,orrodthatismagnetic. Stainlesssteel,forexample,isnonmagneticandwillnotfunctionforthepurposeofanelectromagnetcoil!Theidealmaterialfor<br />

thisexperimentissoftiron,butanycommonlyavailablesteelwillsuffice.<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume1,chapter14:”MagnetismandElectromagnetism”<br />

LEARNINGOBJECTIVES<br />

• Applicationoftheleft-handrule<br />

• Electromagnetconstruction<br />

SCHEMATICDIAGRAM<br />

ILLUSTRATION


56 CHAPTER2. BASICCONCEPTSANDTESTEQUIPMENT<br />

Compass<br />

N<br />

W E<br />

S<br />

+ -<br />

Electromagnet<br />

(wire coil wrapped<br />

around steel bar)<br />

INSTRUCTIONS<br />

Wrapasinglelayerofelectricaltapearoundthesteelbar(orbolt,ormail)toprotectthe<br />

wirefromabrasion.Proceedtowrapseveralhundredturnsofwirearoundthesteelbar,makingthecoilasevenaspossible.Itisokaytooverlapwire,anditisokaytowrapinthesame<br />

stylethatafishingreelwrapslinearoundthespool.Theonlyruleyoumustfollowisthatall<br />

turnsmustbewrappedaroundthebarinthesamedirection(noreversingfromclockwiseto<br />

counter-clockwise!). Ifindthatadrillpressworksasagreattoolforcoilwinding:clampthe<br />

rodinthedrill’schuckasifitwereadrillbit,thenturnthedrillmotoronataslowspeedand<br />

letitdothewrapping!Thisallowsyoutofeedwireontotherodinaverysteady,evenmanner.<br />

Afteryou’vewrappedseveralhundredturnsofwirearoundtherod,wrapalayerortwoof<br />

electricaltapeoverthewirecoiltosecurethewireinplace.Scrapetheenamelinsulationoff<br />

theendsofthecoilwiresforconnectiontojumperleads,thenconnectthecoiltoabattery.<br />

Whenelectriccurrentgoesthroughthecoil,itwillproduceastrongmagneticfield: one<br />

”pole”ateachendoftherod.Thisphenomenonisknownaselectromagnetism.Themagnetic<br />

compassisusedtoidentifythe”North”and”South”polesoftheelectromagnet.<br />

Withtheelectromagnetenergized(connectedtothebattery),placeapermanentmagnet<br />

nearonepoleandnotewhetherthereisanattractiveorrepulsiveforce.Reversetheorientationofthepermanentmagnetandnotethedifferenceinforce.<br />

Electromagnetismhasmanyapplications,includingrelays,electricmotors,solenoids,doorbells,buzzers,computerprintermechanisms,andmagneticmedia”write”heads(taperecorders,<br />

diskdrives).<br />

Youmightnoticeasignificantsparkwheneverthebatteryisdisconnectedfromtheelectromagnetcoil:muchgreaterthanthesparkproducedifthebatteryissimplyshort-circuited.<br />

Thissparkistheresultofahigh-voltagesurgecreatedwhenevercurrentissuddenlyinterruptedthroughthecoil.Theeffectisknownasinductive”kickback”andiscapableofdeliveringasmallbutharmlesselectricshock!Toavoidreceivingthisshock,donotplaceyourbody<br />

acrossthebreakinthecircuitwhende-energizing!Useonehandatatimewhenun-powering<br />

thecoilandyou’llbeperfectlysafe.Thisphenomenonwillbeexploredingreaterdetailinthe<br />

nextchapter(DCCircuits).


2.10. ELECTROMAGNETICINDUCTION 57<br />

2.10 Electromagneticinduction<br />

PARTSANDMATERIALS<br />

• Electromagnetfrompreviousexperiment<br />

• Permanentmagnet<br />

Seepreviousexperimentforinstructionsonelectromagnetconstruction.<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume1,chapter14:”MagnetismandElectromagnetism”<br />

LEARNINGOBJECTIVES<br />

• Relationshipbetweenmagneticfieldstrengthandinducedvoltage<br />

SCHEMATICDIAGRAM<br />

Voltmeter<br />

+<br />

V<br />

-<br />

ILLUSTRATION<br />

V<br />

A<br />

Electromagnet<br />

V<br />

OFF<br />

A<br />

A<br />

COM<br />

Magnet<br />

N<br />

S<br />

INSTRUCTIONS


58 CHAPTER2. BASICCONCEPTSANDTESTEQUIPMENT<br />

Electromagneticinductionisthecomplementaryphenomenontoelectromagnetism. Insteadofproducingamagneticfieldfromelectricity,weproduceelectricityfromamagnetic<br />

field.Thereisoneimportantdifference,though:whereaselectromagnetismproducesasteady<br />

magneticfieldfromasteadyelectriccurrent,electromagneticinductionrequiresmotionbetweenthemagnetandthecoiltoproduceavoltage.<br />

Connectthemultimetertothecoil,andsetittothemostsensitiveDCvoltagerangeavailable.<br />

Movethemagnetslowlytoandfromoneendoftheelectromagnet,notingthepolarity<br />

andmagnitudeoftheinducedvoltage.Experimentwithmovingthemagnet,anddiscoverfor<br />

yourselfwhatfactor(s)determinetheamountofvoltageinduced.Trytheotherendofthecoil<br />

andcompareresults.Trytheotherendofthepermanentmagnetandcompare.<br />

Ifusingananalogmultimeter,besuretouselongjumperwiresandlocatethemeterfar<br />

awayfromthecoil,asthemagneticfieldfromthepermanentmagnetmayaffectthemeter’s<br />

operationandproducefalsereadings.Digitalmetersareunaffectedbymagneticfields.


Chapter3<br />

DCCIRCUITS<br />

Contents<br />

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59<br />

3.2 Seriesbatteries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60<br />

3.3 Parallelbatteries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63<br />

3.4 Voltagedivider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67<br />

3.5 Currentdivider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78<br />

3.6 Potentiometerasavoltagedivider. . . . . . . . . . . . . . . . . . . . . . . . 87<br />

3.7 Potentiometerasarheostat . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93<br />

3.8 Precisionpotentiometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99<br />

3.9 Rheostatrangelimiting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102<br />

3.10 Thermoelectricity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109<br />

3.11 Makeyourownmultimeter . . . . . . . . . . . . . . . . . . . . . . . . . . . .112<br />

3.12 Sensitivevoltagedetector . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117<br />

3.13 Potentiometricvoltmeter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122<br />

3.14 4-wireresistancemeasurement . . . . . . . . . . . . . . . . . . . . . . . . . .127<br />

3.15 Averysimplecomputer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131<br />

3.16 Potatobattery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136<br />

3.17 Capacitorcharginganddischarging. . . . . . . . . . . . . . . . . . . . . . .138<br />

3.18 Rate-of-changeindicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142<br />

3.1 Introduction<br />

”DC”standsforDirectCurrent,whichcanrefertoeithervoltageorcurrentinaconstant<br />

polarityordirection,respectively.Theseexperimentsaredesignedtointroduceyoutoseveral<br />

importantconceptsofelectricityrelatedtoDCcircuits.<br />

59


60 CHAPTER3. DCCIRCUITS<br />

3.2 Seriesbatteries<br />

PARTSANDMATERIALS<br />

• Two6-voltbatteries<br />

• One9-voltbattery<br />

Actually,anysizebatterieswillsufficeforthisexperiment,butitisrecommendedtohave<br />

atleasttwodifferentvoltagesavailabletomakeitmoreinteresting.<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume1,chapter5:”SeriesandParallelCircuits”<br />

LessonsInElectricCircuits,Volume1,chapter11:”BatteriesandPowerSystems”<br />

LEARNINGOBJECTIVES<br />

• Howtoconnectbatteriestoobtaindifferentvoltagelevels<br />

SCHEMATICDIAGRAM<br />

+<br />

-<br />

+<br />

+<br />

V Voltmeter<br />

-<br />

-<br />

ILLUSTRATION


3.2. SERIESBATTERIES 61<br />

+ -<br />

V<br />

A<br />

V<br />

OFF<br />

A<br />

A<br />

COM<br />

+ -<br />

INSTRUCTIONS<br />

Connectingcomponentsinseriesmeanstoconnectthemin-linewitheachother,sothat<br />

thereisbutasinglepathforelectronstoflowthroughthemall. Ifyouconnectbatteriesso<br />

thatthepositiveofoneconnectstothenegativeoftheother,youwillfindthattheirrespective<br />

voltagesadd.Measurethevoltageacrosseachbatteryindividuallyastheyareconnected,then<br />

measurethetotalvoltageacrossthemboth,likethis:


62 CHAPTER3. DCCIRCUITS<br />

V<br />

A<br />

V<br />

OFF<br />

A<br />

A<br />

COM<br />

+ - V A<br />

Measuring first battery<br />

V A<br />

Measuring<br />

OFF<br />

total voltage<br />

A COM<br />

+ -<br />

+ -<br />

+ -<br />

+ - Measuring<br />

V A<br />

second battery<br />

V<br />

OFF<br />

A<br />

A<br />

COM<br />

+ -<br />

Tryconnectingbatteriesofdifferentsizesinserieswitheachother,forinstancea6-volt<br />

batterywitha9-voltbattery.Whatisthetotalvoltageinthiscase?Tryreversingtheterminal<br />

connectionsofjustoneofthesebatteries,sothattheyareopposingeachotherlikethis:<br />

+<br />

Seriesopposing<br />

-<br />

-<br />

+<br />

V Voltmeter<br />

-<br />

+<br />

Howdoesthetotalvoltagecompareinthissituationtothepreviousonewithbothbatteries<br />

”aiding?”Notethepolarityofthetotalvoltageasindicatedbythevoltmeterindicationand<br />

testprobeorientation.Remember,ifthemeter’sdigitalindicationisapositivenumber,thered<br />

probeispositive(+)andtheblackprobenegative(-);iftheindicationisanegativenumber,<br />

thepolarityis”backward”(red=negative,black=positive).Analogmeterssimplywillnotread<br />

properlyifreverse-connected,becausetheneedletriestomovethewrongdirection(leftinstead<br />

ofright). Canyoupredictwhattheoverallvoltagepolaritywillbe,knowingthepolaritiesof<br />

theindividualbatteriesandtheirrespectivestrengths?


3.3. PARALLELBATTERIES 63<br />

3.3 Parallelbatteries<br />

PARTSANDMATERIALS<br />

• Four6-voltbatteries<br />

• 12-voltlightbulb,25or50watt<br />

• Lampsocket<br />

High-wattage12-voltlampsmaybepurchasedfromrecreationalvehicle(RV)andboating<br />

supplystores.Commonsizesare25wattand50watt.Thislampwillbeusedasa”heavy”load<br />

foryourbatteries(heavyload=onethatdrawssubstantialcurrent).<br />

Aregularhousehold(120volt)lampsocketwillworkjustfinefortheselow-voltage”RV”<br />

lamps.<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume1,chapter5:”SeriesandParallelCircuits”<br />

LessonsInElectricCircuits,Volume1,chapter11:”BatteriesandPowerSystems”<br />

LEARNINGOBJECTIVES<br />

• Voltagesourceregulation<br />

• Boostingcurrentcapacitythroughparallelconnections<br />

SCHEMATICDIAGRAM<br />

+ +<br />

+<br />

+<br />

- -<br />

-<br />

-<br />

ILLUSTRATION<br />

+ - + - + - + -


64 CHAPTER3. DCCIRCUITS<br />

INSTRUCTIONS<br />

Beginthisexperimentbyconnectingone6-voltbatterytothelamp.Thelamp,designedto<br />

operateon12volts,shouldglowdimlywhenpoweredbythe6-voltbattery.Useyourvoltmeter<br />

toreadvoltageacrossthelamplikethis:<br />

+ -<br />

V<br />

A<br />

V<br />

OFF<br />

A<br />

A<br />

COM<br />

Thevoltmetershouldregisteravoltagelowerthantheusualvoltageofthebattery.Ifyou<br />

useyourvoltmetertoreadthevoltagedirectlyatthebatteryterminals,youwillmeasurealow<br />

voltagethereaswell.Whyisthis?Thelargecurrentdrawnbythehigh-powerlampcausesthe<br />

voltageatthebatteryterminalsto”sag”or”droop,”duetovoltagedroppedacrossresistance<br />

internaltothebattery.<br />

Wemayovercomethisproblembyconnectingbatteriesinparallelwitheachother,sothat<br />

eachbatteryonlyhastosupplyafractionofthetotalcurrentdemandedbythelamp.Parallel<br />

connectionsinvolvemakingallthepositive(+)batteryterminalselectricallycommontoeach<br />

otherbyconnectionthroughjumperwires,andallnegative(-)terminalscommontoeachother<br />

aswell. Addonebatteryatatimeinparallel,notingthelampvoltagewiththeadditionof<br />

eachnew,parallel-connectedbattery:


3.3. PARALLELBATTERIES 65<br />

. . . additional batteries . . .<br />

+ -<br />

+ -<br />

+ -<br />

+ -<br />

V<br />

A<br />

V<br />

OFF<br />

A<br />

A<br />

COM<br />

Thereshouldalsobeanoticeabledifferenceinlightintensityasthevoltage”sag”isimproved.<br />

Trymeasuringthecurrentofonebatteryandcomparingittothetotalcurrent(lightbulb<br />

current).Shownhereistheeasiestwaytomeasuresingle-batterycurrent:<br />

V<br />

A<br />

V<br />

OFF<br />

A<br />

A<br />

COM<br />

+ - + - + - + -<br />

Bybreakingthecircuitforjustonebattery,andinsertingourammeterwithinthatbreak,<br />

weinterceptthecurrentofthatonebatteryandarethereforeabletomeasureit.Measuring<br />

totalcurrentinvolvesasimilarprocedure: makeabreaksomewhereinthepaththattotal<br />

currentmusttake,theninserttheammeterwithinthanbreak:


66 CHAPTER3. DCCIRCUITS<br />

+ - + - + - + - COM<br />

V<br />

A<br />

V<br />

OFF<br />

A<br />

A<br />

Notethedifferenceincurrentbetweenthesingle-batteryandtotalmeasurements.<br />

Toobtainmaximumbrightnessfromthelightbulb,aseries-parallelconnectionisrequired.<br />

Two6-voltbatteriesconnectedseries-aidingwillprovide12volts. Connectingtwoofthese<br />

series-connectedbatterypairsinparallelimprovestheircurrent-sourcingabilityforminimum<br />

voltagesag:<br />

+ -<br />

+ -<br />

+ -<br />

+ -


3.4. VOLTAGEDIVIDER 67<br />

3.4 Voltagedivider<br />

PARTSANDMATERIALS<br />

• Calculator(orpencilandpaperfordoingarithmetic)<br />

• 6-voltbattery<br />

• Assortmentofresistorsbetween1KΩand100kΩinvalue<br />

I’mpurposelyrestrictingtheresistancevaluesbetween1kΩand100kΩforthesakeof<br />

obtainingaccuratevoltageandcurrentreadingswithyourmeter. Withverylowresistance<br />

values,theinternalresistanceoftheammeterhasasignificantimpactonmeasurementaccuracy.Veryhighresistancevaluesmaycauseproblemsforvoltagemeasurement,theinternal<br />

resistanceofthevoltmetersubstantiallychangingcircuitresistancewhenitisconnectedin<br />

parallelwithahigh-valueresistor.<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume1,chapter6:”DividerCircuitsandKirchhoff’sLaws”<br />

LEARNINGOBJECTIVES<br />

• Voltmeteruse<br />

• Ammeteruse<br />

• Ohmmeteruse<br />

• UseofOhm’sLaw<br />

• UseofKirchhoff’sVoltageLaw(”KVL”)<br />

• Voltagedividerdesign<br />

SCHEMATICDIAGRAM<br />

R 1<br />

R 2<br />

+<br />

V Voltmeter<br />

-<br />

R 3


68 CHAPTER3. DCCIRCUITS<br />

ILLUSTRATION<br />

+ - R 1<br />

R 2<br />

R 3<br />

Breadboard<br />

+ - R 1<br />

R 2<br />

R 3<br />

Terminal strip


3.4. VOLTAGEDIVIDER 69<br />

R 1 R 2 R 3<br />

+ -<br />

"Free-form" construction<br />

INSTRUCTIONS<br />

Shownherearethreedifferentmethodsofcircuitconstruction:onabreadboard,onaterminalstrip,and”free-form.”Trybuildingthesamecircuiteachwaytofamiliarizeyourselfwith<br />

thedifferentconstructiontechniquesandtheirrespectivemerits. The”free-form”method–<br />

whereallcomponentsareconnectedtogetherwith”alligator-”stylejumperwires–istheleast<br />

professional,butappropriateforasimpleexperimentsuchasthis. Breadboardconstruction<br />

isversatileandallowsforhighcomponentdensity(manypartsinasmallspace),butisquite<br />

temporary. Terminalstripsofferamuchmorepermanentformofconstructionatthecostof<br />

lowcomponentdensity.<br />

Selectthreeresistorsfromyourresistorassortmentandmeasuretheresistanceofeachone<br />

withanohmmeter. Notetheseresistancevalueswithpenandpaper,forreferenceinyour<br />

circuitcalculations.<br />

Connectthethreeresistorsinseries,andtothe6-voltbattery,asshownintheillustrations.<br />

Measurebatteryvoltagewithavoltmeteraftertheresistorshavebeenconnectedtoit,noting<br />

thisvoltagefigureonpaperaswell.Itisadvisabletomeasurebatteryvoltagewhileitspoweringtheresistorcircuitbecausethisvoltagemaydifferslightlyfromano-loadcondition.We<br />

sawthiseffectexaggeratedinthe”parallelbattery”experimentwhilepoweringahigh-wattage<br />

lamp:batteryvoltagetendsto”sag”or”droop”underload.Althoughthisthree-resistorcircuit<br />

shouldnotpresentaheavyenoughload(notenoughcurrentdrawn)tocausesignificantvoltage”sag,”measuringbatteryvoltageunderloadisagoodscientificpracticebecauseitprovides<br />

morerealisticdata.<br />

UseOhm’sLaw(I=E/R)tocalculatecircuitcurrent,thenverifythiscalculatedvalueby<br />

measuringcurrentwithanammeterlikethis(”terminalstrip”versionofthecircuitshownas<br />

anarbitrarychoiceinconstructionmethod):


70 CHAPTER3. DCCIRCUITS<br />

V<br />

A<br />

V<br />

OFF<br />

A<br />

A COM<br />

+ - R 2<br />

R 1 R 3<br />

Ifyourresistorvaluesareindeedbetween1kΩand100kΩ,andthebatteryvoltageapproximately6volts,thecurrentshouldbeaverysmallvalue,inthemilliamp(mA)ormicroamp<br />

(µA)range. Whenyoumeasurecurrentwithadigitalmeter,themetermayshowtheappropriatemetricprefixsymbol(mor<br />

µ)insomecornerofthedisplay.Thesemetricprefixtelltales<br />

areeasytooverlookwhenreadingthedisplayofadigitalmeter,sopaycloseattention!<br />

ThemeasuredvalueofcurrentshouldagreecloselywithyourOhm’sLawcalculation.Now,<br />

takethatcalculatedvalueforcurrentandmultiplyitbytherespectiveresistancesofeach<br />

resistortopredicttheirvoltagedrops(E=IR).Switchyoumultimetertothe”voltage”modeand<br />

measurethevoltagedroppedacrosseachresistor,verifyingtheaccuracyofyourpredictions.<br />

Again,thereshouldbecloseagreementbetweenthecalculatedandmeasuredvoltagefigures.<br />

Eachresistorvoltagedropwillbesomefractionorpercentageofthetotalvoltage,hencethe<br />

namevoltagedividergiventothiscircuit.Thisfractionalvalueisdeterminedbytheresistance<br />

oftheparticularresistorandthetotalresistance.Ifaresistordrops50%ofthetotalbattery<br />

voltageinavoltagedividercircuit,thatproportionof50%willremainthesameaslongasthe<br />

resistorvaluesarenotaltered.So,ifthetotalvoltageis6volts,thevoltageacrossthatresistor<br />

willbe50%of6,or3volts. Ifthetotalvoltageis20volts,thatresistorwilldrop10volts,or<br />

50%of20volts.<br />

ThenextpartofthisexperimentisavalidationofKirchhoff’sVoltageLaw. Forthis,you<br />

needtoidentifyeachuniquepointinthecircuitwithanumber. Pointsthatareelectrically<br />

common(directlyconnectedtoeachotherwithinsignificantresistancebetween)mustbearthe<br />

samenumber. Anexampleusingthenumbers0through3isshownhereinbothillustrative


3.4. VOLTAGEDIVIDER 71<br />

andschematicform.Intheillustration,Ishowhowpointsinthecircuitmaybelabeledwith<br />

smallpiecesoftape,numberswrittenonthetape:<br />

0<br />

3<br />

3<br />

+ - R 1<br />

R 2<br />

R 3<br />

Terminal strip<br />

2<br />

1<br />

0<br />

3<br />

2<br />

1<br />

0<br />

3 3<br />

R 1<br />

2<br />

R 2<br />

R 3<br />

1<br />

0 0<br />

Usingadigitalvoltmeter(thisisimportant!),measurevoltagedropsaroundtheloopformed<br />

bythepoints0-1-2-3-0. Writeonpapereachofthesevoltages,alongwithitsrespectivesign<br />

asindicatedbythemeter. Inotherwords,ifthevoltmeterregistersanegativevoltagesuch<br />

as-1.325volts,youshouldwritethatfigureasanegativenumber. Donotreversethemeter<br />

probeconnectionswiththecircuittomakethenumberread”correctly.”Mathematicalsignis<br />

verysignificantinthisphaseoftheexperiment! Hereisasequenceofillustrationsshowing<br />

howto”steparound”thecircuitloop,startingandendingatpoint0:


72 CHAPTER3. DCCIRCUITS<br />

Measure voltage from<br />

1 to 0<br />

0<br />

V<br />

A<br />

3<br />

V<br />

OFF<br />

A<br />

3<br />

2<br />

1<br />

0<br />

A<br />

COM<br />

3<br />

+ - R 1<br />

R 2<br />

R 3<br />

2<br />

1<br />

0<br />

Measure voltage from<br />

2 to 1<br />

0<br />

V<br />

A<br />

3<br />

V<br />

OFF<br />

A<br />

3<br />

2<br />

1<br />

0<br />

A<br />

COM<br />

3<br />

+ - R 1<br />

R 2<br />

R 3<br />

2<br />

1<br />

0


3.4. VOLTAGEDIVIDER 73<br />

Measure voltage from<br />

3 to 2<br />

0<br />

V<br />

A<br />

3<br />

V<br />

OFF<br />

A<br />

3<br />

2<br />

1<br />

0<br />

A<br />

COM<br />

+ - R 1<br />

R 2<br />

R 3<br />

3<br />

2<br />

1<br />

0<br />

Measure voltage from<br />

0 to 3<br />

0<br />

V<br />

A<br />

3<br />

V<br />

OFF<br />

A<br />

3<br />

2<br />

1<br />

0<br />

A<br />

COM<br />

+ - R 1<br />

R 2<br />

R 3<br />

3<br />

2<br />

1<br />

0<br />

Usingthevoltmeterto”step”aroundthecircuitinthismanneryieldsthreepositivevoltage<br />

figuresandonenegative:


74 CHAPTER3. DCCIRCUITS<br />

3 3<br />

3-2<br />

(+)<br />

R 1<br />

2<br />

2-1<br />

(+)<br />

0-3<br />

(-)<br />

1-0<br />

(+)<br />

R 2<br />

1<br />

0 0<br />

R 3<br />

Thesefigures,algebraicallyadded(”algebraically”=respectingthesignsofthenumbers),<br />

shouldequalzero. ThisisthefundamentalprincipleofKirchhoff’sVoltageLaw: thatthe<br />

algebraicsumofallvoltagedropsina”loop”addtozero.<br />

Itisimportanttorealizethatthe”loop”steppedarounddoesnothavetobethesamepath<br />

thatcurrenttakesinthecircuit,orevenalegitimatecurrentpathatall.Theloopinwhichwe<br />

tallyvoltagedropscanbeanycollectionofpoints,solongasitbeginsandendswiththesame<br />

point. Forexample,wemaymeasureandaddthevoltagesintheloop1-2-3-1,andtheywill<br />

formasumofzeroaswell:<br />

3 3<br />

3-2<br />

(+)<br />

2-1<br />

(+)<br />

R 1<br />

2<br />

R 2<br />

1<br />

R 3<br />

1-3<br />

(-)<br />

0 0


3.4. VOLTAGEDIVIDER 75<br />

Measure voltage from<br />

2 to 1<br />

0<br />

V<br />

A<br />

3<br />

V<br />

OFF<br />

A<br />

3<br />

2<br />

1<br />

0<br />

A<br />

COM<br />

+ - R 1<br />

R 2<br />

R 3<br />

3<br />

2<br />

1<br />

0<br />

Measure voltage from<br />

3 to 2<br />

0<br />

V<br />

A<br />

3<br />

V<br />

OFF<br />

A<br />

3<br />

2<br />

1<br />

0<br />

A<br />

COM<br />

+ - R 1<br />

R 2<br />

R 3<br />

3<br />

2<br />

1<br />

0


76 CHAPTER3. DCCIRCUITS<br />

Measure voltage from<br />

1 to 3<br />

0<br />

V<br />

A<br />

3<br />

V<br />

OFF<br />

A<br />

3<br />

2<br />

1<br />

0<br />

A<br />

COM<br />

3<br />

+ - R 1<br />

R 2<br />

R 3<br />

2<br />

1<br />

0<br />

Trysteppingbetweenanysetofpoints,inanyorder,aroundyourcircuitandseeforyourself<br />

thatthealgebraicsumalwaysequalszero.ThisLawholdstruenomatterwhattheconfigurationofthecircuit:series,parallel,series-parallel,orevenanirreduciblenetwork.<br />

Kirchhoff’sVoltageLawisapowerfulconcept,allowingustopredictthemagnitudeand<br />

polarityofvoltagesinacircuitbydevelopingmathematicalequationsforanalysisbasedonthe<br />

truthofallvoltagesinaloopaddinguptozero.Thisexperimentisintendedtogiveempirical<br />

evidenceforandadeepunderstandingofKirchhoff’sVoltageLawasageneralprinciple.<br />

COMPUTERSIMULATION<br />

Netlist(makeatextfilecontainingthefollowingtext,verbatim):<br />

Voltage divider<br />

v1 3 0<br />

r1 3 2 5k<br />

r2 2 1 3k<br />

r3 1 0 2k<br />

.dc v1 6 6 1<br />

* Voltages around 0-1-2-3-0 loop algebraically add to zero:<br />

.print dc v(1,0) v(2,1) v(3,2) v(0,3)<br />

* Voltages around 1-2-3-1 loop algebraically add to zero:<br />

.print dc v(2,1) v(3,2) v(1,3)<br />

.end<br />

Thiscomputersimulationisbasedonthepointnumbersshowninthepreviousdiagrams<br />

forillustratingKirchhoff’sVoltageLaw(points0through3). Resistorvalueswerechosento<br />

provide50%,30%,and20%proportionsoftotalvoltageacrossR 1 ,R 2 ,andR 3 ,respectively.<br />

Feelfreetomodifythevoltagesourcevalue(inthe”.dc”line,shownhereas6volts),and/or<br />

theresistorvalues.<br />

Whenrun,SPICEwillprintalineoftextcontainingfourvoltagefigures,thenanother<br />

lineoftextcontainingthreevoltagefigures,alongwithlotsofothertextlinesdescribingthe


3.4. VOLTAGEDIVIDER 77<br />

analysisprocess.Addthevoltagefiguresineachlinetoseethatthesumiszero.


78 CHAPTER3. DCCIRCUITS<br />

3.5 Currentdivider<br />

PARTSANDMATERIALS<br />

• Calculator(orpencilandpaperfordoingarithmetic)<br />

• 6-voltbattery<br />

• Assortmentofresistorsbetween1KΩand100kΩinvalue<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume1,chapter6:”DividerCircuitsandKirchhoff’sLaws”<br />

LEARNINGOBJECTIVES<br />

• Voltmeteruse<br />

• Ammeteruse<br />

• Ohmmeteruse<br />

• UseofOhm’sLaw<br />

• UseofKirchhoff’sCurrentLaw(KCL)<br />

• Currentdividerdesign<br />

SCHEMATICDIAGRAM<br />

R 1 R 2 R 3<br />

+<br />

A Ammeter<br />

-<br />

ILLUSTRATION


3.5. CURRENTDIVIDER 79<br />

+ - R 1 R 2 R 3<br />

Breadboard<br />

Terminal<br />

+ - strip<br />

R 1 R 2 R 3<br />

Normally,itisconsideredimpropertosecuremorethantwowiresunderasingleterminal<br />

stripscrew. Inthisillustration,Ishowthreewiresjoiningatthetopscrewoftherightmost<br />

lugusedonthisstrip.Thisisdonefortheeaseofprovingaconcept(ofcurrentsummingata<br />

circuitnode),anddoesnotrepresentprofessionalassemblytechnique.


80 CHAPTER3. DCCIRCUITS<br />

Piece of stiff wire serves<br />

as a connection point<br />

+ - R 1 R 2 R 3<br />

"Free-form" construction<br />

INSTRUCTIONS<br />

Onceagain,Ishowdifferentmethodsofconstructingthesamecircuit:breadboard,terminal<br />

strip,and”free-form.”Experimentwithalltheseconstructionformatsandbecomefamiliar<br />

withtheirrespectiveadvantagesanddisadvantages.<br />

Selectthreeresistorsfromyourresistorassortmentandmeasuretheresistanceofeachone<br />

withanohmmeter. Notetheseresistancevalueswithpenandpaper,forreferenceinyour<br />

circuitcalculations.<br />

Connectthethreeresistorsinparalleltoandeachother,andwiththe6-voltbattery,as<br />

shownintheillustrations.Measurebatteryvoltagewithavoltmeteraftertheresistorshave<br />

beenconnectedtoit,notingthisvoltagefigureonpaperaswell. Itisadvisabletomeasure<br />

batteryvoltagewhileitspoweringtheresistorcircuitbecausethisvoltagemaydifferslightly<br />

fromano-loadcondition.<br />

Measurevoltageacrosseachofthethreeresistors.Whatdoyounotice?Inaseriescircuit,<br />

currentisequalthroughallcomponentsatanygiventime.Inaparallelcircuit,voltageisthe<br />

commonvariablebetweenallcomponents.<br />

Thenon-professionalnatureofthe”free-form”constructionmethodmeritsnofurthercomment.<br />

UseOhm’sLaw(I=E/R)tocalculatecurrentthrougheachresistor,thenverifythiscalculatedvaluebymeasuringcurrentwithadigitalammeter.Placetheredprobeoftheammeter<br />

atthepointwherethepositive(+)endsoftheresistorsconnecttoeachotherandliftoneresistorwireatatime,connectingthemeter’sblackprobetotheliftedwire.<br />

Inthismanner,<br />

measureeachresistorcurrent,notingboththemagnitudeofthecurrentandthepolarity.In<br />

theseillustrations,IshowanammeterusedtomeasurethecurrentthroughR 1 :


3.5. CURRENTDIVIDER 81<br />

V<br />

A<br />

V<br />

OFF<br />

A<br />

A<br />

COM<br />

+ - R 1 R 2 R 3<br />

Breadboard


82 CHAPTER3. DCCIRCUITS<br />

V<br />

A<br />

V<br />

OFF<br />

A<br />

A<br />

COM<br />

Terminal<br />

+ - strip<br />

R 1 R 2 R 3<br />

Measurecurrentforeachofthethreeresistors,comparingwiththecurrentfigurescalculatedpreviously.Withthedigitalammeterconnectedasshown,allthreeindicationsshouldbe<br />

positive,notnegative.<br />

Now,measuretotalcircuitcurrent,keepingtheammeter’sredprobeonthesamepoint<br />

ofthecircuit,butdisconnectingthewireleadingtothepositive(+)sideofthebatteryand<br />

touchingtheblackprobetoit:


3.5. CURRENTDIVIDER 83<br />

V<br />

A<br />

V<br />

OFF<br />

A<br />

A<br />

COM<br />

+ - R 1 R 2 R 3<br />

Breadboard


84 CHAPTER3. DCCIRCUITS<br />

V<br />

A<br />

V<br />

OFF<br />

A<br />

A<br />

COM<br />

Terminal<br />

+ - strip<br />

R 1 R 2 R 3<br />

Noteboththemagnitudeandthesignofthecurrentasindicatedbytheammeter.Addthis<br />

figure(algebraically)tothethreeresistorcurrents.Whatdoyounoticeabouttheresultthat<br />

issimilartotheKirchhoff’sVoltageLawexperiment?Kirchhoff’sCurrentLawistocurrents<br />

”summing”atapoint(node)inacircuit,justasKirchhoff’sVoltageLawistovoltagesadding<br />

inaseriesloop:inbothcases,thealgebraicsumisequaltozero.<br />

ThisLawisalsoveryusefulinthemathematicalanalysisofcircuits.AlongwithKirchhoff’s<br />

VoltageLaw,itallowsustogenerateequationsdescribingseveralvariablesinacircuit,which<br />

maythenbesolvedusingavarietyofmathematicaltechniques.<br />

Nowconsiderthefourcurrentmeasurementsasallpositivenumbers:thefirstthreerepresentingthecurrentthrougheachresistor,andthefourthrepresentingtotalcircuitcurrentas<br />

apositivesumofthethree”branch”currents.Eachresistor(branch)currentisafraction,or<br />

percentage,ofthetotalcurrent.Thisiswhyaparallelresistorcircuitisoftencalledacurrent<br />

divider.<br />

Disconnectthebatteryfromtherestofthecircuit,andmeasureresistanceacrosstheparallelresistors.Youmayreadtotalresistanceacrossanyoftheindividualresistors’terminals<br />

andobtainthesameindication:itwillbeavaluelessthananyoftheindividualresistorvalues.Thisisoftensurprisingtonewstudentsofelectricity,thatyoureadtheexactsame(total)<br />

resistancefigurewhenconnectinganohmmeteracrossanyoneofasetofparallel-connected<br />

resistors. Itmakessense,though,ifyouconsiderthepointsinaparallelcircuitintermsof<br />

electricalcommonality.Allparallelcomponentsareconnectedbetweentwosetsofelectrically


3.5. CURRENTDIVIDER 85<br />

commonpoints.Sincethemetercannotdistinguishbetweenpointscommontoeachotherby<br />

wayofdirectconnection,toreadresistanceacrossoneresistoristoreadtheresistanceofthem<br />

all.Thesameistrueforvoltage,whichiswhybatteryvoltagecouldbereadacrossanyoneof<br />

theresistorsaseasilyasitcouldbereadacrossthebatteryterminalsdirectly.<br />

Ifyoudividethebatteryvoltage(previouslymeasured)bythistotalresistancefigure,you<br />

shouldobtainafigurefortotalcurrent(I=E/R)closelymatchingthemeasuredfigure.<br />

Theratioofresistorcurrenttototalcurrentisthesameastheratiooftotalresistanceto<br />

individualresistance.Forexample,ifa10kΩresistorispartofacurrentdividercircuitwith<br />

atotalresistanceof1kΩ,thatresistorwillconduct1/10ofthetotalcurrent,whatevervalue<br />

thatcurrenttotalhappenstobe.<br />

COMPUTERSIMULATION<br />

SchematicwithSPICEnodenumbers:<br />

2 2 2 2<br />

V itotal V ir1 V ir2 V ir3<br />

V 1<br />

1<br />

3 4 5<br />

R 1 R 2 R 3<br />

0 0 0 0<br />

AmmetersinSPICEsimulationsareactuallyzero-voltagesourcesinsertedinthepathsof<br />

electronflow. YouwillnoticethevoltagesourcesV ir1 ,V ir2 ,andV ir3 aresetto0voltsinthe<br />

netlist.Whenelectronsenterthenegativesideofoneofthese”dummy”batteriesandoutthe<br />

positive,thebattery’scurrentindicationwillbeapositivenumber.Inotherwords,these0-volt<br />

sourcesaretoberegardedasammeterswiththeredprobeonthelong-linesideofthebattery<br />

symbolandtheblackprobeontheshort-lineside.<br />

Netlist(makeatextfilecontainingthefollowingtext,verbatim):<br />

Current divider<br />

v1 1 0<br />

r1 3 0 2k<br />

r2 4 0 3k<br />

r3 5 0 5k<br />

vitotal 2 1 dc 0<br />

vir1 2 3 dc 0<br />

vir2 2 4 dc 0<br />

vir3 2 5 dc 0<br />

.dc v1 6 6 1<br />

.print dc i(vitotal) i(vir1) i(vir2) i(vir3)<br />

.end


86 CHAPTER3. DCCIRCUITS<br />

Whenrun,SPICEwillprintalineoftextcontainingfourcurrentfigures,thefirstcurrent<br />

representingthetotalasanegativequantity,andtheotherthreerepresentingcurrentsfor<br />

resistorsR 1 ,R 2 ,andR 3 . Whenalgebraicallyadded,theonenegativefigureandthethree<br />

positivefigureswillformasumofzero,asdescribedbyKirchhoff’sCurrentLaw.


3.6. POTENTIOMETERASAVOLTAGEDIVIDER 87<br />

3.6 Potentiometerasavoltagedivider<br />

PARTSANDMATERIALS<br />

• Two6-voltbatteries<br />

• Carbonpencil”lead”foramechanical-stylepencil<br />

• Potentiometer,singleturn,5kΩto50kΩ,lineartaper(RadioShackcatalog#271-1714<br />

through271-1716)<br />

• Potentiometer,multiturn,1kΩto20kΩ,(RadioShackcatalog#271-342,271-343,900-<br />

8583,or900-8587through900-8590)<br />

Potentiometersarevariablevoltagedividerswithashaftorslidecontrolforsettingthe<br />

divisionratio. Theyaremanufacturedinpanel-mountaswellasbreadboard(printed-circuit<br />

board)mountversions.Anystyleofpotentiometerwillsufficeforthisexperiment.<br />

Ifyousalvageapotentiometerfromanoldradioorotheraudiodevice,youwilllikelybe<br />

gettingwhatiscalledanaudiotaperpotentiometer.Thesepotentiometersexhibitalogarithmicrelationshipbetweendivisionratioandshaftposition.Bycontrast,alinearpotentiometer<br />

exhibitsadirectcorrelationbetweenshaftpositionandvoltagedivisionratio.Ihighlyrecommendalinearpotentiometerforthisexperiment,andformostexperimentsingeneral.<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume1,chapter6:”DividerCircuitsandKirchhoff’sLaws”<br />

LEARNINGOBJECTIVES<br />

• Voltmeteruse<br />

• Ohmmeteruse<br />

• Voltagedividerdesignandfunction<br />

• Howvoltagesaddinseries<br />

SCHEMATICDIAGRAM<br />

Potentiometer<br />

+<br />

V<br />

-<br />

ILLUSTRATION


88 CHAPTER3. DCCIRCUITS<br />

+ - Pencil "lead"<br />

V<br />

V<br />

OFF<br />

A<br />

A<br />

A<br />

COM<br />

V<br />

A<br />

V<br />

OFF<br />

A<br />

+ - A COM<br />

Potentiometer


3.6. POTENTIOMETERASAVOLTAGEDIVIDER 89<br />

V<br />

A<br />

V<br />

OFF<br />

A<br />

+ - A<br />

Potentiometer<br />

COM<br />

INSTRUCTIONS<br />

Beginthisexperimentwiththepencil”lead”circuit.Pencilsusearodmadeofagraphiteclaymixture,notlead(themetal),tomakeblackmarksonpaper.Graphite,beingamediocre<br />

electricalconductor,actsasaresistorconnectedacrossthebatterybythetwoalligator-clip<br />

jumperwires. Connectthevoltmeterasshownandtouchtheredtestprobetothegraphite<br />

rod. Movetheredprobealongthelengthoftherodandnoticethevoltmeter’sindication<br />

change.Whatprobepositiongivesthegreatestvoltageindication?<br />

Essentially,therodactsasapairofresistors,theratiobetweenthetworesistancesestablishedbythepositionoftheredtestprobealongtherod’slength:


90 CHAPTER3. DCCIRCUITS<br />

+ - Pencil "lead"<br />

equivalent to<br />

Now,changethevoltmeterconnectiontothecircuitsoastomeasurevoltageacrossthe<br />

”upperresistor”ofthepencillead,likethis:<br />

+ - Pencil "lead"<br />

V<br />

V<br />

A<br />

OFF<br />

COM<br />

A<br />

A


3.6. POTENTIOMETERASAVOLTAGEDIVIDER 91<br />

Movetheblacktestprobepositionalongthelengthoftherod,notingthevoltmeterindication.Whichpositiongivesthegreatestvoltagedropforthemetertomeasure?Doesthisdiffer<br />

fromthepreviousarrangement?Why?<br />

Manufacturedpotentiometersenclosearesistivestripinsideametalorplastichousing,<br />

andprovidesomekindofmechanismformovinga”wiper”acrossthelengthofthatresistive<br />

strip.Hereisanillustrationofarotarypotentiometer’sconstruction:<br />

Terminals<br />

Rotary potentiometer<br />

construction<br />

Wiper<br />

Resistive strip<br />

Somerotarypotentiometershaveaspiralresistivestrip,andawiperthatmovesaxiallyas<br />

itrotates,soastorequiremultipleturnsoftheshafttodrivethewiperfromoneendofthe<br />

potentiometer’srangetotheother.Multi-turnpotentiometersareusedinapplicationswhere<br />

precisesettingisimportant.<br />

Linearpotentiometersalsocontainaresistivestrip,theonlydifferencebeingthewiper’s<br />

directionoftravel.Somelinearpotentiometersuseaslidemechanismtomovethewiper,while<br />

othersascrew,tofacilitatemultiple-turnoperation:<br />

Linear potentiometer construction<br />

Wiper<br />

Resistive strip<br />

Terminals<br />

Itshouldbenotedthatnotalllinearpotentiometershavethesamepinassignments. On<br />

some,themiddlepinisthewiper.<br />

Setupacircuitusingamanufacturedpotentiometer,notthe”home-made”onemadefrom<br />

apencillead.Youmayuseanyformofconstructionthatisconvenient.<br />

Measurebatteryvoltagewhilepoweringthepotentiometer,andmakenoteofthisvoltage<br />

figureonpaper. Measurevoltagebetweenthewiperandthepotentiometerendconnectedto<br />

thenegative(-)sideofthebattery. Adjustthepotentiometermechanismuntilthevoltmeter


92 CHAPTER3. DCCIRCUITS<br />

registersexactly1/3oftotalvoltage.Fora6-voltbattery,thiswillbeapproximately2volts.<br />

Now,connecttwobatteriesinaseries-aidingconfiguration,toprovideapproximately12<br />

voltsacrossthepotentiometer.Measurethetotalbatteryvoltage,andthenmeasurethevoltagebetweenthesametwopointsonthepotentiometer(wiperandnegativeside).Dividethe<br />

potentiometer’smeasuredoutputvoltagebythemeasuredtotalvoltage.Thequotientshould<br />

be1/3,thesamevoltagedivisionratioaswassetpreviously:<br />

V<br />

A<br />

V<br />

OFF<br />

A<br />

+ - A COM<br />

+ - Voltmeter measuring output<br />

of potentiometer.


3.7. POTENTIOMETERASARHEOSTAT 93<br />

3.7 Potentiometerasarheostat<br />

PARTSANDMATERIALS<br />

• 6voltbattery<br />

• Potentiometer,singleturn,5kΩ,lineartaper(RadioShackcatalog#271-1714)<br />

• Small”hobby”motor,permanent-magnettype(RadioShackcatalog#273-223orequivalent)<br />

Forthisexperiment,youwillneedarelativelylow-valuepotentiometer,certainlynotmore<br />

than5kΩ.<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume1,chapter2:”Ohm’sLaw”<br />

LEARNINGOBJECTIVES<br />

• Rheostatuse<br />

• Wiringapotentiometerasarheostat<br />

• Simplemotorspeedcontrol<br />

• Useofvoltmeteroverammetertoverifyacontinuouscircuit<br />

SCHEMATICDIAGRAM<br />

Mtr<br />

ILLUSTRATION


94 CHAPTER3. DCCIRCUITS<br />

+ - optional<br />

Potentiometer<br />

Motor<br />

INSTRUCTIONS<br />

Potentiometersfindtheirmostsophisticatedapplicationasvoltagedividers,whereshaft<br />

positiondeterminesaspecificvoltagedivisionratio.However,thereareapplicationswherewe<br />

don’tnecessarilyneedavariablevoltagedivider,butmerelyavariableresistor:atwo-terminal<br />

device.Technically,avariableresistorisknownasarheostat,butpotentiometerscanbemade<br />

tofunctionasrheostatsquiteeasily.<br />

Initssimplestconfiguration,apotentiometermaybeusedasarheostatbysimplyusing<br />

thewiperterminalandoneoftheotherterminals,thethirdterminalleftunconnectedand<br />

unused:<br />

Mtr


3.7. POTENTIOMETERASARHEOSTAT 95<br />

+ - Potentiometer<br />

Motor<br />

Movingthepotentiometercontrolinthedirectionthatbringsthewiperclosesttotheother<br />

usedterminalresultsinalowerresistance. Thedirectionofmotionrequiredtoincreaseor<br />

decreaseresistancemaybechangedbyusingadifferentsetofterminals:<br />

Less resistance when turned clockwise<br />

More resistance when turned clockwise<br />

Wiper<br />

Resistive strip<br />

Wiper<br />

Resistive strip<br />

Becareful,though,thatyoudon’tusethetwoouterterminals,asthiswillresultinno<br />

changeinresistanceasthepotentiometershaftisturned. Inotherwords,itwillnolonger<br />

functionasavariableresistance:


96 CHAPTER3. DCCIRCUITS<br />

No resistance change when wiper moves!<br />

Buildthecircuitasshownintheschematicandillustration,usingjusttwoterminalson<br />

thepotentiometer,andseehowmotorspeedmaybecontrolledbyadjustingshaftposition.<br />

Experimentwithdifferentterminalconnectionsonthepotentiometer,notingthechangesin<br />

motorspeedcontrol. Ifyourpotentiometerhasahighresistance(asmeasuredbetweenthe<br />

twoouterterminals),themotormightnotmoveatalluntilthewiperisbroughtverycloseto<br />

theconnectedouterterminal.<br />

Asyoucansee,motorspeedmaybemadevariableusingaseries-connectedrheostatto<br />

changetotalcircuitresistanceandlimittotalcurrent. Thissimplemethodofmotorspeed<br />

control,however,isinefficient,asitresultsinsubstantialamountsofpowerbeingdissipated<br />

(wasted)bytherheostat.Amuchmoreefficientmeansofmotorcontrolreliesonfast”pulsing”<br />

ofpowertothemotor,usingahigh-speedswitchingdevicesuchasatransistor. Asimilar<br />

methodofpowercontrolisusedinhouseholdlight”dimmer”switches. Unfortunately,these<br />

techniquesaremuchtoosophisticatedtoexploreatthispointintheexperiments.<br />

Whenapotentiometerisusedasarheostat,the”unused”terminalisoftenconnectedtothe<br />

wiperterminal,likethis:<br />

Mtr<br />

Atfirst,thisseemsratherpointless,asithasnoimpactonresistancecontrol. Youmay<br />

verifythisfactforyourselfbyinsertinganotherwireinyourcircuitandcomparingmotor<br />

behaviorbeforeandafterthechange:


3.7. POTENTIOMETERASARHEOSTAT 97<br />

+ - add wire<br />

Potentiometer<br />

Motor<br />

Ifthepotentiometerisingoodworkingorder,thisadditionalwiremakesnodifference<br />

whatsoever.However,ifthewipereverlosescontactwiththeresistivestripinsidethepotentiometer,thisconnectionensuresthecircuitdoesnotcompletelyopen:thattherewillstillbe<br />

aresistivepathforcurrentthroughthemotor. Insomeapplications,thismaybeanimportant.Oldpotentiometerstendtosufferfromintermittentlossesofcontactbetweenthewiper<br />

andtheresistivestrip,andifacircuitcannottoleratethecompletelossofcontinuity(infinite<br />

resistance)createdbythiscondition,that”extra”wireprovidesameasureofprotectionby<br />

maintainingcircuitcontinuity.<br />

Youmaysimulatesuchawipercontact”failure”bydisconnectingthepotentiometer’smiddleterminalfromtheterminalstrip,measuringvoltageacrossthemotortoensurethereis<br />

stillpowergettingtoit,howeversmall:


98 CHAPTER3. DCCIRCUITS<br />

+ -<br />

break connection<br />

V<br />

A<br />

V<br />

OFF<br />

A<br />

A<br />

COM<br />

Itwouldhavebeenvalidtomeasurecircuitcurrentinsteadofmotorvoltagetoverifya<br />

completedcircuit,butthisisasafermethodbecauseitdoesnotinvolvebreakingthecircuit<br />

toinsertanammeterinseries.Wheneveranammeterisused,thereisriskofcausingashort<br />

circuitbyconnectingitacrossasubstantialvoltagesource,possiblyresultingininstrument<br />

damageorpersonalinjury.Voltmeterslackthisinherentsafetyrisk,andsowheneveravoltage<br />

measurementmaybemadeinsteadofacurrentmeasurementtoverifythesamething,itis<br />

thewiserchoice.


3.8. PRECISIONPOTENTIOMETER 99<br />

3.8 Precisionpotentiometer<br />

PARTSANDMATERIALS<br />

• Twosingle-turn,linear-taperpotentiometers,5kΩeach(RadioShackcatalog#271-1714)<br />

• Onesingle-turn,linear-taperpotentiometer,50kΩ(RadioShackcatalog#271-1716)<br />

• Plasticormetalmountingbox<br />

• Three”banana”jackstylebindingposts,orotherterminalhardware,forconnectionto<br />

potentiometercircuit(RadioShackcatalog#274-662orequivalent)<br />

Thisisaprojectusefultothosewhowantaprecisionpotentiometerwithoutspendingalot<br />

ofmoney.Ordinarily,multi-turnpotentiometersareusedtoobtainprecisevoltagedivisionratios,butacheaperalternativeexistsusingmultiple,single-turn(sometimescalled”3/4-turn”)<br />

potentiometersconnectedtogetherinacompounddividernetwork.<br />

Becausethisisausefulproject,Irecommendbuildingitinpermanentformusingsome<br />

formofprojectenclosure. SupplierssuchasRadioShackofferniceprojectboxes,butboxes<br />

purchasedatageneralhardwarestorearemuchlessexpensive,ifabitugly. Theultimate<br />

inlowcostforanewboxaretheplasticboxessoldaslightswitchandreceptacleboxesfor<br />

householdelectricalwiring.<br />

”Banana”jacksallowforthetemporaryconnectionoftestleadsandjumperwiresequipped<br />

withmatching”banana”plugends. Mostmultimetertestleadshavethisstyleofplugfor<br />

insertionintothemeterjacks.Bananaplugsaresonamedbecauseoftheiroblongappearance<br />

formedbyspringsteelstrips,whichmaintainfirmcontactwiththejackwallswheninserted.<br />

Somebananajacksarecalledbindingpostsbecausetheyalsoallowplainwirestobefirmly<br />

attached.Bindingpostshavescrew-onsleevesthatfitoverametalpost.Thesleeveisusedasa<br />

nuttosecureawirewrappedaroundthepost,orinsertedthroughaperpendicularholedrilled<br />

throughthepost.Abriefinspectionofanybindingpostwillclarifythisverbaldescription.<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume1,chapter6:”DividerCircuitsandKirchhoff’sLaws”<br />

LEARNINGOBJECTIVES<br />

• Solderingpractice<br />

• Potentiometerfunctionandoperation<br />

SCHEMATICDIAGRAM


100 CHAPTER3. DCCIRCUITS<br />

R 1<br />

5 kΩ<br />

R 3<br />

50<br />

kΩ<br />

+<br />

R 2 V<br />

5 kΩ<br />

-<br />

ILLUSTRATION<br />

V<br />

A<br />

V<br />

OFF<br />

A<br />

R 1<br />

5 kΩ<br />

R 2<br />

50 kΩ<br />

+ - 5 kΩ<br />

R 3<br />

A COM<br />

INSTRUCTIONS<br />

Itisessentialthattheconnectingwiresbesolderedtothepotentiometerterminals,not<br />

twistedortaped. Sincepotentiometeractionisdependentonresistance,theresistanceof<br />

allwiringconnectionsmustbecarefullycontrolledtoabareminimum. Solderingensuresa<br />

conditionoflowresistancebetweenjoinedconductors,andalsoprovidesverygoodmechanical<br />

strengthfortheconnections.<br />

Whenthecircuitisassembled,connecta6-voltbatterytotheoutertwobindingposts.<br />

Connectavoltmeterbetweenthe”wiper”postandthebattery’snegative(-)terminal. This<br />

voltmeterwillmeasurethe”output”ofthecircuit.<br />

Thecircuitworksontheprincipleofcompressedrange: thevoltageoutputrangeofthis<br />

circuitavailablebyadjustingpotentiometerR 3 isrestrictedbetweenthelimitssetbypotentiometersR<br />

1 andR 2 . Inotherwords,ifR 1 andR 2 weresettooutput5voltsand3volts,


3.8. PRECISIONPOTENTIOMETER 101<br />

respectively,froma6-voltbattery,therangeofoutputvoltagesobtainablebyadjustingR 3<br />

wouldberestrictedfrom3to5voltsforthefullrotationofthatpotentiometer.Ifonlyasingle<br />

potentiometerwereusedinsteadofthisthree-potentiometercircuit,fullrotationwouldproduceanoutputvoltagefrom0voltstofullbatteryvoltage.The”rangecompression”afforded<br />

bythiscircuitallowsformoreprecisevoltageadjustmentthanwouldbenormallyobtainable<br />

usingasinglepotentiometer.<br />

Operatingthispotentiometernetworkismorecomplexthanusingasinglepotentiometer.<br />

Tobegin,turntheR 3 potentiometerfullyclockwise,sothatitswiperisinthefull”up”position<br />

asreferencedtotheschematicdiagram(electrically”closest”toR 1 ’swiperterminal). Adjust<br />

potentiometerR 1 untiltheuppervoltagelimitisreached,asindicatedbythevoltmeter.<br />

TurntheR 3 potentiometerfullycounter-clockwise,sothatitswiperisinthefull”down”<br />

positionasreferencedtotheschematicdiagram(electrically”closest”toR 2 ’swiperterminal).<br />

AdjustpotentiometerR 2 untilthelowervoltagelimitisreached,asindicatedbythevoltmeter.<br />

WheneithertheR 1 ortheR 2 potentiometerisadjusted,itinterfereswiththepriorsetting<br />

oftheother.Inotherwords,ifR 1 isinitiallyadjustedtoprovideanuppervoltagelimitof5.000<br />

voltsfroma6voltbattery,andthenR 2 isadjustedtoprovidesomelowerlimitvoltagedifferent<br />

fromwhatitwasbefore,R 1 willnolongerbesetto5.000volts.<br />

Toobtainpreciseupperandlowervoltagelimits,turnR 3 fullyclockwisetoreadandadjust<br />

thevoltageofR 1 ,thenturnR 3 fullycounter-clockwisetoreadandadjustthevoltageofR 2 ,<br />

repeatingasnecessary.<br />

Technically,thisphenomenonofoneadjustmentaffectingtheotherisknownasinteraction,<br />

anditisusuallyundesirableduetotheextraeffortrequiredtosetandre-settheadjustments.<br />

ThereasonthatR 1 andR 2 werespecifiedas10timeslessresistancethanR 3 istominimizethis<br />

effect. Ifallthreepotentiometerswereofequalresistancevalue,theinteractionbetweenR 1<br />

andR 2 wouldbemoresevere,thoughmanageablewithpatience.Bearinmindthattheupper<br />

andlowervoltagelimitsneednotbesetpreciselyinorderforthiscircuittoachieveitsgoalof<br />

increasedprecision.SolongasR 3 ’sadjustmentrangeiscompressedtosomelesservaluethan<br />

fullbatteryvoltage,wewillenjoygreaterprecisionthanasinglepotentiometercouldprovide.<br />

Oncetheupperandlowervoltagelimitshavebeenset,potentiometerR 3 maybeadjusted<br />

toproduceanoutputvoltageanywherebetweenthoselimits.


102 CHAPTER3. DCCIRCUITS<br />

3.9 Rheostatrangelimiting<br />

PARTSANDMATERIALS<br />

• Several10kΩresistors<br />

• One10kΩpotentiometer,lineartaper(RadioShackcatalog#271-1715)<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume1,chapter5:”SeriesandParallelCircuits”<br />

LessonsInElectricCircuits,Volume1,chapter7:”Series-ParallelCombinationCircuits”<br />

LessonsInElectricCircuits,Volume1,chapter8:”DCMeteringCircuits”<br />

LEARNINGOBJECTIVES<br />

• Series-parallelresistances<br />

• Calibrationtheoryandpractice<br />

SCHEMATICDIAGRAM<br />

R total<br />

ILLUSTRATION


3.9. RHEOSTATRANGELIMITING 103<br />

V<br />

A<br />

V<br />

OFF<br />

A<br />

A<br />

COM<br />

INSTRUCTIONS<br />

Thisexperimentexploresthedifferentresistancerangesobtainablefromcombiningfixedvalueresistorswithapotentiometerconnectedasarheostat.Tobegin,connecta10kΩpotentiometerasarheostatwithnootherresistorsconnected.Adjustingthepotentiometerthrough<br />

itsfullrangeoftravelshouldresultinaresistancethatvariessmoothlyfrom0Ωto10,000 Ω:


104 CHAPTER3. DCCIRCUITS<br />

V<br />

A<br />

V<br />

OFF<br />

A<br />

A<br />

COM<br />

Supposewewantedtoelevatethelowerendofthisresistancerangesothatwehadan<br />

adjustablerangefrom10kΩto20kΩwithafullsweepofthepotentiometer’sadjustment.This<br />

couldbeeasilyaccomplishedbyaddinga10kΩresistorinserieswiththepotentiometer.Add<br />

onetothecircuitasshownandre-measuretotalresistancewhileadjustingthepotentiometer:


3.9. RHEOSTATRANGELIMITING 105<br />

V<br />

A<br />

V<br />

OFF<br />

A<br />

A<br />

COM<br />

Ashiftinthelowendofanadjustmentrangeiscalledazerocalibration,inmetrological<br />

terms. Withtheadditionofaseries10kΩresistor,the”zeropoint”wasshiftedupwardby<br />

10,000 Ω.Thedifferencebetweenhighandlowendsofarange–calledthespanofthecircuit<br />

–hasnotchanged,though:arangeof10kΩto20kΩhasthesame10,000 Ωspanasarange<br />

of0Ωto10kΩ. Ifwewishtoshiftthespanofthisrheostatcircuitaswell,wemustchange<br />

therangeofthepotentiometeritself.Wecouldreplacethepotentiometerwithoneofanother<br />

value,orwecouldsimulatealower-valuepotentiometerbyplacingaresistorinparallelwith<br />

it,diminishingitsmaximumobtainableresistance.Thiswilldecreasethespanofthecircuit<br />

from10kΩtosomethingless.<br />

Adda10kΩresistorinparallelwiththepotentiometer,toreducethespantoone-halfofits<br />

formervalue:from10KΩto5kΩ.Nowthecalibratedresistancerangeofthiscircuitwillbe<br />

10kΩto15kΩ:


106 CHAPTER3. DCCIRCUITS<br />

V<br />

A<br />

V<br />

OFF<br />

A<br />

A<br />

COM<br />

Thereisnothingwecandotoincreasethespanofthisrheostatcircuit,shortofreplacing<br />

thepotentiometerwithanotherofgreatertotalresistance. Addingresistorsinparallelcan<br />

onlydecreasethespan.However,thereisnosuchrestrictionwithcalibratingthezeropointof<br />

thiscircuit,asitbeganat0Ωandmaybemadeasgreataswewishbyaddingresistancein<br />

series.<br />

Amultitudeofresistancerangesmaybeobtainedusingonly10KΩfixed-valueresistors,if<br />

wearecreativewithseries-parallelcombinationsofthem.Forinstance,wecancreatearange<br />

of7.5kΩto10kΩbybuildingthefollowingcircuit:


3.9. RHEOSTATRANGELIMITING 107<br />

R total<br />

2.5 kΩ 5 kΩ<br />

0 to 2.5 kΩ<br />

All resistors = 10 kΩ<br />

V<br />

A<br />

V<br />

OFF<br />

A<br />

A<br />

COM<br />

Creatingacustomresistancerangefromfixed-valueresistorsandapotentiometerisa<br />

veryusefultechniqueforproducingpreciseresistancesrequiredforcertaincircuits,especially<br />

metercircuits. Inmanyelectricalinstruments–multimetersespecially–resistanceisthe<br />

determiningfactorfortheinstrument’srangeofmeasurement. Ifaninstrument’sinternal<br />

resistancevaluesarenotprecise,neitherwillitsindicationsbe.Findingafixed-valueresistor


108 CHAPTER3. DCCIRCUITS<br />

ofjusttherightresistanceforplacementinaninstrumentcircuitdesignisunlikely,socustomresistance”networks”mayneedtobebuilttoprovidethedesiredresistance.<br />

Havinga<br />

potentiometeraspartoftheresistornetworkprovidesameansofcorrectionifthenetwork’s<br />

resistanceshould”drift”fromitsoriginalvalue. Designingthenetworkforminimumspan<br />

ensuresthatthepotentiometer’seffectwillbesmall,sothatpreciseadjustmentispossibleand<br />

sothataccidentalmovementofitsmechanismwillnotresultinseverecalibrationerrors.<br />

Experimentwithdifferentresistor”networks”andnotetheeffectsontotalresistancerange.


3.10. THERMOELECTRICITY 109<br />

3.10 Thermoelectricity<br />

PARTSANDMATERIALS<br />

• Lengthofbare(uninsulated)copperwire<br />

• Lengthofbare(uninsulated)ironwire<br />

• Candle<br />

• Icecubes<br />

Ironwiremaybeobtainedfromahardwarestore.Ifsomecannotbefound,aluminumwire<br />

alsoworks.<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume1,chapter9:”<strong>Electrical</strong>InstrumentationSignals”<br />

LEARNINGOBJECTIVES<br />

• Thermocouplefunctionandpurpose<br />

SCHEMATICDIAGRAM<br />

Thermocouple<br />

+<br />

V<br />

-<br />

Voltmeter<br />

ILLUSTRATION


110 CHAPTER3. DCCIRCUITS<br />

V<br />

A<br />

V<br />

OFF<br />

A<br />

A<br />

COM<br />

iron wire<br />

copper wire<br />

Candle<br />

INSTRUCTIONS<br />

Twistoneendoftheironwiretogetherwithoneendofthecopperwire.Connectthefree<br />

endsofthesewirestorespectiveterminalsonaterminalstrip.Setyourvoltmetertoitsmost<br />

sensitiverangeandconnectittotheterminalswherethewiresattach. Themetershould<br />

indicatenearlyzerovoltage.<br />

Whatyouhavejustconstructedisathermocouple:adevicewhichgeneratesasmallvoltage<br />

proportionaltothetemperaturedifferencebetweenthetipandthemeterconnectionpoints.<br />

Whenthetipisatatemperatureequaltotheterminalstrip,therewillbenovoltageproduced,<br />

andthusnoindicationseenonthevoltmeter.<br />

Lightacandleandinsertthetwisted-wiretipintotheflame.Youshouldnoticeanindication<br />

onyourvoltmeter.Removethethermocoupletipfromtheflameandletcooluntilthevoltmeter<br />

indicationisnearlyzeroagain. Now,touchthethermocoupletiptoanicecubeandnotethe<br />

voltageindicatedbythemeter.Isitagreaterorlessermagnitudethantheindicationobtained<br />

withtheflame? Howdoesthepolarityofthisvoltagecomparewiththatgeneratedbythe<br />

flame?<br />

Aftertouchingthethermocoupletiptotheicecube,warmitbyholdingitbetweenyour<br />

fingers.Itmaytakeashortwhiletoreachbodytemperature,sobepatientwhileobservingthe<br />

voltmeter’sindication.


3.10. THERMOELECTRICITY 111<br />

AthermocoupleisanapplicationoftheSeebeckeffect: theproductionofasmallvoltage<br />

proportionaltoatemperaturegradientalongthelengthofawire. Thisvoltageisdependent<br />

uponthemagnitudeofthetemperaturedifferenceandthetypeofwire. Directlymeasuring<br />

theSeebeckvoltageproducedalongalengthofcontinuouswirefromatemperaturegradient<br />

isquitedifficult,andsowillnotbeattemptedinthisexperiment.<br />

Thermocouples,beingmadeoftwodissimilarmetalsjoinedatoneend,produceavoltage<br />

proportionaltothetemperatureofthejunction. Thetemperaturegradientalongbothwires<br />

resultingfromaconstanttemperatureatthejunctionproducesdifferentSeebeckvoltages<br />

alongthosewires’lengths,becausethewiresaremadeofdifferentmetals. Theresultant<br />

voltagebetweenthetwofreewireendsisthedifferencebetweenthetwoSeebeckvoltages:<br />

iron wire voltage<br />

HOT<br />

COOL<br />

copper wire voltage<br />

Resultant<br />

voltage<br />

Thermocouplesarewidelyusedastemperature-sensingdevicesbecausethemathematicalrelationshipbetweentemperaturedifferenceandresultantvoltageisbothrepeatableand<br />

fairlylinear. Bymeasuringvoltage,itispossibletoinfertemperature. Differentrangesof<br />

temperaturemeasurementarepossiblebyselectingdifferentmetalpairstobejoinedtogether.


112 CHAPTER3. DCCIRCUITS<br />

3.11 Makeyourownmultimeter<br />

PARTSANDMATERIALS<br />

• Sensitivemetermovement(RadioShackcatalog#22-410)<br />

• Selectorswitch,single-pole,multi-throw,break-before-make(RadioShackcatalog#275-<br />

1386isa2-pole,6-positionunitthatworkswell)<br />

• Multi-turnpotentiometers,PCBmount(RadioShackcatalog#271-342and271-343are<br />

15-turn,1kΩand10kΩ”trimmer”units,respectively)<br />

• Assortedresistors,preferablyhigh-precisionmetalfilmorwire-woundtypes(RadioShack<br />

catalog#271-309isanassortmentofmetal-filmresistors,+/-1%tolerance)<br />

• Plasticormetalmountingbox<br />

• Three”banana”jackstylebindingposts,orotherterminalhardware,forconnectionto<br />

potentiometercircuit(RadioShackcatalog#274-662orequivalent)<br />

Themostimportantandexpensivecomponentinameteristhemovement: theactual<br />

needle-and-scalemechanismwhosetaskitistotranslateanelectricalcurrentintomechanical<br />

displacementwhereitmaybevisuallyinterpreted. Theidealmetermovementisphysically<br />

large(foreaseofviewing)andassensitiveaspossible(requiresminimalcurrenttoproduce<br />

full-scaledeflectionoftheneedle). High-qualitymetermovementsareexpensive,butRadio<br />

Shackcarriessomeofacceptablequalitythatarereasonablypriced.Themodelrecommended<br />

inthepartslistissoldasavoltmeterwitha0-15voltrange,butisactuallyamilliammeter<br />

witharange(”multiplier”)resistorincludedseparately.<br />

Itmaybecheapertopurchaseaninexpensiveanalogmeteranddisassembleitforthemeter<br />

movementalone. Althoughthethoughtofdestroyingaworkingmultimeterinordertohave<br />

partstomakeyourownmaysoundcounter-productive,thegoalhereislearning,notmeter<br />

function.<br />

Icannotspecifyresistorvaluesforthisexperiment,asthesedependontheparticularmeter<br />

movementandmeasurementrangeschosen. Besuretousehigh-precisionfixed-valueresistorsratherthancarbon-compositionresistors.Evenifyouhappentofindcarbon-composition<br />

resistorsofjusttherightvalue(s),thosevalueswillchangeor”drift”overtimeduetoaging<br />

andtemperaturefluctuations.Ofcourse,ifyoudon’tcareaboutthelong-termstabilityofthis<br />

meterbutarebuildingitjustforthelearningexperience,resistorprecisionmatterslittle.<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume1,chapter8:”DCMeteringCircuits”<br />

LEARNINGOBJECTIVES<br />

• Voltmeterdesignanduse<br />

• Ammeterdesignanduse<br />

• Rheostatrangelimiting


3.11. MAKEYOUROWNMULTIMETER 113<br />

• Calibrationtheoryandpractice<br />

• Solderingpractice<br />

SCHEMATICDIAGRAM<br />

Movement<br />

-<br />

+<br />

R shunt<br />

R multiplier1<br />

R multiplier2<br />

A<br />

mA<br />

V<br />

Off<br />

R multiplier3<br />

V<br />

V<br />

"Common"<br />

jack<br />

A<br />

V/mA<br />

"R multiplier " resistors are actually rheostat networks<br />

R multiplier<br />

ILLUSTRATION


114 CHAPTER3. DCCIRCUITS<br />

Meter<br />

movement<br />

Common<br />

- +<br />

R shunt<br />

A<br />

V/mA<br />

Selector<br />

switch<br />

INSTRUCTIONS<br />

First,youneedtodeterminethecharacteristicsofyourmetermovement.Mostimportant<br />

istoknowthefullscaledeflectioninmilliampsormicroamps. Todeterminethis,connect<br />

themetermovement,apotentiometer,battery,anddigitalammeterinseries. Adjustthepotentiometeruntilthemetermovementisdeflectedexactlytofull-scale.<br />

Readtheammeter’s<br />

displaytofindthefull-scalecurrentvalue:


3.11. MAKEYOUROWNMULTIMETER 115<br />

Meter<br />

movement<br />

- +<br />

+ - Potentiometer<br />

V<br />

A<br />

V<br />

OFF<br />

A<br />

A<br />

COM<br />

Beverycarefulnottoapplytoomuchcurrenttothemetermovement,asmovementsare<br />

verysensitivedevicesandeasilydamagedbyovercurrent.Mostmetermovementshavefullscaledeflectioncurrentratingsof1mAorless,sochooseapotentiometervaluehighenough<br />

tolimitcurrentappropriately,andbegintestingwiththepotentiometerturnedtomaximum<br />

resistance.Thelowerthefull-scalecurrentratingofamovement,themoresensitiveitis.<br />

Afterdeterminingthefull-scalecurrentratingofyourmetermovement,youmustaccuratelymeasureitsinternalresistance.<br />

Todothis,disconnectallcomponentsfromtheprevioustestingcircuitandconnectyourdigitalohmmeteracrossthemetermovementterminals.<br />

Recordthisresistancefigurealongwiththefull-scalecurrentfigureobtainedinthelastprocedure.<br />

Perhapsthemostchallengingportionofthisprojectisdeterminingtheproperrangeresistancevaluesandimplementingthosevaluesintheformofrheostatnetworks.Thecalculations<br />

areoutlinedinchapter8ofvolume1(”MeteringCircuits”),butanexampleisgivenhere.Supposeyourmetermovementhadafull-scaleratingof1mAandaninternalresistanceof400<br />

Ω.Ifwewantedtodeterminethenecessaryrangeresistance(”R multiplier ”)togivethismovementarangeof0to15volts,wewouldhavetodivide15volts(totalappliedvoltage)by1mA<br />

(full-scalecurrent)toobtainthetotalprobe-to-proberesistanceofthevoltmeter(R=E/I).For<br />

thisexample,thattotalresistanceis15kΩ.Fromthistotalresistancefigure,wesubtractthe<br />

movement’sinternalresistance,leaving14.6kΩfortherangeresistorvalue.Asimplerheostat<br />

networktoproduce14.6kΩ(adjustable)wouldbea10kΩpotentiometerinparallelwitha10<br />

kΩfixedresistor,allinserieswithanother10kΩfixedresistor:


116 CHAPTER3. DCCIRCUITS<br />

≈ 15 kΩ, adjustable<br />

10 kΩ<br />

10 kΩ<br />

10 kΩ<br />

Onepositionoftheselectorswitchdirectlyconnectsthemetermovementbetweentheblack<br />

CommonbindingpostandtheredV/mAbindingpost.Inthisposition,themeterisasensitive<br />

ammeterwitharangeequaltothefull-scalecurrentratingofthemetermovement. Thefar<br />

clockwisepositionoftheswitchdisconnectsthepositive(+)terminalofthemovementfrom<br />

eitherredbindingpostandshortsitdirectlytothenegative(-)terminal. Thisprotectsthe<br />

meterfromelectricaldamagebyisolatingitfromtheredtestprobe,andit”dampens”the<br />

needlemechanismtofurtherguardagainstmechanicalshock.<br />

Theshuntresistor(R shunt )necessaryforahigh-currentammeterfunctionneedstobea<br />

low-resistanceunitwithahighpowerdissipation. Youwilldefinitelynotbeusingany1/4<br />

wattresistorsforthis,unlessyouformaresistancenetworkwithseveralsmallerresistorsin<br />

parallelcombination.Ifyouplanonhavinganammeterrangeinexcessof1amp,Irecommend<br />

usingathickpieceofwireorevenaskinnypieceofsheetmetalasthe”resistor,”suitablyfiled<br />

ornotchedtoprovidejusttherightamountofresistance.<br />

Tocalibrateahome-madeshuntresistor,youwillneedtoconnecttheyourmultimeter<br />

assemblytoacalibratedsourceofhighcurrent,orahigh-currentsourceinserieswithadigital<br />

ammeterforreference.Useasmallmetalfiletoshaveoffshuntwirethicknessortonotchthe<br />

sheetmetalstripinsmall,carefulamounts. Theresistanceofyourshuntwillincreasewith<br />

everystrokeofthefile,causingthemetermovementtodeflectmorestrongly.Rememberthat<br />

youcanalwaysapproachtheexactvalueinslowerandslowersteps(filestrokes),butyou<br />

cannotgo”backward”anddecreasetheshuntresistance!<br />

Buildthemultimetercircuitonabreadboardfirstwhiledeterminingproperrangeresistancevalues,andperformallcalibrationadjustmentsthere.Forfinalconstruction,solderthe<br />

componentsontoaprinted-circuitboard. RadioShacksellsprintedcircuitboardsthathave<br />

thesamelayoutasabreadboard,forconvenience(catalog#276-170). Feelfreetoalterthe<br />

componentlayoutfromwhatisshown.<br />

Istronglyrecommendthatyoumountthecircuitboardandallcomponentsinasturdybox,<br />

sothatthemeterisdurablyfinished.Despitethelimitationsofthismultimeter(noresistance<br />

function,inabilitytomeasurealternatingcurrent,andlowerprecisionthanmostpurchased<br />

analogmultimeters),itisanexcellentprojecttoassistlearningfundamentalinstrumentprinciplesandcircuitfunction.Afarmoreaccurateandversatilemultimetermaybeconstructed<br />

usingmanyofthesamepartsifanamplifiercircuitisaddedtoit,sosavethepartsandpieces<br />

foralaterexperiment!


3.12. SENSITIVEVOLTAGEDETECTOR 117<br />

3.12 Sensitivevoltagedetector<br />

PARTSANDMATERIALS<br />

• High-quality”closed-cup”audioheadphones<br />

• Headphonejack:femalereceptacleforheadphoneplug(RadioShackcatalog#274-312)<br />

• Smallstep-downpowertransformer(RadioShackcatalog#273-1365orequivalent,using<br />

the6-voltsecondarywindingtap)<br />

• Two1N4001rectifyingdiodes(RadioShackcatalog#276-1101)<br />

• 1kΩresistor<br />

• 100kΩpotentiometer(RadioShackcatalog#271-092)<br />

• Two”banana”jackstylebindingposts,orotherterminalhardware,forconnectionto<br />

potentiometercircuit(RadioShackcatalog#274-662orequivalent)<br />

• Plasticormetalmountingbox<br />

Regardingtheheadphones,thehigherthe”sensitivity”ratingindecibels(dB),thebetter,<br />

butlisteningisbelieving:ifyou’reseriousaboutbuildingadetectorwithmaximumsensitivity<br />

forsmallelectricalsignals,youshouldtryafewdifferentheadphonemodelsatahigh-quality<br />

audiostoreand”listen”forwhichonesproduceanaudiblesoundforthelowestvolumesetting<br />

onaradioorCDplayer. Beware,asyoucouldspendhundredsofdollarsonapairofheadphonestogettheabsolutebestsensitivity!Takeheart,though:I’veusedanoldpairofRadio<br />

Shack”Realistic”brandheadphoneswithperfectlyadequateresults,soyoudon’tneedtobuy<br />

thebest.<br />

Atransformerisadevicenormallyusedwithalternatingcurrent(”AC”)circuits,usedto<br />

converthigh-voltageACpowerintolow-voltageACpower,andformanyotherpurposes. It<br />

isnotimportantthatyouunderstanditsintendedfunctioninthisexperiment,otherthanit<br />

makestheheadphonesbecomemoresensitivetolow-currentelectricalsignals.<br />

Normally,thetransformerusedinthistypeofapplication(audiospeakerimpedancematching)iscalledan”audiotransformer,”withitsprimaryandsecondarywindingsrepresentedby<br />

impedancevalues(1000 Ω:8 Ω)insteadofvoltages.Anaudiotransformerwillwork,butI’ve<br />

foundsmallstep-downpowertransformersof120/6voltratiotobeperfectlyadequateforthe<br />

task,cheaper(especiallywhentakenfromanoldthrift-storealarmclockradio),andfarmore<br />

rugged.<br />

Thetolerance(precision)ratingforthe1kΩresistorisirrelevant.The100kΩpotentiometerisarecommendedoptionforincorporationintothisproject,asitgivestheusercontrol<br />

overtheloudnessforanygivensignal. Eventhoughanaudio-taperpotentiometerwouldbe<br />

appropriateforthisapplication,itisnotnecessary.Alinear-taperpotentiometerworksquite<br />

well.<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume1,chapter8:”DCMeteringCircuits”


118 CHAPTER3. DCCIRCUITS<br />

LessonsInElectricCircuits,Volume1,chapter10:”DCNetworkAnalysis”(inregardtothe<br />

MaximumPowerTransferTheorem)<br />

LessonsInElectricCircuits,Volume2,chapter9:”Transformers”<br />

LessonsInElectricCircuits,Volume2,chapter12:”ACMeteringCircuits”<br />

LEARNINGOBJECTIVES<br />

• Solderingpractice<br />

• Detectionofextremelysmallelectricalsignals<br />

• Usingapotentiometerasavoltagedivider/signalattenuator<br />

• Usingdiodesto”clip”voltageatsomemaximumlevel<br />

SCHEMATICDIAGRAM<br />

headphones<br />

test lead<br />

transformer<br />

1 kΩ<br />

diodes<br />

jack<br />

plug<br />

test lead<br />

ILLUSTRATION<br />

headphones<br />

resistor<br />

120 V<br />

6 V<br />

Binding<br />

posts<br />

diodes<br />

transformer<br />

jack<br />

plug<br />

INSTRUCTIONS<br />

Theheadphones,mostlikelybeingstereounits(separateleftandrightspeakers)willhave<br />

athree-contactplug. Youwillbeconnectingtoonlytwoofthosethreecontactpoints. Ifyou<br />

onlyhavea”mono”headphonesetwithatwo-contactplug,justconnecttothosetwocontact<br />

points.Youmayeitherconnectthetwostereospeakersinseriesorinparallel.I’vefoundthe<br />

seriesconnectiontoworkbest,thatis,toproducethemostsoundfromasmallsignal:


3.12. SENSITIVEVOLTAGEDETECTOR 119<br />

To transformer<br />

To transformer<br />

common right left common right left<br />

Speakers in series<br />

Speakers in parallel<br />

Solderallwireconnectionswell.Thisdetectorsystemisextremelysensitive,andanyloose<br />

wireconnectionsinthecircuitwilladdunwantednoisetothesoundsproducedbythemeasuredvoltagesignal.<br />

Thetwodiodes(arrow-likecomponentsymbols)connectedinparallel<br />

withthetransformer’sprimarywinding,alongwiththeseries-connected1kΩresistor,work<br />

togethertopreventanymorethanabout0.7voltsfrombeingdroppedacrosstheprimarycoil<br />

ofthetransformer.Thisdoesonethingandonethingonly:limittheamountofsoundtheheadphonescanproduce.Thesystemwillworkwithoutthediodesandresistorinplace,butthere<br />

willbenolimittosoundvolumeinthecircuit,andtheresultingsoundcausedbyaccidently<br />

connectingthetestleadsacrossasubstantialvoltagesource(likeabattery)canbedeafening!<br />

Bindingpostsprovidepointsofconnectionforapairoftestprobeswithbanana-styleplugs,<br />

oncethedetectorcomponentsaremountedinsideabox. Youmayuseordinarymultimeter<br />

probes,ormakeyourownprobeswithalligatorclipsattheendsforsecureconnectiontoa<br />

circuit.<br />

Detectorsareintendedtobeusedforbalancingbridgemeasurementcircuits,potentiometric(null-balance)voltmetercircuits,anddetectextremelylow-amplitudeAC(”alternatingcurrent”)signalsintheaudiofrequencyrange.Itisavaluablepieceoftestequipment,especially<br />

forthelow-budgetexperimenterwithoutanoscilloscope. Itisalsovaluableinthatitallows<br />

youtouseadifferentbodilysenseininterpretingthebehaviorofacircuit.<br />

Forconnectionacrossanynon-trivialsourceofvoltage(1voltandgreater),thedetector’s<br />

extremelyhighsensitivityshouldbeattenuated. Thismaybeaccomplishedbyconnectinga<br />

voltagedividertothe”front”ofthecircuit:<br />

SCHEMATICDIAGRAM<br />

test lead<br />

100<br />

kΩ<br />

1 kΩ<br />

test lead<br />

ILLUSTRATION


120 CHAPTER3. DCCIRCUITS<br />

potentiometer<br />

Adjustthe100kΩvoltagedividerpotentiometertoaboutmid-rangewheninitiallysensing<br />

avoltagesignalofunknownmagnitude.Ifthesoundistooloud,turnthepotentiometerdown<br />

andtryagain. Iftoosoft,turnitupandtryagain. Thedetectorproducesa”click”sound<br />

wheneverthetestleadsmakeorbreakcontactwiththevoltagesourceundertest. Withmy<br />

cheapheadphones,I’vebeenabletodetectcurrentsoflessthan1/10ofamicroamp(¡0.1 µA).<br />

Agooddemonstrationofthedetector’ssensitivityistotouchbothtestleadstotheend<br />

ofyourtongue,withthesensitivityadjustmentsettomaximum. Thevoltageproducedby<br />

metal-to-electrolytecontact(calledgalvanicvoltage)isverysmall,butenoughtoproducesoft<br />

”clicking”soundseverytimetheleadsmakeandbreakcontactonthewetskinofyourtongue.<br />

Tryunpluggedtheheadphoneplugfromthejack(receptacle)andsimilarlytouchingitto<br />

theendofyourtongue.Youshouldstillhearsoftclickingsounds,buttheywillbemuchsmaller<br />

inamplitude.Headphonespeakersare”lowimpedance”devices:theyrequirelowvoltageand<br />

”high”currenttodeliversubstantialsoundpower.Impedanceisameasureofoppositiontoany<br />

andallformsofelectriccurrent,includingalternatingcurrent(AC).Resistance,bycomparison,isastrictlymeasureofoppositiontodirectcurrent(DC).Likeresistance,impedanceis<br />

measuredintheunitoftheOhm(Ω),butitissymbolizedinequationsbythecapitalletter”Z”<br />

ratherthanthecapitalletter”R”.Weusetheterm”impedance”todescribetheheadphone’soppositiontocurrentbecauseitisprimarilyACsignalsthatheadphonesarenormallysubjected<br />

to,notDC.<br />

Mostsmallsignalsourceshavehighinternalimpedances,somemuchhigherthanthenominal8Ωoftheheadphonespeakers.Thisisatechnicalwayofsayingthattheyareincapableof<br />

supplyingsubstantialamountsofcurrent.AstheMaximumPowerTransferTheorempredicts,<br />

maximumsoundpowerwillbedeliveredbytheheadphonespeakerswhentheirimpedanceis<br />

”matched”totheimpedanceofthevoltagesource.Thetransformerdoesthis.Thetransformer<br />

alsohelpsaidthedetectionofsmallDCsignalsbyproducinginductive”kickback”everytime<br />

thetestleadcircuitisbroken,thus”amplifying”thesignalbymagneticallystoringupelectrical<br />

energyandsuddenlyreleasingittotheheadphonespeakers.<br />

Irecommendbuildingthisdetectorinapermanentfashion(mountingallcomponentsinside<br />

ofabox,andprovidingnicetestleadwires)soitmaybeeasilyusedinthefuture.Constructed<br />

assuch,itmightlooksomethinglikethis:


3.12. SENSITIVEVOLTAGEDETECTOR 121<br />

headphones<br />

Test leads<br />

Sensitivity<br />

plug


122 CHAPTER3. DCCIRCUITS<br />

3.13 Potentiometricvoltmeter<br />

PARTSANDMATERIALS<br />

• Two6voltbatteries<br />

• Onepotentiometer,singleturn,10kΩ,lineartaper(RadioShackcatalog#271-1715)<br />

• Twohigh-valueresistors(atleast1MΩeach)<br />

• Sensitivevoltagedetector(frompreviousexperiment)<br />

• Analogvoltmeter(frompreviousexperiment)<br />

Thepotentiometervalueisnotcritical:anythingfrom1kΩto100kΩisacceptable.Ifyou<br />

havebuiltthe”precisionpotentiometer”describedearlierinthischapter,itisrecommended<br />

thatyouuseitinthisexperiment.<br />

Likewise,theactualvaluesoftheresistorsarenotcritical.Inthisparticularexperiment,<br />

thegreaterthevalue,thebettertheresults.Theyneednotbepreciselyequalvalue,either.<br />

Ifyouhavenotyetbuiltthesensitivevoltagedetector,itisrecommendedthatyoubuildone<br />

beforeproceedingwiththisexperiment!Itisaveryuseful,yetsimple,pieceoftestequipment<br />

thatyoushouldnotbewithout. Youcanuseadigitalmultimetersettothe”DCmillivolt”<br />

(DCmV)rangeinlieuofavoltagedetector,buttheheadphone-basedvoltagedetectorismore<br />

appropriatebecauseitdemonstrateshowyoucanmakeprecisevoltagemeasurementswithout<br />

usingexpensiveoradvancedmeterequipment.Irecommendusingyourhome-mademultimeterforthesamereason,althoughanyvoltmeterwillsufficeforthisexperiment.<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume1,chapter8:”DCMeteringCircuits”<br />

LEARNINGOBJECTIVES<br />

• Voltmeterloading:itscausesanditssolution<br />

• Usingapotentiometerasasourceofvariablevoltage<br />

• Potentiometricmethodofvoltagemeasurement<br />

SCHEMATICDIAGRAM<br />

1 MΩ<br />

6 V<br />

1 MΩ<br />

measure voltage<br />

between these<br />

two test points<br />

Test<br />

probes<br />

null<br />

+<br />

V<br />

-<br />

6 V<br />

Potentiometric voltmeter


3.13. POTENTIOMETRICVOLTMETER 123<br />

ILLUSTRATION<br />

Test circuit<br />

+ - + -<br />

Test probes<br />

Potentiometric voltmeter circuit<br />

headphones<br />

- +<br />

Sensitivity<br />

plug<br />

INSTRUCTIONS<br />

Buildthetwo-resistorvoltagedividercircuitshownontheleftoftheschematicdiagram<br />

andoftheillustration.Ifthetwohigh-valueresistorsareofequalvalue,thebattery’svoltage<br />

shouldbesplitinhalf,withapproximately3voltsdroppedacrosseachresistor.<br />

Measurethebatteryvoltagedirectlywithavoltmeter,thenmeasureeachresistor’svoltage<br />

drop.Doyounoticeanythingunusualaboutthevoltmeter’sreadings?Normally,seriesvoltage<br />

dropsaddtoequalthetotalappliedvoltage,butinthiscaseyouwillnoticeaseriousdiscrepancy.IsKirchhoff’sVoltageLawuntrue?Isthisanexceptiontooneofthemostfundamental<br />

lawsofelectriccircuits?No!Whatishappeningisthis:whenyouconnectavoltmeteracross<br />

eitherresistor,thevoltmeteritselfaltersthecircuitsothatthevoltageisnotthesameaswith<br />

nometerconnected.<br />

Iliketousetheanalogyofanairpressuregaugeusedtocheckthepressureofapneumatic<br />

tire. Whenagaugeisconnectedtothetire’sfillvalve,itreleasessomeairoutofthetire.<br />

Thisaffectsthepressureinthetire,andsothegaugereadsaslightlylowerpressurethan<br />

whatwasinthetirebeforethegaugewasconnected. Inotherwords,theactofmeasuring<br />

tirepressurealtersthetire’spressure. Hopefully,though,thereissolittleairreleasedfrom<br />

thetireduringtheactofmeasurementthatthereductioninpressureisnegligible.Voltmeters<br />

similarlyimpactthevoltagetheymeasure,bybypassingsomecurrentaroundthecomponent<br />

whosevoltagedropisbeingmeasured.Thisaffectsthevoltagedrop,buttheeffectissoslight<br />

thatyouusuallydon’tnoticeit.<br />

Inthiscircuit,though,theeffectisverypronounced. Whyisthis? Tryreplacingthetwo<br />

high-valueresistorswithtwoof100kΩvalueeachandrepeattheexperiment.Replacethose<br />

resistorswithtwo10KΩunitsandrepeat.Whatdoyounoticeaboutthevoltagereadingswith


124 CHAPTER3. DCCIRCUITS<br />

lower-valueresistors?Whatdoesthistellyouaboutvoltmeter”impact”onacircuitinrelation<br />

tothatcircuit’sresistance?Replaceanylow-valueresistorswiththeoriginal,high-value(>=<br />

1MΩ)resistorsbeforeproceeding.<br />

Trymeasuringvoltageacrossthetwohigh-valueresistors–oneatatime–withadigital<br />

voltmeterinsteadofananalogvoltmeter.Whatdoyounoticeaboutthedigitalmeter’sreadings<br />

versustheanalogmeter’s?Digitalvoltmeterstypicallyhavegreaterinternal(probe-to-probe)<br />

resistance,meaningtheydrawlesscurrentthanacomparableanalogvoltmeterwhenmeasuringthesamevoltagesource.Anidealvoltmeterwoulddrawzerocurrentfromthecircuit<br />

undertest,andthussuffernovoltage”impact”problems.<br />

Ifyouhappentohavetwovoltmeters,trythis:connectonevoltmeteracrossoneresistor,<br />

andtheothervoltmeteracrosstheotherresistor. Thevoltagereadingsyougetwilladdup<br />

tothetotalvoltagethistime,nomatterwhattheresistorvaluesare,eventhoughthey’re<br />

differentfromthereadingsobtainedfromasinglemeterusedtwice.Unfortunately,though,it<br />

isunlikelythatthevoltagereadingsobtainedthiswayareequaltothetruevoltagedropswith<br />

nometersconnected,andsoitisnotapracticalsolutiontotheproblem.<br />

Isthereanywaytomakea”perfect”voltmeter:onethathasinfiniteresistanceanddraws<br />

nocurrentfromthecircuitundertest? Modernlaboratoryvoltmetersapproachthisgoalby<br />

usingsemiconductor”amplifier”circuits,butthismethodistootechnologicallyadvancedfor<br />

thestudentorhobbyisttoduplicate. Amuchsimplerandmucholdertechniqueiscalledthe<br />

potentiometricornull-balancemethod. Thisinvolvesusinganadjustablevoltagesourceto<br />

”balance”themeasuredvoltage. Whenthetwovoltagesareequal,asindicatedbyavery<br />

sensitivenulldetector,theadjustablevoltagesourceismeasuredwithanordinaryvoltmeter.<br />

Becausethetwovoltagesourcesareequaltoeachother,measuringtheadjustablesourceis<br />

thesameasmeasuringacrossthetestcircuit,exceptthatthereisno”impact”errorbecause<br />

theadjustablesourceprovidesanycurrentneededbythevoltmeter.Consequently,thecircuit<br />

undertestremainsunaffected,allowingmeasurementofitstruevoltagedrop.<br />

Examinethefollowingschematictoseehowthepotentiometricvoltmetermethodisimplemented:<br />

1 MΩ<br />

6 V<br />

1 MΩ<br />

-<br />

Test circuit<br />

+<br />

null<br />

+<br />

V<br />

-<br />

Potentiometric voltmeter<br />

Thecirclesymbolwiththeword”null”writteninsiderepresentsthenulldetector.Thiscan<br />

beanyarbitrarilysensitivemetermovementorvoltageindicator.Itssolepurposeinthiscircuit<br />

istoindicatewhenthereiszerovoltage:whentheadjustablevoltagesource(potentiometer)<br />

ispreciselyequaltothevoltagedropinthecircuitundertest. Themoresensitivethisnull<br />

detectoris,themorepreciselytheadjustablesourcemaybeadjustedtoequalthevoltage<br />

6 V


3.13. POTENTIOMETRICVOLTMETER 125<br />

undertest,andthemorepreciselythattestvoltagemaybemeasured.<br />

Buildthiscircuitasshownintheillustrationandtestitsoperationmeasuringthevoltage<br />

dropacrossoneofthehigh-valueresistorsinthetestcircuit.Itmaybeeasiertousearegular<br />

multimeterasanulldetectoratfirst,untilyoubecomefamiliarwiththeprocessofadjustingthepotentiometerfora”null”indication,thenreadingthevoltmeterconnectedacrossthe<br />

potentiometer.<br />

Ifyouareusingtheheadphone-basedvoltagedetectorasyournullmeter,youwillneed<br />

tointermittentlymakeandbreakcontactwiththecircuitundertestandlistenfor”clicking”<br />

sounds. Dothisbyfirmlysecuringoneofthetestprobestothetestcircuitandmomentarily<br />

touchingtheothertestprobetotheotherpointinthetestcircuitagainandagain,listening<br />

forsoundsintheheadphonesindicatingadifferenceofvoltagebetweenthetestcircuitand<br />

thepotentiometer. Adjustthepotentiometeruntilnoclickingsoundscanbeheardfromthe<br />

headphones.Thisindicatesa”null”or”balanced”condition,andyoumayreadthevoltmeter<br />

indicationtoseehowmuchvoltageisdroppedacrossthetestcircuitresistor. Unfortunately,<br />

theheadphone-basednulldetectorprovidesnoindicationofwhetherthepotentiometervoltage<br />

isgreaterthan,orlessthanthetestcircuitvoltage,soyouwillhavetolistenfordecreasing<br />

”click”intensitywhileturningthepotentiometertodetermineifyouneedtoadjustthevoltage<br />

higherorlower.<br />

Youmayfindthatasingle-turn(”3/4turn”)potentiometeristoocoarseofanadjustment<br />

devicetoaccurately”null”themeasurementcircuit.Amulti-turnpotentiometermaybeused<br />

insteadofthesingle-turnunitforgreateradjustmentprecision,orthe”precisionpotentiometer”circuitdescribedinanearlierexperimentmaybeused.<br />

Priortotheadventofamplifiedvoltmetertechnology,thepotentiometricmethodwasthe<br />

onlymethodformakinghighlyaccuratevoltagemeasurements.Evennow,electricalstandards<br />

laboratoriesmakeuseofthistechniquealongwiththelatestmetertechnologytominimizemeter”impact”errorsandmaximizemeasurementaccuracy.Althoughthepotentiometricmethod<br />

requiresmoreskilltousethansimplyconnectingamoderndigitalvoltmeteracrossacomponent,andisconsideredobsoleteforallbutthemostprecisemeasurementapplications,itis<br />

stillavaluablelearningprocessforthenewstudentofelectronics,andausefultechniquefor<br />

thehobbyistwhomaylackexpensiveinstrumentationintheirhomelaboratory.<br />

COMPUTERSIMULATION<br />

SchematicwithSPICEnodenumbers:


126 CHAPTER3. DCCIRCUITS<br />

V 1<br />

1<br />

1 MΩ<br />

1 MΩ<br />

-<br />

0 0<br />

1<br />

R 1<br />

2 2<br />

null<br />

3 3<br />

+<br />

R 2<br />

+<br />

V<br />

-<br />

0 0<br />

V 2<br />

Netlist(makeatextfilecontainingthefollowingtext,verbatim):<br />

Potentiometric voltmeter<br />

v1 1 0 dc 6<br />

v2 3 0<br />

r1 1 2 1meg<br />

r2 2 0 1meg<br />

rnull 2 3 10k<br />

rmeter 3 0 50k<br />

.dc v2 0 6 0.5<br />

.print dc v(2,0) v(2,3) v(3,0)<br />

.end<br />

ThisSPICEsimulationshowstheactualvoltageacrossR 2 ofthetestcircuit,thenulldetector’svoltage,andthevoltageacrosstheadjustablevoltagesource,asthatsourceisadjusted<br />

from0voltsto6voltsin0.5voltsteps. Intheoutputofthissimulation,youwillnoticethat<br />

thevoltageacrossR 2 isimpactedsignificantlywhenthemeasurementcircuitisunbalanced,<br />

returningtoitstruevoltageonlywhenthereispracticallyzerovoltageacrossthenulldetector.Atthatpoint,ofcourse,theadjustablevoltagesourceisatavalueof3.000volts:precisely<br />

equaltothe(unaffected)testcircuitvoltagedrop.<br />

Whatisthelessontobelearnedfromthissimulation? Thatapotentiometricvoltmeter<br />

avoidsimpactingthetestcircuitonlywhenitisinaconditionofperfectbalance(”null”)with<br />

thetestcircuit!


3.14. 4-WIRERESISTANCEMEASUREMENT 127<br />

3.14 4-wireresistancemeasurement<br />

PARTSANDMATERIALS<br />

• 6-voltbattery<br />

• Electromagnetmadefromexperimentinpreviouschapter,oralargespoolofwire<br />

Itwouldbeidealinthisexperimenttohavetwometers:onevoltmeterandoneammeter.<br />

Forexperimentersonabudget,thismaynotbepossible.Whateverammeterisusedshouldbe<br />

capablemeasuringatleastafewampsofcurrent.A6-volt”lantern”batteryessentiallyshortcircuitedbyalongpieceofwiremayproducecurrentsofthismagnitude,andyourammeter<br />

needstobecapableofmeasuringitwithoutblowingafuseorsustainingotherdamage.Make<br />

surethehighestcurrentrangeonthemeterisatleast5amps!<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume1,chapter8:”DCMeteringCircuits”<br />

LEARNINGOBJECTIVES<br />

• OperatingprincipleofKelvin(4-wire)resistancemeasurement<br />

• Howtomeasurelowresistanceswithcommontestequipment<br />

SCHEMATICDIAGRAM<br />

+<br />

A<br />

-<br />

+<br />

V<br />

-<br />

R unknown<br />

ILLUSTRATION


128 CHAPTER3. DCCIRCUITS<br />

V<br />

A<br />

V<br />

A<br />

V<br />

OFF<br />

A<br />

V<br />

OFF<br />

A<br />

A<br />

COM<br />

+ - COM<br />

A<br />

R unknown<br />

INSTRUCTIONS<br />

Althoughthisexperimentisbestperformedwithtwometers,andindeedisshownassuch<br />

intheschematicdiagramandillustration,onemultimeterissufficient.<br />

Mostohmmetersoperateontheprincipleofapplyingasmallvoltageacrossanunknown<br />

resistance(R unknown )andinferringresistancefromtheamountofcurrentdrawnbyit.Except<br />

inspecialcasessuchasthemegger,boththevoltageandcurrentquantitiesemployedbythe<br />

meterarequitesmall.<br />

Thispresentsaproblemformeasurementoflowresistances,asalowresistancespecimen<br />

maybeofmuchsmallerresistancevaluethanthemetercircuitryitself. Imaginetryingto<br />

measurethediameterofacottonthreadwithayardstick,ormeasuringtheweightofacoin<br />

withascalebuiltforweighingfreighttrucks,andyouwillappreciatetheproblemathand.<br />

Oneofthemanysourcesoferrorinmeasuringsmallresistanceswithanordinaryohmmeteristheresistanceoftheohmmeter’sowntestleads.Beingpartofthemeasurementcircuit,<br />

thetestleadsmaycontainmoreresistancethantheresistanceofthetestspecimen,incurring<br />

significantmeasurementerrorbytheirpresence:


3.14. 4-WIRERESISTANCEMEASUREMENT 129<br />

Ω<br />

V<br />

A<br />

V<br />

A<br />

OFF<br />

COM<br />

A<br />

Lead resistance:<br />

0.25 Ω<br />

Lead resistance:<br />

0.25 Ω<br />

1.5 Ω<br />

OnesolutioniscalledtheKelvin,or4-wire,resistancemeasurementmethod.Itinvolvesthe<br />

useofanammeterandvoltmeter,determiningspecimenresistancebyOhm’sLawcalculation.<br />

Acurrentispassedthroughtheunknownresistanceandmeasured. Thevoltagedropped<br />

acrosstheresistanceismeasuredbythevoltmeter,andresistancecalculatedusingOhm’s<br />

Law(R=E/I).Verysmallresistancesmaybemeasuredeasilybyusinglargecurrent,providing<br />

amoreeasilymeasuredvoltagedropfromwhichtoinferresistancethanifasmallcurrent<br />

wereused.<br />

Becauseonlythevoltagedroppedbytheunknownresistanceisfactoredintothecalculation–notthevoltagedroppedacrosstheammeter’stestleadsoranyotherconnectingwires<br />

carryingthemaincurrent–errorsotherwisecausedbythesestrayresistancesarecompletely<br />

eliminated.<br />

First,selectasuitablylowresistancespecimentouseinthisexperiment. Isuggestthe<br />

electromagnetcoilspecifiedinthelastchapter,oraspoolofwirewherebothendsmaybe<br />

accessed. Connecta6-voltbatterytothisspecimen,withanammeterconnectedinseries.<br />

WARNING:theammeterusedshouldbecapableofmeasuringatleast5ampsofcurrent,<br />

sothatitwillnotbedamagedbythe(possibly)highcurrentgeneratedinthisnear-short<br />

circuitcondition.Ifyouhaveasecondmeter,useittomeasurevoltageacrossthespecimen’s<br />

connectionpoints,asshownintheillustration,andrecordbothmeters’indications.<br />

Ifyouhaveonlyonemeter,useittomeasurecurrentfirst,recordingitsindicationasquickly<br />

aspossible,thenimmediatelyopening(breaking)thecircuit. Switchthemetertoitsvoltage<br />

mode,connectitacrossthespecimen’sconnectionpoints,andre-connectthebattery,quickly<br />

notingthevoltageindication. Youdon’twanttoleavethebatteryconnectedtothespecimen


130 CHAPTER3. DCCIRCUITS<br />

foranylongerthannecessaryforobtainingmetermeasurements,asitwillbegintorapidly<br />

dischargeduetothehighcircuitcurrent,thuscompromisingmeasurementaccuracywhenthe<br />

meterisre-configuredandthecircuitclosedoncemoreforthenextmeasurement.Whentwo<br />

metersareused,thisisnotassignificantanissue,becausethecurrentandvoltageindications<br />

mayberecordedsimultaneously.<br />

Takethevoltagemeasurementanddivideitbythecurrentmeasurement. Thequotient<br />

willbeequaltothespecimen’sresistanceinohms.


3.15. AVERYSIMPLECOMPUTER 131<br />

3.15 Averysimplecomputer<br />

PARTSANDMATERIALS<br />

• Threebatteries,eachonewithadifferentvoltage<br />

• Threeequal-valueresistors,between10kΩand47kΩeach<br />

Whenselectingresistors,measureeachonewithanohmmeterandchoosethreethatare<br />

theclosestinvaluetoeachother.Precisionisveryimportantforthisexperiment!<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume1,chapter10:”DCNetworkAnalysis”<br />

LEARNINGOBJECTIVES<br />

• Howaresistornetworkcanfunctionasavoltagesignalaverager<br />

• ApplicationofMillman’sTheorem<br />

SCHEMATICDIAGRAM<br />

R 1 R 2 R 3<br />

+<br />

V<br />

-<br />

ILLUSTRATION


132 CHAPTER3. DCCIRCUITS<br />

V<br />

A<br />

V<br />

OFF<br />

A<br />

A<br />

COM<br />

+ -<br />

+ -


3.15. AVERYSIMPLECOMPUTER 133<br />

V<br />

A<br />

V<br />

OFF<br />

A<br />

A<br />

COM<br />

+ -<br />

+ -<br />

INSTRUCTIONS<br />

Thisdeceptivelycrudecircuitperformsthefunctionofmathematicallyaveragingthreevoltagesignalstogether,andsofulfillsaspecializedcomputationalrole.<br />

Inotherwords,itisa<br />

computerthatcanonlydoonemathematicaloperation:averagingthreequantitiestogether.<br />

Buildthiscircuitasshownandmeasureallbatteryvoltageswithavoltmeter.Writethese<br />

voltagefiguresonpaperandaveragethemtogether(E 1 +E 2 +E 3 ,dividedbythree). When<br />

youmeasureeachbatteryvoltage,keeptheblacktestprobeconnectedtothe”ground”point<br />

(thesideofthebatterydirectlyjoinedtotheotherbatteriesbyjumperwires),andtouchthe<br />

redprobetotheotherbatteryterminal. Polarityisimportanthere! Youwillnoticeonebatteryintheschematicdiagramconnected”backward”totheothertwo,negativeside”up.”This<br />

battery’svoltageshouldreadasanegativequantitywhenmeasuredbyaproperlyconnected<br />

digitalmeter,theotherbatteriesmeasuringpositive.<br />

Whenthevoltmeterisconnectedtothecircuitatthepointshownintheschematicand<br />

illustrations,itshouldregisterthealgebraicaverageofthethreebatteries’voltages. Ifthe


134 CHAPTER3. DCCIRCUITS<br />

resistorvaluesarechosentomatcheachotherveryclosely,the”output”voltageofthiscircuit<br />

shouldmatchthecalculatedaverageverycloselyaswell.<br />

Ifonebatteryisdisconnected,theoutputvoltagewillequaltheaveragevoltageoftheremainingbatteries.Ifthejumperwiresformerlyconnectingtheremovedbatterytotheaverager<br />

circuitareconnectedtoeachother,thecircuitwillaveragethetworemainingvoltagestogether<br />

with0volts,producingasmalleroutputsignal:<br />

V<br />

A<br />

V<br />

OFF<br />

A<br />

A<br />

COM<br />

+ -<br />

+ -<br />

Thesheersimplicityofthiscircuitdetersmostpeoplefromcallingita”computer,”butit<br />

undeniablyperformsthemathematicalfunctionofaveraging. Notonlydoesitperformthis<br />

function,butitperformsitmuchfasterthananymoderndigitalcomputercan! Digitalcomputers,suchaspersonalcomputers(PCs)andpushbuttoncalculators,performmathematical<br />

operationsinaseriesofdiscretesteps. Analogcomputersperformcalculationsincontinuousfashion,exploitingOhm’sandKirchhoff’sLawsforanarithmeticpurpose,the”answer”<br />

computedasfastasvoltagepropagatesthroughthecircuit(ideally,atthespeedoflight!).<br />

Withtheadditionofcircuitscalledamplifiers,voltagesignalsinanalogcomputernetworks<br />

maybeboostedandre-usedinothernetworkstoperformawidevarietyofmathematicalfunctions.<br />

Suchanalogcomputersexcelatperformingthecalculusoperationsofnumericaldifferentiationandintegration,andassuchmaybeusedtosimulatethebehaviorofcomplex<br />

mechanical,electrical,andevenchemicalsystems. Atonetime,analogcomputerswerethe


3.15. AVERYSIMPLECOMPUTER 135<br />

ultimatetoolforengineeringresearch,butsincethenhavebeenlargelysupplantedbydigital<br />

computertechnology.Digitalcomputersenjoytheadvantageofperformingmathematicaloperationswithmuchbetterprecisionthananalogcomputers,albeitatmuchslowertheoretical<br />

speeds.<br />

COMPUTERSIMULATION<br />

SchematicwithSPICEnodenumbers:<br />

4<br />

4 4 4<br />

R 1 R 2 R 3<br />

+<br />

1 2 3<br />

V<br />

-<br />

V 1 V 2 V 3<br />

0<br />

0 0<br />

0<br />

Netlist(makeatextfilecontainingthefollowingtext,verbatim):<br />

Voltage averager<br />

v1 1 0<br />

v2 0 2 dc 9<br />

v3 3 0 dc 1.5<br />

r1 1 4 10k<br />

r2 2 4 10k<br />

r3 3 4 10k<br />

.dc v1 6 6 1<br />

.print dc v(4,0)<br />

.end<br />

WiththisSPICEnetlist,wecanforceadigitalcomputertosimulateandanalogcomputer,<br />

whichaveragesthreenumberstogether.Obviously,wearen’tdoingthisforthepracticaltask<br />

ofaveragingnumbers,butrathertolearnmoreaboutcircuitsandmoreaboutcomputersimulationofcircuits!


136 CHAPTER3. DCCIRCUITS<br />

3.16 Potatobattery<br />

PARTSANDMATERIALS<br />

• Onelargepotato<br />

• Onelemon(optional)<br />

• Stripofzinc,orgalvanizedmetal<br />

• Pieceofthickcopperwire<br />

Thebasicexperimentisbasedontheuseofapotato,butmanyfruitsandvegetableswork<br />

aspotentialbatteries!<br />

Forthezincelectrode,alargegalvanizednailworkswell. Nailswithathick,roughzinc<br />

texturearepreferabletogalvanizednailsthataresmooth.<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume1,chapter11:”BatteriesandPowerSystems”<br />

LEARNINGOBJECTIVES<br />

• Theimportanceofchemicalactivityinbatteryoperation<br />

• Howelectrodesurfaceareaaffectsbatteryoperation<br />

ILLUSTRATION<br />

V<br />

V<br />

OFF<br />

A<br />

A<br />

Galvanized<br />

nail<br />

Copper<br />

wire<br />

A<br />

COM<br />

Potato<br />

INSTRUCTIONS


3.16. POTATOBATTERY 137<br />

Pushboththenailandthewiredeepintothepotato.Measurevoltageoutputbythepotato<br />

batterywithavoltmeter.Now,wasn’tthateasy?<br />

Seriously,though,experimentwithdifferentmetals,electrodedepths,andelectrodespacingstoobtainthegreatestvoltagepossiblefromthepotato.Tryothervegetablesorfruitsand<br />

comparevoltageoutputwiththesameelectrodemetals.<br />

Itcanbedifficulttopoweraloadwithasingle”potato”battery,sodon’texpecttolightup<br />

anincandescentlamporpowerahobbymotorordoanythinglikethat. Evenifthevoltage<br />

outputisadequate,apotatobatteryhasafairlyhighinternalresistancewhichcausesits<br />

voltageto”sag”badlyunderevenalightload. Withmultiplepotatobatteriesconnectedin<br />

series,parallel,orseries-parallelarrangement,though,itispossibletoobtainenoughvoltage<br />

andcurrentcapacitytopowerasmallload.


138 CHAPTER3. DCCIRCUITS<br />

3.17 Capacitorcharginganddischarging<br />

PARTSANDMATERIALS<br />

• 6voltbattery<br />

• Twolargeelectrolyticcapacitors,1000 µFminimum(RadioShackcatalog#272-1019,<br />

272-1032,orequivalent)<br />

• Two1kΩresistors<br />

• Onetoggleswitch,SPST(”Single-Pole,Single-Throw”)<br />

Large-valuecapacitorsarerequiredforthisexperimenttoproducetimeconstantsslow<br />

enoughtotrackwithavoltmeterandstopwatch.Bewarnedthatmostlargecapacitorsareof<br />

the”electrolytic”type,andtheyarepolaritysensitive! Oneterminalofeachcapacitorshould<br />

bemarkedwithadefinitepolaritysign.Usuallycapacitorsofthesizespecifiedhaveanegative<br />

(-)markingorseriesofnegativemarkingspointingtowardthenegativeterminal.Verylarge<br />

capacitorsareoftenpolarity-labeledbyapositive(+)markingnexttooneterminal.Failureto<br />

heedproperpolaritywillalmostsurelyresultincapacitorfailure,evenwithasourcevoltage<br />

aslowas6volts. Whenelectrolyticcapacitorsfail,theytypicallyexplode,spewingcaustic<br />

chemicalsandemittingfoulodors.Please,trytoavoidthis!<br />

Irecommendahouseholdlightswitchforthe”SPSTtoggleswitch”specifiedintheparts<br />

list.<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume1,chapter13:”Capacitors”<br />

LessonsInElectricCircuits,Volume1,chapter16:”RCandL/RTimeConstants”<br />

LEARNINGOBJECTIVES<br />

• Capacitorchargingaction<br />

• Capacitordischargingaction<br />

• Timeconstantcalculation<br />

• Seriesandparallelcapacitance<br />

SCHEMATICDIAGRAM


3.17. CAPACITORCHARGINGANDDISCHARGING 139<br />

+<br />

V<br />

-<br />

Charging circuit<br />

+<br />

V<br />

-<br />

Discharging circuit<br />

ILLUSTRATION<br />

-<br />

-<br />

+ - Charging circuit


140 CHAPTER3. DCCIRCUITS<br />

-<br />

-<br />

+ - Discharging circuit<br />

INSTRUCTIONS<br />

Buildthe”charging”circuitandmeasurevoltageacrossthecapacitorwhentheswitchis<br />

closed. Noticehowitincreasesslowlyovertime,ratherthansuddenlyaswouldbethecase<br />

witharesistor. Youcan”reset”thecapacitorbacktoavoltageofzerobyshortingacrossits<br />

terminalswithapieceofwire.<br />

The”timeconstant”(τ)ofaresistorcapacitorcircuitiscalculatedbytakingthecircuit<br />

resistanceandmultiplyingitbythecircuitcapacitance. Fora1kΩresistoranda1000 µF<br />

capacitor,thetimeconstantshouldbe1second. Thisistheamountoftimeittakesforthe<br />

capacitorvoltagetoincreaseapproximately63.2%fromitspresentvaluetoitsfinalvalue:the<br />

voltageofthebattery.<br />

Itiseducationaltoplotthevoltageofachargingcapacitorovertimeonasheetofgraph<br />

paper,toseehowtheinverseexponentialcurvedevelops. Inordertoplottheactionofthis<br />

circuit,though,wemustfindawayofslowingitdown. Aone-secondtimeconstantdoesn’t<br />

providemuchtimetotakevoltmeterreadings!<br />

Wecanincreasethiscircuit’stimeconstanttwodifferentways:changingthetotalcircuit<br />

resistance,and/orchangingthetotalcircuitcapacitance.Givenapairofidenticalresistorsand<br />

apairofidenticalcapacitors,experimentwithvariousseriesandparallelcombinationstoobtaintheslowestchargingaction.Youshouldalreadyknowbynowhowmultipleresistorsneed<br />

tobeconnectedtoformagreatertotalresistance,butwhataboutcapacitors?Thiscircuitwill<br />

demonstratetoyouhowcapacitancechangeswithseriesandparallelcapacitorconnections.<br />

Justbesurethatyouinsertthecapacitor(s)intheproperdirection: withtheendslabeled<br />

negative(-)electrically”closest”tothebattery’snegativeterminal!<br />

Thedischargingcircuitprovidesthesamekindofchangingcapacitorvoltage,exceptthis<br />

timethevoltagejumpstofullbatteryvoltagewhentheswitchclosesandslowlyfallswhen<br />

theswitchisopened. Experimentonceagainwithdifferentcombinationsofresistorsand<br />

capacitors,makingsureasalwaysthatthecapacitor’spolarityiscorrect.<br />

COMPUTERSIMULATION<br />

SchematicwithSPICEnodenumbers:


3.17. CAPACITORCHARGINGANDDISCHARGING 141<br />

1<br />

2<br />

V 1<br />

R 1<br />

C 1<br />

0 0<br />

Netlist(makeatextfilecontainingthefollowingtext,verbatim):<br />

Capacitor charging circuit<br />

v1 1 0 dc 6<br />

r1 1 2 1k<br />

c1 2 0 1000u ic=0<br />

.tran 0.1 5 uic<br />

.plot tran v(2,0)<br />

.end


142 CHAPTER3. DCCIRCUITS<br />

3.18 Rate-of-changeindicator<br />

PARTSANDMATERIALS<br />

• Two6voltbatteries<br />

• Capacitor,0.1 µF(RadioShackcatalog#272-135)<br />

• 1MΩresistor<br />

• Potentiometer,singleturn,5kΩ,lineartaper(RadioShackcatalog#271-1714)<br />

Thepotentiometervalueisnotespeciallycritical,althoughlower-resistanceunitswill,in<br />

theory,workbetterforthisexperimentthanhigh-resistanceunits. I’veuseda10kΩpotentiometerforthiscircuitwithexcellentresults.<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume1,chapter13:”Capacitors”<br />

LEARNINGOBJECTIVES<br />

• Howtobuildadifferentiatorcircuit<br />

• Obtainanempiricalunderstandingofthederivativecalculusfunction<br />

SCHEMATICDIAGRAM<br />

6 V<br />

6 V<br />

5 kΩ<br />

0.1 µF<br />

1 MΩ<br />

+<br />

V<br />

-<br />

ILLUSTRATION


3.18. RATE-OF-CHANGEINDICATOR 143<br />

V<br />

A<br />

V<br />

OFF<br />

A<br />

A COM<br />

+ -<br />

+ -<br />

INSTRUCTIONS<br />

Measurevoltagebetweenthepotentiometer’swiperterminalandthe”ground”pointshown<br />

intheschematicdiagram(thenegativeterminalofthelower6-voltbattery).Thisistheinput<br />

voltageforthecircuit,andyoucanseehowitsmoothlyvariesbetweenzeroand12voltsasthe<br />

potentiometercontrolisturnedfull-range. Sincethepotentiometerisusedhereasavoltage<br />

divider,thisbehaviorshouldbeunsurprisingtoyou.<br />

Now,measurevoltageacrossthe1MΩresistorwhilemovingthepotentiometercontrol.A<br />

digitalvoltmeterishighlyrecommended,andIadvisesettingittoaverysensitive(millivolt)<br />

rangetoobtainthestrongestindications. Whatdoesthevoltmeterindicatewhilethepotentiometerisnotbeingmoved?Turnthepotentiometerslowlyclockwiseandnotethevoltmeter’s<br />

indication. Turnthepotentiometerslowlycounter-clockwiseandnotethevoltmeter’sindication.Whatdifferencedoyouseebetweenthetwodifferentdirectionsofpotentiometercontrol<br />

motion?<br />

Trymovingthepotentiometerinsuchawaythatthevoltmetergivesasteady,smallindication.<br />

Whatkindofpotentiometermotionprovidesthesteadiestvoltageacrossthe1MΩ<br />

resistor?<br />

Incalculus,afunctionrepresentingtherateofchangeofonevariableascomparedtoanotheriscalledthederivative.<br />

Thissimplecircuitillustratestheconceptofthederivativeby<br />

producinganoutputvoltageproportionaltotheinputvoltage’srateofchangeovertime. Be-


144 CHAPTER3. DCCIRCUITS<br />

causethiscircuitperformsthecalculusfunctionofdifferentiationwithrespecttotime(outputtingthetime-derivativeofanincomingsignal),itiscalledadifferentiatorcircuit.<br />

Liketheaveragercircuitshownearlierinthischapter,thedifferentiatorcircuitisakindof<br />

analogcomputer.Differentiationisafarmorecomplexmathematicalfunctionthanaveraging,<br />

especiallywhenimplementedinadigitalcomputer,sothiscircuitisanexcellentdemonstration<br />

oftheeleganceofanalogcircuitryinperformingmathematicalcomputations.<br />

Moreaccuratedifferentiatorcircuitsmaybebuiltbycombiningresistor-capacitornetworks<br />

withelectronicamplifiercircuits.Formoredetailoncomputationalcircuitry,gotothe”Analog<br />

IntegratedCircuits”chapterinthis<strong>Experiments</strong>volume.


Chapter4<br />

ACCIRCUITS<br />

Contents<br />

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145<br />

4.2 Transformer–powersupply............................147<br />

4.3 Buildatransformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .151<br />

4.4 Variableinductor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153<br />

4.5 Sensitiveaudiodetector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155<br />

4.6 SensingACmagneticfields. . . . . . . . . . . . . . . . . . . . . . . . . . . . .160<br />

4.7 SensingACelectricfields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162<br />

4.8 Automotivealternator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164<br />

4.9 Inductionmotor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .170<br />

4.10 Inductionmotor,large . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .174<br />

4.11 Phaseshift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177<br />

4.12 Soundcancellation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .180<br />

4.13 Musicalkeyboardasasignalgenerator. . . . . . . . . . . . . . . . . . . . .183<br />

4.14 PCOscilloscope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .186<br />

4.15 Waveformanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189<br />

4.16 Inductor-capacitor”tank”circuit. . . . . . . . . . . . . . . . . . . . . . . . .191<br />

4.17 Signalcoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .194<br />

4.1 Introduction<br />

”AC”standsforAlternatingCurrent,whichcanrefertoeithervoltageorcurrentthatalternatesinpolarityordirection,respectively.Theseexperimentsaredesignedtointroduceyouto<br />

severalimportantconceptsspecifictoAC.<br />

AconvenientsourceofACvoltageishouseholdwall-socketpower,whichpresentssignificantshockhazard.Inordertominimizethishazardwhiletakingadvantageoftheconvenience<br />

145


146 CHAPTER4. ACCIRCUITS<br />

ofthissourceofAC,asmallpowersupplywillbethefirstproject,consistingofatransformer<br />

thatstepsthehazardousvoltage(110to120voltsAC,RMS)downto12voltsorless.Thetitle<br />

of”powersupply”issomewhatmisleading.Thisdevicedoesnotreallyactasasourceorsupply<br />

ofpower,butratherasapowerconverter,toreducethehazardousvoltageofwall-socketpower<br />

toamuchsaferlevel.


4.2. TRANSFORMER–POWERSUPPLY 147<br />

4.2 Transformer–powersupply<br />

PARTSANDMATERIALS<br />

• Powertransformer,120VACstep-downto12VAC,withcenter-tappedsecondarywinding<br />

(RadioShackcatalog#273-1365,273-1352,or273-1511).<br />

• Terminalstripwithatleastthreeterminals.<br />

• Householdwall-socketpowerplugandcord.<br />

• Linecordswitch.<br />

• Box(optional).<br />

• Fuseandfuseholder(optional).<br />

Powertransformersmaybeobtainedfromoldradios,whichcanusuallybeobtainedfrom<br />

athriftstoreforafewdollars(orless!). Theradiowouldalsoprovidethepowercordand<br />

plugnecessaryforthisproject.Linecordswitchesmaybeobtainedfromahardwarestore.If<br />

youwanttobeabsolutelysurewhatkindoftransformeryou’regetting,though,youshould<br />

purchaseonefromanelectronicssupplystore.<br />

Ifyoudecidetoequipyourpowersupplywithafuse,besuretogetaslow-acting,orslowblowfuse.<br />

Transformersmaydrawhigh”surge”currentswheninitiallyconnectedtoanAC<br />

source,andthesetransientcurrentswillblowafast-actingfuse. Determinethepropercurrentratingofthefusebydividingthetransformer’s”VA”ratingby120volts:inotherwords,<br />

calculatethefullallowableprimarywindingcurrentandsizethefuseaccordingly.<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume2,chapter1:”BasicACTheory”<br />

LessonsInElectricCircuits,Volume2,chapter9:”Transformers”<br />

LEARNINGOBJECTIVES<br />

• Transformervoltagestep-downbehavior.<br />

• Purposeoftappedwindings.<br />

• Safewiringtechniquesforpowercords.<br />

SCHEMATICDIAGRAM


148 CHAPTER4. ACCIRCUITS<br />

Switch<br />

Fuse<br />

Box (optional)<br />

Plug<br />

(optional)<br />

Transformer<br />

ILLUSTRATION<br />

plug<br />

Terminal<br />

strip<br />

12 / 6 volts CT<br />

120 volts<br />

Transformer<br />

wires soldered and taped<br />

with electrical tape<br />

2-conductor<br />

"zip" cord<br />

line switch<br />

"zip" cord split into<br />

separate wires<br />

wires soldered and taped<br />

with electrical tape<br />

INSTRUCTIONS<br />

Warning!Thisprojectinvolvestheuseofdangerousvoltages.Youmustmakesureallhighvoltage(120volthouseholdpower)conductorsaresafelyinsulatedfromaccidentalcontact.No<br />

barewiresshouldbeseenanywhereonthe”primary”sideofthetransformercircuit.Besure<br />

tosolderallwireconnectionssothatthey’resecure,anduserealelectricaltape(notducttape,<br />

scotchtape,packingtape,oranyotherkind!)toinsulateyoursolderedconnections.<br />

Ifyouwishtoenclosethetransformerinsideofabox,youmayuseanelectrical”junction”<br />

box,obtainedfromahardwarestoreorelectricalsupplyhouse.Iftheenclosureusedismetal<br />

ratherthanplastic,athree-prongplugshouldbeused,withthe”ground”prong(thelongest<br />

oneontheplug)connecteddirectlytothemetalcaseformaximumsafety.<br />

Beforepluggingtheplugintoawallsocket,doasafetycheckwithanohmmeter.Withthe<br />

lineswitchinthe”on”position,measureresistancebetweeneitherplugprongandthetransformercase.Thereshouldbeinfinite(maximum)resistance.Ifthemeterregisterscontinuity<br />

(someresistancevaluelessthaninfinity),thenyouhavea”short”betweenoneofthepower<br />

conductorsandthecase,whichisdangerous!


4.2. TRANSFORMER–POWERSUPPLY 149<br />

Next,checkthetransformerwindingsthemselvesforcontinuity.Withthelineswitchinthe<br />

”on”position,thereshouldbeasmallamountofresistancebetweenthetwoplugprongs.When<br />

theswitchisturned”off,”theresistanceindicationshouldincreasetoinfinity(opencircuit–no<br />

continuity).Measureresistancebetweenpairsofwiresonthesecondaryside.Thesesecondary<br />

windingsshouldregistermuchlowerresistancesthantheprimary.Whyisthis?<br />

Plugthecordintoawallsocketandturntheswitchon.YoushouldbeabletomeasureAC<br />

voltageatthesecondarysideofthetransformer,betweenpairsofterminals.Betweentwoof<br />

theseterminals,youshouldmeasureabout12volts. Betweeneitherofthesetwoterminals<br />

andthethirdterminal,youshouldmeasurehalfthat.Thisthirdwireisthe”center-tap”wire<br />

ofthesecondarywinding.<br />

Itwouldbeadvisabletokeepthisprojectassembledforuseinpoweringotherexperiments<br />

showninthisbook.Fromhereon,Iwilldesignatethis”low-voltageACpowersupply”using<br />

thisillustration:<br />

Low-voltage<br />

AC power supply<br />

12<br />

6 6<br />

COMPUTERSIMULATION<br />

SchematicwithSPICEnodenumbers:<br />

1<br />

120 V<br />

R bogus1<br />

1 mΩ<br />

2<br />

L 1<br />

L 2<br />

L 3<br />

0 0<br />

1 TΩ<br />

5<br />

4<br />

3<br />

R load1<br />

R load2<br />

R bogus2<br />

Netlist(makeatextfilecontainingthefollowingtext,verbatim):<br />

transformer with center-tap secondary<br />

v1 1 0 ac 120 sin<br />

rbogus1 1 2 1e-3<br />

l1 2 0 10<br />

l2 5 4 0.025<br />

l3 4 3 0.025<br />

k1 l1 l2 0.999<br />

k2 l2 l3 0.999


150 CHAPTER4. ACCIRCUITS<br />

k3 l1 l3 0.999<br />

rbogus2 3 0 1e12<br />

rload1 5 4 1k<br />

rload2 4 3 1k<br />

* Sets up AC analysis at 60 Hz:<br />

.ac lin 1 60 60<br />

* Prints primary voltage between nodes 2 and 0:<br />

.print ac v(2,0)<br />

* Prints (top) secondary voltage between nodes 5 and 4:<br />

.print ac v(5,4)<br />

* Prints (bottom) secondary voltage between nodes 4 and 3:<br />

.print ac v(4,3)<br />

* Prints (total) secondary voltage between nodes 5 and 3:<br />

.print ac v(5,3)<br />

.end


4.3. BUILDATRANSFORMER 151<br />

4.3 Buildatransformer<br />

PARTSANDMATERIALS<br />

• Steelflatbar,4pieces<br />

• Miscellaneousbolts,nuts,washers<br />

• 28gauge”magnet”wire<br />

• Low-voltageACpowersupply<br />

”Magnetwire”issmall-gaugewireinsulatedwithathinenamelcoating.Itisintendedto<br />

beusedtomakeelectromagnets,becausemany”turns”ofwiremaybewrappedinarelatively<br />

small-diametercoil.Anygaugeofwirewillwork,but28gaugeisrecommendedsoastomake<br />

acoilwithasmanyturnsaspossibleinasmalldiameter.<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume2,chapter9:”Transformers”<br />

LEARNINGOBJECTIVES<br />

• Effectsofelectromagnetism.<br />

• Effectsofelectromagneticinduction.<br />

• Effectsofmagneticcouplingonvoltageregulation.<br />

• Effectsofwindingturnson”step”ratio.<br />

SCHEMATICDIAGRAM<br />

Transformer<br />

ILLUSTRATION


152 CHAPTER4. ACCIRCUITS<br />

bolt<br />

wire coil<br />

wire coil<br />

steel "flatbar"<br />

INSTRUCTIONS<br />

Wraptwo,equal-lengthbarsofsteelwithathinlayerofelectrically-insulatingtape.Wrap<br />

severalhundredturnsofmagnetwirearoundthesetwobars.Youmaymakethesewindings<br />

withanequalorunequalnumberofturns,dependingonwhetherornotyouwantthetransformertobeableto”step”voltageupordown.<br />

Irecommendequalturnstobeginwith,then<br />

experimentlaterwithcoilsofunequalturncount.<br />

Jointhosebarstogetherinarectanglewithtwoother,shorter,barsofsteel. Useboltsto<br />

securethebarstogether(itisrecommendedthatyoudrillboltholesthroughthebarsbefore<br />

youwrapwirearoundthem).<br />

Checkforshortedwindings(ohmmeterreadingbetweenwireendsandsteelbar)after<br />

you’refinishedwrappingthewindings. Thereshouldbenocontinuity(infiniteresistance)<br />

betweenthewindingandthesteelbar.Checkforcontinuitybetweenwindingendstoensure<br />

thatthewireisn’tbrokenopensomewherewithinthecoil.Ifeitherresistancemeasurements<br />

indicateaproblem,thewindingmustbere-made.<br />

Poweryourtransformerwiththelow-voltageoutputofthe”powersupply”describedatthe<br />

beginningofthischapter. Donotpoweryourtransformerdirectlyfromwall-socketvoltage<br />

(120volts),asyourhome-madewindingsreallyaren’tratedforanysignificantvoltage!<br />

Measuretheoutputvoltage(secondarywinding)ofyourtransformerwithanACvoltmeter.<br />

Connectaloadofsomekind(lightbulbsaregood!)tothesecondarywindingandre-measure<br />

voltage.Notethedegreeofvoltage”sag”atthesecondarywindingasloadcurrentisincreased.<br />

Loosenorremovetheconnectingboltsfromoneoftheshortbarpieces,thusincreasing<br />

thereluctance(analogoustoresistance)ofthemagnetic”circuit”couplingthetwowindings<br />

together.Notetheeffectonoutputvoltageandvoltage”sag”underload.<br />

Ifyou’vemadeyourtransformerwithunequal-turnwindings.tryitinstep-upversusstepdownmode,poweringdifferentACloads.


4.4. VARIABLEINDUCTOR 153<br />

4.4 Variableinductor<br />

PARTSANDMATERIALS<br />

• Papertube,fromatoilet-paperroll<br />

• Barofironorsteel,largeenoughtoalmostfilldiameterofpapertube<br />

• 28gauge”magnet”wire<br />

• Low-voltageACpowersupply<br />

• Incandescentlamp,ratedforpowersupplyvoltage<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume1,chapter14:”MagnetismandElectromagnetism”<br />

LessonsInElectricCircuits,Volume1,chapter15:”Inductors”<br />

LessonsInElectricCircuits,Volume2,chapter3:”ReactanceandImpedance–Inductive”<br />

LEARNINGOBJECTIVES<br />

• Effectsofmagneticpermeabilityoninductance.<br />

• HowinductivereactancecancontrolcurrentinanACcircuit.<br />

SCHEMATICDIAGRAM<br />

Variable inductor<br />

Lamp<br />

ILLUSTRATION


154 CHAPTER4. ACCIRCUITS<br />

wire coil<br />

Steel<br />

bar<br />

Paper<br />

tube<br />

Low-voltage<br />

AC power supply<br />

12<br />

6 6<br />

INSTRUCTIONS<br />

Wraphundredsofturnsofmagnetwirearoundthepapertube. Connectthishome-made<br />

inductorinserieswithanACpowersupplyandlamptoformacircuit.Whenthetubeisempty,<br />

thelampshouldglowbrightly.Whenthesteelbarisinsertedinthetube,thelampdimsfrom<br />

increasedinductance(L)andconsequentlyincreasedinductivereactance(X L ).<br />

Tryusingbarsofdifferentmaterials,suchascopperandstainlesssteel,ifavailable. Not<br />

allmetalshavethesameeffect,duetodifferencesinmagneticpermeability.


4.5. SENSITIVEAUDIODETECTOR 155<br />

4.5 Sensitiveaudiodetector<br />

PARTSANDMATERIALS<br />

• High-quality”closed-cup”audioheadphones<br />

• Headphonejack:femalereceptacleforheadphoneplug(RadioShackcatalog#274-312)<br />

• Smallstep-downpowertransformer(RadioShackcatalog#273-1365orequivalent,using<br />

the6-voltsecondarywindingtap)<br />

• Two1N4001rectifyingdiodes(RadioShackcatalog#276-1101)<br />

• 1kΩresistor<br />

• 100kΩpotentiometer(RadioShackcatalog#271-092)<br />

• Two”banana”jackstylebindingposts,orotherterminalhardware,forconnectionto<br />

potentiometercircuit(RadioShackcatalog#274-662orequivalent)<br />

• Plasticormetalmountingbox<br />

Regardingtheheadphones,thehigherthe”sensitivity”ratingindecibels(dB),thebetter,<br />

butlisteningisbelieving:ifyou’reseriousaboutbuildingadetectorwithmaximumsensitivity<br />

forsmallelectricalsignals,youshouldtryafewdifferentheadphonemodelsatahigh-quality<br />

audiostoreand”listen”forwhichonesproduceanaudiblesoundforthelowestvolumesetting<br />

onaradioorCDplayer. Beware,asyoucouldspendhundredsofdollarsonapairofheadphonestogettheabsolutebestsensitivity!Takeheart,though:I’veusedanoldpairofRadio<br />

Shack”Realistic”brandheadphoneswithperfectlyadequateresults,soyoudon’tneedtobuy<br />

thebest.<br />

Normally,thetransformerusedinthistypeofapplication(audiospeakerimpedancematching)iscalledan”audiotransformer,”withitsprimaryandsecondarywindingsrepresentedby<br />

impedancevalues(1000 Ω:8 Ω)insteadofvoltages.Anaudiotransformerwillwork,butI’ve<br />

foundsmallstep-downpowertransformersof120/6voltratiotobeperfectlyadequateforthe<br />

task,cheaper(especiallywhentakenfromanoldthrift-storealarmclockradio),andfarmore<br />

rugged.<br />

Thetolerance(precision)ratingforthe1kΩresistorisirrelevant.The100kΩpotentiometerisarecommendedoptionforincorporationintothisproject,asitgivestheusercontrol<br />

overtheloudnessforanygivensignal. Eventhoughanaudio-taperpotentiometerwouldbe<br />

appropriateforthisapplication,itisnotnecessary.Alinear-taperpotentiometerworksquite<br />

well.<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume1,chapter8:”DCMeteringCircuits”<br />

LessonsInElectricCircuits,Volume2,chapter9:”Transformers”<br />

LessonsInElectricCircuits,Volume2,chapter12:”ACMeteringCircuits”<br />

LEARNINGOBJECTIVES


156 CHAPTER4. ACCIRCUITS<br />

• Solderingpractice<br />

• Useofatransformerforimpedancematching<br />

• Detectionofextremelysmallelectricalsignals<br />

• Usingdiodesto”clip”voltageatsomemaximumlevel<br />

SCHEMATICDIAGRAM<br />

headphones<br />

test lead<br />

transformer<br />

1 kΩ<br />

diodes<br />

jack<br />

plug<br />

test lead<br />

ILLUSTRATION<br />

headphones<br />

resistor<br />

120 V<br />

6 V<br />

Binding<br />

posts<br />

diodes<br />

transformer<br />

jack<br />

plug<br />

INSTRUCTIONS<br />

Thisexperimentisidenticalinconstructiontothe”SensitiveVoltageDetector”described<br />

intheDCexperimentschapter.Ifyou’vealreadybuiltthisdetector,youmayskipthisexperiment.<br />

Theheadphones,mostlikelybeingstereounits(separateleftandrightspeakers)willhave<br />

athree-contactplug. Youwillbeconnectingtoonlytwoofthosethreecontactpoints. Ifyou<br />

onlyhavea”mono”headphonesetwithatwo-contactplug,justconnecttothosetwocontact<br />

points.Youmayeitherconnectthetwostereospeakersinseriesorinparallel.I’vefoundthe<br />

seriesconnectiontoworkbest,thatis,toproducethemostsoundfromasmallsignal:


4.5. SENSITIVEAUDIODETECTOR 157<br />

To transformer<br />

To transformer<br />

common right left common right left<br />

Speakers in series<br />

Speakers in parallel<br />

Solderallwireconnectionswell.Thisdetectorsystemisextremelysensitive,andanyloose<br />

wireconnectionsinthecircuitwilladdunwantednoisetothesoundsproducedbythemeasuredvoltagesignal.<br />

Thetwodiodesconnectedinparallelwiththetransformer’sprimary<br />

winding,alongwiththeseries-connected1kΩresistor,worktogetherto”clip”theinputvoltagetoamaximumofabout0.7volts.Thisdoesonethingandonethingonly:limittheamount<br />

ofsoundtheheadphonescanproduce.Thesystemwillworkwithoutthediodesandresistorin<br />

place,buttherewillbenolimittosoundvolumeinthecircuit,andtheresultingsoundcaused<br />

byaccidentallyconnectingthetestleadsacrossasubstantialvoltagesource(likeabattery)<br />

canbedeafening!<br />

Bindingpostsprovidepointsofconnectionforapairoftestprobeswithbanana-styleplugs,<br />

oncethedetectorcomponentsaremountedinsideabox. Youmayuseordinarymultimeter<br />

probes,ormakeyourownprobeswithalligatorclipsattheendsforsecureconnectiontoa<br />

circuit.<br />

Detectorsareintendedtobeusedforbalancingbridgemeasurementcircuits,potentiometric(null-balance)voltmetercircuits,anddetectextremelylow-amplitudeAC(”alternatingcurrent”)signalsintheaudiofrequencyrange.Itisavaluablepieceoftestequipment,especially<br />

forthelow-budgetexperimenterwithoutanoscilloscope. Itisalsovaluableinthatitallows<br />

youtouseadifferentbodilysenseininterpretingthebehaviorofacircuit.<br />

Forconnectionacrossanynon-trivialsourceofvoltage(1voltandgreater),thedetector’s<br />

extremelyhighsensitivityshouldbeattenuated. Thismaybeaccomplishedbyconnectinga<br />

voltagedividertothe”front”ofthecircuit:<br />

SCHEMATICDIAGRAM<br />

test lead<br />

100<br />

kΩ<br />

1 kΩ<br />

test lead<br />

ILLUSTRATION


158 CHAPTER4. ACCIRCUITS<br />

potentiometer<br />

Adjustthe100kΩvoltagedividerpotentiometertoaboutmid-rangewheninitiallysensing<br />

avoltagesignalofunknownmagnitude.Ifthesoundistooloud,turnthepotentiometerdown<br />

andtryagain. Iftoosoft,turnitupandtryagain. ThisdetectorevensensesDCandradiofrequencysignals(frequenciesbelowandabovetheaudiorange,respectively),a”click”being<br />

heardwheneverthetestleadsmakeorbreakcontactwiththesourceundertest. Withmy<br />

cheapheadphones,I’vebeenabletodetectcurrentsoflessthan1/10ofamicroamp(¡0.1 µA)<br />

DC,andsimilarlylow-magnitudeRFsignalsupto2MHz.<br />

Agooddemonstrationofthedetector’ssensitivityistotouchbothtestleadstotheend<br />

ofyourtongue,withthesensitivityadjustmentsettomaximum. Thevoltageproducedby<br />

metal-to-electrolytecontact(calledgalvanicvoltage)isverysmall,butenoughtoproducesoft<br />

”clicking”soundseverytimetheleadsmakeandbreakcontactonthewetskinofyourtongue.<br />

Tryunpluggingtheheadphoneplugfromthejack(receptacle)andsimilarlytouchingitto<br />

theendofyourtongue.Youshouldstillhearsoftclickingsounds,buttheywillbemuchsmaller<br />

inamplitude.Headphonespeakersare”lowimpedance”devices:theyrequirelowvoltageand<br />

”high”currenttodeliversubstantialsoundpower.Impedanceisameasureofoppositiontoany<br />

andallformsofelectriccurrent,includingalternatingcurrent(AC).Resistance,bycomparison,isastrictlymeasureofoppositiontodirectcurrent(DC).Likeresistance,impedanceis<br />

measuredintheunitoftheOhm(Ω),butitissymbolizedinequationsbythecapitalletter”Z”<br />

ratherthanthecapitalletter”R”.Weusetheterm”impedance”todescribetheheadphone’soppositiontocurrentbecauseitisprimarilyACsignalsthatheadphonesarenormallysubjected<br />

to,notDC.<br />

Mostsmallsignalsourceshavehighinternalimpedances,somemuchhigherthanthenominal8Ωoftheheadphonespeakers.Thisisatechnicalwayofsayingthattheyareincapableof<br />

supplyingsubstantialamountsofcurrent.AstheMaximumPowerTransferTheorempredicts,<br />

maximumsoundpowerwillbedeliveredbytheheadphonespeakerswhentheirimpedanceis<br />

”matched”totheimpedanceofthevoltagesource.Thetransformerdoesthis.Thetransformer<br />

alsohelpsaidthedetectionofsmallDCsignalsbyproducinginductive”kickback”everytime<br />

thetestleadcircuitisbroken,thus”amplifying”thesignalbymagneticallystoringupelectrical<br />

energyandsuddenlyreleasingittotheheadphonespeakers.<br />

Aswiththelow-voltageACpowersupplyexperiment,Irecommendbuildingthisdetector<br />

inapermanentfashion(mountingallcomponentsinsideofabox,andprovidingnicetestlead<br />

wires)soitcanbeeasilyusedinthefuture.Constructedassuch,itmightlooksomethinglike<br />

this:


4.5. SENSITIVEAUDIODETECTOR 159<br />

headphones<br />

Test leads<br />

Sensitivity<br />

plug


160 CHAPTER4. ACCIRCUITS<br />

4.6 SensingACmagneticfields<br />

PARTSANDMATERIALS<br />

• Audiodetectorwithheadphones<br />

• Electromagnetcoilfromrelayorsolenoid<br />

Whatisneededforanelectromagnetcoilisacoilwithmanyturnsofwire,soastoproduce<br />

themostvoltagepossiblefrominductionwithstraymagneticfields.Thecoiltakenfromanold<br />

relayorsolenoidworkswellforthispurpose.<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume2,chapter7:”Mixed-FrequencyACSignals”<br />

LEARNINGOBJECTIVES<br />

• Effectsofelectromagneticinduction.<br />

• Electromagneticshieldingtechniques.<br />

SCHEMATICDIAGRAM<br />

Audio detector circuit<br />

sensing<br />

coil<br />

100<br />

kΩ<br />

1 kΩ<br />

ILLUSTRATION<br />

headphones<br />

sensing<br />

coil<br />

Audio<br />

detector<br />

circuit<br />

Sensitivity<br />

plug


4.6. SENSINGACMAGNETICFIELDS 161<br />

INSTRUCTIONS<br />

UsingtheaudiodetectorcircuitexplainedearliertodetectACvoltageintheaudiofrequencies,acoilofwiremayserveassensorofACmagneticfields.Thevoltagesproducedbythecoil<br />

willbequitesmall,soitisadvisabletoadjustthedetector’ssensitivitycontrolto”maximum.”<br />

TherearemanysourcesofACmagneticfieldstobefoundintheaveragehome.Try,forinstance,holdingthecoilclosetoatelevisionscreenorcircuit-breakerbox.Thecoil’sorientation<br />

iseverybitasimportantasitsproximitytothesource,asyouwillsoondiscoveronyourown!<br />

Ifyouwanttolistentomoreinterestingtones,tryholdingthecoilclosetothemotherboard<br />

ofanoperatingcomputer(becarefulnotto”short”anyconnectionstogetheronthecomputer’s<br />

circuitboardwithanyexposedmetalpartsonthesensingcoil!),ortoitsharddrivewhilea<br />

read/writeoperationistakingplace.<br />

OneverystrongsourceofACmagneticfieldsisthehome-madetransformerprojectdescribedearlier.<br />

Tryexperimentingwithvariousdegreesof”coupling”betweenthecoils(the<br />

steelbarstightlyfastenedtogether, versuslooselyfastened, versusdismantled). Another<br />

sourceisthevariableinductorandlampcircuitdescribedinanothersectionofthischapter.<br />

Notethatphysicalcontactwithamagneticfieldsourceisunnecessary: magneticfields<br />

extendthroughspacequiteeasily.Youmayalsowanttotry”shielding”thecoilfromastrong<br />

sourceusingvariousmaterials. Tryaluminumfoil,paper,sheetsteel,plastic,orwhatever<br />

othermaterialsyoucanthinkof.Whatmaterialsworkbest?Why?Whatangles(orientations)<br />

ofcoilpositionminimizemagneticcoupling(resultinaminimumofdetectedsignal)? What<br />

doesthistellusregardinginductorpositioningifinter-circuitinterferencefromotherinductors<br />

isabadthing?<br />

Whetherornotstraymagneticfieldsliketheseposeanyhealthhazardtothehumanbody<br />

isahotlydebatedsubject. Onethingisclear: intoday’smodernsociety,low-levelmagnetic<br />

fieldsofallfrequenciesareeasytofind!


162 CHAPTER4. ACCIRCUITS<br />

4.7 SensingACelectricfields<br />

PARTSANDMATERIALS<br />

• Audiodetectorwithheadphones<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume2,chapter7:”Mixed-FrequencyACSignals”<br />

LEARNINGOBJECTIVES<br />

• Effectsofelectrostatic(capacitive)coupling.<br />

• Electrostaticshieldingtechniques.<br />

SCHEMATICDIAGRAM<br />

sensing<br />

wire<br />

Audio detector circuit<br />

100<br />

kΩ<br />

1 kΩ<br />

ILLUSTRATION<br />

headphones<br />

sensing<br />

wire<br />

Audio<br />

detector<br />

circuit<br />

Sensitivity<br />

plug<br />

connection to<br />

water pipe


4.7. SENSINGACELECTRICFIELDS 163<br />

INSTRUCTIONS<br />

”Ground”oneleadofthedetectortoametalobjectincontactwiththeearth(dirt). Most<br />

anywaterpipeorfaucetinahousewillsuffice. Taketheotherleadandholditclosetoan<br />

electricalapplianceorlampfixture. Donottrytomakecontactwiththeapplianceor<br />

withanyconductorswithin!AnyACelectricfieldsproducedbytheappliancewillbeheard<br />

intheheadphonesasabuzzingtone.<br />

Tryholdingthewireindifferentpositionsnexttoagood,strongsourceofelectricfields.Try<br />

usingapieceofaluminumfoilclippedtothewire’sendtomaximizecapacitance(andtherefore<br />

itsabilitytointerceptanelectricfield). Tryusingdifferenttypesofmaterialto”shield”the<br />

wirefromanelectricfieldsource. Whatmaterial(s)workbest? Howdoesthiscomparewith<br />

theACmagneticfieldexperiment?<br />

Aswithmagneticfields,thereiscontroversywhetherornotstrayelectricfieldslikethese<br />

poseanyhealthhazardtothehumanbody.


164 CHAPTER4. ACCIRCUITS<br />

4.8 Automotivealternator<br />

PARTSANDMATERIALS<br />

• Automotivealternator(onerequired,buttworecommended)<br />

Oldalternatorsmaybeobtainedforlowpricesatautomobilewreckingyards.Manyyards<br />

havealternatorsalreadyremovedfromtheautomobile,foryourconvenience.Idonotrecommendpayingfullpriceforanewalternator,asusedunitscostfarlessmoneyandfunctionjust<br />

aswellforthepurposesofthisexperiment.<br />

IhighlyrecommendusingaDelco-Remybrandofalternator. Thisisthetypeusedon<br />

GeneralMotors(GMC,Chevrolet,Cadillac,Buick,Oldsmobile)vehicles.Oneparticularmodel<br />

hasbeenproducedbyDelco-Remysincetheearly1960’swithlittledesignchange.Itisavery<br />

commonunittolocateinawreckingyard,andveryeasytoworkwith.<br />

Ifyouobtaintwoalternators,youmayuseoneasageneratorandtheotherasamotor.The<br />

stepsneededtoprepareanalternatorasathree-phasegeneratorandasathree-phasemotor<br />

arethesame.<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume1,chapter14:”MagnetismandElectromagnetism”<br />

LessonsInElectricCircuits,Volume2,chapter10:”PolyphaseACCircuits”<br />

LEARNINGOBJECTIVES<br />

• Effectsofelectromagnetism<br />

• Effectsofelectromagneticinduction<br />

• Constructionofrealelectromagneticmachines<br />

• Constructionandapplicationofthree-phasewindings<br />

SCHEMATICDIAGRAM<br />

Typical alternator<br />

"field"<br />

terminals<br />

"battery"<br />

terminal<br />

shaft<br />

Anautomotivealternatorisathree-phasegeneratorwithabuilt-inrectifiercircuitconsistingofsixdiodes.<br />

Asthesheave(mostpeoplecallita”pulley”)isrotatedbyabeltconnected


4.8. AUTOMOTIVEALTERNATOR 165<br />

totheautomobileengine’scrankshaft,amagnetisspunpastastationarysetofthree-phase<br />

windings(calledthestator),usuallyconnectedinaYconfiguration. Thespinningmagnetis<br />

actuallyanelectromagnet,notapermanentmagnet.Alternatorsaredesignedthiswaysothat<br />

themagneticfieldstrengthcanbecontrolled,inorderthatoutputvoltagemaybecontrolled<br />

independentlyofrotorspeed. Thisrotormagnetcoil(calledthefieldcoil,orsimplyfield)is<br />

energizedbybatterypower,sothatittakesasmallamountofelectricalpowerinputtothe<br />

alternatortogetittogeneratealotofoutputpower.<br />

<strong>Electrical</strong>powerisconductedtotherotatingfieldcoilthroughapairofcopper”sliprings”<br />

mountedconcentricallyontheshaft,contactedbystationarycarbon”brushes.”Thebrushes<br />

areheldinfirmcontactwiththeslipringsbyspringpressure.<br />

Manymodernalternatorsareequippedwithbuilt-in”regulator”circuitsthatautomatically<br />

switchbatterypoweronandofftotherotorcoiltoregulateoutputvoltage. Thiscircuit,if<br />

presentinthealternatoryouchoosefortheexperiment,isunnecessaryandwillonlyimpede<br />

yourstudyifleftinplace.Feelfreeto”surgicallyremove”it,justmakesureyouleaveaccess<br />

tothebrushterminalssothatyoucanpowerthefieldcoilwiththealternatorfullyassembled.<br />

ILLUSTRATION<br />

INSTRUCTIONS<br />

First,consultanautomotiverepairmanualonthespecificdetailsofyouralternator. The<br />

documentationprovidedinthebookyou’rereadingnowisasgeneralaspossibletoaccommodatedifferentbrandsofalternators.<br />

Youmayneedmorespecificinformation,andaservice<br />

manualisthebestplacetoobtainit.<br />

Forthisexperiment,you’llbeconnectingwirestothecoilsinsidethealternatorandextendingthemoutsidethealternatorcase,foreasyconnectiontotestequipmentandcircuits.<br />

Unfortunately,theconnectionterminalsprovidedbythemanufacturerwon’tsuitourneeds<br />

here,soyouneedtomakeyourownconnections.<br />

Disassembletheunitandlocateterminalsforconnectingtothetwocarbonbrushes.Solder<br />

apairofwirestotheseterminals(atleast20gaugeinsize)andextendthesewiresthrough<br />

ventholesinthealternatorcase,makingsuretheywon’tgetsnaggedonthespinningrotor<br />

whenthealternatorisre-assembledandused.<br />

Locatethethree-phaselineconnectionscomingfromthestatorwindingsandconnectwires<br />

tothemaswell,extendingthesewiresoutsidethealternatorcasethroughsomeventholes.<br />

Usethelargestgaugewirethatisconvenienttoworkwithforthesewires,astheymaybe<br />

carryingsubstantialcurrent.Aswiththefieldwires,routetheminsuchawaythattherotor<br />

willturnfreelywiththealternatorreassembled. Thestatorwindinglineterminalsareeasy


166 CHAPTER4. ACCIRCUITS<br />

tolocate: thethreeofthemconnecttothreeterminalsonthediodeassembly,usuallywith<br />

”ring-lug”terminalssolderedtotheendsofthewires.<br />

Interior view of alternator,<br />

rotor removed<br />

add these<br />

wires<br />

diodes<br />

brush<br />

stator<br />

Irecommendthatyousolderring-lugterminalstoyourwires,andattachthemunderneath<br />

theterminalnutsalongwiththestatorwireends,sothateachdiodeblockterminalissecuring<br />

tworinglugs.<br />

Re-assemblethealternator,takingcaretosecurethecarbonbrushesinaretractedposition<br />

sothattherotordoesn’tdamagethemuponre-insertion.OnDelco-Remyalternators,asmall<br />

holeisprovidedonthebackcasehalf,andalsoatthefrontofthebrushholderassembly,<br />

throughwhichapapercliporthin-gaugewiremaybeinsertedtoholdthebrushesbackagainst<br />

theirspringpressure.Consulttheservicemanualformoredetailsonalternatorassembly.<br />

Whenthealternatorhasbeenassembled,tryspinningtheshaftandlistenforanysounds<br />

indicativeofcollidingpartsorsnaggedwires.Ifthereisanysuchtrouble,takeitapartagain<br />

andcorrectwhateveriswrong.<br />

Ifandwhenitspinsfreelyasitshould,connectthetwo”field”wirestoa6-voltbattery.<br />

Connectanvoltmetertoanytwoofthethree-phaselineconnections:<br />

V<br />

A<br />

V<br />

OFF<br />

A<br />

A<br />

COM<br />

+ -


4.8. AUTOMOTIVEALTERNATOR 167<br />

Withthemultimetersettothe”DCvolts”function,slowlyrotatethealternatorshaft.The<br />

voltmeterreadingshouldalternatebetweenpositiveandnegativeastheshaftitturned: a<br />

demonstrationofveryslowalternatingvoltage(ACvoltage)beinggenerated. Ifthistestis<br />

successful,switchthemultimetertothe”ACvolts”settingandtryagain. Tryspinningthe<br />

shaftslowandfast,comparingvoltmeterreadingsbetweenthetwoconditions.<br />

Short-circuitanytwoofthethree-phaselinewiresandtryspinningthealternator. What<br />

youshouldnoticeisthatthealternatorshaftbecomesmoredifficulttospin.Theheavyelectricalloadyou’vecreatedviatheshortcircuitcausesaheavymechanicalloadonthealternator,<br />

asmechanicalenergyisconvertedintoelectricalenergy.<br />

Now,tryconnecting12voltsDCtothefieldwires.RepeattheDCvoltmeter,ACvoltmeter,<br />

andshort-circuittestsdescribedabove.Whatdifference(s)doyounotice?<br />

Findsomesortofpolarity-insensitive6or12voltsloads,suchassmallincandescentlamps,<br />

andconnectthemtothethree-phaselinewires.Wrapathinropeorheavystringaroundthe<br />

grooveofthesheave(”pulley”)andspinthealternatorrapidly,andtheloadsshouldfunction.<br />

Ifyouhaveasecondalternator,modifyitasyoumodifiedthefirstone,connectingfiveof<br />

yourownwirestothefieldbrushesandstatorlineterminals,respectively.Youcanthenuseit<br />

asathree-phasemotor,poweredbythefirstalternator.<br />

Connecteachofthethree-phaselinewiresofthefirstalternatortotherespectivewires<br />

ofthesecondalternator. Connectthefieldwiresofonealternatortoa6voltbattery. This<br />

alternatorwillbethegenerator.Wrapropearoundthesheaveinpreparationtospinit.Take<br />

thetwofieldwiresofthesecondalternatorandshortthemtogether. Thisalternatorwillbe<br />

themotor:<br />

Motor<br />

Generator<br />

+ -<br />

Spinthegeneratorshaftwhilewatchingthemotorshaft’srotation.Tryreversinganytwo<br />

ofthethree-phaselineconnectionsbetweenthetwounitsandspinthegeneratoragain.What<br />

isdifferentthistime?<br />

Connectthefieldwiresofthemotorunittothea6voltbattery(youmayparallel-connect<br />

thisfieldwiththefieldofthegeneratorunit,acrossthesamebatteryterminals,ifthebattery


168 CHAPTER4. ACCIRCUITS<br />

isstrongenoughtodelivertheseveralampsofcurrentbothcoilswilldrawtogether).Thiswill<br />

magnetizetherotorofthemotor.Tryspinningthegeneratoragainandnoteanydifferencesin<br />

operation.<br />

Inthefirstmotorsetup,wherethefieldwiresweresimpleshortedtogether,themotor<br />

wasfunctioningasaninductionmotor. Inthesecondsetup,wherethemotor’srotorwas<br />

magnetized,itfunctionedasasynchronousmotor.<br />

Ifyouarefeelingparticularlyambitiousandareskilledinmetalfabricationtechniques,<br />

youmaymakeyourownhigh-powergeneratorplatformbyconnectingthemodifiedalternator<br />

toabicycle.I’vebuiltanarrangementthatlookslikethis:<br />

alternator<br />

Therearwheeldrivesthegeneratorsheavewithalongv-belt. Thisbeltalsosupports<br />

therearofthebicycle,maintainingaconstanttensionwhenariderispedalingthebicycle.<br />

Thegeneratorhangsfromasteelsupportstructure(Iusedwelded2-inchsquaretubing,but<br />

aframecouldbemadeoutoflumber). Notonlyisthismachinepractical,butitisreliable<br />

enoughtobeusedasanexercisemachine,anditisinexpensivetomake:<br />

Youcanseeabankofthree12-volt”RV”lightbulbsbehindthebicycleunit(inthelowerleftcornerofthephotograph),whichIuseforaloadwhenridingthebicycleasanexercise<br />

machine.Asetofthreeswitchesismountedatthefrontofthebicycle,whereIcanturnloads


4.8. AUTOMOTIVEALTERNATOR 169<br />

onandoffwhileriding.<br />

Byrectifyingthethree-phaseACpowerproduced,itispossibletohavethealternatorpower<br />

itsownfieldcoilwithDCvoltage,eliminatingtheneedforabattery.However,someindependentsourceofDCvoltagewillstillbenecessaryforstart-up,asthefieldcoilmustbeenergized<br />

beforeanyACpowercanbeproduced.


170 CHAPTER4. ACCIRCUITS<br />

4.9 Inductionmotor<br />

PARTSANDMATERIALS<br />

• ACpowersource:120VAC<br />

• Capacitor,3.3 µF(or2.2 µF)120VACor350VDC,non-polarized<br />

• 15to25wattincandescentlampor820Ω25wattresistors<br />

• #32AWGmagnetwire<br />

• woodenboardapprox.5in.square.<br />

• AClinecordwithplug<br />

• 1.75inchdia.cardboardtubing(toiletpaperroll)<br />

• lampsocket<br />

• ACpowersource:220VAC<br />

• Capacitor,1.5 µF240VACor680VDC,non-polarized<br />

• 25to40wattincandescentlampor820Ω25wattresistors<br />

• #32AWGmagnetwire<br />

• woodenboardapprox.15cm.square.<br />

• AClinecordwithplug<br />

• 4.5to5cm.dia.cardboardtubing.<br />

• lampsocket<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume2,chapter13: ”ACmotors”,”SinglePhaseinduction<br />

motors”,”Permanentsplit-capacitormotor”.<br />

LEARNINGOBJECTIVES<br />

• TobuildanACpermanentcapacitorsplit-phaseinductionmotor.<br />

• ToillustratethesimplicityoftheACinductionmotor.<br />

SCHEMATICDIAGRAM


4.9. INDUCTIONMOTOR 171<br />

1"<br />

120 Vac<br />

440 turns<br />

25 watt lamp<br />

440 turns<br />

1.75"<br />

3.3 µF<br />

(a)<br />

(b)<br />

ILLUSTRATION<br />

INSTRUCTIONS<br />

Therearetwopartsliststochoosefromdependingupontheavailabilityof120VACor<br />

220VAC.Choosetheoneforyourlocation.Thissetofinstructionsisforthe120VACversion.<br />

Thisisasimplifiedversionofa”permanentcapacitorsplit-phaseinductionmotor”.Bysimplified,wemeanthecoilsonlyrequiresafewhundredturnsofwireinsteadofafewthousand.<br />

Thisiseasiertowind. Though,thelargerfewthousandturnsmodelisimpressive. There<br />

aretwostatorcoilsasshownintheillustrationabove.Approximately440turnsof#32AWG<br />

(Americanwiregauge)enameledmagnetwirearewoundoveraoneinchlengthofaslightly<br />

longersectionof1.75inchdiametertoiletpapertube.Toavoidcountingtheturns,close-wind<br />

fourlayersofmagnetwireoveraoneinchwidthofthetube.See(b)above.Leaveafewinches<br />

ofmagnetwirefortheleads. Tapethebeginningleadneartheendofthetubesothatthe<br />

windingswillcoverandanchorthetape.Donotcutthefinalwidthofthecardboardtubeuntil


172 CHAPTER4. ACCIRCUITS<br />

thewindingisfinished.Closewindasinglelayer.Tapeorcementthefirstlayertopreventunwindingbeforeproceedingtothesecondlayer.Thoughitispossibletowindadditionallayers<br />

directlyoverexistinglayers,considerapplyingtapeorpaperbetweenthelayersasshownin<br />

schematic(b).Afterfourlayersarewound,gluethewindingsinplace.<br />

Ifclosewindingfourlayersofmagnetwireittoodifficult,scramblewind440turnsofthe<br />

magnetwireovertheendofthecardboardtube.However,theclose-woundstylecoilmounts<br />

moreeasilytothebaseboard.Keepthewindingswithinaoneinchlength.<br />

Cutthefinishedwindingfromtheendofthecardboardtubewitharazorknifeallowing<br />

theformtoextendalittlebeyondthewinding.Striptheenamelfromaninchofftheendsof<br />

thepairofleadwireswithsandpaper.Splicethebareendstoheaviergaugeinsulatedhook-up<br />

wire.Solderthesplice.Insulatewithtapeorheat-shrinktubing.Securethesplicetothecoil<br />

body.Thenproceedwithasecondidenticalcoil.<br />

Refertoboththeschematicdiagramandtheillustrationforassembly.Notethatthecoils<br />

aremountedatrightangles.Theymaybecementedtoaninsulatingbaseboardlikewood.The<br />

25wattlampiswiredinserieswithonecoil.Thislimitsthecurrentflowingthroughthecoil.<br />

Thelampisasubstituteforan820 Ωpowerresistor.Thecapacitoriswiredinserieswiththe<br />

othercoil.Italsolimitsthecurrentthroughthecoil.Inaddition,itprovidesaleadingphase<br />

shiftofthecurrentwithrespecttovoltage. Theschematicandillustrationshownopower<br />

switchorfuse.Addtheseifdesired.<br />

Therotormustbemadeofaferromagneticmateriallikeasteelcanlidorbottlecap.The<br />

illustrationbelowshowshowtomaketherotor.Selectacircularrotoreithersmallerthanthe<br />

coilformsoralittlelarger.Usegeometrytolocateandmarkthecenter.Thecenterneedstobe<br />

dimpled.Selectaneighthinchdiameter(afewmm)nail(a)andfileorgrindthepointround<br />

asshownat(b). Placetherotoratopapieceofsoftwood(c)andhammertheroundedpoint<br />

intothecenter(d).Practiceonapieceofsimilarscrapmetal.Takecarenottopiercetherotor.<br />

Adishedrotor(f)oralid(g)balancebetterthantheflatrotor(e).Thepivotpoint(e)maybe<br />

astraightpindriventhroughamovablewoodenpedestal,orthroughthemainboard.Thetip<br />

ofaball-pointpenalsoworks.Iftherotordoesnotbalanceatopthepivot,removemetalfrom<br />

theheavyside.<br />

(g)<br />

(f)<br />

(a) (b) (c) (d) (e)<br />

Doublecheckthewiring. Checkthatanybarewirehasbeeninsulated. Thecircuitmay<br />

bepowered-upwithouttherotor. Thelampshouldlight. Bothcoilswillwarmwithinafew<br />

minutes.Excessiveheatingmeansthatalowerwattage(higherresistance)lampandalower<br />

valuecapacitorshouldbesubstitutedinserieswiththerespectivecoils.


4.9. INDUCTIONMOTOR 173<br />

Placetherotoratopthepivotandmoveitbetweenbothcoils.Itshouldspin.Thecloserit<br />

is,thefasteritshouldspin. Bothcoilsshouldbewarm,indicatingpower. Trydifferentsize<br />

andstylerotors.Tryasmallrotorontheoppositesideofthecoilscomparedtotheillustration.<br />

Forlackof#32AWGmagnetwiretry440turnsofslightlyalargerdiameter(lesserAWG<br />

number)wire.Thiswillrequiremorethan4layersfortherequiredturns.Anight-lightfixture<br />

mightbelessexpensivethanthefull-sizelampsocketillustrated.Thoughnight-lightbulbsare<br />

toolowawattageat3or7watts,15wattbulbsfitthesocket.


174 CHAPTER4. ACCIRCUITS<br />

4.10 Inductionmotor,large<br />

PARTSANDMATERIALS<br />

• ACpowersource:120VAC<br />

• Capacitor,3.3 µF120VACor350VDC,non-polarized<br />

• #33AWGmagnetwire,2pounds<br />

• woodenboardapprox.6to12in.square.<br />

• AClinecordwithplug<br />

• 5.1inchdia.plastic3litersodabottle<br />

• discardedballpointpen<br />

• misc.smallwoodblocks<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume2,chapter13: ”ACmotors”,”SinglePhaseinduction<br />

motors”,”Permanentsplit-capacitormotor”.<br />

LEARNINGOBJECTIVES<br />

• TobuildalargeexhibitsizeACpermanentsplit-capacitorinductionmotor.<br />

• ToillustratethesimplicityoftheACinductionmotor.<br />

SCHEMATICDIAGRAM<br />

1"<br />

120<br />

Vac<br />

L2<br />

3200 turns<br />

L1<br />

3800 turns<br />

5.1 in.<br />

C1<br />

3.3 µF<br />

(a)<br />

(b)


4.10. INDUCTIONMOTOR,LARGE 175<br />

ILLUSTRATION<br />

L2<br />

L1<br />

C1<br />

INSTRUCTIONS<br />

Thisisalargerversionofa”permanentcapacitorsplit-phaseinductionmotor”.Thereare<br />

twodifferentstatorcoils.The1.0inchwide3200turnL2windingisshownintheillustration<br />

above(b),woundoverasectionof5.1inchdiameterplastic3-litersodabottle. L1isapproximately3800turnsof#33AWG(Americanwiregauge)enameledmagnetwirewoundovera<br />

1.25widthofasectionofsodabottle,widerthanshownat(b).Marka1.25inchwidecylinder<br />

with0.25inchmarginsoneachend.Thewirewillbewoundonthe1.25inchzone.Theform<br />

iscutfromthebottleontheoutsideedgesofthemargin. Cutsof0.25inchfromthemargin<br />

towindingzonearespacedat1inchintervalsaroundthecircumferenceofbothendssothat<br />

themarginmaybebentupat90 o toholdthewireontheform. Toavoidcountingthe3800<br />

turns,scramblewinda1/8inchthicknessofmagnetwireovertheoneinchwidthoftheform.<br />

Else,counttheturns.Scrapetheenamelfrom1-inchonthefreeend,andscrapeonlyasmall<br />

sectionfromtheleadtothespool.DoNOTcuttheleadtothespool.Measuretheresistance,<br />

andestimatehowmuchmorewiretowindtoachieve894 Ω.Applyenamel,nailpolish,tape,<br />

orotherinsulationtothebarespotonthespoollead.Continuewinding,andrechecktheresistance.Oncetheapproximate894<br />

Ωisachieved,leaveafewinchesofmagnetwireforthelead.<br />

Cuttheleadfromthespool.Securethewindingstotheformwithlacingtwineorothermeans.<br />

TheL1windingof3200turnsisapproximately744 Ωandiswoundona1.0inchwideform<br />

asshownat(b)inamannersimilartothepreviousL2winding.<br />

Striptheenameloff1-inchoftheendsofmagnetwireleadsifnotalreadydone.Splicethe<br />

bareendstoheaviergaugeinsulatedhook-upwire. Solderthesplice. Insulatewithtapeor<br />

heat-shrinktubing.Securethesplicetothecoilbody.Thenproceedwiththesecondcoil.The<br />

coilsmaybemountedinonecornerofthewoodenbase. Alternatively,formoreflexabilityin<br />

use,theymaybemountedtomovablepallets.<br />

Refertoboththeschematicdiagramandtheillustrationforassembly.Notethatthecoils<br />

aremountedatrightangles.L2,thesmallercoiliswiredtobothsidesofthe120Vacline.The<br />

capacitoriswiredinserieswiththewidercoilL1.Thecapacitorprovidesaleadingphaseshift<br />

ofthecurrentwithrespecttovoltage.Theschematicandillustrationshownopowerswitchor<br />

fuse.Addtheseadditionsarerecommended.


176 CHAPTER4. ACCIRCUITS<br />

Ifthisdeviceisintendedforusebynon-techniciansasanunsupervisedexhibit,allexposed<br />

bareterminationslikethecapacitormustbemadefingersafebycoveringwithshields. The<br />

switchandfusementionedabovearenecessary.Finally,theenamelonthecoilsonlyprovidesa<br />

singlelayerofinsulation.Forsafety,asecondlayersuchasaninsulatingwrapping,Plexiglas<br />

box,orothermeansiscalledfor. ReplaceallwoodencomponentswithPlexiglasforsuperior<br />

firesafetyinanunsupervisedexhibit.<br />

Therotormustbemadeofaferromagneticmateriallikeasteelvegetablecan,fruitcake<br />

can,etc. Atoolongvegetablecanmaybecutinhalf. Theillustrationfortheprevioussmall<br />

inductionmotorshowsrotordimpledbearingandpivotdetails.Therotormaybesmallerthan<br />

thecoilformsasinthecaseofacutdownvegetablecan. Itcanevenbeassmallasthecan<br />

lidrotorusedwiththeprevioussmallmotor. Itisalsopossibletodrivearotorlargerthan<br />

thecoils,whichisthecasewiththefruitcakecan. Locateandmarkthecenteroftherotor.<br />

Thecenterneedstobedimpled. Selectaneighthinchdiameter(afewmm)nail(a)andfile<br />

orgrindthepointround. Usethisandablockofwoodtodimpletherotorasshowninthe<br />

previoussmallmotorAfairlylongcanbalancesbetterthanaflatrotorduetothelowercenter<br />

ofgravity.Thetipofaballpointpenworkswellasapivotforlargerrotors.Mountthepivotto<br />

amovablewoodenpedestal.<br />

Doublecheckthewiring.Checkthatanybarewirehasbeeninsulated.Thecircuitmaybe<br />

powered-upwithouttherotor.ExcessiveheatinginL2indicatesthatmoreturnsarerequired.<br />

ExcessiveheatinL1callsforareductioninthecapacitanceofC1. Noheatatallindicates<br />

indicatesanopencircuittotheaffectedcoil.<br />

Placetherotoratopthepivotandmoveitbetweenbothenergizedcoils. Itshouldspin.<br />

Thecloseritis,thefasteritshouldspin. Bothcoilsshouldbewarm,indicatingpower. Try<br />

differentsizeandstylerotors.Tryasmallrotorontheoppositesideofthecoilscomparedto<br />

theillustration.<br />

Threemodelsofthismotorhavebeenbuiltusing#33AWGmagnetwirebecausealarge<br />

spoolwasonhand.AWG#32magnetwireisprobablyeasiertoget.Itshouldwork.Although<br />

thecurrentwillbehigherduetothelowerresistanceofthelargerdiameter#32wire. Ifa<br />

3.3µFcapacitorisnotavailable,usesomentingcloseaslongasithasanadequatevoltage<br />

rating.AdiscardedACmotorruncapacitor(bathtubshaped)wasusedbytheauthor.Dono<br />

useamotorstartcapacitor(blackcylinder).Theseareonlyusableforafewsecondsofmotor<br />

starting,andmayexplodeifusedlongerthanthat.<br />

Trythis: Itispossibletosimultaneouslyspinmorethanonerotor. Forexample,in<br />

additiontothemainrotorinsidetherightangleformedbythecoils,placeasecondsmaller<br />

rotor(canorbottlelid)nearthepairofcoilsoutsidetherightangleatthevertex.<br />

Itispossibletoreversethedirectionofrotationbyreversingoneofthecoils.Ifthecoilsare<br />

mountedtomovablepallets,rotateonecoil180 o .Anothermethod,especiallyusefullwithfixed<br />

coils,istowireoneofthecoilstoaDPDTpolarityreversingswitch.Forexample,disconnect<br />

L2andwireittothewipers(centercontacts)oftheDPDTswitch.Thetopcontactsgotothe<br />

120Vac.ThetopcontactsalsogotothethebottomcontactsinanX-crossoverpattern.


4.11. PHASESHIFT 177<br />

4.11 Phaseshift<br />

PARTSANDMATERIALS<br />

• Low-voltageACpowersupply<br />

• Twocapacitors,0.1 µFeach,non-polarized(RadioShackcatalog#272-135)<br />

• Two27kΩresistors<br />

Irecommendceramicdiskcapacitors,becausetheyareinsensitivetopolarity(non-polarized),<br />

inexpensive,anddurable.Avoidcapacitorswithanykindofpolaritymarking,asthesewillbe<br />

destroyedwhenpoweredbyAC!<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume2,chapter1:”BasicACTheory”<br />

LessonsInElectricCircuits,Volume2,chapter4:”ReactanceandImpedance–Capacitive”<br />

LEARNINGOBJECTIVES<br />

• Howout-of-phaseACvoltagesdonotaddalgebraically,butaccordingtovector(phasor)<br />

arithmetic<br />

SCHEMATICDIAGRAM<br />

R 1<br />

27 kΩ<br />

12 V<br />

RMS<br />

R 2<br />

C 1<br />

27 kΩ<br />

0.1 µF<br />

C 2<br />

0.1 µF<br />

ILLUSTRATION


178 CHAPTER4. ACCIRCUITS<br />

Low-voltage<br />

AC power supply<br />

12<br />

6 6<br />

C 2<br />

C 1<br />

R 2<br />

R 1<br />

INSTRUCTIONS<br />

BuildthecircuitandmeasurevoltagedropsacrosseachcomponentwithanACvoltmeter.<br />

Measuretotal(supply)voltagewiththesamevoltmeter. Youwilldiscoverthatthevoltage<br />

dropsdonotadduptoequalthetotalvoltage.Thisisduetophaseshiftsinthecircuit:voltage<br />

droppedacrossthecapacitorsisout-of-phasewithvoltagedroppedacrosstheresistors,and<br />

thusthevoltagedropfiguresdonotaddupasonemightexpect. Takingphaseangleinto<br />

consideration,theydoadduptoequalthetotal,butavoltmeterdoesn’tprovidephaseangle<br />

measurements,onlyamplitude.<br />

Trymeasuringvoltagedroppedacrossbothresistorsatonce.Thisvoltagedropwillequal<br />

thesumofthevoltagedropsmeasuredacrosseachresistorseparately.Thistellsyouthatboth<br />

theresistors’voltagedropwaveformsarein-phasewitheachother,sincetheyaddsimplyand<br />

directly.<br />

Measurevoltagedroppedacrossbothcapacitorsatonce. Thisvoltagedrop,likethedrop<br />

measuredacrossthetworesistors,willequalthesumofthevoltagedropsmeasuredacross<br />

eachcapacitorseparately.Likewise,thistellsyouthatboththecapacitors’voltagedropwaveformsarein-phasewitheachother.<br />

Giventhatthepowersupplyfrequencyis60Hz(householdpowerfrequencyintheUnited<br />

States),calculateimpedancesforallcomponentsanddetermineallvoltagedropsusingOhm’s<br />

Law(E=IZ;I=E/Z;Z=E/I).Thepolarmagnitudesoftheresultsshouldcloselyagreewithyour<br />

voltmeterreadings.<br />

COMPUTERSIMULATION<br />

SchematicwithSPICEnodenumbers:


4.11. PHASESHIFT 179<br />

V 1<br />

1<br />

3<br />

R bogus1<br />

4<br />

R bogus2<br />

R 1<br />

R 2<br />

C 1<br />

C 2<br />

0<br />

0 0<br />

1<br />

27 kΩ<br />

2<br />

27 kΩ<br />

3<br />

4<br />

0.1 µF<br />

0.1 µF<br />

Thetwolarge-valueresistorsR bogus1 andR bogus1 areconnectedacrossthecapacitorsto<br />

provideaDCpathtogroundinorderthatSPICEwillwork.Thisisa”fix”foroneofSPICE’s<br />

quirks,toavoiditfromseeingthecapacitorsasopencircuitsinitsanalysis.Thesetworesistors<br />

areentirelyunnecessaryintherealcircuit.<br />

Netlist(makeatextfilecontainingthefollowingtext,verbatim):<br />

phase shift<br />

v1 1 0 ac 12 sin<br />

r1 1 2 27k<br />

r2 2 3 27k<br />

c1 3 4 0.1u<br />

c2 4 0 0.1u<br />

rbogus1 3 4 1e9<br />

rbogus2 4 0 1e9<br />

.ac lin 1 60 60<br />

* Voltage across each component:<br />

.print ac v(1,2) v(2,3) v(3,4) v(4,0)<br />

* Voltage across pairs of similar components<br />

.print ac v(1,3) v(3,0)<br />

.end


180 CHAPTER4. ACCIRCUITS<br />

4.12 Soundcancellation<br />

PARTSANDMATERIALS<br />

• Low-voltageACpowersupply<br />

• Twoaudiospeakers<br />

• Two220 Ωresistors<br />

Large,low-frequency(”woofer”)speakersaremostappropriateforthisexperiment. For<br />

optimumresults,thespeakersshouldbeidenticalandmountedinenclosures.<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume2,chapter1:”BasicACTheory”<br />

LEARNINGOBJECTIVES<br />

• Howphaseshiftcancausewavestoeitherreinforceorinterferewitheachother<br />

• Theimportanceofspeaker”phasing”instereosystems<br />

SCHEMATICDIAGRAM<br />

220 Ω<br />

220 Ω<br />

12 V<br />

ILLUSTRATION


4.12. SOUNDCANCELLATION 181<br />

Low-voltage<br />

AC power supply<br />

12<br />

6 6<br />

Speaker<br />

Speaker<br />

INSTRUCTIONS<br />

Connecteachspeakertothelow-voltageACpowersupplythrougha220 Ωresistor. The<br />

resistorlimitstheamountofpowerdeliveredtoeachspeakerbythepowersupply. Alowpitched,60-Hertztoneshouldbeheardfromthespeakers.<br />

Ifthetonesoundstooloud,use<br />

higher-valueresistors.<br />

Withbothspeakersconnectedandproducingsound,positionthemsothattheyareonlya<br />

footortwoaway,facingtowardeachother. Listentothevolumeofthe60-Hertztone. Now,<br />

reversetheconnections(the”polarity”)ofjustoneofthespeakersandnotethevolumeagain.<br />

Tryswitchingthepolarityofonespeakerbackandforthfromoriginaltoreversed,comparing<br />

volumelevelseachway.Whatdoyounotice?<br />

Byreversingwireconnectionstoonespeaker,youarereversingthephaseofthatspeaker’s<br />

soundwaveinreferencetotheotherspeaker.Inonemode,thesoundwaveswillreinforceone<br />

anotherforastrongvolume.Intheothermode,thesoundwaveswilldestructivelyinterfere,<br />

resultingindiminishedvolume.Thisphenomenoniscommontoallwaveevents:soundwaves,<br />

electricalsignals(voltage”waves”),wavesinwater,andevenlightwaves!<br />

Multiplespeakersinastereosoundsystemmustbeproperly”phased”sothattheirrespectivesoundwavesdon’tcanceleachother,leavinglesstotalsoundlevelforthelistener(s)to<br />

hear.So,eveninanACsystemwheretherereallyisnosuchthingasconstant”polarity,”the<br />

sequenceofwireconnectionsmaymakeasignificantdifferenceinsystemperformance.<br />

Thisprincipleofvolumereductionbydestructiveinterferencemaybeexploitedfornoise<br />

cancellation.Suchsystemssamplethewaveformoftheambientnoise,thenproduceaniden-


182 CHAPTER4. ACCIRCUITS<br />

ticalsoundsignal180 o outofphasewiththenoise. Whenthetwosoundsignalsmeet,they<br />

canceleachotherout,ideallyeliminatingallthenoise.Asonemightguess,thisismucheasier<br />

accomplishedwithnoisesourcesofsteadyfrequencyandamplitude.Cancellationofrandom,<br />

broad-spectrumnoiseisverydifficult,assomesortofsignal-processingcircuitmustsample<br />

thenoiseandgeneratepreciselytherightamountofcancellationsoundatjusttherighttime<br />

inordertobeeffective.


4.13. MUSICALKEYBOARDASASIGNALGENERATOR 183<br />

4.13 Musicalkeyboardasasignalgenerator<br />

PARTSANDMATERIALS<br />

• Electronic”keyboard”(musical)<br />

• ”Mono”(notstereo)headphone-typeplug<br />

• Impedancematchingtransformer(1k Ωto8Ωratio;RadioShackcatalog#273-1380)<br />

• 10kΩresistor<br />

Inthisexperiment,you’lllearnhowtouseanelectronicmusicalkeyboardasasourceof<br />

variable-frequencyACvoltagesignals.Youneednotpurchaseanexpensivekeyboardforthis<br />

–butonewithatleastafewdozen”voice”selections(piano,flute,harp,etc.) wouldbegood.<br />

The”mono”plugwillbepluggedintotheheadphonejackofthemusicalkeyboard,sogetaplug<br />

that’sthecorrectsizeforthekeyboard.<br />

The”impedancematchingtransformer”isasmall-sizetransformereasilyobtainedfroman<br />

electronicssupplystore.Onemaybescavengedfromasmall,junkradio:itconnectsbetween<br />

thespeakerandthecircuitboard(amplifier),soiseasilyidentifiablebylocation.Theprimary<br />

windingisratedinohmsofimpedance(1000 Ω),andisusuallycenter-tapped.Thesecondary<br />

windingis8Ωandnotcenter-tapped. TheseimpedancefiguresarenotthesameasDCresistance,sodon’texpecttoread1000<br />

Ωand8Ωwithyourohmmeter–however,the1000 Ω<br />

windingwillreadmoreresistancethanthe8Ωwinding,becauseithasmoreturns.<br />

Ifsuchatransformercannotbeobtainedfortheexperiment,aregular120V/6Vstep-down<br />

powertransformerworksfairlywell,too.<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume2,chapter1:”BasicACTheory”<br />

LessonsInElectricCircuits,Volume2,chapter7:”Mixed-FrequencyACSignals”<br />

LEARNINGOBJECTIVES<br />

• Differencebetweenamplitudeandfrequency<br />

• MeasuringACvoltage,currentwithameter<br />

• Transformeroperation,step-up<br />

SCHEMATICDIAGRAM<br />

Keyboard<br />

plug<br />

8 Ω 1 kΩ<br />

10 kΩ


184 CHAPTER4. ACCIRCUITS<br />

ILLUSTRATION<br />

V<br />

A<br />

V<br />

OFF<br />

A<br />

1000 Ω<br />

A<br />

COM<br />

8 Ω<br />

plug<br />

"Voice" selection<br />

Volume<br />

INSTRUCTIONS<br />

Normally,astudentofelectronicsinaschoolwouldhaveaccesstoadevicecalledasignal<br />

generator,orfunctiongenerator,usedtomakevariable-frequencyvoltagewaveformstopower<br />

ACcircuits. Aninexpensiveelectronickeyboardisacheaperalternativetoaregularsignal<br />

generator,andprovidesfeaturesthatmostsignalgeneratorscannotmatch,suchasproducing<br />

mixed-frequencywaves.<br />

To”tapin”totheACvoltageproducedbythekeyboard,you’llneedtoinsertaplugintothe<br />

headphonejack(sometimesjustlabeled”phone”onthekeyboard)completewithtwowiresfor<br />

connectiontocircuitsofyourowndesign.Whenyouinserttheplugintothejack,thenormal<br />

speakerbuiltintothekeyboardwillbedisconnected(assumingthekeyboardisequippedwith<br />

one),andthesignalthatusedtopowerthatspeakerwillbeavailableattheplugwires. In


4.13. MUSICALKEYBOARDASASIGNALGENERATOR 185<br />

thisparticularexperiment,Irecommendusingthekeyboardtopowerthe8Ωsideofanaudio<br />

”output”transformertostepupvoltagetoahigherlevel.Ifusingapowertransformerinstead<br />

ofanaudiooutputtransformer,connectthekeyboardtothelow-voltagewindingsothatit<br />

operatesasastep-updevice.Keyboardsproduceverylowvoltagesignals,sothereisnoshock<br />

hazardinthisexperiment.<br />

UsinganinexpensiveYamahakeyboard,Ihavefoundthatthe”panflute”voicesettingproducesthetruestsine-wavewaveform.<br />

Thiswaveform,orsomethingclosetoit(flute,forexample),isrecommendedtostartexperimentingwithsinceitisrelativelyfreeofharmonics<br />

(manywaveformsmixedtogether,ofinteger-multiplefrequency).Beingcomposedofjustone<br />

frequency,itisalesscomplexwaveformforyourmultimetertomeasure.Makesurethekeyboardissettoamodewherethenotewillbesustainedasanykeyishelddown–otherwise,<br />

theamplitude(voltage)ofthewaveformwillbeconstantlychanging(highwhenthekeyisfirst<br />

pressed,thendecayingrapidlytozero).<br />

UsinganACvoltmeter,readthevoltagedirectfromtheheadphoneplug. Then,readthe<br />

voltageassteppedupbythetransformer,notingthestepratio.Ifyourmultimeterhasa”frequency”function,useittomeasurethefrequencyofthewaveformproducedbythekeyboard.<br />

Trydifferentnotesonthekeyboardandrecordtheirfrequencies. Doyounoticeapatternin<br />

frequencyasyouactivatedifferentnotes,especiallykeysthataresimilartoeachother(notice<br />

the12-keyblack-and-whitepatternrepeatedonthekeyboardfromlefttoright)?Ifyoudon’t<br />

mindmakingmarksonyourkeyboard,writethefrequenciesinHertzinblackinkonthewhite<br />

keys,nearthetopswherefingersarelesslikelytorubthenumbersoff.<br />

Ideally,thereshouldbenochangeinsignalamplitude(voltage)asdifferentfrequencies<br />

(notesonthekeyboard)aretried.Ifyouadjustthevolumeupanddown,youshoulddiscover<br />

thatchangesinamplitudeshouldhavelittleornoimpactonfrequencymeasurement.AmplitudeandfrequencyaretwocompletelyindependentaspectsofanACsignal.<br />

Tryconnectingthekeyboardoutputtoa10kΩloadresistance(throughtheheadphone<br />

plug),andmeasureACcurrentwithyourmultimeter. Ifyourmultimeterhasafrequency<br />

function,youcanmeasurethefrequencyofthiscurrentaswell.Itshouldbethesameasfor<br />

thevoltageforanygivennote(keyboardkey).


186 CHAPTER4. ACCIRCUITS<br />

4.14 PCOscilloscope<br />

PARTSANDMATERIALS<br />

• IBM-compatiblepersonalcomputerwithsoundcard,runningWindows3.1orbetter<br />

• Winscopesoftware,downloadedfreefrominternet<br />

• Electronic”keyboard”(musical)<br />

• ”Mono”(notstereo)headphone-typeplugforkeyboard<br />

• ”Mono”(notstereo)headphone-typeplugforcomputersoundcardmicrophoneinput<br />

• 10kΩpotentiometer<br />

TheWinscopeprogramI’veusedwaswrittenbyDr.ConstantinZeldovich,forfreepersonal<br />

andacademicuse.ItplotswaveformsonthecomputerscreeninresponsetoACvoltagesignals<br />

interpretedbythesoundcardmicrophoneinput. Asimilarprogram,calledOscope,ismade<br />

fortheLinuxoperatingsystem. Ifyoudon’thaveaccesstoeithersoftware,youmayusethe<br />

”soundrecorder”utilitythatcomesstockwithmostversionsofMicrosoftWindowstodisplay<br />

crudewaveshapes.<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume2,chapter7:”Mixed-FrequencyACSignals”<br />

LessonsInElectricCircuits,Volume2,chapter12:”ACMeteringCircuits”<br />

LEARNINGOBJECTIVES<br />

• Computeruse<br />

• Basicoscilloscopefunction<br />

SCHEMATICDIAGRAM<br />

Keyboard<br />

Computer<br />

plug<br />

10 kΩ<br />

plug<br />

ILLUSTRATION


4.14. PCOSCILLOSCOPE 187<br />

Computer<br />

plug<br />

mic. input<br />

plug<br />

"Voice" selection<br />

Volume<br />

Monitor<br />

INSTRUCTIONS<br />

Theoscilloscopeisanindispensabletestinstrumentfortheelectronicsstudentandprofessional.Noseriouselectronicslabshouldbewithoutone(ortwo!).Unfortunately,commercial<br />

oscilloscopestendtobeexpensive,anditisalmostimpossibletodesignandbuildyourown<br />

withoutanotheroscilloscopetotroubleshootit! However,thesoundcardofapersonalcomputeriscapableof”digitizing”low-voltageACsignalsfromarangeofafewhundredHertzto<br />

severalthousandHertzwithrespectableresolution,andfreesoftwareisavailablefordisplayingthesesignalsinoscilloscopeformonthecomputerscreen.<br />

Sincemostpeopleeitherhave<br />

apersonalcomputerorcanobtainoneforlesscostthananoscilloscope,thisbecomesaviable<br />

alternativefortheexperimenteronabudget.<br />

Onewordofcaution:youcancausesignificanthardwaredamagetoyourcomputer<br />

ifsignalsofexcessivevoltageareconnectedtothesoundcard’smicrophoneinput!<br />

TheACvoltagesproducedbyamusicalkeyboardaretoolowtocausedamagetoyourcomputer<br />

throughthesoundcard,butothervoltagesourcesmightbehazardoustoyourcomputer’s<br />

health.Usethis”oscilloscope”atyourownrisk!<br />

Usingthekeyboardandplugarrangementdescribedinthepreviousexperiment,connect<br />

thekeyboardoutputtotheouterterminalsofa10kΩpotentiometer.Soldertwowirestothe<br />

connectionpointsonthesoundcardmicrophoneinputplug,sothatyouhaveasetof”test<br />

leads”forthe”oscilloscope.”Connectthesetestleadstothepotentiometer:betweenthemiddle<br />

terminal(thewiper)andeitheroftheouterterminals.<br />

StarttheWinscopeprogramandclickonthe”arrow”iconintheupper-leftcorner(itlooks<br />

likethe”play”arrowseenontapeplayerandCDplayercontrolbuttons).Ifyoupressakeyon<br />

themusicalkeyboard,youshouldseesomekindofwaveformdisplayedonthescreen.Choose<br />

the”panflute”orsomeotherflute-likevoiceonthemusicalkeyboardforthebestsine-wave<br />

shape.Ifthecomputerdisplaysawaveformthatlookskindoflikeasquarewave,youneedto<br />

adjustthepotentiometerforalower-amplitudesignal.Almostanywaveshapewillbe”clipped”<br />

tolooklikeasquarewaveifitexceedstheamplitudelimitofthesoundcard.


188 CHAPTER4. ACCIRCUITS<br />

Testdifferentinstrument”voices”onthemusicalkeyboardandnotethedifferentwaveshapes.<br />

Notehowcomplexsomeofthewaveshapesare,comparedtothepanflutevoice. ExperimentwiththedifferentcontrolsintheWinscopewindow,notinghowtheychangethe<br />

appearanceofthewaveform.<br />

Asatestinstrument,this”oscilloscope”isquitepoor.Ithasalmostnocapabilitytomake<br />

precisionmeasurementsofvoltage,althoughitsfrequencyprecisionissurprisinglygood.Itis<br />

verylimitedintherangesofvoltageandfrequencyitcandisplay,relegatingittotheanalysis<br />

oflow-andmid-rangeaudiotones.Ihavehadverylittlesuccessgettingthe”oscilloscope”to<br />

displaygoodsquarewaves,presumablybecauseofitslimitedfrequencyresponse. Also,the<br />

couplingcapacitorfoundinsoundcardmicrophoneinputcircuitspreventsitfrommeasuring<br />

DCvoltage:itisasthoughthe”ACcoupling”featureofanormaloscilloscopewerestuck”on.”<br />

Despitetheseshortcomings,itisusefulasademonstrationtool,andforinitialexplorations<br />

intowaveformanalysisforthebeginningstudentofelectronics.Forthosewhoareinterested,<br />

thereareseveralprofessional-qualityoscilloscopeadapterdevicesmanufacturedforpersonal<br />

computerswhoseperformanceisfarbeyondthatofasoundcard,andtheyaretypicallysoldat<br />

lesscostthanacompletestand-aloneoscilloscope(around$400,year2002).RadioShacksells<br />

onemadebyVelleman,catalog#910-3914. Havingacomputerserveasthedisplaymedium<br />

bringsmanyadvantages,nottheleastofwhichistheabilitytoeasilystorewaveformpictures<br />

asdigitalfiles.


4.15. WAVEFORMANALYSIS 189<br />

4.15 Waveformanalysis<br />

PARTSANDMATERIALS<br />

• IBM-compatiblepersonalcomputerwithsoundcard,runningWindows3.1orbetter<br />

• Winscopesoftware,downloadedfreefrominternet<br />

• Electronic”keyboard”(musical)<br />

• ”Mono”(notstereo)headphone-typeplugforkeyboard<br />

• ”Mono”(notstereo)headphone-typeplugforcomputersoundcardmicrophoneinput,with<br />

wiresforconnectingtovoltagesources<br />

• 10kΩpotentiometer<br />

Partsandequipmentforthisexperimentareidenticaltothoserequiredforthe”PCoscilloscope”experiment.<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume2,chapter7:”Mixed-FrequencyACSignals”<br />

LEARNINGOBJECTIVES<br />

• Understandthedifferencebetweentime-domainandfrequency-domainplots<br />

• DevelopaqualitativesenseofFourieranalysis<br />

SCHEMATICDIAGRAM<br />

Keyboard<br />

Computer<br />

plug<br />

10 kΩ<br />

plug<br />

ILLUSTRATION


190 CHAPTER4. ACCIRCUITS<br />

Computer<br />

plug<br />

mic. input<br />

plug<br />

"Voice" selection<br />

Volume<br />

Monitor<br />

INSTRUCTIONS<br />

TheWinscopeprogramcomeswithanotherfeatureotherthanthetypical”time-domain”oscilloscopedisplay:”frequency-domain”display,whichplotsamplitude(vertical)overfrequency<br />

(horizontal).Anoscilloscope’s”time-domain”displayplotsamplitude(vertical)overtime(horizontal),whichisfinefordisplayingwaveshape.<br />

However,whenitisdesirabletoseethe<br />

harmonicconstituencyofacomplexwave,afrequency-domainplotisthebesttool.<br />

IfusingWinscope,clickonthe”rainbow”icontoswitchtofrequency-domainmode. Generateasine-wavesignalusingthemusicalkeyboard(panfluteorflutevoice),andyoushould<br />

seeasingle”spike”onthedisplay,correspondingtotheamplitudeofthesingle-frequencysignal.Movingthemousecursorbeneaththepeakshouldresultinthefrequencybeingdisplayed<br />

numericallyatthebottomofthescreen.<br />

Iftwonotesareactivatedonthemusicalkeyboard,theplotshouldshowtwodistinctpeaks,<br />

eachonecorrespondingtoaparticularnote(frequency). Basicchords(threenotes)produce<br />

threespikesonthefrequency-domainplot,andsoon.Contrastthiswithnormaloscilloscope<br />

(time-domain)plotbyclickingonceagainonthe”rainbow”icon.Amusicalchorddisplayedin<br />

time-domainformatisaverycomplexwaveform,butisquitesimpletoresolveintoconstituent<br />

notes(frequencies)onafrequency-domaindisplay.<br />

Experimentwithdifferentinstrument”voices”onthemusicalkeyboard,correlatingthe<br />

time-domainplotwiththefrequency-domainplot.Waveformsthataresymmetricalaboveand<br />

belowtheircenterlinescontainonlyodd-numberedharmonics(odd-integermultiplesofthe<br />

base,orfundamentalfrequency),whilenonsymmetricalwaveformscontaineven-numbered<br />

harmonicsaswell.Usethecursortolocatethespecificfrequencyofeachpeakontheplot,and<br />

acalculatortodeterminewhethereachpeakiseven-orodd-numbered.


4.16. INDUCTOR-CAPACITOR”TANK”CIRCUIT 191<br />

4.16 Inductor-capacitor”tank”circuit<br />

PARTSANDMATERIALS<br />

• Oscilloscope<br />

• Assortmentofnon-polarizedcapacitors(0.1 µFto10 µF)<br />

• Step-downpowertransformer(120V/6V)<br />

• 10kΩresistors<br />

• Six-voltbattery<br />

Thepowertransformerisusedsimplyasaninductor,withonlyonewindingconnected.The<br />

unusedwindingshouldbeleftopen. Asimpleironcore,single-windinginductor(sometimes<br />

knownasachoke)mayalsobeused,butsuchinductorsaremoredifficulttoobtainthanpower<br />

transformers.<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume2,chapter6:”Resonance”<br />

LEARNINGOBJECTIVES<br />

• Howtobuildaresonantcircuit<br />

• Effectsofcapacitorsizeonresonantfrequency<br />

• Howtoproduceantiresonance<br />

SCHEMATICDIAGRAM<br />

L<br />

C<br />

ILLUSTRATION


192 CHAPTER4. ACCIRCUITS<br />

+ - touch<br />

clips<br />

together<br />

(transformer used<br />

as an inductor)<br />

INSTRUCTIONS<br />

Ifaninductorandacapacitorareconnectedinparallelwitheachother,andthenbriefly<br />

energizedbyconnectiontoaDCvoltagesource,oscillationswillensueasenergyisexchanged<br />

fromthecapacitortoinductorandviceversa. Theseoscillationsmaybeviewedwithanoscilloscopeconnectedinparallelwiththeinductor/capacitorcircuit.Parallelinductor/capacitor<br />

circuitsarecommonlyknownastankcircuits.<br />

Importantnote:IrecommendagainstusingaPC/soundcardasanoscilloscopeforthis<br />

experiment,becauseveryhighvoltagescanbegeneratedbytheinductorwhenthebatteryis<br />

disconnected(inductive”kickback”).Thesehighvoltageswillsurelydamagethesoundcard’s<br />

input,andperhapsotherportionsofthecomputeraswell.<br />

Atankcircuit’snaturalfrequency,calledtheresonantfrequency,isdeterminedbythesize<br />

oftheinductorandthesizeofthecapacitor,accordingtothefollowingequation:<br />

1<br />

f resonant =<br />

2π LC<br />

Manysmallpowertransformershaveprimary(120volt)windinginductancesofapproximately1H.Usethisfigureasaroughestimateofinductanceforyourcircuittocalculate<br />

expectedoscillationfrequency.<br />

Ideally,theoscillationsproducedbyatankcircuitcontinueindefinitely. Realistically,oscillationswilldecayinamplitudeoverthecourseofseveralcyclesduetotheresistiveand<br />

magneticlossesoftheinductor.Inductorswithahigh”Q”ratingwill,ofcourse,producelongerlastingoscillationsthanlow-Qinductors.<br />

Trychangingcapacitorvaluesandnotingtheeffectonoscillationfrequency. Youmight<br />

noticechangesinthedurationofoscillationsaswell,duetocapacitorsize. Sinceyouknow<br />

howtocalculateresonantfrequencyfrominductanceandcapacitance,canyoufigureouta<br />

waytocalculateinductorinductancefromknownvaluesofcircuitcapacitance(asmeasured<br />

byacapacitancemeter)andresonantfrequency(asmeasuredbyanoscilloscope)?<br />

Resistancemaybeintentionallyaddedtothecircuit–eitherinseriesorparallel–forthe<br />

expresspurposeofdampeningoscillations. Thiseffectofresistancedampeningtankcircuit


4.16. INDUCTOR-CAPACITOR”TANK”CIRCUIT 193<br />

oscillationisknownasantiresonance. Itisanalogoustotheactionofashockabsorberin<br />

dampeningthebouncingofacarafterstrikingabumpintheroad.<br />

COMPUTERSIMULATION<br />

SchematicwithSPICEnodenumbers:<br />

1<br />

R stray<br />

2<br />

L 1 C 1<br />

0 0<br />

R stray isplacedinthecircuittodampenoscillationsandproduceamorerealisticsimulation.<br />

AlowerR stray valuecauseslonger-livedoscillationsbecauselessenergyisdissipated.<br />

Eliminatingthisresistorfromthecircuitresultsinendlessoscillation.<br />

Netlist(makeatextfilecontainingthefollowingtext,verbatim):<br />

tank circuit with loss<br />

l1 1 0 1 ic=0<br />

rstray 1 2 1000<br />

c1 2 0 0.1u ic=6<br />

.tran 0.1m 20m uic<br />

.plot tran v(1,0)<br />

.end


194 CHAPTER4. ACCIRCUITS<br />

4.17 Signalcoupling<br />

PARTSANDMATERIALS<br />

• 6voltbattery<br />

• Onecapacitor,0.22 µF(RadioShackcatalog#272-1070orequivalent)<br />

• Onecapacitor,0.047 µF(RadioShackcatalog#272-134orequivalent)<br />

• Small”hobby”motor,permanent-magnettype(RadioShackcatalog#273-223orequivalent)<br />

• Audiodetectorwithheadphones<br />

• Lengthoftelephonecable,severalfeetlong(RadioShackcatalog#278-872)<br />

Telephonecableisalsoavailablefromhardwarestores. Anyunshieldedmulticonductor<br />

cablewillsufficeforthisexperiment.Cableswiththinconductors(telephonecableistypically<br />

24-gauge)produceamorepronouncedeffect.<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume2,chapter7:”Mixed-FrequencyACSignals”<br />

LessonsInElectricCircuits,Volume2,chapter8:”Filters”<br />

LEARNINGOBJECTIVES<br />

• Howto”couple”ACsignalsandblockDCsignalstoameasuringinstrument<br />

• Howstraycouplinghappensincables<br />

• Techniquestominimizeinter-cablecoupling<br />

SCHEMATICDIAGRAM<br />

Telephone cable<br />

Mtr<br />

ILLUSTRATION


4.17. SIGNALCOUPLING 195<br />

Telephone<br />

cable<br />

Motor<br />

+ - plug<br />

headphones<br />

Sensitivity<br />

INSTRUCTIONS<br />

Connectthemotortothebatteryusingtwoofthetelephonecable’sfourconductors. The<br />

motorshouldrun,asexpected.Now,connecttheaudiosignaldetectoracrossthemotorterminals,withthe0.047<br />

µFcapacitorinseries,likethis:


196 CHAPTER4. ACCIRCUITS<br />

+ - plug<br />

headphones<br />

Sensitivity<br />

Youshouldbeabletoheara”buzz”or”whine”intheheadphones,representingtheAC<br />

”noise”voltageproducedbythemotorasthebrushesmakeandbreakcontactwiththerotating<br />

commutatorbars.Thepurposeoftheseriescapacitoristoactasahigh-passfilter,sothatthe<br />

detectoronlyreceivestheACvoltageacrossthemotor’sterminals,notanyDCvoltage.Thisis<br />

preciselyhowoscilloscopesprovidean”ACcoupling”featureformeasuringtheACcontentof<br />

asignalwithoutanyDCbiasvoltage:acapacitorisconnectedinserieswithonetestprobe.<br />

Ideally,onewouldexpectnothingbutpureDCvoltageatthemotor’sterminals,because<br />

themotorisconnecteddirectlyinparallelwiththebattery. Sincethemotor’sterminalsare<br />

electricallycommonwiththerespectiveterminalsofthebattery,andthebattery’snatureisto<br />

maintainaconstantDCvoltage,nothingbutDCvoltageshouldappearatthemotorterminals,<br />

right? Well,becauseofresistanceinternaltothebatteryandalongtheconductorlengths,<br />

currentpulsesdrawnbythemotorproduceoscillatingvoltage”dips”atthemotorterminals,<br />

causingtheAC”noise”heardbythedetector:


4.17. SIGNALCOUPLING 197<br />

Battery<br />

R wire<br />

Motor<br />

R wire<br />

Usetheaudiodetectortomeasure”noise”voltagedirectlyacrossthebattery.SincetheAC<br />

noiseisproducedinthiscircuitbypulsatingvoltagedropsalongstrayresistances,theless<br />

resistancewemeasureacross,thelessnoisevoltageweshoulddetect:<br />

+ - plug<br />

headphones<br />

Sensitivity<br />

Youmayalsomeasurenoisevoltagedroppedalongeitherofthetelephonecableconductors<br />

supplyingpowertothemotor,byconnectingtheaudiodetectorbetweenbothendsofasingle<br />

cableconductor.Thenoisedetectedhereoriginatesfromcurrentpulsesthroughtheresistance<br />

ofthewire:


198 CHAPTER4. ACCIRCUITS<br />

+ - plug<br />

headphones<br />

Sensitivity<br />

NowthatwehaveestablishedhowACnoiseiscreatedanddistributedinthiscircuit,let’s<br />

explorehowitiscoupledtoadjacentwiresinthecable. Usetheaudiodetectortomeasure<br />

voltagebetweenoneofthemotorterminalsandoneoftheunusedwiresinthetelephonecable.<br />

The0.047 µFcapacitorisnotneededinthisexercise,becausethereisnoDCvoltagebetween<br />

thesepointsforthedetectortodetectanyway:<br />

+ - plug<br />

headphones<br />

Sensitivity


4.17. SIGNALCOUPLING 199<br />

ThenoisevoltagedetectedhereisduetostraycapacitancebetweenadjacentcableconductorscreatinganACcurrent”path”betweenthewires.Rememberthatnocurrentactually<br />

goesthroughacapacitance,butthealternatecharginganddischargingactionofacapacitance,<br />

whetheritbeintentionalorunintentional,providesalternatingcurrentapathwayofsorts.<br />

Ifweweretotryandconductavoltagesignalbetweenoneoftheunusedwiresandapoint<br />

commonwiththemotor,thatsignalwouldbecometaintedwithnoisevoltagefromthemotor.<br />

Thiscouldbequitedetrimental,dependingonhowmuchnoisewascoupledbetweenthetwo<br />

circuitsandhowsensitiveonecircuitwastotheother’snoise. Sincetheprimarycoupling<br />

phenomenoninthiscircuitiscapacitiveinnature,higher-frequencynoisevoltagesaremore<br />

stronglycoupledthanlower-frequencynoisevoltages.<br />

IftheadditionalsignalwasaDCsignal,withnoACexpectedinit,wecouldmitigate<br />

theproblemofcouplednoiseby”decoupling”theACnoisewitharelativelylargecapacitor<br />

connectedacrosstheDCsignal’sconductors. Usethe0.22 µFcapacitorforthispurpose,as<br />

shown:<br />

+ - plug<br />

headphones<br />

"decoupling"<br />

capacitor<br />

Sensitivity<br />

Thedecouplingcapacitoractsasapracticalshort-circuittoanyACnoisevoltage,while<br />

notaffectingDCvoltagesignalsbetweenthosetwopointsatall. Solongasthedecoupling<br />

capacitorvalueissignificantlylargerthanthestray”coupling”capacitancebetweenthecable’s<br />

conductors,theACnoisevoltagewillbeheldtoaminimum.<br />

Anotherwayofminimizingcouplednoiseinacableistoavoidhavingtwocircuitsshare<br />

acommonconductor.Toillustrate,connecttheaudiodetectorbetweenthetwounusedwires<br />

andlistenforanoisesignal:


200 CHAPTER4. ACCIRCUITS<br />

+ - plug<br />

headphones<br />

Sensitivity<br />

Thereshouldbefarlessnoisedetectedbetweenanytwooftheunusedconductorsthan<br />

betweenoneunusedconductorandoneusedinthemotorcircuit.Thereasonforthisdrastic<br />

reductioninnoiseisthatstraycapacitancebetweencableconductorstendstocouplethesame<br />

noisevoltagetobothoftheunusedconductorsinapproximatelyequalproportions. Thus,<br />

whenmeasuringvoltagebetweenthosetwoconductors,thedetectoronly”sees”thedifference<br />

betweentwoapproximatelyidenticalnoisesignals.


Chapter5<br />

DISCRETESEMICONDUCTOR<br />

CIRCUITS<br />

Contents<br />

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .202<br />

5.2 Commutatingdiode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .203<br />

5.3 Half-waverectifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205<br />

5.4 Full-wavecenter-taprectifier . . . . . . . . . . . . . . . . . . . . . . . . . . .213<br />

5.5 Full-wavebridgerectifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218<br />

5.6 Rectifier/filtercircuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .221<br />

5.7 Voltageregulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227<br />

5.8 Transistorasaswitch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .230<br />

5.9 Staticelectricitysensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .235<br />

5.10 Pulsed-lightsensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .238<br />

5.11 Voltagefollower. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .241<br />

5.12 Common-emitteramplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . .246<br />

5.13 Multi-stageamplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .251<br />

5.14 Currentmirror . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .255<br />

5.15 JFETcurrentregulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .261<br />

5.16 Differentialamplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .266<br />

5.17 Simpleop-amp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .269<br />

5.18 Audiooscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .274<br />

5.19 Vacuumtubeaudioamplifier . . . . . . . . . . . . . . . . . . . . . . . . . . .277<br />

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .288<br />

201


202 CHAPTER5. DISCRETESEMICONDUCTORCIRCUITS<br />

5.1 Introduction<br />

Asemiconductordeviceisonemadeofsiliconoranynumberofotherspeciallypreparedmaterialsdesignedtoexploittheuniquepropertiesofelectronsinacrystallattice,whereelectrons<br />

arenotasfreetomoveasinaconductor,butarefarmoremobilethaninaninsulator. A<br />

discretedeviceisonecontainedinitsownpackage,notbuiltonacommonsemiconductorsubstratewithothercomponents,asisthecasewithICs,orintegratedcircuits.<br />

Thus,”discrete<br />

semiconductorcircuits”arecircuitsbuiltoutofindividualsemiconductorcomponents,connectedtogetheronsomekindofcircuitboardorterminalstrip.Thesecircuitsemployallthe<br />

componentsandconceptsexploredinthepreviouschapters,soafirmcomprehensionofDC<br />

andACelectricityisessentialbeforeembarkingontheseexperiments.<br />

Justforfun,onecircuitisincludedinthissectionusingavacuumtubeforamplification<br />

insteadofasemiconductortransistor. Beforetheadventoftransistors,”vacuumtubes”were<br />

theworkhorsesoftheelectronicsindustry:usedtomakerectifiers,amplifiers,oscillators,and<br />

manyothercircuits. Thoughnowconsideredobsoleteformostpurposes,therearestillsome<br />

applicationsforvacuumtubes,anditcanbefunbuildingandoperatingcircuitsusingthese<br />

devices.


5.2. COMMUTATINGDIODE 203<br />

5.2 Commutatingdiode<br />

PARTSANDMATERIALS<br />

• 6voltbattery<br />

• Powertransformer,120VACstep-downto12VAC(RadioShackcatalog#273-1365,273-<br />

1352,or273-1511).<br />

• One1N4001rectifyingdiode(RadioShackcatalog#276-1101)<br />

• Oneneonlamp(RadioShackcatalog#272-1102)<br />

• Twotoggleswitches,SPST(”Single-Pole,Single-Throw”)<br />

Apowertransformerisspecified,butanyiron-coreinductorwillsuffice,eventhehomemadeinductorortransformerfromtheACexperimentschapter!<br />

Thediodeneednotbeanexactmodel1N4001. Anyofthe”1N400X”seriesofrectifying<br />

diodesaresuitableforthetask,andtheyarequiteeasytoobtain.<br />

Irecommendhouseholdlightswitchesfortheirlowcostanddurability.<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume1,chapter16:”RCandL/RTimeConstants”<br />

LessonsInElectricCircuits,Volume3,chapter3:”DiodesandRectifiers”<br />

LEARNINGOBJECTIVES<br />

• Reviewinductive”kickback”<br />

• Learnhowtosuppress”kickback”usingadiode<br />

SCHEMATICDIAGRAM<br />

Switch<br />

#1<br />

Switch<br />

#2<br />

Battery<br />

Inductor<br />

Diode<br />

Neon<br />

lamp<br />

ILLUSTRATION


204 CHAPTER5. DISCRETESEMICONDUCTORCIRCUITS<br />

+ - Switch #1<br />

120 V<br />

Switch #2<br />

12 V<br />

INSTRUCTIONS<br />

Whenassemblingthecircuit,beverycarefulofthediode’sorientation.Thecathodeendof<br />

thediode(theendmarkedwithasingleband)mustfacethepositive(+)sideofthebattery.<br />

Thediodeshouldbereverse-biasedandnonconductingwithswitch#1inthe”on”position.Use<br />

thehigh-voltage(120V)windingofthetransformerfortheinductorcoil.Theprimarywinding<br />

ofastep-downtransformerhasmoreinductancethanthesecondarywinding,andwillgivea<br />

greaterlamp-flashingeffect.<br />

Setswitch#2tothe”off”position.Thisdisconnectsthediodefromthecircuitsothatithas<br />

noeffect. Quicklycloseandopen(turn”on”andthen”off”)switch#1. Whenthatswitchis<br />

opened,theneonbulbwillflashfromtheeffectofinductive”kickback.”Rapidcurrentdecrease<br />

causedbytheswitch’sopeningcausestheinductortocreatealargevoltagedropasitattempts<br />

tokeepcurrentatthesamemagnitudeandgoinginthesamedirection.<br />

Inductivekickbackisdetrimentaltoswitchcontacts,asitcausesexcessivearcingwhenever<br />

theyareopened. Inthiscircuit,theneonlampactuallydiminishestheeffectbyproviding<br />

analternatecurrentpathfortheinductor’scurrentwhentheswitchopens,dissipatingthe<br />

inductor’sstoredenergyharmlesslyintheformoflightandheat. However,thereisstilla<br />

fairlyhighvoltagedroppedacrosstheopeningcontactsofswitch#1,causingunduearcingand<br />

shortenedswitchlife.<br />

Ifswitch#2isclosed(turned”on”),thediodewillnowbeapartofthecircuit. Quickly<br />

closeandopenswitch#1again,notingthedifferenceincircuitbehavior.Thistime,theneon<br />

lampdoesnotflash.Connectavoltmeteracrosstheinductortoverifythattheinductorisstill<br />

receivingfullbatteryvoltagewithswitch#1closed. Ifthevoltmeterregistersonlyasmall<br />

voltagewithswitch#1”on,”thediodeisprobablyconnectedbackward,creatingashort-circuit.


5.3. HALF-WAVERECTIFIER 205<br />

5.3 Half-waverectifier<br />

PARTSANDMATERIALS<br />

• Low-voltageACpowersupply(6voltoutput)<br />

• 6voltbattery<br />

• One1N4001rectifyingdiode(RadioShackcatalog#276-1101)<br />

• Small”hobby”motor,permanent-magnettype(RadioShackcatalog#273-223orequivalent)<br />

• Audiodetectorwithheadphones<br />

• 0.1 µFcapacitor(RadioShackcatalog#272-135orequivalent)<br />

Thediodeneednotbeanexactmodel1N4001. Anyofthe”1N400X”seriesofrectifying<br />

diodesaresuitableforthetask,andtheyarequiteeasytoobtain.<br />

SeetheACexperimentschapterfordetailedinstructionsonbuildingthe”audiodetector”<br />

listedhere. Ifyouhaven’tbuiltonealready,you’remissingasimpleandvaluabletoolfor<br />

experimentation.<br />

A0.1 µFcapacitorisspecifiedfor”coupling”theaudiodetectortothecircuit,sothatonlyAC<br />

reachesthedetectorcircuit.Thiscapacitor’svalueisnotcritical.I’veusedcapacitorsranging<br />

from0.27 µFto0.015 µFwithsuccess.Lowercapacitorvaluesattenuatelow-frequencysignals<br />

toagreaterdegree,resultinginlesssoundintensityfromtheheadphones,souseagreatervaluecapacitorvalueifyouexperiencedifficultyhearingthetone(s).<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume3,chapter3:”DiodesandRectifiers”<br />

LEARNINGOBJECTIVES<br />

• Functionofadiodeasarectifier<br />

• Permanent-magnetmotoroperationonACversusDCpower<br />

• Measuring”ripple”voltagewithavoltmeter<br />

SCHEMATICDIAGRAM<br />

Diode<br />

AC<br />

power<br />

supply<br />

Mtr<br />

(motor)<br />

ILLUSTRATION


206 CHAPTER5. DISCRETESEMICONDUCTORCIRCUITS<br />

Low-voltage<br />

AC power supply<br />

12<br />

6 6<br />

Diode<br />

Motor<br />

INSTRUCTIONS<br />

Connectthemotortothelow-voltageACpowersupplythroughtherectifyingdiodeas<br />

shown.Thediodeonlyallowscurrenttopassthroughduringonehalf-cycleofafullpositiveand-negativecycleofpowersupplyvoltage,eliminatingonehalf-cyclefromeverreachingthe<br />

motor. Asaresult,themotoronly”sees”currentinonedirection,albeitapulsatingcurrent,<br />

allowingittospininonedirection.<br />

Takeajumperwireandshortpastthediodemomentarily,notingtheeffectonthemotor’s<br />

operation:


5.3. HALF-WAVERECTIFIER 207<br />

Low-voltage<br />

AC power supply<br />

12 Temporary<br />

6 6<br />

jumper<br />

Asyoucansee,permanent-magnet”DC”motorsdonotfunctionwellonalternatingcurrent.<br />

Removethetemporaryjumperwireandreversethediode’sorientationinthecircuit.Notethe<br />

effectonthemotor.<br />

MeasureDCvoltageacrossthemotorlikethis:


208 CHAPTER5. DISCRETESEMICONDUCTORCIRCUITS<br />

V<br />

A<br />

Low-voltage<br />

AC power supply<br />

V<br />

OFF<br />

A<br />

12<br />

6 6<br />

A<br />

COM<br />

Then,measureACvoltageacrossthemotoraswell:<br />

V<br />

A<br />

Low-voltage<br />

AC power supply<br />

V<br />

OFF<br />

A<br />

12<br />

6 6<br />

A<br />

COM


5.3. HALF-WAVERECTIFIER 209<br />

MostdigitalmultimetersdoagoodjobofdiscriminatingACfromDCvoltage,andthese<br />

twomeasurementsshowtheDCaverageandAC”ripple”voltages,respectivelyofthepower<br />

”seen”bythemotor.Ripplevoltageisthevaryingportionofthevoltage,interpretedasanAC<br />

quantitybymeasurementequipmentalthoughthevoltagewaveformneveractuallyreverses<br />

polarity. RipplemaybeenvisionedasanACsignalsuperimposedonasteadyDC”bias”or<br />

”offset”signal.ComparethesemeasurementsofDCandACwithvoltagemeasurementstaken<br />

acrossthemotorwhilepoweredbyabattery:<br />

V<br />

A<br />

V<br />

OFF<br />

A<br />

A<br />

COM<br />

+ -<br />

Batteriesgivevery”pure”DCpower,andasaresultthereshouldbeverylittleACvoltage<br />

measuredacrossthemotorinthiscircuit.WhateverACvoltageismeasuredacrossthemotor<br />

isduetothemotor’spulsatingcurrentdrawasthebrushesmakeandbreakcontactwiththe<br />

rotatingcommutatorbars. Thispulsatingcurrentcausespulsatingvoltagestobedropped<br />

acrossanystrayresistancesinthecircuit,resultinginpulsatingvoltage”dips”atthemotor<br />

terminals.<br />

Aqualitativeassessmentofripplevoltagemaybeobtainedbyusingthesensitiveaudio<br />

detectordescribedintheACexperimentschapter(thesamedevicedescribedasa”sensitive<br />

voltagedetector”intheDCexperimentschapter).Turnthedetector’ssensitivitydownforlow<br />

volume,andconnectitacrossthemotorterminalsthroughasmall(0.1 µF)capacitor,likethis:


210 CHAPTER5. DISCRETESEMICONDUCTORCIRCUITS<br />

headphones<br />

Capacitor<br />

Sensitivity<br />

0.1 µF<br />

plug<br />

+ -<br />

Thecapacitoractsasahigh-passfilter,blockingDCvoltagefromreachingthedetector<br />

andallowingeasier”listening”oftheremainingACvoltage.Thisistheexactsametechnique<br />

usedinoscilloscopecircuitryfor”ACcoupling,”whereDCsignalsareblockedfromviewing<br />

byaseries-connectedcapacitor. Withabatterypoweringthemotor,therippleshouldsound<br />

likeahigh-pitched”buzz”or”whine.”TryreplacingthebatterywiththeACpowersupply<br />

andrectifyingdiode,”listening”withthedetectortothelow-pitched”buzz”ofthehalf-wave<br />

rectifiedpower:


5.3. HALF-WAVERECTIFIER 211<br />

headphones<br />

Low-voltage<br />

AC power supply<br />

12 Sensitivity<br />

plug<br />

6 6<br />

COMPUTERSIMULATION<br />

SchematicwithSPICEnodenumbers:<br />

V 1<br />

D 1<br />

1 2<br />

R load<br />

0 0<br />

Netlist(makeatextfilecontainingthefollowingtext,verbatim):<br />

Halfwave rectifier<br />

v1 1 0 sin(0 8.485 60 0 0)<br />

rload 2 0 10k<br />

d1 1 2 mod1<br />

.model mod1 d<br />

.tran .5m 25m<br />

.plot tran v(1,0) v(2,0)<br />

.end<br />

Thissimulationplotstheinputvoltageasasinewaveandtheoutputvoltageasaseriesof<br />

”humps”correspondingtothepositivehalf-cyclesoftheACsourcevoltage.Thedynamicsofa<br />

DCmotorarefartoocomplextobesimulatedusingSPICE,unfortunately.


212 CHAPTER5. DISCRETESEMICONDUCTORCIRCUITS<br />

ACsourcevoltageisspecifiedas8.485insteadof6voltsbecauseSPICEunderstandsAC<br />

voltageintermsofpeakvalueonly. A6voltRMSsine-wavevoltageisactually8.485volts<br />

peak.InsimulationswherethedistinctionbetweenRMSandpeakvalueisn’trelevant,Iwill<br />

notbotherwithanRMS-to-peakconversionlikethis. Tobetruthful,thedistinctionisnot<br />

terriblyimportantinthissimulation,butIdiscussithereforyouredification.


5.4. FULL-WAVECENTER-TAPRECTIFIER 213<br />

5.4 Full-wavecenter-taprectifier<br />

PARTSANDMATERIALS<br />

• Low-voltageACpowersupply(6voltoutput)<br />

• Two1N4001rectifyingdiodes(RadioShackcatalog#276-1101)<br />

• Small”hobby”motor,permanent-magnettype(RadioShackcatalog#273-223orequivalent)<br />

• Audiodetectorwithheadphones<br />

• 0.1 µFcapacitor<br />

• Onetoggleswitch,SPST(”Single-Pole,Single-Throw”)<br />

Itisessentialforthisexperimentthatthelow-voltageACpowersupplybeequippedwitha<br />

centertap.Atransformerwithanon-tappedsecondarywindingsimplywillnotworkforthis<br />

circuit.<br />

Thediodesneednotbeexactmodel1N4001units.Anyofthe”1N400X”seriesofrectifying<br />

diodesaresuitableforthetask,andtheyarequiteeasytoobtain.<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume3,chapter3:”DiodesandRectifiers”<br />

LEARNINGOBJECTIVES<br />

• Designofacenter-taprectifiercircuit<br />

• Measuring”ripple”voltagewithavoltmeter<br />

SCHEMATICDIAGRAM<br />

Diode<br />

AC<br />

power<br />

supply<br />

Mtr<br />

(motor)<br />

Diode<br />

ILLUSTRATION


214 CHAPTER5. DISCRETESEMICONDUCTORCIRCUITS<br />

Low-voltage<br />

AC power supply<br />

12<br />

6 6<br />

Terminal<br />

strip<br />

Motor<br />

INSTRUCTIONS<br />

Thisrectifiercircuitiscalledfull-wavebecauseitmakesuseoftheentirewaveform,both<br />

positiveandnegativehalf-cycles,oftheACsourcevoltageinpoweringtheDCload. Asa<br />

result,thereisless”ripple”voltageseenattheload. TheRMS(Root-Mean-Square)valueof<br />

therectifier’soutputisalsogreaterforthiscircuitthanforthehalf-waverectifier.<br />

UseavoltmetertomeasureboththeDCandACvoltagedeliveredtothemotor.Youshould<br />

noticetheadvantagesofthefull-waverectifierimmediatelybythegreaterDCandlowerAC<br />

indicationsascomparedtothelastexperiment.<br />

Anexperimentaladvantageofthiscircuitistheeaseofwhichitmaybe”de-converted”<br />

toahalf-waverectifier: simplydisconnecttheshortjumperwireconnectingthetwodiodes’<br />

cathodeendstogetherontheterminalstrip.Betteryet,forquickcomparisonbetweenhalfand<br />

full-waverectification,youmayaddaswitchinthecircuittoopenandclosethisconnectionat<br />

will:<br />

Mtr<br />

Switch<br />

(close for full-wave operation)


5.4. FULL-WAVECENTER-TAPRECTIFIER 215<br />

Low-voltage<br />

AC power supply<br />

Switch<br />

12<br />

6 6<br />

Withtheabilitytoquicklyswitchbetweenhalf-andfull-waverectification,youmayeasily<br />

performqualitativecomparisonsbetweenthetwodifferentoperatingmodes. Usetheaudio<br />

signaldetectorto”listen”totheripplevoltagepresentbetweenthemotorterminalsforhalfwaveandfull-waverectificationmodes,notingboththeintensityandthequalityofthetone.<br />

Remembertouseacouplingcapacitorinserieswiththedetectorsothatitonlyreceivesthe<br />

AC”ripple”voltageandnotDCvoltage:


216 CHAPTER5. DISCRETESEMICONDUCTORCIRCUITS<br />

headphones<br />

Capacitor<br />

0.1 µF<br />

Sensitivity<br />

plug<br />

Test<br />

"probes"<br />

COMPUTERSIMULATION<br />

SchematicwithSPICEnodenumbers:<br />

D 1<br />

1 2 2<br />

V 1<br />

R load<br />

0 0<br />

V 2<br />

3<br />

D 2<br />

2<br />

Netlist(makeatextfilecontainingthefollowingtext,verbatim):<br />

Fullwave center-tap rectifier<br />

v1 1 0 sin(0 8.485 60 0 0)<br />

v2 0 3 sin(0 8.485 60 0 0)<br />

rload 2 0 10k<br />

d1 1 2 mod1


5.4. FULL-WAVECENTER-TAPRECTIFIER 217<br />

d2 3 2 mod1<br />

.model mod1 d<br />

.tran .5m 25m<br />

.plot tran v(1,0) v(2,0)<br />

.end


218 CHAPTER5. DISCRETESEMICONDUCTORCIRCUITS<br />

5.5 Full-wavebridgerectifier<br />

PARTSANDMATERIALS<br />

• Low-voltageACpowersupply(6voltoutput)<br />

• Four1N4001rectifyingdiodes(RadioShackcatalog#276-1101)<br />

• Small”hobby”motor,permanent-magnettype(RadioShackcatalog#273-223orequivalent)<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume3,chapter3:”DiodesandRectifiers”<br />

LEARNINGOBJECTIVES<br />

• Designofabridgerectifiercircuit<br />

• Advantagesanddisadvantagesofthebridgerectifiercircuit,comparedtothecenter-tap<br />

circuit<br />

SCHEMATICDIAGRAM<br />

AC<br />

power<br />

supply<br />

Mtr<br />

(motor)<br />

ILLUSTRATION


5.5. FULL-WAVEBRIDGERECTIFIER 219<br />

Low-voltage<br />

AC power supply<br />

12<br />

6 6<br />

Terminal<br />

strip<br />

Motor<br />

INSTRUCTIONS<br />

Thiscircuitprovidesfull-waverectificationwithoutthenecessityofacenter-tappedtransformer.Inapplicationswhereacenter-tapped,orsplit-phase,sourceisunavailable,thisisthe<br />

onlypracticalmethodoffull-waverectification.<br />

Inadditiontorequiringmorediodesthanthecenter-tapcircuit,thefull-wavebridgesuffersaslightperformancedisadvantageaswell:theadditionalvoltagedropcausedbycurrent<br />

havingtogothroughtwodiodesineachhalf-cycleratherthanthroughonlyone.Withalowvoltagesourcesuchastheoneyou’reusing(6voltsRMS),thisdisadvantageiseasilymeasured.<br />

ComparetheDCvoltagereadingacrossthemotorterminalswiththereadingobtainedfrom<br />

thelastexperiment,giventhesameACpowersupplyandthesamemotor.<br />

COMPUTERSIMULATION<br />

SchematicwithSPICEnodenumbers:<br />

1<br />

D 1 1 D 2<br />

3<br />

V 1<br />

0<br />

2<br />

D<br />

0<br />

3 D<br />

R load<br />

4<br />

Netlist(makeatextfilecontainingthefollowingtext,verbatim):<br />

Fullwave bridge rectifier<br />

v1 1 0 sin(0 8.485 60 0 0)<br />

2<br />

3


220 CHAPTER5. DISCRETESEMICONDUCTORCIRCUITS<br />

rload 2 3 10k<br />

d1 3 1 mod1<br />

d2 1 2 mod1<br />

d3 3 0 mod1<br />

d4 0 2 mod1<br />

.model mod1 d<br />

.tran .5m 25m<br />

.plot tran v(1,0) v(2,3)<br />

.end


5.6. RECTIFIER/FILTERCIRCUIT 221<br />

5.6 Rectifier/filtercircuit<br />

PARTSANDMATERIALS<br />

• Low-voltageACpowersupply<br />

• Bridgerectifierpack(RadioShackcatalog#276-1185orequivalent)<br />

• Electrolyticcapacitor,1000 µF,atleast25WVDC(RadioShackcatalog#272-1047or<br />

equivalent)<br />

• Four”banana”jackstylebindingposts,orotherterminalhardware,forconnectionto<br />

potentiometercircuit(RadioShackcatalog#274-662orequivalent)<br />

• Metalbox<br />

• 12-voltlightbulb,25watt<br />

• Lampsocket<br />

Abridgerectifier”pack”ishighlyrecommendedoverconstructingabridgerectifiercircuit<br />

fromindividualdiodes,becausesuch”packs”aremadetoboltontoametalheatsink.Ametal<br />

boxisrecommendedoveraplasticboxforitsabilitytofunctionasaheatsinkfortherectifier.<br />

Alargercapacitorvalueisfinetouseinthisexperiment,solongasitsworkingvoltageis<br />

highenough. Tobesafe,chooseacapacitorwithaworkingvoltageratingatleasttwicethe<br />

RMSACvoltageoutputofthelow-voltageACpowersupply.<br />

High-wattage12-voltlampsmaybepurchasedfromrecreationalvehicle(RV)andboating<br />

supplystores.Commonsizesare25wattand50watt.Thislampwillbeusedasa”heavy”load<br />

forthepowersupply.<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume2,chapter8:”Filters”<br />

LEARNINGOBJECTIVES<br />

• CapacitivefilterfunctioninanAC/DCpowersupply<br />

• Importanceofheatsinksforpowersemiconductors<br />

SCHEMATICDIAGRAM<br />

Rectifier<br />

AC<br />

in<br />

- +<br />

DC<br />

out


222 CHAPTER5. DISCRETESEMICONDUCTORCIRCUITS<br />

ILLUSTRATION<br />

Rectifier<br />

AC in<br />

AC<br />

-<br />

+<br />

AC<br />

-<br />

-<br />

Capacitor<br />

DC<br />

out<br />

INSTRUCTIONS<br />

Thisexperimentinvolvesconstructingarectifierandfiltercircuitforattachmenttothe<br />

low-voltageACpowersupplyconstructedearlier. Withthisdevice,youwillhaveasourceof<br />

low-voltage,DCpowersuitableasareplacementforabatteryinbattery-poweredexperiments.<br />

Ifyouwouldliketomakethisdeviceitsown,self-contained120VAC/DCpowersupply,you<br />

mayaddallthecomponentryofthelow-voltageACsupplytothe”ACin”sideofthiscircuit:<br />

atransformer,powercord,andplug.Evenifyoudon’tchoosetodothis,Irecommendusinga<br />

metalboxlargerthannecessarytoprovideroomforadditionalvoltageregulationcircuitryyou<br />

mightchoosetoaddtothisprojectlater.<br />

Thebridgerectifierunitshouldberatedforacurrentatleastashighasthetransformer’s<br />

secondarywindingisratedfor,andforavoltageatleasttwiceashighastheRMSvoltageof<br />

thetransformer’soutput(thisallowsforpeakvoltage,plusanadditionalsafetymargin).The<br />

RadioShackrectifierspecifiedinthepartslistisratedfor25ampsand50volts,morethan<br />

enoughfortheoutputofthelow-voltageACpowersupplyspecifiedintheACexperiments<br />

chapter.<br />

Rectifierunitsofthissizeareoftenequippedwith”quick-disconnect”terminals. Complementary”quick-disconnect”lugsaresoldthatcrimpontothebareendsofwire.<br />

Thisisthe<br />

preferredmethodofterminalconnection.Youmaysolderwiresdirectlytothelugsoftherectifier,butIrecommendagainstdirectsolderingtoanysemiconductorcomponentfortworeasons:<br />

possibleheatdamageduringsoldering,anddifficultyofreplacingthecomponentintheevent<br />

offailure.<br />

Semiconductordevicesaremorepronetofailurethanmostofthecomponentscoveredin<br />

theseexperimentsthusfar,andsoifyouhaveanyintentofmakingacircuitpermanent,you<br />

shouldbuildittobemaintained. ”Maintainableconstruction”involves,amongotherthings,<br />

makingalldelicatecomponentsreplaceable. Italsomeansmaking”testpoints”accessibleto<br />

meterprobesthroughoutthecircuit,sothattroubleshootingmaybeexecutedwithamini-


5.6. RECTIFIER/FILTERCIRCUIT 223<br />

mumofinconvenience.Terminalstripsinherentlyprovidetestpointsfortakingvoltagemeasurements,andtheyalsoallowforeasydisconnectionofwireswithoutsacrificingconnection<br />

durability.<br />

Bolttherectifierunittotheinsideofthemetalbox. Thebox’ssurfaceareawillactasa<br />

radiator,keepingtherectifierunitcoolasitpasseshighcurrents.Anymetalradiatorsurface<br />

designedtolowertheoperatingtemperatureofanelectroniccomponentiscalledaheatsink.<br />

Semiconductordevicesingeneralarepronetodamagefromoverheating,soprovidingapath<br />

forheattransferfromthedevice(s)totheambientairisveryimportantwhenthecircuitin<br />

questionmayhandlelargeamountsofpower.<br />

Acapacitorisincludedinthecircuittoactasafiltertoreduceripplevoltage.Makesurethat<br />

youconnectthecapacitorproperlyacrosstheDCoutputterminalsoftherectifier,sothatthe<br />

polaritiesmatch.Beinganelectrolyticcapacitor,itissensitivetodamagebypolarityreversal.<br />

Inthiscircuitespecially,wheretheinternalresistanceofthetransformerandrectifierarelow<br />

andtheshort-circuitcurrentconsequentlyishigh,thepotentialfordamageisgreat.Warning:<br />

afailedcapacitorinthiscircuitwilllikelyexplodewithalarmingforce!<br />

Aftertherectifier/filtercircuitisbuilt,connectittothelow-voltageACpowersupplylike<br />

this:<br />

Low-voltage<br />

AC power supply<br />

12<br />

6 6<br />

Rectifier<br />

AC in<br />

AC<br />

-<br />

+<br />

AC<br />

-<br />

-<br />

Capacitor<br />

DC<br />

out<br />

MeasuretheACvoltageoutputbythelow-voltagepowersupply.Yourmetershouldindicate<br />

approximately6voltsifthecircuitisconnectedasshown. Thisvoltagemeasurementisthe<br />

RMSvoltageoftheACpowersupply.<br />

Now,switchyourmultimetertotheDCvoltagefunctionandmeasuretheDCvoltageoutput<br />

bytherectifier/filtercircuit.ItshouldreadsubstantiallyhigherthantheRMSvoltageofthe<br />

ACinputmeasuredbefore.ThefilteringactionofthecapacitorprovidesaDCoutputvoltage<br />

equaltothepeakACvoltage,hencethegreatervoltageindication:


224 CHAPTER5. DISCRETESEMICONDUCTORCIRCUITS<br />

Full-wave, rectified DC voltage<br />

Time<br />

Full-wave, rectified DC voltage, with filtering<br />

Time<br />

MeasuretheACripplevoltagemagnitudewithadigitalvoltmetersettoACvolts(orAC<br />

millivolts). Youshouldnoticeamuchsmallerripplevoltageinthiscircuitthanwhatwas<br />

measuredinanyoftheunfilteredrectifiercircuitspreviouslybuilt.Feelfreetouseyouraudio<br />

detectorto”listen”totheACripplevoltageoutputbytherectifier/filterunit.Asusual,connect<br />

asmall”coupling”capacitorinserieswiththedetectorsothatitdoesnotrespondtotheDC<br />

voltage,butonlytheACripple.Verylittlesoundshouldbeheard.<br />

AftertakingunloadedACripplevoltagemeasurements,connectthe25wattlightbulbto<br />

theoutputoftherectifier/filtercircuitlikethis:<br />

Low-voltage<br />

AC power supply<br />

12<br />

6 6<br />

Rectifier<br />

AC in<br />

AC<br />

-<br />

+<br />

AC<br />

-<br />

-<br />

Capacitor<br />

DC<br />

out<br />

Re-measuretheripplevoltagepresentbetweentherectifier/filterunit’s”DCout”terminals.<br />

Withaheavyload,thefiltercapacitorbecomesdischargedbetweenrectifiedvoltagepeaks,<br />

resultingingreaterripplethanbefore:


5.6. RECTIFIER/FILTERCIRCUIT 225<br />

Full-wave, filtered DC voltage under heavy load<br />

Time<br />

Iflessrippleisdesiredunderheavy-loadconditions,alargercapacitormaybeused,ora<br />

morecomplexfiltercircuitmaybebuiltusingtwocapacitorsandaninductor:<br />

DC<br />

out<br />

Ifyouchoosetobuildsuchafiltercircuit,besuretouseaniron-coreinductorformaximum<br />

inductance,andonewiththickenoughwiretosafelyhandlethefullratedcurrentofpower<br />

supply.Inductorsusedforthepurposeoffilteringaresometimesreferredtoaschokes,because<br />

they”choke”ACripplevoltagefromgettingtotheload.Ifasuitablechokecannotbeobtained,<br />

thesecondarywindingofastep-downpowertransformerlikethetypeusedtostep120volts<br />

ACdownto12or6voltsACinthelow-voltagepowersupplymaybeused.Leavetheprimary<br />

(120volt)windingopen:<br />

Leave these wires<br />

disconnected!<br />

DC<br />

out<br />

COMPUTERSIMULATION<br />

SchematicwithSPICEnodenumbers:


226 CHAPTER5. DISCRETESEMICONDUCTORCIRCUITS<br />

1<br />

D 1 1 D 2<br />

3<br />

V 1<br />

0<br />

2<br />

D<br />

0<br />

3 D<br />

R load<br />

4<br />

C 1<br />

Netlist(makeatextfilecontainingthefollowingtext,verbatim):<br />

Fullwave bridge rectifier<br />

v1 1 0 sin(0 8.485 60 0 0)<br />

rload 2 3 10k<br />

c1 2 3 1000u ic=0<br />

d1 3 1 mod1<br />

d2 1 2 mod1<br />

d3 3 0 mod1<br />

d4 0 2 mod1<br />

.model mod1 d<br />

.tran .5m 25m<br />

.plot tran v(1,0) v(2,3)<br />

.end<br />

YoumaydecreasethevalueofR load inthesimulationfrom10kΩtosomelowervalueto<br />

exploretheeffectsofloadingonripplevoltage.Asitiswitha10kΩloadresistor,therippleis<br />

undetectableonthewaveformplottedbySPICE.<br />

2<br />

3


5.7. VOLTAGEREGULATOR 227<br />

5.7 Voltageregulator<br />

PARTSANDMATERIALS<br />

• Four6voltbatteries<br />

• Zenerdiode,12volt–type1N4742(RadioShackcatalog#276-563orequivalent)<br />

• One10kΩresistor<br />

Anylow-voltagezenerdiodeisappropriateforthisexperiment. The1N4742modellisted<br />

here(zenervoltage=12volts)isbutonesuggestion. Whateverdiodemodelyouchoose,I<br />

highlyrecommendonewithazenervoltageratinggreaterthanthevoltageofasinglebattery,<br />

formaximumlearningexperience. Itisimportantthatyouseehowazenerdiodefunctions<br />

whenexposedtoavoltagelessthanitsbreakdownrating.<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume3,chapter3:”DiodesandRectifiers”<br />

LEARNINGOBJECTIVES<br />

• Zenerdiodefunction<br />

SCHEMATICDIAGRAM<br />

10 kΩ<br />

Zener<br />

diode<br />

ILLUSTRATION<br />

+ -


228 CHAPTER5. DISCRETESEMICONDUCTORCIRCUITS<br />

INSTRUCTIONS<br />

Buildthissimplecircuit,beingsuretoconnectthediodein”reverse-bias”fashion(cathode<br />

positiveandanodenegative),andmeasurethevoltageacrossthediodewithonebatteryas<br />

apowersource. Recordthisvoltagedropforfuturereference. Also,measureandrecordthe<br />

voltagedropacrossthe10kΩresistor.<br />

Modifythecircuitbyconnectingtwo6-voltbatteriesinseries,for12voltstotalpowersource<br />

voltage. Re-measurethediode’svoltagedrop,aswellastheresistor’svoltagedrop,witha<br />

voltmeter:<br />

V<br />

A<br />

V<br />

OFF<br />

A<br />

A COM<br />

+ -<br />

+ -<br />

Connectthree,thenfour6-voltbatteriestogetherinseries,formingan18voltand24volt<br />

powersource,respectively. Measureandrecordthediode’sandresistor’svoltagedropsfor<br />

eachnewpowersupplyvoltage. Whatdoyounoticeaboutthediode’svoltagedropforthese<br />

fourdifferentsourcevoltages? Doyouseehowthediodevoltageneverexceedsalevelof12<br />

volts? Whatdoyounoticeabouttheresistor’svoltagedropforthesefourdifferentsource<br />

voltagelevels?<br />

Zenerdiodesarefrequentlyusedasvoltageregulatingdevices,becausetheyacttoclamp<br />

thevoltagedropacrossthemselvesatapredeterminedlevel.Whateverexcessvoltageissuppliedbythepowersourcebecomesdroppedacrosstheseriesresistor.However,itisimportant<br />

tonotethatazenerdiodecannotmakeupforadeficiencyinsourcevoltage.Forinstance,this<br />

12-voltzenerdiodedoesnotdrop12voltswhenthepowersourceisonly6voltsstrong. Itis<br />

helpfultothinkofazenerdiodeasavoltagelimiter:establishingamaximumvoltagedrop,


5.7. VOLTAGEREGULATOR 229<br />

butnotaminimumvoltagedrop.<br />

COMPUTERSIMULATION<br />

SchematicwithSPICEnodenumbers:<br />

1<br />

10 kΩ<br />

2<br />

Zener<br />

diode<br />

0 0<br />

Netlist(makeatextfilecontainingthefollowingtext,verbatim):<br />

Zener diode<br />

v1 1 0<br />

r1 1 2 10k<br />

d1 0 2 mod1<br />

.model mod1 d bv=12<br />

.dc v1 18 18 1<br />

.print dc v(2,0)<br />

.end<br />

AzenerdiodemaybesimulatedinSPICEwithanormaldiode,thereversebreakdown<br />

parameter(bv=12)settothedesiredzenerbreakdownvoltage.


230 CHAPTER5. DISCRETESEMICONDUCTORCIRCUITS<br />

5.8 Transistorasaswitch<br />

PARTSANDMATERIALS<br />

• Two6-voltbatteries<br />

• OneNPNtransistor–models2N2222or2N3403recommended(RadioShackcatalog#<br />

276-1617isapackageoffifteenNPNtransistorsidealforthisandotherexperiments)<br />

• One100kΩresistor<br />

• One560 Ωresistor<br />

• Onelight-emittingdiode(RadioShackcatalog#276-026orequivalent)<br />

Resistorvaluesarenotcriticalforthisexperiment.Neitheristheparticularlightemitting<br />

diode(LED)selected.<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume3,chapter4:”BipolarJunctionTransistors”<br />

LEARNINGOBJECTIVES<br />

• Currentamplificationofabipolarjunctiontransistor<br />

SCHEMATICDIAGRAM<br />

6 V<br />

560 Ω<br />

6 V 100 kΩ<br />

Q 1<br />

ILLUSTRATION


5.8. TRANSISTORASASWITCH 231<br />

CBE<br />

+ - + -<br />

INSTRUCTIONS<br />

Theredwireshowninthediagram(theoneterminatinginanarrowhead,connectedtoone<br />

endofthe100kΩresistor)isintendedtoremainloose,sothatyoumaytouchitmomentarily<br />

tootherpointsinthecircuit.<br />

Ifyoutouchtheendoftheloosewiretoanypointinthecircuitmorepositivethanit,such<br />

asthepositivesideoftheDCpowersource,theLEDshouldlightup.Ittakes20mAtofully<br />

illuminateastandardLED,sothisbehaviorshouldstrikeyouasinteresting,becausethe100<br />

kΩresistortowhichtheloosewireisattachedrestrictscurrentthroughittoafarlesservalue<br />

than20mA.Atmost,atotalvoltageof12voltsacrossa100kΩresistanceyieldsacurrentof<br />

only0.12mA,or120 µA!Theconnectionmadebyyourtouchingthewiretoapositivepoint<br />

inthecircuitconductsfarlesscurrentthan1mA,yetthroughtheamplifyingactionofthe<br />

transistor,isabletocontrolamuchgreatercurrentthroughtheLED.<br />

Tryusinganammetertoconnecttheloosewiretothepositivesideofthepowersource,like<br />

this:


232 CHAPTER5. DISCRETESEMICONDUCTORCIRCUITS<br />

CBE<br />

+ - + -<br />

V<br />

A<br />

V<br />

OFF<br />

A<br />

A<br />

COM<br />

Youmayhavetoselectthemostsensitivecurrentrangeonthemetertomeasurethissmall<br />

flow.Aftermeasuringthiscontrollingcurrent,trymeasuringtheLED’scurrent(thecontrolled<br />

current)andcomparemagnitudes.Don’tbesurprisedifyoufindaratioinexcessof200(the<br />

controlledcurrent200timesasgreatasthecontrollingcurrent)!<br />

Asyoucansee,thetransistorisactingasakindofelectrically-controlledswitch,switching<br />

currentonandofftotheLEDatthecommandofamuchsmallercurrentsignalconducted<br />

throughitsbaseterminal.<br />

Tofurtherillustratejusthowminisculethecontrollingcurrentis,removetheloosewire<br />

fromthecircuitandtry”bridging”theunconnectedendofthe100kΩresistortothepower<br />

source’spositivepolewithtwofingersofonehand. Youmayneedtowettheendsofthose<br />

fingerstomaximizeconductivity:


5.8. TRANSISTORASASWITCH 233<br />

CBE<br />

+ - + - Bridge the two points identified by arrows<br />

with two fingers of one hand, to conduct a<br />

small current to the transistor’s base.<br />

Tryvaryingthecontactpressureofyourfingerswiththesetwopointsinthecircuittovary<br />

theamountofresistanceinthecontrollingcurrent’spath.Canyouvarythebrightnessofthe<br />

LEDbydoingso? Whatdoesthisindicateaboutthetransistor’sabilitytoactasmorethan<br />

justaswitch;i.e.asavariable<br />

COMPUTERSIMULATION<br />

SchematicwithSPICEnodenumbers:<br />

V 1<br />

1<br />

0<br />

1<br />

1<br />

560 Ω<br />

3<br />

R 2<br />

D 1<br />

4<br />

Q 1<br />

R 1<br />

100 kΩ<br />

1 2<br />

0<br />

Netlist(makeatextfilecontainingthefollowingtext,verbatim):<br />

Transistor as a switch<br />

v1 1 0<br />

r1 1 2 100k<br />

r2 1 3 560<br />

d1 3 4 mod2


234 CHAPTER5. DISCRETESEMICONDUCTORCIRCUITS<br />

q1 4 2 0 mod1<br />

.model mod1 npn bf=200<br />

.model mod2 d is=1e-28<br />

.dc v1 12 12 1<br />

.print dc v(2,0) v(4,0) v(1,2) v(1,3) v(3,4)<br />

.end<br />

Inthissimulation,thevoltagedropacrossthe560 Ωresistorv(1,3)turnsouttobe10.26<br />

volts,indicatingaLEDcurrentof18.32mAbyOhm’sLaw(I=E/R).R 1 ’svoltagedrop(voltage<br />

betweennodes1and2)endsupbeing11.15volts,whichacross100kΩgivesacurrentofonly<br />

111.5 µA.Obviously,averysmallcurrentisexertingcontroloveramuchlargercurrentinthis<br />

circuit.<br />

Incaseyouwerewondering,the is=1e-28parameterinthediode’s .modellineisthere<br />

tomakethediodeactmorelikeanLEDwithahigherforwardvoltagedrop.


5.9. STATICELECTRICITYSENSOR 235<br />

5.9 Staticelectricitysensor<br />

PARTSANDMATERIALS<br />

• OneN-channeljunctionfield-effecttransistor,models2N3819orJ309recommended(RadioShackcatalog#276-2035isthemodel2N3819)<br />

• One6voltbattery<br />

• One100kΩresistor<br />

• Onelight-emittingdiode(RadioShackcatalog#276-026orequivalent)<br />

• Plasticcomb<br />

Theparticularjunctionfield-effecttransistor,orJFET,modelusedinthisexperimentisnot<br />

critical.P-channelJFETsarealsookaytouse,butarenotaspopularasN-channeltransistors.<br />

Bewarethatnotalltransistorssharethesameterminaldesignations,orpinouts,evenif<br />

theysharethesamephysicalappearance. Thiswilldictatehowyouconnectthetransistors<br />

togetherandtoothercomponents,sobesuretocheckthemanufacturer’sspecifications(componentdatasheet),easilyobtainedfromthemanufacturer’swebsite.Bewarethatitispossible<br />

forthetransistor’spackageandeventhemanufacturer’sdatasheettoshowincorrectterminal<br />

identificationdiagrams! Double-checkingpinidentitieswithyourmultimeter’s”diodecheck”<br />

functionishighlyrecommended.Fordetailsonhowtoidentifyjunctionfield-effecttransistor<br />

terminalsusingamultimeter,consultchapter5oftheSemiconductorvolume(volumeIII)of<br />

thisbookseries.<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume3,chapter5:”JunctionField-EffectTransistors”<br />

LEARNINGOBJECTIVES<br />

• HowtheJFETisusedasanon/offswitch<br />

• HowJFETcurrentgaindiffersfromabipolartransistor<br />

SCHEMATICDIAGRAM<br />

6 V 100 kΩ<br />

Q 1


236 CHAPTER5. DISCRETESEMICONDUCTORCIRCUITS<br />

ILLUSTRATION<br />

+ - SGD<br />

INSTRUCTIONS<br />

Thisexperimentisverysimilartothepreviousexperimentusingabipolarjunctiontransistor(BJT)asaswitchingdevicetocontrolcurrentthroughanLED.Inthisexperiment,a<br />

junctionfield-effecttransistorisusedinstead,givingdramaticallyimprovedsensitivity.<br />

Buildthiscircuitandtouchtheloosewireend(thewireshowninredontheschematic<br />

diagramandintheillustration,connectedtothe100kΩresistor)withyourhand. Simply<br />

touchingthiswirewilllikelyhaveaneffectontheLED’sstatus. Thiscircuitmakesafine<br />

sensorofstaticelectricity!Tryscuffingyourfeetonacarpetandthentouchingthewireendif<br />

noeffectonthelightisseenyet.<br />

Foramorecontrolledtest,touchthewirewithonehandandalternatelytouchthepositive<br />

(+)andnegative(-)terminalsofthebatterywithonefingerofyourotherhand.Yourbodyacts<br />

asaconductor(albeitapoorone),connectingthegateterminaloftheJFETtoeitherterminal<br />

ofthebatteryasyoutouchthem. MakenotewhichterminalmakestheLEDturnonand<br />

whichmakestheLEDturnoff.Trytorelatethisbehaviorwithwhatyou’vereadaboutJFETs<br />

inchapter5oftheSemiconductorvolume.<br />

ThefactthataJFETisturnedonandoffsoeasily(requiringsolittlecontrolcurrent),as<br />

evidencedbyfullon-and-offcontrolsimplybyconductionofacontrolcurrentthroughyour<br />

body,demonstrateshowgreatofacurrentgainithas. WiththeBJT”switch”experiment,a<br />

muchmore”solid”connectionbetweenthetransistor’sgateterminalandasourceofvoltage<br />

wasneededtoturniton.NotsowiththeJFET.Infact,themerepresenceofstaticelectricity<br />

canturnitonandoffatadistance.<br />

Tofurtherexperimentwiththeeffectsofstaticelectricityonthiscircuit,brushyourhair<br />

withtheplasticcombandthenwavethecombnearthetransistor,watchingtheeffectonthe<br />

LED.Theactionofcombingyourhairwithaplasticobjectcreatesahighstaticvoltagebetween<br />

thecombandyourbody. Thestrongelectricfieldproducedbetweenthesetwoobjectsshould<br />

bedetectablebythiscircuitfromasignificantdistance!<br />

Incaseyou’rewonderingwhythereisno560 Ω”dropping”resistortolimitcurrentthrough<br />

theLED,manysmall-signalJFETstendtoself-limittheircontrolledcurrenttoalevelacceptablebyLEDs.Themodel2N3819,forexample,hasatypicalsaturateddraincurrent(I<br />

DSS )of


5.9. STATICELECTRICITYSENSOR 237<br />

10mAandamaximumof20mA.SincemostLEDsareratedataforwardcurrentof20mA,<br />

thereisnoneedforadroppingresistortolimitcircuitcurrent:theJFETdoesitintrinsically.


238 CHAPTER5. DISCRETESEMICONDUCTORCIRCUITS<br />

5.10 Pulsed-lightsensor<br />

PARTSANDMATERIALS<br />

• Two6-voltbatteries<br />

• OneNPNtransistor–models2N2222or2N3403recommended(RadioShackcatalog#<br />

276-1617isapackageoffifteenNPNtransistorsidealforthisandotherexperiments)<br />

• Onelight-emittingdiode(RadioShackcatalog#276-026orequivalent)<br />

• Audiodetectorwithheadphones<br />

Ifyoudon’thaveanaudiodetectoralreadyconstructed,youcanuseanicesetofaudioheadphones(closed-cupstyle,thatcompletelycoversyourears)anda120V/6Vstep-downtransformertobuildasensitiveaudiodetectorwithoutvolumecontrolorovervoltageprotection,<br />

justforthisexperiment.<br />

Connecttheseportionsoftheheadphonestereoplugtothetransformer’ssecondary(6volt)<br />

winding:<br />

To transformer<br />

To transformer<br />

common right left common right left<br />

Speakers in series<br />

Speakers in parallel<br />

Tryboththeseriesandtheparallelconnectionschemesfortheloudestsound.<br />

Ifyouhaven’tmadeanaudiodetectorasoutlinedinboththeDCandACexperiments<br />

chapters,youreallyshould–itisavaluablepieceoftestequipmentforyourcollection.<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume3,chapter4:”BipolarJunctionTransistors”<br />

LEARNINGOBJECTIVES<br />

• Howtouseatransistorasacrudecommon-emitteramplifier<br />

• HowtouseanLEDasalightsensor<br />

SCHEMATICDIAGRAM


5.10. PULSED-LIGHTSENSOR 239<br />

6 V<br />

ILLUSTRATION<br />

+ - CBE<br />

headphones<br />

Sensitivity<br />

plug<br />

INSTRUCTIONS<br />

ThiscircuitdetectspulsesoflightstrikingtheLEDandconvertsthemintorelativelystrong<br />

audiosignalstobeheardthroughtheheadphones.ForrestMimsteachesthatLEDshavethe


240 CHAPTER5. DISCRETESEMICONDUCTORCIRCUITS<br />

abilitytoproducecurrentwhenexposedtolight,inamannernotunlikeasemiconductorsolar<br />

cell.[1]Byitself,theLEDdoesnotproduceenoughelectricalpowertodrivetheaudiodetector<br />

circuit,soatransistorisusedtoamplifytheLED’ssignals.IftheLEDisexposedtoapulsing<br />

sourceoflight,atonewillbeheardintheheadphones.<br />

Sourcesoflightsuitableforthisexperimentincludefluorescentandneonlamps,which<br />

blinkrapidlywiththe60HzACpowerenergizingthem.Youmayalsotryusingbrightsunlight<br />

forasteadylightsource,thenwavingyourfingersinfrontoftheLED.Therapidlypassing<br />

shadowswillcausetheLEDtogeneratepulsesofvoltage,creatingabrief”buzzing”soundin<br />

theheadphones.<br />

LEDsservingasphoto-detectorsarenarrow-banddevices,respondingtoanarrowband<br />

ofwavelengthsclose,butnotidentical,tothatnormallyemitted. Infraredremotecontrols<br />

areagoodilluminationsourcefornear-infraredLEDsemployedasphoto-sensors,producinga<br />

receiversound.[3]<br />

Withalittleimagination,itisnotdifficulttograsptheconceptoftransmittingaudioinformation–suchasmusicorspeech–overabeamofpulsinglight.Givenasuitable”transmitter”<br />

circuittopulseanLEDonandoffwiththepositiveandnegativecrestsofanaudiowaveform<br />

fromamicrophone,the”receiver”circuitshownherewouldconvertthoselightpulsesbackinto<br />

audiosignals.[2]


5.11. VOLTAGEFOLLOWER 241<br />

5.11 Voltagefollower<br />

PARTSANDMATERIALS<br />

• OneNPNtransistor–models2N2222or2N3403recommended(RadioShackcatalog#<br />

276-1617isapackageoffifteenNPNtransistorsidealforthisandotherexperiments)<br />

• Two6-voltbatteries<br />

• Two1kΩresistors<br />

• One10kΩpotentiometer,single-turn,lineartaper(RadioShackcatalog#271-1715)<br />

Bewarethatnotalltransistorssharethesameterminaldesignations,orpinouts,evenif<br />

theysharethesamephysicalappearance. Thiswilldictatehowyouconnectthetransistors<br />

togetherandtoothercomponents,sobesuretocheckthemanufacturer’sspecifications(componentdatasheet),easilyobtainedfromthemanufacturer’swebsite.Bewarethatitispossible<br />

forthetransistor’spackageandeventhemanufacturer’sdatasheettoshowincorrectterminal<br />

identificationdiagrams! Double-checkingpinidentitieswithyourmultimeter’s”diodecheck”<br />

functionishighlyrecommended. Fordetailsonhowtoidentifybipolartransistorterminals<br />

usingamultimeter,consultchapter4oftheSemiconductorvolume(volumeIII)ofthisbook<br />

series.<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume3,chapter4:”BipolarJunctionTransistors”<br />

LEARNINGOBJECTIVES<br />

• Purposeofcircuit”ground”whenthereisnoactualconnectiontoearthground<br />

• Usingashuntresistortomeasurecurrentwithavoltmeter<br />

• Measureamplifiervoltagegain<br />

• Measureamplifiercurrentgain<br />

• Amplifierimpedancetransformation<br />

SCHEMATICDIAGRAM<br />

6 V<br />

R base<br />

6 V<br />

10 kΩ<br />

1 kΩ<br />

R load<br />

Q 1<br />

1 kΩ


242 CHAPTER5. DISCRETESEMICONDUCTORCIRCUITS<br />

ILLUSTRATION<br />

CBE<br />

+ - + -<br />

INSTRUCTIONS<br />

Again,bewarethatthetransistoryouselectforthisexperimentmaynothavethesame<br />

terminaldesignationsshownhere,andsothebreadboardlayoutshownintheillustrationmay<br />

notbecorrectforyou.Inmyillustrations,IshowallTO-92packagetransistorswithterminals<br />

labeled”CBE”:Collector,Base,andEmitter,fromlefttoright. Thisiscorrectforthemodel<br />

2N2222transistorandsomeothers,butnotforall;notevenforallNPN-typetransistors!As<br />

usual,checkwiththemanufacturerfordetailsontheparticularcomponent(s)youchoosefor<br />

aproject. Withbipolarjunctiontransistors,itiseasyenoughtoverifyterminalassignments<br />

withamultimeter.<br />

Thevoltagefolloweristhesafestandeasiesttransistoramplifiercircuittobuild. Itspurposeistoprovideapproximatelythesamevoltagetoaloadaswhatisinputtotheamplifier,<br />

butatamuchgreatercurrent.Inotherwords,ithasnovoltagegain,butitdoeshavecurrent<br />

gain.<br />

Notethatthenegative(-)sideofthepowersupplyisshownintheschematicdiagramtobe<br />

connectedtoground,asindicatedbythesymbolinthelower-leftcornerofthediagram.This<br />

doesnotnecessarilyrepresentaconnectiontotheactualearth. Whatitmeansisthatthis<br />

pointinthecircuit–andallpointselectricallycommontoit–constitutethedefaultreference<br />

pointforallvoltagemeasurementsinthecircuit. Sincevoltageisbynecessityaquantity<br />

relativebetweentwopoints,a”common”pointofreferencedesignatedinacircuitgivesusthe<br />

abilitytospeakmeaningfullyofvoltageatparticular,singlepointsinthatcircuit.


5.11. VOLTAGEFOLLOWER 243<br />

6 V<br />

R base<br />

6 V<br />

10 kΩ<br />

1 kΩ<br />

R load<br />

Q 1<br />

1 kΩ<br />

These points are all considered "ground"<br />

Forexample,ifIweretospeakofvoltageatthebaseofthetransistor(V B ),Iwouldmean<br />

thevoltagemeasuredbetweenthetransistor’sbaseterminalandthenegativesideofthepower<br />

supply(ground),withtheredprobetouchingthebaseterminalandtheblackprobetouching<br />

ground. Normally,itisnonsensetospeakofvoltageatasinglepoint,buthavinganimplicit<br />

referencepointforvoltagemeasurementsmakessuchstatementsmeaningful:<br />

6 V<br />

R base<br />

6 V<br />

10 kΩ<br />

1 kΩ<br />

R load<br />

Q 1<br />

1 kΩ<br />

Voltmeter measuring<br />

base voltage (V B )<br />

+<br />

V<br />

-<br />

Buildthiscircuit,andmeasureoutputvoltageversusinputvoltageforseveraldifferent<br />

potentiometersettings. Inputvoltageisthevoltageatthepotentiometer’swiper(voltagebetweenthewiperandcircuitground),whileoutputvoltageistheloadresistorvoltage(voltage<br />

acrosstheloadresistor,oremittervoltage:betweenemitterandcircuitground). Youshould<br />

seeaclosecorrelationbetweenthesetwovoltages:oneisjustalittlebitgreaterthantheother<br />

(about0.6voltsorso?),butachangeintheinputvoltagegivesalmostequalchangeinthe<br />

outputvoltage. Becausetherelationshipbetweeninputchangeandoutputchangeisalmost<br />

1:1,wesaythattheACvoltagegainofthisamplifierisnearly1.<br />

Notveryimpressive,isit?Nowmeasurecurrentthroughthebaseofthetransistor(input<br />

current)versuscurrentthroughtheloadresistor(outputcurrent). Beforeyoubreakthecircuitandinsertyourammetertotakethesemeasurements,consideranalternativemethod:<br />

measurevoltageacrossthebaseandloadresistors,whoseresistancevaluesareknown.Using<br />

Ohm’sLaw,currentthrougheachresistormaybeeasilycalculated:dividethemeasuredvolt-


244 CHAPTER5. DISCRETESEMICONDUCTORCIRCUITS<br />

agebytheknownresistance(I=E/R).Thiscalculationisparticularlyeasywithresistorsof1kΩ<br />

value:therewillbe1milliampofcurrentforeveryvoltofdropacrossthem.Forbestprecision,<br />

youmaymeasuretheresistanceofeachresistorratherthanassumeanexactvalueof1kΩ,<br />

butitreallydoesn’tmattermuchforthepurposesofthisexperiment.Whenresistorsareused<br />

totakecurrentmeasurementsby”translating”acurrentintoacorrespondingvoltage,theyare<br />

oftenreferredtoasshuntresistors.<br />

Youshouldexpecttofindhugedifferencesbetweeninputandoutputcurrentsforthisamplifiercircuit.<br />

Infact,itisnotuncommontoexperiencecurrentgainswellinexcessof200<br />

forasmall-signaltransistoroperatingatlowcurrentlevels.Thisistheprimarypurposeofa<br />

voltagefollowercircuit: toboostthecurrentcapacityofa”weak”signalwithoutalteringits<br />

voltage.<br />

Anotherwayofthinkingofthiscircuit’sfunctionisintermsofimpedance.Theinputsideof<br />

thisamplifieracceptsavoltagesignalwithoutdrawingmuchcurrent.Theoutputsideofthis<br />

amplifierdeliversthesamevoltage,butatacurrentlimitedonlybyloadresistanceandthe<br />

current-handlingabilityofthetransistor.Castintermsofimpedance,wecouldsaythatthis<br />

amplifierhasahighinputimpedance(voltagedroppedwithverylittlecurrentdrawn)anda<br />

lowoutputimpedance(voltagedroppedwithalmostunlimitedcurrent-sourcingcapacity).<br />

COMPUTERSIMULATION<br />

SchematicwithSPICEnodenumbers:<br />

1<br />

1 1<br />

R pot1<br />

5 kΩ<br />

V 1<br />

2<br />

R pot2<br />

5 kΩ<br />

R base<br />

1 kΩ<br />

3<br />

R load<br />

Q 1<br />

4<br />

1 kΩ<br />

0<br />

0 0<br />

Netlist(makeatextfilecontainingthefollowingtext,verbatim):<br />

Voltage follower<br />

v1 1 0<br />

rpot1 1 2 5k<br />

rpot2 2 0 5k<br />

rbase 2 3 1k<br />

rload 4 0 1k<br />

q1 1 3 4 mod1<br />

.model mod1 npn bf=200<br />

.dc v1 12 12 1<br />

.print dc v(2,0) v(4,0) v(2,3)<br />

.end


5.11. VOLTAGEFOLLOWER 245<br />

WhenthissimulationisrunthroughtheSPICEprogram,itshowsaninputvoltageof5.937<br />

voltsandanoutputvoltageof5.095volts,withaninputcurrentof25.35 µA(2.535E-02volts<br />

droppedacrossthe1kΩR base resistor).Outputcurrentis,ofcourse,5.095mA,inferredfrom<br />

theoutputvoltageof5.095voltsdroppedacrossaloadresistanceofexactly1kΩ. Youmay<br />

changethe”potentiometer”settinginthiscircuitbyadjustingthevaluesofR pot1 andR pot2 ,<br />

alwayskeepingtheirsumat10kΩ.


246 CHAPTER5. DISCRETESEMICONDUCTORCIRCUITS<br />

5.12 Common-emitteramplifier<br />

PARTSANDMATERIALS<br />

• OneNPNtransistor–model2N2222or2N3403recommended(RadioShackcatalog#<br />

276-1617isapackageoffifteenNPNtransistorsidealforthisandotherexperiments)<br />

• Two6-voltbatteries<br />

• One10kΩpotentiometer,single-turn,lineartaper(RadioShackcatalog#271-1715)<br />

• One1MΩresistor<br />

• One100kΩresistor<br />

• One10kΩresistor<br />

• One1.5kΩresistor<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume3,chapter4:”BipolarJunctionTransistors”<br />

LEARNINGOBJECTIVES<br />

• Designofasimplecommon-emitteramplifiercircuit<br />

• Howtomeasureamplifiervoltagegain<br />

• Thedifferencebetweenaninvertingandanoninvertingamplifier<br />

• Waystointroducenegativefeedbackinanamplifiercircuit<br />

SCHEMATICDIAGRAM<br />

6 V<br />

6 V<br />

10 kΩ<br />

V in<br />

100 kΩ<br />

Q 1<br />

10 kΩ<br />

V out<br />

ILLUSTRATION


5.12. COMMON-EMITTERAMPLIFIER 247<br />

CBE<br />

+ - + -<br />

INSTRUCTIONS<br />

Buildthiscircuitandmeasureoutputvoltage(voltagemeasuredbetweenthetransistor’s<br />

collectorterminalandground)andinputvoltage(voltagemeasuredbetweenthepotentiometer’swiperterminalandground)forseveralpositionsettingsofthepotentiometer.<br />

Irecommenddeterminingtheoutputvoltagerangeasthepotentiometerisadjustedthroughitsentire<br />

rangeofmotion,thenchoosingseveralvoltagesspanningthatoutputrangetotakemeasurementsat.Forexample,iffullrotationonthepotentiometerdrivestheamplifiercircuit’soutput<br />

voltagefrom0.1volts(low)to11.7volts(high),chooseseveralvoltagelevelsbetweenthoselimits(1volt,3volts,5volts,7volts,9volts,and11volts).Measuringtheoutputvoltagewitha<br />

meter,adjustthepotentiometertoobtaineachofthesepredeterminedvoltagesattheoutput,<br />

notingtheexactfigureforlaterreference. Then,measuretheexactinputvoltageproducing<br />

thatoutputvoltage,andrecordthatvoltagefigureaswell.<br />

Intheend,youshouldhaveatableofnumbersrepresentingseveraldifferentoutputvoltagesalongwiththeircorrespondinginputvoltages.Takeanytwopairsofvoltagefiguresand<br />

calculatevoltagegainbydividingthedifferenceinoutputvoltagesbythedifferenceininput<br />

voltages. Forexample,ifaninputvoltageof1.5voltsgivesmeanoutputvoltageof7.0volts<br />

andaninputvoltageof1.66voltsgivesmeanoutputvoltageof1.0volt,theamplifier’svoltage<br />

gainis(7.0-1.0)/(1.66-1.5),or6dividedby0.16:againratioof37.50.<br />

Youshouldimmediatelynoticetwocharacteristicswhiletakingthesevoltagemeasurements:first,thattheinput-to-outputeffectis”reversed;”thatis,anincreasinginputvoltage<br />

resultsinadecreasingoutputvoltage.Thiseffectisknownassignalinversion,andthiskind<br />

ofamplifierasaninvertingamplifier. Secondly,thisamplifierexhibitsaverystrongvoltage<br />

gain:asmallchangeininputvoltageresultsinalargechangeinoutputvoltage.Thisshould<br />

standinstarkcontrasttothe”voltagefollower”amplifiercircuitdiscussedearlier,whichhad<br />

avoltagegainofabout1.<br />

Common-emitteramplifiersarewidelyusedduetotheirhighvoltagegain,buttheyare<br />

rarelyusedinascrudeaformasthis.Althoughthisamplifiercircuitworkstodemonstratethe<br />

basicconcept,itisverysusceptibletochangesintemperature.Tryleavingthepotentiometer<br />

inonepositionandheatingthetransistorbygraspingitfirmlywithyourhandorheatingit<br />

withsomeothersourceofheatsuchasanelectrichairdryer(WARNING:becarefulnotto<br />

getitsohotthatyourplasticbreadboardmelts!).Youmayalsoexploretemperatureeffectsby<br />

coolingthetransistor:touchanicecubetoitssurfaceandnotethechangeinoutputvoltage.


248 CHAPTER5. DISCRETESEMICONDUCTORCIRCUITS<br />

Whenthetransistor’stemperaturechanges,itsbase-emitterdiodecharacteristicschange,<br />

resultingindifferentamountsofbasecurrentforthesameinputvoltage. Thisinturnaltersthecontrolledcurrentthroughthecollectorterminal,thusaffectingoutputvoltage.Such<br />

changesmaybeminimizedthroughtheuseofsignalfeedback,wherebyaportionoftheoutput<br />

voltageis”fedback”totheamplifier’sinputsoastohaveanegative,orcanceling,effecton<br />

voltagegain.Stabilityisimprovedattheexpenseofvoltagegain,acompromisesolution,but<br />

practicalnonetheless.<br />

Perhapsthesimplestwaytoaddnegativefeedbacktoacommon-emitteramplifieristoadd<br />

someresistancebetweentheemitterterminalandground,sothattheinputvoltagebecomes<br />

dividedbetweenthebase-emitterPNjunctionandthevoltagedropacrossthenewresistance:<br />

6 V<br />

6 V<br />

10 kΩ<br />

V in<br />

100 kΩ<br />

Q 1<br />

10 kΩ<br />

V out<br />

1.5 kΩ<br />

CBE<br />

+ - + -<br />

Repeatthesamevoltagemeasurementandrecordingexercisewiththe1.5kΩresistorinstalled,calculatingthenew(reduced)voltagegain.Tryalteringthetransistor’stemperature<br />

againandnotingtheoutputvoltageforasteadyinputvoltage. Doesitchangemoreorless<br />

thanwithoutthe1.5kΩresistor?<br />

Anothermethodofintroducingnegativefeedbacktothisamplifiercircuitisto”couple”the<br />

outputtotheinputthroughahigh-valueresistor. Connectinga1MΩresistorbetweenthe<br />

transistor’scollectorandbaseterminalsworkswell:


5.12. COMMON-EMITTERAMPLIFIER 249<br />

6 V<br />

6 V<br />

10 kΩ<br />

V in<br />

100 kΩ<br />

1 MΩ<br />

Q 1<br />

10 kΩ<br />

V out<br />

CBE<br />

+ - + -<br />

Althoughthisdifferentmethodoffeedbackaccomplishesthesamegoalofincreasedstabilitybydiminishinggain,thetwofeedbackcircuitswillnotbehaveidentically.Notetherangeof<br />

possibleoutputvoltageswitheachfeedbackscheme(thelowandhighvoltagevaluesobtained<br />

withafullsweepoftheinputvoltagepotentiometer),andhowthisdiffersbetweenthetwo<br />

circuits.<br />

COMPUTERSIMULATION<br />

SchematicwithSPICEnodenumbers:


250 CHAPTER5. DISCRETESEMICONDUCTORCIRCUITS<br />

V supply<br />

1<br />

3<br />

2<br />

100 kΩ<br />

R b<br />

4<br />

R c<br />

1<br />

Q 1<br />

10 kΩ<br />

V out<br />

V in<br />

0 0 0<br />

Netlist(makeatextfilecontainingthefollowingtext,verbatim):<br />

Common-emitter amplifier<br />

vsupply 1 0 dc 12<br />

vin 3 0<br />

rc 1 2 10k<br />

rb 3 4 100k<br />

q1 2 4 0 mod1<br />

.model mod1 npn bf=200<br />

.dc vin 0 2 0.05<br />

.plot dc v(2,0) v(3,0)<br />

.end<br />

ThisSPICEsimulationsetsupacircuitwithavariableDCvoltagesource(vin)asthe<br />

inputsignal,andmeasuresthecorrespondingoutputvoltagebetweennodes2and0. The<br />

inputvoltageisvaried,or”swept,”from0to2voltsin0.05voltincrements.Resultsareshown<br />

onaplot,withtheinputvoltageappearingasastraightlineandtheoutputvoltageasa”step”<br />

figurewherethevoltagebeginsandendslevel,withasteepchangeinthemiddlewherethe<br />

transistorisinitsactivemodeofoperation.


5.13. MULTI-STAGEAMPLIFIER 251<br />

5.13 Multi-stageamplifier<br />

PARTSANDMATERIALS<br />

• ThreeNPNtransistors–model2N2222or2N3403recommended(RadioShackcatalog#<br />

276-1617isapackageoffifteenNPNtransistorsidealforthisandotherexperiments)<br />

• Two6-voltbatteries<br />

• One10kΩpotentiometer,single-turn,lineartaper(RadioShackcatalog#271-1715)<br />

• One1MΩresistor<br />

• Three100kΩresistors<br />

• Three10kΩresistors<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume3,chapter4:”BipolarJunctionTransistors”<br />

LEARNINGOBJECTIVES<br />

• Designofamulti-stage,direct-coupledcommon-emitteramplifiercircuit<br />

• Effectofnegativefeedbackinanamplifiercircuit<br />

SCHEMATICDIAGRAM<br />

1 MΩ<br />

10 kΩ<br />

V in<br />

10 kΩ<br />

10 kΩ<br />

10 kΩ<br />

V out<br />

6 V<br />

100 kΩ<br />

100 kΩ<br />

100 kΩ<br />

6 V<br />

ILLUSTRATION


252 CHAPTER5. DISCRETESEMICONDUCTORCIRCUITS<br />

+ - + - CBE CBE CBE<br />

INSTRUCTIONS<br />

Byconnectingthreecommon-emitteramplifiercircuittogether–thecollectorterminalof<br />

theprevioustransistortothebase(resistor)ofthenexttransistor–thevoltagegainsofeach<br />

stagecompoundtogiveaveryhighoverallvoltagegain. Irecommendbuildingthiscircuit<br />

withoutthe1MΩfeedbackresistortobeginwith,toseeforyourselfjusthowhightheunrestrictedvoltagegainis.<br />

Youmayfinditimpossibletoadjustthepotentiometerforastable<br />

outputvoltage(thatisn’tsaturatedatfullsupplyvoltageorzero),thegainbeingsohigh.<br />

Evenifyoucan’tadjusttheinputvoltagefineenoughtostabilizetheoutputvoltagein<br />

theactiverangeofthelasttransistor,youshouldbeabletotellthattheoutput-to-inputrelationshipisinverting;thatis,theoutputtendstodrivetoahighvoltagewhentheinput<br />

goeslow,andviceversa. Sinceanyoneofthecommon-emitter”stages”isinvertinginitself,<br />

anevennumberofstagedcommon-emitteramplifiersgivesnoninvertingresponse,whilean<br />

oddnumberofstagesgivesinverting. Youmayexperiencetheserelationshipsbymeasuring<br />

thecollector-to-groundvoltageateachtransistorwhileadjustingtheinputvoltagepotentiometer,notingwhetherornottheoutputvoltageincreasesordecreaseswithanincreaseininput<br />

voltage.<br />

Connectthe1MΩfeedbackresistorintothecircuit,couplingthecollectorofthelasttransistortothebaseofthefirst.Sincetheoverallresponseofthisthree-stageamplifierisinverting,<br />

thefeedbacksignalprovidedthroughthe1MΩresistorfromtheoutputofthelasttransistortotheinputofthefirstshouldbenegativeinnature.<br />

Assuch,itwillacttostabilizethe<br />

amplifier’sresponseandminimizethevoltagegain. Youshouldnoticethereductioningain<br />

immediatelybythedecreasedsensitivityoftheoutputsignaloninputsignalchanges(changes<br />

inpotentiometerposition).Simplyput,theamplifierisn’tnearlyas”touchy”asitwaswithout<br />

thefeedbackresistorinplace.<br />

Aswiththesimplecommon-emitteramplifierdiscussedinanearlierexperiment,itisa<br />

goodideaheretomakeatableofinputversusoutputvoltagefigureswithwhichyoumay<br />

calculatevoltagegain.<br />

Experimentwithdifferentvaluesoffeedbackresistance. Whateffectdoyouthinkadecreaseinfeedbackresistancehaveonvoltagegain?Whataboutanincreaseinfeedbackresistance?Tryitandfindout!


5.13. MULTI-STAGEAMPLIFIER 253<br />

Anadvantageofusingnegativefeedbackto”tame”ahigh-gainamplifiercircuitisthatthe<br />

resultingvoltagegainbecomesmoredependentupontheresistorvaluesandlessdependent<br />

uponthecharacteristicsoftheconstituenttransistors.Thisisgood,becauseitisfareasierto<br />

manufactureconsistentresistorsthanconsistenttransistors. Thus,itiseasiertodesignan<br />

amplifierwithpredictablegainbybuildingastagednetworkoftransistorswithanarbitrarily<br />

highvoltagegain,thenmitigatethatgainpreciselythroughnegativefeedback.Itisthissame<br />

principlethatisusedtomakeoperationalamplifiercircuitsbehavesopredictably.<br />

Thisamplifiercircuitisabitsimplifiedfromwhatyouwillnormallyencounterinpractical<br />

multi-stagecircuits. Rarelyisapurecommon-emitterconfiguration(i.e. withnoemitter-togroundresistor)used,andiftheamplifier’sserviceisforACsignals,theinter-stagecoupling<br />

isoftencapacitivewithvoltagedividernetworksconnectedtoeachtransistorbaseforproper<br />

biasingofeachstage. Radio-frequencyamplifiercircuitsareoftentransformer-coupled,with<br />

capacitorsconnectedinparallelwiththetransformerwindingsforresonanttuning.<br />

COMPUTERSIMULATION<br />

SchematicwithSPICEnodenumbers:<br />

3<br />

1 MΩ<br />

6<br />

1<br />

1<br />

1<br />

V in<br />

2<br />

10 kΩ<br />

R 2 R<br />

R 6<br />

10 kΩ 4<br />

10 kΩ<br />

4 5 6<br />

R 1 3<br />

R 3 7<br />

R 5 8<br />

Q 1 Q 2 Q 3<br />

100 kΩ 100 kΩ 100 kΩ<br />

V out<br />

V supply<br />

0<br />

0<br />

R f 1<br />

0<br />

0<br />

0<br />

Netlist(makeatextfilecontainingthefollowingtext,verbatim):<br />

Multi-stage amplifier<br />

vsupply 1 0 dc 12<br />

vin 2 0<br />

r1 2 3 100k<br />

r2 1 4 10k<br />

q1 4 3 0 mod1<br />

r3 4 7 100k<br />

r4 1 5 10k<br />

q2 5 7 0 mod1<br />

r5 5 8 100k<br />

r6 1 6 10k<br />

q3 6 8 0 mod1<br />

rf 3 6 1meg<br />

.model mod1 npn bf=200<br />

.dc vin 0 2.5 0.1


254 CHAPTER5. DISCRETESEMICONDUCTORCIRCUITS<br />

.plot dc v(6,0) v(2,0)<br />

.end<br />

Thissimulationplotsoutputvoltageagainstinputvoltage,andallowscomparisonbetween<br />

thosevariablesinnumericalform:alistofvoltagefiguresprintedtotheleftoftheplot.You<br />

maycalculatevoltagegainbytakinganytwoanalysispointsanddividingthedifferencein<br />

outputvoltagesbythedifferenceininputvoltages,justlikeyoudofortherealcircuit.<br />

Experimentwithdifferentfeedbackresistancevalues(rf)andseetheimpactonoverall<br />

voltagegain. Doyounoticeapattern? Here’sahint:theoverallvoltagegainmaybeclosely<br />

approximatedbyusingtheresistancefiguresof r1and rf,withoutreferencetoanyother<br />

circuitcomponent!


5.14. CURRENTMIRROR 255<br />

5.14 Currentmirror<br />

PARTSANDMATERIALS<br />

• TwoNPNtransistors–models2N2222or2N3403recommended(RadioShackcatalog#<br />

276-1617isapackageoffifteenNPNtransistorsidealforthisandotherexperiments)<br />

• Two6-voltbatteries<br />

• One10kΩpotentiometer,single-turn,lineartaper(RadioShackcatalog#271-1715)<br />

• Two10kΩresistors<br />

• Four1.5kΩresistors<br />

Smallsignaltransistorsarerecommendedsoastobeabletoexperience”thermalrunaway”<br />

inthelatterportionoftheexperiment.Larger”power”transistorsmaynotexhibitthesame<br />

behaviorattheselowcurrentlevels. However,anypairofidenticalNPNtransistorsmaybe<br />

usedtobuildacurrentmirror.<br />

Bewarethatnotalltransistorssharethesameterminaldesignations,orpinouts,evenif<br />

theysharethesamephysicalappearance. Thiswilldictatehowyouconnectthetransistors<br />

togetherandtoothercomponents,sobesuretocheckthemanufacturer’sspecifications(componentdatasheet),easilyobtainedfromthemanufacturer’swebsite.Bewarethatitispossible<br />

forthetransistor’spackageandeventhemanufacturer’sdatasheettoshowincorrectterminal<br />

identificationdiagrams! Double-checkingpinidentitieswithyourmultimeter’s”diodecheck”<br />

functionishighlyrecommended. Fordetailsonhowtoidentifybipolartransistorterminals<br />

usingamultimeter,consultchapter4oftheSemiconductorvolume(volumeIII)ofthisbook<br />

series.<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume3,chapter4:”BipolarJunctionTransistors”<br />

LEARNINGOBJECTIVES<br />

• Howtobuildacurrentmirrorcircuit<br />

• Currentlimitationsofacurrentmirrorcircuit<br />

• TemperaturedependenceofBJTs<br />

• Experienceacontrolled”thermalrunaway”situation<br />

SCHEMATICDIAGRAM


256 CHAPTER5. DISCRETESEMICONDUCTORCIRCUITS<br />

+ -<br />

A<br />

TP5<br />

R load4<br />

TP4<br />

6 V<br />

R load3<br />

R adjust<br />

TP3<br />

R load2<br />

6 V<br />

TP2<br />

R limit<br />

R load1<br />

Q 1 Q 2<br />

TP1<br />

R load1 through R load3<br />

are 1.5 kΩ each<br />

R load4 , R limit , and R adjust<br />

are 10 kΩ each<br />

ILLUSTRATION<br />

V<br />

A<br />

V<br />

OFF<br />

A<br />

+ - + - COM<br />

A<br />

TP5 TP4 TP3 TP2 TP1<br />

CBE<br />

CBE


5.14. CURRENTMIRROR 257<br />

INSTRUCTIONS<br />

Acurrentmirrormaybethoughtofasanadjustablecurrentregulator,thecurrentlimit<br />

beingeasilysetbyasingleresistance. Itisarathercrudecurrentregulatorcircuit,butone<br />

thatfindswideuseduetoitssimplicity. Inthisexperiment,youwillgettheopportunityto<br />

buildoneofthesecircuits,exploreitscurrent-regulatingproperties,andalsoexperiencesome<br />

ofitspracticallimitationsfirsthand.<br />

Buildthecircuitasshownintheschematicandillustration. Youwillhaveoneextra1.5<br />

kΩfixed-valueresistorfromthepartsspecifiedinthepartslist.Youwillbeusingitinthelast<br />

partofthisexperiment.<br />

ThepotentiometersetstheamountofcurrentthroughtransistorQ 1 . Thistransistoris<br />

connectedtoactasasimplediode:justaPNjunction.Whyuseatransistorinsteadofaregular<br />

diode? Becauseitisimportanttomatchthejunctioncharacteristicsofthesetwotransistors<br />

whenusingtheminacurrentmirrorcircuit.Voltagedroppedacrossthebase-emitterjunction<br />

ofQ 1 isimpressedacrossthebase-emitterjunctionoftheothertransistor,Q 2 ,causingitto<br />

turn”on”andlikewiseconductcurrent.<br />

Sincevoltageacrossthetwotransistors’base-emitterjunctionsisthesame–thetwojunctionpairsbeingconnectedinparallelwitheachother–soshouldthecurrentbethroughtheir<br />

baseterminals,assumingidenticaljunctioncharacteristicsandidenticaljunctiontemperatures.<br />

Matchedtransistorsshouldhavethesame βratios,aswell,soequalbasecurrents<br />

meansequalcollectorcurrents. ThepracticalresultofallthisisQ 2 ’scollectorcurrentmimickingwhatevercurrentmagnitudehasbeenestablishedthroughthecollectorofQ<br />

1 bythe<br />

potentiometer.Inotherwords,currentthroughQ 2 mirrorsthecurrentthroughQ 1 .<br />

Changesinloadresistance(resistanceconnectingthecollectorofQ 2 tothepositivesideof<br />

thebattery)havenoeffectonQ 1 ’scurrent,andconsequentlyhavenoeffectuponthebaseemittervoltageorbasecurrentofQ<br />

2 . Withaconstantbasecurrentandanearlyconstant β<br />

ratio,Q 2 willdropasmuchoraslittlecollector-emittervoltageasnecessarytoholditscollector<br />

(load)currentconstant.Thus,thecurrentmirrorcircuitactstoregulatecurrentatavalueset<br />

bythepotentiometer,withoutregardtoloadresistance.<br />

Well,thatishowitissupposedtowork,anyway. Realityisn’tquitesosimple,asyouare<br />

abouttosee.Inthecircuitdiagramshown,theloadcircuitofQ 2 iscompletedtothepositive<br />

sideofthebatterythroughanammeter,foreasycurrentmeasurement. Ratherthansolidly<br />

connecttheammeter’sblackprobetoadefinitepointinthecircuit,I’vemarkedfivetestpoints,<br />

TP1throughTP5,foryoutotouchtheblacktestprobetowhilemeasuringcurrent.Thisallows<br />

youtoquicklyandeffortlesslychangeloadresistance: touchingtheprobetoTP1resultsin<br />

practicallynoloadresistance,whiletouchingittoTP5resultsinapproximately14.5kΩof<br />

loadresistance.<br />

Tobegintheexperiment,touchthetestprobetoTP4andadjustthepotentiometerthrough<br />

itsrangeoftravel.Youshouldseeasmall,changingcurrentindicatedbyyourammeterasyou<br />

movethepotentiometermechanism:nomorethanafewmilliamps.Leavethepotentiometer<br />

settoapositiongivingaroundnumberofmilliampsandmovethemeter’sblacktestprobeto<br />

TP3.Thecurrentindicationshouldbeverynearlythesameasbefore.MovetheprobetoTP2,<br />

thenTP1. Again,youshouldseeanearlyunchangedamountofcurrent. Tryadjustingthe<br />

potentiometertoanotherposition,givingadifferentcurrentindication,andtouchthemeter’s<br />

blackprobetotestpointsTP1throughTP4,notingthestabilityofthecurrentindicationsas<br />

youchangeloadresistance.Thisdemonstratesthecurrentregulatingbehaviorofthiscircuit.


258 CHAPTER5. DISCRETESEMICONDUCTORCIRCUITS<br />

Youshouldnotethatthecurrentregulationisn’tperfect. Despiteregulatingthecurrent<br />

atnearlythevalueforloadresistancesbetween0and4.5kΩ,thereissomevariationover<br />

thisrange. Theregulationmaybemuchworseifloadresistanceisallowedtorisetoohigh.<br />

Tryadjustingthepotentiometersothatmaximumcurrentisobtained,asindicatedwiththe<br />

ammetertestprobeconnectedtoTP1. Leavingthepotentiometeratthatposition,movethe<br />

meterprobetoTP2,thenTP3,thenTP4,andfinallyTP5,notingthemeter’sindicationateach<br />

connectionpoint.Thecurrentshouldberegulatedatanearlyconstantvalueuntilthemeter<br />

probeismovedtothelasttestpoint,TP5.There,thecurrentindicationwillbesubstantially<br />

lowerthanattheothertestpoints. Whyisthis? Becausetoomuchloadresistancehasbeen<br />

insertedintoQ 2 ’scircuit. Simplyput,Q 2 cannot”turnon”anymorethanitalreadyhas,to<br />

maintainthesameamountofcurrentwiththisgreataloadresistanceaswithlesserload<br />

resistances.<br />

Thisphenomenoniscommontoallcurrent-regulatorcircuits: thereisalimitedamount<br />

ofresistanceacurrentregulatorcanhandlebeforeitsaturates. Thisstandstoreason,as<br />

anycurrentregulatorcircuitcapableofsupplyingaconstantamountofcurrentthroughany<br />

loadresistanceimaginablewouldrequireanunlimitedsourceofvoltagetodoit!Ohm’sLaw<br />

(E=IR)dictatestheamountofvoltageneededtopushagivenamountofcurrentthrougha<br />

givenamountofresistance,andwithonly12voltsofpowersupplyvoltageatourdisposal,a<br />

finitelimitofloadcurrentandloadresistancedefinitelyexistsforthiscircuit.Forthisreason,<br />

itmaybehelpfultothinkofcurrentregulatorcircuitsasbeingcurrentlimitercircuits,forall<br />

theycanreallydoislimitcurrenttosomemaximumvalue.<br />

Animportantcaveatforcurrentmirrorcircuitsingeneralisthatofequaltemperature<br />

betweenthetwotransistors.Thecurrent”mirroring”takingplacebetweenthetwotransistors’<br />

collectorcircuitsdependsonthebase-emitterjunctionsofthosetwotransistorshavingthe<br />

exactsameproperties.Asthe”diodeequation”describes,thevoltage/currentrelationshipfor<br />

aPNjunctionstronglydependsonjunctiontemperature. ThehotteraPNjunctionis,the<br />

morecurrentitwillpassforagivenamountofvoltagedrop.Ifonetransistorshouldbecome<br />

hotterthantheother,itwillpassmorecollectorcurrentthantheother,andthecircuitwill<br />

nolonger”mirror”currentasexpected. Whenbuildingarealcurrentmirrorcircuitusing<br />

discretetransistors,thetwotransistorsshouldbeepoxy-gluedtogether(back-to-back)sothat<br />

theyremainatapproximatelythesametemperature.<br />

Toillustratethisdependenceonequaltemperature,trygraspingonetransistorbetween<br />

yourfingerstoheatitup. Whathappenstothecurrentthroughtheloadresistorsasthe<br />

transistor’stemperatureincreases?Now,letgoofthetransistorandblowonittocoolitdown<br />

toambienttemperature.Grasptheothertransistorbetweenyourfingerstoheatitup.What<br />

doestheloadcurrentdonow?<br />

Inthisnextphaseoftheexperiment,wewillintentionallyallowoneofthetransistors<br />

tooverheatandnotetheeffects. Toavoiddamagingatransistor,thisprocedureshouldbe<br />

conductednolongerthanisnecessarytoobserveloadcurrentbeginto”runaway.”Tobegin,<br />

adjustthepotentiometerforminimumcurrent.Next,replacethe10kΩR limit resistorwitha<br />

1.5kΩresistor.ThiswillallowahighercurrenttopassthroughQ 1 ,andconsequentlythrough<br />

Q 2 aswell.<br />

Placetheammeter’sblackprobeonTP1andobservethecurrentindication. Movethe<br />

potentiometerinthedirectionofincreasingcurrentuntilyoureadabout10mAthroughthe<br />

ammeter.Atthatpoint,stopmovingthepotentiometerandjustobservethecurrent.Youwill<br />

noticecurrentbegintoincreaseallonitsown,withoutfurtherpotentiometermotion! Break


5.14. CURRENTMIRROR 259<br />

thecircuitbyremovingthemeterprobefromTP1whenthecurrentexceeds30mA,toavoid<br />

damagingtransistorQ 2 .<br />

Ifyoucarefullytouchbothtransistorswithafinger,youshouldnoticeQ 2 iswarm,while<br />

Q 1 iscool. Warning:ifQ 2 ’scurrenthasbeenallowedto”runaway”toofarorfortoolonga<br />

time,itmaybecomeveryhot! Youcanreceiveabadburnonyourfingertipbytouchingan<br />

overheatedsemiconductorcomponent,sobecarefulhere!<br />

WhatjusthappenedtomakeQ 2 overheatandlosecurrentcontrol?ByconnectingtheammetertoTP1,allloadresistancewasremoved,soQ<br />

2 hadtodropfullbatteryvoltagebetween<br />

collectorandemitterasitregulatedcurrent.TransistorQ 1 atleasthadthe1.5kΩresistance<br />

ofR limit inplacetodropmostofthebatteryvoltage,soitspowerdissipationwasfarlessthan<br />

thatofQ 2 .ThisgrossimbalanceofpowerdissipationcausedQ 2 toheatmorethanQ 1 .Asthe<br />

temperatureincreased,Q 2 begantopassmorecurrentforthesameamountofbase-emitter<br />

voltagedrop. Thiscausedittoheatupevenfaster,asitwaspassingmorecollectorcurrent<br />

whilestilldroppingthefull12voltsbetweencollectorandemitter.Theeffectisknownasthermalrunaway,anditispossibleinmanybipolarjunctiontransistorcircuits,notjustcurrent<br />

mirrors.<br />

COMPUTERSIMULATION<br />

SchematicwithSPICEnodenumbers:<br />

1<br />

1<br />

V ammeter<br />

3<br />

0 V<br />

V 1<br />

12 V<br />

R limit<br />

Q 1 Q 2<br />

R load<br />

2<br />

4<br />

2<br />

0 0 0<br />

Netlist(makeatextfilecontainingthefollowingtext,verbatim):<br />

Current mirror<br />

v1 1 0<br />

vammeter 1 3 dc 0<br />

rlimit 1 2 10k<br />

rload 3 4 3k<br />

q1 2 2 0 mod1<br />

q2 4 2 0 mod1<br />

.model mod1 npn bf=100<br />

.dc v1 12 12 1


260 CHAPTER5. DISCRETESEMICONDUCTORCIRCUITS<br />

.print dc i(vammeter)<br />

.end<br />

V ammeter isnothingmorethanazero-voltDCbatterystrategicallyplacedtointerceptload<br />

current. ThisisnothingmorethanatricktomeasurecurrentinaSPICEsimulation,asno<br />

dedicated”ammeter”componentexistsintheSPICElanguage.<br />

ItisimportanttorememberthatSPICEonlyrecognizesthefirsteightcharactersofa<br />

component’sname. Thename”vammeter”isokay,butifweweretoincorporatemorethan<br />

onecurrent-measuringvoltagesourceinthecircuitandnamethem”vammeter1”and”vammeter2”,respectively,SPICEwouldseethemasbeingtwoinstancesofthesamecomponent<br />

”vammeter”(seeingonlythefirsteightcharacters)andhaltwithanerror.Somethingtobear<br />

inmindwhenalteringthenetlistorprogrammingyourownSPICEsimulation!<br />

YouwillhavetoexperimentwithdifferentresistancevaluesofR load inthissimulation<br />

toappreciatethecurrent-regulatingnatureofthecircuit. WithR limit setto10kΩanda<br />

powersupplyvoltageof12volts,theregulatedcurrentthroughR load willbe1.1mA.SPICE<br />

showstheregulationtobeperfect(isn’tthevirtualworldofcomputersimulationsonice?),the<br />

loadcurrentremainingat1.1mAforawiderangeofloadresistances. However,iftheload<br />

resistanceisincreasedbeyond10kΩ,eventhissimulationshowstheloadcurrentsufferinga<br />

decreaseasinreallife.


5.15. JFETCURRENTREGULATOR 261<br />

5.15 JFETcurrentregulator<br />

PARTSANDMATERIALS<br />

• OneN-channeljunctionfield-effecttransistor,models2N3819orJ309recommended(RadioShackcatalog#276-2035isthemodel2N3819)<br />

• Two6-voltbatteries<br />

• One10kΩpotentiometer,single-turn,lineartaper(RadioShackcatalog#271-1715)<br />

• One1kΩresistor<br />

• One10kΩresistor<br />

• Three1.5kΩresistors<br />

ForthisexperimentyouwillneedanN-channelJFET,notaP-channel!<br />

Bewarethatnotalltransistorssharethesameterminaldesignations,orpinouts,evenif<br />

theysharethesamephysicalappearance. Thiswilldictatehowyouconnectthetransistors<br />

togetherandtoothercomponents,sobesuretocheckthemanufacturer’sspecifications(componentdatasheet),easilyobtainedfromthemanufacturer’swebsite.Bewarethatitispossible<br />

forthetransistor’spackageandeventhemanufacturer’sdatasheettoshowincorrectterminal<br />

identificationdiagrams! Double-checkingpinidentitieswithyourmultimeter’s”diodecheck”<br />

functionishighlyrecommended.Fordetailsonhowtoidentifyjunctionfield-effecttransistor<br />

terminalsusingamultimeter,consultchapter5oftheSemiconductorvolume(volumeIII)of<br />

thisbookseries.<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume3,chapter5:”JunctionField-EffectTransistors”<br />

LessonsInElectricCircuits,Volume3,chapter3:”DiodesandRectifiers”<br />

LEARNINGOBJECTIVES<br />

• HowtouseaJFETasacurrentregulator<br />

• HowtheJFETisrelativelyimmunetochangesintemperature<br />

SCHEMATICDIAGRAM


262 CHAPTER5. DISCRETESEMICONDUCTORCIRCUITS<br />

-<br />

A<br />

+<br />

R load4 R load3<br />

TP5 TP4<br />

TP3<br />

R load2<br />

6 V<br />

6 V<br />

R adjust<br />

TP2<br />

R load1<br />

TP1<br />

Q 1<br />

R load1 through R load3<br />

are 1.5 kΩ each<br />

R load4 and R adjust<br />

are 10 kΩ each<br />

R limit is 1 kΩ<br />

R limit<br />

ILLUSTRATION<br />

V<br />

A<br />

V<br />

OFF<br />

A<br />

+ - + - COM<br />

A<br />

TP5 TP4 TP3 TP2<br />

SGD<br />

TP1


5.15. JFETCURRENTREGULATOR 263<br />

INSTRUCTIONS<br />

Previouslyinthischapter,yousawhowapairofbipolarjunctiontransistors(BJTs)could<br />

beusedtoformacurrentmirror,wherebyonetransistorwouldtrytomaintainthesame<br />

currentthroughitasthroughtheother,theother’scurrentlevelbeingestablishedbyavariable<br />

resistance.Thiscircuitperformsthesametaskofregulatingcurrent,butusesasinglejunction<br />

field-effecttransistor(JFET)insteadoftwoBJTs.<br />

ThetwoseriesresistorsR adjust andR limit setthecurrentregulationpoint,whiletheload<br />

resistorsandthetestpointsbetweenthemserveonlytodemonstrateconstantcurrentdespite<br />

changesinloadresistance.<br />

Tobegintheexperiment,touchthetestprobetoTP4andadjustthepotentiometerthrough<br />

itsrangeoftravel.Youshouldseeasmall,changingcurrentindicatedbyyourammeterasyou<br />

movethepotentiometermechanism:nomorethanafewmilliamps.Leavethepotentiometer<br />

settoapositiongivingaroundnumberofmilliampsandmovethemeter’sblacktestprobeto<br />

TP3.Thecurrentindicationshouldbeverynearlythesameasbefore.MovetheprobetoTP2,<br />

thenTP1. Again,youshouldseeanearlyunchangedamountofcurrent. Tryadjustingthe<br />

potentiometertoanotherposition,givingadifferentcurrentindication,andtouchthemeter’s<br />

blackprobetotestpointsTP1throughTP4,notingthestabilityofthecurrentindicationsas<br />

youchangeloadresistance.Thisdemonstratesthecurrentregulatingbehaviorofthiscircuit.<br />

TP5,attheendofa10kΩresistor,isprovidedforintroducingalargechangeinload<br />

resistance.Connectingtheblacktestprobeofyourammetertothattestpointgivesacombined<br />

loadresistanceof14.5kΩ,whichwillbetoomuchresistanceforthetransistortomaintain<br />

maximumregulatedcurrentthrough.ToexperiencewhatI’mdescribinghere,touchtheblack<br />

testprobetoTP1andadjustthepotentiometerformaximumcurrent.Now,movetheblacktest<br />

probetoTP2,thenTP3,thenTP4.Forallthesetestpointpositions,thecurrentwillremain<br />

approximatelyconstant.However,whenyoutouchtheblackprobetoTP5,thecurrentwillfall<br />

dramatically.Why?Becauseatthislevelofloadresistance,thereisinsufficientvoltagedrop<br />

acrossthetransistortomaintainregulation.Inotherwords,thetransistorwillbesaturated<br />

asitattemptstoprovidemorecurrentthanthecircuitresistancewillallow.<br />

MovetheblacktestprobebacktoTP1andadjustthepotentiometerforminimumcurrent.<br />

Now,touchtheblacktestprobetoTP2,thenTP3,thenTP4,andfinallyTP5. Whatdoyou<br />

noticeaboutthecurrentindicationatallthesepoints? Whenthecurrentregulationpointis<br />

adjustedtoalesservalue,thetransistorisabletomaintainregulationoveramuchlarger<br />

rangeofloadresistance.<br />

AnimportantcaveatwiththeBJTcurrentmirrorcircuitisthatbothtransistorsmustbe<br />

atequaltemperatureforthetwocurrentstobeequal. Withthiscircuit,however,transistor<br />

temperatureisalmostirrelevant. Trygraspingthetransistorbetweenyourfingerstoheat<br />

itup,notingtheloadcurrentwithyourammeter. Trycoolingitdownafterwardbyblowing<br />

onit. Notonlyistherequirementoftransistormatchingeliminated(duetotheuseofjust<br />

onetransistor),butthethermaleffectsareallbuteliminatedaswellduetotherelativethermalimmunityofthefield-effecttransistor.<br />

Thisbehavioralsomakesfield-effecttransistors<br />

immunetothermalrunaway;adecidedadvantageoverbipolarjunctiontransistors.<br />

Aninterestingapplicationofthiscurrent-regulatorcircuitistheso-calledconstant-current<br />

diode.Describedinthe”DiodesandRectifiers”chapterofvolumeIII,thisdiodeisn’treallya<br />

PNjunctiondeviceatall.Instead,itisaJFETwithafixedresistanceconnectedbetweenthe<br />

gateandsourceterminals:


264 CHAPTER5. DISCRETESEMICONDUCTORCIRCUITS<br />

Constant-current diode<br />

Anode<br />

Symbol<br />

Anode<br />

Actual<br />

device<br />

Cathode<br />

AnormalPN-junctiondiodeisincludedinserieswiththeJFETtoprotectthetransistor<br />

againstdamagefromreverse-biasvoltage,butotherwisethecurrent-regulatingfacilityofthis<br />

deviceisentirelyprovidedbythefield-effecttransistor.<br />

COMPUTERSIMULATION<br />

SchematicwithSPICEnodenumbers:<br />

1 1<br />

Cathode<br />

R load<br />

4.5 kΩ<br />

2<br />

V source 0 J 1<br />

3<br />

R limit 1 kΩ<br />

0 0 0<br />

Netlist(makeatextfilecontainingthefollowingtext,verbatim):<br />

JFET current regulator<br />

vsource 1 0<br />

rload 1 2 4.5k<br />

j1 2 0 3 mod1<br />

rlimit 3 0 1k<br />

.model mod1 njf<br />

.dc vsource 6 12 0.1<br />

.plot dc i(vsource)


5.15. JFETCURRENTREGULATOR 265<br />

.end<br />

SPICEdoesnotallowfor”sweeping”resistancevalues,sotodemonstratethecurrentregulationofthiscircuitoverawiderangeofconditions,I’veelectedtosweepthesourcevoltage<br />

from6to12voltsin0.1voltsteps.Ifyouwish,youcanset rloadtodifferentresistancevaluesandverifythatthecircuitcurrentremainsconstant.<br />

Withan rlimitvalueof1kΩ,the<br />

regulatedcurrentwillbe291.8 µA.Thiscurrentfigurewillmostlikelynotbethesameasyour<br />

actualcircuitcurrent,duetodifferencesinJFETparameters.<br />

ManymanufacturersgiveSPICEmodelparametersfortheirtransistors,whichmaybe<br />

typedinthe.modellineofthenetlistforamoreaccuratecircuitsimulation.


266 CHAPTER5. DISCRETESEMICONDUCTORCIRCUITS<br />

5.16 Differentialamplifier<br />

PARTSANDMATERIALS<br />

• Two6-voltbatteries<br />

• TwoNPNtransistors–models2N2222or2N3403recommended(RadioShackcatalog#<br />

276-1617isapackageoffifteenNPNtransistorsidealforthisandotherexperiments)<br />

• Two10kΩpotentiometers,single-turn,lineartaper(RadioShackcatalog#271-1715)<br />

• Two22kΩresistors<br />

• Two10kΩresistors<br />

• One100kΩresistor<br />

• One1.5kΩresistor<br />

Resistorvaluesarenotespeciallycriticalinthisexperiment,buthavebeenchosentoprovidehighvoltagegainfora”comparator-like”differentialamplifierbehavior.<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume3,chapter4:”BipolarJunctionTransistors”<br />

LessonsInElectricCircuits,Volume3,chapter8:”OperationalAmplifiers”<br />

LEARNINGOBJECTIVES<br />

• Basicdesignofadifferentialamplifiercircuit.<br />

• Workingdefinitionsofdifferentialandcommon-modevoltages<br />

SCHEMATICDIAGRAM<br />

6 V<br />

6 V<br />

22 kΩ 100 22 kΩ<br />

kΩ<br />

V out<br />

10 kΩ 10 kΩ<br />

Q<br />

10 kΩ 1 Q 2<br />

10 kΩ<br />

(noninv)<br />

(inv)<br />

1.5 kΩ


5.16. DIFFERENTIALAMPLIFIER 267<br />

ILLUSTRATION<br />

+ - CBE CBE<br />

Noninverting<br />

+ -<br />

Inverting<br />

INSTRUCTIONS<br />

Thiscircuitformstheheartofmostoperationalamplifiercircuits:thedifferentialpair.In<br />

theformshownhere,itisarathercrudedifferentialamplifier,quitenonlinearandunsymmetricalwithregardtooutputvoltageversusinputvoltage(s).<br />

Withahighvoltagegaincreated<br />

byalargecollector/emitterresistorratio(100kΩ/1.5kΩ),though,itactsprimarilyasacomparator:theoutputvoltagerapidlychangingvalueasthetwoinputvoltagesignalsapproach<br />

equality.<br />

Measuretheoutputvoltage(voltageatthecollectorofQ 2 withrespecttoground)asthe<br />

inputvoltagesarevaried.Notehowthetwopotentiometershavedifferenteffectsontheoutput<br />

voltage:oneinputtendstodrivetheoutputvoltageinthesamedirection(noninverting),while<br />

theothertendstodrivetheoutputvoltageintheoppositedirection(inverting). Thisisthe<br />

essentialnatureofadifferentialamplifier: twocomplementaryinputs,withcontraryeffects<br />

ontheoutputsignal. Ideally,theoutputvoltageofsuchanamplifierisstrictlyafunctionof<br />

thedifferencebetweenthetwoinputsignals.Thiscircuitfallsconsiderablyshortoftheideal,<br />

asevenacursorytestwillreveal.<br />

Anidealdifferentialamplifierignoresallcommon-modevoltage,whichiswhateverlevelof<br />

voltagecommontobothinputs.Forexample,iftheinvertinginputisat3voltsandthenoninvertinginputat2.5volts,thedifferentialvoltagewillbe0.5volts(3-2.5)butthecommon-mode<br />

voltagewillbe2.5volts,sincethatisthelowestinputsignallevel.Ideally,thisconditionshould<br />

producethesameoutputsignalvoltageasiftheinputsweresetat3.5and3volts,respectively<br />

(0.5voltsdifferential,witha3voltcommon-modevoltage).However,thiscircuitdoesnotgive<br />

thesameresultforthetwodifferentinputsignalscenarios.Inotherwords,itsoutputvoltage<br />

dependsonboththedifferentialvoltageandthecommon-modevoltage.<br />

Asimperfectasthisdifferentialamplifieris,itsbehaviorcouldbeworse. Notehowthe<br />

inputsignalpotentiometershavebeenlimitedby22kΩresistorstoanadjustablerangeof<br />

approximately0to4volts,givenapowersupplyvoltageof12volts. Ifyou’dliketoseehow<br />

thiscircuitbehaveswithoutanyinputsignallimiting,justbypassthe22kΩresistorswith<br />

jumperwires,allowingfull0to12voltadjustmentrangefromeachpotentiometer.<br />

Donotworryaboutbuildingupexcessiveheatwhileadjustingpotentiometersinthiscircuit!Unlikethecurrentmirrorcircuit,thiscircuitisprotectedfromthermalrunawaybythe


268 CHAPTER5. DISCRETESEMICONDUCTORCIRCUITS<br />

emitterresistor(1.5kΩ),whichdoesn’tallowenoughtransistorcurrenttocauseanyproblem.


5.17. SIMPLEOP-AMP 269<br />

5.17 Simpleop-amp<br />

PARTSANDMATERIALS<br />

• Two6-voltbatteries<br />

• FourNPNtransistors–models2N2222or2N3403recommended(RadioShackcatalog#<br />

276-1617isapackageoffifteenNPNtransistorsidealforthisandotherexperiments)<br />

• TwoPNPtransistors–models2N2907or2N3906recommended(RadioShackcatalog#<br />

276-1604isapackageoffifteenPNPtransistorsidealforthisandotherexperiments)<br />

• Two10kΩpotentiometers,single-turn,lineartaper(RadioShackcatalog#271-1715)<br />

• One270kΩresistor<br />

• Three100kΩresistors<br />

• One10kΩresistor<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume3,chapter4:”BipolarJunctionTransistors”<br />

LessonsInElectricCircuits,Volume3,chapter8:”OperationalAmplifiers”<br />

LEARNINGOBJECTIVES<br />

• Designofadifferentialamplifiercircuitusingcurrentmirrors.<br />

• Effectsofnegativefeedbackonahigh-gaindifferentialamplifier.<br />

SCHEMATICDIAGRAM<br />

100<br />

kΩ<br />

Q 1 Q 2<br />

R prg<br />

Q 3 Q 4<br />

6 V<br />

6 V<br />

10 kΩ<br />

(noninv)<br />

V out<br />

10 kΩ<br />

(inv)<br />

Q 5 Q 6


270 CHAPTER5. DISCRETESEMICONDUCTORCIRCUITS<br />

ILLUSTRATION<br />

CBE<br />

CBE CBE CBE<br />

+ - Noninverting<br />

CBE<br />

CBE<br />

+ -<br />

Inverting<br />

INSTRUCTIONS<br />

Thiscircuitdesignimprovesonthedifferentialamplifiershownpreviously. Ratherthan<br />

useresistorstodropvoltageinthedifferentialpaircircuit,asetofcurrentmirrorsisused<br />

instead,theresultbeinghighervoltagegainandmorepredictableperformance.Withahigher<br />

voltagegain,thiscircuitisabletofunctionasaworkingoperationalamplifier,orop-amp.Opampsformthebasisofagreatmanymodernanalogsemiconductorcircuits,sounderstanding<br />

theinternalworkingsofanoperationalamplifierisimportant.<br />

PNPtransistorsQ 1 andQ 2 formacurrentmirrorwhichtriestokeepcurrentsplitequally<br />

throughthetwodifferentialpairtransistorsQ 3 andQ 4 . NPNtransistorsQ 5 andQ 6 form<br />

anothercurrentmirror,settingthetotaldifferentialpaircurrentatalevelpredeterminedby<br />

resistorR prg .<br />

Measuretheoutputvoltage(voltageatthecollectorofQ 4 withrespecttoground)asthe<br />

inputvoltagesarevaried.Notehowthetwopotentiometershavedifferenteffectsontheoutput<br />

voltage:oneinputtendstodrivetheoutputvoltageinthesamedirection(noninverting),while<br />

theothertendstodrivetheoutputvoltageintheoppositedirection(inverting).Youwillnotice<br />

thattheoutputvoltageismostresponsivetochangesintheinputwhenthetwoinputsignals<br />

arenearlyequaltoeachother.<br />

Oncethecircuit’sdifferentialresponsehasbeenproven(theoutputvoltagesharplytransitioningfromoneextremeleveltoanotherwhenoneinputisadjustedaboveandbelowtheother<br />

input’svoltagelevel),youarereadytousethiscircuitasarealop-amp.Asimpleop-ampcircuit<br />

calledavoltagefollowerisagoodconfigurationtotryfirst.Tomakeavoltagefollowercircuit,<br />

directlyconnecttheoutputoftheamplifiertoitsinvertinginput.Thismeansconnectingthe<br />

collectorandbaseterminalsofQ 4 together,anddiscardingthe”inverting”potentiometer:


5.17. SIMPLEOP-AMP 271<br />

100<br />

kΩ<br />

Q 1 Q 2<br />

R prg<br />

Q 3 Q 4<br />

6 V<br />

6 V<br />

10 kΩ<br />

V in<br />

V out<br />

Q 5 Q 6<br />

Op-amp diagram<br />

−<br />

V in<br />

+<br />

V out<br />

CBE<br />

CBE CBE CBE<br />

+ - Noninverting<br />

CBE<br />

CBE<br />

+ -<br />

Notethetriangularsymboloftheop-ampshowninthelowerschematicdiagram. The<br />

invertingandnoninvertinginputsaredesignatedwith(-)and(+)symbols,respectively,with<br />

theoutputterminalattherightapex.Thefeedbackwireconnectingoutputtoinvertinginput<br />

isshowninredintheabovediagrams.<br />

Asavoltagefollower,theoutputvoltageshould”follow”theinputvoltageveryclosely,deviatingnomorethanafewhundredthsofavolt.Thisisamuchmoreprecisefollowercircuit<br />

thanthatofasinglecommon-collectortransistor,describedinanearlierexperiment!


272 CHAPTER5. DISCRETESEMICONDUCTORCIRCUITS<br />

Amorecomplexop-ampcircuitiscalledthenoninvertingamplifier,anditusesapairofresistorsinthefeedbackloopto”feedback”afractionoftheoutputvoltagetotheinvertinginput,<br />

causingtheamplifiertooutputavoltageequaltosomemultipleofthevoltageatthenoninvertinginput.Ifweusetwoequal-valueresistors,thefeedbackvoltagewillbe1/2theoutput<br />

voltage,causingtheoutputvoltagetobecometwicethevoltageimpressedatthenoninverting<br />

input.Thus,wehaveavoltageamplifierwithaprecisegainof2:<br />

100<br />

kΩ<br />

Q 1 Q 2<br />

R prg<br />

Q 3 Q 4<br />

6 V<br />

6 V<br />

10 kΩ<br />

V in<br />

V out<br />

100 kΩ<br />

100 kΩ<br />

Q 5 Q 6<br />

Op-amp diagram<br />

−<br />

V in<br />

+<br />

V out<br />

CBE<br />

CBE CBE CBE<br />

+ - Noninverting<br />

CBE<br />

CBE<br />

+ -


5.17. SIMPLEOP-AMP 273<br />

Asyoutestthisnoninvertingamplifiercircuit,youmaynoticeslightdiscrepanciesbetween<br />

theoutputandinputvoltages. Accordingtothefeedbackresistorvalues,thevoltagegain<br />

shouldbeexactly2. However,youmaynoticedeviationsintheorderofseveralhundredths<br />

ofavoltbetweenwhattheoutputvoltageisandwhatitshouldbe.Thesedeviationsaredue<br />

toimperfectionsofthedifferentialamplifiercircuit,andmaybegreatlydiminishedifweadd<br />

moreamplificationstagestoincreasethedifferentialvoltagegain.However,onewaywecan<br />

maximizetheprecisionoftheexistingcircuitistochangetheresistanceofR prg .Thisresistor<br />

setsthelowercurrentmirror’scontrolpoint,andinsodoinginfluencesmanyperformance<br />

parametersoftheop-amp.Trysubstitutingdifferenceresistancevalues,rangingfrom10kΩ<br />

to1MΩ.Donotusearesistancelessthan10kΩ,orelsethecurrentmirrortransistorsmay<br />

begintooverheatandthermally”runaway.”<br />

Someoperationalamplifiersavailableinprepackagedunitsprovideawayfortheuserto<br />

similarly”program”thedifferentialpair’scurrentmirror,andarecalledprogrammableopamps.<br />

Mostop-ampsarenotprogrammable,andhavetheirinternalcurrentmirrorcontrol<br />

pointsfixedbyaninternalresistance,trimmedtoprecisevalueatthefactory.


274 CHAPTER5. DISCRETESEMICONDUCTORCIRCUITS<br />

5.18 Audiooscillator<br />

PARTSANDMATERIALS<br />

• Two6-voltbatteries<br />

• ThreeNPNtransistors–models2N2222or2N3403recommended(RadioShackcatalog<br />

#276-1617isapackageoffifteenNPNtransistorsidealforthisandotherexperiments)<br />

• Two0.1 µFcapacitors(RadioShackcatalog#272-135orequivalent)<br />

• One1MΩresistor<br />

• Two100kΩresistors<br />

• One1kΩresistor<br />

• Assortmentofresistorpairs,lessthan100kΩ(ex:two10kΩ,two5kΩ,two1kΩ)<br />

• Onelight-emittingdiode(RadioShackcatalog#276-026orequivalent)<br />

• Audiodetectorwithheadphones<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume3,chapter4:”BipolarJunctionTransistors”<br />

LessonsInElectricCircuits,Volume4,chapter10:”Multivibrators”<br />

LEARNINGOBJECTIVES<br />

• Howtobuildanastablemultivibratorcircuitusingdiscretetransistors<br />

SCHEMATICDIAGRAM<br />

100 kΩ 100 kΩ<br />

0.1 µF 0.1 µF<br />

6 V<br />

Probe<br />

1 kΩ<br />

6 V<br />

ILLUSTRATION


5.18. AUDIOOSCILLATOR 275<br />

CBE<br />

CBE CBE<br />

+ - + -<br />

INSTRUCTIONS<br />

Thepropernameforthiscircuitis”astablemultivibrator”. Itisasimple,free-running<br />

oscillatorcircuittimedbythesizesoftheresistors,capacitors,andpowersupplyvoltage.Unfortunately,itsoutputwaveformisverydistorted,neithersinewavenorsquare.Forthesimple<br />

purposeofmakinganaudiotone,however,distortiondoesn’tmattermuch.<br />

Witha12voltsupply,100kΩresistors,and0.1 µFcapacitors,theoscillationfrequencywill<br />

beinthelowaudiorange. Youmaylistentothissignalwiththeaudiodetectorconnected<br />

withonetestprobetogroundandtheothertooneofthetransistor’scollectorterminals. I<br />

recommendplacinga1MΩresistorinserieswiththeaudiodetectortominimizebothcircuit<br />

loadingeffectsandheadphoneloudness:<br />

CBE<br />

CBE CBE<br />

+ - + -<br />

headphones<br />

plug<br />

Sensitivity<br />

1 MΩ<br />

Use resistor lead<br />

as test probe for<br />

audio detector


276 CHAPTER5. DISCRETESEMICONDUCTORCIRCUITS<br />

Themultivibratoritselfisjusttwotransistors,tworesistors,andtwocross-connectingcapacitors.Thethirdtransistorshownintheschematicandillustrationistherefordrivingthe<br />

LED,tobeusedasavisualindicatorofoscillatoraction.Usetheprobewireconnectedtothe<br />

baseofthiscommon-emitteramplifiertodetectvoltageatdifferentpartsofthecircuitwith<br />

respecttoground.Giventhelowoscillatingfrequencyofthismultivibratorcircuit,youshould<br />

beabletoseetheLEDblinkrapidlywiththeprobewireconnectedtothecollectorterminalof<br />

eithermultivibratortransistor.<br />

YoumaynoticethattheLEDfailstoblinkwithitsprobewiretouchingthebaseofeither<br />

multivibratortransistor,yettheaudiodetectortellsyouthereisanoscillatingvoltagethere.<br />

Whyisthis? TheLED’scommon-collectortransistoramplifierisavoltagefollower,meaning<br />

thatitdoesn’tamplifyvoltage. Thus,ifthevoltageundertestislessthantheminimumrequiredbytheLEDtolightup,itwillnotglow.Sincetheforward-biasedbase-emitterjunction<br />

ofanactivetransistordropsonlyabout0.7volts,thereisinsufficientvoltageateithertransistorbasetoenergizetheLED.Theaudiodetector,beingextraordinarilysensitive,though,<br />

detectsthislowvoltagesignaleasily.<br />

Feelfreetosubstitutelower-valueresistorsinplaceofthetwo100kΩunitsshown.What<br />

happenstotheoscillationfrequencywhenyoudoso? Irecommendusingresistorsatleast1<br />

kΩinsizetopreventexcessivetransistorcurrent.<br />

Oneshortcomingofmanyoscillatorcircuitsisitsdependenceonaminimumamountof<br />

powersupplyvoltage. Toolittlevoltageandthecircuitceasestooscillate. Thiscircuitisno<br />

exception.Youmightwanttoexperimentwithlowersupplyvoltagesanddeterminetheminimumvoltagenecessaryforoscillation,aswellasexperiencetheeffectsupplyvoltagechange<br />

hasonoscillationfrequency.<br />

Oneshortcomingspecifictothiscircuitisthedependenceonmismatchedcomponentsfor<br />

successfulstarting. Inorderforthecircuittobeginoscillating,onetransistormustturnon<br />

beforetheotherone. Usually,thereisenoughmismatchinthevariouscomponentvaluesto<br />

enablethistohappen,butitispossibleforthecircuitto”freeze”andfailtooscillateatpowerup.Ifthishappens,trydifferentcomponents(samevalues,butdifferentunits)inthecircuit.


5.19. VACUUMTUBEAUDIOAMPLIFIER 277<br />

5.19 Vacuumtubeaudioamplifier<br />

PARTSANDMATERIALS<br />

• One12AX7dualtriodevacuumtube<br />

• Twopowertransformers,120VACstep-downto12VAC(RadioShackcatalog#273-1365,<br />

273-1352,or273-1511).<br />

• Bridgerectifiermodule(RadioShackcatalog#276-1173)<br />

• Electrolyticcapacitor,atleast47 µF,withaworkingvoltageofatleast200voltsDC.<br />

• Automotiveignitioncoil<br />

• Audiospeaker,8Ωimpedance<br />

• Two100kΩresistors<br />

• One0.1 µFcapacitor,250WVDC(RadioShackcatalog#272-1053)<br />

• ”Low-voltageACpowersupply”asshowninAC<strong>Experiments</strong>chapter<br />

• Onetoggleswitch,SPST(”Single-Pole,Single-Throw”)<br />

• Radio,tapeplayer,musicalkeyboard,orothersourceofaudiovoltagesignal<br />

Wherecanyouobtaina12AX7tube,youask?Thesetubesareverypopularforuseinthe<br />

”preamplifier”stagesofmanyprofessionalelectricguitaramplifiers. Gotoanygoodmusic<br />

storeandyouwillfindthemavailableforamodestprice($12USorless).ARussianmanufacturernamedSovtekmakesthesetubesnew,soyouneednotrelyon”New-Old-Stock”(NOS)<br />

componentsleftoverfromdefunctAmericanmanufacturers. Thismodeloftubewasvery<br />

popularinitsday,andmaybefoundinold”tubed”electronictestequipment(oscilloscopes,oscillators),ifyouhappentohaveaccesstosuchequipment.However,Istronglysuggestbuying<br />

atubenewratherthantakingchanceswithtubessalvagedfromantiqueequipment.<br />

Itisimportanttoselectanelectrolyticcapacitorwithsufficientworkingvoltage(WVDC)<br />

towithstandtheoutputofthisamplifier’spowersupplycircuit(about170volts). Istrongly<br />

recommendchoosingacapacitorwithavoltageratingwellinexcessoftheexpectedoperatingvoltage,soastohandleunexpectedvoltagesurgesoranyothereventthatmaytaxthe<br />

capacitor. IpurchasedtheRadioShackelectrolyticcapacitorassortment(catalog#272-802),<br />

andithappenedtocontaintwo47 µF,250WVDCcapacitors.Ifyouarenotasfortunate,you<br />

maybuildthiscircuitusingfivecapacitors,eachratedat50WVDC,tosubstituteforone250<br />

WVDCunit:


278 CHAPTER5. DISCRETESEMICONDUCTORCIRCUITS<br />

22 kΩ<br />

(Each capacitor rated<br />

for 50 volts DC)<br />

22 kΩ<br />

22 kΩ<br />

equivalent to<br />

22 kΩ<br />

22 kΩ<br />

250<br />

WVDC<br />

110 kΩ<br />

Bearinmindthatthetotalcapacitanceforthisfive-capacitornetworkwillbe1/5,or20%,<br />

ofeachcapacitor’svalue. Also,toensureevenchargingofcapacitorsinthenetwork,besure<br />

allcapacitorvalues(in µF)andallresistorvaluesareidentical.<br />

Anautomotiveignitioncoilisaspecial-purposehigh-voltagetransformerusedincarenginestoproducetensofthousandsofvoltsto”fire”thesparkplugs.<br />

Inthisexperiment,itis<br />

used(veryunconventionally,Imightadd!) asanimpedance-matchingtransformerbetween<br />

thevacuumtubeandan8Ωaudiospeaker.Thespecificchoiceof”coil”isnotcritical,solong<br />

asitisingoodoperatingcondition.HereisaphotographofthecoilIusedforthisexperiment:


5.19. VACUUMTUBEAUDIOAMPLIFIER 279<br />

Theaudiospeakerneednotbeextravagant.I’veusedsmall”bookshelf”speakers,automotive(6”x9”)speakers,aswellasalarge(100watt)3-waystereospeakerforthisexperiment,<br />

andtheyallworkfine. Donotuseasetofheadphonesunderanycircumstances,asthe<br />

ignitioncoildoesnotprovideelectricalisolationbetweenthe170voltsDCofthe”plate”power<br />

supplyandthespeaker,thuselevatingthespeakerconnectionstothatvoltagewithrespectto<br />

ground.Sinceobviouslyplacingwiresonyourheadwithhighvoltagetogroundwouldbevery<br />

hazardous,pleasedonotuseheadphones!<br />

Youwillneedsomesourceofaudio-frequencyACasaninputsignaltothisamplifiercircuit.<br />

Irecommendasmallbattery-poweredradioormusicalkeyboard,withanappropriatecable<br />

pluggedintothe”headphone”or”audioout”jacktoconveythesignaltoyouramplifier.<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume3,chapter13:”ElectronTubes”<br />

LessonsInElectricCircuits,Volume3,chapter3:”DiodesandRectifiers”<br />

LessonsInElectricCircuits,Volume2,chapter9:”Transformers”<br />

LEARNINGOBJECTIVES<br />

• Usingavacuumtube(triode)asanaudioamplifier<br />

• Usingtransformersinbothstep-downandstep-upoperation<br />

• Howtobuildahigh-voltageDCpowersupply<br />

• Usingatransformertomatchimpedances


280 CHAPTER5. DISCRETESEMICONDUCTORCIRCUITS<br />

SCHEMATICDIAGRAM<br />

B+<br />

(100 to 300 volts DC)<br />

Class-A single-ended<br />

tube audio amplifier<br />

-<br />

+<br />

8 Ω speaker<br />

Automotive<br />

ignition "coil"<br />

0.1 µF<br />

Audio<br />

input<br />

100 kΩ<br />

12AX7 "hi-mu"<br />

dual triode tube<br />

to filament power<br />

(12 volts AC)


5.19. VACUUMTUBEAUDIOAMPLIFIER 281<br />

High-voltage "plate" DC power supply<br />

Plug<br />

Switch<br />

Fuse<br />

(optional)<br />

Low-voltage AC<br />

power supply<br />

120/12<br />

ratio<br />

Transformer<br />

12 volt AC<br />

to filaments<br />

Plate supply<br />

switch<br />

100 kΩ<br />

DANGER! High voltage!!<br />

≈ 170 volts<br />

B+<br />

12/120<br />

ratio<br />

Transformer<br />

47 µF<br />

250 WVDC<br />

ILLUSTRATION


282 CHAPTER5. DISCRETESEMICONDUCTORCIRCUITS<br />

Low-voltage<br />

AC power supply<br />

12<br />

6 6<br />

"Plate supply"<br />

switch<br />

12 volt<br />

side<br />

120 volt<br />

side<br />

-<br />

-<br />

-<br />

+<br />

Ground<br />

B+<br />

Filament<br />

power<br />

Power supply<br />

Amplifier<br />

+ -<br />

Audio<br />

input<br />

5<br />

4<br />

6<br />

3<br />

7<br />

2<br />

8<br />

1<br />

9<br />

12AX7 tube<br />

Speaker<br />

INSTRUCTIONS<br />

Welcometotheworldofvacuumtubeelectronics!Whilenotexactlyanapplicationofsemiconductortechnology(powersupplyrectifierexcepted),thiscircuitisusefulasanintroduction<br />

tovacuumtubetechnology,andaninterestingapplicationforimpedance-matchingtransformers.<br />

Itshouldbenotedthatbuildingandoperatingthiscircuitinvolvesworkwith<br />

lethalvoltages! Youmustexhibittheutmostcarewhileworkingwiththiscircuit,as170<br />

voltsDCiscapableofelectrocutingyou!!Itisrecommendedthatbeginnersseekqualifiedassistance(experiencedelectricians,electronicstechnicians,orengineers)ifattemptingtobuild<br />

thisamplifier.<br />

WARNING:donottouchanywiresorterminalswhiletheamplifiercircuitisenergized!<br />

Ifyoumustmakecontactwiththecircuitatanypoint,turnoffthe”plate”power<br />

supplyswitchandwaitforthefiltercapacitortodischargebelow30voltsbeforetouchingany<br />

partofthecircuit.Iftestingcircuitvoltageswiththepoweron,useonlyonehandifpossible<br />

toavoidthepossibilityofanarm-to-armelectricshock.


5.19. VACUUMTUBEAUDIOAMPLIFIER 283<br />

Buildingthehigh-voltagepowersupply<br />

VacuumtubesrequirefairlyhighDCvoltageappliedbetweenplateandcathodeterminals<br />

inordertofunctionefficiently.Althoughitispossibletooperatetheamplifiercircuitdescribed<br />

inthisexperimentonaslowas24voltsDC,thepoweroutputwillbeminisculeandthesound<br />

qualitypoor.The12AX7triodeisratedatamaximum”platevoltage”(voltageappliedbetween<br />

plateandcathodeterminals)of330volts,soourpowersupplyof170voltsDCspecifiedhere<br />

iswellwithinthatmaximumlimit. I’veoperatedthisamplifieronashighas235voltsDC,<br />

anddiscoveredthatbothsoundqualityandintensityimprovedslightly,butnotenoughinmy<br />

estimationtowarranttheadditionalhazardtoexperimenters.<br />

Thepowersupplyactuallyhastwodifferentpoweroutputs:the”B+”DCoutputforplate<br />

power,andthe”filament”power,whichisonly12voltsAC.Tubesrequirepowerappliedto<br />

asmallfilament(sometimescalledaheater)inordertofunction,asthecathodemustbehot<br />

enoughtothermallyemitelectrons,andthatdoesn’thappenatroomtemperature!Usingone<br />

powertransformertostephousehold120voltACpowerdownto12voltsACprovideslowvoltageforthefilaments,andanothertransformerconnectedinstep-upfashionbringsthe<br />

voltagebackupto120volts. Youmightbewondering,”whystepthevoltagebackupto120<br />

voltswithanothertransformer? Whynotjusttapoffthewallsocketplugtoobtain120volt<br />

ACpowerdirectly,andthenrectifythatinto170voltsDC?”Theanswertothisistwofold:<br />

first,runningpowerthroughtwotransformersinherentlylimitstheamountofcurrentthat<br />

maybesentintoanaccidentalshort-circuitontheplate-sideoftheamplifiercircuit.Second,it<br />

electricallyisolatestheplatecircuitfromthewiringsystemofyourhouse.Ifweweretorectify<br />

wall-socketpowerwithadiodebridge,itwouldmakebothDCterminals(+and-)elevatedin<br />

voltagefromthesafetygroundconnectionofyourhouse’selectricalsystem,therebyincreasing<br />

theshockhazard.<br />

Notethetoggleswitchconnectedbetweenthe12-voltwindingsofthetwotransformers,<br />

labeled”Platesupplyswitch.”Thisswitchcontrolspowertothestep-uptransformer,thereby<br />

controllingplatevoltagetotheamplifiercircuit. Whynotjustusethemainpowerswitch<br />

connectedtothe120voltplug? WhyhaveasecondswitchtoshutofftheDChighvoltage,<br />

whenshuttingoffonemainswitchwouldaccomplishthesamething? Theanswerliesin<br />

propervacuumtubeoperation:likeincandescentlightbulbs,vacuumtubes”wear”whentheir<br />

filamentsarepoweredupanddownrepeatedly,sohavingthisadditionalswitchinthecircuit<br />

allowsyoutoshutofftheDChighvoltage(forsafetywhenmodifyingoradjustingthecircuit)<br />

withouthavingtoshutoffthefilament.Also,itisagoodhabittowaitforthetubetoreachfull<br />

operatingtemperaturebeforeapplyingplatevoltage,andthissecondswitchallowsyoutodelay<br />

theapplicationofplatevoltageuntilthetubehashadtimetoreachoperatingtemperature.<br />

Duringoperation,youshouldhaveavoltmeterconnectedtothe”B+”outputofthepower<br />

supply(betweentheB+terminalandground),continuouslyprovidingindicationofthepower<br />

supplyvoltage. Thismeterwillshowyouwhenthefiltercapacitorhasdischargedbelowthe<br />

shock-hazardlimit(30volts)whenyouturnoffthe”Platesupplyswitch”toservicetheamplifiercircuit.<br />

The”ground”terminalshownontheDCoutputofthepowersupplycircuitneednotconnecttoearthground.<br />

Rather,itismerelyasymbolshowingacommonconnectionwitha<br />

correspondinggroundterminalsymbolintheamplifiercircuit.Inthecircuityoubuild,there<br />

willbeapieceofwireconnectingthesetwo”ground”pointstogether.Asalways,thedesignationofcertaincommonpointsinacircuitbymeansofasharedsymbolisstandardpracticein<br />

electronicschematics.


284 CHAPTER5. DISCRETESEMICONDUCTORCIRCUITS<br />

Youwillnotethattheschematicdiagramshowsa100kΩresistorinparallelwiththefilter<br />

capacitor.Thisresistorisquitenecessary,asitprovidesthecapacitorapathfordischargewhen<br />

theACpoweristurnedoff.Withoutthis”bleeder”resistorinthecircuit,thecapacitorwould<br />

likelyretainadangerouschargeforalongtimeafter”power-down,”posinganadditionalshock<br />

hazardtoyou.InthecircuitIbuilt–witha47 µFcapacitoranda100kΩbleederresistor–<br />

thetimeconstantofthisRCcircuitwasabrief4.7seconds.Ifyouhappentofindalargerfilter<br />

capacitorvalue(goodforminimizingunwantedpowersupply”hum”inthespeaker),youwill<br />

needtouseacorrespondinglysmallervalueofbleederresistor,orwaitlongerforthevoltage<br />

tobleedoffeachtimeyouturnthe”Platesupply”switchoff.<br />

Besureyouhavethepowersupplysafelyconstructedandworkingreliablybeforeattemptingtopowertheamplifiercircuitwithit.<br />

Thisisgoodcircuit-buildingpracticeingeneral:<br />

buildandtroubleshootthepowersupplyfirst,thenbuildthecircuityouintendtopowerwith<br />

it.Ifthepowersupplydoesnotfunctionasitshould,thenneitherwillthepoweredcircuit,no<br />

matterhowwellitmaybedesignedandbuilt.<br />

Buildingtheamplifier<br />

Oneoftheproblemswithbuildingvacuumtubecircuitsinthe21stcenturyisthatsockets<br />

forthesecomponentscanbedifficulttofind.Giventhelimitedlifetimeofmost”receiver”tubes<br />

(afewyears),most”tubed”electronicdevicesusedsocketsformountingthetubes,sothatthey<br />

couldbeeasilyremovedandreplaced.Thoughtubesmaystillbeobtained(frommusicsupply<br />

stores)withrelativeease,thesocketstheyplugintoareconsiderablyscarcer–yourlocalRadio<br />

Shackwillnothavetheminstock!How,then,dowebuildcircuitswithtubes,ifwemightnot<br />

beabletoobtainsocketsforthemtopluginto?<br />

Forsmalltubes,thisproblemmaybecircumventedbydirectlysolderingshortlengthsof<br />

22-gaugesolidcopperwiretothepinsofthetube,thusenablingyouto”plug”thetubeinto<br />

asolderlessbreadboard. Hereisaphotographofmytubeamplifier,showingthe12AX7in<br />

aninvertedposition(pin-side-up).Pleasedisregardthe10-segmentLEDbargraphtotheleft<br />

andthe8-positionDIPswitchassemblytotherightinthephotograph,astheseareleftover<br />

componentsfromadigitalcircuitexperimentassembledpreviouslyonmybreadboard.


5.19. VACUUMTUBEAUDIOAMPLIFIER 285<br />

Onebenefitofmountingthetubeinthispositioniseaseofpinidentification,sincemost<br />

”pinconnectiondiagrams”fortubesareshownfromabottomview:<br />

12AX7 dual triode tube<br />

Filament 1<br />

5<br />

Filament 2<br />

Plate 1<br />

4<br />

6<br />

Cathode 2<br />

3<br />

7<br />

Grid 1<br />

Grid 2<br />

2<br />

8<br />

Cathode 1<br />

1<br />

9<br />

Filament<br />

Plate 2<br />

tap<br />

(view from bottom)<br />

Youwillnoticeontheamplifierschematicthatbothtriodeelementsinsidethe12AX7’s<br />

glassenvelopearebeingused,inparallel:plateconnectedtoplate,gridconnectedtogrid,and<br />

cathodeconnectedtocathode. Thisisdonetomaximizepoweroutputfromthetube,butit<br />

isnotnecessaryfordemonstratingbasicoperation. Youmayusejustoneofthetriodes,for<br />

simplicity,ifyouwish.<br />

The0.1 µFcapacitorshownontheschematic”couples”theaudiosignalsource(radio,musicalkeyboard,etc.)<br />

tothetube’sgrid(s),allowingACtopassbutblockingDC.The100kΩ<br />

resistorensuresthattheaverageDCvoltagebetweengridandcathodeiszero,andcannot<br />

”float”tosomehighlevel. Typically,biascircuitsareusedtokeepthegridslightlynegative<br />

withrespecttoground,butforthispurposeabiascircuitwouldintroducemorecomplexity<br />

thanitsworth.<br />

WhenItestedmyamplifiercircuit,Iusedtheoutputofaradioreceiver,andlatertheoutput<br />

ofacompactdisk(CD)player,astheaudiosignalsource.Usinga”mono”-to-”phono”connector<br />

extensioncordpluggedintotheheadphonejackofthereceiver/CDplayer,andalligatorclip<br />

jumperwiresconnectingthe”mono”tipofthecordtotheinputterminalsofthetubeamplifier,I<br />

wasabletoeasilysendtheamplifieraudiosignalsofvaryingamplitudetotestitsperformance<br />

overawiderangeofconditions:


286 CHAPTER5. DISCRETESEMICONDUCTORCIRCUITS<br />

Amplifier circuit<br />

Radio<br />

Audio<br />

input<br />

. . .<br />

. . .<br />

phones<br />

"Phono" plug<br />

"Mono" headphone<br />

plug<br />

Atransformerisessentialattheoutputoftheamplifiercircuitfor”matching”theimpedances<br />

ofvacuumtubeandspeaker.Sincethevacuumtubeisahigh-voltage,low-currentdevice,and<br />

mostspeakersarelow-voltage,high-currentdevices,themismatchbetweenthemwouldresultinveryaudiolowpoweroutputiftheyweredirectlyconnected.Tosuccessfullymatchthe<br />

high-voltage,low-currentsourcetothelow-voltage,highcurrentload,wemustuseastep-down<br />

transformer.<br />

Sincethevacuumtubecircuit’sTheveninresistancerangesinthetensofthousandsof<br />

ohms,andthespeakeronlyhasabout8ohmsimpedance,wewillneedatransformerwithan<br />

impedanceratioofabout10,000:1. Sincetheimpedanceratioofatransformeristhesquare<br />

ofitsturnsratio(orvoltageratio),we’relookingforatransformerwithaturnsratioofabout<br />

100:1. Atypicalautomotiveignitioncoilhasapproximatelythisturnsratio,anditisalso<br />

ratedforextremelyhighvoltageonthehigh-voltagewinding,makingitwellsuitedforthis<br />

application.<br />

Theonlybadaspectofusinganignitioncoilisthatitprovidesnoelectricalisolationbetweenprimaryandsecondarywindings,sincethedeviceisactuallyanautotransformer,with<br />

eachwindingsharingacommonterminalatoneend.Thismeansthatthespeakerwireswillbe<br />

atahighDCvoltagewithrespecttocircuitground.Solongasweknowthis,andavoidtouchingthosewiresduringoperation,therewillbenoproblem.<br />

Ideally,though,thetransformer<br />

wouldprovidecompleteisolationaswellasimpedancematching,andthespeakerwireswould<br />

beperfectlysafetotouchduringuse.<br />

Remember,makeallconnectionsinthecircuitwiththepowerturnedoff! Aftercheckingconnectionsvisuallyandwithanohmmetertoensurethatthecircuitisbuiltasperthe<br />

schematicdiagram,applypowertothefilamentsofthetubeandwaitabout30secondsforitto<br />

reachoperatingtemperature.Thebothfilamentsshouldemitasoft,orangeglow,visiblefrom<br />

boththetopandbottomviewsofthetube.


5.19. VACUUMTUBEAUDIOAMPLIFIER 287<br />

Turnthevolumecontrolofyourradio/CDplayer/musicalkeyboardsignalsourcetominimum,thenturnontheplatesupplyswitch.<br />

Thevoltmeteryouhaveconnectedbetweenthe<br />

powersupply’sB+outputterminaland”ground”shouldregisterfullvoltage(about170volts).<br />

Now,increasethevolumecontrolonthesignalsourceandlistentothespeaker.Ifalliswell,<br />

youshouldhearthecorrectsoundsclearlythroughthespeaker.<br />

Troubleshootingthiscircuitisbestdonewiththesensitiveaudiodetectordescribedinthe<br />

DCandACchaptersofthis<strong>Experiments</strong>volume. Connecta0.1 µFcapacitorinserieswith<br />

eachtestleadtoblockDCfromthedetector,thenconnectoneofthetestleadstoground,<br />

whileusingtheothertestleadtocheckforaudiosignalatvariouspointsinthecircuit. Use<br />

capacitorswithahighvoltagerating,liketheoneusedontheinputoftheamplifiercircuit:<br />

B+<br />

Using the sensitive audio<br />

detector as a troubleshooting<br />

instrument for the amplifier<br />

headphones<br />

0.1 µF<br />

. . . . . .<br />

Amplifier circuit<br />

Test<br />

leads<br />

Sensitivity<br />

plug<br />

0.1 µF<br />

"ground"<br />

Usingtwocouplingcapacitorsinsteadofjustoneaddsanadditionaldegreeofsafety,in<br />

helpingtoisolatetheunitfromany(high)DCvoltage. Evenwithouttheextracapacitor,<br />

though,thedetector’sinternaltransformershouldprovidesufficientelectricalisolationfor<br />

yoursafetyinusingittotestforsignalsinahigh-voltagecircuitlikethis,especiallyifyoubuilt<br />

yourdetectorusinga120voltpowertransformer(ratherthanan”audiooutput”transformer)<br />

assuggested.Useittotestforagoodsignalattheinput,thenatthegridpin(s)ofthetube,<br />

thenattheplateofthetube,etc.untiltheproblemisfound.Beingcapacitivelycoupled,the<br />

detectorisalsoabletotestforexcessivepowersupply”hum:”touchthefreetestleadtothe<br />

supply’sB+terminalandlistenforaloud60Hzhummingnoise. Thenoiseshouldbevery<br />

soft,notloud.Ifitisloud,thepowersupplyisnotfilteredadequatelyenough,andmayneed<br />

additionalfiltercapacitance.<br />

AftertestingapointintheamplifiercircuitwithlargeDCvoltagetoground,thecoupling<br />

capacitorsonthedetectormaybuildupsubstantialvoltage.Todischargethisvoltage,briefly<br />

touchthefreetestleadtothegroundedtestlead.A”pop”soundshouldbeheardintheheadphonesasthecouplingcapacitorsdischarge.<br />

Ifyouwouldratheruseavoltmetertotestforthepresenceofaudiosignal,youmaydoso,<br />

settingittoasensitiveACvoltagerange. Theindicationyougetfromavoltmeter,though,


288 CHAPTER5. DISCRETESEMICONDUCTORCIRCUITS<br />

doesn’ttellyouanythingaboutthequalityofthesignal,justitsmerepresence.Bearinmind<br />

thatmostACvoltmeterswillregisteratransientvoltagewheninitiallyconnectedacrossa<br />

sourceofDCvoltage,sodon’tbesurprisedtoseea”spike”(astrong,momentaryvoltageindication)attheverymomentcontactismadewiththemeter’sprobestothecircuit,rapidly<br />

decreasingtothetrueACsignalvalue.<br />

Youmaybepleasantlysurprisedatthequalityanddepthoftonefromthislittleamplifier<br />

circuit,especiallygivenitslowpoweroutput:lessthan1wattofaudiopower.Ofcourse,the<br />

circuitisquitecrudeandsacrificesqualityforsimplicityandpartsavailability,butitserves<br />

todemonstratethebasicprincipleofvacuumtubeamplification. Advancedhobbyistsand<br />

studentsmaywishtoexperimentwithbiasingnetworks,negativefeedback,differentoutput<br />

transformers,differentpowersupplyvoltages,andevendifferenttubes,toobtainmorepower<br />

and/orbettersoundquality.<br />

Hereisaphotoofaverysimilaramplifiercircuit,builtbythehusband-and-wifeteam<br />

ofTerryandCherylGoetz,illustratingwhatcanbedonewhencareandcraftsmanshipare<br />

appliedtoaprojectlikethis.<br />

Bibliography<br />

[1] ForrestM.MimsIII,“SunPhotometerwithLight-EmittingDiodesasSpectrallySelective<br />

Detectors”,AppliedOptics,31,33,6965-6967,1992.<br />

[2] ForrestM.MimsIII,“LightEmittingDiodes”HowardW.Sams&Co.,1973,pp.118-119.<br />

[3] ForrestM.MimsIII,Privatecommunications,February29,2008.


Chapter6<br />

ANALOGINTEGRATED<br />

CIRCUITS<br />

Contents<br />

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .289<br />

6.2 Voltagecomparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .291<br />

6.3 Precisionvoltagefollower . . . . . . . . . . . . . . . . . . . . . . . . . . . . .294<br />

6.4 Noninvertingamplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .298<br />

6.5 High-impedancevoltmeter . . . . . . . . . . . . . . . . . . . . . . . . . . . . .301<br />

6.6 Integrator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .305<br />

6.7 555audiooscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .311<br />

6.8 555rampgenerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .314<br />

6.9 PWMpowercontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .317<br />

6.10 ClassBaudioamplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .321<br />

6.1 Introduction<br />

Analogcircuitsarecircuitsdealingwithsignalsfreetovaryfromzerotofullpowersupply<br />

voltage. Thisstandsincontrasttodigitalcircuits,whichalmostexclusivelyemploy”allor<br />

nothing”signals: voltagesrestrictedtovaluesofzeroandfullsupplyvoltage,withnovalid<br />

stateinbetweenthoseextremelimits. Analogcircuitsareoftenreferredtoaslinearcircuits<br />

toemphasizethevalidcontinuityofsignalrangeforbiddenindigitalcircuits,butthislabelis<br />

unfortunatelymisleading.Justbecauseavoltageorcurrentsignalisallowedtovarysmoothly<br />

betweentheextremesofzeroandfullpowersupplylimitsdoesnotnecessarilymeanthatall<br />

mathematicalrelationshipsbetweenthesesignalsarelinearinthe”straight-line”or”proportional”senseoftheword.Asyouwillseeinthischapter,manyso-called”linear”circuitsare<br />

quitenonlinearintheirbehavior,eitherbynecessityofphysicsorbydesign.<br />

289


290 CHAPTER6. ANALOGINTEGRATEDCIRCUITS<br />

ThecircuitsinthischaptermakeuseofIC,orintegratedcircuit,components. Suchcomponentsareactuallynetworksofinterconnectedcomponentsmanufacturedonasinglewafer<br />

ofsemiconductingmaterial.Integratedcircuitsprovidingamultitudeofpre-engineeredfunctionsareavailableatverylowcost,benefittingstudents,hobbyistsandprofessionalcircuit<br />

designersalike.Mostintegratedcircuitsprovidethesamefunctionalityas”discrete”semiconductorcircuitsathigherlevelsofreliabilityandatafractionofthecost.<br />

Usually,discretecomponentcircuitconstructionisfavoredonlywhenpowerdissipationlevelsaretoohighfor<br />

integratedcircuitstohandle.<br />

Perhapsthemostversatileandimportantanalogintegratedcircuitforthestudenttomasteristheoperationalamplifier,orop-amp.<br />

Essentiallynothingmorethanadifferentialamplifierwithveryhighvoltagegain,op-ampsaretheworkhorseoftheanalogdesignworld.By<br />

cleverlyapplyingfeedbackfromtheoutputofanop-amptooneormoreofitsinputs,awide<br />

varietyofbehaviorsmaybeobtainedfromthissingledevice.Manydifferentmodelsofop-amp<br />

areavailableatlowcost,butcircuitsdescribedinthischapterwillincorporateonlycommonly<br />

availableop-ampmodels.


6.2. VOLTAGECOMPARATOR 291<br />

6.2 Voltagecomparator<br />

PARTSANDMATERIALS<br />

• Operationalamplifier,model1458or353recommended(RadioShackcatalog#276-038<br />

and900-6298,respectively)<br />

• Three6voltbatteries<br />

• Two10kΩpotentiometers,lineartaper(RadioShackcatalog#271-1715)<br />

• Onelight-emittingdiode(RadioShackcatalog#276-026orequivalent)<br />

• One330 Ωresistor<br />

• One470 Ωresistor<br />

Thisexperimentonlyrequiresasingleoperationalamplifier.Themodel1458and353are<br />

both”dual”op-ampunits,withtwocompleteamplifiercircuitshousedinthesame8-pinDIP<br />

package.Irecommendthatyoupurchaseanduse”dual”op-ampsover”single”op-ampsevenif<br />

aprojectonlyrequiresone,becausetheyaremoreversatile(thesameop-ampunitcanfunction<br />

inprojectsrequiringonlyoneamplifieraswellasinprojectsrequiringtwo).Intheinterestof<br />

purchasingandstockingtheleastnumberofcomponentsforyourhomelaboratory,thismakes<br />

sense.<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume3,chapter8:”OperationalAmplifiers”<br />

LEARNINGOBJECTIVES<br />

• Howtouseanop-ampasacomparator<br />

SCHEMATICDIAGRAM<br />

6 V<br />

6 V<br />

6 V<br />

−<br />

1 / 2 1458<br />

+<br />

330 Ω 470 Ω


292 CHAPTER6. ANALOGINTEGRATEDCIRCUITS<br />

ILLUSTRATION<br />

+ -<br />

+ -<br />

+ - 1458<br />

INSTRUCTIONS<br />

Acomparatorcircuitcomparestwovoltagesignalsanddetermineswhichoneisgreater.<br />

Theresultofthiscomparisonisindicatedbytheoutputvoltage: iftheop-amp’soutputis<br />

saturatedinthepositivedirection,thenoninvertinginput(+)isagreater,ormorepositive,<br />

voltagethantheinvertinginput(-),allvoltagesmeasuredwithrespecttoground. Iftheopamp’svoltageisnearthenegativesupplyvoltage(inthiscase,0volts,orgroundpotential),it<br />

meanstheinvertinginput(-)hasagreatervoltageappliedtoitthanthenoninvertinginput<br />

(+).<br />

Thisbehaviorismucheasierunderstoodbyexperimentingwithacomparatorcircuitthan<br />

itisbyreadingsomeone’sverbaldescriptionofit. Inthisexperiment,twopotentiometers<br />

supplyvariablevoltagestobecomparedbytheop-amp. Theoutputstatusoftheop-ampis<br />

indicatedvisuallybytheLED.ByadjustingthetwopotentiometersandobservingtheLED,<br />

onecaneasilycomprehendthefunctionofacomparatorcircuit.<br />

Forgreaterinsightintothiscircuit’soperation,youmightwanttoconnectapairofvoltmeterstotheop-ampinputterminals(bothvoltmetersreferencedtoground)sothatbothinput<br />

voltagesmaybenumericallycomparedwitheachother,thesemeterindicationscomparedto<br />

theLEDstatus:


6.2. VOLTAGECOMPARATOR 293<br />

+ -<br />

+ -<br />

+ - 1458<br />

A<br />

V Ω<br />

COM<br />

A<br />

V Ω<br />

COM<br />

Comparatorcircuitsarewidelyusedtocomparephysicalmeasurements,providedthose<br />

physicalvariablescanbetranslatedintovoltagesignals. Forinstance,ifasmallgenerator<br />

wereattachedtoananemometerwheeltoproduceavoltageproportionaltowindspeed,that<br />

windspeedsignalcouldbecomparedwitha”set-point”voltageandcomparedbyanop-ampto<br />

driveahighwindspeedalarm:<br />

6 V<br />

6 V<br />

+<br />

6 V Gen<br />

-<br />

−<br />

1 / 2 1458<br />

+<br />

330 Ω 470 Ω<br />

LED lights up when wind speed exceeds<br />

"set-point" limit established by the<br />

potentiometer position.


294 CHAPTER6. ANALOGINTEGRATEDCIRCUITS<br />

6.3 Precisionvoltagefollower<br />

PARTSANDMATERIALS<br />

• Operationalamplifier,model1458or353recommended(RadioShackcatalog#276-038<br />

and900-6298,respectively)<br />

• Three6voltbatteries<br />

• One10kΩpotentiometer,lineartaper(RadioShackcatalog#271-1715)<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume3,chapter8:”OperationalAmplifiers”<br />

LEARNINGOBJECTIVES<br />

• Howtouseanop-ampasavoltagefollower<br />

• Purposeofnegativefeedback<br />

• Troubleshootingstrategy<br />

SCHEMATICDIAGRAM<br />

6 V<br />

6 V<br />

−<br />

1 / 2 1458<br />

+<br />

6 V V input<br />

V output<br />

ILLUSTRATION


6.3. PRECISIONVOLTAGEFOLLOWER 295<br />

+ -<br />

+ -<br />

+ - 1458<br />

INSTRUCTIONS<br />

Inthepreviousop-ampexperiment,theamplifierwasusedin”open-loop”mode;thatis,<br />

withoutanyfeedbackfromoutputtoinput. Assuch,thefullvoltagegainoftheoperational<br />

amplifierwasavailable,resultingintheoutputvoltagesaturatingforvirtuallyanyamount<br />

ofdifferentialvoltageappliedbetweenthetwoinputterminals.Thisisgoodifwedesirecomparatoroperation,butifwewanttheop-amptobehaveasatrueamplifier,weneedittoexhibit<br />

amanageablevoltagegain.<br />

Sincewedonothavetheluxuryofdisassemblingtheintegratedcircuitryoftheop-amp<br />

andchangingresistorvaluestogivealesservoltagegain,wearelimitedtoexternalconnectionsandcomponentry.<br />

Actually,thisisnotadisadvantageasonemightthink,becausethe<br />

combinationofextremelyhighopen-loopvoltagegaincoupledwithfeedbackallowsustouse<br />

theop-ampforamuchwidervarietyofpurposes,mucheasierthanifweweretoexercisethe<br />

optionofmodifyingitsinternalcircuitry.<br />

Ifweconnecttheoutputofanop-amptoitsinverting(-)input,theoutputvoltagewillseek<br />

whateverlevelisnecessarytobalancetheinvertinginput’svoltagewiththatappliedtothe<br />

noninverting(+)input. Ifthisfeedbackconnectionisdirect,asinastraightpieceofwire,<br />

theoutputvoltagewillprecisely”follow”thenoninvertinginput’svoltage.Unlikethevoltage<br />

followercircuitmadefromasingletransistor(seechapter5:DiscreteSemiconductorCircuits),<br />

whichapproximatedtheinputvoltagetowithinseveraltenthsofavolt,thisvoltagefollower<br />

circuitwilloutputavoltageaccuratetowithinmeremicrovoltsoftheinputvoltage!<br />

Measuretheinputvoltageofthiscircuitwithavoltmeterconnectedbetweentheop-amp’s<br />

noninverting(+)inputterminalandcircuitground(thenegativesideofthepowersupply),<br />

andtheoutputvoltagebetweentheop-amp’soutputterminalandcircuitground. Watchthe<br />

op-amp’soutputvoltagefollowtheinputvoltageasyouadjustthepotentiometerthroughits<br />

range.


296 CHAPTER6. ANALOGINTEGRATEDCIRCUITS<br />

Youmaydirectlymeasurethedifference,orerror,betweenoutputandinputvoltagesby<br />

connectingthevoltmeterbetweentheop-amp’stwoinputterminals.Throughoutmostofthe<br />

potentiometer’srange,thiserrorvoltageshouldbealmostzero.<br />

Trymovingthepotentiometertooneofitsextremepositions,farclockwiseorfarcounterclockwise.<br />

Measureerrorvoltage,orcompareoutputvoltageagainstinputvoltage. Doyou<br />

noticeanythingunusual? Ifyouareusingthemodel1458ormodel353op-ampforthisexperiment,youshouldmeasureasubstantialerrorvoltage,ordifferencebetweenoutputand<br />

input. Manyop-amps,thespecifiedmodelsincluded,cannot”swing”theiroutputvoltageexactlytofullpowersupply(”rail”)voltagelevels.Inthiscase,the”rail”voltagesare+18volts<br />

and0volts,respectively.Duetolimitationsinthe1458’sinternalcircuitry,itsoutputvoltage<br />

isunabletoexactlyreachthesehighandlowlimits. Youmayfindthatitcanonlygowithin<br />

avoltortwoofthepowersupply”rails.”Thisisaveryimportantlimitationtounderstand<br />

whendesigningcircuitsusingoperationalamplifiers.Iffull”rail-to-rail”outputvoltageswing<br />

isrequiredinacircuitdesign,otherop-ampmodelsmaybeselectedwhichofferthiscapability.<br />

Themodel3130isonesuchop-amp.<br />

Precisionvoltagefollowercircuitsareusefulifthevoltagesignaltobeamplifiedcannottolerate”loading;”thatis,ifithasahighsourceimpedance.Sinceavoltagefollowerbydefinition<br />

hasavoltagegainof1,itspurposehasnothingtodowithamplifyingvoltage,butratherwith<br />

amplifyingasignal’scapacitytodelivercurrenttoaload.<br />

Voltagefollowercircuitshaveanotherimportantuseforcircuitbuilders: theyallowfor<br />

simplelineartestingofanop-amp. OneofthetroubleshootingtechniquesIrecommendis<br />

tosimplifyandrebuild. Supposethatyouarebuildingacircuitusingoneormoreop-amps<br />

toperformsomeadvancedfunction. Ifoneofthoseop-ampsseemstobecausingaproblem<br />

andyoususpectitmaybefaulty,tryre-connectingitasasimplevoltagefollowerandseeifit<br />

functionsinthatcapacity. Anop-ampthatfailstoworkasavoltagefollowercertainlywon’t<br />

workasanythingmorecomplex!<br />

COMPUTERSIMULATION<br />

SchematicwithSPICEnodenumbers:<br />

1<br />

2<br />

−<br />

E 1<br />

2<br />

+<br />

V input<br />

0 0<br />

R bogus<br />

R load<br />

Netlist(makeatextfilecontainingthefollowingtext,verbatim):<br />

Voltage follower<br />

vinput 1 0<br />

rbogus 1 0 1meg<br />

e1 2 0 1 2 999meg


6.3. PRECISIONVOLTAGEFOLLOWER 297<br />

rload 2 0 10k<br />

.dc vinput 5 5 1<br />

.print dc v(1,0) v(2,0) v(1,2)<br />

.end<br />

AnidealoperationalamplifiermaybesimulatedinSPICEusingadependentvoltagesource<br />

(e1inthenetlist).Theoutputnodesarespecifiedfirst(2 0),thenthetwoinputnodes,noninvertinginputfirst(1<br />

2).Open-loopgainisspecifiedlast(999meg)inthedependentvoltage<br />

sourceline.<br />

BecauseSPICEviewstheinputimpedanceofadependentsourceasinfinite,somefinite<br />

amountofresistancemustbeincludedtoavoidananalysiserror.ThisisthepurposeofR bogus :<br />

toprovideDCpathtogroundfortheV input voltagesource.Such”bogus”resistancesshouldbe<br />

arbitrarilylarge.InthissimulationIchose1MΩforanR bogus value.<br />

Aloadresistorisincludedinthecircuitformuchthesamereason:toprovideaDCpathfor<br />

currentattheoutputofthedependentvoltagesource.Asyoucansee,SPICEdoesn’tlikeopen<br />

circuits!


298 CHAPTER6. ANALOGINTEGRATEDCIRCUITS<br />

6.4 Noninvertingamplifier<br />

PARTSANDMATERIALS<br />

• Operationalamplifier,model1458or353recommended(RadioShackcatalog#276-038<br />

and900-6298,respectively)<br />

• Three6voltbatteries<br />

• Two10kΩpotentiometers,lineartaper(RadioShackcatalog#271-1715)<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume3,chapter8:”OperationalAmplifiers”<br />

LEARNINGOBJECTIVES<br />

• Howtouseanop-ampasasingle-endedamplifier<br />

• Usingdivided,negativefeedback<br />

SCHEMATICDIAGRAM<br />

6 V<br />

6 V<br />

R 1<br />

R 2<br />

−<br />

1 / 2 1458<br />

+<br />

6 V V input<br />

V output<br />

ILLUSTRATION


6.4. NONINVERTINGAMPLIFIER 299<br />

+ -<br />

+ -<br />

+ - 1458<br />

INSTRUCTIONS<br />

Thiscircuitdiffersfromthevoltagefollowerinonlyonerespect:outputvoltageis”fedback”<br />

totheinverting(-)inputthroughavoltage-dividingpotentiometerratherthanbeingdirectly<br />

connected. Withonlyafractionoftheoutputvoltagefedbacktotheinvertinginput,theopampwilloutputacorrespondingmultipleofthevoltagesensedatthenoninverting(+)inputin<br />

keepingtheinputdifferentialvoltagenearzero.Inotherwords,theop-ampwillnowfunction<br />

asanamplifierwithacontrollablevoltagegain,thatgainbeingestablishedbythepositionof<br />

thefeedbackpotentiometer(R 2 ).<br />

SetR 2 toapproximatelymid-position.Thisshouldgiveavoltagegainofabout2.Measure<br />

bothinputandoutputvoltageforseveralpositionsoftheinputpotentiometerR 1 .MoveR 2 toa<br />

differentpositionandre-takevoltagemeasurementsforseveralpositionsofR 1 .Foranygiven<br />

R 2 position,theratiobetweenoutputandinputvoltageshouldbethesame.<br />

Youwillalsonoticethattheinputandoutputvoltagesarealwayspositivewithrespectto<br />

ground.Becausetheoutputvoltageincreasesinapositivedirectionforapositiveincreaseof<br />

theinputvoltage,thisamplifierisreferredtoasnoninverting.Iftheoutputandinputvoltages<br />

wererelatedtooneanotherinaninversefashion(i.e.positiveincreasinginputvoltageresults<br />

inpositivedecreasingornegativeincreasingoutput),thentheamplifierwouldbeknownasan<br />

invertingtype.<br />

Theabilitytoleverageanop-ampinthisfashiontocreateanamplifierwithcontrollable<br />

voltagegainmakesthiscircuitanextremelyusefulone.Itwouldtakequiteabitmoredesign<br />

andtroubleshootingefforttoproduceasimilarcircuitusingdiscretetransistors.<br />

TryadjustingR 2 formaximumandminimumvoltagegain.Whatisthelowestvoltagegain<br />

attainablewiththisamplifierconfiguration?Whydoyouthinkthisis?<br />

COMPUTERSIMULATION


300 CHAPTER6. ANALOGINTEGRATEDCIRCUITS<br />

SchematicwithSPICEnodenumbers:<br />

R 1<br />

2 R 2<br />

3<br />

0<br />

1<br />

2<br />

−<br />

+<br />

E 1<br />

3<br />

V input<br />

0<br />

R bogus<br />

R load<br />

0<br />

Netlist(makeatextfilecontainingthefollowingtext,verbatim):<br />

Noninverting amplifier<br />

vinput 1 0<br />

r2 3 2 5k<br />

r1 2 0 5k<br />

rbogus 1 0 1meg<br />

e1 3 0 1 2 999meg<br />

rload 3 0 10k<br />

.dc vinput 5 5 1<br />

.print dc v(1,0) v(3,0)<br />

.end<br />

WithR 1 andR 2 setequallyto5kΩinthesimulation,itmimicsthefeedbackpotentiometer<br />

oftherealcircuitatmid-position(50%). Tosimulatethepotentiometeratthe75%position,<br />

setR 2 to7.5kΩandR 1 to2.5kΩ.


6.5. HIGH-IMPEDANCEVOLTMETER 301<br />

6.5 High-impedancevoltmeter<br />

PARTSANDMATERIALS<br />

• Operationalamplifier,modelTL082recommended(RadioShackcatalog#276-1715)<br />

• Operationalamplifier,modelLM1458recommended(RadioShackcatalog#276-038)<br />

• Four6voltbatteries<br />

• Onemetermovement,1mAfull-scaledeflection(RadioShackcatalog#22-410)<br />

• 15kΩprecisionresistor<br />

• Four1MΩresistors<br />

The1mAmetermovementsoldbyRadioShackisadvertisedasa0-15VDCmeter,butis<br />

actuallya1mAmovementsoldwitha15kΩ+/-1%tolerancemultiplierresistor. Ifyouget<br />

thisRadioShackmetermovement,youcanusetheincluded15kΩresistorfortheresistor<br />

specifiedinthepartslist.<br />

ThismeterexperimentisbasedonaJFET-inputop-ampsuchastheTL082.Theotheropamp(model1458)isusedinthisexperimenttodemonstratetheabsenceoflatch-up:aproblem<br />

inherenttotheTL082.<br />

Youdon’tneed1MΩresistors,exactly.Anyveryhighresistanceresistorswillsuffice.<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume3,chapter8:”OperationalAmplifiers”<br />

LEARNINGOBJECTIVES<br />

• Voltmeterloading:itscausesanditssolution<br />

• Howtomakeahigh-impedancevoltmeterusinganop-amp<br />

• Whatop-amp”latch-up”isandhowtoavoidit<br />

SCHEMATICDIAGRAM


302 CHAPTER6. ANALOGINTEGRATEDCIRCUITS<br />

6 V<br />

15 kΩ 0-1 mA<br />

- +<br />

1 MΩ<br />

TP3<br />

6 V<br />

6 V<br />

6 V<br />

−<br />

TL082<br />

+<br />

Test<br />

probe<br />

TP2<br />

TP1<br />

1 MΩ<br />

1 MΩ<br />

1 MΩ<br />

ILLUSTRATION<br />

+ - TL082<br />

TP3<br />

TP2<br />

TP1<br />

+ -<br />

+ -<br />

+ -<br />

0 to 1 mA<br />

meter<br />

movement<br />

- +<br />

INSTRUCTIONS<br />

Anidealvoltmeterhasinfiniteinputimpedance,meaningthatitdrawszerocurrentfrom<br />

thecircuitundertest. Thisway,therewillbeno”impact”onthecircuitasthevoltageis


6.5. HIGH-IMPEDANCEVOLTMETER 303<br />

beingmeasured.Themorecurrentavoltmeterdrawsfromthecircuitundertest,themorethe<br />

measuredvoltagewill”sag”undertheloadingeffectofthemeter,likeatire-pressuregauge<br />

releasingairoutofthetirebeingmeasured:themoreairreleasedfromthetire,themorethe<br />

tire’spressurewillbeimpactedintheactofmeasurement. Thisloadingismorepronounced<br />

oncircuitsofhighresistance,likethevoltagedividermadeof1MΩresistors,showninthe<br />

schematicdiagram.<br />

Ifyouweretobuildasimple0-15voltrangevoltmeterbyconnectingthe1mAmeter<br />

movementinserieswiththe15kΩprecisionresistor,andtrytousethisvoltmetertomeasure<br />

thevoltagesatTP1,TP2,orTP3(withrespecttoground),you’dencounterseveremeasurement<br />

errorsinducedbymeter”impact:”<br />

6 V<br />

6 V<br />

TP3 should be 9 volts<br />

TP2 should be 6 volts<br />

TP1 should be 3 volts<br />

15 kΩ<br />

0-1 mA<br />

- +<br />

However, the meter will fail to<br />

measure these voltages correctly<br />

due to the meter’s "loading" effect!<br />

TP3<br />

TP2<br />

TP1<br />

1 MΩ<br />

1 MΩ<br />

1 MΩ<br />

1 MΩ<br />

Tryusingthemetermovementand15kΩresistorasshowntomeasurethesethreevoltages.Doesthemeterreadfalselyhighorfalselylow?Whydoyouthinkthisis?<br />

Ifweweretoincreasethemeter’sinputimpedance,wewoulddiminishitscurrentdraw<br />

or”load”onthecircuitundertestandconsequentlyimproveitsmeasurementaccuracy. An<br />

op-ampwithhigh-impedanceinputs(usingaJFETtransistorinputstageratherthanaBJT<br />

inputstage)workswellforthisapplication.<br />

Notethatthemetermovementispartoftheop-amp’sfeedbackloopfromoutputtoinvertinginput.Thiscircuitdrivesthemetermovementwithacurrentproportionaltothevoltage<br />

impressedatthenoninverting(+)input,therequisitecurrentsupplieddirectlyfromthebatteriesthroughtheop-amp’spowersupplypins,notfromthecircuitundertestthroughthetest<br />

probe.Themeter’srangeissetbytheresistorconnectingtheinverting(-)inputtoground.<br />

Buildtheop-ampmetercircuitasshownandre-takevoltagemeasurementsatTP1,TP2,<br />

andTP3.Youshouldenjoyfarbettersuccessthistime,withthemetermovementaccurately<br />

measuringthesevoltages(approximately3,6,and9volts,respectively).<br />

Youmaywitnesstheextremesensitivityofthisvoltmeterbytouchingthetestprobewith<br />

onehandandthemostpositivebatteryterminalwiththeother.Noticehowyoucandrivethe<br />

needleupwardonthescalesimplybymeasuringbatteryvoltagethroughyourbodyresistance:<br />

animpossiblefeatwiththeoriginal,unamplifiedvoltmetercircuit.Ifyoutouchthetestprobe<br />

toground,themetershouldreadexactly0volts.


304 CHAPTER6. ANALOGINTEGRATEDCIRCUITS<br />

Afteryou’veproventhiscircuittowork,modifyitbychangingthepowersupplyfromdual<br />

tosplit. Thisentailsremovingthecenter-tapgroundconnectionbetweenthe2ndand3rd<br />

batteries,andgroundingthefarnegativebatteryterminalinstead:<br />

6 V<br />

15 kΩ 0-1 mA<br />

- +<br />

1 MΩ<br />

6 V<br />

6 V<br />

6 V<br />

−<br />

TL082<br />

+<br />

TP3<br />

TP2<br />

TP1<br />

1 MΩ<br />

1 MΩ<br />

1 MΩ<br />

ThisalterationinthepowersupplyincreasesthevoltagesatTP1,TP2,andTP3to6,12,<br />

and18volts,respectively.Witha15kΩrangeresistoranda1mAmetermovement,measuring<br />

18voltswillgently”peg”themeter,butyoushouldbeabletomeasurethe6and12volttest<br />

pointsjustfine.<br />

Trytouchingthemeter’stestprobetoground.Thisshoulddrivethemeterneedletoexactly<br />

0voltsasbefore,butitwillnot! Whatishappeninghereisanop-ampphenomenoncalled<br />

latch-up:wheretheop-ampoutputdrivestoapositivevoltagewhentheinputcommon-mode<br />

voltageexceedstheallowablelimit. Inthiscase,aswithmanyJFET-inputop-amps,neither<br />

inputshouldbeallowedtocomeclosetoeitherpowersupplyrailvoltage.Withasinglesupply,<br />

theop-amp’snegativepowerrailisatgroundpotential(0volts),sogroundingthetestprobe<br />

bringsthenoninverting(+)inputexactlytothatrailvoltage.ThisisbadforaJFETop-amp,<br />

anddrivestheoutputstronglypositive,eventhoughitdoesn’tseemlikeitshould,basedon<br />

howop-ampsaresupposedtofunction.<br />

Whentheop-ampranona”dual”supply(+12/-12volts,ratherthana”single”+24voltsupply),thenegativepowersupplyrailwas12voltsawayfromground(0volts),sogroundingthe<br />

testprobedidn’tviolatetheop-amp’scommon-modevoltagelimit.However,withthe”single”<br />

+24voltsupply,wehaveaproblem. Notethatsomeop-ampsdonot”latch-up”thewaythe<br />

modelTL082does.YoumayreplacetheTL082withanLM1458op-amp,whichispin-for-pin<br />

compatible(nobreadboardwiringchangesneeded).Themodel1458willnot”latch-up”when<br />

thetestprobeisgrounded,althoughyoumaystillgetincorrectmeterreadingswiththemeasuredvoltageexactlyequaltothenegativepowersupplyrail.<br />

Asageneralrule,youshould<br />

alwaysbesuretheop-amp’spowersupplyrailvoltagesexceedtheexpectedinputvoltages.


6.6. INTEGRATOR 305<br />

6.6 Integrator<br />

PARTSANDMATERIALS<br />

• Four6voltbatteries<br />

• Operationalamplifier,model1458recommended(RadioShackcatalog#276-038)<br />

• One10kΩpotentiometer,lineartaper(RadioShackcatalog#271-1715)<br />

• Twocapacitors,0.1 µFeach,non-polarized(RadioShackcatalog#272-135)<br />

• Two100kΩresistors<br />

• Three1MΩresistors<br />

Justaboutanyoperationalamplifiermodelwillworkfineforthisintegratorexperiment,<br />

butI’mspecifyingthemodel1458overthe353becausethe1458hasmuchhigherinputbias<br />

currents.Normally,highinputbiascurrentisabadcharacteristicforanop-amptohaveina<br />

precisionDCamplifiercircuit(andespeciallyanintegratorcircuit!).However,Iwantthebias<br />

currenttobehighinorderthatitsbadeffectsmaybeexaggerated,andsothatyouwilllearn<br />

onemethodofcounteractingitseffects.<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume3,chapter8:”OperationalAmplifiers”<br />

LEARNINGOBJECTIVES<br />

• Methodforlimitingthespanofapotentiometer<br />

• Purposeofanintegratorcircuit<br />

• Howtocompensateforop-ampbiascurrent<br />

SCHEMATICDIAGRAM<br />

6 V<br />

100 kΩ<br />

1 MΩ<br />

0.1 µF<br />

6 V<br />

6 V<br />

10 kΩ<br />

100 kΩ<br />

1 MΩ<br />

−<br />

1 / 2 1458<br />

+<br />

V output<br />

6 V


306 CHAPTER6. ANALOGINTEGRATEDCIRCUITS<br />

ILLUSTRATION<br />

+ -<br />

+ -<br />

1458<br />

+ -<br />

+ -<br />

INSTRUCTIONS<br />

Asyoucanseefromtheschematicdiagram,thepotentiometerisconnectedtothe”rails”<br />

ofthepowersourcethrough100kΩresistors,oneoneachend. Thisistolimitthespanof<br />

thepotentiometer,sothatfullmovementproducesafairlysmallrangeofinputvoltagesfor<br />

theop-amptooperateon. Atoneextremeofthepotentiometer’smotion,avoltageofabout<br />

0.5volt(withrespectthethegroundpointinthemiddleoftheseriesbatterystring)willbe<br />

producedatthepotentiometerwiper. Attheotherextremeofmotion,avoltageofabout-0.5<br />

voltwillbeproduced. Whenthepotentiometerispositioneddead-center,thewipervoltage<br />

shouldmeasurezerovolts.<br />

Connectavoltmeterbetweentheop-amp’soutputterminalandthecircuitgroundpoint.<br />

Slowlymovethepotentiometercontrolwhilemonitoringtheoutputvoltage.Theoutputvoltage<br />

shouldbechangingatarateestablishedbythepotentiometer’sdeviationfromzero(center)<br />

position.Tousecalculusterms,wewouldsaythattheoutputvoltagerepresentstheintegral<br />

(withrespecttotime)oftheinputvoltagefunction.Thatis,theinputvoltagelevelestablishes<br />

theoutputvoltagerateofchangeovertime. Thisispreciselytheoppositeofdifferentiation,<br />

wherethederivativeofasignalorfunctionisitsinstantaneousrateofchange.<br />

Ifyouhavetwovoltmeters,youmayreadilyseethisrelationshipbetweeninputvoltage<br />

andoutputvoltagerateofchangebymeasuringthewipervoltage(betweenthepotentiometer


6.6. INTEGRATOR 307<br />

wiperandground)withonemeterandtheoutputvoltage(betweentheop-ampoutputterminal<br />

andground)withtheother.Adjustingthepotentiometertogivezerovoltsshouldresultinthe<br />

slowestoutputvoltagerate-of-change. Conversely,themorevoltageinputtothiscircuit,the<br />

fasteritsoutputvoltagewillchange,or”ramp.”<br />

Tryconnectingthesecond0.1 µFcapacitorinparallelwiththefirst. Thiswilldoublethe<br />

amountofcapacitanceintheop-amp’sfeedbackloop.Whataffectdoesthishaveonthecircuit’s<br />

integrationrateforanygivenpotentiometerposition?<br />

Tryconnectinganother1MΩresistorinparallelwiththeinputresistor(theresistorconnectingthepotentiometerwipertotheinvertingterminaloftheop-amp).Thiswillhalvethe<br />

integrator’sinputresistance.Whataffectdoesthishaveonthecircuit’sintegrationrate?<br />

Integratorcircuitsareoneofthefundamental”building-block”functionsofananalogcomputer.<br />

Byconnectingintegratorcircuitswithamplifiers,summers,andpotentiometers(dividers),almostanydifferentialequationcouldbemodeled,andsolutionsobtainedbymeasuringvoltagesproducedatvariouspointsinthenetworkofcircuits.Becausedifferentialequationsdescribesomanyphysicalprocesses,analogcomputersareusefulassimulators.Before<br />

theadventofmoderndigitalcomputers,engineersusedanalogcomputerstosimulatesuch<br />

processesasmachineryvibration,rockettrajectory,andcontrolsystemresponse.Eventhough<br />

analogcomputersareconsideredobsoletebymodernstandards,theirconstituentcomponents<br />

stillworkwellaslearningtoolsforcalculusconcepts.<br />

Movethepotentiometeruntiltheop-amp’soutputvoltageisasclosetozeroasyoucan<br />

getit,andmovingasslowlyasyoucanmakeit. Disconnecttheintegratorinputfromthe<br />

potentiometerwiperterminalandconnectitinsteadtoground,likethis:<br />

6 V<br />

100 kΩ<br />

1 MΩ<br />

0.1 µF<br />

6 V<br />

6 V<br />

10 kΩ<br />

100 kΩ<br />

−<br />

+<br />

1 MΩ<br />

1 / 2 1458<br />

V output<br />

6 V<br />

Connect integrator input directly to ground


308 CHAPTER6. ANALOGINTEGRATEDCIRCUITS<br />

+ - Connect integrator input directly to ground<br />

+ -<br />

1458<br />

+ -<br />

+ -<br />

Applyingexactlyzerovoltagetotheinputofanintegratorcircuitshould,ideally,causethe<br />

outputvoltagerate-of-changetobezero.Whenyoumakethischangetothecircuit,youshould<br />

noticetheoutputvoltageremainingataconstantlevelorchangingveryslowly.<br />

Withtheintegratorinputstillshortedtoground,shortpastthe1MΩresistorconnecting<br />

theop-amp’snoninverting(+)inputtoground.Thereshouldbenoneedforthisresistorinan<br />

idealop-ampcircuit,sobyshortingpastitwewillseewhatfunctionitprovidesinthisvery<br />

realop-ampcircuit:


6.6. INTEGRATOR 309<br />

6 V<br />

100 kΩ<br />

1 MΩ<br />

0.1 µF<br />

6 V<br />

6 V<br />

10 kΩ<br />

100 kΩ<br />

−<br />

+<br />

1 MΩ<br />

1 / 2 1458<br />

V output<br />

6 V<br />

Connect integrator input directly to ground<br />

Short past the "grounding" resistor<br />

+ - Connect integrator input directly to ground<br />

+ -<br />

1458<br />

+ -<br />

+ -<br />

Short past the "grounding" resistor<br />

Assoonasthe”grounding”resistorisshortedwithajumperwire,theop-amp’soutput<br />

voltagewillstarttochange,ordrift. Ideally,thisshouldnothappen,becausetheintegrator


310 CHAPTER6. ANALOGINTEGRATEDCIRCUITS<br />

circuitstillhasaninputsignalofzerovolts. However,realoperationalamplifiershavea<br />

verysmallamountofcurrententeringeachinputterminalcalledthebiascurrent.Thesebias<br />

currentswilldropvoltageacrossanyresistanceintheirpath. Sincethe1MΩinputresistor<br />

conductssomeamountofbiascurrentregardlessofinputsignalmagnitude,itwilldropvoltage<br />

acrossitsterminalsduetobiascurrent,thus”offsetting”theamountofsignalvoltageseenat<br />

theinvertingterminaloftheop-amp.Iftheother(noninverting)inputisconnecteddirectlyto<br />

groundaswehavedonehere,this”offset”voltageincurredbyvoltagedropgeneratedbybias<br />

currentwillcausetheintegratorcircuittoslowly”integrate”asthoughitwerereceivingavery<br />

smallinputsignal.<br />

The”grounding”resistorisbetterknownasacompensatingresistor,becauseitactsto<br />

compensateforvoltageerrorscreatedbybiascurrent. Sincethebiascurrentsthrougheach<br />

op-ampinputterminalareapproximatelyequaltoeachother,anequalamountofresistance<br />

placedinthepathofeachbiascurrentwillproduceapproximatelythesamevoltagedrop.<br />

Equalvoltagedropsseenatthecomplementaryinputsofanop-ampcanceleachotherout,<br />

thusnullingtheerrorotherwiseinducedbybiascurrent.<br />

Removethejumperwireshortingpastthecompensatingresistorandnoticehowtheopampoutputreturnstoarelativelystablestate.Itmaystilldriftsome,mostlikelyduetobias<br />

voltageerrorintheop-ampitself,butthatisanothersubjectaltogether!<br />

COMPUTERSIMULATION<br />

SchematicwithSPICEnodenumbers:<br />

1<br />

1 MΩ 2 0.1 µF<br />

3<br />

0 0<br />

−<br />

+<br />

Netlist(makeatextfilecontainingthefollowingtext,verbatim):<br />

DC integrator<br />

vinput 1 0 dc 0.05<br />

r1 1 2 1meg<br />

c1 2 3 0.1u ic=0<br />

e1 3 0 0 2 999k<br />

.tran 1 30 uic<br />

.plot tran v(1,0) v(3,0)<br />

.end


6.7. 555AUDIOOSCILLATOR 311<br />

6.7 555audiooscillator<br />

PARTSANDMATERIALS<br />

• Two6voltbatteries<br />

• Onecapacitor,0.1 µF,non-polarized(RadioShackcatalog#272-135)<br />

• One555timerIC(RadioShackcatalog#276-1723)<br />

• Twolight-emittingdiodes(RadioShackcatalog#276-026orequivalent)<br />

• One1MΩresistor<br />

• One100kΩresistor<br />

• Two510 Ωresistors<br />

• Audiodetectorwithheadphones<br />

• Oscilloscope(recommended,butnotnecessary)<br />

Aoscilloscopewouldbeusefulinanalyzingthewaveformsproducedbythiscircuit,butit<br />

isnotessential.Anaudiodetectorisaveryusefulpieceoftestequipmentforthisexperiment,<br />

especiallyifyoudon’thaveanoscilloscope.<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume4,chapter10:”Multivibrators”<br />

LEARNINGOBJECTIVES<br />

• Howtousethe555timerasanastablemultivibrator<br />

• Workingknowledgeofdutycycle<br />

SCHEMATICDIAGRAM<br />

1 MΩ<br />

V cc<br />

Disch<br />

555<br />

RST<br />

Out<br />

510 Ω<br />

6 V<br />

100 kΩ<br />

Thresh<br />

Trig<br />

Ctrl<br />

510 Ω<br />

6 V<br />

0.1 µF<br />

Gnd


312 CHAPTER6. ANALOGINTEGRATEDCIRCUITS<br />

ILLUSTRATION<br />

+ -<br />

+ -<br />

555<br />

INSTRUCTIONS<br />

The”555”integratedcircuitisageneral-purposetimerusefulforavarietyoffunctions.In<br />

thisexperiment,weexploreitsuseasanastablemultivibrator,oroscillator. Connectedtoa<br />

capacitorandtworesistorsasshown,itwilloscillatefreely,drivingtheLEDsonandoffwith<br />

asquare-waveoutputvoltage.<br />

Thiscircuitworksontheprincipleofalternatelycharginganddischargingacapacitor.The<br />

555beginstodischargethecapacitorbygroundingthe DischterminalwhenthevoltagedetectedbytheThreshterminalexceeds2/3thepowersupplyvoltage(V<br />

cc ).Itstopsdischarging<br />

thecapacitorwhenthevoltagedetectedbytheTrigterminalfallsbelow1/3thepowersupply<br />

voltage. Thus,whenboth Threshand Trigterminalsareconnectedtothecapacitor’spositiveterminal,thecapacitorvoltagewillcyclebetween1/3and2/3powersupplyvoltageina<br />

”sawtooth”pattern.<br />

Duringthechargingcycle,thecapacitorreceiveschargingcurrentthroughtheseriescombinationofthe1MΩand100kΩresistors.AssoonastheDischterminalonthe555timergoes<br />

togroundpotential(atransistorinsidethe555connectedbetweenthatterminalandground<br />

turnson),thecapacitor’sdischargingcurrentonlyhastogothroughthe100kΩresistor.The<br />

resultisanRCtimeconstantthatismuchlongerforchargingthanfordischarging,resulting<br />

inachargingtimegreatlyexceedingthedischargingtime.<br />

The555’s Outterminalproducesasquare-wavevoltagesignalthatis”high”(nearlyV cc )<br />

whenthecapacitorischarging,and”low”(nearly0volts)whenthecapacitorisdischarging.<br />

Thisalternatinghigh/lowvoltagesignaldrivesthetwoLEDsinoppositemodes:whenoneis<br />

on,theotherwillbeoff.Becausethecapacitor’scharginganddischargingtimesareunequal,<br />

the”high”and”low”timesoftheoutput’ssquare-wavewaveformwillbeunequalaswell.This<br />

canbeseenintherelativebrightnessofthetwoLEDs: onewillbemuchbrighterthanthe<br />

other,becauseitisonforalongerperiodoftimeduringeachcycle.<br />

Theequalityorinequalitybetween”high”and”low”timesofasquarewaveisexpressed<br />

asthatwave’sdutycycle. Asquarewavewitha50%dutycycleisperfectlysymmetrical:its<br />

”high”timeispreciselyequaltoits”low”time.Asquarewavethatis”high”10%ofthetime


6.7. 555AUDIOOSCILLATOR 313<br />

and”low”90%ofthetimeissaidtohavea10%dutycycle.Inthiscircuit,theoutputwaveform<br />

hasa”high”timeexceedingthe”low”time,resultinginadutycyclegreaterthan50%.<br />

Usetheaudiodetector(oranoscilloscope)toinvestigatethedifferentvoltagewaveforms<br />

producedbythiscircuit. Trydifferentresistorvaluesand/orcapacitorvaluestoseewhat<br />

effectstheyhaveonoutputfrequencyorcharge/dischargetimes.


314 CHAPTER6. ANALOGINTEGRATEDCIRCUITS<br />

6.8 555rampgenerator<br />

PARTSANDMATERIALS<br />

• Two6voltbatteries<br />

• Onecapacitor,470 µFelectrolytic,35WVDC(RadioShackcatalog#272-1030orequivalent)<br />

• Onecapacitor,0.1 µF,non-polarized(RadioShackcatalog#272-135)<br />

• One555timerIC(RadioShackcatalog#276-1723)<br />

• TwoPNPtransistors–models2N2907or2N3906recommended(RadioShackcatalog#<br />

276-1604isapackageoffifteenPNPtransistorsidealforthisandotherexperiments)<br />

• Twolight-emittingdiodes(RadioShackcatalog#276-026orequivalent)<br />

• One100kΩresistor<br />

• One47kΩresistor<br />

• Two510 Ωresistors<br />

• Audiodetectorwithheadphones<br />

Thevoltageratingonthe470 µFcapacitorisnotcritical,solongasitgenerouslyexceeds<br />

themaximumpowersupplyvoltage. Inthisparticularcircuit,thatmaximumvoltageis12<br />

volts.Besureyouconnectthiscapacitorinthecircuitproperly,respectingpolarity!<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume1,chapter13:”Capacitors”<br />

LessonsInElectricCircuits,Volume4,chapter10:”Multivibrators”<br />

LEARNINGOBJECTIVES<br />

• Howtousethe555timerasanastablemultivibrator<br />

• Apracticaluseforacurrentmirrorcircuit<br />

• Understandingtherelationshipbetweencapacitorcurrentandcapacitorvoltagerate-ofchange<br />

SCHEMATICDIAGRAM


6.8. 555RAMPGENERATOR 315<br />

100 kΩ<br />

TP2<br />

+<br />

A<br />

-<br />

TP1<br />

47 kΩ<br />

TP3<br />

V cc<br />

555<br />

Disch<br />

Thresh<br />

Trig<br />

RST<br />

Out<br />

Ctrl<br />

510 Ω<br />

510 Ω<br />

6 V<br />

6 V<br />

470 µF<br />

Gnd<br />

ILLUSTRATION<br />

+ - CBE<br />

TP3<br />

TP2<br />

CBE<br />

-<br />

-<br />

555<br />

+ -<br />

TP1<br />

INSTRUCTIONS<br />

Again,weareusinga555timerICasanastablemultivibrator,oroscillator. Thistime,<br />

however,wewillcompareitsoperationintwodifferentcapacitor-chargingmodes:traditional<br />

RCandconstant-current.<br />

Connectingtestpoint#1(TP1)totestpoint#3(TP3)usingajumperwire. Thisallows<br />

thecapacitortochargethrougha47kΩresistor. Whenthecapacitorhasreached2/3supply<br />

voltage,the555timerswitchesto”discharge”modeanddischargesthecapacitortoalevelof<br />

1/3supplyvoltagealmostimmediately.Thechargingcyclebeginsagainatthispoint.Measure<br />

voltagedirectlyacrossthecapacitorwithavoltmeter(adigitalvoltmeterispreferred),and<br />

notetherateofcapacitorchargingovertime.Itshouldrisequicklyatfirst,thentaperoffasit<br />

buildsupto2/3supplyvoltage,justasyouwouldexpectfromanRCchargingcircuit.<br />

RemovethejumperwirefromTP3,andre-connectittoTP2. Thisallowsthecapacitorto<br />

bechargedthroughthecontrolled-currentlegofacurrentmirrorcircuitformedbythetwo<br />

PNPtransistors.Measurevoltagedirectlyacrossthecapacitoragain,notingthedifferencein<br />

chargingrateovertimeascomparedtothelastcircuitconfiguration.


316 CHAPTER6. ANALOGINTEGRATEDCIRCUITS<br />

ByconnectingTP1toTP2,thecapacitorreceivesanearlyconstantchargingcurrent.Constantcapacitorchargingcurrentyieldsavoltagecurvethatislinear,asdescribedbytheequationi=C(de/dt).Ifthecapacitor’scurrentisconstant,sowillbeitsrate-of-changeofvoltage<br />

overtime.Theresultisa”ramp”waveformratherthana”sawtooth”waveform:<br />

Sawtooth waveform (RC circuit)<br />

Ramp waveform (constant current)<br />

Thecapacitor’schargingcurrentmaybedirectlymeasuredbysubstitutinganammeterin<br />

placeofthejumperwire.Theammeterwillneedtobesettomeasureacurrentintherangeof<br />

hundredsofmicroamps(tenthsofamilliamp).ConnectedbetweenTP1andTP3,youshould<br />

seeacurrentthatstartsatarelativelyhighvalueatthebeginningofthechargingcycle,and<br />

tapersofftowardtheend.ConnectedbetweenTP1andTP2,however,thecurrentwillbemuch<br />

morestable.<br />

Itisaninterestingexperimentatthispointtochangethetemperatureofeithercurrent<br />

mirrortransistorbytouchingitwithyourfinger.Asthetransistorwarms,itwillconductmore<br />

collectorcurrentforthesamebase-emittervoltage.Ifthecontrollingtransistor(theoneconnectedtothe100kΩresistor)istouched,thecurrentdecreases.Ifthecontrolledtransistoris<br />

touched,thecurrentincreases.Forthemoststablecurrentmirroroperation,thetwotransistorsshouldbecementedtogethersothattheirtemperaturesneverdifferbyanysubstantial<br />

amount.<br />

Thiscircuitworksjustaswellathighfrequenciesasitdoesatlowfrequencies. Replace<br />

the470 µFcapacitorwitha0.1 µFcapacitor,anduseanaudiodetectortosensethevoltage<br />

waveformatthe555’soutputterminal.Thedetectorshouldproduceanaudiotonethatiseasy<br />

tohear.Thecapacitor’svoltagewillnowbechangingmuchtoofasttoviewwithavoltmeterin<br />

theDCmode,butwecanstillmeasurecapacitorcurrentwithanammeter.<br />

WiththeammeterconnectedbetweenTP1andTP3(RCmode), measurebothDCmicroampsandACmicroamps.<br />

Recordthesecurrentfiguresonpaper. Now,connecttheammeterbetweenTP1andTP2(constant-currentmode).<br />

MeasurebothDCmicroampsandAC<br />

microamps,notinganydifferencesincurrentreadingsbetweenthiscircuitconfigurationand<br />

thelastone. MeasuringACcurrentinadditiontoDCcurrentisaneasywaytodetermine<br />

whichcircuitconfigurationgivesthemoststablechargingcurrent. Ifthecurrentmirrorcircuitwereperfect–thecapacitorchargingcurrentabsolutelyconstant–therewouldbezero<br />

ACcurrentmeasuredbythemeter.


6.9. PWMPOWERCONTROLLER 317<br />

6.9 PWMpowercontroller<br />

PARTSANDMATERIALS<br />

• Four6voltbatteries<br />

• Onecapacitor,100 µFelectrolytic,35WVDC(RadioShackcatalog#272-1028orequivalent)<br />

• Onecapacitor,0.1 µF,non-polarized(RadioShackcatalog#272-135)<br />

• One555timerIC(RadioShackcatalog#276-1723)<br />

• Dualoperationalamplifier,model1458recommended(RadioShackcatalog#276-038)<br />

• OneNPNpowertransistor–(RadioShackcatalog#276-2041orequivalent)<br />

• Three1N4001rectifyingdiodes(RadioShackcatalog#276-1101)<br />

• One10kΩpotentiometer,lineartaper(RadioShackcatalog#271-1715)<br />

• One33kΩresistor<br />

• 12voltautomotivetail-lightlamp<br />

• Audiodetectorwithheadphones<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume3,chapter8:”OperationalAmplifiers”<br />

LessonsInElectricCircuits,Volume2,chapter7:”Mixed-FrequencyACSignals”<br />

LEARNINGOBJECTIVES<br />

• Howtousethe555timerasanastablemultivibrator<br />

• Howtouseanop-ampasacomparator<br />

• HowtousediodestodropunwantedDCvoltage<br />

• Howtocontrolpowertoaloadbypulse-widthmodulation<br />

SCHEMATICDIAGRAM<br />

0.1 µF<br />

33 kΩ<br />

V cc<br />

555<br />

Disch<br />

Thresh<br />

Trig<br />

Gnd<br />

RST<br />

Out<br />

Ctrl<br />

+<br />

1 / 2 1458<br />

−<br />

1<br />

+<br />

/ 2 1458<br />

−<br />

Load<br />

Power<br />

transistor<br />

6 V<br />

6 V<br />

6 V<br />

6 V


318 CHAPTER6. ANALOGINTEGRATEDCIRCUITS<br />

ILLUSTRATION<br />

E<br />

B<br />

C<br />

+ -<br />

+ -<br />

555<br />

+ - + -<br />

1458<br />

INSTRUCTIONS<br />

Thiscircuitusesa555timertogenerateasawtoothvoltagewaveformacrossacapacitor,<br />

thencomparesthatsignalagainstasteadyvoltageprovidedbyapotentiometer,usinganopampasacomparator.<br />

Thecomparisonofthesetwovoltagesignalsproducesasquare-wave<br />

outputfromtheop-amp,varyingindutycycleaccordingtothepotentiometer’sposition.This<br />

variabledutycyclesignalthendrivesthebaseofapowertransistor,switchingcurrentonand<br />

offthroughtheload.The555’soscillationfrequencyismuchhigherthanthelampfilament’s<br />

abilitytothermallycycle(heatandcool),soanyvariationindutycycle,orpulsewidth,hasthe<br />

effectofcontrollingthetotalpowerdissipatedbytheloadovertime.


6.9. PWMPOWERCONTROLLER 319<br />

E C<br />

Output (low power to load)<br />

Control<br />

voltage<br />

E C<br />

Output (high power to load)<br />

Controllingelectricalpowerthroughaloadbymeansofquicklyswitchingitonandoff,<br />

andvaryingthe”on”time,isknownaspulse-widthmodulation,orPWM.Itisaveryefficient<br />

meansofcontrollingelectricalpowerbecausethecontrollingelement(thepowertransistor)<br />

dissipatescomparativelylittlepowerinswitchingonandoff,especiallyifcomparedtothe<br />

wastedpowerdissipatedofarheostatinasimilarsituation.Whenthetransistorisincutoff,<br />

itspowerdissipationiszerobecausethereisnocurrentthroughit. Whenthetransistoris<br />

saturated,itsdissipationisverylowbecausethereislittlevoltagedroppedbetweencollector<br />

andemitterwhileitisconductingcurrent.<br />

PWMisaconcepteasierunderstoodthroughexperimentationthanreading. Itwouldbe<br />

nicetoviewthecapacitorvoltage,potentiometervoltage,andop-ampoutputwaveformsall<br />

onone(triple-trace)oscilloscopetoseehowtheyrelatetooneanother,andtotheloadpower.<br />

However,mostofushavenoaccesstoatriple-traceoscilloscope,muchlessanyoscilloscopeat<br />

all,soanalternativemethodistoslowthe555oscillatordownenoughthatthethreevoltages<br />

maybecomparedwithasimpleDCvoltmeter. Replacethe0.1 µFcapacitorwithonethat<br />

is100 µForlarger. Thiswillslowtheoscillationfrequencydownbyafactorofatleasta<br />

thousand,enablingyoutomeasurethecapacitorvoltageslowlyriseovertime,andtheopampoutputtransitionfrom”high”to”low”whenthecapacitorvoltagebecomesgreaterthan<br />

thepotentiometervoltage. Withsuchaslowoscillationfrequency,theloadpowerwillnotbe<br />

proportionedasbefore.Rather,thelampwillturnonandoffatregularintervals.Feelfreeto<br />

experimentwithothercapacitororresistorvaluestospeeduptheoscillationsenoughsothe<br />

lampneverfullyturnsonoroff,butis”throttled”byquickon-and-offpulsingofthetransistor.<br />

Whenyouexaminetheschematic,youwillnoticetwooperationalamplifiersconnectedin<br />

parallel. Thisisdonetoprovidemaximumcurrentoutputtothebaseterminalofthepower<br />

transistor.Asingleop-amp(one-halfofa1458IC)maynotbeabletoprovidesufficientoutput<br />

currenttodrivethetransistorintosaturation,sotwoop-ampsareusedintandem.Thisshould<br />

onlybedoneiftheop-ampsinquestionareoverload-protected,whichthe1458seriesofopampsare.Otherwise,itispossible(thoughunlikely)thatoneop-ampcouldturnonbeforethe<br />

other,anddamageresultfromthetwooutputsshort-circuitingeachother(onedriving”high”<br />

andtheotherdriving”low”simultaneously). Theinherentshort-circuitprotectionofferedby<br />

the1458allowsfordirectdrivingofthepowertransistorbasewithoutanyneedforacurrent-


320 CHAPTER6. ANALOGINTEGRATEDCIRCUITS<br />

limitingresistor.<br />

Thethreediodesinseriesconnectingtheop-amps’outputstothetransistor’sbasearethere<br />

todropvoltageandensurethetransistorfallsintocutoffwhentheop-ampoutputsgo”low.”<br />

Becausethe1458op-ampcannotswingitsoutputvoltageallthewaydowntogroundpotential,<br />

butonlytowithinabout2voltsofground,adirectconnectionfromtheop-amptothetransistor<br />

wouldmeanthetransistorwouldneverfullyturnoff. Addingthreesilicondiodesinseries<br />

dropsapproximately2.1volts(0.7voltstimes3)toensurethereisminimalvoltageatthe<br />

transistor’sbasewhentheop-ampoutputsgo”low.”<br />

Itisinterestingtolistentotheop-ampoutputsignalthroughanaudiodetectorasthe<br />

potentiometerisadjustedthroughitsfullrangeofmotion.Adjustingthepotentiometerhasno<br />

effectonsignalfrequency,butitgreatlyaffectsdutycycle.Notethedifferenceintonequality,<br />

ortimbre,asthepotentiometervariesthedutycyclefrom0%to50%to100%. Varyingthe<br />

dutycyclehastheeffectofchangingtheharmoniccontentofthewaveform,whichmakesthe<br />

tonesounddifferent.<br />

Youmightnoticeaparticularuniquenesstothesoundheardthroughthedetectorheadphoneswhenthepotentiometerisincenterposition(50%dutycycle–50%loadpower),versus<br />

akindofsimilarityinsoundjustaboveorbelow50%dutycycle. Thisisduetotheabsence<br />

orpresenceofeven-numberedharmonics. Anywaveformthatissymmetricalaboveandbelowitscenterline,suchasasquarewavewitha50%dutycycle,containsnoeven-numbered<br />

harmonics,onlyodd-numbered. Ifthedutycycleisbeloworabove50%,thewaveformwill<br />

notexhibitthissymmetry,andtherewillbeeven-numberedharmonics.Thepresenceofthese<br />

even-numberedharmonicfrequenciescanbedetectedbythehumanear,assomeofthemcorrespondtooctavesofthefundamentalfrequencyandthus”fit”morenaturallyintothetone<br />

scheme.


6.10. CLASSBAUDIOAMPLIFIER 321<br />

6.10 ClassBaudioamplifier<br />

PARTSANDMATERIALS<br />

• Four6voltbatteries<br />

• Dualoperationalamplifier,modelTL082recommended(RadioShackcatalog#276-1715)<br />

• OneNPNpowertransistorinaTO-220package–(RadioShackcatalog#276-2020or<br />

equivalent)<br />

• OnePNPpowertransistorinaTO-220package–(RadioShackcatalog#276-2027or<br />

equivalent)<br />

• One1N914switchingdiode(RadioShackcatalog#276-1620)<br />

• Onecapacitor,47 µFelectrolytic,35WVDC(RadioShackcatalog#272-1015orequivalent)<br />

• Twocapacitors,0.22 µF,non-polarized(RadioShackcatalog#272-1070)<br />

• One10kΩpotentiometer,lineartaper(RadioShackcatalog#271-1715)<br />

Besuretouseanop-ampthathasahighslewrate.AvoidtheLM741orLM1458forthis<br />

reason.<br />

Theclosermatchedthetwotransistorsare,thebetter.Ifpossible,trytoobtainTIP41and<br />

TIP42transistors,whicharecloselymatchedNPNandPNPpowertransistorswithdissipation<br />

ratingsof65wattseach.IfyoucannotgetaTIP41NPNtransistor,theTIP3055(availablefrom<br />

RadioShack)isagoodsubstitute.Donotuseverylarge(i.e.TO-3case)powertransistors,as<br />

theop-ampmayhavetroubledrivingenoughcurrenttotheirbasesforgoodoperation.<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume3,chapter4:”BipolarJunctionTransistors”<br />

LessonsInElectricCircuits,Volume3,chapter8:”OperationalAmplifiers”<br />

LEARNINGOBJECTIVES<br />

• Howtobuilda”push-pull”classBamplifierusingcomplementarybipolartransistors<br />

• Theeffectsof”crossoverdistortion”inapush-pullamplifiercircuit<br />

• Usingnegativefeedbackviaanop-amptocorrectcircuitnonlinearities<br />

SCHEMATICDIAGRAM


322 CHAPTER6. ANALOGINTEGRATEDCIRCUITS<br />

+V<br />

Audio<br />

signal<br />

in<br />

0.22 µF<br />

−<br />

1 / 2 TL082<br />

+<br />

1 MΩ<br />

-V<br />

6 V<br />

+V<br />

Volume<br />

10 kΩ<br />

+V<br />

−<br />

1 / 2 TL082<br />

+<br />

-V<br />

47 µF<br />

10 kΩ<br />

0.22 µF<br />

1N914<br />

+V<br />

TIP41<br />

or<br />

TIP3055<br />

TIP42<br />

8 Ω<br />

speaker<br />

Power<br />

supply<br />

6 V<br />

6 V<br />

-V<br />

6 V<br />

-V<br />

ILLUSTRATION<br />

Volume<br />

control<br />

+ - + -<br />

TL082<br />

NPN<br />

BCE<br />

PNP<br />

BCE<br />

+ -<br />

-<br />

-<br />

+ -<br />

Audio<br />

input<br />

Speaker<br />

INSTRUCTIONS<br />

Thisprojectisanaudioamplifiersuitableforamplifyingtheoutputsignalfromasmall<br />

radio,tapeplayer,CDplayer,oranyothersourceofaudiosignals. Forstereooperation,two


6.10. CLASSBAUDIOAMPLIFIER 323<br />

identicalamplifiersmustbebuilt,onefortheleftchannelandotherfortherightchannel.To<br />

obtainaninputsignalforthisamplifiertoamplify,justconnectittotheoutputofaradioor<br />

otheraudiodevicelikethis:<br />

Amplifier circuit<br />

Radio<br />

Audio<br />

input<br />

. . .<br />

. . .<br />

phones<br />

"Phono" plug<br />

"Mono" headphone<br />

plug<br />

Thisamplifiercircuitalsoworkswellinamplifying”line-level”audiosignalsfromhighquality,modularstereocomponents.<br />

Itprovidesasurprisingamountofsoundpowerwhen<br />

playedthroughalargespeaker,andmayberunwithoutheatsinksonthetransistors(though<br />

youshouldexperimentwithitabitbeforedecidingtoforegoheatsinks,asthepowerdissipationvariesaccordingtothetypeofspeakerused).<br />

Thegoalofanyamplifiercircuitistoreproducetheinputwaveshapeasaccuratelyaspossible.<br />

Perfectreproductionisimpossible,ofcourse,andanydifferencesbetweentheoutput<br />

andinputwaveshapesisknownasdistortion.Inanaudioamplifier,distortionmaycauseunpleasanttonestobesuperimposedonthetruesound.Therearemanydifferentconfigurations<br />

ofaudioamplifiercircuitry,eachwithitsownadvantagesanddisadvantages.Thisparticular<br />

circuitiscalleda”classB,”push-pullcircuit.<br />

Mostaudio”power”amplifiersuseaclassBconfiguration,whereonetransistorprovides<br />

powertotheloadduringone-halfofthewaveformcycle(itpushes)andasecondtransistor<br />

providespowertotheloadfortheotherhalfofthecycle(itpulls). Inthisscheme,neither<br />

transistorremains”on”fortheentirecycle,givingeachoneatimeto”rest”andcoolduringthe<br />

waveformcycle.Thismakesforapower-efficientamplifiercircuit,butleadstoadistincttype<br />

ofnonlinearityknownas”crossoverdistortion.”<br />

Shownhereisasine-waveshape,equivalenttoaconstantaudiotoneofconstantvolume:


324 CHAPTER6. ANALOGINTEGRATEDCIRCUITS<br />

Inapush-pullamplifiercircuit,thetwotransistorstaketurnsamplifyingthealternate<br />

half-cyclesofthewaveformlikethis:<br />

Transistor #1 Transistor #1 Transistor #1<br />

Transistor #2 Transistor #2 Transistor #2<br />

Ifthe”hand-off”betweenthetwotransistorsisnotpreciselysynchronized,though,the<br />

amplifier’soutputwaveformmaylooksomethinglikethisinsteadofapuresinewave:<br />

Transistor #1 Transistor #1 Transistor #1<br />

Transistor #2 Transistor #2 Transistor #2<br />

Here,distortionresultsfromthefactthatthereisadelaybetweenthetimeonetransistorturnsoffandtheothertransistorturnson.<br />

Thistypeofdistortion,wherethewaveform<br />

”flattens”atthecrossoverpointbetweenpositiveandnegativehalf-cycles,iscalledcrossover<br />

distortion. Onecommonmethodofmitigatingcrossoverdistortionistobiasthetransistors<br />

sothattheirturn-on/turn-offpointsactuallyoverlap,sothatbothtransistorsareinastateof<br />

conductionforabriefmomentduringthecrossoverperiod:<br />

Transistor #1 Transistor #1 Transistor #1<br />

both both both both both<br />

Transistor #2 Transistor #2 Transistor #2<br />

ThisformofamplificationistechnicallyknownasclassABratherthanclassB,because<br />

eachtransistoris”on”formorethan50%ofthetimeduringacompletewaveformcycle.The<br />

disadvantagetodoingthis,though,isincreasedpowerconsumptionoftheamplifiercircuit,becauseduringthemomentsoftimewherebothtransistorsareconducting,thereiscurrentconductedthroughthetransistorsthatisnotgoingthroughtheload,butismerelybeing”shorted”<br />

fromonepowersupplyrailtotheother(from-Vto+V).Notonlyisthisawasteofenergy,but<br />

itdissipatesmoreheatenergyinthetransistors. Whentransistorsincreaseintemperature,<br />

theircharacteristicschange(V be forwardvoltagedrop, β,junctionresistances,etc.),making<br />

properbiasingdifficult.<br />

Inthisexperiment,thetransistorsoperateinpureclassBmode. Thatis,theyarenever<br />

conductingatthesametime. Thissavesenergyanddecreasesheatdissipation,butlends<br />

itselftocrossoverdistortion.Thesolutiontakeninthiscircuitistouseanop-ampwithnegativefeedbacktoquicklydrivethetransistorsthroughthe”dead”zoneproducingcrossover<br />

distortionandreducetheamountof”flattening”ofthewaveformduringcrossover.


6.10. CLASSBAUDIOAMPLIFIER 325<br />

Thefirst(leftmost)op-ampshownintheschematicdiagramisnothingmorethanabuffer.<br />

Abufferhelpstoreducetheloadingoftheinputcapacitor/resistornetwork,whichhasbeen<br />

placedinthecircuittofilteroutanyDCbiasvoltageoutoftheinputsignal,preventingany<br />

DCvoltagefrombecomingamplifiedbythecircuitandsenttothespeakerwhereitmight<br />

causedamage. Withoutthebufferop-amp,thecapacitor/resistorfilteringcircuitreducesthe<br />

low-frequency(”bass”)responseoftheamplifier,andaccentuatesthehigh-frequency(”treble”).<br />

Thesecondop-ampfunctionsasaninvertingamplifierwhosegainiscontrolledbythe10<br />

kΩpotentiometer. Thisdoesnothingmorethanprovideavolumecontrolfortheamplifier.<br />

Usually,invertingop-ampcircuitshavetheirfeedbackresistor(s)connecteddirectlyfromthe<br />

op-ampoutputterminaltotheinvertinginputterminallikethis:<br />

Input<br />

−<br />

+<br />

+V<br />

-V<br />

Output<br />

Ifweweretousetheresultingoutputsignaltodrivethebaseterminalsofthepush-pull<br />

transistorpair,though,wewouldexperiencesignificantcrossoverdistortion,becausethere<br />

wouldbea”dead”zoneinthetransistors’operationasthebasevoltagewentfrom+0.7volts<br />

to-0.7volts:<br />

+V<br />

Audio<br />

signal<br />

in<br />

+V<br />

−<br />

1 / 2 TL082<br />

+<br />

-V<br />

V be<br />

8 Ω<br />

speaker<br />

Top transistor doesn’t turn<br />

on until V be exceeds +0.7 volts<br />

Bottom transistor doesn’t turn<br />

on until V be drops below -0.7 volts<br />

Ifyouhavealreadyconstructedtheamplifiercircuitinitsfinalform,youmaysimplifyitto<br />

thisformandlistentothedifferenceinsoundquality.Ifyouhavenotyetbegunconstructionof<br />

thecircuit,theschematicdiagramshownabovewouldbeagoodstartingpoint.Itwillamplify<br />

anaudiosignal,butitwillsoundhorrible!<br />

-V


326 CHAPTER6. ANALOGINTEGRATEDCIRCUITS<br />

Thereasonforthecrossoverdistortionisthatwhentheop-ampoutputsignalisbetween<br />

+0.7voltsand-0.7volts,neithertransistorwillbeconducting,andtheoutputvoltagetothe<br />

speakerwillbe0voltsfortheentire1.4voltsspanofbasevoltageswing. Thus,thereisa<br />

”zone”intheinputsignalrangewherenochangeinspeakeroutputvoltagewilloccur.Hereis<br />

whereintricatebiasingtechniquesareusuallyintroducedtothecircuittoreducethis1.4volt<br />

”gap”intransistorinputsignalresponse.Usually,somethinglikethisisdone:<br />

+V<br />

+<br />

1.4 volts<br />

-<br />

8 Ω<br />

speaker<br />

Input<br />

signal<br />

-V<br />

Thetwoseries-connecteddiodeswilldropapproximately1.4volts,equivalenttothecombinedV<br />

be forwardvoltagedropsofthetwotransistors,resultinginascenariowhereeach<br />

transistorisjustonthevergeofturningonwhentheinputsignaliszerovolts,eliminatingthe<br />

1.4volt”dead”signalzonethatexistedbefore.<br />

Unfortunately,though,thissolutionisnotperfect:asthetransistorsheatupfromconductingpowertotheload,theirV<br />

be forwardvoltagedropswilldecreasefrom0.7voltstosomething<br />

less,suchas0.6voltsor0.5volts.Thediodes,whicharenotsubjecttothesameheatingeffect<br />

becausetheydonotconductanysubstantialcurrent,willnotexperiencethesamechangein<br />

forwardvoltagedrop.Thus,thediodeswillcontinuetoprovidethesame1.4voltbiasvoltage<br />

eventhoughthetransistorsrequirelessbiasvoltageduetoheating. Theresultwillbethat<br />

thecircuitdriftsintoclassABoperation,wherebothtransistorswillbeinastateofconduction<br />

partofthetime.This,ofcourse,willresultinmoreheatdissipationthroughthetransistors,<br />

exacerbatingtheproblemofforwardvoltagedropchange.<br />

Acommonsolutiontothisproblemistheinsertionoftemperature-compensation”feedback”<br />

resistorsintheemitterlegsofthepush-pulltransistorcircuit:


6.10. CLASSBAUDIOAMPLIFIER 327<br />

+V<br />

R feedback<br />

R feedback<br />

8 Ω<br />

speaker<br />

Input<br />

signal<br />

-V<br />

Thissolutiondoesn’tpreventsimultaneousturn-onofthetwotransistors,butmerelyreducestheseverityoftheproblemandpreventsthermalrunaway.Italsohastheunfortunate<br />

effectofinsertingresistanceintheloadcurrentpath,limitingtheoutputcurrentoftheamplifier.<br />

ThesolutionIoptedforinthisexperimentisonethatcapitalizesontheprincipleof<br />

op-ampnegativefeedbacktoovercometheinherentlimitationsofthepush-pulltransistoroutputcircuit.Iuseonediodetoprovidea0.7voltbiasvoltageforthepush-pullpair.Thisisnot<br />

enoughtoeliminatethe”dead”signalzone,butitreducesitbyatleast50%:<br />

+V<br />

Audio<br />

signal<br />

in<br />

+V<br />

−<br />

1 / 2 TL082<br />

+<br />

-V<br />

8 Ω<br />

speaker<br />

-V


328 CHAPTER6. ANALOGINTEGRATEDCIRCUITS<br />

Sincethevoltagedropofasinglediodewillalwaysbelessthanthecombinedvoltagedrops<br />

ofthetwotransistors’base-emitterjunctions,thetransistorscanneverturnonsimultaneously,therebypreventingclassABoperation.Next,tohelpgetridoftheremainingcrossover<br />

distortion,thefeedbacksignaloftheop-ampistakenfromtheoutputterminaloftheamplifier<br />

(thetransistors’emitterterminals)likethis:<br />

+V<br />

Audio<br />

signal<br />

in<br />

+V<br />

−<br />

1 / 2 TL082<br />

+<br />

-V<br />

8 Ω<br />

speaker<br />

-V<br />

Theop-amp’sfunctionistooutputwhatevervoltagesignalithastoinordertokeepits<br />

twoinputterminalsatthesamevoltage(0voltsdifferential).Byconnectingthefeedbackwire<br />

totheemitterterminalsofthepush-pulltransistors,theop-amphastheabilitytosenseany<br />

”dead”zonewhereneithertransistorisconducting,andoutputanappropriatevoltagesignal<br />

tothebasesofthetransistorstoquicklydrivethemintoconductionagainto”keepup”withthe<br />

inputsignalwaveform.Thisrequiresanop-ampwithahighslewrate(theabilitytoproducea<br />

fast-risingorfast-fallingoutputvoltage),whichiswhytheTL082op-ampwasspecifiedforthis<br />

circuit. Slowerop-ampssuchastheLM741orLM1458maynotbeabletokeepupwiththe<br />

highdv/dt(voltagerate-of-changeovertime,alsoknownasde/dt)necessaryforlow-distortion<br />

operation.<br />

Onlyacoupleofcapacitorsareaddedtothiscircuittobringitintoitsfinalform: a47<br />

µFcapacitorconnectedinparallelwiththediodehelpstokeepthe0.7voltbiasvoltageconstantdespitelargevoltageswingsintheop-amp’soutput,whilea0.22<br />

µFcapacitorconnected<br />

betweenthebaseandemitteroftheNPNtransistorhelpsreducecrossoverdistortionatlow<br />

volumesettings:


6.10. CLASSBAUDIOAMPLIFIER 329<br />

+V<br />

Audio<br />

signal<br />

in<br />

0.22 µF<br />

−<br />

1 / 2 TL082<br />

+<br />

1 MΩ<br />

-V<br />

6 V<br />

+V<br />

Volume<br />

10 kΩ<br />

+V<br />

−<br />

1 / 2 TL082<br />

+<br />

-V<br />

47 µF<br />

10 kΩ<br />

0.22 µF<br />

1N914<br />

+V<br />

TIP41<br />

or<br />

TIP3055<br />

TIP42<br />

8 Ω<br />

speaker<br />

Power<br />

supply<br />

6 V<br />

6 V<br />

-V<br />

6 V<br />

-V


330 CHAPTER6. ANALOGINTEGRATEDCIRCUITS


Chapter7<br />

DIGITALINTEGRATED<br />

CIRCUITS<br />

Contents<br />

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .331<br />

7.2 Basicgatefunction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .333<br />

7.3 NORgateS-Rlatch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .337<br />

7.4 NANDgateS-Renabledlatch . . . . . . . . . . . . . . . . . . . . . . . . . . .341<br />

7.5 NANDgateS-Rflip-flop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .343<br />

7.6 LEDsequencer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .347<br />

7.7 Simplecombinationlock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .356<br />

7.8 3-bitbinarycounter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .359<br />

7.9 7-segmentdisplay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .361<br />

7.1 Introduction<br />

Digitalcircuitsarecircuitsdealingwithsignalsrestrictedtotheextremelimitsofzeroand<br />

somefullamount. Thisstandsincontrasttoanalogcircuits,inwhichsignalsarefreeto<br />

varycontinuouslybetweenthelimitsimposedbypowersupplyvoltageandcircuitresistances.<br />

Thesecircuitsfindusein”true/false”logicaloperationsanddigitalcomputation.<br />

ThecircuitsinthischaptermakeuseofIC,orintegratedcircuit,components. Suchcomponentsareactuallynetworksofinterconnectedcomponentsmanufacturedonasinglewafer<br />

ofsemiconductingmaterial.Integratedcircuitsprovidingamultitudeofpre-engineeredfunctionsareavailableatverylowcost,benefittingstudents,hobbyistsandprofessionalcircuit<br />

designersalike.Mostintegratedcircuitsprovidethesamefunctionalityas”discrete”semiconductorcircuitsathigherlevelsofreliabilityandatafractionofthecost.<br />

CircuitsinthischapterwillprimarilyuseCMOStechnology,asthisformofICdesignallows<br />

forabroadrangeofpowersupplyvoltagewhilemaintaininggenerallylowpowerconsumption<br />

331


332 CHAPTER7. DIGITALINTEGRATEDCIRCUITS<br />

levels.ThoughCMOScircuitryissusceptibletodamagefromstaticelectricity(highvoltages<br />

willpuncturetheinsulatingbarriersintheMOSFETtransistors),modernCMOSICsarefar<br />

moretolerantofelectrostaticdischargethantheCMOSICsofthepast,reducingtheriskof<br />

chipfailurebymishandling.ProperhandlingofCMOSinvolvestheuseofanti-staticfoamfor<br />

storageandtransportofIC’s,andmeasurestopreventstaticchargefrombuildinguponyour<br />

body(useofagroundingwriststrap,orfrequentlytouchingagroundedobject).<br />

CircuitsusingTTLtechnologyrequirearegulatedpowersupplyvoltageof5volts,andwill<br />

nottolerateanysubstantialdeviationfromthisvoltagelevel.AnyTTLcircuitsinthischapter<br />

willbeadequatelylabeledassuch,anditwillbeexpectedthatyourealizeitsuniquepower<br />

supplyrequirements.<br />

Whenbuildingdigitalcircuitsusingintegratedcircuit”chips,”itishighlyrecommended<br />

thatyouuseabreadboardwithpowersupply”rail”connectionsalongthelength.Thesearesets<br />

ofholesinthebreadboardthatareelectricallycommonalongtheentirelengthoftheboard.<br />

Connectonetothepositiveterminalofabattery,andtheothertothenegativeterminal,and<br />

DCpowerwillbeavailabletoanyareaofthebreadboardviaconnectionthroughshortjumper<br />

wires:<br />

+ - These points electrically common<br />

These points electrically common<br />

Withsomanyoftheseintegratedcircuitshaving”reset,””enable,”and”disable”terminals<br />

needingtobemaintainedina”high”or”low”state,nottomentiontheV DD (orV CC )and<br />

groundpowerterminalswhichrequireconnectiontothepowersupply,havingbothterminals<br />

ofthepowersupplyreadilyavailableforconnectionatanypointalongtheboard’slengthis<br />

veryuseful.<br />

MostbreadboardsthatIhaveseenhavethesepowersupply”rail”holes,butsomedonot.<br />

Upuntilthispoint,I’vebeenillustratingcircuitsusingabreadboardlackingthisfeature,<br />

justtoshowhowitisn’tabsolutelynecessary.However,digitalcircuitsseemtorequiremore<br />

connectionstothepowersupplythanothertypesofbreadboardcircuits,makingthisfeature<br />

morethanjustaconvenience.


7.2. BASICGATEFUNCTION 333<br />

7.2 Basicgatefunction<br />

PARTSANDMATERIALS<br />

• 4011quadNANDgate(RadioShackcatalog#276-2411)<br />

• Eight-positionDIPswitch(RadioShackcatalog#275-1301)<br />

• Ten-segmentbargraphLED(RadioShackcatalog#276-081)<br />

• One6voltbattery<br />

• Two10kΩresistors<br />

• Three470 Ωresistors<br />

Caution!The4011ICisCMOS,andthereforesensitivetostaticelectricity!<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume4,chapter3:”LogicGates”<br />

LEARNINGOBJECTIVES<br />

• Purposeofa”pulldown”resistor<br />

• Howtoexperimentallydeterminethetruthtableofagate<br />

• Howtoconnectlogicgatestogether<br />

• HowtocreatedifferentlogicalfunctionsbyusingNANDgates<br />

SCHEMATICDIAGRAM<br />

1 / 4 4011<br />

6 V<br />

10 kΩ 10 kΩ<br />

470 Ω<br />

ILLUSTRATION


334 CHAPTER7. DIGITALINTEGRATEDCIRCUITS<br />

+ - 4011<br />

INSTRUCTIONS<br />

Tobegin,connectasingleNANDgatetotwoinputswitchesandoneLED,asshown. At<br />

first,theuseofan8-positionswitchanda10-segmentLEDbargraphmayseemexcessive,<br />

sinceonlytwoswitchesandoneLEDareneededtoshowtheoperationofasingleNANDgate.<br />

However,thepresenceofthoseextraswitchesandLEDsmakeitveryconvenienttoexpand<br />

thecircuit,andhelpmakethecircuitlayoutbothcleanandcompact.<br />

Itishighlyrecommendedthatyouhaveadatasheetforthe4011chipavailablewhenyou<br />

buildyourcircuit. Don’tjustfollowtheillustrationshownabove! Itisimportantthatyou<br />

developtheskillofreadingdatasheets,especially”pinout”diagrams,whenconnectingICterminalstoothercircuitelements.<br />

Thedatasheet’sconnectiondiagramisanessentialpieceof<br />

informationtohave.Shownhereismyownrenditionofwhatany4011datasheetshows:<br />

"Pinout," or "connection" diagram for<br />

the 4011 quad NAND gate<br />

V DD<br />

14 13 12 11 10 9 8<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

Gnd<br />

Inthebreadboardillustration,I’veshownthecircuitbuiltusingthelower-leftNANDgate:<br />

pin#’s1and2aretheinputs,andpin#3istheoutput.Pin#’s14and7conductDCpowertoall<br />

fourgatecircuitsinsidetheICchip,”V DD ”representingthepositivesideofthepowersupply<br />

(+V),and”Gnd”representingthenegativesideofthepowersupply(-V),orground.Sometimes<br />

thenegativepowersupplyterminalwillbelabeled”V SS ”insteadof”Gnd”onadatasheet,but<br />

itmeansthesamething.


7.2. BASICGATEFUNCTION 335<br />

Digitallogiccircuitrydoesnotmakeuseofsplitpowersuppliesasop-ampsdo.Likeop-amp<br />

circuits,though,groundisstilltheimplicitpointofreferenceforallvoltagemeasurements.If<br />

Iweretospeakofa”high”signalbeingpresentonacertainpinofthechip,Iwouldmeanthat<br />

therewasfullvoltagebetweenthatpinandthenegativesideofthepowersupply(ground).<br />

Notehowallinputsoftheunusedgatesinsidethe4011chipareconnectedeithertoV DD<br />

orground.Thisisnotamistake,butanactofintentionaldesign.Sincethe4011isaCMOS<br />

integratedcircuit,andCMOScircuitinputsleftunconnected(floating)canassumeanyvoltage<br />

levelmerelyfrominterceptingastaticelectricchargefromanearbyobject,leavinginputs<br />

floatingmeansthatthoseunusedgatesmayreceiveanyrandomcombinationsof”high”and<br />

”low”signals.<br />

Whyisthisundesirable,ifwearen’tusingthosegates?Whocareswhatsignalstheyreceive,<br />

ifwearenotdoinganythingwiththeiroutputs?Theproblemis,ifstaticvoltagesignalsappear<br />

atthegateinputsthatarenotfully”high”orfully”low,”thegates’internaltransistorsmay<br />

begintoturnoninsuchawayastodrawexcessivecurrent.Atworst,thiscouldleadtodamage<br />

ofthechip. Atbestitmeansexcessivepowerconsumption. Itmatterslittleifwechooseto<br />

connecttheseunusedgateinputs”high”(V DD )or”low”(ground),solongasweconnectthem<br />

tooneofthosetwoplaces.Inthebreadboardillustration,Ishowallthetopinputsconnected<br />

toV DD ,andallthebottominputs(oftheunusedgates)connectedtoground. Thiswasdone<br />

merelybecausethosepowersupplyrailholeswerecloseranddidnotrequirelongjumper<br />

wires!<br />

PleasenotethatnoneoftheunusedgateoutputshavebeenconnectedtoV DD orground,<br />

andforgoodreason! IfIweretodothat,Imaybeforcingagatetoassumetheopposite<br />

outputstatethatitstryingtoachieve,whichisacomplicatedwayofsayingthatIwouldhave<br />

createdashort-circuit. Imagineagatethatissupposedtooutputa”high”logiclevel(fora<br />

NANDgate,thiswouldbetrueifanyofitsinputswere”low”). Ifsuchagateweretohave<br />

itsoutputterminaldirectlyconnectedtoground,itcouldneverreacha”high”state(being<br />

madeelectricallycommontogroundthroughthejumperwireconnection).Instead,itsupper<br />

(P-channel)outputtransistorwouldbeturnedoninvain,sourcingmaximumcurrenttoa<br />

nonexistentload. Thiswouldverylikelydamagethegate! Gateoutputterminals,bytheir<br />

verynature,generatetheirownlogiclevelsandnever”float”inthesamewaythatCMOSgate<br />

inputsdo.<br />

Thetwo10kΩresistorsareplacedinthecircuittoavoidfloatinginputconditionsonthe<br />

usedgate. Withaswitchclosed,therespectiveinputwillbedirectlyconnectedtoV DD and<br />

thereforebe”high.”Withaswitchopen,the10kΩ”pulldown”resistorprovidesaresistive<br />

connectiontoground,ensuringasecure”low”stateatthegate’sinputterminal.Thisway,the<br />

inputwillnotbesusceptibletostraystaticvoltages.<br />

WiththeNANDgateconnectedtothetwoswitchesandoneLEDasshown,youarereadyto<br />

developa”truthtable”fortheNANDgate.EvenifyoualreadyknowwhataNANDgatetruth<br />

tablelookslike,thisisagoodexerciseinexperimentation:discoveringacircuit’sbehavioral<br />

principlesbyinduction.Drawatruthtableonapieceofpaperlikethis:


336 CHAPTER7. DIGITALINTEGRATEDCIRCUITS<br />

A B<br />

0 0<br />

0 1<br />

1 0<br />

1 1<br />

Output<br />

The”A”and”B”columnsrepresentthetwoinputswitches,respectively.Whentheswitch<br />

ison,itsstateis”high”or1.Whentheswitchisoff,itsstateis”low,”or0,asensuredbyits<br />

pulldownresistor.Thegate’soutput,ofcourse,isrepresentedbytheLED:whetheritislit(1)<br />

orunlit(0).Afterplacingtheswitchesineverypossiblecombinationofstatesandrecordingthe<br />

LED’sstatus,comparetheresultingtruthtablewithwhataNANDgate’struthtableshould<br />

be.<br />

Asyoucanimagine,thisbreadboardcircuitisnotlimitedtotestingNANDgates. Any<br />

gatetypemaybetestedwithtwoswitches,twopulldownresistors,andanLEDtoindicate<br />

outputstatus.Justbesuretodouble-checkthechip’s”pinout”diagrambeforesubstitutingit<br />

pin-for-pininplaceofthe4011.Notall”quad”gatechipshavethesamepinassignments!<br />

AnimprovementyoumightwanttomaketothiscircuitistoassignacoupleofLEDsto<br />

indicateinputstatus,inadditiontotheoneLEDassignedtoindicatetheoutput.Thismakes<br />

operationalittlemoreinterestingtoobserve,andhasthefurtherbenefitofindicatingifa<br />

switchfailstoclose(oropen)byshowingthetrueinputsignaltothegate,ratherthanforcing<br />

youtoinferinputstatusfromswitchposition:<br />

+ - 4011


7.3. NORGATES-RLATCH 337<br />

7.3 NORgateS-Rlatch<br />

PARTSANDMATERIALS<br />

• 4001quadNORgate(RadioShackcatalog#276-2401)<br />

• Eight-positionDIPswitch(RadioShackcatalog#275-1301)<br />

• Ten-segmentbargraphLED(RadioShackcatalog#276-081)<br />

• One6voltbattery<br />

• Two10kΩresistors<br />

• Two470 Ωresistors<br />

• Two100 Ωresistors<br />

Caution!The4001ICisCMOS,andthereforesensitivetostaticelectricity!<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume4,chapter3:”LogicGates”<br />

LessonsInElectricCircuits,Volume4,chapter10:”Multivibrators”<br />

LEARNINGOBJECTIVES<br />

• Theeffectsofpositivefeedbackinadigitalcircuit<br />

• Whatismeantbythe”invalid”stateofalatchcircuit<br />

• Whataraceconditionisinadigitalcircuit<br />

• Theimportanceofvalid”high”CMOSsignalvoltagelevels<br />

SCHEMATICDIAGRAM<br />

1 / 4 4001<br />

6 V<br />

10<br />

kΩ<br />

1 / 4 4001<br />

470<br />

Ω<br />

ILLUSTRATION


338 CHAPTER7. DIGITALINTEGRATEDCIRCUITS<br />

+ - 4001<br />

INSTRUCTIONS<br />

The4001integratedcircuitisaCMOSquadNORgate,identicalininput,output,and<br />

powersupplypinassignmentstothe4011quadNANDgate. Its”pinout,”or”connection,”<br />

diagramisassuch:<br />

"Pinout," or "connection" diagram for<br />

the 4001 quad NOR gate<br />

V DD<br />

14 13 12 11 10 9 8<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

Gnd<br />

WhentwoNORgatesarecross-connectedasshownintheschematicdiagram,therewillbe<br />

positivefeedbackfromoutputtoinput.Thatis,theoutputsignaltendstomaintainthegate<br />

initslastoutputstate. Justasinop-ampcircuits,positivefeedbackcreateshysteresis. This<br />

tendencyforthecircuittoremaininitslastoutputstategivesitasortof”memory.”Infact,<br />

therearesolid-statecomputermemorytechnologiesbasedoncircuitrylikethis!<br />

Ifwedesignatetheleftswitchasthe”Set”inputandtherightswitchasthe”Reset,”theleft<br />

LEDwillbethe”Q”outputandtherightLEDthe”Q-not”output.WiththeSetinput”high”<br />

(switchon)andtheResetinput”low,”Qwillgo”high”andQ-notwillgo”low.”Thisisknown<br />

asthesetstateofthecircuit.MakingtheResetinput”high”andtheSetinput”low”reverses<br />

thelatchcircuit’soutputstate:Q”low”andQ-not”high.”Thisisknownastheresetstateof<br />

thecircuit.Ifbothinputsareplacedintothe”low”state,thecircuit’sQandQ-notoutputswill<br />

remainintheirlaststates,”remembering”theirpriorsettings. Thisisknownasthelatched<br />

stateofthecircuit.


7.3. NORGATES-RLATCH 339<br />

Becausetheoutputshavebeendesignated”Q”and”Q-not,”itisimpliedthattheirstates<br />

willalwaysbecomplementary(opposite).Thus,ifsomethingweretohappenthatforcedboth<br />

outputstothesamestate,wewouldbeinclinedtocallthatmodeofthecircuit”invalid.”This<br />

isexactlywhatwillhappenifwemakebothSetandResetinputs”high:”bothQandQ-not<br />

outputswillbeforcedtothesame”low”logicstate.Thisisknownastheinvalidorillegalstate<br />

ofthecircuit,notbecausesomethinghasgonewrong,butbecausetheoutputshavefailedto<br />

meettheexpectationsestablishedbytheirlabels.<br />

Sincethe”latched”stateisahystereticconditionwherebythelastoutputstatesare”remembered,”onemightwonderwhatwillhappenifthecircuitpowersupthisway,withno<br />

previousstatetohold.Toexperiment,placebothswitchesintheiroffpositions,makingboth<br />

SetandResetinputslow,thendisconnectoneofthebatterywiresfromthebreadboard.Then,<br />

quicklymakeandbreakcontactbetweenthatbatterywireanditsproperconnectionpointon<br />

thebreadboard,notingthestatusofthetwoLEDsasthecircuitispoweredupagainandagain:<br />

make and break contact!<br />

+ - 4011<br />

Whenalatchcircuitsuchasthisispoweredupintoits”latched”state,thegatesrace<br />

againsteachotherforcontrol.Giventhe”low”inputs,bothgatestrytooutput”high”signals.<br />

Ifoneofthegatesreachesits”high”outputstatebeforetheother,that”high”statewillbefed<br />

backtotheothergate’sinputtoforceitsoutput”low,”andtheraceiswonbythefastergate.<br />

Invariably,onegatewinstherace,duetointernalvariationsbetweengatesinthechip,<br />

and/orexternalresistancesandcapacitancesthatacttodelayonegatemorethantheother.<br />

Whatthisusuallymeansisthatthecircuittendstopowerupinthesamemode,overandover<br />

again. However,ifyouarepersistentinyourpowering/unpoweringcycles,youshouldseeat<br />

leastafewtimeswherethelatchcircuitpowersuplatchedintheoppositestatefromnormal.<br />

Raceconditionsaregenerallyundesirableinanykindofsystem,astheyleadtounpredictableoperation.Theycanbeparticularlytroublesometolocate,asthisexperimentshows,<br />

becauseoftheunpredictabilitytheycreate.Imagineascenario,forinstance,whereoneofthe<br />

twoNORgateswasexceptionallyslow-acting,duetoadefectinthechip.Thishandicapwould<br />

causetheothergatetowinthepower-upraceeverytime. Inotherwords,thecircuitwillbe<br />

verypredictableonpower-upwithbothinputs”low.”However,supposethattheunusualchip<br />

weretobereplacedbyonewithmoreevenlymatchedgates,orbyachipwheretheotherNOR<br />

gatewereconsistentlyslower.Normalcircuitbehaviorisnotsupposedtochangewhenacomponentisreplaced,butifraceconditionsarepresent,achangeofcomponentsmayverywell<br />

dojustthat.


340 CHAPTER7. DIGITALINTEGRATEDCIRCUITS<br />

DuetotheinherentracetendencyofanS-Rlatch,oneshouldnotdesignacircuitwiththe<br />

expectationofaconsistentpower-upstate,butratheruseexternalmeansto”force”theraceso<br />

thatthedesiredgatealways”wins.”<br />

Aninterestingmodificationtotryinthiscircuitistoreplaceoneofthe470 ΩLED”dropping”resistorswithalower-valueunit,suchas100<br />

Ω.Theobviouseffectofthisalterationwill<br />

beincreasedLEDbrightness,asmorecurrentisallowedthrough.Anot-so-obviouseffectwill<br />

alsoresult,anditisthiseffectwhichholdsgreatlearningvalue.Tryreplacingoneofthe470 Ω<br />

resistorswitha100 Ωresistor,andoperatetheinputsignalswitchesthroughallfourpossible<br />

settingcombinations,notingthebehaviorofthecircuit.<br />

Youshouldnotethatthecircuitrefusestolatchinoneofitsstates(eitherSetorReset),but<br />

onlyintheotherstate,whentheinputswitchesarebothset”low”(the”latch”mode).Whyis<br />

this?Takeavoltmeterandmeasuretheoutputvoltageofthegatewhoseoutputis”high”when<br />

bothinputsare”low.”Notethisvoltageindication,thensettheinputswitchesinsuchaway<br />

thattheotherstate(eitherResetorSet)isforced,andmeasuretheoutputvoltageoftheother<br />

gatewhenitsoutputis”high.”Notethedifferencebetweenthetwogateoutputvoltagelevels,<br />

onegateloadedbyanLEDwitha470 Ωresistor,andtheotherloadedbyanLEDwitha100 Ω<br />

resistor.Theoneloadeddownbythe”heavier”load(100 Ωresistor)willbemuchless:somuch<br />

lessthatthisvoltagewillnotbeinterpretedbytheotherNORgate’sinputasa”high”signal<br />

atallasitisfedback! Alllogicgateshavepermissible”high”and”low”inputsignalvoltage<br />

ranges,andifthevoltageofadigitalsignalfallsoutsidethispermissiblerange,itmightnot<br />

beproperlyinterpretedbythereceivinggate.Inalatchcircuitsuchasthis,whichdependson<br />

asolid”high”signalfedbackfromtheoutputofonegatetotheinputoftheother,a”weak”<br />

signalwillnotbeabletomaintainthepositivefeedbacknecessarytokeepthecircuitlatched<br />

inoneofitsstates.<br />

ThisisonereasonIfavortheuseofavoltmeterasalogic”probe”fordeterminingdigital<br />

signallevels,ratherthananactuallogicprobewith”high”and”low”lights.Alogicprobemay<br />

notindicatethepresenceofa”weak”signal,whereasavoltmeterdefinitelywillbymeansof<br />

itsquantitativeindication.Thistypeofproblem,commonincircuitswheredifferent”families”<br />

ofintegratedcircuitsaremixed(TTLandCMOS,forexample),canonlybefoundwithtest<br />

equipmentprovidingquantitativemeasurementsofsignallevel.


7.4. NANDGATES-RENABLEDLATCH 341<br />

7.4 NANDgateS-Renabledlatch<br />

PARTSANDMATERIALS<br />

• 4011quadNANDgate(RadioShackcatalog#276-2411)<br />

• Eight-positionDIPswitch(RadioShackcatalog#275-1301)<br />

• Ten-segmentbargraphLED(RadioShackcatalog#276-081)<br />

• One6voltbattery<br />

• Three10kΩresistors<br />

• Two470 Ωresistors<br />

Caution!The4011ICisCMOS,andthereforesensitivetostaticelectricity!<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume4,chapter3:”LogicGates”<br />

LessonsInElectricCircuits,Volume4,chapter10:”Multivibrators”<br />

LEARNINGOBJECTIVES<br />

• Principleandfunctionofanenabledlatchcircuit<br />

SCHEMATICDIAGRAM<br />

Set<br />

Enable Reset<br />

(power connections to gates not<br />

shown for simplicity)<br />

1 / 4 4011<br />

Q<br />

Q<br />

1 / 4 4011<br />

6 V<br />

10<br />

kΩ<br />

10<br />

kΩ<br />

1 / 4 4011<br />

1 / 4 4011<br />

470<br />

Ω<br />

ILLUSTRATION


342 CHAPTER7. DIGITALINTEGRATEDCIRCUITS<br />

+ - 4011<br />

INSTRUCTIONS<br />

AlthoughthiscircuitusesNANDgatesinsteadofNORgates,itsbehaviorisidenticalto<br />

thatoftheNORgateS-Rlatch(a”high”SetinputdrivesQ”high,”anda”high”Resetinput<br />

drivesQ-not”high”),exceptforthepresenceofathirdinput: theEnable. Thepurposeof<br />

theEnableinputistoenableordisabletheSetandResetinputsfromhavingeffectoverthe<br />

circuit’soutputstatus.WhentheEnableinputis”high,”thecircuitactsjustliketheNORgate<br />

S-Rlatch.WhentheEnableinputis”low,”theSetandResetinputsaredisabledandhaveno<br />

effectwhatsoeverontheoutputs,leavingthecircuitinitslatchedstate.<br />

Thiskindoflatchcircuit(alsocalledagatedS-Rlatch),maybeconstructedfromtwoNOR<br />

gatesandtwoANDgates,buttheNANDgatedesigniseasiertobuildsinceitmakesuseofall<br />

fourgatesinasingleintegratedcircuit.<br />

E<br />

R<br />

S<br />

Q<br />

Q<br />

E<br />

0<br />

0<br />

0<br />

0<br />

1<br />

1<br />

1<br />

1<br />

S R<br />

0 0<br />

0 1<br />

1 0<br />

1 1<br />

0 0<br />

0 1<br />

1 0<br />

1 1<br />

Q Q<br />

latch latch<br />

latch latch<br />

latch latch<br />

latch latch<br />

latch latch<br />

0 1<br />

1 0<br />

0 0


7.5. NANDGATES-RFLIP-FLOP 343<br />

7.5 NANDgateS-Rflip-flop<br />

PARTSANDMATERIALS<br />

• 4011quadNANDgate(RadioShackcatalog#276-2411)<br />

• 4001quadNORgate(RadioShackcatalog#276-2401)<br />

• Eight-positionDIPswitch(RadioShackcatalog#275-1301)<br />

• Ten-segmentbargraphLED(RadioShackcatalog#276-081)<br />

• One6voltbattery<br />

• Three10kΩresistors<br />

• Two470 Ωresistors<br />

Caution!The4011ICisCMOS,andthereforesensitivetostaticelectricity!<br />

Althoughthepartslistcallsforaten-segmentLEDunit,theillustrationshowstwoindividualLEDsbeingusedinstead.<br />

Thisisduetolackofroomonmybreadboardtomountthe<br />

switchassembly,twointegratedcircuits,andthebargraph. Ifyouhaveroomonyourbreadboard,feelfreetousethebargraphascalledforinthepartslist,andasshowninpriorlatch<br />

circuits.<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume4,chapter3:”LogicGates”<br />

LessonsInElectricCircuits,Volume4,chapter10:”Multivibrators”<br />

LEARNINGOBJECTIVES<br />

• Thedifferencebetweenagatedlatchandaflip-flop<br />

• Howtobuilda”pulsedetector”circuit<br />

• Learntheeffectsofswitchcontact”bounce”ondigitalcircuits<br />

SCHEMATICDIAGRAM


344 CHAPTER7. DIGITALINTEGRATEDCIRCUITS<br />

Set<br />

Clock<br />

Reset<br />

(power connections to gates not<br />

shown for simplicity)<br />

1 / 4 4011<br />

Q<br />

Q<br />

1 / 4 4011<br />

6 V<br />

10<br />

kΩ<br />

10<br />

kΩ<br />

1 / 4 4011<br />

1 / 4 4011<br />

470<br />

Ω<br />

1 / 4 4001<br />

1 / 4 4001<br />

1 / 4 4001<br />

1 / 4 4001<br />

ILLUSTRATION<br />

+ - 4001 4011<br />

INSTRUCTIONS<br />

Theonlydifferencebetweenagated(orenabled)latchandaflip-flopisthataflip-flopis<br />

enabledonlyontherisingorfallingedgeofa”clock”signal,ratherthanfortheentireduration<br />

ofa”high”enablesignal. Convertinganenabledlatchintoaflip-flopsimplyrequiresthata<br />

”pulsedetector”circuitbeaddedtotheEnableinput,sothattheedgeofaclockpulsegenerates<br />

abrief”high”Enablepulse:


7.5. NANDGATES-RFLIP-FLOP 345<br />

Input<br />

Output<br />

Delayed input<br />

Input<br />

Delayed input<br />

Output<br />

Brief period of time when<br />

both inputs of the NOR gate<br />

are low<br />

ThesingleNORgateandthreeinvertergatescreatethiseffectbyexploitingthepropagationdelaytimeofmultiple,cascadedgates.<br />

Inthisexperiment,IusethreeNORgateswith<br />

paralleledinputstocreatethreeinverters,thususingallfourNORgatesofa4001integrated<br />

circuit:<br />

Pulse detector circuit<br />

Input<br />

1 / 4 4001<br />

Output<br />

1 / 4 4001<br />

1 / 4 4001<br />

1 / 4 4001<br />

Normally,whenusingaNORgateasaninverter,oneinputwouldbegroundedwhilethe<br />

otheractsastheinverterinput,tominimizeinputcapacitanceandincreasespeed. Here,<br />

however,slowresponseisdesired,andsoIparalleltheNORinputstomakeinvertersrather<br />

thanusethemoreconventionalmethod.<br />

Pleasenotethatthisparticularpulsedetectorcircuitproducesa”high”outputpulseat<br />

everyfallingedgeoftheclock(input)signal. Thismeansthattheflip-flopcircuitshouldbe<br />

responsivetotheSetandResetinputstatesonlywhenthemiddleswitchismovedfrom”on”<br />

to”off,”notfrom”off”to”on.”<br />

Whenyoubuildthiscircuit,though,youmaydiscoverthattheoutputsrespondtoSetand<br />

ResetinputsignalsduringbothtransitionsoftheClockinput,notjustwhenitisswitchedfrom<br />

a”high”statetoa”low”state. Thereasonforthisiscontactbounce:theeffectofamechanicalswitchrapidlymaking-and-breakingwhenitscontactsarefirstclosed,duetotheelastic<br />

collisionofthemetalcontactpads.InsteadoftheClockswitchproducingasingle,cleanlowto-highsignaltransitionwhenclosed,therewillmostlikelybeseverallow-high-low”cycles”<br />

asthecontactpads”bounce”uponoff-to-onactuation.Thefirsthigh-to-lowtransitioncaused<br />

bybouncingwilltriggerthepulsedetectorcircuit,enablingtheS-Rlatchforthatmomentin<br />

time,makingitresponsivetotheSetandResetinputs.<br />

Ideally,ofcourse,switchesareperfectandbounce-free.Intherealworld,though,contact<br />

bounceisaverycommonproblemfordigitalgatecircuitsoperatedbyswitchinputs,andmust


346 CHAPTER7. DIGITALINTEGRATEDCIRCUITS<br />

beunderstoodwellifitistobeovercome.


7.6. LEDSEQUENCER 347<br />

7.6 LEDsequencer<br />

PARTSANDMATERIALS<br />

• 4017decadecounter/divider(RadioShackcatalog#276-2417)<br />

• 555timerIC(RadioShackcatalog#276-1723)<br />

• Ten-segmentbargraphLED(RadioShackcatalog#276-081)<br />

• OneSPSTswitch<br />

• One6voltbattery<br />

• 10kΩresistor<br />

• 1MΩresistor<br />

• 0.1 µFcapacitor(RadioShackcatalog#272-135orequivalent)<br />

• Couplingcapacitor,0.047to0.001 µF<br />

• Ten470 Ωresistors<br />

• Audiodetectorwithheadphones<br />

Caution!The4017ICisCMOS,andthereforesensitivetostaticelectricity!<br />

Anysingle-pole,single-throwswitchisadequate.Ahouseholdlightswitchwillworkfine,<br />

andisreadilyavailableatanyhardwarestore.<br />

Theaudiodetectorwillbeusedtoassesssignalfrequency.Ifyouhaveaccesstoanoscilloscope,theaudiodetectorisunnecessary.<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume4,chapter3:”LogicGates”<br />

LessonsInElectricCircuits,Volume4,chapter4:”Switches”<br />

LessonsInElectricCircuits,Volume4,chapter11:”Counters”<br />

LEARNINGOBJECTIVES<br />

• Useofa555timercircuittoproduce”clock”pulses(astablemultivibrator)<br />

• Useofa4017decadecounter/dividercircuittoproduceasequenceofpulses<br />

• Useofa4017decadecounter/dividercircuitforfrequencydivision<br />

• Usingafrequencydividerandtimepiece(watch)tomeasurefrequency<br />

• Purposeofa”pulldown”resistor<br />

• Learntheeffectsofswitchcontact”bounce”ondigitalcircuits<br />

• Useofa555timercircuitto”debounce”amechanicalswitch(monostablemultivibrator)


348 CHAPTER7. DIGITALINTEGRATEDCIRCUITS<br />

SCHEMATICDIAGRAM<br />

1 MΩ<br />

V cc<br />

555<br />

Disch<br />

RST<br />

Out<br />

Clk ClkEn Rst Carry<br />

V DD 4017 Gnd<br />

0 1 2 3 4 5 6 7 8 9<br />

6 V<br />

0.1 µF<br />

Thresh<br />

Trig<br />

Gnd<br />

Ctrl<br />

Ten-segment<br />

LED bargraph<br />

470 Ω each<br />

ILLUSTRATION<br />

+ - 555 4017<br />

INSTRUCTIONS<br />

Themodel4017integratedcircuitisaCMOScounterwithtenoutputterminals. Oneof<br />

thesetenterminalswillbeina”high”stateatanygiventime,withallothersbeing”low,”<br />

givinga”one-of-ten”outputsequence. Iflow-to-highvoltagepulsesareappliedtothe”clock”<br />

(Clk)terminalofthe4017,itwillincrementitscount,forcingthenextoutputintoa”high”<br />

state.<br />

Witha555timerconnectedasanastablemultivibrator(oscillator)oflowfrequency,the<br />

4017willcyclethroughitsten-countsequence,lightingupeachLED,oneatatime,and”recycling”backtothefirstLED.Theresultisavisuallypleasingsequenceofflashinglights.Feel<br />

freetoexperimentwithresistorandcapacitorvaluesonthe555timertocreatedifferentflash<br />

rates.<br />

Trydisconnectingthejumperwireleadingfromthe4017’s”Clock”terminal(pin#14)tothe<br />

555’s”Output”terminal(pin#3)whereitconnectstothe555timerchip,andholditsendin<br />

yourhand.Ifthereissufficient60Hzpower-line”noise”aroundyou,the4017willdetectitas<br />

afastclocksignal,causingtheLEDstoblinkveryrapidly.<br />

Twoterminalsonthe4017chip,”Reset”and”ClockEnable,”aremaintainedina”low”state<br />

bymeansofaconnectiontothenegativesideofthebattery(ground).Thisisnecessaryifthe<br />

chipistocountfreely. Ifthe”Reset”terminalismade”high,”the4017’soutputwillbereset


7.6. LEDSEQUENCER 349<br />

backto0(pin#3”high,”allotheroutputpins”low”).Ifthe”ClockEnable”ismade”high,”the<br />

chipwillstoprespondingtotheclocksignalandpauseinitscountingsequence.<br />

Ifthe4017’s”Reset”terminalisconnectedtooneofitstenoutputterminals,itscounting<br />

sequencewillbecutshort,ortruncated. Youmayexperimentwiththisbydisconnectingthe<br />

”Reset”terminalfromground,thenconnectingalongjumperwiretothe”Reset”terminalfor<br />

easyconnectiontotheoutputsattheten-segmentLEDbargraph. Noticehowmany(orhow<br />

few)LEDslightupwiththe”Reset”connectedtoanyoneoftheoutputs:<br />

touch end of long jumper wire<br />

to an LED terminal<br />

disconnect<br />

+ - 555 4017<br />

Counterssuchasthe4017maybeusedasdigitalfrequencydividers,totakeaclocksignal<br />

andproduceapulseoccurringatsomeintegerfactoroftheclockfrequency.Forexample,ifthe<br />

clocksignalfromthe555timeris200Hz,andthe4017isconfiguredforafull-countsequence<br />

(the”Reset”terminalconnectedtoground,givingafull,ten-stepcount),asignalwithaperiod<br />

tentimesaslong(20Hz)willbepresentatanyofthe4017’soutputterminals.Inotherwords,<br />

eachoutputterminalwillcycleonceforeverytencyclesoftheclocksignal: afrequencyten<br />

timesasslow.<br />

Toexperimentwiththisprinciple,connectyouraudiodetectorbetweenoutput0(pin#3)of<br />

the4017andground,throughaverysmallcapacitor(0.047 µFto0.001 µF).Thecapacitoris<br />

usedfor”coupling”ACsignalsonly,tothatyoumayaudiblydetectpulseswithoutplacinga<br />

DC(resistive)loadonthecounterchipoutput.Withthe4017”Reset”terminalgrounded,you<br />

willhaveafull-countsequence,andyouwillheara”click”intheheadphoneseverytimethe<br />

”0”LEDlightsup,correspondingto1/10ofthe555’sactualoutputfrequency:


350 CHAPTER7. DIGITALINTEGRATEDCIRCUITS<br />

+ - 555 4017<br />

headphones<br />

Sensitivity<br />

plug<br />

Infact,knowingthismathematicalrelationshipbetweenclicksheardintheheadphone<br />

andtheclockfrequencyallowsustomeasuretheclockfrequencytoafairdegreeofprecision.<br />

Usingastopwatchorothertimepiece,countthenumberofclicksheardinonefullminute<br />

whileconnectedtothe4017’s”0”output. Usinga1MΩresistorand0.1 µFcapacitorinthe<br />

555timingcircuit,andapowersupplyvoltageof13volts(insteadof6),Icounted79clicksin<br />

oneminutefrommycircuit.Yourcircuitmayproduceslightlydifferentresults.Multiplythe<br />

numberofpulsescountedatthe”0”outputby10toobtainthenumberofcyclesproducedby<br />

the555timerduringthatsametime(mycircuit:79x10=790cycles). Dividethisnumber<br />

by60toobtainthenumberoftimercycleselapsedineachsecond(mycircuit:790/60=13.17).<br />

ThisfinalfigureistheclockfrequencyinHz.<br />

Now,leavingonetestprobeoftheaudiodetectorconnectedtoground,taketheothertest<br />

probe(theonewiththecouplingcapacitorconnectedinseries)andconnectittopin#3ofthe<br />

555timer.Thebuzzingyouhearistheundividedclockfrequency:


7.6. LEDSEQUENCER 351<br />

+ - 555 4017<br />

headphones<br />

Sensitivity<br />

plug<br />

Byconnectingthe4017’s”Reset”terminaltooneoftheoutputterminals,atruncatedsequencewillresult.<br />

Ifweareusingthe4017asafrequencydivider,thismeanstheoutput<br />

frequencywillbeadifferentfactoroftheclockfrequency:1/9,1/8,1/7,1/6,1/5,1/4,1/3,or1/2,<br />

dependingonwhichoutputterminalweconnectthe”Reset”jumperwireto. Re-connectthe<br />

audiodetectortestprobetooutput”0”ofthe4017(pin#3),andconnectthe”Reset”terminal<br />

jumpertothesixthLEDfromtheleftonthebargraph. Thisshouldproducea1/5frequency<br />

divisionratio:


352 CHAPTER7. DIGITALINTEGRATEDCIRCUITS<br />

+ - 555 4017<br />

headphones<br />

4017 output frequency is<br />

1/5 of input (clock) frequency<br />

Sensitivity<br />

plug<br />

Countingthenumberofclicksheardinoneminuteagain,youshouldobtainanumber<br />

approximatelytwiceaslargeaswhatwascountedwiththe4017configuredfora1/10ratio,<br />

because1/5istwiceaslargearatioas1/10. Ifyoudonotobtainacountthatisexactly<br />

twicewhatyouobtainedbefore,itisbecauseoferrorinherenttothemethodofcountingcycles:<br />

coordinatingyoursenseofhearingwiththedisplayofastopwatchorothertime-keepingdevice.<br />

Tryreplacingthe1MΩtimingresistorinthe555circuitwithoneofgreatlylesservalue,<br />

suchas10kΩ. Thiswillincreasetheclockfrequencydrivingthe4017chip. Usetheaudio<br />

detectortolistentothedividedfrequencyatpin#3ofthe4017,notingthedifferenttones<br />

producedasyoumovethe”Reset”jumperwiretodifferentoutputs,creatingdifferentfrequency<br />

divisionratios.Seeifyoucanproduceoctavesbydividingtheoriginalfrequencyby2,thenby<br />

4,andthenby8(eachdescendingoctaverepresentsone-halfthepreviousfrequency).Octaves<br />

arereadilydistinguishedfromotherdividedfrequenciesbytheirsimilarpitchestotheoriginal<br />

tone.<br />

Afinallessonthatmaybelearnedfromthiscircuitisthatofswitchcontact”bounce.”For<br />

this,youwillneedaswitchtoprovideclocksignalstothe4017chip,insteadofthe555timer.<br />

Re-connectthe”Reset”jumperwiretogroundtoenableafullten-stepcountsequence,and<br />

disconnectthe555’soutputfromthe4017’s”Clock”inputterminal.Connectaswitchinseries<br />

witha10kΩpulldownresistor,andconnectthisassemblytothe4017”Clock”inputasshown:


7.6. LEDSEQUENCER 353<br />

Clk<br />

ClkEn Rst<br />

V DD 4017<br />

Carry<br />

Gnd<br />

0 1 2 3 4 5 6 7 8 9<br />

6 V<br />

10 kΩ<br />

Ten-segment<br />

LED bargraph<br />

470 Ω each<br />

+ - 555 4017<br />

connect<br />

disconnect<br />

connect<br />

connect<br />

Thepurposeofa”pulldown”resistoristoprovideadefinite”low”logicstatewhentheswitch<br />

contactopens. Withoutthisresistorinplace,the4017’s”Clock”inputwirewouldbefloating<br />

whenevertheswitchcontactwasopened,leavingitsusceptibletointerferencefromstraystatic<br />

voltagesorelectrical”noise,”eitheronecapableofmakingthe4017countrandomly. With<br />

thepulldownresistorinplace,the4017’s”Clock”inputwillhaveadefinite,albeitresistive,<br />

connectiontoground,providingastable”low”logicstatethatprecludesanyinterferencefrom<br />

staticelectricityor”noise”coupledfromnearbyACcircuitwiring.<br />

Actuatetheswitchonandoff,notingtheactionoftheLEDs. Witheachoff-to-onswitch<br />

transition,the4017shouldincrementonceinitscount.However,youmaynoticesomestrange<br />

behavior: sometimes,theLEDsequencewill”skip”oneorevenseveralstepswithasingle<br />

switchclosure. Whyisthis? Itisduetoveryrapid,mechanical”bouncing”oftheswitch<br />

contacts.Whentwometalliccontactsarebroughttogetherrapidlyasdoeshappeninsidemost<br />

switches,therewillbeanelasticcollision. Thiscollisionresultsinthecontactsmakingand<br />

breakingveryrapidlyasthey”bounce”offoneanother. Normally,this”bouncing”ismuchto<br />

rapidforyoutoseeitseffects,butinadigitalcircuitsuchasthiswherethecounterchipisable


354 CHAPTER7. DIGITALINTEGRATEDCIRCUITS<br />

torespondtoveryquickclockpulses,these”bounces”areinterpretedasdistinctclocksignals,<br />

andthecountincrementedaccordingly.<br />

Onewaytocombatthisproblemistouseatimingcircuittoproduceasinglepulseforany<br />

numberofinputpulsesignalsreceivedwithinashortamountoftime. Thecircuitiscalled<br />

amonostablemultivibrator,andanytechniqueeliminatingthefalsepulsescausedbyswitch<br />

contact”bounce”iscalleddebouncing.<br />

The555timercircuitiscapableoffunctioningasadebouncer,ifthe”Trigger”inputis<br />

connectedtotheswitchassuch:<br />

Using the 555 timer to "debounce" the switch<br />

1 MΩ<br />

V cc<br />

555<br />

Disch<br />

RST<br />

Out<br />

Clk ClkEn Rst Carry<br />

V DD 4017 Gnd<br />

0 1 2 3 4 5 6 7 8 9<br />

6 V<br />

Thresh<br />

Trig<br />

Ctrl<br />

0.1 µF<br />

Gnd<br />

10 kΩ<br />

+ - 555 4017<br />

Pleasenotethatsinceweareusingthe555onceagaintoprovideaclocksignaltothe4017,<br />

wemustre-connectpin#3ofthe555chiptopin#14ofthe4017chip!Also,ifyouhavealtered<br />

thevaluesoftheresistororcapacitorinthe555timercircuit,youshouldreturntotheoriginal<br />

1MΩand0.1 µFcomponents.<br />

Actuatetheswitchagainandnotethecountingbehaviorofthe4017. Thereshouldbe<br />

nomore”skipped”countsastherewerebefore,becausethe555timeroutputsasingle,crisp<br />

pulseforeveryon-to-offactuation(noticetheinversionofoperationhere!)oftheswitch.Itis


7.6. LEDSEQUENCER 355<br />

importantthatthetimingofthe555circuitbeappropriate:thetimetochargethecapacitor<br />

shouldbelongerthanthe”settling”periodoftheswitch(thetimerequiredforthecontacts<br />

tostopbouncing),butnotsolongthatthetimerwould”miss”arapidsequenceofswitch<br />

actuations,iftheyweretooccur.


356 CHAPTER7. DIGITALINTEGRATEDCIRCUITS<br />

7.7 Simplecombinationlock<br />

PARTSANDMATERIALS<br />

• 4001quadNORgate(RadioShackcatalog#276-2401)<br />

• 4070quadXORgate(RadioShackcatalog#900-6906)<br />

• Two,eight-positionDIPswitches(RadioShackcatalog#275-1301)<br />

• Twolight-emittingdiodes(RadioShackcatalog#276-026orequivalent)<br />

• Four1N914”switching”diodes(RadioShackcatalog#276-1122)<br />

• Ten10kΩresistors<br />

• Two470 Ωresistors<br />

• Pushbuttonswitch,normallyopen(RadioShackcatalog#275-1556)<br />

• Two6voltbatteries<br />

Caution!Boththe4001and4070ICsareCMOS,andthereforesensitivetostaticelectricity!<br />

Thisexperimentmaybebuiltusingonlyone8-positionDIPswitch,buttheconceptiseasier<br />

tounderstandiftwoswitchassembliesareused.Theideais,oneswitchactstoholdthecorrect<br />

codeforunlockingthelock,whiletheotherswitchservesasadataentrypointfortheperson<br />

tryingtoopenthelock. Inreallife,ofcourse,theswitchassemblywiththe”key”codeset<br />

onitmustbehiddenfromthesightofthepersonopeningthelock,whichmeansitmustbe<br />

physicallylocatedelsewherefromwherethedataentryswitchassemblyis.Thisrequirestwo<br />

switchassemblies.However,ifyouunderstandthisconceptclearly,youmaybuildaworking<br />

circuitwithonlyone8-positionswitch,usingtheleftfourswitchesfordataentryandtheright<br />

fourswitchestoholdthe”key”code.<br />

Forextraeffect,choosedifferentcolorsofLED:greenfor”Go”andredfor”Nogo.”<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume4,chapter3:”LogicGates”<br />

LEARNINGOBJECTIVES<br />

• UsingXORgatesasbitcomparators<br />

• Howtobuildsimplegatefunctionswithdiodesandapullup/downresistor<br />

• UsingNORgatesascontrolledinverters<br />

SCHEMATICDIAGRAM


7.7. SIMPLECOMBINATIONLOCK 357<br />

Vdd "Key code"<br />

switch<br />

No go<br />

470 Ω<br />

470 Ω<br />

10 kΩ<br />

(all)<br />

Vdd<br />

10 kΩ<br />

Go<br />

Vdd<br />

Data entry<br />

switch<br />

10 kΩ<br />

Enter<br />

10 kΩ<br />

(all)<br />

ILLUSTRATION<br />

Data entry<br />

+ -<br />

+ - 4070 4001<br />

Enter<br />

"Key" code<br />

INSTRUCTIONS<br />

ThiscircuitillustratestheuseofXOR(Exclusive-OR)gatesasbitcomparators. Fourof<br />

theseXORgatescomparetherespectivebitsoftwo4-bitbinarynumbers,eachnumber”entered”intothecircuitviaasetofswitches.<br />

Ifthetwonumbersmatch,bitforbit,thegreen<br />

”Go”LEDwilllightupwhenthe”Enter”pushbuttonswitchispressed.Ifthetwonumbersdo<br />

notexactlymatch,thered”Nogo”LEDwilllightupwhenthe”Enter”pushbuttonispressed.


358 CHAPTER7. DIGITALINTEGRATEDCIRCUITS<br />

Becausefourbitsprovidesameresixteenpossiblecombinations,thislockcircuitisnotvery<br />

sophisticated.Ifitwereusedinarealapplicationsuchasahomesecuritysystem,the”Nogo”<br />

outputwouldhavetobeconnectedtosomekindofsirenorotheralarmingdevice,sothatthe<br />

entryofanincorrectcodewoulddeteranunauthorizedpersonfromattemptinganothercode<br />

entry. Otherwise,itwouldnottakemuchtimetotryallcombinations(0000through1111)<br />

untilthecorrectonewasfound!Inthisexperiment,Idonotdescribehowtoworkthiscircuit<br />

intoarealsecuritysystemorlockmechanism,butonlyhowtomakeitrecognizeapre-entered<br />

code.<br />

The”key”codethatmustbematchedatthedataentryswitcharrayshouldbehiddenfrom<br />

view,ofcourse. Ifthiswerepartofarealsecuritysystem,thedataentryswitchassembly<br />

wouldbelocatedoutsidethedoor,andthekeycodeswitchassemblybehindthedoorwiththe<br />

restofthecircuitry. Inthisexperiment,youwilllikelylocatethetwoswitchassemblieson<br />

twodifferentbreadboards,butitisentirelypossibletobuildthecircuitusingjustasingle<br />

(8-position)DIPswitchassembly.Again,thepurposeoftheexperimentisnottomakeareal<br />

securitysystem,butmerelytointroduceyoutotheprincipleofXORgatecodecomparison.<br />

ItisthenatureofanXORgatetooutputa”high”(1)signaliftheinputsignalsarenotthe<br />

samelogicstate.ThefourXORgates’outputterminalsareconnectedthroughadiodenetwork<br />

whichfunctionsasafour-inputORgate:ifanyofthefourXORgatesoutputsa”high”signal–<br />

indicatingthattheenteredcodeandthekeycodearenotidentical–thena”high”signalwill<br />

bepassedontotheNORgatelogic.Ifthetwo4-bitcodesareidentical,thennoneoftheXOR<br />

gateoutputswillbe”high,”andthepull-downresistorconnectedtothecommonsidesofthe<br />

diodeswillprovidea”low”signalstatetotheNORlogic.<br />

TheNORgatelogicperformsasimpletask: preventeitheroftheLEDsfromturningon<br />

ifthe”Enter”pushbuttonisnotpressed.Onlywhenthispushbuttonispressedcaneitherof<br />

theLEDsenergize.IftheEnterswitchispressedandtheXORoutputsareall”low,”the”Go”<br />

LEDwilllightup,indicatingthatthecorrectcodehasbeenentered. IftheEnterswitchis<br />

pressedandanyoftheXORoutputsare”high,”the”Nogo”LEDwilllightup,indicatingthat<br />

anincorrectcodehasbeenentered.Again,ifthiswerearealsecuritysystem,itwouldbewise<br />

tohavethe”Nogo”outputdosomethingthatdetersanunauthorizedpersonfromdiscovering<br />

thecorrectcodebytrial-and-error. Inotherwords,thereshouldbesomesortofpenaltyfor<br />

enteringanincorrectcode.Letyourimaginationguideyourdesignofthisdetail!


7.8. 3-BITBINARYCOUNTER 359<br />

7.8 3-bitbinarycounter<br />

PARTSANDMATERIALS<br />

• 555timerIC(RadioShackcatalog#276-1723)<br />

• One1N914”switching”diode(RadioShackcatalog#276-1122)<br />

• Two10kΩresistors<br />

• One100 µFcapacitor(RadioShackcatalog#272-1028)<br />

• 4027dualJ-Kflip-flop(RadioShackcatalog#900-4394)<br />

• Ten-segmentbargraphLED(RadioShackcatalog#276-081)<br />

• Three470 Ωresistors<br />

• One6voltbattery<br />

Caution!The4027ICisCMOS,andthereforesensitivetostaticelectricity!<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume4,chapter10:”Multivibrators”<br />

LessonsInElectricCircuits,Volume4,chapter11:”Counters”<br />

LEARNINGOBJECTIVES<br />

• Usingthe555timerasasquare-waveoscillator<br />

• HowtomakeanasynchronouscounterusingJ-Kflip-flops<br />

SCHEMATICDIAGRAM<br />

10 kΩ<br />

6 V<br />

10<br />

kΩ<br />

V cc<br />

555<br />

Disch<br />

Thresh<br />

Trig<br />

RST<br />

Out<br />

Ctrl<br />

J<br />

C<br />

K<br />

S<br />

Q<br />

Q<br />

J<br />

C<br />

K<br />

S<br />

Q<br />

Q<br />

0.1 µF<br />

Gnd<br />

R<br />

R<br />

(LSB)<br />

(MSB)<br />

470 Ω 470 Ω 470 Ω


360 CHAPTER7. DIGITALINTEGRATEDCIRCUITS<br />

ILLUSTRATION<br />

+ - 555 4027<br />

INSTRUCTIONS<br />

Inasense,thiscircuit”cheats”byusingonlytwoJ-Kflip-flopstomakeathree-bitbinary<br />

counter.Ordinarily,threeflip-flopswouldbeused–oneforeachbinarybit–butinthiscase<br />

wecanusetheclockpulse(555timeroutput)asabitofitsown.Whenyoubuildthiscircuit,<br />

youwillfindthatitisa”down”counter. Thatis,itscountsequencegoesfrom111to110to<br />

101to100to011to010to001to000andthenbackto111.Whileitispossibletoconstruct<br />

an”up”counterusingJ-Kflip-flops,thiswouldrequireadditionalcomponentsandintroduce<br />

morecomplexityintothecircuit.<br />

The555timeroperatesasaslow,square-waveoscillatorwithadutycycleofapproximately<br />

50percent.Thisdutycycleismadepossiblebytheuseofadiodeto”bypass”thelowerresistor<br />

duringthecapacitor’schargingcycle,sothatthechargingtimeconstantisonlyRCandnot<br />

2RCasitwouldbewithoutthediodeinplace.<br />

Itishighlyrecommended,inthisexperimentasinallexperiments,tobuildthecircuitin<br />

stages:identifyportionsofthecircuitwithspecificfunctions,andbuildthoseportionsoneata<br />

time,testingeachoneandverifyingitsperformancebeforebuildingthenext.Averycommon<br />

mistakeofnewelectronicsstudentsistobuildanentirecircuitatoncewithouttestingsections<br />

ofitduringtheconstructionprocess,andthenbefacedwiththepossibilityofseveralproblems<br />

simultaneouslywhenitcomestimetofinallyapplypowertoit.Rememberthatasmallamount<br />

ofextraattentionpaidtodetailnearthebeginningofaprojectisworthanenormousamount<br />

oftroubleshootingworkneartheend! Studentswhomakethemistakeofnottestingcircuit<br />

portionsbeforeattemptingtooperatetheentirecircuitoften(falsely)thinkthatthetimeit<br />

wouldtaketotestthosesectionsisnotworthit,andthenspenddaystryingtofigureoutwhat<br />

theproblem(s)mightbewiththeirexperiment.<br />

Followingthisphilosophy,buildthe555timercircuitfirst,beforeevenpluggingthe4027<br />

ICintothebreadboard.Connectthe555’soutput(pin#3)tothe”LeastSignificantBit”(LSB)<br />

LED,sothatyouhavevisualindicationofitsstatus.Makesurethattheoutputoscillatesina<br />

slow,square-wavepattern(LEDis”lit”foraboutaslongasitis”off”inacycle),andthatitis<br />

areliablesignal(noerraticbehavior,nounexplainedpauses).Ifthe555timerisnotworking<br />

properly,neitherwilltherestofthecountercircuit! Oncethetimercircuithasbeenproven<br />

good,proceedtoplugthe4027ICintothebreadboardandcompletetherestofthenecessary<br />

connectionsbetweenit,the555timercircuit,andtheLEDassembly.


7.9. 7-SEGMENTDISPLAY 361<br />

7.9 7-segmentdisplay<br />

PARTSANDMATERIALS<br />

• 4511BCD-to-7seglatch/decoder/driver(RadioShackcatalog#900-4437)<br />

• Common-cathode7-segmentLEDdisplay(RadioShackcatalog#276-075)<br />

• Eight-positionDIPswitch(RadioShackcatalog#275-1301)<br />

• Four10kΩresistors<br />

• Seven470 Ωresistors<br />

• One6voltbattery<br />

Caution!The4511ICisCMOS,andthereforesensitivetostaticelectricity!<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume4,chapter9:”CombinationalLogicFunctions”<br />

LEARNINGOBJECTIVES<br />

• Howtousethe45117-segmentdecoder/displaydriverIC<br />

• GainfamiliaritywiththeBCDcode<br />

• Howtouse7-segmentLEDassembliestocreatedecimaldigitdisplays<br />

• Howtoidentifyanduseboth”active-low”and”active-high”logicinputs<br />

SCHEMATICDIAGRAM<br />

6 V<br />

(LSB)<br />

(MSB)<br />

10 kΩ<br />

each<br />

V DD<br />

LT<br />

BI<br />

4511<br />

A<br />

a<br />

B<br />

b<br />

C<br />

c<br />

D d<br />

e<br />

f<br />

g<br />

LE<br />

Gnd<br />

470 Ω<br />

each<br />

f<br />

e<br />

Cathode<br />

a<br />

g<br />

d<br />

b<br />

c


362 CHAPTER7. DIGITALINTEGRATEDCIRCUITS<br />

ILLUSTRATION<br />

+ - 4511<br />

INSTRUCTIONS<br />

Thisexperimentismoreofanintroductiontothe4511decoder/displaydriverICthanitis<br />

alessoninhowto”buildup”adigitalfunctionfromlower-levelcomponents.Since7-segment<br />

displaysareverycommoncomponentsofdigitaldevices,itisgoodtobefamiliarwiththe<br />

”driving”circuitsbehindthem,andthe4511isagoodexampleofatypicaldriverIC.<br />

Itsoperatingprincipleistoinputafour-bitBCD(Binary-CodedDecimal)value,andenergizetheproperoutputlinestoformthecorrespondingdecimaldigitonthe7-segmentLED<br />

display.TheBCDinputsaredesignatedA,B,C,andDinorderfromleast-significanttomostsignificant.Outputsarelabeleda,b,c,d,e,f,andg,eachlettercorrespondingtoastandardized<br />

segmentdesignationfor7-segmentdisplays. Ofcourse,sinceeachLEDsegmentrequiresits<br />

owndroppingresistor,wemustuseseven470 Ωresistorsplacedinseriesbetweenthe4511’s<br />

outputterminalsandthecorrespondingterminalsofthedisplayunit.<br />

Most7-segmentdisplaysalsoprovideforadecimalpoint(sometimestwo!),aseparateLED<br />

andterminaldesignatedforitsoperation.AllLEDsinsidethedisplayunitaremadecommon<br />

toeachotherononeside,eithercathodeoranode. The4511displaydriverICrequiresa<br />

common-cathode7-segmentdisplayunit,andsothatiswhatisusedhere.<br />

Afterbuildingthecircuitandapplyingpower,operatethefourswitchesinabinarycounting<br />

sequence(0000to1111),notingthe7-segmentdisplay.A0000inputshouldresultinadecimal<br />

”0”display,a0001inputshouldresultinadecimal”1”display,andsoonthrough1001(decimal<br />

”9”).Whathappensforthebinarynumbers1010(10)through1111(15)?Readthedatasheet<br />

onthe4511ICandseewhatthemanufacturerspecifiesforoperationaboveaninputvalueof<br />

9.IntheBCDcode,thereisnorealmeaningfor1010,1011,1100,1101,1110,or1111.These<br />

arebinaryvaluesbeyondtherangeofasingledecimaldigit,andsohavenofunctioninaBCD<br />

system.The4511ICisbuilttorecognizethis,andoutput(ornotoutput!)accordingly.<br />

Threeinputsonthe4511chiphavebeenpermanentlyconnectedtoeitherV dd orground:<br />

the”LampTest,””BlankingInput,”and”LatchEnable.”Tolearnwhattheseinputsdo,remove<br />

theshortjumpersconnectingthemtoeitherpowersupplyrail(oneatatime!),andreplace<br />

theshortjumperwithalongeronethatcanreachtheotherpowersupplyrail. Forexample,<br />

removetheshortjumperconnectingthe”LatchEnable”input(pin#5)toground,andreplace<br />

itwithalongjumperwirethatcanreachallthewaytotheV dd powersupplyrail.Experiment<br />

withmakingthisinput”high”and”low,”observingtheresultsonthe7-segmentdisplayasyou<br />

altertheBCDcodewiththefourinputswitches.Afteryou’velearnedwhattheinput’sfunction


7.9. 7-SEGMENTDISPLAY 363<br />

is,connectittothepowersupplyrailenablingnormaloperation,andproceedtoexperiment<br />

withthenextinput(either”LampTest”or”BlankingInput”).<br />

Onceagain,themanufacturer’sdatasheetwillbeinformativeastothepurposeofeachof<br />

thesethreeinputs. Notethatthe”LampTest”(LT)and”BlankingInput”(BI)inputlabels<br />

arewrittenwithbooleancomplementationbarsovertheabbreviations.Barsymbolsdesignate<br />

theseinputsasactive-low,meaningthatyoumustmakeeachone”low”inordertoinvoke<br />

itsparticularfunction.Makinganactive-lowinput”high”placesthatparticularinputintoa<br />

”passive”statewhereitsfunctionwillnotbeinvoked. Conversely,the”LatchEnable”(LE)<br />

inputhasnocomplementationbarwrittenoveritsabbreviation,andcorrespondinglyitis<br />

shownconnectedtoground(”low”)intheschematicsoastonotinvokethatfunction. The<br />

”LatchEnable”inputisanactive-highinput,whichmeansitmustbemade”high”(connected<br />

toV dd )inordertoinvokeitsfunction.


364 CHAPTER7. DIGITALINTEGRATEDCIRCUITS


Chapter8<br />

555TIMERCIRCUITS<br />

Contents<br />

8.1 The555IC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .365<br />

8.2 555SchmittTrigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .366<br />

8.3 555HYSTERETICOSCILLATOR . . . . . . . . . . . . . . . . . . . . . . . . .370<br />

8.4 555MONOSTABLEMULTIVIBRATOR. . . . . . . . . . . . . . . . . . . . . .374<br />

8.5 CMOS555LONGDURATIONMINIMUMPARTSREDLEDFLASHER .380<br />

8.6 CMOS555LONGDURATIONBLUELEDFLASHER. . . . . . . . . . . . .385<br />

8.7 CMOS555LONGDURATIONFLYBACKLEDFLASHER . . . . . . . . . .389<br />

8.8 HOWTOMAKEANINDUCTOR. . . . . . . . . . . . . . . . . . . . . . . . . .392<br />

8.9 CMOS555LONGDURATIONREDLEDFLASHER. . . . . . . . . . . . . .395<br />

Originalauthor:BillMarsden<br />

8.1 The555IC<br />

The555integratedcircuitisthemostpopularchipevermanufactured.Independentlymanufacturedbymorethan10manufacturers,stillincurrentproduction,andalmost40yearsold,<br />

thislittlecircuithaswithstoodthetestoftime.Ithasbeenredesigned,improved,andreconfiguredinmanyways,yettheoriginaldesigncanbeboughtfrommanyvendors.Thedesignof<br />

thischipwasrightthefirsttime.<br />

Originallyconceivedin1970andcreatedbyHansR.Camenzindin1971,over1billion<br />

oftheseICsweremadein2003withnoapparentreductionindemand. Ithasbeenusedin<br />

everythingfromtoystospacecraft.Duetoitsversatility,availability,andlowcostitremainsa<br />

hobbyistfavorite.<br />

Oneofthesecretstoitssuccessisitisatrueblackbox,itssymbolizedschematicissimple<br />

andaccurateenoughthatdesignsusingthissimplificationasareferencetendtoworkfirst<br />

time.Youdon’tneedtounderstandeverytransistorinthebaseschematictomakeitwork.<br />

365


366 CHAPTER8. 555TIMERCIRCUITS<br />

Ithasbeenusedtoderivethe556,adual555,eachindependentoftheotherinone14<br />

pinpackage,andistheinspirationofthe558,aquadtimerina16pinpackage. Whatfew<br />

weakpointstheoriginaldesignhashavebeenaddressedbyredesignsintoCMOStechnology,<br />

withitsdramaticallyreducedcurrentandexpandedvoltagerequirements,andyettheoriginal<br />

versionremains.<br />

Originallyconceivedasasimpletimer,the555hasbeenusedforoscillators,waveform<br />

generators,VCO’s,FMdiscrimination,andalotmore.Itreallyisanallpurposecircuit.<br />

SOURCES<br />

• The555TimerIC-AnInterviewwithHansCamenzind(http://semiconductormuseum<br />

.com/Transistors/LectureHall/Camenzind/Camenzind Index.htm)<br />

• 555Tutorial(http://www.sentex.ca/˜mec1995/gadgets/555/555.html)<br />

• 555TimerICEncyclopediaArticle(http://www.nationmaster.com/encyclopedia/<br />

555-timer-IC)<br />

8.2 555SchmittTrigger<br />

PARTSANDMATERIALS<br />

• One9VBattery<br />

• BatteryClip(RadioShackcatalog#270-325)<br />

• MiniHookClips(solderedtoBatteryClip,RadioShackcatalog#270-372)<br />

• OnePotentiometer,10KΩ,15-Turn(RadioShackcatalog#271-343)<br />

• One555timerIC(RadioShackcatalog#276-1723)<br />

• Oneredlight-emittingdiode(RadioShackcatalog#276-041orequivalent)<br />

• Onegreenlight-emittingdiode(RadioShackcatalog#276-022orequivalent)<br />

• Two1KΩResistors<br />

• OneDVM(DigitalVoltMeter)orVOM(VoltOhmMeter)<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume3,chapter8:“PositiveFeedback”<br />

LessonsInElectricCircuits,Volume4,chapter3:“LogicSignalVoltageLevels”<br />

LEARNINGOBJECTIVES<br />

• LearnhowaSchmittTriggerworks<br />

• Howtousethe555timerasanSchmittTrigger


8.2. 555SCHMITTTRIGGER 367<br />

SCHEMATICDIAGRAM<br />

SchmittTriggershaveaconventiontoshowagatethatisalsoaSchmittTrigger,shown<br />

below.<br />

Thesameschematicredrawntoreflectthisconventionlookssomethinglikethis:<br />

ILLUSTRATION


368 CHAPTER8. 555TIMERCIRCUITS<br />

INSTRUCTIONS<br />

The555timerisprobablyoneofthemoreversatile”blackbox”chips.Its3resistorvoltage<br />

divider,2comparators,andbuiltinsetresetflipfloparewiredtoformaSchmittTriggerinthis<br />

design.Itsinterestingtonotethattheconfigurationisntevenclosetotheopampconfiguration<br />

shownelsewhere,buttheendresultisidentical.<br />

Tryadjustingthepotentiometeruntilthelightsflipstates,thenmeasurethevoltage.Comparethisvoltagetothepowersupplyvoltage.<br />

Adjustthepotentiometertheotherwayuntil<br />

theLEDsflipstatesagain,andmeasurethevoltage.Howclosetothe1/3and2/3marksdid<br />

youget?<br />

Trysubstitutingthe9Vbatterywitha6voltbattery,ortwo6voltbatteries,andseehow<br />

closethethresholdsaretothe1/3and2/3marks.<br />

SchmittTriggersareafundamentalcircuitwithseveraluses. Oneissignalprocessing,<br />

theycanpulldigitaldataoutofsomeextremelynoisyenvironments. Otherbiguseswillbe<br />

showninfollowingprojects,suchasanextremelysimpleRCoscillator.<br />

THEORYOFOPERATION<br />

ThedefiningcharacteristicofanySchmittTriggerisitshysteresis.Inthiscaseitis1/3and<br />

2/3ofthepowersupplyvoltage,definedbythebuiltinresistorvoltagedivideronthe555.The<br />

builtincomparatorsC1andC2comparetheinputvoltagetothereferencesprovidedbythe<br />

voltagedividerandusethecomparisontotripthebuiltinflipflop,whichdrivestheoutput<br />

driver,anothernicefeatureofthe555. The555candriveupto200maoffeithersideofthe<br />

powersupplyrail,theoutputdrivercreatesaverylowconductionpathtoeithersideofthe<br />

powersupplyconnections.Thecircuit”shorts”eachsideoftheLEDcircuit,leavingtheother<br />

sidetolightup.


8.2. 555SCHMITTTRIGGER 369<br />

The5KΩresistorsarenotveryaccurate.ItisinterestingtonotethatICfabricationdoesn’t<br />

generallyallowprecisionresistors,buttheresistorscomparedtoeachotherareextremelyclose<br />

invalue,whichiscriticaltothecircuitsoperation.


370 CHAPTER8. 555TIMERCIRCUITS<br />

8.3 555HYSTERETICOSCILLATOR<br />

PARTSANDMATERIALS<br />

• One9VBattery<br />

• BatteryClip(RadioShackcatalog#270-325)<br />

• MiniHookClips(solderedtoBatteryClip,RadioShackcatalog#270-372)<br />

• U1-555timerIC(RadioShackcatalog#276-1723)<br />

• D1-Redlight-emittingdiode(RadioShackcatalog#276-041orequivalent)<br />

• D2-Greenlight-emittingdiode(RadioShackcatalog#276-022orequivalent)<br />

• R1,R2-1KΩ1/4WResistors<br />

• R3-10KΩ,15-TurnPotentiometer(RadioShackcatalog#271-343)<br />

• R4-10 Ω1/4WResistor<br />

• C1-1µFCapacitor(RadioShackcatalog272-1434orequivalent)<br />

• C1-100 µFCapacitor(RadioShackcatalog272-1028orequivalent)<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuitsVolume1,chapter16:Voltageandcurrentcalculations<br />

LessonsInElectricCircuits,Volume1,chapter16:Solvingforunknowntime<br />

LessonsInElectricCircuits,Volume4,chapter10:Multivibrators<br />

LessonsinElectricCircuits,Volume3,chapter8:PositiveFeedback<br />

LEARNINGOBJECTIVES<br />

• LearnhowtouseaSchmittTriggerforasimpleRCOscillator<br />

• LearnapracticalapplicationforaRCtimeconstant<br />

• Learnoneofseveral555timerAstableMultivibratorConfigurations<br />

SCHEMATICDIAGRAM<br />

Hereisonewayofdrawingtheschematic:


8.3. 555HYSTERETICOSCILLATOR 371<br />

Asmentionedinthepreviousexperiment,thereisalsoanotherconvention,shownbelow:<br />

ILLUSTRATION


372 CHAPTER8. 555TIMERCIRCUITS<br />

INSTRUCTIONS<br />

ThisisoneofthemostbasicRCoscillators. Itissimpleandverypredictable. AnyinvertingSchmittTriggerwillworkinthisdesign,althoughthefrequencywillshiftsomewhat<br />

dependingonthehysteresisofthegate.<br />

Thiscircuithasalowerendfrequencyof0.7Hertz,whichmeanseachLEDwillalternate<br />

andbelitforjustunderasecondeach. Asyouturnthepotentiometercounterclockwisethe<br />

frequencywillincrease,goingwellintothehighendaudiorange.Youcanverifythiswiththe<br />

AudioDetector(Vol. VI,Chapter3,Section12)orapiezoelectricspeaker,asyoucontinueto<br />

turnthepotentiometerthepitchofthesoundwillrise. Youcanincreasethefrequency100<br />

timesbyreplacingthecapacitorwiththe1Fcapacitor,whichwillalsoraisethemaximum<br />

frequencywellintotheultrasonicrange,around70Khz.<br />

The555doesnotgorailtorail(itdoesn’tquitereachtheuppersupplyvoltage)becauseof<br />

itsoutputDarlingtontransistors,andthiscausestheoscillatorssquarewavetobenotquite<br />

symmetrical.CanyouseethislookingattheLEDs?Thehigherthepowersupplyvoltage,the<br />

lesspronouncedthisasymmetryis,whileitgetsworsewithlowerpowersupplyvoltages. If<br />

theoutputweretruerailtorailitwouldbea50%squarewave,whichcanbeattainedifone<br />

usestheCMOSversionofthe555,suchastheTLC555(RadioShackP/N276-1718).<br />

R3wasaddedtopreventshortingtheICoutputthroughC1,asthecapacitorshortstheAC<br />

portionofthe555outputtoground. Onadischargedbatteryitisnotnoticeable,butwitha<br />

fresh9Vthe555ICwillgetveryhot.IfyoueliminatetheresistorandadjustR4formaximum<br />

frequencyyoucantestthis,itisnotgoodforthebatteryorthe555,buttheywillsurvivea<br />

shorttest.<br />

THEORYOFOPERATION


8.3. 555HYSTERETICOSCILLATOR 373<br />

Thisisahystereticoscillator,whichisatypeofrelaxationoscillator. Itisalsoanastable<br />

multivibrator.Itisalogicaloffshootofthe555SchmittTriggerexperimentshownearlier.<br />

Theformulatocalculatethefrequencywiththisconfigurationusinga555is:<br />

f = 0.7<br />

RC<br />

The555hysteresisisdependentonthesupplyvoltage,sothefrequencyoftheoscillator<br />

wouldberelativelyindependentofthesupplyvoltageifitweren’tforthelackofrailtorail<br />

output.<br />

Theoutputofa555eithergoestoground,orrelativelyclosetotheplusvoltage. This<br />

allowstheresistorandcapacitortochargeanddischargethroughtheoutputpin.Sincethisis<br />

adigitaltypesignal,theLEDsinteractverylittleinitsoperation. Thefirstpulsegenerated<br />

bytheoscillatorisabitlongerthantherest.Thisandthecharge/dischargecurvesareshown<br />

inthefollowingillustration,whichalsoshowswhytheasymmetricalsquarewaveiscreated.


374 CHAPTER8. 555TIMERCIRCUITS<br />

8.4 555MONOSTABLEMULTIVIBRATOR<br />

PARTSANDMATERIALS<br />

• One9VBattery<br />

• BatteryClip(RadioShackcatalog#270-325)<br />

• MiniHookClips(solderedtoBatteryClip,RadioShackcatalog#270-372)<br />

• AWatchwithasecondhand/displayoraStopWatch<br />

• Awire,11/2”to2”(3.8mmto5mm)long,foldedinhalf(shownasredwireinillustration)<br />

• U1-555timerIC(RadioShackcatalog#276-1723)<br />

• D1-Redlight-emittingdiode(RadioShackcatalog#276-041orequivalent)<br />

• D2-Greenlight-emittingdiode(RadioShackcatalog#276-022orequivalent)<br />

• R1,R2-1KΩ1/4WResistors<br />

• Rt-27KΩ1/4WResistor<br />

• Rt-270KΩ1/4WResistor<br />

• C1,C2-0.1FCapacitor(RadioShackcatalog272-1069orequivalent)<br />

• Ct-10FCapacitor(RadioShackcatalog272-1025orequivalent)<br />

• Ct-100FCapacitor(RadioShackcatalog272-1028orequivalent)<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume1,chapter13:“Electricfieldsandcapacitance”<br />

LessonsInElectricCircuits,Volume1,chapter13:“Capacitorsandcalculus”<br />

LessonsInElectricCircuits,Volume1,chapter16:“Voltageandcurrentcalculations”<br />

LessonsInElectricCircuits,Volume1,chapter16:“Solvingforunknowntime”<br />

LessonsInElectricCircuits,Volume4,chapter10:“Monostablemultivibrators”<br />

LEARNINGOBJECTIVES<br />

• LearnhowaMonostableMultivibratorworks<br />

• LearnapracticalapplicationforaRCtimeconstant<br />

• Howtousethe555timerasaMonostableMultivibrator


8.4. 555MONOSTABLEMULTIVIBRATOR 375<br />

SCHEMATICDIAGRAM<br />

ILLUSTRATION<br />

INSTRUCTIONS<br />

Thisisoneofthemostbasic555circuits.Thiscircuitispartofthischipsdatasheet,completewiththemathneededtodesigntospecification,andisoneofthereasonsa555isreferred<br />

toasatimer.ThegreenLEDshownontheillustrationlightswhenthe555outputishigh(i.e.,<br />

switchedtoVcc),andtheredLEDlightswhenthe555outputislow(switchedtoground).<br />

Thisparticularmonostablemultivibrator(alsoknownasamonostableortimer)isnota<br />

retriggerabletype. Thismeansoncetriggereditwillignorefurtherinputsduringatiming


376 CHAPTER8. 555TIMERCIRCUITS<br />

cycle,withoneexception,whichwillbediscussedinthenextparagraph. Thetimerstarts<br />

whentheinputgoeslow,orswitchedtothegroundlevel,andtheoutputgoeshigh. Youcan<br />

provethisbyconnectingtheredwireshownontheillustrationbetweengroundandpointB,<br />

disconnectingit,andreconnectingit.<br />

Itisanillegalconditionfortheinputtostaylowforthisdesignpasttimeout.Forthisreason<br />

R3andC1wereaddedtocreateasignalconditioner,whichwillallowedgeonlytriggeringand<br />

preventtheillegalinput.Youcanprovethisbyconnectingtheredwirebetweengroundand<br />

pointA.Thetimerwillstartwhenthewireisinsertedintotheprotoboardbetweenthesetwo<br />

points,andignorefurthercontacts. Ifyouforcethetimerinputtostaylowpasttimeoutthe<br />

outputwillstayhigh,eventhoughthetimerhasfinished.Assoonasthisgroundisremoved<br />

thetimerwillgolow.<br />

RtandCtwereselectedfor3secondstimingduration. Youcanverifythiswithawatch,<br />

3secondsislongenoughthatweslowhumanscanactuallymeasureit.TryswappingRtand<br />

Ctwiththe27KOresistorandthe100Fcapacitor. Sincetheanswertotheformulaisthe<br />

samethereshouldbenodifferenceinhowitoperates.NexttryswappingRtwiththe270KO<br />

resistor,sincetheRCtimeconstantisnow10timesgreateryoushouldgetcloseto30seconds.<br />

Theresistorandcapacitorareprobably5%and20%tolerancerespectively,sothecalculated<br />

timesyoumeasurecanvaryasmuchas25%,thoughitwillusuallybemuchcloser.<br />

Anothernicefeatureofthe555isitsimmunityfromthepowersupplyvoltage.Ifyouwere<br />

toswapthe9Vbatterywitha6Vor12batteryyoushouldgetidenticalresults,thoughthe<br />

LEDlightintensitywillchange.<br />

C2isn’tactuallynecessary. The555IChasthisoptionincasethetimerisbeingused<br />

inanenvironmentwherethepowersupplylineisnoisy. Youcanremoveitandnotnoticea<br />

difference.The555itselfisasourceofnoise,sincethereisaverybriefperiodoftimethatthe<br />

transistorsonbothsidesoftheoutputarebothconducting,creatingapowersurge(measured<br />

innanoseconds)fromthepowersupply.<br />

Figure15.PNG45015.pngFigure26.PNG45016.pngFigure37.PNG45017.pngFigure4<br />

8.PNG45018.pngFigure59.PNG45019.png<br />

THEORYOFOPERATION<br />

Lookingatthefunctionalschematicshown(Figure8.1),youcanseethatpin7isatransistor<br />

goingtoground.<br />

Thistransistorissimplyaswitchthatnormallyconductsuntilpin2(whichisconnected<br />

throughthecomparatorC1,whichfeedstheinternalflipflop)isbroughtlow,allowingthe<br />

capacitorCttostartcharging.Pin7staysoffuntilthevoltageonCtchargesto2/3ofthepower<br />

supplyvoltage,wherethetimertimesoutandpin7transistorturnsonagain,itsnormalstate<br />

inthiscircuit.<br />

Thefollowing(Figure8.2)willshowthesequenceofswitching,withredbeingthehigher<br />

voltagesandgreenbeingground(0volts),withthespectruminbetweensincethisisfundamentallyananalogcircuit.<br />

Figure8.3isthestartingandendingpointforthiscircuit,whereitiswaitingforatriggertostartatimingcycle.<br />

Atthispointthepin7transistorison,keepingthecapacitorCt<br />

discharged.<br />

Figure8.4showswhathappenswhenthe555receivesatrigger,startingthesequence.Ct<br />

hasn’thadtimetoaccumulatevoltage,butthecharginghasstarted.


8.4. 555MONOSTABLEMULTIVIBRATOR 377<br />

Figure8.1:<br />

Figure8.2:ThisgraphshowsthechargecurveacrosstheCt.<br />

Figure8.3:


378 CHAPTER8. 555TIMERCIRCUITS<br />

Figure8.4:<br />

Figure8.5:


8.4. 555MONOSTABLEMULTIVIBRATOR 379<br />

Figure8.6:<br />

Figure8.5showsthecapacitorcharging,duringthistimethecircuitisinastableconfigurationandtheoutputishigh.<br />

Figure8.6showsthecircuitinthemiddleofswitchingoffwhenithitstimeout.Thecapacitorhaschargedto67%,theupperlimitofthe555circuit,causingitsinternalflipfloptoswitch<br />

states.Asshown,thetransistorhasn’tswitchedyet,whichwilldischargeCtwhenitdoes.<br />

Figure8.7:<br />

Figure8.7showsthecircuitafterithassettleddown,whichisbasicallythesameasshown<br />

inFigure8.3.


380 CHAPTER8. 555TIMERCIRCUITS<br />

8.5 CMOS555LONGDURATIONMINIMUMPARTSRED<br />

LEDFLASHER<br />

PARTSANDMATERIALS<br />

• TwoAAABatteries<br />

• BatteryClip(RadioShackcatalog#270-398B)<br />

• OneDVMorVOM<br />

• U1-TOneCMOSTLC555timerIC(RadioShackcatalog#276-1718orequivalent)<br />

• D1-Redlight-emittingdiode(RadioShackcatalog#276-041orequivalent)<br />

• R1-1.5MΩ1/4W5%Resistor<br />

• R2-47KΩ1/4W5%Resistor<br />

• C1-1FTantalumCapacitor(RadioShackcatalog272-1025orequivalent)<br />

• C2-100FElectrolyticCapacitor(RadioShackcatalog272-1028orequivalent)<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume1,chapter16:“Voltageandcurrentcalculations”<br />

LessonsInElectricCircuits,Volume1,chapter16:“Solvingforunknowntime”<br />

LessonsInElectricCircuits,Volume3,chapter9:“ElectroStaticDischarge”<br />

LessonsInElectricCircuits,Volume4,chapter10:“Multivibrators”<br />

LEARNINGOBJECTIVES<br />

• LearnapracticalapplicationforaRCtimeconstant<br />

• Learnoneofseveral555timerAstableMultivibratorConfigurations<br />

• Workingknowledgeofdutycycle<br />

• LearnhowtohandleESDsensitiveparts<br />

SCHEMATICDIAGRAM


8.5. CMOS555LONGDURATIONMINIMUMPARTSREDLEDFLASHER 381<br />

ILLUSTRATION<br />

INSTRUCTIONS<br />

NOTE!Thisprojectusesastaticsensitivepart,theCMOS555.Ifyoudonotuseprotection<br />

asdescribedinVolume3,Chapter9,ElectroStaticDischarge,youruntheriskofdestroyingit.<br />

The555isnotapowerhog,butitisachildofthe1970’s,createdin1971. Itwillsucka<br />

batterydryindays,ifnothours. Fortunately,thedesignhasbeenreinventedusingCMOS<br />

technology.Thenewimplementationisn’tperfect,asitlacksthefantasticcurrentdriveofthe<br />

original,butforaCMOSdevicetheoutputcurrentisstillverygood. Themainadvantages<br />

includewidersupplyvoltagerange(powersupplyspecificationsare2Vto18V,anditwillwork


382 CHAPTER8. 555TIMERCIRCUITS<br />

usinga11/2Vbattery)andlowpower. ThisprojectusestheTLC555,aTexasInstruments<br />

design.ThereareotherCMOS555’soutthere,verysimilarbutwithsomedifferences.These<br />

chipsaredesignedtobedropinreplacements,anddoverywellaslongastheoutputisnot<br />

substantiallyloaded.<br />

Thisdesignturnsadeficitintoanadvantageasthecurrentdriveonlygetsworseatlower<br />

powersupplyvoltages,itsspecificationsarenotmorethan3mafor2VDC.Thisdesigntriesto<br />

makethebatterieslastasabsolutelylongaspossibleusingseveraldifferentapproaches.The<br />

CMOSICisextremelylowcurrent,andsendstheLEDapulseof30ms(whichisaveryshort<br />

timebutwithinpersistenceofhumanvision)aswellasusingaslowflashrate(1second)using<br />

reallylargeresistorstominimizecurrent.Withadutycycleof3%,thiscircuitspendsmostof<br />

itstimeoff,and(assuming20mafortheLED)theaveragecurrentis0.6ma.Thebigproblem<br />

isusingthebuiltincurrentlimitationofthisIC,asisitisnotratedforaspecificcurrent,and<br />

theLEDcurrentcanvaryalotbetweendifferentCMOSICs.<br />

Itispossibletorunintoproblemswithelectrolyticcapacitorswhendealingwithverylow<br />

currents(2ainthiscase)inthattheleakagecanbeexcessive,aborderlinefailurecondition.<br />

Ifyourexperimentseemstodothisitmightbefixedbychargingacrossthebattery,then<br />

dischargingthecapacitorC1acrossanyconductorseveraltimes.<br />

WhenyoucompletethiscircuittheLEDshouldstartflashing,andwouldcontinuetodo<br />

soforseveralmonths.Ifyouuselargerbatteries,suchasDcells,thisdurationwillincrease<br />

dramatically.<br />

TomeasurethecurrentdrawfeedingtheLED,connectC1+toVccwithajumper(shownin<br />

redontheIllustration),whichwillturntheTLC555on.Measuretheamperageflowingfrom<br />

thebatterytothecircuit.Thetargetcurrentis20ma,Imeasured9mato24mausingdifferent<br />

CMOS555s.Thisisn’tcritical,thoughitwillaffectthebatterylife.<br />

THEORYOFOPERATION<br />

Anobservantreaderwillnotethatthisisfundamentallythesamecircuitthatwasused<br />

inthe555AUDIOOSCILLATORexperiment.Manydesignsusethesamebasicdesignsand<br />

conceptsseveraldifferentways,thisissuchacase.Aconventional555ICwouldworkinthis<br />

designifthepowersupplyweren’tsolowandaLEDcurrentlimitingresistorisused.Other<br />

thanthetypeoftransistorsusedtheblockdiagramshowninFigure8.8isbasicallythesame<br />

asaconventional555.<br />

Thisparticularoscillatordependsonthepin7transistor,muchlikethe555Monostable<br />

Multivibratorshowninanearlierexperiment. Thestartupconditioniswiththecapacitor<br />

discharged,theoutputhigh,andpin7transistoroff.Thecapacitorstartschargingasshown<br />

inFigure8.9.<br />

Whenthevoltageacrosspins2and6reaches2/3ofthepowersupplytheflipflopisreset<br />

viainternalcomparatorC1,whichturnsonthePin7transistor,andstartsthecapacitorC1<br />

dischargingthroughR2asshowninFigure8.10.ThecurrentshownthroughR1isincidental,<br />

andnotimportantotherthanitdrainsthebattery.Thisiswhythisresistorvalueissolarge.<br />

Whenthevoltageacrosspins2and6reaches1/3ofthepowersupplytheflipflopisset<br />

viainternalcomparatorC2,whenturnsoffthepin7transistor,allowingthecapacitortostart<br />

chargingagainthroughR1andR2,asshowninFigure8.9.Thiscyclerepeats.<br />

CapacitorC2extendsthelifeofthebatteries,sinceitwillstorethevoltageduringthe97%<br />

oftimethecircuitisoff,andprovidethecurrentduringthe3%itison.Thissimpleaddition<br />

willtakethebatteriesbeyondtheirusefullifebyalargemargin.


8.5. CMOS555LONGDURATIONMINIMUMPARTSREDLEDFLASHER 383<br />

Figure8.8:<br />

Figure8.9:


384 CHAPTER8. 555TIMERCIRCUITS<br />

Figure8.10:<br />

InrunningthisexperimenttherewasafeedbackmechanismIhadn’tanticipated. The<br />

outputcurrentoftheTLC555isnotproportional,asthepowersupplyvoltagegoesdownthe<br />

outputcurrentreducesalotmore. Myflasherlastedfor6monthsbeforeIterminatedthe<br />

experiment.Itwasstillflashing,itwasjustverydim.


8.6. CMOS555LONGDURATIONBLUELEDFLASHER 385<br />

8.6 CMOS555LONGDURATIONBLUELEDFLASHER<br />

PARTSANDMATERIALS<br />

• TwoAAABatteries<br />

• BatteryClip(RadioShackcatalog#270-398B)<br />

• U1-1CMOSTLC555timerIC(RadioShackcatalog#276-1718orequivalent)<br />

• Q1-2N3906PNPTransistor(RadioShackcatalog#276-1604(15pack)orequivalent)<br />

• Q2-2N2222NPNTransistor(RadioShackcatalog#276-1617(15pack)orequivalent)<br />

• CR1-1N914Diode(RadioShackcatalog#276-1122(10pack)orequivalent,seeInstructions)<br />

• D1-Bluelight-emittingdiode(RadioShackcatalog#276-311orequivalent)<br />

• R1-1.5MΩ1/4W5%Resistor<br />

• R2-47KΩ1/4W5%Resistor<br />

• R3-2.2KΩ1/4W5%Resistor<br />

• R4-620 Ω1/4W5%Resistor<br />

• R5-82 Ω1/4W5%Resistor<br />

• C1-1FTantalumCapacitor(RadioShackcatalog272-1025orequivalent)<br />

• C2-100FElectrolyticCapacitor(RadioShackcatalog272-1028orequivalent)<br />

• C3-470FElectrolyticCapacitor(RadioShackcatalog272-1030orequivalent)<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume1,chapter16:“Voltageandcurrentcalculations“<br />

LessonsInElectricCircuits,Volume1,chapter16:“Solvingforunknowntime”<br />

LessonsInElectricCircuits,Volume3,chapter4:“BipolarJunctionTransistors”<br />

LessonsInElectricCircuits,Volume3,chapter9:“ElectroStaticDischarge”<br />

LessonsInElectricCircuits,Volume4,chapter10:“Multivibrators”<br />

LEARNINGOBJECTIVES<br />

• LearnapracticalapplicationforaRCtimeconstant<br />

• Learnoneofseveral555timerAstableMultivibratorConfigurations<br />

• Workingknowledgeofdutycycle<br />

• HowtohandleESDsensitiveparts


386 CHAPTER8. 555TIMERCIRCUITS<br />

• Howtousetransistorstoimprovecurrentgain<br />

• Howtouseacapacitortodoublevoltagewithaswitch<br />

SCHEMATICDIAGRAM<br />

ILLUSTRATION<br />

INSTRUCTIONS<br />

NOTE!Thisprojectusesastaticsensitivepart,theCMOS555.Ifyoudonotuseprotection<br />

asdescribedinVolume3,Chapter9,ElectroStaticDischarge,youruntheriskofdestroyingit.


8.6. CMOS555LONGDURATIONBLUELEDFLASHER 387<br />

Thiscircuitbuildsontheprevioustwoexperiments,usingtheirfeaturesandaddingto<br />

them. BlueandwhiteLEDshaveahigherVf(forwarddroppingvoltage)thanmost,around<br />

3.6V.3Vbatteriescan’tdrivethemwithouthelp,soextracircuitryisrequired.<br />

Asinthepreviouscircuits,theLEDisgivena0.03second(30ms)pulse. C3isusedto<br />

doublethevoltageofthispulse,butitcanonlydothisforashorttime.Measuringthecurrent<br />

thoughtheLEDisimpracticalwiththiscircuitbecauseofthisshortduration,butblueLEDs<br />

aregenerallymorepredictablebecausetheywereinventedlater.<br />

Thisparticulardesigncanalsobeusedwithasingle11/2Vbattery.Thebaseconceptwas<br />

createdwithanowobsoleteIC,theLM3909,whichusedaredLED,theIC,andacapacitor.<br />

Aswiththiscircuit,itcouldflasharedLEDforoverayearwithasingleDcell.Whennewer<br />

redLEDsincreasedtheirVffrom1.5Vto2.5Vthisoldchipwasnolongerpractical,andisstill<br />

missedbymanyhobbyists.Ifyouwanttotrya11/2VbatterychangeR5to10Ωanduseared<br />

LEDwithabetterCR1(seenextparagraph).<br />

CR1isnotthebestchoiceforthiscomponent,itwasselectedbecauseitisacommonpart<br />

anditworks.Almostanydiodewillworkinthisapplication.Schottkyandgermaniumdiodes<br />

dropmuchlessvoltage,asilicondiodedrops0.6-0.7V,whileaSchottkydiodedrops0.1-0.2V,<br />

andagermaniumdiodedrops0.2V-0.3V.Ifthesecomponentsareusedthereducedvoltagedrop<br />

wouldtranslateintobrighterLEDintensity,asthecircuitsefficiencyisincreased.<br />

THEORYOFOPERATION<br />

Q2isaswitch,whichthiscircuituses.WhenQ2isoffC3ischargedtothebatteryvoltage,<br />

minusthediodedrop,asshowninFigure8.11. SincetheblueLEDVfis3.4Vto3.6Vitis<br />

effectivelyoutofthecircuit.<br />

Figure8.11:<br />

Figure8.12showswhathappenswhenQ2turnson.ThecapacitorC3+sideisgrounded,<br />

whichmovesthe-sideto-2.4V.ThediodeCR1isnowbackbiased,andisoutofthecircuit.<br />

The-2.4VisdischargedthroughR5andD1tothe+3.0Vofthebatteries. The5.4Vprovides<br />

lotsofextravoltagetolighttheblueLED.LongbeforeC3isdischargedthecircuitswitches<br />

backandC3startschargingagain.<br />

IntheLM3909CR1wasaresistor. Thediodewasusedtominimizecurrent,byallowing<br />

R4tobeitsmaximumvalue.<br />

YoumaynoticeadimblueglowintheblueLEDwhenitisoff. Thisdemonstratesthe<br />

differencebetweentheoryandpractice,3Visenoughtocausesomeleakagethroughtheblue


388 CHAPTER8. 555TIMERCIRCUITS<br />

Figure8.12:<br />

LED,eventhoughitisnotconducting. Ifyouweretomeasurethiscurrentitwouldbevery<br />

small.


8.7. CMOS555LONGDURATIONFLYBACKLEDFLASHER 389<br />

8.7 CMOS555LONGDURATIONFLYBACKLEDFLASHER<br />

PARTSANDMATERIALS<br />

• TwoAAABatteries<br />

• BatteryClip(RadioShackcatalog#270-398B)<br />

• U1,U2-CMOSTLC555timerIC(RadioShackcatalog#276-1718orequivalent)<br />

• Q1-2N3906PNPTransistor(RadioShackcatalog#276-1604(15pack)orequivalent)<br />

• Q2-2N2222NPNTransistor(RadioShackcatalog#276-1617(15pack)orequivalent)<br />

• D1-Redlight-emittingdiode(RadioShackcatalog#276-041orequivalent)<br />

• D2-Bluelight-emittingdiode(RadioShackcatalog#276-311orequivalent)<br />

• R1-1.5MΩ1/4W5%Resistor<br />

• R2-47KΩ1/4W5%Resistor<br />

• R3,R5-10KΩ1/4W5%Resistor<br />

• R4-1MΩ1/4W5%Resistor<br />

• R6-100KΩ1/4W5%Resistor<br />

• R7-1KΩ1/4W5%Resistor<br />

• C1-1FTantalumCapacitor(RadioShackcatalog#272-1025orequivalent)<br />

• C2-100pFCeramicDiscCapacitor(RadioShackcatalog#272-123)<br />

• C3-100FElectrolyticCapacitor(RadioShackcatalog272-1028orequivalent)<br />

• L1-200HChokeorInductor(Exactvaluenotcritical,seeendofchapter)<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume1,chapter16:Title”Inductortransientresponse”<br />

LessonsInElectricCircuits,Volume1,chapter16:Title”WhyL/RandnotLR?”<br />

LessonsInElectricCircuits,Volume3,chapter4:Title”Thecommon-emitteramplifier”<br />

LessonsInElectricCircuits,Volume3,chapter9:Title”ElectrostaticDischarge”<br />

LessonsInElectricCircuits,Volume4,chapter10:Title”Monostablemultivibrators”<br />

LEARNINGOBJECTIVES<br />

• Learnanothermodeofoperationforthe555<br />

• HowtohandleESDParts<br />

• Howtouseatransistorforasimplegate(resistortransistorinverter)


390 CHAPTER8. 555TIMERCIRCUITS<br />

• Howinductorscanconvertpowerusinginductiveflyback<br />

• Howtomakeaninductor<br />

SCHEMATICDIAGRAM<br />

ILLUSTRATION<br />

INSTRUCTIONS<br />

NOTE!Thisprojectusesastaticsensitivepart,theCMOS555.Ifyoudonotuseprotection<br />

asdescribedinVolume3,Chapter9,ElectroStaticDischarge,youruntheriskofdestroyingit.<br />

Thisparticularexperimentbuildsonanotherexperiment,”Commutatingdiode”(Volume6,<br />

chapter5).Itisworthreviewingthatsectionbeforeproceeding.<br />

ThisisthelastofthelongdurationLEDflasherseries. Theyhaveshownhowtousea<br />

CMOS555toflashanLED,andhowtoboostthevoltageofthebatteriestoallowanLEDwith


8.7. CMOS555LONGDURATIONFLYBACKLEDFLASHER 391<br />

morevoltagedropthanthebatteriestobeused.Herewearedoingthesamething,butwith<br />

aninductorinsteadofacapacitor.<br />

Thebasicconceptisadaptedfromanotherinvention,theJouleThief. Ajoulethiefisa<br />

simpletransistoroscillatorthatalsousesinductivekickbacktolightanwhitelightLEDfrom<br />

a11/2battery,andtheLEDneedsatleast3.6voltstostartconducting! Likethejoulethief,<br />

itispossibletouse11/2voltstogetthiscircuittowork.However,sinceaCMOS555israted<br />

for2voltsminimum11/2voltsisnotrecommended,butwecantakeadvantageoftheextreme<br />

efficiencyofthiscircuit.Ifyouwanttolearnmoreaboutthejoulethiefplentyofinformation<br />

canbefoundontheweb.<br />

Thiscircuitcanalsodrivemorethat1or2LEDsinseries. AsthenumbersofLEDsgo<br />

uptheabilityofthebatteriestolastalongdurationgoesdown,astheamountofvoltagethe<br />

inductorcangenerateissomewhatdependentonbatteryvoltage. Forthepurposesofthis<br />

experimenttwodissimilarLEDswereusedtodemonstrateitsindependenceofLEDvoltage<br />

drop.ThehighintensityoftheblueLEDswampstheredLED,butifyoulookcloselyyouwill<br />

findtheredLEDisatitsmaximumbrightness. Youcanuseprettymuchwhatevercolorof<br />

LEDsyouchooseforthisexperiment.<br />

Generallythehighvoltagecreatedbyinductivekickbackissomethingtobeeliminated.<br />

Thiscircuitusesit,butifyoumakeamistakewiththepolarityoftheLEDstheblueLED,<br />

whichismoreESDsensitive,willlikelydie(thishasbeenverified). Anuncontrolledpulse<br />

fromacoilresemblesanESDevent.ThetransistorandtheTLC555canalsobeatrisk.<br />

Theinductorinthiscircuitisprobablytheleastcriticalpartinthedesign. Theterminductorisgeneric,youcanalsofindthiscomponentcalledachokeoracoil.<br />

Asolenoidcoil<br />

wouldalsowork,sincethatisalsoatypeofinductor. Sowouldthecoilfromarelay. Ofall<br />

thecomponentsIhaveused,thisisprobablytheleastcriticalI’vecomeacross. Indeed,coils<br />

areprobablythemostpracticalcomponentyoucanmakeyourselfthatexists.I’llcoverhowto<br />

makeacoilthatwillworkinthisdesignaftertheTheoryofOperation,butthepartshownon<br />

theillustrationisa200HchokeIboughtfromalocalelectronicsretailer.<br />

THEORYOFOPERATION<br />

Bothcapacitorsandinductorsstoreenergy. Capacitorstrytomaintainconstantvoltage,<br />

whereasinductorstrytomaintainconstantcurrent. Bothresistchangetotheirrespective<br />

aspect. Thisisthebasisfortheflybacktransformer,whichisacommoncircuitusedinold<br />

CRTcircuitsandotheruseswherehighvoltageisneededwithaminimumoffuss. When<br />

youchargeacoilamagneticfieldexpandsaroundit,basicallyitisanelectromagnet,andthe<br />

magneticfieldisstoredenergy.Whenthecurrentstopsthismagneticfieldcollapses,created<br />

electricityasthefieldcrossesthewiresinthecoil.<br />

Thiscircuitusestwoastablemultivibrators. Thefirstmultivibratorcontrolsthesecond.<br />

Botharedesignedforminimumcurrent,aswellastheinvertermadeusingQ1. Boththe<br />

oscillatorsareverysimilar,thefirsthasbeencoveredinpreviousexperiments. Theproblem<br />

isitstayson,orishigh,97%ofthetime. Onthepreviouscircuitsweusedthelowstateto<br />

lighttheLED,inthiscasethehighiswhatturnsthesecondmultivibratoron.Usingasimple<br />

transistorinverterdesignedforextralowcurrentsolvesthisproblem.Thisisactuallyavery<br />

oldlogicfamily,RTL,whichisshortforresistortransistorlogic.<br />

Thesecondmultivibratoroscillatesat68.6KHz,withasquarewavethatisaround50%.<br />

ThiscircuitusestheexactsameprincipalsasisshownintheMinimumPartsLEDFlasher.<br />

Again,thelargestpracticalresistorsareusedtominimizecurrent,andthismeansareally


392 CHAPTER8. 555TIMERCIRCUITS<br />

smallcapacitorforC2. ThishighfrequencysquarewaveisusedtoturnQ2onandoffasa<br />

simpleswitch.<br />

Figure8.13showswhathappenswhentheQ2isconducting,andthecoilstartstocharge.<br />

IfQ2weretostayonthenaneffectiveshortacrossthebatterieswouldresult,butsincethis<br />

ispartofanoscillatorthiswon’thappen.Beforethecoilcanreachit’smaximumcurrentQ2<br />

switches,andtheswitchisopen.<br />

Figure8.13:<br />

Figure8.14showsQ2whenitopens,andthecoilischarged.Thecoiltriestomaintainthe<br />

current,butifthereisnodischargepathitcannotdothis. Iftherewerenodischargepath<br />

isthecoilwouldcreateahighvoltagepulse,seekingtomaintainthecurrentthatwasflowing<br />

throughit,andthisvoltagewouldbequitehigh. However,wehaveacoupleofLEDsinthe<br />

dischargepath,sothecoilspulsequicklygoestothevoltagedropofthecombinedLEDs,then<br />

dumpstherestofitschargeascurrent. Asaresultthereisnohighvoltagegenerated,but<br />

thereisaconversiontothevoltagerequiredtolighttheLEDs.<br />

Figure8.14:<br />

TheLEDsarepulsed,andthelightcurvefollowsthedischargecurveofthecoilfairly<br />

closely.However,thehumaneyeaveragesthislightoutputtosomethingweperceiveascontinuouslight.<br />

8.8 HOWTOMAKEANINDUCTOR<br />

PARTSANDMATERIALS


8.8. HOWTOMAKEANINDUCTOR 393<br />

• 26Feet(8Meters)of26AWGMagnetWire(RadioShackcatalog#278-1345orequivalent)<br />

• 6/32X1.5inchscrew,aM4X30mmscrew,oranailofsimilardiametercutdowntosize,<br />

steeloriron,butnotstainless<br />

• Matchinglocknut(optional)<br />

• TransparentTape(optional,neededifusingscrews)<br />

• SuperGlue<br />

• SolderingIron,Solder<br />

Ashasbeenmentionedbefore,thisisnotaprecisionpart. Inductorsingeneralcanhave<br />

alargevarianceformanyapplications,andthisonespecificallycanbeoffonthehighsidea<br />

largeamount.Thetargethereisgreaterthan220µH.<br />

Ifyouareusingascrew,useonelayerofthetransparenttapebetweenthethreadsandthe<br />

wire. Thisistopreventthethreadsofthescrewfromcuttingintothewireandshortingthe<br />

coilout.Ifyouareusingalocknutputitonthescrew1”(25mm)fromtheheadofthescrew.<br />

Startingaround1”fromoneendofthewire,usethegluetotackthewireontheheadofthe<br />

nailorscrewasshown.Lettheglueset.<br />

Figure8.15:<br />

Windthewireneatlyandtightly1”thelengthofscrew,againtackingitinplacewithsuper<br />

glue. (Figure8.15). Youcanuseavariablespeeddrilltohelpwiththis,aslongasyouare<br />

careful.Likeallpowerappliances,itcanbiteyou.Holdthewiretightuntilthegluesets,then<br />

startwindingasecondlayeroverthefirst. Continuethisprocessuntilallofthewireexcept<br />

thelast1”isused,usingthegluetooccasionallytackthewiredown.Arrangethewireonthe<br />

lastlayersothesecondinductorleadisontheotherendofthescrewawayfromthefirst.Tack<br />

thisdownforafinaltimewiththeglue.Letdrycompletely.<br />

Gentlytakeasharpbladeandscraptheenameloffeachendofthetwoleads. Tinthe<br />

exposedcopperwiththesolderingironandthesolder,andyounowhaveafunctionalinductor<br />

thatcanbeusedinthisexperiment.


394 CHAPTER8. 555TIMERCIRCUITS<br />

Figure8.16:<br />

HereiswhattheoneImadelookedlike:Figure8.16.<br />

Theconnectionsshownarebeingusedtomeasuretheinductance,whichworkedoutpretty<br />

closeto220H.


8.9. CMOS555LONGDURATIONREDLEDFLASHER 395<br />

8.9 CMOS555LONGDURATIONREDLEDFLASHER<br />

PARTSANDMATERIALS<br />

• TwoAAABatteries<br />

• BatteryClip(RadioShackcatalog#270-398B)<br />

• ADVMorVOM<br />

• U1-CMOSTLC555timerIC(RadioShackcatalog#276-1718orequivalent)<br />

• Q1-2N3906PNPTransistor(RadioShackcatalog#276-1604(15pack)orequivalent)<br />

• Q2-2N2222NPNTransistor(RadioShackcatalog#276-1617(15pack)orequivalent)<br />

• D1-Redlight-emittingdiode(RadioShackcatalog#276-041orequivalent)<br />

• R1-1.5MΩ1/4W5%Resistor<br />

• R2-47KΩ1/4W5%Resistor<br />

• R3-2.2KΩ1/4W5%Resistor<br />

• R4-27 Ω1/4W5%Resistor(ortestselectabettervalue)<br />

• C1-1FTantalumCapacitor(RadioShackcatalog272-1025orequivalent)<br />

• C2-100FElectrolyticCapacitor(RadioShackcatalog272-1028orequivalent)<br />

CROSS-REFERENCES<br />

LessonsInElectricCircuits,Volume1,chapter16:“Voltageandcurrentcalculations”<br />

LessonsInElectricCircuits,Volume1,chapter16:“Solvingforunknowntime”<br />

LessonsInElectricCircuits,Volume3,chapter4:“BipolarJunctionTransistors”<br />

LessonsInElectricCircuits,Volume3,chapter9:“ElectroStaticDischarge”<br />

LessonsInElectricCircuits,Volume4,chapter10:“Multivibrators”<br />

LEARNINGOBJECTIVES<br />

• LearnapracticalapplicationforaRCtimeconstant<br />

• Learnoneofseveral555timerAstableMultivibratorConfigurations<br />

• Workingknowledgeofdutycycle<br />

• HowtohandleESDsensitiveparts<br />

• Howtousetransistorstoimprovecurrentgain<br />

• HowtocalculatethecorrectresistorforaLED


396 CHAPTER8. 555TIMERCIRCUITS<br />

SCHEMATICDIAGRAM<br />

ILLUSTRATION<br />

INSTRUCTIONS<br />

NOTE!Thisprojectusesastaticsensitivepart,theCMOS555.Ifyoudonotuseprotection<br />

asdescribedinVolume3,Chapter9,ElectroStaticDischarge,youruntheriskofdestroyingit.<br />

Thecircuitshowninthepreviousexperiment,CMOS555LongDurationMinimumParts<br />

RedLEDFlasher,hasonebigdrawback,whichisalackofLEDcurrentcontrol.Thisexperimentusesthesamebasic555schematicandaddstransistorizeddriverstocorrectthis.


8.9. CMOS555LONGDURATIONREDLEDFLASHER 397<br />

Thepartsusedforthistransistordriverarenoncritical.ItisdesignedtoloadtheTLC555<br />

toanabsoluteminimumandstillturnonQ2fully. Thisisimportantbecauseasthebattery<br />

voltageapproaches2VthedrivefromtheTLC555isreducedtoitsminimumvalues.Bipolar<br />

transistorscanbegoodswitches.<br />

SinceLEDscanhavesomuchvariationR4shouldbetweakedtomatchthespecificLED<br />

used.Thecurrentislimitedto18.5mawith27ΩandaVf(LEDforwarddroppingvoltage)of<br />

2.5V,anLEDVfof2.1Vwilldraw33ma,andaLEDVfof1.5willdraw56ma.Thelatteristoo<br />

muchcurrent,nottomentionwhatthatwoulddoforthebatterylife.Tocorrectthisuse47Ω<br />

iftheVfis2.1V,and75ΩiftheVfis1.5V,assumingthetargetcurrentis20ma.<br />

YoucanmeasureVfbyusingthejumpershowninredintheillustration,whichwillturn<br />

theLEDonfulltime.YoucancalculatethevalueofR4byusingtheequation:<br />

R4=(3V-Vf)/0.02A<br />

ItwasmentionedinthepreviousexperimentthatcapacitorC2extendedthelifeofthe<br />

batteries.Aninterestingexperimentistoremovethispartperiodicallyandseewhathappens.<br />

AtfirstyouwillnoticeadimmingoftheLED,andafteraweekortwothecircuitwilldie<br />

withoutit,andresumeworkinginacoupleofsecondswhenitisreplaced. Thisflasherwill<br />

workfor3monthsusingfreshalkalineAAAbatteries.<br />

THEORYOFOPERATION<br />

TheCMOS555oscillatorwasexplainedfullyinthepreviousexperiment,sothetransistor<br />

driverwillbethefocusofthisexplanation.<br />

ThetransistordrivercombineselementsofacommoncollectorconfigurationonQ1,along<br />

withcommonemitterconfigurationonQ2. Thisallowsforveryhighinputresistancewhile<br />

allowingQ2toturnonfully.Theinputresistanceofthetransistoristhe β(gain)ofthetransistortimestheemitterresistor.<br />

IfQ1hasagainof50(aminimumvalue)thenthedriver<br />

loadstheTLC555withmorethan100KΩ.Transistorscanhavelargevariationsingain,even<br />

withinthesamefamily.<br />

WhenQ1turnson1maissenttoQ2.ThisismorethanenoughtoturnQ2fully,whichis<br />

referredtoassaturation.Q2isusedasasimpleswitchfortheLED.


398 CHAPTER8. 555TIMERCIRCUITS


AppendixA-1<br />

ABOUTTHISBOOK<br />

A-1.1 Purpose<br />

Theysaythatnecessityisthemotherofinvention.Atleastinthecaseofthisbook,thatadage<br />

istrue. Asanindustrialelectronicsinstructor,Iwasforcedtouseasub-standardtextbook<br />

duringmyfirstyearofteaching.Mystudentsweredailyfrustratedwiththemanytypographicalerrorsandobscureexplanationsinthisbook,havingspentmuchtimeathomestruggling<br />

tocomprehendthematerialwithin.Worseyetwerethemanyincorrectanswersinthebackof<br />

thebooktoselectedproblems.Addinginsulttoinjurywasthe$100+price.<br />

Contactingthepublisherprovedtobeanexerciseinfutility. Eventhoughtheparticular<br />

textIwasusinghadbeeninprintandinpopularuseforacoupleofyears,theyclaimedmy<br />

complaintwasthefirstthey’deverheard.Myrequesttoreviewthedraftforthenextedition<br />

oftheirbookwasmetwithdisinterestontheirpart,andIresolvedtofindanalternativetext.<br />

FindingasuitablealternativewasmoredifficultthanIhadimagined. Sure,therewere<br />

plentyoftextsinprint,butthereallygoodbooksseemedabittooheavyonthemathandthe<br />

lessintimidatingbooksomittedalotofinformationIfeltwasimportant. Someofthebest<br />

bookswereoutofprint,andthosethatwerestillbeingprintedwerequiteexpensive.<br />

ItwasoutoffrustrationthatIcompiledLessonsinElectricCircuitsfromnotesandideasI<br />

hadbeencollectingforyears.Myprimarygoalwastoputreadable,high-qualityinformation<br />

intothehandsofmystudents,butasecondarygoalwastomakethebookasaffordableas<br />

possible.Overtheyears,Ihadexperiencedthebenefitofreceivingfreeinstructionandencouragementinmypursuitoflearningelectronicsfrommanypeople,includingseveralteachers<br />

ofmineinelementaryandhighschool.Theirselflessassistanceplayedakeyroleinmyown<br />

studies,pavingthewayforarewardingcareerandfascinatinghobby. IfonlyIcouldextend<br />

thegiftoftheirhelpbygivingtootherpeoplewhattheygavetome...<br />

So,Idecidedtomakethebookfreelyavailable.Morethanthat,Idecidedtomakeit”open,”<br />

followingthesamedevelopmentmodelusedinthemakingoffreesoftware(mostnotablythe<br />

variousUNIXutilitiesreleasedbytheFreeSoftwareFoundation,andtheLinuxoperating<br />

399


400 APPENDIXA-1. ABOUTTHISBOOK<br />

system,whosefameisgrowingevenasIwrite).Thegoalwastocopyrightthetext–soasto<br />

protectmyauthorship–butexpresslyallowanyonetodistributeand/ormodifythetexttosuit<br />

theirownneedswithaminimumoflegalencumbrance. Thiswillfulandformalrevokingof<br />

standarddistributionlimitationsundercopyrightiswhimsicallytermedcopyleft.Anyonecan<br />

”copyleft”theircreativeworksimplybyappendinganoticetothateffectontheirwork,but<br />

severalLicensesalreadyexist,coveringthefinelegalpointsingreatdetail.<br />

ThefirstsuchLicenseIappliedtomyworkwastheGPL–GeneralPublicLicense–ofthe<br />

FreeSoftwareFoundation(GNU).TheGPL,however,isintendedtocopyleftworksofcomputer<br />

software,andalthoughitsintroductorylanguageisbroadenoughtocoverworksoftext,its<br />

wordingisnotasclearasitcouldbeforthatapplication. Whenother,lessspecificcopyleft<br />

Licensesbeganappearingwithinthefreesoftwarecommunity,Ichoseoneofthem(theDesign<br />

ScienceLicense,orDSL)astheofficialnoticeformyproject.<br />

In”copylefting”thistext,Iguaranteedthatnoinstructorwouldbelimitedbyatextinsufficientfortheirneeds,asIhadbeenwitherror-riddentextbooksfrommajorpublishers.I’msure<br />

thisbookinitsinitialformwillnotsatisfyeveryone,butanyonehasthefreedomtochangeit,<br />

leveragingmyeffortstosuitvariantandindividualrequirements.Forthebeginningstudent<br />

ofelectronics,learnwhatyoucanfromthisbook,editingitasyoufeelnecessaryifyoucome<br />

acrossausefulpieceofinformation.Then,ifyoupassitontosomeoneelse,youwillbegiving<br />

themsomethingbetterthanwhatyoureceived.Fortheinstructororelectronicsprofessional,<br />

feelfreetousethisasareferencemanual,addingoreditingtoyourheart’scontent. The<br />

only”catch”isthis:ifyouplantodistributeyourmodifiedversionofthistext,youmustgive<br />

creditwherecreditisdue(tome,theoriginalauthor,andanyoneelsewhosemodificationsare<br />

containedinyourversion),andyoumustensurethatwhoeveryougivethetexttoisawareof<br />

theirfreedomtosimilarlyshareandeditthetext.Thenextchaptercoversthisprocessinmore<br />

detail.<br />

ItmustbementionedthatalthoughIstrivetomaintaintechnicalaccuracyinallofthis<br />

book’scontent,thesubjectmatterisbroadandharborsmanypotentialdangers. Electricity<br />

maimsandkillswithoutprovocation,anddeservestheutmostrespect. Istronglyencourage<br />

experimentationonthepartofthereader,butonlywithcircuitspoweredbysmallbatteries<br />

wherethereisnoriskofelectricshock,fire,explosion,etc.High-powerelectriccircuitsshould<br />

belefttothecareoftrainedprofessionals! TheDesignScienceLicenseclearlystatesthat<br />

neitherInoranycontributorstothisbookbearanyliabilityforwhatisdonewithitscontents.<br />

A-1.2 TheuseofSPICE<br />

Oneofthebestwaystolearnhowthingsworkistofollowtheinductiveapproach:toobserve<br />

specificinstancesofthingsworkingandderivegeneralconclusionsfromthoseobservations.<br />

Inscienceeducation,labworkisthetraditionallyacceptedvenueforthistypeoflearning,althoughinmanycaseslabsaredesignedbyeducatorstoreinforceprinciplespreviouslylearned<br />

throughlectureortextbookreading,ratherthantoallowthestudenttolearnontheirown<br />

throughatrulyexploratoryprocess.<br />

HavingtaughtmyselfmostoftheelectronicsthatIknow,Iappreciatethesenseoffrustrationstudentsmayhaveinteachingthemselvesfrombooks.<br />

Althoughelectroniccomponents<br />

aretypicallyinexpensive,noteveryonehasthemeansoropportunitytosetupalaboratory<br />

intheirownhomes,andwhenthingsgowrongthere’snoonetoaskforhelp.Mosttextbooks


A-1.3. ACKNOWLEDGEMENTS 401<br />

seemtoapproachthetaskofeducationfromadeductiveperspective: tellthestudenthow<br />

thingsaresupposedtowork,thenapplythoseprinciplestospecificinstancesthatthestudent<br />

mayormaynotbeabletoexplorebythemselves.Theinductiveapproach,asusefulasitis,is<br />

hardtofindinthepagesofabook.<br />

However,textbooksdon’thavetobethisway. IdiscoveredthiswhenIstartedtolearna<br />

computerprogramcalledSPICE.Itisatext-basedpieceofsoftwareintendedtomodelcircuits<br />

andprovideanalysesofvoltage,current,frequency,etc.Althoughnothingisquiteasgoodas<br />

buildingrealcircuitstogainknowledgeinelectronics,computersimulationisanexcellentalternative.Inlearninghowtousethispowerfultool,Imadeadiscovery:SPICEcouldbeused<br />

withinatextbooktopresentcircuitsimulationstoallowstudentsto”observe”thephenomena<br />

forthemselves. Thisway,thereaderscouldlearntheconceptsinductively(byinterpreting<br />

SPICE’soutput)aswellasdeductively(byinterpretingmyexplanations). Furthermore,in<br />

seeingSPICEusedoverandoveragain,theyshouldbeabletounderstandhowtouseitthemselves,providingaperfectlysafemeansofexperimentationontheirowncomputerswithcircuit<br />

simulationsoftheirowndesign.<br />

Anotheradvantagetoincludingcomputeranalysesinatextbookistheempiricalverificationitaddstotheconceptspresented.<br />

Withoutdemonstrations,thereaderislefttotake<br />

theauthor’sstatementsonfaith,trustingthatwhathasbeenwrittenisindeedaccurate.The<br />

problemwithfaith,ofcourse,isthatitisonlyasgoodastheauthorityinwhichitisplacedand<br />

theaccuracyofinterpretationthroughwhichitisunderstood.Authors,likeallhumanbeings,<br />

areliabletoerrand/orcommunicatepoorly. Withdemonstrations,however,thereadercan<br />

immediatelyseeforthemselvesthatwhattheauthordescribesisindeedtrue.Demonstrations<br />

alsoservetoclarifythemeaningofthetextwithconcreteexamples.<br />

SPICEisintroducedearlyinvolumeI(DC)ofthisbookseries,andhopefullyinagentle<br />

enoughwaythatitdoesn’tcreateconfusion.Forthosewishingtolearnmore,achapterinthis<br />

volume(volumeV)containsanoverviewofSPICEwithmanyexamplecircuits. Theremay<br />

bemoreflashy(graphic)circuitsimulationprogramsinexistence,butSPICEisfree,avirtue<br />

complementingthecharitablephilosophyofthisbookverynicely.<br />

A-1.3 Acknowledgements<br />

First,Iwishtothankmywife,whosepatienceduringthosemanyandlongevenings(and<br />

weekends!)oftypinghasbeenextraordinary.<br />

Ialsowishtothankthosewhoseopen-sourcesoftwaredevelopmenteffortshavemadethis<br />

endeavorallthemoreaffordableandpleasurable.Thefollowingisalistofvariousfreecomputersoftwareusedtomakethisbook,andtherespectiveprogrammers:<br />

• GNU/LinuxOperatingSystem–LinusTorvalds,RichardStallman,andahostofothers<br />

toonumeroustomention.<br />

• Vimtexteditor–BramMoolenaarandothers.<br />

• Xcircuitdraftingprogram–TimEdwards.<br />

• SPICEcircuitsimulationprogram–toomanycontributorstomention.<br />

• TEXtextprocessingsystem–DonaldKnuthandothers.


402 APPENDIXA-1. ABOUTTHISBOOK<br />

• Texinfodocumentformattingsystem–FreeSoftwareFoundation.<br />

• L A TEXdocumentformattingsystem–LeslieLamportandothers.<br />

• Gimpimagemanipulationprogram–toomanycontributorstomention.<br />

• Winscopesignalanalysissoftware–Dr. ConstantinZeldovich. (Freeforpersonaland<br />

academicuse.)<br />

AppreciationisalsoextendedtoRobertL.Boylestad,whosefirsteditionofIntroductory<br />

CircuitAnalysistaughtmemoreaboutelectriccircuitsthananyotherbook.Otherimportant<br />

textsinmyelectronicsstudiesincludethe1939editionofThe”Radio”Handbook,Bernard<br />

Grob’ssecondeditionofIntroductiontoElectronicsI,andForrestMims’originalEngineer’s<br />

Notebook.<br />

ThankstothestaffoftheBellinghamAntiqueRadioMuseum,whoweregenerousenough<br />

toletmeterrorizetheirestablishmentwithmycameraandflashunit.<br />

IwishtospecificallythankJeffreyElknerandallthoseatYorktownHighSchoolforbeing<br />

willingtohostmybookaspartoftheirOpen<strong>Book</strong>Project,andtomakethefirsteffortincontributingtoitsformandcontent.ThanksalsotoDavidSweet(website:<br />

(http://www.andamooka.org))<br />

andBenCrowell(website: (http://www.lightandmatter.com))forprovidingencouragement,constructivecriticism,andawideraudiencefortheonlineversionofthisbook.<br />

ThankstoMichaelStutzfordraftinghisDesignScienceLicense,andtoRichardStallman<br />

forpioneeringtheconceptofcopyleft.<br />

Lastbutcertainlynotleast,manythankstomyparentsandthoseteachersofminewho<br />

sawinmeadesiretolearnaboutelectricity,andwhokindledthatflameintoapassionfor<br />

discoveryandintellectualadventure.Ihonoryoubyhelpingothersasyouhavehelpedme.<br />

TonyKuphaldt,July2001<br />

”Acandlelosesnothingofitslightwhenlightinganother”<br />

KahlilGibran


A-1.3. ACKNOWLEDGEMENTS 403<br />

jrap@allaboutcircuits.com


404 APPENDIXA-1. ABOUTTHISBOOK


AppendixA-2<br />

CONTRIBUTORLIST<br />

A-2.1 Howtocontributetothisbook<br />

The Work is copyright the Author. All rights to the Work are reserved<br />

by the Author, except as specifically described below. This License<br />

describes the terms and conditions under which the Author permits you<br />

to copy, distribute and modify copies of the Work.<br />

In addition, you may refer to the Work, talk about it, and (as<br />

dictated by "fair use") quote from it, just as you would any<br />

copyrighted material under copyright law.<br />

Your right to operate, perform, read or otherwise interpret and/or<br />

execute the Work is unrestricted; however, you do so at your own risk,<br />

because the Work comes WITHOUT ANY WARRANTY -- see Section 7 ("NO<br />

WARRANTY") below.<br />

Asacopyleftedwork,thisbookisopentorevisionandexpansionbyanyinterestedparties.<br />

Theonly”catch”isthatcreditmustbegivenwherecreditisdue.Thisisacopyrightedwork:<br />

itisnotinthepublicdomain!<br />

Ifyouwishtociteportionsofthisbookinaworkofyourown,youmustfollowthesame<br />

guidelinesasforanyothercopyrightedwork. HereisasamplefromtheDesignScienceLicense:<br />

Ifyouwishtomodifythisbookinanyway,youmustdocumentthenatureofthosemodificationsinthe”Credits”sectionalongwithyourname,andideally,informationconcerninghow<br />

youmaybecontacted.Again,theDesignScienceLicense:<br />

Permission is granted to modify or sample from a copy of the Work,<br />

405


406 APPENDIXA-2. CONTRIBUTORLIST<br />

producing a derivative work, and to distribute the derivative work<br />

under the terms described in the section for distribution above,<br />

provided that the following terms are met:<br />

(a) The new, derivative work is published under the terms of this<br />

License.<br />

(b) The derivative work is given a new name, so that its name or<br />

title can not be confused with the Work, or with a version of<br />

the Work, in any way.<br />

(c) Appropriate authorship credit is given: for the differences<br />

between the Work and the new derivative work, authorship is<br />

attributed to you, while the material sampled or used from<br />

the Work remains attributed to the original Author; appropriate<br />

notice must be included with the new work indicating the nature<br />

and the dates of any modifications of the Work made by you.<br />

Giventhecomplexitiesandsecurityissuessurroundingthemaintenanceoffilescomprising<br />

thisbook,itisrecommendedthatyousubmitanyrevisionsorexpansionstotheoriginalauthor<br />

(TonyR.Kuphaldt). Youare,ofcourse,welcometomodifythisbookdirectlybyeditingyour<br />

ownpersonalcopy,butwewouldallstandtobenefitfromyourcontributionsifyourideaswere<br />

incorporatedintotheonline“mastercopy”wherealltheworldcanseeit.<br />

A-2.2 Credits<br />

Allentriesarrangedinalphabeticalorderofsurname.Majorcontributionsarelistedbyindividualnamewithsomedetailonthenatureofthecontribution(s),date,contactinfo,etc.Minor<br />

contributions(typocorrections,etc.)arelistedbynameonlyforreasonsofbrevity.PleaseunderstandthatwhenIclassifyacontributionas“minor,”itisinnowayinferiortotheeffort<br />

orvalueofa“major”contribution,justsmallerinthesenseoflesstextchanged.Anyandall<br />

contributionsaregratefullyaccepted.Iamindebtedtoallthosewhohavegivenfreelyoftheir<br />

ownknowledge,time,andresourcestomakethisabetterbook!<br />

A-2.2.1 DennisCrunkilton<br />

• Date(s)ofcontribution(s):January2006topresent<br />

• Natureofcontribution: Minitableofcontents,allchaptersexceptappedicies;html,<br />

latex,ps,pdf;SeeDevel/tutorial.html;01/2006.<br />

• Natureofcontribution: CH4,section:Inductionmotor,09/2007.<br />

• Natureofcontribution: CH4,section:Inductionmotor,large02/2010.<br />

• Contactat: dcrunkilton(at)att(dot)net


A-2.2. CREDITS 407<br />

A-2.2.2 TonyR.Kuphaldt<br />

• Date(s)ofcontribution(s):1996topresent<br />

• Natureofcontribution:Originalauthor.<br />

• Contactat: liec0@lycos.com<br />

A-2.2.3 BillMarsden<br />

• Date(s)ofcontribution(s):August2008<br />

• Natureofcontribution:Originalauthor:“555Schmidttrigger”Section,Chapter7.<br />

• Contactat: bill marsden2(at)hotmail(dot)com<br />

A-2.2.4 ForrestM.MimsIII<br />

• Date(s)ofcontribution(s):February2008<br />

• Natureofcontribution:Ch5;ClarificationconcerningLEDsasphotosensors.<br />

• Contactat: FMims(at)aol.com<br />

A-2.2.5 Yournamehere<br />

• Date(s)ofcontribution(s):Monthandyearofcontribution<br />

• Natureofcontribution:Inserttexthere,describinghowyoucontributedtothebook.<br />

• Contactat: my email@provider.net<br />

A-2.2.6 Typocorrectionsandother“minor”contributions<br />

• line-allaboutcircuits.com(June2005)TypographicalerrorcorrectioninVolumes1,2,3,5,<br />

variouschapters,(:s/visa-versa/viceversa/).<br />

• ThestudentsofBellinghamTechnicalCollege’sInstrumentationprogram.<br />

• ColinCreitz(May2007)Chapters:several,s/it’s/its.<br />

• JeffDeFreitas(March2006)Improveappearance:replace“/”and”/”Chapters:A1,A2.<br />

• DonStalkowski(June2002)TechnicalhelpwithPostScript-to-PDFfileformatconversion.<br />

• JosephTeichman(June2002)SuggestionandtechnicalhelpregardinguseofPNG<br />

imagesinsteadofJPEG.<br />

• MichaelWarner(April2002)Suggestionsforasectiondescribinghomelaboratorysetup.


408 APPENDIXA-2. CONTRIBUTORLIST<br />

• jut@allaboutcircuits.com(August2007)Ch1,s/starting/started.<br />

• Unregistered@allaboutcircuits.com(August2007)Ch6,s/andandoff/onandoff/.<br />

• TimothyUnregistered@allaboutcircuits.com(Feb2008)Changeddefaultromanfont<br />

tonewcent.<br />

• ImranullahSyed(Feb2008)Suggestedcenteringofuncaptionedschematics.<br />

• Sylverce@allaboutcircuits.com,Caveman@allaboutcircuits.com(May2008)Changed<br />

image05320.pngtoagreewithimage05321.png¡/item<br />

• sarwiz@allaboutcircuits.com(April2009)Ch4,s/Trychanged/Trychanging/¡/item<br />

• jrap@allaboutcircuits.com(August2009)added tagsto”555Schmitttrigger”,dic.sml.<br />

• Heavydoody@allaboutcircuits.com(August2009)correctiontoimage05198.eps&.png<br />

.<br />

• Dcrunkilton@allaboutcircuits.com(January2010)added tagto”555<br />

Schmitttrigger”.<br />

• Bereahorn@allaboutcircuits.com(January2010)Ch2,s/Thelessressistance/Themore<br />

resistance.<br />

• BillMarsden@allaboutcircuits.com(April2010)addednewCROSS-REFERENCEto<br />

”555Schmitttrigger”.<br />

• Dcrunkilton@allaboutcircuits.com(September2010)Ch6,s/useable/usable/.<br />

• D.Crunkilton(June2011)hi.latex,headerfile;updatedlinktoopenbookproject.net.


AppendixA-3<br />

DESIGNSCIENCELICENSE<br />

Copyright c○1999-2000MichaelStutzstutz@dsl.org<br />

Verbatimcopyingofthisdocumentispermitted,inanymedium.<br />

A-3.1 0.Preamble<br />

Copyrightlawgivescertainexclusiverightstotheauthorofawork, includingtherights<br />

tocopy,modifyanddistributethework(the”reproductive,””adaptative,”and”distribution”<br />

rights).<br />

Theideaof”copyleft”istowillfullyrevoketheexclusivityofthoserightsundercertain<br />

termsandconditions,sothatanyonecancopyanddistributetheworkorproperlyattributed<br />

derivativeworks,whileallcopiesremainunderthesametermsandconditionsastheoriginal.<br />

Theintentofthislicenseistobeageneral”copyleft”thatcanbeappliedtoanykindofwork<br />

thathasprotectionundercopyright.Thislicensestatesthosecertainconditionsunderwhich<br />

aworkpublishedunderitstermsmaybecopied,distributed,andmodified.<br />

Whereas”designscience”isastrategyforthedevelopmentofartifactsasawaytoreform<br />

theenvironment(notpeople)andsubsequentlyimprovetheuniversalstandardofliving,this<br />

DesignScienceLicensewaswrittenanddeployedasastrategyforpromotingtheprogressof<br />

scienceandartthroughreformoftheenvironment.<br />

A-3.2 1.Definitions<br />

”License”shallmeanthisDesignScienceLicense. TheLicenseappliestoanyworkwhich<br />

containsanoticeplacedbythework’scopyrightholderstatingthatitispublishedunderthe<br />

termsofthisDesignScienceLicense.<br />

”Work”shallmeansuchanaforementionedwork.TheLicensealsoappliestotheoutputof<br />

theWork,onlyifsaidoutputconstitutesa”derivativework”ofthelicensedWorkasdefinedby<br />

copyrightlaw.<br />

409


410 APPENDIXA-3. DESIGNSCIENCELICENSE<br />

”ObjectForm”shallmeananexecutableorperformableformoftheWork,beinganembodimentoftheWorkinsometangiblemedium.<br />

”SourceData”shallmeantheoriginoftheObjectForm,beingtheentire,machine-readable,<br />

preferredformoftheWorkforcopyingandforhumanmodification(usuallythelanguage,<br />

encodingorformatinwhichcomposedorrecordedbytheAuthor);plusanyaccompanying<br />

files,scriptsorotherdatanecessaryforinstallation,configurationorcompilationoftheWork.<br />

(Examplesof”SourceData”include,butarenotlimitedto,thefollowing:iftheWorkisan<br />

imagefilecomposedandeditedin’PNG’format,thentheoriginalPNGsourcefileistheSource<br />

Data;iftheWorkisanMPEG1.0layer3digitalaudiorecordingmadefroma’WAV’format<br />

audiofilerecordingofananalogsource,thentheoriginalWAVfileistheSourceData;ifthe<br />

Workwascomposedasanunformattedplaintextfile,thenthatfileisthetheSourceData;if<br />

theWorkwascomposedinLaTeX,theLaTeXfile(s)andanyimagefilesand/orcustommacros<br />

necessaryforcompilationconstitutetheSourceData.)<br />

”Author”shallmeanthecopyrightholder(s)oftheWork.<br />

Theindividuallicenseesarereferredtoas”you.”<br />

A-3.3 2.Rightsandcopyright<br />

TheWorkiscopyrighttheAuthor.AllrightstotheWorkarereservedbytheAuthor,exceptas<br />

specificallydescribedbelow.ThisLicensedescribesthetermsandconditionsunderwhichthe<br />

Authorpermitsyoutocopy,distributeandmodifycopiesoftheWork.<br />

Inaddition,youmayrefertotheWork,talkaboutit,and(asdictatedby”fairuse”)quote<br />

fromit,justasyouwouldanycopyrightedmaterialundercopyrightlaw.<br />

Yourrighttooperate,perform,readorotherwiseinterpretand/orexecutetheWorkisunrestricted;however,youdosoatyourownrisk,becausetheWorkcomesWITHOUTANY<br />

WARRANTY–seeSection7(”NOWARRANTY”)below.<br />

A-3.4 3.Copyinganddistribution<br />

Permissionisgrantedtodistribute,publishorotherwisepresentverbatimcopiesoftheentire<br />

SourceDataoftheWork,inanymedium,providedthatfullcopyrightnoticeanddisclaimerof<br />

warranty,whereapplicable,isconspicuouslypublishedonallcopies,andacopyofthisLicense<br />

isdistributedalongwiththeWork.<br />

Permissionisgrantedtodistribute,publishorotherwisepresentcopiesoftheObjectForm<br />

oftheWork,inanymedium,underthetermsfordistributionofSourceDataaboveandalso<br />

providedthatoneofthefollowingadditionalconditionsaremet:<br />

(a)TheSourceDataisincludedinthesamedistribution,distributedunderthetermsof<br />

thisLicense;or<br />

(b)Awrittenofferisincludedwiththedistribution,validforatleastthreeyearsorfor<br />

aslongasthedistributionisinprint(whicheverislonger),withapublicly-accessibleaddress<br />

(suchasaURLontheInternet)where,forachargenotgreaterthantransportationandmedia<br />

costs,anyonemayreceiveacopyoftheSourceDataoftheWorkdistributedaccordingtothe<br />

sectionabove;or


A-3.5. 4.MODIFICATION 411<br />

(c)Athirdparty’swrittenofferforobtainingtheSourceDataatnocost,asdescribedin<br />

paragraph(b)above,isincludedwiththedistribution. Thisoptionisvalidonlyifyouarea<br />

non-commercialparty,andonlyifyoureceivedtheObjectFormoftheWorkalongwithsuch<br />

anoffer.<br />

YoumaycopyanddistributetheWorkeithergratisorforafee,andifdesired,youmay<br />

offerwarrantyprotectionfortheWork.<br />

TheaggregationoftheWorkwithotherworkswhicharenotbasedontheWork–suchas<br />

butnotlimitedtoinclusioninapublication,broadcast,compilation,orothermedia–doesnot<br />

bringtheotherworksinthescopeoftheLicense;nordoessuchaggregationvoidthetermsof<br />

theLicensefortheWork.<br />

A-3.5 4.Modification<br />

PermissionisgrantedtomodifyorsamplefromacopyoftheWork,producingaderivative<br />

work,andtodistributethederivativeworkunderthetermsdescribedinthesectionfordistributionabove,providedthatthefollowingtermsaremet:<br />

(a)Thenew,derivativeworkispublishedunderthetermsofthisLicense.<br />

(b)Thederivativeworkisgivenanewname,sothatitsnameortitlecannotbeconfused<br />

withtheWork,orwithaversionoftheWork,inanyway.<br />

(c)Appropriateauthorshipcreditisgiven: forthedifferencesbetweentheWorkandthe<br />

newderivativework,authorshipisattributedtoyou,whilethematerialsampledorusedfrom<br />

theWorkremainsattributedtotheoriginalAuthor;appropriatenoticemustbeincludedwith<br />

thenewworkindicatingthenatureandthedatesofanymodificationsoftheWorkmadeby<br />

you.<br />

A-3.6 5.Norestrictions<br />

YoumaynotimposeanyfurtherrestrictionsontheWorkoranyofitsderivativeworksbeyond<br />

thoserestrictionsdescribedinthisLicense.<br />

A-3.7 6.Acceptance<br />

Copying,distributingormodifyingtheWork(includingbutnotlimitedtosamplingfromthe<br />

Workinanewwork)indicatesacceptanceoftheseterms.Ifyoudonotfollowthetermsofthis<br />

License,anyrightsgrantedtoyoubytheLicensearenullandvoid.Thecopying,distributionor<br />

modificationoftheWorkoutsideofthetermsdescribedinthisLicenseisexpresslyprohibited<br />

bylaw.<br />

Ifforanyreason,conditionsareimposedonyouthatforbidyoutofulfilltheconditionsof<br />

thisLicense,youmaynotcopy,distributeormodifytheWorkatall.<br />

IfanypartofthisLicenseisfoundtobeinconflictwiththelaw,thatpartshallbeinterpretedinitsbroadestmeaningconsistentwiththelaw,andnootherpartsoftheLicenseshall<br />

beaffected.


412 APPENDIXA-3. DESIGNSCIENCELICENSE<br />

A-3.8 7.Nowarranty<br />

THEWORKISPROVIDED”ASIS,”ANDCOMESWITHABSOLUTELYNOWARRANTY,<br />

EXPRESSORIMPLIED,TOTHEEXTENTPERMITTEDBYAPPLICABLELAW,INCLUD-<br />

INGBUTNOTLIMITEDTOTHEIMPLIEDWARRANTIESOFMERCHANTABILITYOR<br />

FITNESSFORAPARTICULARPURPOSE.<br />

A-3.9 8.Disclaimerofliability<br />

INNOEVENTSHALLTHEAUTHORORCONTRIBUTORSBELIABLEFORANYDI-<br />

RECT,INDIRECT,INCIDENTAL,SPECIAL,EXEMPLARY,ORCONSEQUENTIALDAM-<br />

AGES(INCLUDING,BUTNOTLIMITEDTO,PROCUREMENTOFSUBSTITUTEGOODS<br />

ORSERVICES;LOSSOFUSE,DATA,ORPROFITS;ORBUSINESSINTERRUPTION)<br />

HOWEVERCAUSEDANDONANYTHEORYOFLIABILITY,WHETHERINCONTRACT,<br />

STRICTLIABILITY,ORTORT(INCLUDINGNEGLIGENCEOROTHERWISE)ARISINGIN<br />

ANYWAYOUTOFTHEUSEOFTHISWORK,EVENIFADVISEDOFTHEPOSSIBILITY<br />

OFSUCHDAMAGE.<br />

ENDOFTERMSANDCONDITIONS<br />

[$Id: dsl.txt,v 1.25 2000/03/14 13:14:14 m Exp m $]


Index<br />

βratio,257<br />

555timer,312,315,318<br />

555timerIC,365<br />

AC,145<br />

ACcoupling,oscilloscope,196,210<br />

Active-highinput,363<br />

Active-lowinput,363<br />

Alligatorclip,19<br />

Alternatingcurrent,145<br />

Alternator,164<br />

Amp,36<br />

Ampere,36<br />

Amplifiercircuit,134<br />

Amplifierimpedance,244<br />

Amplifier,inverting,247,299<br />

Amplifier,noninverting,299<br />

Amplifier,operational,252<br />

Amplitude,185<br />

Analog,289,331<br />

Analogcomputer,133,144<br />

Analogmultimeter,16<br />

Antiresonance,192<br />

Astablemultivibrator,275,312<br />

Audiotaperpotentiometer,87,117,155<br />

Autorangingmeter,18<br />

Bananaplugsandjacks,99<br />

Battery,19<br />

Betaratio,257<br />

Biascurrent,op-amp,309<br />

Bindingposts,99<br />

Bounce,switchcontact,345,353<br />

Breadboard,22<br />

Calculus,143,306<br />

Calibrationdrift—hyperpage,107<br />

Capacitor,decoupling,199<br />

Choke,191<br />

Choke,filter,225<br />

Circuit,29<br />

Circuit,short,32<br />

Common-modevoltage,267<br />

Commonality,electrical,24<br />

Computersimulation,76<br />

Computer,analog,133,144<br />

Constant-currentdiode,263<br />

Contactbounce,345,353<br />

Continuity,22<br />

Continuityvs.commonality,24<br />

Currentdivider,84<br />

Currentmirror,263,315<br />

Currentregulator,257<br />

Current,definition,36<br />

DC,59<br />

Debouncing,switch,354<br />

Decouplingcapacitor,199<br />

Derivative,calculus,143,306<br />

Detector,null,124<br />

Differentialamplifier,267,270<br />

Differentialpair,267,270<br />

Differentiation,calculus,143,306<br />

Digital,289,331<br />

Digitalmultimeter,16<br />

Diode,26<br />

Diodeequation,258<br />

Diode,constant-current,263<br />

Directcurrent,59<br />

Discontinuity,29<br />

Divider,current,84<br />

Divider,voltage,70<br />

Drift,calibration,107<br />

Dutycycle,312<br />

413


414 INDEX<br />

E,symbolforvoltage,44<br />

Effect,Seebeck,110<br />

<strong>Electrical</strong>continuity,22<br />

<strong>Electrical</strong>shockhazard,26<br />

<strong>Electrical</strong>lycommonpoints,24,64<br />

Electromagneticinduction,57<br />

Electromagnetism,56<br />

Equation,diode,258<br />

Experiment:3-bitbinarycounter,359<br />

Experiment:4-wireresistancemeasurement,<br />

127<br />

Experiment:555audiooscillator,311<br />

Experiment:555rampgenerator,314<br />

Experiment:555SchmittTrigger,366<br />

Experiment:7-segmentdisplay,361<br />

Experiment:ACpowersupply,147<br />

Experiment:Alternator,164<br />

Experiment:Ammeterusage,35<br />

Experiment:Audiodetector,155<br />

Experiment:Audiooscillator,274<br />

Experiment:Basicgatefunction,333<br />

Experiment:BJTswitch,230<br />

Experiment:Bridgerectifier,218<br />

Experiment:Capacitorcharginganddischarging,138<br />

Experiment:Center-taprectifier,213<br />

Experiment:ClassBaudioamplifier,321<br />

Experiment:Common-emitteramplifier,246<br />

Experiment:Commutatingdiode,203<br />

Experiment:Currentdivider,78<br />

Experiment:Currentmirror,255<br />

Experiment:Differentialamplifier,266<br />

Experiment:Electromagneticfieldsensor,AC,<br />

160<br />

Experiment:Electromagneticinduction,57<br />

Experiment:Electromagnetism,55<br />

Experiment:Electrostaticfieldsensor,AC,162<br />

Experiment:Half-waverectifier,205<br />

Experiment:High-impedancevoltmeter,301<br />

Experiment:Inductionmotor,170,174<br />

Experiment:Integrator,305<br />

Experiment:JFETcurrentregulator,261<br />

Experiment:Keyboardassignalgenerator,183<br />

Experiment:LEDsequencer,347<br />

Experiment:Multi-stageamplifier,251<br />

Experiment:Multimeter,112<br />

Experiment: NANDgateS-Renabledlatch,<br />

341<br />

Experiment:NANDgateS-Rflip-flop,343<br />

Experiment:Noninvertingamplifier,298<br />

Experiment:Nonlinearresistance,45<br />

Experiment:NORgateS-Rlatch,337<br />

Experiment:Ohm’sLaw,42<br />

Experiment:Ohmmeterusage,21<br />

Experiment:Oscilloscope,PC,186<br />

Experiment:Parallelbatteries,63<br />

Experiment:Phaseshift,177<br />

Experiment:Potatobattery,136<br />

Experiment:Potentiometerasrheostat,93<br />

Experiment:Potentiometerasvoltagedivider,<br />

87<br />

Experiment:Potentiometricvoltmeter,122<br />

Experiment:Powerdissipation,48<br />

Experiment:Precisionpotentiometer,99<br />

Experiment:Precisionvoltagefollower,294<br />

Experiment:Pulsed-lightsensor,238<br />

Experiment:PWMpowercontroller,317<br />

Experiment:Rate-of-changeindicator,142<br />

Experiment:Rectifier/filter,221<br />

Experiment:Rheostatrangelimiting,102<br />

Experiment:Seriesbatteries,60<br />

Experiment:Signalcoupling,194<br />

Experiment:Simplecircuit,28<br />

Experiment:Simplecombinationlock,356<br />

Experiment:Simpleop-amp,269<br />

Experiment:Soundcancellation,180<br />

Experiment:Staticelectricitysensor,235<br />

Experiment:Switchincircuit,53<br />

Experiment:Tankcircuit,191<br />

Experiment:Thermoelectricity,109<br />

Experiment:Transformer,homemade,151<br />

Experiment:Vacuumtubeaudioamplifier,277<br />

Experiment:Variableinductor,153<br />

Experiment:Voltageaverager,131<br />

Experiment:Voltagecomparator,291<br />

Experiment:Voltagedetector,sensitive,117<br />

Experiment:Voltagedivider,67<br />

Experiment:Voltagefollower,241<br />

Experiment:Voltageregulator,227<br />

Experiment:Voltmeterusage,15<br />

Experiment:Waveformanalysis,189


INDEX 415<br />

Feedback,290,295<br />

Feedback,negative,248<br />

Fieldwinding,alternator,164<br />

Filter,223<br />

Filterchoke,225<br />

Floatinginput,defined,335,353<br />

Frequency,185<br />

Frequencydomain,190<br />

Full-waverectification,214<br />

Functiongenerator,184<br />

Fundamentalfrequency,190<br />

Fuse,37<br />

Fuse,slow-blow,147<br />

Generator,19,164<br />

Generator,ACsignal,184<br />

Half-waverectification,206<br />

Harmonics,185<br />

Hazard,electricalshock,26<br />

Headphone,117<br />

Heatsink,223<br />

Hysteresis,338<br />

I,symbolforcurrent,44<br />

IC,202,289,331<br />

Illegalstate,338<br />

Impedancematching,120,158<br />

Impedance,amplifier,244<br />

Impedance,definition,120,158<br />

Induction,electromagnetic,57<br />

Inductivekickback—hyperpage,56,120,158<br />

Integratedcircuit,202,289,331<br />

Integration,calculus,306<br />

Interactiveadjustment,101<br />

Invalidstate,338<br />

Invertingamplifier,247,299<br />

Joule’sLaw,51<br />

Jumperwire,19<br />

KCL,84<br />

Kirchhoff’sCurrentLaw,84<br />

Kirchhoff’sVoltageLaw,70<br />

KVL,70<br />

Latch-up,304<br />

Latchedstate,338<br />

LED,18<br />

Light-EmittingDiode,18<br />

Lineartaperpotentiometer,87,117,155<br />

Magnetwire,55,151<br />

MaximumPowerTransferTheorem,120,158<br />

Megger,128<br />

Metermovement,112<br />

Meteroverrange,18<br />

Metricprefix,25,38<br />

Monostablemultivibrator,354<br />

Motor,induction,168<br />

Motor,synchronous,168<br />

Movement,meter,112<br />

Multimeter,16<br />

Multivibrator,275,312<br />

Multivibrator,monostable,354<br />

Negativefeedback,248<br />

Noninvertingamplifier,299<br />

Nulldetector,124<br />

Null-balancevoltmeter,124<br />

Ohm,22<br />

Ohm’sLaw,44<br />

Ohm’sLaw,ACversion,178<br />

Op-amp,267,270<br />

Operationalamplifier,252,267,270,290<br />

Operationalamplifier,programmable,273<br />

Oscilloscope,187<br />

Oscilloscopecoupling,196,210<br />

Overrange,meter,18<br />

Pair,differential,267,270<br />

Parallel,64,105<br />

Permeability,154<br />

Phaseshift,178<br />

Photocell,27<br />

Polarity,19,31<br />

Potentiometer,87<br />

Potentiometerasrheostat,94<br />

Potentiometer,linearvs.audiotaper,87<br />

Potentiometricvoltmeter,124<br />

Powersupply,145<br />

Power,definition,51


416 INDEX<br />

Programmableop-amp,273<br />

Pulldownresistor,352<br />

Pulse-widthmodulation,319<br />

PWMpowercontrol,319<br />

Q,inductorqualityfactor—hyperpage,192<br />

R,symbolforresistance,44<br />

Racecondition,339<br />

Railvoltage,296<br />

Rectification,full-wave,214<br />

Rectification,half-wave,206<br />

Rectifyingdiode,26<br />

Regulator,current,257<br />

Reluctance,magnetic,152<br />

Resetstate,338<br />

Resistance,definition,22<br />

Resistorcolorcode,24<br />

Resistor,pulldown,352<br />

Resistor,shunt,243<br />

Resonance,192<br />

Resonantfrequency,192<br />

Rheostat,94<br />

Ring-lugterminal,165<br />

Ripplevoltage,208,223<br />

Schmitttrigger,366<br />

Seebeckeffect,110<br />

Semiconductor,202<br />

Series,61,104<br />

Series-parallel,66<br />

Setstate,338<br />

Shielding,161,163<br />

Shockhazard,26<br />

Shortcircuit,32<br />

Shuntresistor,243<br />

Signalgenerator,184<br />

Simulation,computer,76<br />

Slipring,alternator,165<br />

Soldering,148<br />

Spancalibration,105<br />

SPICE,76<br />

Splitphase,219<br />

Statorwinding,alternator,164<br />

Strip,terminal,34<br />

Switch,53<br />

Switchdebouncing,354<br />

Tankcircuit,192<br />

Terminalstrip,34<br />

Terminal,ringlug,165<br />

Thermalrunaway,259,263<br />

Thermocouple,110<br />

Timeconstant,140<br />

Timedomain,190<br />

Transformer,117,145<br />

Transistor,96<br />

Transistor,junctionfield-effect,236<br />

Unit,ampere,36<br />

Unit,ohm,22<br />

Unit,volt,18<br />

Unit,watt,51<br />

Volt,18<br />

Voltagedivider,70<br />

Voltagefollower,242,270,295<br />

Voltage,common-mode,267<br />

Voltage,definition,18<br />

Voltage,polarity,19,31<br />

Voltage,ripple,208,223<br />

Watt,51<br />

Wire,magnet,55<br />

Z,symbolforimpedance,120,158<br />

Zerocalibration,105


INDEX 417<br />

.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!