14.12.2012 Views

Impacts of Ocean Currents and Waves on the Wind Stress ... - hycom

Impacts of Ocean Currents and Waves on the Wind Stress ... - hycom

Impacts of Ocean Currents and Waves on the Wind Stress ... - hycom

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Ocean</str<strong>on</strong>g> <str<strong>on</strong>g>Currents</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Waves</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong><br />

<strong>Wind</strong> <strong>Stress</strong> Drag Coefficient: Relevance to HYCOM<br />

By<br />

BIROL KARA AND JOE METZGER<br />

Naval Research Laboratory (NRL)<br />

Stennis Space Center<br />

MARK BOURASSA<br />

Center for <str<strong>on</strong>g>Ocean</str<strong>on</strong>g>–Atmospheric Predicti<strong>on</strong> Studies (COAPS)<br />

Florida State University


INTRODUCTION<br />

Surface ocean currents <str<strong>on</strong>g>and</str<strong>on</strong>g> waves influence <strong>the</strong><br />

wind stress drag coefficient as shown in <strong>the</strong> literature.<br />

• <str<strong>on</strong>g>Ocean</str<strong>on</strong>g> models have current speeds but typically <strong>the</strong>y<br />

do not include wave informati<strong>on</strong><br />

• <strong>Wind</strong> stress formulati<strong>on</strong> for input to HYCOM excludes<br />

both current <str<strong>on</strong>g>and</str<strong>on</strong>g> wave effects.<br />

We would like to answer two questi<strong>on</strong>s:<br />

(1) What is <strong>the</strong> impact <str<strong>on</strong>g>of</str<strong>on</strong>g> currents <str<strong>on</strong>g>and</str<strong>on</strong>g> waves <strong>on</strong> <strong>the</strong> drag?<br />

(2) Are <strong>the</strong>se effects negligible over <strong>the</strong> global ocean?


WIND STRESS FORMULATION<br />

• <strong>Wind</strong> stress (τ ) is parameterized as<br />

τ = ρa CD V 2<br />

• Thus, τ depends <strong>on</strong><br />

o (1) density <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> air: ρa<br />

o (2) drag coefficient: CD<br />

o (3) squared wind speed V 2<br />

• ρa <str<strong>on</strong>g>and</str<strong>on</strong>g> V are well-known but CD is NOT.


• CD depends <strong>on</strong><br />

DRAG COEFFICIENT<br />

o dynamic stability at <strong>the</strong> air–sea interface, i.e.<br />

o air–sea temperature difference, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

o relative humidity at <strong>the</strong> air–sea interface<br />

• HYCOM includes preceding effects (full stability)<br />

• CD also depends <strong>on</strong> <strong>the</strong> sea state<br />

sea surface current speed<br />

ocean wave speed<br />

Our focus is <strong>on</strong> <strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> sea state!


v<br />

0.9<br />

DRAG COEFFICIENT <strong>on</strong> 1 Aug 2005 (00Z)<br />

1.0<br />

• CD × 10 3 is<br />

1.1<br />

180W 90W 0 90E<br />

1.2<br />

1.3<br />

1.4<br />

1.5<br />

1.6<br />

1.7<br />

60N<br />

60S<br />

v<br />

30N<br />

Eq<br />

30S<br />

o based <strong>on</strong> polynomial equati<strong>on</strong>s (Kara et al. 2005),<br />

o based <strong>on</strong> <strong>the</strong> COARE (v3.0) algorithm, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

o formulated using air–sea stability.<br />

NOTE: <str<strong>on</strong>g>Currents</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> wave speeds are NOT included in CD.


METHODOLOGY<br />

• We would like vector averages <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

�V − �<br />

VC − �<br />

VW<br />

• Drop vector notati<strong>on</strong> for simplicity<br />

o <strong>Wind</strong> speed at 10 m: V<br />

o Surface current speed: VC<br />

o Primary wave speed: VW<br />

• Use z<strong>on</strong>al <str<strong>on</strong>g>and</str<strong>on</strong>g> meridi<strong>on</strong>al comp<strong>on</strong>ents for V, VC <str<strong>on</strong>g>and</str<strong>on</strong>g> VW


• Data sources:<br />

o V from 1 ◦ NOGAPS<br />

GLOBAL DATA<br />

o VC from 1/12 ◦ HYCOM<br />

o VW from 1 ◦ WW3 model<br />

• NOGAPS winds are used because<br />

o (1) its resoluti<strong>on</strong> is c<strong>on</strong>sistent with WW3, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

o (2) it provides 3 hourly data (important for stability)<br />

Note: We apply 1 ◦ binning to VW for c<strong>on</strong>sistency.<br />

NOGAPS: Navy Operati<strong>on</strong>al Global Atmospheric Predicti<strong>on</strong> System<br />

HYCOM: HYbrid Coordinate <str<strong>on</strong>g>Ocean</str<strong>on</strong>g> Model<br />

WW3: Wave Watch 3, a third generati<strong>on</strong> wave model


SIGNIFICANT WAVE HEIGHT FROM WW3<br />

><br />

6<br />

(a) 1 Aug 2005 (00Z)<br />

(b) Aug 2005 Mean<br />

4<br />

2<br />

0<br />

(m)<br />

These are needed for wave speed calculati<strong>on</strong>.


CALCULATION OF WAVE SPEED<br />

V − VC − VW<br />

• V <str<strong>on</strong>g>and</str<strong>on</strong>g> VC are directly obtained (NOGAPS <str<strong>on</strong>g>and</str<strong>on</strong>g> HYCOM)<br />

• However, VW has to be calculated (WW3)<br />

• VW is calculated following Bourassa (2006)<br />

VW = f Vorb<br />

Vorb = 3.14 H/T<br />

f is c<strong>on</strong>stant (0.8), <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Vorb is <strong>the</strong> orbital velocity<br />

significant wave height (H)<br />

dominant wave period (T )


VW (m s −1 )<br />

1.6<br />

1.2<br />

0.8<br />

0.4<br />

0<br />

> VC (m s −1 )<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

> V (m s −1 )<br />

16<br />

12<br />

8<br />

4<br />

0<br />

(a) 1 Aug 2005 (00Z) (b) Aug 2005 Mean<br />

FIELDS USED FOR CALCULATIONS


V − VW<br />

V − VW − VC<br />

(%)<br />

PERCENTAGE CHANGES (1 Aug 2005)<br />

V − VC (a) Daily wind change: ∆V (b) Daily drag change: ∆CD<br />

< -20 -15 -10 -5 0 5 10 15 20 < < -8 -6 -4 -2 0 2 4 6 8 <<br />

VC/VW/VC+VW reduces V by 1.0%/5.4%/6.4% globally<br />

VC/VW/VC+VW reduces CD by 0.3%/1.7%/1.9% globally


V − VW<br />

V − VW − VC<br />

(%)<br />

PERCENTAGE CHANGES (Aug 2005 mean)<br />

V − VC (a) M<strong>on</strong>thly wind change: ∆V (b) M<strong>on</strong>thly drag change: ∆CD<br />

< -20 -15 -10 -5 0 5 10 15 20 < < -8 -6 -4 -2 0 2 4 6 8 <<br />

VC/VW/VC+VW reduces V by 1.4%/5.5%/6.9% globally<br />

VC/VW/VC+VW reduces CD by 0.4%/1.7%/2.1% globally


CONCLUSION<br />

• Spatial variability in CD DOES exists<br />

o HYCOM already includes this variability<br />

o <strong>Wind</strong> speed, air–sea temp, relative humidity<br />

• CD should also include current <str<strong>on</strong>g>and</str<strong>on</strong>g> wave effects<br />

o Current speed: available at each model time step<br />

o Wave speed: what do we do about that?<br />

o a statistical relati<strong>on</strong>ship may be developed<br />

• Globally, combined outcome <str<strong>on</strong>g>of</str<strong>on</strong>g> wind <str<strong>on</strong>g>and</str<strong>on</strong>g> wave speed:<br />

o Reducti<strong>on</strong> in CD by 2% <strong>on</strong>ly<br />

o However, <strong>on</strong>e must note daily spatial variability<br />

o western boundary currents (current speed)<br />

o high latitudes (wave speed)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!