14.12.2012 Views

Aldrichimica Acta - Sigma-Aldrich

Aldrichimica Acta - Sigma-Aldrich

Aldrichimica Acta - Sigma-Aldrich

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

80<br />

VOL. 42, NO. 3 • 2009 Synthesis and Applications of Diorganozinc Reagents: Beyond Diethylzinc<br />

(a)<br />

(b)<br />

R 2<br />

R 1 CO 2R 3<br />

Ph<br />

O<br />

O<br />

N<br />

Ph<br />

O<br />

1. (R4 ) 2Zn, CuI or<br />

CuCN (20 mol %)<br />

PhMe, 0 °C to rt<br />

3–15 h<br />

2. H + or E +<br />

R1 CO2R3 R4 R<br />

E<br />

2<br />

61–85%<br />

dr >83:17<br />

R 1 = H, Me, Ph, PhMe 2Si; R 2 = H, n-C 6H 13<br />

R 3 = Me, Et; R 4 = Me, Et, i-Pr, Ph, 2-MeC 6H 4, H 2C=CH<br />

O<br />

Ph<br />

1. Et2Zn (4 equiv)<br />

CuBr•SMe2 (20 mol %)<br />

MgBr2•OEt2 PhMe, –78<br />

Ph<br />

Et<br />

N<br />

O<br />

E<br />

dr >95:5<br />

O<br />

E = H (82%), I (66%), allyl (65%)<br />

oC 2. H + or E +<br />

Scheme 15. Copper-Catalyzed, directed Carbozincation of<br />

Cyclopropene derivatives with diorganozinc reagents. (Ref. 94)<br />

OMe<br />

N<br />

ClCO 2Bn<br />

(4 equiv)<br />

THF, 0 °C<br />

0.5 h<br />

BnO<br />

SPh<br />

O<br />

O<br />

SPh<br />

P N<br />

OMe<br />

N<br />

Cl<br />

O<br />

–<br />

+<br />

1. R2Zn (2.5 equiv)<br />

16 (10 mol %)<br />

Cu(OTf) 2 (5 mol %)<br />

THF, –78 °C, 16 h<br />

2. HCl(aq)<br />

(16)<br />

4. Conclusions and Outlook<br />

Diorganozinc reagents are versatile nucleophiles that accommodate<br />

either Lewis base or metal catalysis in enantioselective additions<br />

to electrophiles. They also display a very high functional-group<br />

tolerance. While a large number of diorganozinc reagents are now<br />

readily available via simple procedures, and despite tremendous<br />

improvements in accessing functionalized diorganozincs, as<br />

pioneered by Knochel, Seebach, Bolm, and others, there is still a<br />

strong need to increase their availability, which should significantly<br />

enhance their usefulness in synthesis.<br />

It is worth mentioning that diorganozinc reagents have several<br />

other applications in organic synthesis, which have not been covered<br />

in this review. These include the Negishi coupling, 96 oxidation to<br />

alcohols, 97 addition to anhydrides 98 or acylation, 99 cyclopropanation<br />

or epoxide formation (with carbenoids), 100 and the allylzincation of<br />

alkenylmetals. 101<br />

5. Acknowledgements<br />

This work was supported by NSERC (Canada), the Canada Research<br />

Chairs Program, the Canada Foundation for Innovation and the<br />

University of Montréal. Alexandre Côté is grateful to NSERC (ES<br />

D) for a postgraduate fellowship.<br />

6. References and Notes<br />

(1) For a recent publication on the properties, synthesis, and<br />

applications of organozinc reagents, see The Chemistry of<br />

Organozinc Compounds; Rappoport, Z., Marek, I., Eds.; The<br />

R<br />

Et<br />

n-Pr<br />

i-Pr<br />

n-Bu<br />

Ph(CH2) 2<br />

O<br />

N<br />

BnO O<br />

Yield<br />

69%<br />

65%<br />

65%<br />

63%<br />

50%<br />

ee<br />

R<br />

95%<br />

88%<br />

56%<br />

93%<br />

97%<br />

Scheme 16. addition of dialkylzinc reagents to N-acylpyridinium<br />

salts. (Ref. 95)<br />

Chemistry of Functional Groups Series; Rappoport, Z., Series<br />

Ed.; Wiley: Hoboken, NJ, 2006; Volumes 1 and 2.<br />

(2) (a) Boezio, A. A.; Pytkowicz, J.; Côté, A.; Charette, A. B. J. Am.<br />

Chem. Soc. 2003, 125, 14260. (b) Desrosiers, J.-N.; Côté, A.;<br />

Boezio, A. A.; Charette, A. B. Org. Synth. 2006, 83, 5.<br />

(3) For reviews on the synthesis of diorganozincs, see: (a) Knochel,<br />

P.; Singer, R. D. Chem. Rev. 1993, 93, 2117. (b) Knochel, P.;<br />

Leuser, H.; Gong, L.-Z.; Perrone, S.; Kneisel, F. F. Functionalized<br />

Organic Compounds. In The Chemistry of Organozinc<br />

Compounds; Rappoport, Z., Marek, I., Eds.; The Chemistry of<br />

Functional Groups Series; Rappoport, Z., Series Ed.; Wiley:<br />

Hoboken, NJ, 2006; Part 1, Chapter 8, p 287. (c) Knochel, P.;<br />

Leuser, H.; Gong, L.-Z.; Perrone, S.; Kneisel, F. F. Polyfunctional<br />

Zinc Organometallics for Organic Synthesis. In Handbook of<br />

Functionalized Organometallics: Applications in Synthesis;<br />

Knochel, P., Ed.; Wiley-VCH: Weinheim, 2005; Vol. 1, Chapter<br />

7, p 251. (d) Knochel, P.; Millot, N.; Rodriguez, A. L.; Tucker, C.<br />

E. Org. React. (NY) 2001, 58, 417. (e) Boudier, A.; Bromm, L. O.;<br />

Lotz, M.; Knochel, P. Angew. Chem., Int. Ed. 2000, 39, 4414. (f)<br />

Knochel, P.; Almena Perea, J. J.; Jones, P. Tetrahedron 1998, 54,<br />

8275. (g) Knochel, P.; Jones, P.; Langer, F. Organozinc Chemistry:<br />

An Overview and General Experimental Guidelines. In Organozinc<br />

Reagents: A Practical Approach; Knochel, P., Jones, P., Eds.; The<br />

Practical Approach in Chemistry Series; Harwood, L. M., Moody,<br />

C. J., Series Eds.; Oxford University Press: Oxford, 1999, p 1. (h)<br />

Knochel, P. Product Class 1: Organometallic Complexes of Zinc.<br />

In Compounds of Groups 12 and 11 (Zn, Cd, Hg, Cu, Ag, Au);<br />

O’Neil, I., Ed.; Science of Synthesis: Houben-Weyl Methods of<br />

Molecular Transformations Series; Thieme: Stuttgart, 2003; Vol.<br />

3, p 5.<br />

(4) (a) Côté, A. Additions catalytiques énantiosélectives de réactifs<br />

diorganozinciques utilisant un ligand diphosphine monoxydé. Ph.D.<br />

Thesis, University of Montréal, Montréal, Canada, September<br />

2007. (b) Charette, A. B.; Côté, A. Methods for Preparing<br />

Diorganozinc Compounds. World Patent WO/2008/134890. (c)<br />

Charette, A. B.; Côté, A.; Lemire, A. Methods for Preparing<br />

Diorganozinc Compounds. U.S. Patent Appl. 12/591,108, Nov. 9,<br />

2009.<br />

(5) For other examples, see: (a) Corey, E. J.; Hannon, F. J. Tetrahedron<br />

Lett. 1987, 28, 5237. (b) Bolm, C.; Rudolph, J. J. Am. Chem. Soc.<br />

2002, 124, 14850. (c) Jeon, S.-J.; Li, H.; García, C.; LaRochelle, L.<br />

K.; Walsh, P. J. J. Org. Chem. 2005, 70, 448. (d) Kim, J. G.; Walsh,<br />

P. J. Angew. Chem., Int. Ed. 2006, 45, 4175. (e) Salvi, L.; Kim, J.<br />

G.; Walsh, P. J. J. Am. Chem. Soc. 2009, 131, 12483.<br />

(6) (a) Von Frankland, E. Justus Liebigs Ann. Chem. (Eur. J. Org.<br />

Chem.) 1849, 71, 171. (b) Freund, A. Justus Liebigs Ann. Chem.<br />

(Eur. J. Org. Chem.) 1861, 118, 1. (c) Rieth, R.; Beilstein, F. K.<br />

Justus Liebigs Ann. Chem. (Eur. J. Org. Chem.) 1863, 126, 241. (d)<br />

Pawlow, D. Justus Liebigs Ann. Chem. (Eur. J. Org. Chem.) 1877,<br />

188, 104. (e) Wagner, G.; Saytzeff, A. Justus Liebigs Ann. Chem.<br />

(Eur. J. Org. Chem.) 1875, 175, 351.<br />

(7) (a) Schlenk, W.; Schlenk, W., Jr. Ber. Dtsch. Chem. Ges. B (Eur.<br />

J. Inorg. Chem.) 1929, 62, 920. (b) Schlenk, W., Jr. Ber. Dtsch.<br />

Chem. Ges. B (Eur. J. Inorg. Chem.) 1931, 64, 736. (c) Noller, C.<br />

R.; White, W. R. J. Am. Chem. Soc. 1937, 59, 1354.<br />

(8) For the synthesis of diethyl-, dipropyl-, dibutyl-, and diisoamylzinc,<br />

see: (a) Noller, C. R. J. Am. Chem. Soc. 1929, 51, 594. (b) Noller,<br />

C. R. Org. Synth. 1932, 12, 86 (Organic Syntheses; Blatt, A. H.,<br />

Ed.; Wiley: New York, 1943; Collect. Vol. II, p 184). (c) Eremeev,<br />

I. V.; Danov, S. M.; Sakhipov, V. R.; Skudin, A. G. Russ. J. Appl.<br />

Chem. 2001, 74, 1410. (d) For the synthesis of dipentyl-, dihexyl-,<br />

and diheptylzinc, see Hatch, L. F.; Sutherland, G.; Ross, W. J. J.<br />

Org. Chem. 1949, 14, 1130. (e) For the synthesis of diisopropyl-

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!