28.03.2018 Views

Chronostratigraphy in karst records from the Epipaleolithic to the Mid/Early Neolithic (c. 13.0e6.0 cal ka BP) in the Catalan Coastal Ranges of NE Iberia: environmental changes, sedimentary processes and human activity

Younger Dryas Middle and Early Holocene Rapid climate changes Geoarchaeology Micromorphology Stabling areas Karstic cave NE Iberian peninsula Cova de Can Sadurní Cova de la Guineu

Younger Dryas
Middle and Early Holocene
Rapid climate changes
Geoarchaeology
Micromorphology
Stabling areas
Karstic cave
NE Iberian peninsula
Cova de Can Sadurní
Cova de la Guineu

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Quaternary Science Reviews xxx (2017) 1e21<br />

Contents lists available at ScienceDirect<br />

Quaternary Science Reviews<br />

journal homepage: www.elsevier.com/locate/quascirev<br />

<strong>Chronostratigraphy</strong> <strong>in</strong> <strong><strong>ka</strong>rst</strong> <strong>records</strong> <strong>from</strong> <strong>the</strong> <strong>Epipaleolithic</strong> <strong>to</strong> <strong>the</strong><br />

<strong>Mid</strong>/<strong>Early</strong> <strong>Neolithic</strong> (c. <strong>13.0e6.0</strong> <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>) <strong>in</strong> <strong>the</strong> <strong>Catalan</strong> <strong>Coastal</strong><br />

<strong>Ranges</strong> <strong>of</strong> <strong>NE</strong> <strong>Iberia</strong>: <strong>environmental</strong> <strong>changes</strong>, <strong>sedimentary</strong> <strong>processes</strong><br />

<strong>and</strong> <strong>human</strong> <strong>activity</strong><br />

M. Merce Bergada a, * , Josep M. Cervello a , Manel Edo b , Artur Cebria a , F. Xavier Oms a ,<br />

Pablo Martínez b , Ferran An<strong>to</strong>lín b, c , Juan Ignacio Morales a , Mireia Pedro a<br />

a SERP, Departament d’His<strong>to</strong>ria i Arqueologia, Universitat de Barcelona, C/ Montalegre, 6-8, 08001 Barcelona, Catalonia, Spa<strong>in</strong><br />

b CIPAG. Col·lectiu per la Investigacio de la Prehis<strong>to</strong>ria i l’Arqueologia del Garraf-Ordal, Begues, Barcelona, Catalonia, Spa<strong>in</strong><br />

c IPAS. Integrative Prehis<strong>to</strong>ry <strong>and</strong> Archaeologi<strong>cal</strong> Science, University <strong>of</strong> Basel, Basel, Switzerl<strong>and</strong><br />

article<br />

<strong>in</strong>fo<br />

abstract<br />

Article his<strong>to</strong>ry:<br />

Received 29 March 2017<br />

Received <strong>in</strong> revised form<br />

2 August 2017<br />

Accepted 18 September 2017<br />

Available onl<strong>in</strong>e xxx<br />

Keywords:<br />

Younger Dryas<br />

<strong>Mid</strong>dle <strong>and</strong> <strong>Early</strong> Holocene<br />

Rapid climate <strong>changes</strong><br />

Geoarchaeology<br />

Micromorphology<br />

Stabl<strong>in</strong>g areas<br />

Karstic cave<br />

<strong>NE</strong> <strong>Iberia</strong>n pen<strong>in</strong>sula<br />

Cova de Can Sadurní<br />

Cova de la Gu<strong>in</strong>eu<br />

The stratigraphic, <strong>sedimentary</strong> <strong>and</strong> palaeo<strong>environmental</strong> features reflected <strong>in</strong> cavities <strong>in</strong> <strong>the</strong> <strong>Catalan</strong><br />

<strong>Coastal</strong> <strong>Ranges</strong> <strong>of</strong> <strong>NE</strong> <strong>Iberia</strong> (Can Sadurní <strong>and</strong> Gu<strong>in</strong>eu caves) characterize <strong>the</strong> periods <strong>of</strong> pronounced<br />

climatic <strong>and</strong> <strong>human</strong> complexity that occurred c. <strong>13.0e6.0</strong> <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>. This <strong>in</strong>cludes <strong>the</strong> stages <strong>of</strong> <strong>the</strong><br />

Younger Dryas <strong>and</strong> <strong>Mid</strong>/<strong>Early</strong> Holocene, <strong>the</strong> latter be<strong>in</strong>g one <strong>of</strong> <strong>the</strong> periods <strong>of</strong> so-<strong>cal</strong>led Rapid Climatic<br />

Changes (RCCs). These caves, like o<strong>the</strong>rs <strong>in</strong> Mediterranean contexts, are <strong>the</strong> result <strong>of</strong> an old duct orig<strong>in</strong>at<strong>in</strong>g<br />

<strong>in</strong> <strong>the</strong> saturated zone <strong>of</strong> <strong>the</strong> <strong><strong>ka</strong>rst</strong> system <strong>and</strong> open <strong>to</strong> <strong>the</strong> outside; record<strong>in</strong>g a succession <strong>of</strong><br />

different detrital <strong>and</strong> anthropic episodes <strong>of</strong> <strong>the</strong> <strong>Epipaleolithic</strong>, Mesolithic <strong>and</strong> <strong>Neolithic</strong> communities.<br />

From this study it can be seen that paleoclimatic events do not always present clear signals <strong>in</strong> <strong>the</strong> <strong><strong>ka</strong>rst</strong><br />

<strong>records</strong>, especially c. 12.7e7.4 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>, correspond<strong>in</strong>g <strong>to</strong> <strong>the</strong> <strong>Epipaleolithic</strong> <strong>and</strong> Mesolithic. It is characterized<br />

by a stratigraphic discont<strong>in</strong>uity <strong>in</strong> which <strong>the</strong>re are phases with predom<strong>in</strong>antly detrital sedimentation<br />

alternat<strong>in</strong>g with hiatus <strong>in</strong>tervals. Detrital sedimentation formed by f<strong>in</strong>e material colluvium<br />

with gravitational movements or solifluction <strong>processes</strong> <strong>in</strong> fresh <strong>and</strong> humid conditions. It appears <strong>in</strong> <strong>the</strong><br />

follow<strong>in</strong>g chronologi<strong>cal</strong> <strong>in</strong>tervals: 12.7e12.2 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>, 11.5/11.1e10.7/10.4 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong> <strong>and</strong> 8.2e8.0 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong><br />

(less humid). Hiatus phases are represented <strong>in</strong> <strong>the</strong> rest <strong>of</strong> <strong>the</strong> sequence up <strong>to</strong> c. 7.4 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>. From <strong>the</strong><br />

<strong>sedimentary</strong> po<strong>in</strong>t <strong>of</strong> view <strong>the</strong>se stages <strong>of</strong> hiatus are <strong>in</strong>dicative <strong>of</strong> phases <strong>of</strong> stability or lack <strong>of</strong> episodes<br />

with seasonal contrasts; a fact that would cause <strong>in</strong>terruptions <strong>to</strong> detrital deposition <strong>in</strong> <strong>the</strong> <strong>in</strong>terior <strong>of</strong> <strong>the</strong><br />

caves.<br />

In contrast, <strong>in</strong> <strong>the</strong> period c. 7.4 <strong>to</strong> 6.0 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>, attributed <strong>to</strong> <strong>the</strong> <strong>Mid</strong>dle <strong>and</strong> <strong>Early</strong> <strong>Neolithic</strong>, <strong>the</strong>re is a<br />

certa<strong>in</strong> stratigraphic cont<strong>in</strong>uity. From <strong>the</strong> <strong>sedimentary</strong> po<strong>in</strong>t <strong>of</strong> view it is dist<strong>in</strong>guished by a variability <strong>of</strong><br />

<strong>processes</strong> that responds <strong>to</strong> accumulative episodes <strong>of</strong> short duration characteristic <strong>of</strong> morphogenesis <strong>of</strong><br />

<strong>the</strong> slopes <strong>in</strong> an arid Mediterranean environment, identified <strong>in</strong> our <strong>records</strong> as RCCs, (c. 7.4e7.2 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>-<br />

Cardial <strong>Neolithic</strong>; c. 6.8e6.3 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>-<strong>Early</strong> Postcardial <strong>Mid</strong>dle <strong>Neolithic</strong> <strong>and</strong> c. 6.2e5.7 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>- Late<br />

Postcardial <strong>Mid</strong>dle <strong>Neolithic</strong>) alternat<strong>in</strong>g with episodes <strong>of</strong> stability, more humid <strong>and</strong> co<strong>in</strong>cid<strong>in</strong>g with a<br />

better <strong>sedimentary</strong> record <strong>of</strong> <strong>the</strong> pas<strong>to</strong>ral <strong>activity</strong> <strong>in</strong> <strong>the</strong> cavities dur<strong>in</strong>g Epicardial <strong>and</strong> Late Cardial<br />

<strong>Neolithic</strong> (c. 7.1e6.7 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>) <strong>and</strong> Postcardial <strong>Mid</strong>dle <strong>Neolithic</strong> (c. 6.6e5.9 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>). It is dur<strong>in</strong>g this<br />

period that Holocene climate variability has better resolution <strong>in</strong> caves <strong>in</strong> <strong>the</strong> <strong>Catalan</strong> <strong>Coastal</strong> <strong>Ranges</strong> <strong>of</strong> <strong>NE</strong><br />

<strong>Iberia</strong>.<br />

© 2017 Elsevier Ltd. All rights reserved.<br />

* Correspond<strong>in</strong>g author.<br />

E-mail addresses: bergada@ub.edu (M.M. Bergada), jmcervello@gmail.com (J.M. Cervello), cipagmedo@gmail.com (M. Edo), arturcebria@gmail.com (A. Cebria),<br />

xavieroms@gmail.com (F.X. Oms), pablomartrod@gmail.com (P. Martínez), ferran.an<strong>to</strong>l<strong>in</strong>@unibas.ch (F. An<strong>to</strong>lín), jignacio.morales@gmail.com (J.I. Morales), mireiapedro@<br />

gmail.com (M. Pedro).<br />

https://doi.org/10.1016/j.quascirev.2017.09.008<br />

0277-3791/© 2017 Elsevier Ltd. All rights reserved.<br />

Please cite this article <strong>in</strong> press as: Bergada, M.M., et al., <strong>Chronostratigraphy</strong> <strong>in</strong> <strong><strong>ka</strong>rst</strong> <strong>records</strong> <strong>from</strong> <strong>the</strong> <strong>Epipaleolithic</strong> <strong>to</strong> <strong>the</strong> <strong>Mid</strong>/<strong>Early</strong> <strong>Neolithic</strong> (c.<br />

<strong>13.0e6.0</strong> <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>) <strong>in</strong> <strong>the</strong> <strong>Catalan</strong> <strong>Coastal</strong> <strong>Ranges</strong> <strong>of</strong> <strong>NE</strong> <strong>Iberia</strong>: <strong>environmental</strong> <strong>changes</strong>, <strong>sedimentary</strong> <strong>processes</strong> <strong>and</strong> <strong>human</strong> <strong>activity</strong>, Quaternary<br />

Science Reviews (2017), https://doi.org/10.1016/j.quascirev.2017.09.008


2<br />

M.M. Bergada et al. / Quaternary Science Reviews xxx (2017) 1e21<br />

1. Introduction<br />

In this paper we characterize <strong>the</strong> stratigraphic, <strong>sedimentary</strong> <strong>and</strong><br />

palaeo<strong>environmental</strong> features that are reflected <strong>in</strong> <strong><strong>ka</strong>rst</strong> contexts <strong>in</strong><br />

<strong>the</strong> <strong>Catalan</strong> <strong>Coastal</strong> <strong>Ranges</strong> <strong>of</strong> <strong>NE</strong> <strong>Iberia</strong>, <strong>from</strong> one <strong>of</strong> <strong>the</strong> periods<br />

with <strong>the</strong> greatest climatic complexity located between c.<br />

<strong>13.0e6.0</strong> <strong>cal</strong>. Ka <strong>BP</strong> <strong>and</strong> <strong>of</strong> great importance for <strong>human</strong> occupations.<br />

These are <strong>the</strong> stages <strong>of</strong> <strong>the</strong> Younger Dryas (YD), <strong>Early</strong> Holocene <strong>and</strong><br />

<strong>Mid</strong>dle Holocene (EH <strong>and</strong> MH), with <strong>the</strong> so-<strong>cal</strong>led period <strong>of</strong> Rapid<br />

Climatic Changes (RCCs) developed <strong>in</strong> <strong>the</strong> latter.<br />

The data available <strong>to</strong> date on <strong>the</strong> chronostratigraphic <strong>and</strong><br />

palaeo<strong>environmental</strong> aspects <strong>of</strong> <strong>the</strong> <strong>Iberia</strong>n Pen<strong>in</strong>sula, <strong>and</strong> especially<br />

its Mediterranean bas<strong>in</strong>, have been obta<strong>in</strong>ed through <strong>in</strong>formation<br />

<strong>from</strong> different proxies <strong>and</strong> reflect a high degree <strong>of</strong><br />

variability. The YD has been widely detected, with <strong>in</strong>ternal variations<br />

<strong>and</strong> some regional diachronism (Cacho et al., 2010). Studies <strong>of</strong><br />

mar<strong>in</strong>e <strong>and</strong> pollen <strong>records</strong> ma<strong>in</strong>ly <strong>in</strong>dicate conditions <strong>of</strong> relative<br />

aridity <strong>and</strong> also <strong>of</strong> cold (Burjachs et al., 2016; Cacho et al., 2001;<br />

García-Ruiz et al., 2016; Gonzalez-Samperiz et al., 2006). Recently,<br />

high resolution analyzes <strong>of</strong> new speleo<strong>the</strong>m <strong>records</strong> <strong>in</strong> <strong>the</strong> north <strong>of</strong><br />

<strong>the</strong> pen<strong>in</strong>sula have documented a double stage for <strong>the</strong> YD with an<br />

earlier arid phase followed by a relatively wetter period (García-<br />

Ruiz et al., 2016).<br />

From <strong>the</strong> cultural po<strong>in</strong>t <strong>of</strong> view, <strong>the</strong> regional sequence <strong>of</strong> this<br />

phase corresponds <strong>to</strong> <strong>the</strong> development <strong>of</strong> <strong>the</strong> last phases <strong>of</strong> <strong>the</strong><br />

Magdalenian <strong>cal</strong>led Epimagdalenian or <strong>Epipaleolithic</strong> (Aura et al.,<br />

2011). This phase is characterized by a decrease <strong>in</strong> <strong>the</strong> bone <strong>in</strong>dustry<br />

<strong>and</strong> a general predom<strong>in</strong>ance <strong>of</strong> backed po<strong>in</strong>t lithic projectiles,<br />

although geometric elements start <strong>to</strong> appear <strong>in</strong> some<br />

sequences such as Cova del Parco <strong>in</strong> <strong>the</strong> north-east pen<strong>in</strong>sular<br />

(García-Argüelles et al., 2013; Petit et al., 2009).<br />

With regard <strong>to</strong> <strong>the</strong> Holocene, <strong>the</strong> climate change pattern <strong>of</strong> <strong>the</strong><br />

Mediterranean region, with strong spatial <strong>and</strong> temporal variability,<br />

appears <strong>to</strong> be l<strong>in</strong>ked ma<strong>in</strong>ly <strong>to</strong> <strong>the</strong> availability <strong>of</strong> water <strong>from</strong> <strong>the</strong><br />

hydrologi<strong>cal</strong> system (Davis et al., 2003; Ferrer, 2015).<br />

Mar<strong>in</strong>e <strong>records</strong> <strong>in</strong>dicate, sea surface temperature maximums <strong>in</strong><br />

this phase <strong>of</strong> <strong>the</strong> <strong>Early</strong> Holocene (10.0e9.0 <strong>ka</strong> <strong>BP</strong>) (Cacho et al.,<br />

2001; Martrat et al., 2007). It should also be added that<br />

numerous studies suggest that climatic conditions at <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g<br />

<strong>of</strong> <strong>the</strong> Holocene were significantly more humid than dur<strong>in</strong>g <strong>the</strong><br />

Late Holocene. However, this optimum seems not <strong>to</strong> have been<br />

synchronous throughout <strong>the</strong> <strong>Iberia</strong>n Pen<strong>in</strong>sula. In <strong>the</strong> nor<strong>the</strong>rn<br />

half, <strong>the</strong> wettest period occurred before 8.0 <strong>ka</strong> <strong>BP</strong> (Frigola et al.,<br />

2007; Gonzalez-Samperiz et al., 2006; Morellon et al., 2009)<br />

whereas <strong>in</strong> <strong>the</strong> east <strong>and</strong> south <strong>of</strong> <strong>the</strong> Mediterranean area, <strong>the</strong><br />

conditions were arid <strong>and</strong> dry (Cacho et al., 2001; Carrion et al.,<br />

2010; Jalut et al., 2009). In this zone <strong>the</strong> maximum humidity<br />

occurred at about 8.0 <strong>ka</strong> <strong>cal</strong> <strong>BP</strong> (Carrion et al., 2010; Ferrer, 2015).<br />

From <strong>the</strong> cultural po<strong>in</strong>t <strong>of</strong> view, <strong>the</strong> <strong>Early</strong> Holocene is manifested<br />

by a complex episode <strong>in</strong> technologi<strong>cal</strong> terms: <strong>the</strong> Sauveterrian<br />

style <strong>Epipaleolithic</strong> with triangles <strong>and</strong> segments (García-<br />

Argüelles et al., 2013); <strong>the</strong> appearance <strong>of</strong> stage <strong>cal</strong>led <strong>Early</strong> Mesolithic,<br />

which is a break with <strong>the</strong> previous tradition <strong>of</strong> <strong>in</strong>dustry <strong>of</strong><br />

notches <strong>and</strong> denticulates (Aura et al., 2011); <strong>and</strong> f<strong>in</strong>ally, <strong>the</strong> Late<br />

Mesolithic with geometric microliths (ma<strong>in</strong>ly trapezes with abrupt<br />

re<strong>to</strong>uch) <strong>of</strong> Tardenosian tradition (Burjachs et al., 2016).<br />

The oscillation at <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> <strong>the</strong> <strong>Mid</strong>dle Holocene that has<br />

attracted <strong>the</strong> most <strong>in</strong>terest is <strong>the</strong> so-<strong>cal</strong>led event <strong>of</strong> 8.2, referr<strong>in</strong>g <strong>to</strong><br />

its age (8.2 Ka <strong>BP</strong>) (Alley et al., 1997). The impact, duration <strong>and</strong><br />

characteristics <strong>of</strong> this event have very different geographi<strong>cal</strong> expressions<br />

(Rohl<strong>in</strong>g <strong>and</strong> P€alike, 2005). In <strong>the</strong> context <strong>of</strong> <strong>Iberia</strong>, this<br />

event does not always present a clear signal, <strong>and</strong> <strong>in</strong> most <strong>of</strong> <strong>the</strong><br />

cont<strong>in</strong>ental pollen sequences it is not evident (Cacho et al., 2010).<br />

However, <strong>the</strong>re are some examples <strong>in</strong> different sequences that<br />

show an <strong>in</strong>crease <strong>in</strong> <strong>the</strong> aridity associated with this event, as <strong>in</strong><br />

Laguna Med<strong>in</strong>a <strong>in</strong> <strong>the</strong> south (Reed et al., 2001), <strong>in</strong> <strong>the</strong> playa Lake<br />

Sal<strong>in</strong>es (Burjachs et al., 2016) <strong>in</strong> <strong>the</strong> sou<strong>the</strong>ast or <strong>in</strong> <strong>the</strong> Estanya lake<br />

(Morellon et al., 2009) <strong>in</strong> <strong>the</strong> nor<strong>the</strong>ast. In <strong>the</strong> highest areas <strong>of</strong> <strong>the</strong><br />

Pyrenees it is manifested as an arid <strong>and</strong> also cold event (Gonzalez-<br />

Samperiz et al., 2006).<br />

This c. 8.2 <strong>ka</strong> <strong>BP</strong> event is most clearly identified <strong>in</strong> mar<strong>in</strong>e <strong>records</strong><br />

(Cacho et al., 2010). The reconstructions <strong>of</strong> sea-surface temperatures<br />

<strong>in</strong> Alboran <strong>and</strong> around <strong>the</strong> Balearic Isl<strong>and</strong>s <strong>in</strong>dicate a<br />

cool<strong>in</strong>g <strong>of</strong> about 2 -3 C(Cacho et al., 2001; Frigola et al., 2007). It<br />

should be noted that despite <strong>the</strong> relative scarcity <strong>of</strong> <strong>records</strong> clearly<br />

show<strong>in</strong>g <strong>the</strong> impact <strong>of</strong> <strong>the</strong> 8.2, <strong>the</strong>re is some archaeologi<strong>cal</strong> evidence<br />

<strong>in</strong>dicat<strong>in</strong>g a change <strong>in</strong> <strong>the</strong> distribution <strong>of</strong> prehis<strong>to</strong>ric settlements<br />

or a depopulation co<strong>in</strong>cid<strong>in</strong>g with <strong>the</strong> end<strong>in</strong>g <strong>of</strong> <strong>the</strong><br />

Mesolithic (Berger <strong>and</strong> Guila<strong>in</strong>e, 2009; Cortes Sanchez et al., 2012;<br />

Fern<strong>and</strong>ez <strong>and</strong> Jochim, 2010; Gonzalez-Samperiz et al., 2009;<br />

Morales <strong>and</strong> Oms, 2012).<br />

The <strong>Mid</strong>dle Holocene is characterized by <strong>the</strong> RCCs documented<br />

<strong>in</strong> <strong>the</strong> Nor<strong>the</strong>rn Hemisphere (Alley et al., 1997; Berger et al., 2016;<br />

Combourieu-Nebout et al., 2013; Mayewski et al., 2004) <strong>and</strong> has<br />

been l<strong>in</strong>ked <strong>to</strong> <strong>the</strong> North Atlantic Bond events (Bond et al., 1997,<br />

2001). These episodes have presented controversy with <strong>the</strong> “<strong>the</strong>rmal<br />

maximum” also designated with<strong>in</strong> <strong>the</strong> Atlantic period.<br />

Both <strong>the</strong> palynologi<strong>cal</strong> studies (Jalut et al., 2000; Perez-Obiol<br />

et al., 2011) <strong>and</strong> <strong>the</strong> limnologi<strong>cal</strong> ones (Valero-Garces <strong>and</strong><br />

Moreno, 2011) have shown a tendency <strong>to</strong>wards aridity <strong>in</strong> <strong>the</strong><br />

Mediterranean <strong>Iberia</strong>. Different authors confirm <strong>the</strong> millennial<br />

variability <strong>from</strong> <strong>the</strong> MH reflect<strong>in</strong>g <strong>the</strong> sensitivity <strong>to</strong> <strong>changes</strong> <strong>in</strong> <strong>the</strong><br />

system (Fletcher <strong>and</strong> Zielh<strong>of</strong>er, 2013; Jalut et al., 2000).<br />

From <strong>the</strong> po<strong>in</strong>t <strong>of</strong> view <strong>of</strong> population, it is a transcendental stage<br />

s<strong>in</strong>ce it <strong>in</strong>cludes <strong>the</strong> early stages <strong>of</strong> production (Cardial <strong>Neolithic</strong>,<br />

Epicardial <strong>Neolithic</strong> <strong>and</strong> Postcardial <strong>Mid</strong>dle <strong>Neolithic</strong>) <strong>in</strong> <strong>the</strong> Mediterranean<br />

area dated c. 7.5 <strong>to</strong> 6.0 <strong>ka</strong> <strong>BP</strong>.<br />

In this paper we analyse <strong>in</strong> detail how <strong>the</strong>se palaeo<strong>environmental</strong><br />

variations are reflected <strong>in</strong> <strong>the</strong> studied <strong><strong>ka</strong>rst</strong> contexts.<br />

The <strong>records</strong> we present are <strong>the</strong> Cova de Can Sadurní <strong>and</strong> Cova<br />

de la Gu<strong>in</strong>eu, located <strong>in</strong> <strong>the</strong> <strong>Catalan</strong> <strong>Coastal</strong> <strong>Ranges</strong> <strong>of</strong> <strong>NE</strong> <strong>Iberia</strong><br />

(Fig. 1). They are cavities that, like o<strong>the</strong>rs <strong>in</strong> Mediterranean contexts,<br />

are <strong>the</strong> result <strong>of</strong> an old duct that orig<strong>in</strong>ated <strong>in</strong> <strong>the</strong> saturated<br />

zone <strong>of</strong> <strong>the</strong> <strong><strong>ka</strong>rst</strong>ic system <strong>and</strong> open <strong>to</strong> <strong>the</strong> outside, demonstrat<strong>in</strong>g<br />

<strong>the</strong> succession <strong>of</strong> such episodes <strong>in</strong> detail. It is also <strong>in</strong>tended <strong>to</strong><br />

reflect <strong>the</strong> <strong>in</strong>teraction <strong>of</strong> <strong>human</strong> <strong>activity</strong> <strong>in</strong> <strong>the</strong> environment <strong>in</strong><br />

order <strong>to</strong> contribute <strong>in</strong> a global way <strong>to</strong> <strong>the</strong> chronostratigraphic discussion<br />

<strong>of</strong> this period <strong>in</strong> <strong>the</strong> Mediterranean context <strong>of</strong> <strong>the</strong> <strong>NE</strong> <strong>of</strong><br />

<strong>Iberia</strong>.<br />

2. Geologi<strong>cal</strong> <strong>and</strong> archaeologi<strong>cal</strong> background<br />

2.1. The geologi<strong>cal</strong> <strong>and</strong> geomorphologi<strong>cal</strong> sett<strong>in</strong>g<br />

The two cavities that are <strong>the</strong> object <strong>of</strong> our study are located <strong>in</strong><br />

<strong>the</strong> structural unit <strong>of</strong> <strong>the</strong> <strong>Catalan</strong> <strong>Coastal</strong> Range <strong>in</strong> <strong>the</strong> <strong>NE</strong> <strong>of</strong> <strong>Iberia</strong>. It<br />

is characterized by a series <strong>of</strong> aligned reliefs <strong>and</strong> <strong>NE</strong>-SW depressions<br />

with an average width <strong>of</strong> 30 km subparallel <strong>to</strong> <strong>the</strong> coast<br />

between <strong>the</strong> Ebro Bas<strong>in</strong> <strong>and</strong> <strong>the</strong> Valencia Trough, which is its<br />

emergent north-western marg<strong>in</strong>. The present relief corresponds <strong>to</strong><br />

<strong>the</strong> superposition <strong>of</strong> <strong>the</strong> Paleogene compressive structures that<br />

were <strong>in</strong>volved <strong>in</strong> <strong>the</strong> formation <strong>of</strong> an <strong>in</strong>traplate mounta<strong>in</strong> range up<br />

<strong>to</strong> <strong>the</strong> Upper Oligocene, <strong>and</strong> <strong>the</strong> Neogene extension that generated<br />

a system <strong>of</strong> half-grabens <strong>and</strong> raised <strong>and</strong> tilted horsts <strong>from</strong> <strong>in</strong>verse<br />

movement along <strong>the</strong> Barcelona, Valles - Penedes <strong>and</strong> <strong>the</strong> Camp<br />

fault. This isostati<strong>cal</strong>ly raised <strong>the</strong> horsts <strong>of</strong> Garraf, among <strong>the</strong> halfgrabens<br />

<strong>of</strong> Barcelona (submerged at <strong>the</strong> coast) <strong>and</strong> that <strong>of</strong> <strong>the</strong><br />

Valles-Penedes <strong>and</strong> <strong>the</strong> Preli<strong>to</strong>ral cha<strong>in</strong>, between Valles-Penedes<br />

half-graben <strong>and</strong> <strong>the</strong> Ebro Bas<strong>in</strong> (Bartr<strong>in</strong>a et al., 1992).<br />

The rejuvenation <strong>of</strong> <strong>the</strong> relief <strong>in</strong> <strong>the</strong> structural highs with a<br />

Please cite this article <strong>in</strong> press as: Bergada, M.M., et al., <strong>Chronostratigraphy</strong> <strong>in</strong> <strong><strong>ka</strong>rst</strong> <strong>records</strong> <strong>from</strong> <strong>the</strong> <strong>Epipaleolithic</strong> <strong>to</strong> <strong>the</strong> <strong>Mid</strong>/<strong>Early</strong> <strong>Neolithic</strong> (c.<br />

<strong>13.0e6.0</strong> <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>) <strong>in</strong> <strong>the</strong> <strong>Catalan</strong> <strong>Coastal</strong> <strong>Ranges</strong> <strong>of</strong> <strong>NE</strong> <strong>Iberia</strong>: <strong>environmental</strong> <strong>changes</strong>, <strong>sedimentary</strong> <strong>processes</strong> <strong>and</strong> <strong>human</strong> <strong>activity</strong>, Quaternary<br />

Science Reviews (2017), https://doi.org/10.1016/j.quascirev.2017.09.008


M.M. Bergada et al. / Quaternary Science Reviews xxx (2017) 1e21 3<br />

Fig. 1. Location <strong>of</strong> Cova de Can Sadurní, Cova de la Gu<strong>in</strong>eu <strong>and</strong> <strong>the</strong> sites mentioned <strong>in</strong> <strong>the</strong> text. Numbers correspond <strong>to</strong>: 1. Arba de Biel; 2. Cueva del Seso; 3. Balma Marg<strong>in</strong>eda; 4.<br />

Font del Ros; 5. Cova del Parco; 6. Balma del Gai; 7. Molí del Salt; 8. Abric del Filador; 9. Abric de la Cativera; 10. Cova del Vidre; 11. Cueva de los Mol<strong>in</strong>os; 12. Cova d'en Pardo; 13.<br />

Tossal de la Roca; 14. Abric de la Falguera.<br />

highly fractured Mesozoic limes<strong>to</strong>ne coverage generated <strong><strong>ka</strong>rst</strong><br />

systems, especially <strong>in</strong> <strong>the</strong> Garraf massif, which cont<strong>in</strong>ued <strong>to</strong> rise<br />

until <strong>the</strong> <strong>Mid</strong>dle Miocene, about 15 Ma ago. The later evolution <strong>of</strong><br />

this <strong><strong>ka</strong>rst</strong> has been affected by variations <strong>in</strong> Mediterranean sea<br />

level, <strong>the</strong> Mess<strong>in</strong>ian crisis (7 Ma ago), <strong>the</strong> temperate tropi<strong>cal</strong> <strong>to</strong><br />

subtropi<strong>cal</strong> paleoclimates that dom<strong>in</strong>ated <strong>the</strong> sec<strong>to</strong>r until <strong>the</strong><br />

implementation <strong>of</strong> <strong>the</strong> Mediterranean seasonal regime 2.7 Ma ago<br />

<strong>and</strong> climatic fluctuations <strong>of</strong> <strong>the</strong> Pleis<strong>to</strong>cene.<br />

The cave <strong>of</strong> Can Sadurní is located <strong>in</strong> <strong>the</strong> Garraf massif <strong>in</strong> Begues<br />

(Baix Llobregat, Barcelona) at 421 m ASL <strong>and</strong> UTM 409085E <strong>and</strong><br />

4578770N. It is located <strong>to</strong> <strong>the</strong> south <strong>of</strong> <strong>the</strong> metropolitan area <strong>of</strong><br />

Barcelona, between <strong>the</strong> valley <strong>and</strong> <strong>the</strong> delta <strong>of</strong> <strong>the</strong> river Llobregat,<br />

<strong>the</strong> depression <strong>of</strong> <strong>the</strong> Penedes <strong>and</strong> <strong>the</strong> Mediterranean coast. Garraf<br />

forms an extensive mounta<strong>in</strong>ous coastl<strong>in</strong>e that rises 600 m above<br />

<strong>the</strong> beaches <strong>of</strong> Castelldefels <strong>and</strong> Sitges.<br />

The geologi<strong>cal</strong> map <strong>of</strong> <strong>the</strong> surround<strong>in</strong>gs <strong>of</strong> Can Sadurní <strong>and</strong><br />

Begues shows <strong>the</strong> complexity <strong>of</strong> Garraf geology (Fig. 2a <strong>and</strong> b). At<br />

<strong>the</strong> base <strong>of</strong> <strong>the</strong> massif, <strong>to</strong>wards <strong>the</strong> valley <strong>and</strong> <strong>the</strong> delta <strong>of</strong> <strong>the</strong><br />

Llobregat is a Palaeozoic metamorphic basement on which a thick<br />

Mesozoic coverage is located, <strong>in</strong>tensely fractured by <strong>the</strong> alp<strong>in</strong>e<br />

tec<strong>to</strong>nics. The l<strong>and</strong>scape that characterizes <strong>the</strong> massif is formed by<br />

<strong>the</strong> Jurassic <strong>and</strong> Cretaceous dolomites <strong>and</strong> limes<strong>to</strong>nes <strong>in</strong> which a<br />

<strong><strong>ka</strong>rst</strong> with all surface modell<strong>in</strong>g attributes <strong>and</strong> hundreds <strong>of</strong> subterranean<br />

cavities have been developed (Bergada et al., <strong>in</strong> press).<br />

The Garraf massif is formed by highl<strong>and</strong>s furrowed by valleys<br />

<strong>and</strong> canyons, with poljes, cl<strong>in</strong>t <strong>and</strong> dol<strong>in</strong>e fields as well as chasms<br />

<strong>and</strong> caves <strong>in</strong> <strong>the</strong> upper parts. Water <strong>in</strong>filtration dra<strong>in</strong>s underground<br />

through <strong>the</strong> entire massif <strong>to</strong> <strong>the</strong> coastl<strong>in</strong>e.<br />

Fig. 2. Geologi<strong>cal</strong> location.<br />

a. General map <strong>of</strong> <strong>the</strong> geologi<strong>cal</strong> units <strong>of</strong> <strong>the</strong> caves studied.<br />

b. Detailed map <strong>of</strong> Cova de Can Sadurní.<br />

c. Detailed map <strong>of</strong> Cova de la Gu<strong>in</strong>eu.<br />

(Source: Geologi<strong>cal</strong> Car<strong>to</strong>graphy <strong>of</strong> <strong>the</strong> Institut Car<strong>to</strong>grafic i Geologic de Catalunya e ICGC e Generalitat de Catalunya).<br />

Please cite this article <strong>in</strong> press as: Bergada, M.M., et al., <strong>Chronostratigraphy</strong> <strong>in</strong> <strong><strong>ka</strong>rst</strong> <strong>records</strong> <strong>from</strong> <strong>the</strong> <strong>Epipaleolithic</strong> <strong>to</strong> <strong>the</strong> <strong>Mid</strong>/<strong>Early</strong> <strong>Neolithic</strong> (c.<br />

<strong>13.0e6.0</strong> <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>) <strong>in</strong> <strong>the</strong> <strong>Catalan</strong> <strong>Coastal</strong> <strong>Ranges</strong> <strong>of</strong> <strong>NE</strong> <strong>Iberia</strong>: <strong>environmental</strong> <strong>changes</strong>, <strong>sedimentary</strong> <strong>processes</strong> <strong>and</strong> <strong>human</strong> <strong>activity</strong>, Quaternary<br />

Science Reviews (2017), https://doi.org/10.1016/j.quascirev.2017.09.008


4<br />

M.M. Bergada et al. / Quaternary Science Reviews xxx (2017) 1e21<br />

The cave <strong>of</strong> Gu<strong>in</strong>eu located <strong>in</strong> Font-Rubí (Alt Penedes, Barcelona)<br />

at about 734 m ASL <strong>and</strong> UTM 380921E 4588723N. It is situated on<br />

<strong>the</strong> sou<strong>the</strong>rn slope <strong>of</strong> <strong>the</strong> Preli<strong>to</strong>ral Mounta<strong>in</strong> Range <strong>in</strong> <strong>the</strong> Sierra de<br />

Font-Rubí which is part <strong>of</strong> <strong>the</strong> horst <strong>of</strong> <strong>the</strong> Gaia <strong>and</strong> El Camp massif<br />

<strong>and</strong> <strong>the</strong> Montmell reliefs.<br />

The lithology <strong>of</strong> <strong>the</strong> site (Fig. 2a <strong>and</strong> c) consists <strong>of</strong> materials <strong>from</strong><br />

<strong>the</strong> Triassic, ma<strong>in</strong>ly <strong>from</strong> <strong>the</strong> Upper Muschel<strong>ka</strong>lk, consist<strong>in</strong>g <strong>of</strong><br />

micritic limes<strong>to</strong>nes at <strong>the</strong> base <strong>and</strong> f<strong>in</strong>e-gra<strong>in</strong>ed dolomites at <strong>the</strong><br />

<strong>to</strong>p (Amigo, 1983; Bergada, 1998). The <strong>to</strong>tal thickness <strong>in</strong> this sec<strong>to</strong>r<br />

is 50 m. The structure <strong>of</strong> this zone is conditioned almost exclusively<br />

by <strong>the</strong> fractur<strong>in</strong>g, <strong>in</strong> which <strong>the</strong> faults with NW-SE orientation<br />

dom<strong>in</strong>ate.<br />

The <strong><strong>ka</strong>rst</strong> system that developed <strong>in</strong> this dolomitic <strong>and</strong> limes<strong>to</strong>ne<br />

mass presents a state <strong>of</strong> important evolution. There are numerous<br />

endo<strong><strong>ka</strong>rst</strong>ic forms that have been favoured by <strong>the</strong> tec<strong>to</strong>nics <strong>of</strong> <strong>the</strong><br />

area.<br />

Morphologi<strong>cal</strong>ly <strong>the</strong> two cavities present <strong>the</strong> characteristics <strong>of</strong><br />

an old duct (Fig. 3a, b, 4a <strong>and</strong> 4b) orig<strong>in</strong>at<strong>in</strong>g <strong>in</strong> <strong>the</strong> saturated zone<br />

<strong>of</strong> a long <strong>and</strong> complex <strong><strong>ka</strong>rst</strong> system.<br />

Its evolution, similar <strong>to</strong> o<strong>the</strong>r cavities <strong>in</strong> <strong>the</strong> sec<strong>to</strong>r, is marked by<br />

a series <strong>of</strong> stages:<br />

a. Formation <strong>of</strong> <strong>the</strong> cavity <strong>from</strong> discont<strong>in</strong>uities <strong>in</strong> <strong>the</strong> limes<strong>to</strong>ne<br />

rock, stratification planes <strong>and</strong> subverti<strong>cal</strong> tec<strong>to</strong>nic<br />

microstructures.<br />

b. Dissolution <strong>in</strong> walls <strong>and</strong> ro<strong>of</strong> as a result <strong>of</strong> flooded cavity regime.<br />

c. General lower<strong>in</strong>g <strong>of</strong> <strong>the</strong> <strong><strong>ka</strong>rst</strong> base level <strong>and</strong> new position <strong>of</strong> <strong>the</strong><br />

cavity <strong>in</strong> <strong>the</strong> unsaturated <strong>in</strong>filtration zone <strong>of</strong> <strong>the</strong> <strong><strong>ka</strong>rst</strong>ic system.<br />

The non-soluble fraction is located <strong>in</strong> <strong>the</strong> <strong>in</strong>terior <strong>of</strong> <strong>the</strong> ducts<br />

<strong>and</strong> consists <strong>of</strong> silt <strong>and</strong> hardened red clays derived <strong>from</strong> <strong>the</strong><br />

superficial <strong><strong>ka</strong>rst</strong>ification <strong>processes</strong>, especially active under <strong>the</strong><br />

soil cover. It is located <strong>in</strong> <strong>the</strong> eastern part <strong>of</strong> <strong>the</strong> cave room <strong>in</strong> Can<br />

Sadurní.<br />

d. Precipitation <strong>of</strong> speleo<strong>the</strong>ms <strong>in</strong> <strong>the</strong> cavity <strong>in</strong> <strong>the</strong> form <strong>of</strong> flows<strong>to</strong>ne<br />

<strong>and</strong> stalagmites.<br />

e. Open<strong>in</strong>g or enlarg<strong>in</strong>g <strong>of</strong> <strong>the</strong> cavities <strong>to</strong> <strong>the</strong> exterior, formation <strong>of</strong><br />

clastic collapses, cones with blocks that prograde <strong>to</strong>wards <strong>the</strong><br />

<strong>in</strong>terior <strong>and</strong> <strong>in</strong>troduction <strong>of</strong> f<strong>in</strong>er materials. The blocks form a<br />

steep ramp <strong>to</strong>wards <strong>the</strong> <strong>in</strong>terior <strong>of</strong> <strong>the</strong> cave, form<strong>in</strong>g an<br />

important <strong>sedimentary</strong> deposit that <strong>in</strong>cludes mostly <strong>the</strong> sequences<br />

that are <strong>the</strong> object <strong>of</strong> this paper.<br />

In conclusion, <strong>the</strong> <strong><strong>ka</strong>rst</strong> development <strong>in</strong> <strong>the</strong>se sec<strong>to</strong>rs is polyphasic<br />

<strong>and</strong> <strong>the</strong> studied detrital deposits are recent with<strong>in</strong> <strong>the</strong><br />

evolution <strong>of</strong> <strong>the</strong> cavities. The analyzed sequences are essentially a<br />

Holocenic product <strong>of</strong> contributions <strong>from</strong> <strong>the</strong> exterior, although <strong>in</strong><br />

Gu<strong>in</strong>eu <strong>and</strong> possibly <strong>in</strong> Can Sadurní <strong>the</strong>y are situated on Pleis<strong>to</strong>cene<br />

deposits.<br />

2.2. Archaeologi<strong>cal</strong> sequences <strong>and</strong> radiocarbon dates<br />

The two sites that are <strong>the</strong> object <strong>of</strong> study comprise prolonged<br />

time sequences that have been comprehensively radiocarbon<br />

dated.<br />

2.2.1. Cova de Can Sadurní<br />

The site <strong>of</strong> Cova de Can Sadurní has an archaeologi<strong>cal</strong> sequence<br />

that beg<strong>in</strong>s, accord<strong>in</strong>g <strong>to</strong> <strong>the</strong> current state <strong>of</strong> knowledge, <strong>in</strong> <strong>the</strong><br />

<strong>Epipaleolithic</strong> <strong>and</strong> reaches <strong>the</strong> Late Roman Empire. It highlights <strong>the</strong><br />

<strong>Neolithic</strong> especially its early phase (Edo et al., 2011, <strong>in</strong> press a; <strong>in</strong><br />

press b).<br />

The cavity has been known archaeologi<strong>cal</strong>ly s<strong>in</strong>ce 1945 but no<br />

systematic excavations were carried out until 1978, which <strong>the</strong>n<br />

cont<strong>in</strong>ued un<strong>in</strong>terruptedly until present. It has two areas: <strong>in</strong> <strong>the</strong><br />

exterior <strong>of</strong> <strong>the</strong> cavity under <strong>the</strong> denom<strong>in</strong>ation “outside terrace” <strong>of</strong><br />

about 400 m 2 where occupations <strong>of</strong> <strong>the</strong> Postcardial <strong>Mid</strong>dle<br />

<strong>Neolithic</strong> were located next <strong>to</strong> silos; <strong>and</strong> <strong>in</strong>side <strong>the</strong> cave, which is<br />

<strong>the</strong> ma<strong>in</strong> sec<strong>to</strong>r <strong>and</strong> <strong>the</strong> object <strong>of</strong> our study <strong>in</strong> this paper.<br />

The excavated surface <strong>of</strong> <strong>the</strong> cave is 51 m 2 <strong>of</strong> which 4 m 2<br />

correspond <strong>to</strong> a sondage that began <strong>in</strong> 1997 (Fig. 3c) with <strong>the</strong> aim <strong>of</strong><br />

establish<strong>in</strong>g <strong>the</strong> stratigraphic sequence <strong>of</strong> <strong>the</strong> site (Edo et al., 2011).<br />

The data available <strong>from</strong> <strong>the</strong> <strong>Epipaleolithic</strong> <strong>to</strong> <strong>the</strong> <strong>Early</strong> Postcardial<br />

<strong>Mid</strong>dle <strong>Neolithic</strong> were obta<strong>in</strong>ed only <strong>from</strong> <strong>the</strong> sondage.<br />

So far, <strong>the</strong>re have been 14 <strong>sedimentary</strong> (Bergada et al., <strong>in</strong> press)<br />

<strong>and</strong> 21 archaeologi<strong>cal</strong> levels that frame <strong>the</strong> chronocultural evolution<br />

<strong>of</strong> <strong>the</strong> deposit <strong>from</strong> <strong>the</strong> archaeologi<strong>cal</strong> materials; as well as <strong>the</strong><br />

radiocarbon dates (Table 1) <strong>and</strong> numismatic record for <strong>the</strong> his<strong>to</strong>ri<strong>cal</strong><br />

stages (Blasco et al., 2005a, 2005b; Edo et al., 2011; Edo et al. <strong>in</strong><br />

press b).<br />

The record beg<strong>in</strong>s <strong>in</strong> <strong>the</strong> <strong>Epipaleolithic</strong> (CS. XIV <strong>and</strong> archaeologi<strong>cal</strong><br />

level 21) dated c.12.7e10.4 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>. This is followed by<br />

CS.XIII (archaeologi<strong>cal</strong> levels 20 <strong>and</strong> 19), which is attributed <strong>to</strong> <strong>the</strong><br />

Mesolithic period <strong>of</strong> denticulates <strong>and</strong> notches (Fullola et al., 2011)<br />

<strong>and</strong> dated 8.2e8.0 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>. After that, a beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> pas<strong>to</strong>ral<br />

activities <strong>and</strong> a sepulchral use appear <strong>in</strong> CS.XII (archaeologi<strong>cal</strong> level<br />

18) correspond<strong>in</strong>g <strong>to</strong> <strong>the</strong> Cardial <strong>Early</strong> <strong>Neolithic</strong>, most likely between<br />

7.4 <strong>and</strong> 7.2 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>. The subsequent Late Cardial <strong>Neolithic</strong><br />

CS XI (levels 17 <strong>and</strong> 16) dated 7.2e6.6 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong> <strong>and</strong> CS.X dated<br />

6.9e6.7 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong> are characterized by <strong>the</strong> Epicardial <strong>Neolithic</strong><br />

(levels 15e13), both with a pas<strong>to</strong>ral use <strong>of</strong> space. CS.IX (level 11b)<br />

follows, erod<strong>in</strong>g <strong>the</strong> underly<strong>in</strong>g level <strong>in</strong> some sec<strong>to</strong>rs. This episode<br />

is dated 6.8e6.3 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong> <strong>and</strong> corresponds <strong>to</strong> <strong>the</strong> <strong>Early</strong> Postcardial<br />

<strong>Mid</strong>dle <strong>Neolithic</strong>.<br />

The sequence cont<strong>in</strong>ues, with<strong>in</strong> <strong>the</strong> same cultural stage, with<br />

CS.VIII (level 11) dated 6.5e5.9 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>. The cavity was also used<br />

for a pas<strong>to</strong>ral <strong>and</strong> funerary use. A sepulchral use <strong>of</strong> <strong>the</strong> cavity is<br />

ma<strong>in</strong>ly detected <strong>in</strong> <strong>the</strong> Late Postcardial <strong>Mid</strong>dle <strong>Neolithic</strong> (CS, VII-VI<br />

<strong>and</strong> levels 10b <strong>and</strong> 10) dated c. 6.2e5.7 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>.<br />

2.2.2. Cova de la Gu<strong>in</strong>eu<br />

This site also <strong>in</strong>cludes a wide cultural sequence (Bergada, 1998;<br />

Equip Gu<strong>in</strong>eu, 1995); although <strong>the</strong> greatest potential is <strong>of</strong>fered by<br />

<strong>the</strong> record correspond<strong>in</strong>g <strong>to</strong> <strong>the</strong> Upper Pleis<strong>to</strong>cene, located <strong>in</strong> a<br />

sondage <strong>in</strong>side <strong>the</strong> cave.<br />

The cavity was discovered <strong>in</strong> 1961 but <strong>the</strong> archaeologi<strong>cal</strong> excavations<br />

did not start until 1983. After a five-year break, <strong>the</strong>y were<br />

activated aga<strong>in</strong> <strong>and</strong> cont<strong>in</strong>ue <strong>to</strong> <strong>the</strong> present day.<br />

Unlike Can Sadurní, <strong>the</strong> aim <strong>of</strong> our study focuses ma<strong>in</strong>ly on <strong>the</strong><br />

outside sec<strong>to</strong>r (Fig. 4c), with an excavated area <strong>of</strong> 21 m 2 <strong>in</strong> which<br />

occupations <strong>of</strong> a Late Cardial <strong>Neolithic</strong> have been located as well as<br />

<strong>the</strong> medieval <strong>and</strong> modern epochs. The sec<strong>to</strong>r <strong>of</strong> <strong>the</strong> cavity is represented,<br />

at <strong>the</strong> moment, <strong>from</strong> <strong>the</strong> <strong>Epipaleolithic</strong> <strong>to</strong> <strong>the</strong> Late<br />

<strong>Neolithic</strong> e Chalcolithic with an excavation area <strong>of</strong> 11 m 2 ; where<br />

<strong>the</strong> <strong>Epipaleolithic</strong> <strong>and</strong> Upper Pleis<strong>to</strong>cene sequence was located <strong>in</strong> a<br />

sondage. So far, 12 <strong>sedimentary</strong> levels have been located (Bergada,<br />

1998).<br />

The studied sequence beg<strong>in</strong>s with G. IIIa dated c.12.7e11.1 <strong>cal</strong> <strong>ka</strong><br />

<strong>BP</strong> (Table 2) <strong>and</strong> situated <strong>in</strong> <strong>the</strong> Mediterranean <strong>Epipaleolithic</strong><br />

(Bartrolí et al., 1992). After that, <strong>the</strong>re is a Late Cardial <strong>Neolithic</strong><br />

referenced by G. Ie (outside sec<strong>to</strong>r) dated 7.1e6.9 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong> (Oms<br />

et al., 2016); <strong>the</strong>n G.II, Postcardial <strong>Mid</strong>dle <strong>Neolithic</strong> by <strong>the</strong> pottery,<br />

located with some materials <strong>from</strong> <strong>the</strong> Cardial <strong>Neolithic</strong>; followed<br />

by G. IIb, which corresponds <strong>to</strong> a stabl<strong>in</strong>g area (Bergada et al.,<br />

2005a) dat<strong>in</strong>g <strong>from</strong> 6.4 <strong>to</strong> 5.9 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>; <strong>and</strong> f<strong>in</strong>ally, G. Id, which <strong>in</strong><br />

some sec<strong>to</strong>rs <strong>to</strong>wards <strong>the</strong> cavity has some contact with <strong>the</strong> levels <strong>of</strong><br />

upper pen <strong>of</strong> <strong>the</strong> sec<strong>to</strong>r <strong>of</strong> <strong>the</strong> cave. Culturally, it corresponds <strong>to</strong> an<br />

<strong>in</strong>termediate <strong>and</strong> f<strong>in</strong>al moment <strong>of</strong> <strong>the</strong> Mol<strong>in</strong>ot Postcardial <strong>Neolithic</strong><br />

<strong>and</strong> is dated 6.3e5.9 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>.<br />

Please cite this article <strong>in</strong> press as: Bergada, M.M., et al., <strong>Chronostratigraphy</strong> <strong>in</strong> <strong><strong>ka</strong>rst</strong> <strong>records</strong> <strong>from</strong> <strong>the</strong> <strong>Epipaleolithic</strong> <strong>to</strong> <strong>the</strong> <strong>Mid</strong>/<strong>Early</strong> <strong>Neolithic</strong> (c.<br />

<strong>13.0e6.0</strong> <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>) <strong>in</strong> <strong>the</strong> <strong>Catalan</strong> <strong>Coastal</strong> <strong>Ranges</strong> <strong>of</strong> <strong>NE</strong> <strong>Iberia</strong>: <strong>environmental</strong> <strong>changes</strong>, <strong>sedimentary</strong> <strong>processes</strong> <strong>and</strong> <strong>human</strong> <strong>activity</strong>, Quaternary<br />

Science Reviews (2017), https://doi.org/10.1016/j.quascirev.2017.09.008


M.M. Bergada et al. / Quaternary Science Reviews xxx (2017) 1e21 5<br />

Fig. 3. Cova de Can Sadurní (Begues, Barcelona). a. Cave entrance (arrow). b. Overview through <strong>the</strong> cavity <strong>and</strong> <strong>sedimentary</strong> deposit, with an arrow <strong>to</strong> <strong>the</strong> sondage. c. Plan <strong>of</strong> <strong>the</strong><br />

cavity. d. J e 8 Sondage pr<strong>of</strong>ile. CS.XII e CS.VI. e. J/8e7 Grid-square. CS. XIV e CS. VIII. f. Stratigraphic pr<strong>of</strong>ile represented.<br />

Please cite this article <strong>in</strong> press as: Bergada, M.M., et al., <strong>Chronostratigraphy</strong> <strong>in</strong> <strong><strong>ka</strong>rst</strong> <strong>records</strong> <strong>from</strong> <strong>the</strong> <strong>Epipaleolithic</strong> <strong>to</strong> <strong>the</strong> <strong>Mid</strong>/<strong>Early</strong> <strong>Neolithic</strong> (c.<br />

<strong>13.0e6.0</strong> <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>) <strong>in</strong> <strong>the</strong> <strong>Catalan</strong> <strong>Coastal</strong> <strong>Ranges</strong> <strong>of</strong> <strong>NE</strong> <strong>Iberia</strong>: <strong>environmental</strong> <strong>changes</strong>, <strong>sedimentary</strong> <strong>processes</strong> <strong>and</strong> <strong>human</strong> <strong>activity</strong>, Quaternary<br />

Science Reviews (2017), https://doi.org/10.1016/j.quascirev.2017.09.008


6<br />

M.M. Bergada et al. / Quaternary Science Reviews xxx (2017) 1e21<br />

Fig. 4. Cova de la Gu<strong>in</strong>eu (Font-Rubí, Barcelona). a. Cave entrance (arrow). b. Overview through <strong>the</strong> cavity <strong>and</strong> <strong>sedimentary</strong> deposit, with an arrow <strong>to</strong> <strong>the</strong> sondage. c. Plan <strong>of</strong> <strong>the</strong><br />

cavity. d. Stratigraphic pr<strong>of</strong>iles represented.<br />

3. Methods<br />

The methodology we used consisted ma<strong>in</strong>ly <strong>of</strong> stratigraphic<strong>sedimentary</strong><br />

field descriptions <strong>and</strong> application <strong>of</strong> micromorphology<br />

<strong>to</strong> <strong>the</strong> levels that <strong>in</strong>clude <strong>the</strong> sequence <strong>of</strong> <strong>the</strong> sites. To carry<br />

out this study we focused ma<strong>in</strong>ly on <strong>the</strong> follow<strong>in</strong>g pr<strong>of</strong>iles: <strong>in</strong> Can<br />

Sadurní pr<strong>of</strong>iles F-8, J-8; J-F/7, J-F/9 <strong>and</strong> G-4; <strong>and</strong> <strong>in</strong> Gu<strong>in</strong>eu pr<strong>of</strong>iles<br />

E5 <strong>and</strong> C5 <strong>in</strong> <strong>the</strong> <strong>in</strong>terior <strong>of</strong> <strong>the</strong> cavity <strong>and</strong> E-9, F9-F7 <strong>in</strong> <strong>the</strong> exterior<br />

<strong>of</strong> <strong>the</strong> cavity (Fig. 3c, d, 3e, 3f, 4c <strong>and</strong> 4d).<br />

The pro<strong>to</strong>col followed for extract<strong>in</strong>g samples, a <strong>to</strong>tal <strong>of</strong> 21,<br />

consisted <strong>of</strong> plac<strong>in</strong>g <strong>the</strong> sediments <strong>in</strong><strong>to</strong> boxes l<strong>in</strong>ed with plaster,<br />

enabl<strong>in</strong>g us <strong>to</strong> obta<strong>in</strong> blocks without alter<strong>in</strong>g <strong>the</strong> structure <strong>and</strong> <strong>the</strong><br />

position <strong>of</strong> <strong>the</strong> <strong>sedimentary</strong> fill<strong>in</strong>g (Bergada, 1998; Bergada et al., <strong>in</strong><br />

press). The blocks were air-dried <strong>and</strong> <strong>the</strong>n oven dried at 40 C for<br />

48 h <strong>to</strong> avoid recrystallization. They were impregnated with a<br />

polystyrene res<strong>in</strong>. They were cut <strong>in</strong><strong>to</strong> strips a few centimeters thick<br />

Please cite this article <strong>in</strong> press as: Bergada, M.M., et al., <strong>Chronostratigraphy</strong> <strong>in</strong> <strong><strong>ka</strong>rst</strong> <strong>records</strong> <strong>from</strong> <strong>the</strong> <strong>Epipaleolithic</strong> <strong>to</strong> <strong>the</strong> <strong>Mid</strong>/<strong>Early</strong> <strong>Neolithic</strong> (c.<br />

<strong>13.0e6.0</strong> <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>) <strong>in</strong> <strong>the</strong> <strong>Catalan</strong> <strong>Coastal</strong> <strong>Ranges</strong> <strong>of</strong> <strong>NE</strong> <strong>Iberia</strong>: <strong>environmental</strong> <strong>changes</strong>, <strong>sedimentary</strong> <strong>processes</strong> <strong>and</strong> <strong>human</strong> <strong>activity</strong>, Quaternary<br />

Science Reviews (2017), https://doi.org/10.1016/j.quascirev.2017.09.008


M.M. Bergada et al. / Quaternary Science Reviews xxx (2017) 1e21 7<br />

Table 1<br />

Cova de Can Sadurní. Radiocarbon dates.<br />

Can Sadurní<br />

Sedimentary layers<br />

Can Sadurní<br />

Archaeologi<strong>cal</strong> layers<br />

Sample Labora<strong>to</strong>ry <strong>BP</strong> Dat<strong>in</strong>g Cal<strong>BP</strong> p(95%) CalBC Period<br />

CS.VI 10 Seed OxA-15490 5279 ± 31 <strong>BP</strong> 6220e5940 4270e3990 Late Postcardial <strong>Mid</strong>dle <strong>Neolithic</strong><br />

CS.VII 10b Charcoal UBAR-1281 5075 ± 40 <strong>BP</strong> 5950e5710 4000e3760 Late Postcardial <strong>Mid</strong>dle <strong>Neolithic</strong><br />

CS.VII 10b Human bone Beta-210652 5340 ± 40 <strong>BP</strong> 6280e5960 4330e4010 Late Postcardial <strong>Mid</strong>dle <strong>Neolithic</strong><br />

CS.VII 10b Human bone UBAR-1282 5260 ± 40<strong>BP</strong> 6230e5870 4280e3920 Late Postcardial <strong>Mid</strong>dle <strong>Neolithic</strong><br />

CS.VIII 11 Bone Beta- 332263 5240 ± 40 <strong>BP</strong> 6190e5870 4240e3920 Postcardial <strong>Mid</strong>dle <strong>Neolithic</strong><br />

CS.VIII 11 Human bone Beta 197134 5290 ± 40 <strong>BP</strong> 6220e5940 4270e3990 Postcardial <strong>Mid</strong>dle <strong>Neolithic</strong><br />

CS.VIII 11 Charcoal I-17918 5350 ± 150 <strong>BP</strong> 6440e5800 4490e3850 Postcardial <strong>Mid</strong>dle <strong>Neolithic</strong><br />

CS.VIII 11 Charcoal UBAR-1193 5370 ± 45 <strong>BP</strong> 6340e5980 4390e4030 Postcardial <strong>Mid</strong>dle <strong>Neolithic</strong><br />

CS.VIII 11 Human bone Beta-363819 5460 ± 40 <strong>BP</strong> 6340e6180 4390e4230 Postcardial <strong>Mid</strong>dle <strong>Neolithic</strong><br />

CS.VIII 11 Charcoal I-13314 5470 ± 110 <strong>BP</strong> 6500e5980 4550e4030 Postcardial <strong>Mid</strong>dle <strong>Neolithic</strong><br />

CS.VIII 11 Charcoal UBAR 766 5470 ± 140 <strong>BP</strong> 6560e5920 4610e3970 Postcardial <strong>Mid</strong>dle <strong>Neolithic</strong><br />

CS.VIII 11 Human bone OxA-29640 5487 ± 33 <strong>BP</strong> 6360e6200 4410e4250 Postcardial <strong>Mid</strong>dle <strong>Neolithic</strong><br />

CS.VIII 11 Bone Beta-363818 5540 ± 40 <strong>BP</strong> 6430e6270 4480e4320 Postcardial <strong>Mid</strong>dle <strong>Neolithic</strong><br />

CS.VIII 11 Charcoal UBAR-1310 5560 ± 50 <strong>BP</strong> 6440e6280 4490e4330 Postcardial <strong>Mid</strong>dle <strong>Neolithic</strong><br />

CS.VIII 11 Human bone OxA-29641 5568 ± 34 <strong>BP</strong> 6440e6280 4490e4330 Postcardial <strong>Mid</strong>dle <strong>Neolithic</strong><br />

CS.VIII 11 Bone Beta-238657 5570 ± 40 <strong>BP</strong> 6440e6280 4490e4330 Postcardial <strong>Mid</strong>dle <strong>Neolithic</strong><br />

CS.VIII 11 Charcoal UBAR-1352 5620 ± 50 <strong>BP</strong> 6520e6280 4570e4330 Postcardial <strong>Mid</strong>dle <strong>Neolithic</strong><br />

CS.VIII 11 Seed Beta-445238 5670 ± 30 <strong>BP</strong> 6510e6390 4560e4440 Postcardial <strong>Mid</strong>dle <strong>Neolithic</strong><br />

CS.VIII 11 Seed Beta- 445239 5680 ± 30 <strong>BP</strong> 6520e6400 4570e4450 Postcardial <strong>Mid</strong>dle <strong>Neolithic</strong><br />

CS.VIII 11 Charcoal Beta-394625 5730 ± 30 <strong>BP</strong> 6640e6440 4690e4490 Postcardial <strong>Mid</strong>dle <strong>Neolithic</strong><br />

CS.IX 11b Seed UBAR-846 5635 ± 45 <strong>BP</strong> 6530e6290 4580e4340 <strong>Early</strong> Postcardial <strong>Mid</strong>dle <strong>Neolithic</strong><br />

CS.IX 11b Charcoal I-11789 5700 ± 110 <strong>BP</strong> 6750e6270 4800e4320 <strong>Early</strong> Postcardial <strong>Mid</strong>dle <strong>Neolithic</strong><br />

CS.IX 11b Charcoal Beta-210653 5790 ± 40 <strong>BP</strong> 6690e6490 4740e4540 <strong>Early</strong> Postcardial <strong>Mid</strong>dle <strong>Neolithic</strong><br />

CS.IX 11b Charcoal I-11787 5800 ± 160 <strong>BP</strong> 6990e6270 5040e4320 <strong>Early</strong> Postcardial <strong>Mid</strong>dle <strong>Neolithic</strong><br />

CS.X 12 Organic material CNA -3172.1.2 5790 ± 36 <strong>BP</strong> 6690e6490 4740e4540 <strong>Early</strong> Postcardial <strong>Mid</strong>dle <strong>Neolithic</strong><br />

CS.X 14 Charcoal Beta-179900 5980 ± 40 <strong>BP</strong> 6940e6700 4990e4750 Epicardial <strong>Neolithic</strong><br />

CS.XI 17 Charcoal Beta-127898 6050 ± 110 <strong>BP</strong> 7240e6640 5290e4690 Late Cardial <strong>Neolithic</strong><br />

CS.XII 18 Seed OxA-15491 6375 ± 34 <strong>BP</strong> 7430e7230 5480e5280 Cardial <strong>Neolithic</strong><br />

CS.XII 18 Seed OxA-15489 6391 ± 34 <strong>BP</strong> 7440e7240 5490e5290 Cardial <strong>Neolithic</strong><br />

CS.XII 18 Seed UBAR 760 6405 ± 50 <strong>BP</strong> 7470e7230 5510e5310 Cardial <strong>Neolithic</strong><br />

CS.XII 18 Seed OxA-15488 6421 ± 34 <strong>BP</strong> 7460e7260 5520e5280 Cardial <strong>Neolithic</strong><br />

CS.XIII 20 Charcoal Beta-230733 7320 ± 50 <strong>BP</strong> 8240e8000 6290e6050 Mesolithic<br />

CS.XIV 21 Charcoal Beta-179899 9360 ± 40 <strong>BP</strong> 10710-10470 8760e8520 <strong>Epipaleolithic</strong><br />

CS.XIV 21 Bone Beta-230734 10540 ± 60 <strong>BP</strong> 12770-12290 10820-10340 <strong>Epipaleolithic</strong><br />

Table 2<br />

Cova de la Gu<strong>in</strong>eu. Radiocarbon dates.<br />

Gu<strong>in</strong>eu Sedimentary layers Sample Labora<strong>to</strong>ry <strong>BP</strong> Dat<strong>in</strong>g Cal<strong>BP</strong> p(95%) CalBC Period<br />

G.Id Molar Ovis aries OxA-29605 5274 ± 32 <strong>BP</strong> 6230e5910 4280e3960 Late Postcardial <strong>Mid</strong>dle <strong>Neolithic</strong><br />

G.Id Molar Ovis/Capra Beta-406997 5430 ± 30 <strong>BP</strong> 6310e6190 4360e4240 Late Postcardial <strong>Mid</strong>dle <strong>Neolithic</strong><br />

G.Ie Charcoal Laurus nobilis Beta-406998 6140 ± 30 <strong>BP</strong> 7200e6920 5250e4970 Late Cardial <strong>Neolithic</strong><br />

G.IIb Charcoals Gif-11037 5480 ± 60 <strong>BP</strong> 6410e6170 4460e4220 Postcardial <strong>Mid</strong>dle <strong>Neolithic</strong><br />

G.IIb Charcoal (LC) GifA-99112 5330 ± 70 <strong>BP</strong> 6300e5940 4350e3990 Postcardial <strong>Mid</strong>dle <strong>Neolithic</strong><br />

G.IIb Charcoal (LC) GifA-99113 5480 ± 80 <strong>BP</strong> 6460e6100 4510e4150 Postcardial <strong>Mid</strong>dle <strong>Neolithic</strong><br />

G.IIb Charcoal (LC) GifA-99114 5580 ± 70 <strong>BP</strong> 6500e6260 4550e4310 Postcardial <strong>Mid</strong>dle <strong>Neolithic</strong><br />

G.IIIa Charcoals Gif-8439 9850 ± 80 <strong>BP</strong> 11520-11120 9570e9170 <strong>Epipaleolithic</strong><br />

G.IIIa Charcoal (H) Beta-378799 10590 ± 40 <strong>BP</strong> 12720-12560 10770-10610 <strong>Epipaleolithic</strong><br />

LC. Layer cake.<br />

H. Hearth.<br />

<strong>and</strong> f<strong>in</strong>ally th<strong>in</strong> sections were made, a <strong>to</strong>tal <strong>of</strong> 2 for each block <strong>of</strong><br />

13.5 5.5 cm <strong>and</strong> 20 mm thick accord<strong>in</strong>g <strong>to</strong> <strong>the</strong> pro<strong>to</strong>col <strong>of</strong><br />

Benyarku <strong>and</strong> S<strong>to</strong>ops (2005).<br />

Th<strong>in</strong> sections were observed under a polariz<strong>in</strong>g stereomicroscope<br />

<strong>and</strong> a petrographic microscope at magnifications between<br />

25 <strong>and</strong> 400 with plane polarized light (PPL), crossed polarized<br />

light (XPL) <strong>and</strong> with oblique <strong>in</strong>cident light (OIL). Descriptions followed<br />

<strong>the</strong> criteria used by Bullock et al. (1985) <strong>and</strong> S<strong>to</strong>ops (2003).<br />

The dates <strong>of</strong> <strong>the</strong> two sites, al<strong>to</strong>ge<strong>the</strong>r 43, were <strong>cal</strong>ibrated us<strong>in</strong>g<br />

CalPal s<strong>of</strong>tware (Wen<strong>in</strong>ger et al., 2007) <strong>and</strong> compared with <strong>the</strong> d 18 O<br />

variation curves <strong>of</strong> <strong>the</strong> NGRIP <strong>and</strong> GRIP accord<strong>in</strong>g <strong>to</strong> GICC05 Age<br />

Model (Lowe et al., 2008) (see Fig. 8); as well as <strong>the</strong> dat<strong>in</strong>g <strong>of</strong> <strong>the</strong><br />

deposits treated <strong>in</strong> Fig. 9.<br />

4. Results <strong>and</strong> <strong>in</strong>terpretation<br />

The stratigraphic, <strong>sedimentary</strong> <strong>and</strong> micromorphologi<strong>cal</strong> data <strong>of</strong><br />

<strong>the</strong> studied <strong>records</strong> are detailed <strong>in</strong> Tables 3e6.<br />

4.1. Pedo<strong>sedimentary</strong> <strong>processes</strong> located between c. 13e6.0 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong><br />

The <strong>sedimentary</strong> <strong>processes</strong> <strong>of</strong> detrital orig<strong>in</strong> that form <strong>the</strong> fill<strong>in</strong>g<br />

<strong>of</strong> Can Sadurní <strong>and</strong> Gu<strong>in</strong>eu are: solifluction, gravitational <strong>and</strong> colluvium<br />

<strong>and</strong> diffuse run<strong>of</strong>f.<br />

4.1.1. Solifluction <strong>processes</strong><br />

These are found <strong>in</strong> <strong>the</strong> <strong>Epipaleolithic</strong> (CS. XIV 12.7e12.2 <strong>and</strong><br />

10.7e10.4 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>) <strong>and</strong> Mesolithic sequences (CS. XIII 8.2e8.0 <strong>cal</strong><br />

Please cite this article <strong>in</strong> press as: Bergada, M.M., et al., <strong>Chronostratigraphy</strong> <strong>in</strong> <strong><strong>ka</strong>rst</strong> <strong>records</strong> <strong>from</strong> <strong>the</strong> <strong>Epipaleolithic</strong> <strong>to</strong> <strong>the</strong> <strong>Mid</strong>/<strong>Early</strong> <strong>Neolithic</strong> (c.<br />

<strong>13.0e6.0</strong> <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>) <strong>in</strong> <strong>the</strong> <strong>Catalan</strong> <strong>Coastal</strong> <strong>Ranges</strong> <strong>of</strong> <strong>NE</strong> <strong>Iberia</strong>: <strong>environmental</strong> <strong>changes</strong>, <strong>sedimentary</strong> <strong>processes</strong> <strong>and</strong> <strong>human</strong> <strong>activity</strong>, Quaternary<br />

Science Reviews (2017), https://doi.org/10.1016/j.quascirev.2017.09.008


8<br />

M.M. Bergada et al. / Quaternary Science Reviews xxx (2017) 1e21<br />

Table 3<br />

Syn<strong>the</strong>sis <strong>of</strong> <strong>the</strong> stratigraphic <strong>and</strong> <strong>sedimentary</strong> field description <strong>of</strong> <strong>the</strong> Cova de Can Sadurní.<br />

Can Sadurní<br />

Sedimentary<br />

layers<br />

Can Sadurní<br />

Archaeologi<strong>cal</strong><br />

layers<br />

Thickness<br />

(cm)<br />

Colour Course fraction F<strong>in</strong>e fraction Boundaries Organic <strong>and</strong> <strong>in</strong>organic<br />

components<br />

Cultural context<br />

CS.VI 10 13 5YR 4/2 Some s<strong>to</strong>nes <strong>and</strong> blocks<br />

scattered.<br />

S<strong>and</strong>y silts with<br />

clays<br />

Difusse<br />

CS.VII 10b 20e25 7.5YR 5/2 Subangular s<strong>to</strong>nes <strong>of</strong> 1e6 cm Clayey silts with Erosive<br />

<strong>and</strong> angular blocks <strong>of</strong> medium s<strong>and</strong>s<br />

contact<br />

size.<br />

CS.VIII 11 72 5YR 6/1 Scattered s<strong>to</strong>nes. Clayey silts with<br />

s<strong>and</strong>s<br />

CS.IX 11b 17e20 5YR 5/2 Subangular blocks <strong>and</strong> s<strong>to</strong>nes. Clayey silts with<br />

some s<strong>and</strong>y<br />

fraction<br />

CS.X<br />

CS.X.1 12 3e6 10YR 3/2<br />

10YR 6/2<br />

Late Postcardial<br />

<strong>Mid</strong>dle <strong>Neolithic</strong><br />

Late Postcardial<br />

<strong>Mid</strong>dle <strong>Neolithic</strong><br />

Sharp Lots <strong>of</strong> charcoal rema<strong>in</strong>s Postcardial<br />

<strong>Mid</strong>dle <strong>Neolithic</strong><br />

Erosive<br />

<strong>Early</strong> Postcardial<br />

contact<br />

<strong>Mid</strong>dle <strong>Neolithic</strong><br />

Some s<strong>and</strong> Sharp Carbonated ash accumulation<br />

with charcoals <strong>and</strong> organic<br />

rema<strong>in</strong>s<br />

<strong>Early</strong> Postcardial<br />

<strong>Mid</strong>dle <strong>Neolithic</strong><br />

CS.X.2 13 5 10YR 5/2 Clayey silts Sharp Many charcoals Epicardial<br />

<strong>Neolithic</strong><br />

CS.X.3 14 3e6 10YR 6/2 Subangular <strong>and</strong> subrounded<br />

s<strong>to</strong>nes <strong>and</strong> gravels.<br />

Clayey silts Difusse Epicardial<br />

<strong>Neolithic</strong><br />

CS.X.4 15 5e10 10YR 4/2 Clayey silts with<br />

s<strong>and</strong>s<br />

Sharp Presence <strong>of</strong> charcoals Epicardial<br />

<strong>Neolithic</strong><br />

CS.XI 16, 17 19 (16) 10YR 6/ Some s<strong>to</strong>nes <strong>and</strong> blocks Silty s<strong>and</strong>s Sharp Late Cardial<br />

8 (17) 5YR scattered.<br />

<strong>Neolithic</strong><br />

4/3<br />

CS.XII 18 30e35 5YR 4/2 Subangular blocks <strong>and</strong> s<strong>to</strong>nes. Clayey silts with<br />

s<strong>and</strong>s<br />

Sharp Abundant bone <strong>and</strong> charcoal<br />

rema<strong>in</strong>s<br />

Cardial <strong>Neolithic</strong><br />

CS.XIII 19, 20 9e35 5YR 4/4 Subrounded <strong>and</strong> subangular<br />

gravels <strong>and</strong> s<strong>to</strong>nes (1e2 cm).<br />

CS.XIV 21 53 7.5YR 5/4 Subangular s<strong>to</strong>nes <strong>and</strong> blocks<br />

scattered.<br />

*The lithology is micritic limes<strong>to</strong>ne.<br />

Clayey silts with<br />

s<strong>and</strong>s<br />

Clayey silts with<br />

s<strong>and</strong>s<br />

Sharp Lots <strong>of</strong> charcoal rema<strong>in</strong>s Mesolithic <strong>of</strong><br />

Notches <strong>and</strong><br />

Denticulates<br />

Sharp Charcoal <strong>and</strong> bone rema<strong>in</strong>s <strong>Epipaleolithic</strong><br />

Table 4<br />

Syn<strong>the</strong>sis <strong>of</strong> <strong>the</strong> stratigraphic <strong>and</strong> <strong>sedimentary</strong> field description <strong>of</strong> <strong>the</strong> Cova de la Gu<strong>in</strong>eu.<br />

Gu<strong>in</strong>eu<br />

Sedimentary<br />

layers<br />

Thickness (cm) Colour Course fraction F<strong>in</strong>e fraction Boundaries Organic <strong>and</strong> <strong>in</strong>organic components Cultural context<br />

G.Id 54 7.5YR 3/2 Subrounded blocks<br />

<strong>and</strong> s<strong>to</strong>nes.<br />

Clayey silt<br />

with s<strong>and</strong>s<br />

Sharp Puntuaction organic matter Late Postcardial<br />

<strong>Mid</strong>dle <strong>Neolithic</strong><br />

G.Ie<br />

8 (seen at <strong>the</strong> 7.5YR 4/4 Subrounded <strong>and</strong> S<strong>and</strong>y clays Difusse Late Cardial <strong>Neolithic</strong><br />

moment)<br />

subangular blocks.<br />

G.IIb 25e35 5YR 8/1 5YR 4/2 Some s<strong>to</strong>nes <strong>and</strong> Some s<strong>and</strong>s Sharp Carbonated ash accumulation with Postcardial <strong>Mid</strong>dle<br />

5YR 4/4 gravels.<br />

charcoals <strong>and</strong> organic rema<strong>in</strong>s<br />

<strong>Neolithic</strong><br />

G.II 75 7.5YR 3/2 Subrounded blocks<br />

<strong>and</strong> s<strong>to</strong>nes.<br />

S<strong>and</strong>y silt<br />

with clays<br />

Erosive<br />

contact<br />

Abundant charcoals<br />

Postcardial <strong>Mid</strong>dle<br />

<strong>Neolithic</strong><br />

G.IIIa 34 7.5YR 6/4 Subangular s<strong>to</strong>nes. S<strong>and</strong>y silt<br />

with clays<br />

Difusse<br />

<strong>Epipaleolithic</strong><br />

*The lithology is dolomitic limes<strong>to</strong>ne.<br />

<strong>ka</strong> <strong>BP</strong>) <strong>from</strong> Can Sadurní. From <strong>the</strong> stratigraphic <strong>and</strong> <strong>sedimentary</strong><br />

po<strong>in</strong>t <strong>of</strong> view <strong>the</strong>y are characterized ma<strong>in</strong>ly by an orientation <strong>of</strong> <strong>the</strong><br />

s<strong>to</strong>nes parallel <strong>to</strong> <strong>the</strong> slope <strong>of</strong> <strong>the</strong> deposit due <strong>to</strong> mass movement<br />

(Bertran <strong>and</strong> Texier, 1999). There are episodes, ma<strong>in</strong>ly <strong>in</strong> CS. XIII,<br />

with s<strong>to</strong>nes alongside o<strong>the</strong>rs <strong>in</strong> which clayey silt dom<strong>in</strong>ates. Accord<strong>in</strong>g<br />

<strong>to</strong> Bertran <strong>and</strong> Coutard (2004) <strong>the</strong>se are characteristic <strong>of</strong><br />

<strong>the</strong> flow front that buries materials <strong>from</strong> <strong>the</strong> upper levels that<br />

would have been <strong>the</strong> first <strong>to</strong> move.<br />

From <strong>the</strong> micromorphologi<strong>cal</strong> po<strong>in</strong>t <strong>of</strong> view, dist<strong>in</strong>ctive features<br />

are observed <strong>in</strong> this type <strong>of</strong> <strong>processes</strong>:<br />

CS.XIV is characterized by <strong>the</strong> vesicular microstructure (Fig. 5a)<br />

that is common <strong>in</strong> contexts with clayey silt matrix <strong>and</strong> under<br />

conditions <strong>of</strong> water saturation <strong>in</strong> which <strong>the</strong> air <strong>of</strong> <strong>the</strong> soil is<br />

reta<strong>in</strong>ed. This liquefaction can be caused, <strong>in</strong> this case, by <strong>the</strong> thaw<br />

that creates a mass movement (Bertran <strong>and</strong> Coutard, 2004; Van<br />

Vliet-Lano€e, 2010).<br />

As ped<strong>of</strong>eatures, we highlight <strong>the</strong> traces <strong>of</strong> clay illuviation,<br />

located ma<strong>in</strong>ly <strong>in</strong> <strong>the</strong> sides <strong>of</strong> voids <strong>of</strong> <strong>the</strong> matrix (Fig. 5b). This<br />

process is common <strong>in</strong> this type <strong>of</strong> deposit <strong>and</strong> would <strong>in</strong>dicate <strong>the</strong><br />

presence <strong>of</strong> water <strong>and</strong> non-flocculat<strong>in</strong>g conditions (decarbonated<br />

soils), characteristic <strong>of</strong> humid <strong>and</strong> percolat<strong>in</strong>g contexts. As a<br />

consequence, dissolution <strong>processes</strong> are observed <strong>in</strong> <strong>the</strong> limes<strong>to</strong>ne<br />

material, <strong>in</strong> ash waste <strong>and</strong> <strong>in</strong> <strong>the</strong> bones (Fig. 5c), with <strong>the</strong> formation<br />

<strong>of</strong> phosphate (apatite) hypocoat<strong>in</strong>gs <strong>in</strong> <strong>the</strong> detrital material that is<br />

typi<strong>cal</strong> <strong>of</strong> areas rich <strong>in</strong> phosphate; <strong>in</strong> this case orig<strong>in</strong>at<strong>in</strong>g <strong>from</strong> <strong>the</strong><br />

bones <strong>and</strong> react<strong>in</strong>g with <strong>the</strong> limes<strong>to</strong>ne material <strong>to</strong> produce a<br />

Please cite this article <strong>in</strong> press as: Bergada, M.M., et al., <strong>Chronostratigraphy</strong> <strong>in</strong> <strong><strong>ka</strong>rst</strong> <strong>records</strong> <strong>from</strong> <strong>the</strong> <strong>Epipaleolithic</strong> <strong>to</strong> <strong>the</strong> <strong>Mid</strong>/<strong>Early</strong> <strong>Neolithic</strong> (c.<br />

<strong>13.0e6.0</strong> <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>) <strong>in</strong> <strong>the</strong> <strong>Catalan</strong> <strong>Coastal</strong> <strong>Ranges</strong> <strong>of</strong> <strong>NE</strong> <strong>Iberia</strong>: <strong>environmental</strong> <strong>changes</strong>, <strong>sedimentary</strong> <strong>processes</strong> <strong>and</strong> <strong>human</strong> <strong>activity</strong>, Quaternary<br />

Science Reviews (2017), https://doi.org/10.1016/j.quascirev.2017.09.008


M.M. Bergada et al. / Quaternary Science Reviews xxx (2017) 1e21 9<br />

Table 5<br />

Syn<strong>the</strong>sis <strong>of</strong> <strong>the</strong> micromorphologi<strong>cal</strong> analysis description <strong>of</strong> <strong>the</strong> Cova de Can Sadurní.<br />

Can Sadurní<br />

Sedimentary<br />

layers<br />

Can Sadurní<br />

Archaeologi<strong>cal</strong><br />

layers<br />

Micr<strong>of</strong>acies Micromorphology Pedo<strong>sedimentary</strong> <strong>and</strong><br />

anthropic <strong>processes</strong><br />

Cultural<br />

context<br />

CS. VI 10 S<strong>and</strong>y silts with s<strong>to</strong>nes <strong>and</strong><br />

reworked herbivore<br />

excremental aggregates<br />

Microstructure: granular. 25% porosity. Groundmass: c/f Colluvium<br />

50 mm 1/3. Relative distribution: porphyric. Charcoals (***),<br />

bones (****) <strong>and</strong> herbivore excrement fragments (**)<br />

<strong>in</strong>cl<strong>in</strong>ed <strong>and</strong> verti<strong>cal</strong> arrangement. Calcitic crystallitic b-<br />

fabric. Ped<strong>of</strong>eatures: granular bioaggregates (þþ), Ca<br />

hypocoat<strong>in</strong>gs <strong>and</strong> P-Ca hypocoat<strong>in</strong>gs (þ), Fe (hydr)oxides<br />

orthic nodules (þþþ) <strong>and</strong> clay coat<strong>in</strong>gs (þ).<br />

Late<br />

Postcardial<br />

<strong>Mid</strong>dle<br />

<strong>Neolithic</strong><br />

CS. VIII 11 Layers <strong>of</strong> phy<strong>to</strong>liths <strong>and</strong><br />

organo-phosphated herbivore<br />

excrements<br />

<strong>in</strong> situ<br />

Thickness: 7 cm. Microstructure: subangular blocky, platy<br />

<strong>and</strong> massive. 25% porosity. Groundmass: c/f 50 mm 1/2. Silty<br />

clays with f<strong>in</strong>e s<strong>and</strong>s. Relative distribution: porphyric.<br />

Charcoals (***), articulated/disarticulated Si phy<strong>to</strong>liths<br />

aggregates (****), fae<strong>cal</strong> spherulites (*), bones (*), bird<br />

eggshells (*) <strong>and</strong> herbivore excrements (cattle *** <strong>and</strong><br />

ovicapr<strong>in</strong>e **). Calcitic crystallitic <strong>and</strong> undifferentiated b-<br />

fabric. Amorphous yellow (*). Ped<strong>of</strong>eatures: granular<br />

bioaggregates (þþ), Ca coat<strong>in</strong>gs (þ) <strong>and</strong> Fe (hydr)oxides<br />

nodules (þþ).<br />

Stabl<strong>in</strong>g areas without<br />

combustion with diffuse run<strong>of</strong>f<br />

<strong>and</strong> trampl<strong>in</strong>g<br />

Postcardial<br />

<strong>Mid</strong>dle<br />

<strong>Neolithic</strong><br />

CS. VIII 11 S<strong>and</strong>y silts with phosphatized<br />

herbivore excremental<br />

aggregates<br />

Microstructure: granular/platy. 10e20% porosity.<br />

Diffusse run<strong>of</strong>f <strong>and</strong> detrital<br />

Groundmass: c/f 50 mm 1/3. Relative distribution: porphyric. gours<br />

Sedimentary crust fragments. Detrital gour fragments.<br />

Charcoals (*), herbivore excrements (**) <strong>and</strong> seeds (*).<br />

Calcitic crystallitic b-fabric. Amorphous yellow/black f<strong>in</strong>e<br />

material. Ped<strong>of</strong>eatures: clay coat<strong>in</strong>gs (þ), Fe (hydr)oxides<br />

orthic nodules (þ), granular bioaggregates <strong>and</strong> roots (þþ).<br />

Postcardial<br />

<strong>Mid</strong>dle<br />

<strong>Neolithic</strong><br />

CS. VIII/X.2/<br />

X.4<br />

11, 13<br />

<strong>and</strong> 15<br />

Clayey silts <strong>and</strong> scattered Microstructure: subangular blocky, granular <strong>and</strong> platy. 25<br />

herbivore excrements with Fe e30% porosity. Groundmass: c/f 50 mm 1/3. Relative<br />

(hydr)oxides traces<br />

distribution: porphyric. Charcoals (***), seeds (* VIII), <strong>cal</strong>citic<br />

pseudomorphs (** VIII), <strong>cal</strong>citic pseudomorphs <strong>from</strong> druses<br />

(** CS.X.4), fae<strong>cal</strong> spherulites (**), disarticulated Si<br />

phy<strong>to</strong>liths aggregates (*** VIII, **X.4), m<strong>in</strong>eralized <strong>and</strong><br />

charred herbivore excrements (**), amorphous<br />

phosphatized herbivore excrements (* CS.X.4), bones (**),<br />

light combustion bird eggshells (* CS.X.4), pottery <strong>and</strong> fl<strong>in</strong>t<br />

fragments (*). Calcitic crystallitic <strong>and</strong> undifferentiated b-<br />

fabric. Ped<strong>of</strong>eatures: depletion (þþ), clay coat<strong>in</strong>gs (þVIII<br />

<strong>and</strong> X.4), Fe (hydr)oxides nodules (þþþ), Fe-P hypocoat<strong>in</strong>gs<br />

(vivianite <strong>in</strong> VIII, X.2) (þþ) <strong>and</strong> granular bioaggregates (þþ).<br />

Hydromorphic conditions<br />

(vivianite). Unlam<strong>in</strong>ated<br />

colluvium ( ), stabl<strong>in</strong>g areas<br />

traces (þ)<br />

Postcardial<br />

<strong>Mid</strong>dle<br />

<strong>Neolithic</strong><br />

/<br />

Epicardial<br />

<strong>Neolithic</strong><br />

CS. VIII/X.1 11, 12 M<strong>in</strong>eralized <strong>and</strong> charred<br />

erubified residues <strong>of</strong><br />

herbivore excrements <strong>and</strong><br />

plants <strong>in</strong> situ<br />

M<strong>in</strong>eralized residues.<br />

Stabl<strong>in</strong>g areas with<br />

Thickness: 1e6 cm. Microstructure: granular/massive. 2 combustion.<br />

e10% porosity. Groundmass: Crystallitic <strong>cal</strong>citic<br />

Hydromorphic conditions<br />

accumulation with some f<strong>in</strong>e s<strong>and</strong>s. Relative distribution: (vivianite)<br />

porphyric. Charcoals (*/**), prismatic pseudomorphs (***),<br />

droplets (**), m<strong>in</strong>eralized herbivore excrements<br />

(ovicapr<strong>in</strong>es) (**). Calcitic crystallitic b-fabric. Ped<strong>of</strong>eatures:<br />

granular bioaggregates (þþ/þþþ), Fe-P hypocoat<strong>in</strong>gs<br />

(vivianite) <strong>in</strong> CS.X.1 <strong>and</strong> Fe (hydr)oxides nodules (þ).<br />

CS. X.1 12 Charcoals residues<br />

Thickness: 0,5 cm. Charcoals <strong>of</strong> tabular morphology with<br />

woody structure.<br />

Charred <strong>and</strong> rubified residues<br />

CS. VIII/X.1 11, 12 Thickness: 1e3,5 cm. Microstructure: spongy/granular. 25<br />

e30% porosity. Groundmass: c/f 50 mm 1/2. S<strong>and</strong>y silts with<br />

some gravel. Relative distribution: porphyric. Charcoals<br />

(*/**), charred fragments (**), fae<strong>cal</strong> spherulites (**),<br />

charred/rubified herbivore excrements (**). Calcitic<br />

crystallitic b-fabric. Ped<strong>of</strong>eatures: Fe (hydr)oxides nodules<br />

(þþ) <strong>and</strong> granular bioaggregates (þþ/þþþ).<br />

Postcardial<br />

<strong>Mid</strong>dle<br />

<strong>Neolithic</strong><br />

CS. XI 16, 17 Silty s<strong>and</strong>s with clays with<br />

herbivore excremental<br />

aggregates<br />

Microstructure: subangular blocky/massive. 5e30% Unlam<strong>in</strong>ated colluvium/<br />

porosity. Groundmass: c/f 50 mm 2/1-1/2. Relative stabl<strong>in</strong>g areas traces (þ).<br />

distribution: porphyric. Charcoals (****), Si phy<strong>to</strong>liths (***), Hydromorphism<br />

fae<strong>cal</strong> spherulites (***), charred herbivore excrements (**),<br />

bones (****) <strong>and</strong> pottery fragments (*). Calcitic crystallitic b-<br />

fabric. Ped<strong>of</strong>eatures: roots traces (þþ), limpid clay coat<strong>in</strong>gs<br />

(þþ), Fe (hydr)oxides orthic nodules (þ/þþþþ) <strong>and</strong> Ca<br />

hypocoat<strong>in</strong>gs (þþ).<br />

Late Cardial<br />

<strong>Neolithic</strong><br />

(cont<strong>in</strong>ued on next page)<br />

Please cite this article <strong>in</strong> press as: Bergada, M.M., et al., <strong>Chronostratigraphy</strong> <strong>in</strong> <strong><strong>ka</strong>rst</strong> <strong>records</strong> <strong>from</strong> <strong>the</strong> <strong>Epipaleolithic</strong> <strong>to</strong> <strong>the</strong> <strong>Mid</strong>/<strong>Early</strong> <strong>Neolithic</strong> (c.<br />

<strong>13.0e6.0</strong> <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>) <strong>in</strong> <strong>the</strong> <strong>Catalan</strong> <strong>Coastal</strong> <strong>Ranges</strong> <strong>of</strong> <strong>NE</strong> <strong>Iberia</strong>: <strong>environmental</strong> <strong>changes</strong>, <strong>sedimentary</strong> <strong>processes</strong> <strong>and</strong> <strong>human</strong> <strong>activity</strong>, Quaternary<br />

Science Reviews (2017), https://doi.org/10.1016/j.quascirev.2017.09.008


10<br />

M.M. Bergada et al. / Quaternary Science Reviews xxx (2017) 1e21<br />

Table 5 (cont<strong>in</strong>ued )<br />

Can Sadurní<br />

Sedimentary<br />

layers<br />

Can Sadurní<br />

Archaeologi<strong>cal</strong><br />

layers<br />

Micr<strong>of</strong>acies Micromorphology Pedo<strong>sedimentary</strong> <strong>and</strong><br />

anthropic <strong>processes</strong><br />

Cultural<br />

context<br />

CS. XII 18 S<strong>to</strong>nes, gravels <strong>and</strong> clayey<br />

silts with herbivore<br />

excremental aggregates<br />

Microstructure: granular/subangular blocky. 25% porosity. Colluvium (þ)/stabl<strong>in</strong>g areas<br />

Groundmass: g/f 50 mm 3/1. Relative distribution: porphyric traces ( )<br />

<strong>and</strong> chi<strong>to</strong>nic. Charcoals (***), scattered fae<strong>cal</strong> spherulites<br />

(**), Si phy<strong>to</strong>liths (***), bones (**), herbivore excremental<br />

aggregates (**), pottery <strong>and</strong> fl<strong>in</strong>t fragments (*). Calcitic<br />

crystallitic b-fabric. Ped<strong>of</strong>eatures: clay coat<strong>in</strong>gs (þ) <strong>and</strong> Fe<br />

dots <strong>and</strong> sta<strong>in</strong><strong>in</strong>gs (þ).<br />

Cardial<br />

<strong>Neolithic</strong><br />

CS. XIII 19, 20 Clayey silts with granular/<br />

vesicular microstructure <strong>and</strong><br />

s<strong>to</strong>nes<br />

CS. XIV 21 Clayey silts <strong>and</strong> s<strong>and</strong>s with<br />

vesicular microstructure <strong>and</strong><br />

s<strong>to</strong>nes<br />

Microstructure: granular/vesicular/subangular blocky. 20 Moderate freeze-thaw traces<br />

e25% porosity. Groundmass: g/f 50 mm 3/1- 1/2. Relative <strong>and</strong> solifluction<br />

distribution: porphyric. S<strong>to</strong>nes <strong>and</strong> gravels with subangular/<br />

subrounded morphology with some fissures. Incl<strong>in</strong>ed or<br />

verti<strong>cal</strong> arrangement. Charcoals (**), bones (***/****). Calcitic<br />

crystallitic b-fabric. Ped<strong>of</strong>eatures: Fe (hydr)oxides orthic<br />

nodules (þ), limpid clay coat<strong>in</strong>gs (þþ) <strong>and</strong> dissolution<br />

traces <strong>in</strong> limes<strong>to</strong>nes.<br />

Microstructure: vesicular/granular/subangular blocky. 20 Solifluction<br />

e25% porosity. Groundmass: g/f 50 mm 4/1- 1/2. Relative<br />

distribution: porphyric. Charcoals (**/***), bones (**/****)<br />

with light traces <strong>of</strong> combustion. Calcitic crystallitic b-fabric.<br />

Ped<strong>of</strong>eatures: limpid clay coat<strong>in</strong>gs (þþþþ/þþþþþ),<br />

dissolution traces <strong>in</strong> limes<strong>to</strong>nes <strong>and</strong> bones (þþþþþ), P-Ca<br />

hypocoat<strong>in</strong>gs (þþþþþ), Fe (hydr)oxides orthic nodules<br />

(þþ) <strong>and</strong> granular bioaggregates (þþ/þþþ).<br />

Mesolithic<br />

<strong>Epipaleolithic</strong><br />

The lithologi<strong>cal</strong> <strong>and</strong> m<strong>in</strong>eralogi<strong>cal</strong> fraction consists ma<strong>in</strong>ly <strong>of</strong> micritic limes<strong>to</strong>ne, quartz, feldspar, plagioclase <strong>and</strong> <strong>cal</strong>cite.<br />

Class frequencies after (Bullock et al., 1985): * Very few (70%).<br />

Class abundance <strong>of</strong> ped<strong>of</strong>eatures after (Bullock et al., 1985): þ Rare (20%).<br />

replacement <strong>of</strong> <strong>the</strong> <strong>cal</strong>cite by apatite (Kar<strong>ka</strong>nas <strong>and</strong> Goldberg,<br />

2010). They are <strong>in</strong>dica<strong>to</strong>r characteristics <strong>of</strong> <strong>the</strong> oscillat<strong>in</strong>g humidity<br />

conditions typi<strong>cal</strong> <strong>of</strong> <strong>the</strong>se <strong>records</strong>.<br />

Disruptions <strong>in</strong> sedimentation are documented by biologi<strong>cal</strong><br />

<strong>activity</strong>.<br />

CS.XIII is dist<strong>in</strong>guished especially by a granular microstructure,<br />

with slight fissures <strong>of</strong> <strong>the</strong> detrital material <strong>and</strong> with orientation<br />

<strong>changes</strong> (verti<strong>cal</strong> or slop<strong>in</strong>g) <strong>of</strong> bones, charcoals <strong>and</strong> some <strong>of</strong> <strong>the</strong><br />

s<strong>to</strong>nes <strong>of</strong> subangular <strong>and</strong> subrounded morphology (Fig. 5d), <strong>in</strong>dica<strong>to</strong>rs<br />

<strong>of</strong> a moderate freeze-thaw process (Van Vliet-Lano€e, 2010)<br />

that would cause cryoturbation <strong>processes</strong>. These characteristics<br />

<strong>in</strong>dicate a significant change <strong>in</strong> <strong>the</strong> <strong>environmental</strong> conditions <strong>of</strong> <strong>the</strong><br />

cave, which undoubtedly suffered <strong>the</strong> effects <strong>of</strong> frost once <strong>the</strong> cavity<br />

had been occupied.<br />

4.1.2. Gravitational <strong>and</strong> colluvium <strong>processes</strong><br />

These <strong>processes</strong> are responsible for most <strong>of</strong> <strong>the</strong> detrital <strong>sedimentary</strong><br />

record <strong>of</strong> <strong>the</strong> two cavities. Three types are dist<strong>in</strong>guished,<br />

<strong>and</strong> <strong>in</strong> <strong>the</strong> <strong>Neolithic</strong> sequence <strong>the</strong>re are also contributions <strong>of</strong> anthropic<br />

orig<strong>in</strong>: unlam<strong>in</strong>ated colluvium with gravitational movements,<br />

colluvium blocks <strong>and</strong> unlam<strong>in</strong>ated colluvium where <strong>the</strong> clay<br />

silt matrix predom<strong>in</strong>ates <strong>in</strong> relation <strong>to</strong> <strong>the</strong> coarse fraction.<br />

4.1.2.1. Unlam<strong>in</strong>ated colluvium with gravitational movements.<br />

These are dist<strong>in</strong>guished <strong>in</strong> <strong>the</strong> <strong>Epipaleolithic</strong> sequence <strong>of</strong> Gu<strong>in</strong>eu<br />

(G. IIIa 12.7e12.2 <strong>and</strong> 11.5e11.1 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>). These deposits are<br />

characterized by <strong>the</strong>ir matrix <strong>of</strong> silts <strong>and</strong> clays with s<strong>and</strong>s <strong>to</strong>ge<strong>the</strong>r<br />

with heterometric blocks <strong>of</strong> subangular morphology without <strong>in</strong>ternal<br />

order<strong>in</strong>g. The matrix <strong>and</strong> <strong>the</strong> wet conditions have been<br />

determ<strong>in</strong>ant for <strong>the</strong> placement <strong>of</strong> <strong>the</strong> level.<br />

The general subangular blocky microstructure is <strong>in</strong>dicative <strong>of</strong><br />

wett<strong>in</strong>g <strong>and</strong> desiccation <strong>of</strong> <strong>the</strong> matrix (Fitzpatrick, 1990). As<br />

ped<strong>of</strong>eatures, as <strong>in</strong> CS. XIV <strong>the</strong>re are ma<strong>in</strong>ly traces <strong>of</strong> clay<br />

illuviation.<br />

4.1.2.2. Colluvium <strong>and</strong> blocks. These are dist<strong>in</strong>guished by <strong>the</strong><br />

presence <strong>of</strong> heterometric detrital deposits with blocks <strong>and</strong> some<br />

angular s<strong>to</strong>nes result<strong>in</strong>g <strong>from</strong> collapses that were deposited <strong>in</strong><br />

cavities by <strong>the</strong> retreat<strong>in</strong>g open<strong>in</strong>gs <strong>to</strong> <strong>the</strong> exterior or <strong>from</strong> <strong>the</strong> slope<br />

or dip slope <strong>of</strong> <strong>the</strong> <strong><strong>ka</strong>rst</strong>ic surface, creat<strong>in</strong>g gravitational debris<br />

cones.<br />

In <strong>the</strong> exterior part <strong>of</strong> Gu<strong>in</strong>eu <strong>the</strong>re are large blocks result<strong>in</strong>g<br />

<strong>from</strong> <strong>the</strong> collapse <strong>of</strong> <strong>the</strong> ro<strong>of</strong> <strong>of</strong> <strong>the</strong> cavity. In contrast, <strong>in</strong> Can<br />

Sadurní <strong>the</strong> cone is <strong>of</strong> greater amplitude <strong>and</strong> consists <strong>of</strong> clasts<br />

orig<strong>in</strong>at<strong>in</strong>g <strong>from</strong> <strong>the</strong> outside. The ro<strong>of</strong> <strong>of</strong> Can Sadurní, however,<br />

presents no erosive signal, but <strong>the</strong> dissolution modell<strong>in</strong>g corresponds<br />

<strong>to</strong> <strong>the</strong> <strong>processes</strong> <strong>of</strong> cavitation <strong>in</strong> a duct flooded by water that<br />

corresponds <strong>to</strong> a stage preced<strong>in</strong>g <strong>the</strong> formation <strong>of</strong> <strong>the</strong> Holocene<br />

deposit. The anthropic alteration <strong>of</strong> <strong>the</strong> entrance <strong>of</strong> <strong>the</strong> cavity is<br />

very important <strong>and</strong> hides <strong>the</strong> lateral relation <strong>of</strong> <strong>the</strong> materials <strong>and</strong><br />

<strong>the</strong> geometry <strong>of</strong> <strong>the</strong> deposit <strong>to</strong>wards <strong>the</strong> outside.<br />

These detrital deposits are formed by different dry avenues that<br />

created debris cones <strong>to</strong>wards <strong>the</strong> <strong>in</strong>terior <strong>of</strong> <strong>the</strong> cavity; <strong>the</strong> first <strong>and</strong><br />

<strong>the</strong> oldest hav<strong>in</strong>g a greater slope than <strong>the</strong> more recent ones.<br />

They are ma<strong>in</strong>ly developed <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g levels <strong>of</strong> Can<br />

Sadurní <strong>and</strong> Gu<strong>in</strong>eu: CS.XII (Cardial <strong>Early</strong> <strong>Neolithic</strong>, 7.4e7.2 <strong>cal</strong> <strong>ka</strong><br />

<strong>BP</strong>), CS.IX (<strong>Early</strong> Postcardial <strong>Mid</strong>dle <strong>Neolithic</strong>, 6.8e6.3 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>), CS.<br />

VII (Late Postcardial <strong>Mid</strong>dle <strong>Neolithic</strong>, 6.2e5.7 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>), G.II<br />

(Postcardial <strong>Mid</strong>dle <strong>Neolithic</strong>) <strong>and</strong> G. Id (Late Postcardial <strong>Mid</strong>dle<br />

<strong>Neolithic</strong>, 6.3e5.9 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>).<br />

It is very difficult <strong>to</strong> discern which process triggered <strong>the</strong> great<br />

contribution <strong>of</strong> blocks <strong>and</strong> s<strong>to</strong>nes s<strong>in</strong>ce most are part <strong>of</strong> <strong>the</strong> colluvium<br />

fill<strong>in</strong>g. In any case, we consider hypo<strong>the</strong>ses that could be <strong>the</strong><br />

result <strong>of</strong> denudation <strong>processes</strong> <strong>of</strong> a previous phase <strong>of</strong> alteration,<br />

formation <strong>of</strong> collapse dol<strong>in</strong>es, evolution <strong>of</strong> <strong>ka</strong>rren at depth <strong>and</strong> very<br />

<strong>in</strong>tense dissolution <strong>in</strong> more humid <strong>and</strong> temperate conditions than<br />

<strong>the</strong> present ones. The morphology <strong>of</strong> <strong>the</strong> <strong>ka</strong>rren <strong>in</strong>dicates an orig<strong>in</strong><br />

under a pedologic coverage <strong>and</strong> later re<strong>to</strong>uch under aerial<br />

conditions.<br />

Please cite this article <strong>in</strong> press as: Bergada, M.M., et al., <strong>Chronostratigraphy</strong> <strong>in</strong> <strong><strong>ka</strong>rst</strong> <strong>records</strong> <strong>from</strong> <strong>the</strong> <strong>Epipaleolithic</strong> <strong>to</strong> <strong>the</strong> <strong>Mid</strong>/<strong>Early</strong> <strong>Neolithic</strong> (c.<br />

<strong>13.0e6.0</strong> <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>) <strong>in</strong> <strong>the</strong> <strong>Catalan</strong> <strong>Coastal</strong> <strong>Ranges</strong> <strong>of</strong> <strong>NE</strong> <strong>Iberia</strong>: <strong>environmental</strong> <strong>changes</strong>, <strong>sedimentary</strong> <strong>processes</strong> <strong>and</strong> <strong>human</strong> <strong>activity</strong>, Quaternary<br />

Science Reviews (2017), https://doi.org/10.1016/j.quascirev.2017.09.008


M.M. Bergada et al. / Quaternary Science Reviews xxx (2017) 1e21 11<br />

Table 6<br />

Syn<strong>the</strong>sis <strong>of</strong> <strong>the</strong> micromorphologi<strong>cal</strong> analysis description <strong>of</strong> <strong>the</strong> Cova de la Gu<strong>in</strong>eu.<br />

Gu<strong>in</strong>eu<br />

Sedimentary<br />

layers<br />

Micr<strong>of</strong>acies Micromorphology Pedo<strong>sedimentary</strong> <strong>and</strong><br />

anthropic <strong>processes</strong><br />

G. Id S<strong>to</strong>nes, clayey silts with s<strong>and</strong>s Microstructure: granular. 25% porosity. Groundmass: g/f 50 mm 2/<br />

1.Relative distribution:porphyric. Charcoals (**), bones (*) with light<br />

traces <strong>of</strong> combustion. Calcitic crystallitic/undifferentiated b-fabric.<br />

Amorphous black organic f<strong>in</strong>e material/puntuaction organic matter.<br />

Ped<strong>of</strong>eatures:clay coat<strong>in</strong>gs/hypocoat<strong>in</strong>gs (þþ), granular bioaggregates<br />

(þþþþþ) <strong>and</strong> roots.<br />

Colluvium, block<br />

breakdown <strong>and</strong><br />

pedogenesis (organic<br />

material)<br />

G. Ie S<strong>and</strong>y clays with s<strong>to</strong>nes Microstructure: granular/subangular blocky. 10e20% porosity.<br />

Groundmass: g/f 50 mm 1/3. Relative distribution: porphyric. Charcoals<br />

(***), bones (*) with light traces <strong>of</strong> dissolution. Calcitic crystallitic b-<br />

fabric. Ped<strong>of</strong>eatures: limpid clay coat<strong>in</strong>gs/hypocoat<strong>in</strong>gs (þþ), traces <strong>of</strong><br />

dissolution <strong>in</strong> dolomitic limes<strong>to</strong>nes (þ), Fe (hydr)oxides nodules (þ) <strong>and</strong><br />

bleached mottles (þ).<br />

Unlam<strong>in</strong>ated colluvium<br />

<strong>and</strong> variable<br />

hydromorphism<br />

Cultural<br />

context<br />

Late<br />

Postcardial<br />

<strong>Mid</strong>dle<br />

<strong>Neolithic</strong><br />

Late Cardial<br />

<strong>Neolithic</strong><br />

G.IIb<br />

M<strong>in</strong>eralized <strong>and</strong> charred erubified M<strong>in</strong>eralized residues. Units:1, 4, 6 <strong>and</strong> 8. Thickness 1e4,5 cm. Stabl<strong>in</strong>g areas with<br />

residues <strong>of</strong> herbivore excrements <strong>and</strong> Microstructure: massive. 2e10% porosity. Crystallitic <strong>cal</strong>citic<br />

combustion<br />

plants <strong>in</strong> situ<br />

accumulation with some f<strong>in</strong>e s<strong>and</strong>s. Relative distribution: porphyric.<br />

Charcoals (*), prismatic pseudomorphs (****), droplets (**), m<strong>in</strong>eralized<br />

herbivore excrements (ovicapr<strong>in</strong>es) (**) <strong>and</strong> pottery fragments (*).<br />

Calcitic crystallitic b-fabric. Ped<strong>of</strong>eatures:granular bioaggregates (þ), Fe<br />

nodules, dots <strong>and</strong> sta<strong>in</strong><strong>in</strong>gs (þ).<br />

Charred <strong>and</strong> rubified residues. Units: 2 <strong>and</strong> 7. Thickness 1e2,5 cm.<br />

Microstructure: spongy/granular. 25e30% porosity. Groundmass: c/f<br />

50 mm 1/2 s<strong>and</strong>y silts. Relative distribution: porphyric. Charcoals (**/***),<br />

charred fragments (**), fae<strong>cal</strong> spherulites (**), charred/rubified herbivore<br />

excrements (**) <strong>and</strong> bones (*). Calcitic crystallitic b-fabric. Ped<strong>of</strong>eatures:<br />

Ca hypocoat<strong>in</strong>gs (þ), Fe dots <strong>and</strong> sta<strong>in</strong><strong>in</strong>gs (þþ) <strong>and</strong> granular<br />

bioaggregates (þþþ).<br />

Postcardial<br />

<strong>Mid</strong>dle<br />

<strong>Neolithic</strong><br />

G.IIb S<strong>and</strong>y silts Units: 3 <strong>and</strong> 5. Thickness 2,5 - 4 cm. Microstructure: granular. 25%<br />

porosity. Groundmass: g/f 50 mm 2/1.Relative distribution: porphyric.<br />

Charcoals (***), bones (*) with light traces <strong>of</strong> combustion. Calcitic<br />

crystallitic b-fabric. Ped<strong>of</strong>eatures: clay coat<strong>in</strong>gs (þþ), Ca coat<strong>in</strong>gs/<br />

hypocoat<strong>in</strong>gs (þ) <strong>and</strong> granular bioaggregates (þþ).<br />

Diffusse run<strong>of</strong>f<br />

Postcardial<br />

<strong>Mid</strong>dle<br />

<strong>Neolithic</strong><br />

G. II S<strong>and</strong>y silts with clays <strong>and</strong> s<strong>to</strong>nes with<br />

subrounded anthropic components<br />

Microstructure: subangular blocky. 30% porosity. Groundmass: c/f 50 mm Colluvium<br />

1/2. Relative distribution: porphyric. Charcoals (***), charred <strong>and</strong><br />

m<strong>in</strong>eralized herbivore excrements (**), prismatic pseudomorph<br />

aggregates (**), bones (**), pottery fragments (**) <strong>and</strong> malacologi<strong>cal</strong><br />

rema<strong>in</strong>s (*). Calcitic crystallitic b-fabric. Ped<strong>of</strong>eatures: clay hypocoat<strong>in</strong>gs<br />

(þ), Ca hypocoat<strong>in</strong>gs/coat<strong>in</strong>gs (þþ), Fe dots <strong>and</strong> sta<strong>in</strong><strong>in</strong>gs (þ) <strong>and</strong><br />

granular bioaggregates (þþþ).<br />

G. IIIa S<strong>to</strong>nes <strong>and</strong> s<strong>and</strong>y silts with clays Microstructure: subangular blocky. 15% porosity. Groundmass: c/f 50 mm<br />

2/1. Relative distribution: porphyric. Charcoals (*) <strong>and</strong> bones (*) with<br />

light traces <strong>of</strong> combustion. Calcitic crystallitic b-fabric. Ped<strong>of</strong>eatures:<br />

clay coat<strong>in</strong>gs/hypocoat<strong>in</strong>gs (þþþ), Ca hypocoat<strong>in</strong>gs (þ), Fe dots <strong>and</strong><br />

sta<strong>in</strong><strong>in</strong>gs (þ) <strong>and</strong> granular bioaggregates (þþþ).<br />

Unlam<strong>in</strong>ated colluvium<br />

with gravitational<br />

movements<br />

Postcardial<br />

<strong>Mid</strong>dle<br />

<strong>Neolithic</strong><br />

<strong>Epipaleolithic</strong><br />

The li<strong>to</strong>logi<strong>cal</strong> <strong>and</strong> m<strong>in</strong>eralogi<strong>cal</strong> fraction consists ma<strong>in</strong>ly <strong>of</strong> dolomitic limes<strong>to</strong>ne, quartz, <strong>cal</strong>cite, dolomite <strong>and</strong> feldspar.<br />

Class frequencies after (Bullock et al., 1985): * Very few (70%).<br />

Class abundance <strong>of</strong> ped<strong>of</strong>eatures after (Bullock et al., 1985): þ Rare (20%).<br />

This type <strong>of</strong> contribution beg<strong>in</strong>s <strong>in</strong> <strong>the</strong> case <strong>of</strong> Can Sadurní <strong>in</strong><br />

CS.XII <strong>and</strong> <strong>in</strong> Gu<strong>in</strong>eu by <strong>the</strong> present data <strong>in</strong> G. II. This implies <strong>the</strong><br />

formation <strong>of</strong> <strong>the</strong> debris cone <strong>and</strong> <strong>the</strong> entrance <strong>of</strong> detrital materials<br />

occurred <strong>in</strong> <strong>the</strong> later stages.<br />

In Can Sadurní, <strong>the</strong> largest clasts <strong>of</strong> CS. XII are deposited with <strong>the</strong><br />

longest axes parallel <strong>to</strong> <strong>the</strong> slope, <strong>to</strong>ge<strong>the</strong>r with very angular<br />

gravels <strong>in</strong>dicat<strong>in</strong>g a particularly dry <strong>and</strong> cold period. There is<br />

stratigraphic discont<strong>in</strong>uity with respect <strong>to</strong> CS. XIII (Mesolithic). On<br />

<strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, <strong>from</strong> 6.8 <strong>to</strong> 6.3 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>, <strong>the</strong> blocks <strong>and</strong> s<strong>to</strong>nes<br />

(CS.IX) are arranged with <strong>the</strong> longest axis perpendicular <strong>to</strong> <strong>the</strong><br />

slope, <strong>in</strong>dicat<strong>in</strong>g a movement <strong>in</strong> more humid conditions; <strong>in</strong> erosive<br />

contact <strong>and</strong> with a shallower slope than dur<strong>in</strong>g <strong>the</strong> Cardial<br />

<strong>Neolithic</strong>. Along <strong>the</strong> temporal period that represents <strong>the</strong> whole<br />

deposit, <strong>the</strong>re are pauses <strong>and</strong> reactivations that cause a replacement<br />

<strong>of</strong> coarse fraction <strong>and</strong> redistribution <strong>of</strong> <strong>the</strong> f<strong>in</strong>er ones,<br />

especially <strong>to</strong>wards <strong>the</strong> more distal parts.<br />

This last episode correlates with G. II (Postcardial <strong>Mid</strong>dle<br />

<strong>Neolithic</strong>), present<strong>in</strong>g an erosive contact with G. IIIa (<strong>Epipaleolithic</strong>).<br />

This process also recurred dur<strong>in</strong>g 6.2e5.7 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong> <strong>in</strong><br />

Can Sadurní (CS VII - VI) with an erosive contact, <strong>and</strong> <strong>in</strong> Gu<strong>in</strong>eu (G.<br />

Id). In this latter cave, two great blocks that were detached <strong>from</strong> <strong>the</strong><br />

ro<strong>of</strong> are located <strong>in</strong> <strong>the</strong> <strong>to</strong>p wall <strong>of</strong> <strong>the</strong> level.<br />

From <strong>the</strong> micromorphologi<strong>cal</strong> po<strong>in</strong>t <strong>of</strong> view <strong>the</strong>y are characterized<br />

by a groundmass rich <strong>in</strong> <strong>the</strong> coarse fraction, with little <strong>in</strong>ternal<br />

cohesion. It consists <strong>of</strong> mixed bone <strong>and</strong> malacologi<strong>cal</strong><br />

rema<strong>in</strong>s, charcoals, pottery <strong>and</strong> a few excremental aggregates <strong>of</strong><br />

ovicaprids (Fig. 5e). The microstructure is weak granular/subangular<br />

blocky, with traces <strong>of</strong> material rotation, characteristic features<br />

<strong>of</strong> <strong>the</strong>se <strong>records</strong> (Bertran <strong>and</strong> Texier, 1999; Kar<strong>ka</strong>nas <strong>and</strong><br />

Goldberg, 2013). In Gu<strong>in</strong>eu, G. Id, an enrichment <strong>of</strong> organic<br />

Please cite this article <strong>in</strong> press as: Bergada, M.M., et al., <strong>Chronostratigraphy</strong> <strong>in</strong> <strong><strong>ka</strong>rst</strong> <strong>records</strong> <strong>from</strong> <strong>the</strong> <strong>Epipaleolithic</strong> <strong>to</strong> <strong>the</strong> <strong>Mid</strong>/<strong>Early</strong> <strong>Neolithic</strong> (c.<br />

<strong>13.0e6.0</strong> <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>) <strong>in</strong> <strong>the</strong> <strong>Catalan</strong> <strong>Coastal</strong> <strong>Ranges</strong> <strong>of</strong> <strong>NE</strong> <strong>Iberia</strong>: <strong>environmental</strong> <strong>changes</strong>, <strong>sedimentary</strong> <strong>processes</strong> <strong>and</strong> <strong>human</strong> <strong>activity</strong>, Quaternary<br />

Science Reviews (2017), https://doi.org/10.1016/j.quascirev.2017.09.008


12<br />

M.M. Bergada et al. / Quaternary Science Reviews xxx (2017) 1e21<br />

Fig. 5. Micromorphologi<strong>cal</strong> features <strong>of</strong> <strong>the</strong> pedo<strong>sedimentary</strong> <strong>processes</strong> <strong>in</strong> <strong>the</strong> sites located between c. <strong>13.0e6.0</strong> <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>.<br />

a. Can Sadurní. CS.XIV. Vesicular microstructure. Vesicle voids (v). PPL.<br />

b. Can Sadurní. CS.XIV. F<strong>in</strong>e material hypocoat<strong>in</strong>g with oriented doma<strong>in</strong>s (arrow) <strong>in</strong> a void. XPL.<br />

c. Can Sadurní. CS.XIV. Traces <strong>of</strong> very sharp dissolution <strong>in</strong> bone fragment (arrow). In <strong>the</strong> <strong>in</strong>terior, a f<strong>in</strong>e hypocoat<strong>in</strong>g can be observed. PPL.<br />

d. Can Sadurní. CS.XIII. Verti<strong>cal</strong>ly oriented coarse material: gravels <strong>and</strong> charcoal fragments. PPL.<br />

e. Gu<strong>in</strong>eu. G.II. Subrounded pottery (P) fragment <strong>to</strong>ge<strong>the</strong>r with a burned ovicapr<strong>in</strong>e coprolite (C) <strong>and</strong> subrounded morphology wood ash aggregates mixed <strong>in</strong> <strong>the</strong> groundmass (A).<br />

PPL.<br />

f. Can Sadurní. CS.X. Phosphatic accumulations <strong>in</strong> excremental aggregate with <strong>the</strong> presence <strong>of</strong> vivianite (v). XPL.<br />

g. Can Sadurní.CS.VIII. Field view <strong>of</strong> a gour fragment (arrow).<br />

h. Can Sadurní. CS.VIII. Gour groundmass. Note microsparitic <strong>cal</strong>cite hypocoat<strong>in</strong>g (arrow) <strong>in</strong> <strong>the</strong> <strong>to</strong>p <strong>of</strong> <strong>the</strong> gour.<br />

Please cite this article <strong>in</strong> press as: Bergada, M.M., et al., <strong>Chronostratigraphy</strong> <strong>in</strong> <strong><strong>ka</strong>rst</strong> <strong>records</strong> <strong>from</strong> <strong>the</strong> <strong>Epipaleolithic</strong> <strong>to</strong> <strong>the</strong> <strong>Mid</strong>/<strong>Early</strong> <strong>Neolithic</strong> (c.<br />

<strong>13.0e6.0</strong> <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>) <strong>in</strong> <strong>the</strong> <strong>Catalan</strong> <strong>Coastal</strong> <strong>Ranges</strong> <strong>of</strong> <strong>NE</strong> <strong>Iberia</strong>: <strong>environmental</strong> <strong>changes</strong>, <strong>sedimentary</strong> <strong>processes</strong> <strong>and</strong> <strong>human</strong> <strong>activity</strong>, Quaternary<br />

Science Reviews (2017), https://doi.org/10.1016/j.quascirev.2017.09.008


M.M. Bergada et al. / Quaternary Science Reviews xxx (2017) 1e21 13<br />

Fig. 6. Stabl<strong>in</strong>g area with combustion (layer cake). Gu<strong>in</strong>eu (G.IIb): micromorphologi<strong>cal</strong> features.<br />

a. General view. At <strong>the</strong> <strong>to</strong>p, m<strong>in</strong>eralized residues appear <strong>and</strong> at <strong>the</strong> bot<strong>to</strong>m, rubified <strong>and</strong> charred residues.<br />

b. Detail <strong>of</strong> <strong>the</strong> previous image. 1. Ash accumulation composed <strong>of</strong> <strong>cal</strong>cite pseudomorph <strong>of</strong> plant orig<strong>in</strong> with some charcoal fragments <strong>and</strong> ovicapr<strong>in</strong>e m<strong>in</strong>eralized coprolites. 2.<br />

Charcoals (arrows) charred <strong>and</strong> rubified dropp<strong>in</strong>gs. XPL.<br />

c. Detail <strong>of</strong> a burned ovicapr<strong>in</strong>e coprolite. Note <strong>the</strong> presence <strong>of</strong> <strong>the</strong> carbonized organic coat<strong>in</strong>g cover<strong>in</strong>g <strong>the</strong> fae<strong>cal</strong> spherulites (arrow). XPL.<br />

d. Detail <strong>of</strong> wood ashes (prismatic <strong>cal</strong>citic pseudomorphs) (arrows). PPL.<br />

e. Detail <strong>of</strong> charred <strong>and</strong> rubified dropp<strong>in</strong>g. In arrow fae<strong>cal</strong> spheruli<strong>the</strong>s.<br />

XPL.<br />

matter is visible <strong>in</strong> <strong>the</strong> exterior sec<strong>to</strong>r. It is characterized by <strong>in</strong>tense<br />

biologi<strong>cal</strong> <strong>activity</strong>, ma<strong>in</strong>ly <strong>of</strong> roots as documented both by <strong>the</strong><br />

channel microstructure <strong>and</strong> by <strong>the</strong> presence <strong>of</strong> <strong>the</strong>ir rema<strong>in</strong>s. This<br />

corroborates its aerial exposure for an extended period <strong>of</strong> time.<br />

4.1.2.3. Unlam<strong>in</strong>ated colluvium. This is characterized by a f<strong>in</strong>e matrix<br />

<strong>of</strong> clayey silt; <strong>in</strong> places <strong>the</strong>re is a significant <strong>in</strong>crease <strong>in</strong> <strong>the</strong><br />

s<strong>and</strong>y fraction, along with some s<strong>to</strong>nes <strong>and</strong> scattered blocks. From<br />

<strong>the</strong> micromorphologi<strong>cal</strong> po<strong>in</strong>t <strong>of</strong> view <strong>the</strong>y are characterized by a<br />

massive/subangular blocky microstructure with a very f<strong>in</strong>e separation<br />

between <strong>the</strong> aggregates, common traces <strong>in</strong> <strong>the</strong>se contexts<br />

(Mücher et al., 2010). Components <strong>of</strong> anthropic orig<strong>in</strong> also appear<br />

dispersed <strong>in</strong> <strong>the</strong> groundmass.<br />

In some levels <strong>sedimentary</strong> contributions are weak <strong>and</strong> so <strong>human</strong><br />

<strong>activity</strong> is better reflected <strong>and</strong> <strong>the</strong> removal <strong>of</strong> its components is<br />

lower. This is <strong>the</strong> case <strong>of</strong> CS. XI (Late Cardial <strong>Neolithic</strong>) <strong>and</strong> CS.X<br />

(Epicardial <strong>Neolithic</strong>) dated between 7.2 <strong>and</strong> 6.6 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>, G.Ie (Late<br />

Cardial <strong>Neolithic</strong>, 7.1e6.9 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>) <strong>and</strong> CS.VIII (Postcardial <strong>Mid</strong>dle<br />

<strong>Neolithic</strong>, 6.5e5.9 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>). In o<strong>the</strong>rs, <strong>the</strong>re is an <strong>in</strong>crease <strong>in</strong> <strong>the</strong><br />

s<strong>and</strong>y fraction, anthropic components are less conserved <strong>and</strong> are<br />

removed as <strong>in</strong> some micr<strong>of</strong>acies <strong>of</strong> CS.XI (Late Cardial <strong>Neolithic</strong>).<br />

Among <strong>the</strong> most common ped<strong>of</strong>eatures are:<br />

- Eluviation/illuviation. This is generally present <strong>and</strong> is typi<strong>cal</strong> <strong>of</strong><br />

this type <strong>of</strong> context where water <strong>in</strong>filtrates <strong>and</strong> <strong>in</strong>volves a<br />

percolation <strong>of</strong> f<strong>in</strong>e material (clay) that is <strong>the</strong>n reta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> dry<br />

voids <strong>of</strong> <strong>the</strong> lower levels (Fern<strong>and</strong>ez et al., 2015).<br />

- Hydromorphism features. These occur <strong>in</strong> nodules <strong>of</strong> iron oxides<br />

<strong>and</strong> hydroxides <strong>and</strong> <strong>in</strong> rare cases <strong>of</strong> manganese, <strong>and</strong> have a<br />

special importance <strong>in</strong> <strong>the</strong> sequence <strong>of</strong> <strong>the</strong> Late Cardial <strong>Neolithic</strong>,<br />

Epicardial until <strong>the</strong> Postcardial <strong>Mid</strong>dle <strong>Neolithic</strong> <strong>from</strong> Can<br />

Sadurní. They are <strong>in</strong>dica<strong>to</strong>rs <strong>of</strong> water saturation, ma<strong>in</strong>ly temporary<br />

or deficient dra<strong>in</strong>age, <strong>and</strong> co<strong>in</strong>cide with <strong>the</strong> <strong>in</strong>crease <strong>of</strong><br />

pas<strong>to</strong>ral <strong>activity</strong> <strong>in</strong> <strong>the</strong> <strong>in</strong>terior <strong>of</strong> <strong>the</strong> cave.<br />

An <strong>in</strong>terest<strong>in</strong>g feature is <strong>the</strong> presence <strong>of</strong> vivianite <strong>in</strong> Can Sadurní<br />

(Fig. 5f). Reduc<strong>in</strong>g conditions <strong>and</strong> abundant availability <strong>of</strong> iron <strong>and</strong><br />

phosphorus are required for its formation (McGowan <strong>and</strong><br />

Prangnell, 2006; Kar<strong>ka</strong>nas <strong>and</strong> Goldberg, 2010). In our case, its<br />

genesis is <strong>the</strong> result <strong>of</strong> <strong>the</strong> abundance <strong>of</strong> residues rich <strong>in</strong> phosphate<br />

(excrement <strong>and</strong> plant matter) <strong>in</strong> a reduc<strong>in</strong>g context (Nicosia, 2008).<br />

In Gu<strong>in</strong>eu, <strong>in</strong> <strong>the</strong> Late Cardial <strong>Neolithic</strong> (G. Ie), oxide <strong>and</strong> hydroxide<br />

nodules are observed <strong>and</strong> <strong>the</strong>re are bleached mottles<br />

characteristic <strong>of</strong> a variable hydromorphism <strong>in</strong> reduc<strong>in</strong>g conditions<br />

(Dorronsoro et al., 2015).<br />

Please cite this article <strong>in</strong> press as: Bergada, M.M., et al., <strong>Chronostratigraphy</strong> <strong>in</strong> <strong><strong>ka</strong>rst</strong> <strong>records</strong> <strong>from</strong> <strong>the</strong> <strong>Epipaleolithic</strong> <strong>to</strong> <strong>the</strong> <strong>Mid</strong>/<strong>Early</strong> <strong>Neolithic</strong> (c.<br />

<strong>13.0e6.0</strong> <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>) <strong>in</strong> <strong>the</strong> <strong>Catalan</strong> <strong>Coastal</strong> <strong>Ranges</strong> <strong>of</strong> <strong>NE</strong> <strong>Iberia</strong>: <strong>environmental</strong> <strong>changes</strong>, <strong>sedimentary</strong> <strong>processes</strong> <strong>and</strong> <strong>human</strong> <strong>activity</strong>, Quaternary<br />

Science Reviews (2017), https://doi.org/10.1016/j.quascirev.2017.09.008


14<br />

M.M. Bergada et al. / Quaternary Science Reviews xxx (2017) 1e21<br />

- Biologi<strong>cal</strong> <strong>activity</strong>. Especially roots, <strong>in</strong> voids, features that <strong>in</strong>dicate<br />

surface exposure <strong>in</strong> some episodes; <strong>and</strong> where <strong>cal</strong>citic<br />

hypocoat<strong>in</strong>gs appear <strong>in</strong> root biopores as a result <strong>of</strong> <strong>the</strong> rapid<br />

precipitation <strong>of</strong> <strong>cal</strong>cium carbonate due <strong>to</strong> root metabolism<br />

(Dur<strong>and</strong> et al., 2010).<br />

4.1.2.4. Diffuse run<strong>of</strong>f. This process is not generalized <strong>and</strong> is located<br />

<strong>in</strong> <strong>the</strong> Postcardial <strong>Mid</strong>dle <strong>Neolithic</strong> <strong>in</strong> Can Sadurní (CS.VIII,<br />

6.5e5.9 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>) <strong>and</strong> <strong>in</strong> Gu<strong>in</strong>eu (G.IIb, 6,4e5,9 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>). It is<br />

characterized by <strong>the</strong> sedimentation <strong>of</strong> silty clays <strong>and</strong> s<strong>and</strong>s <strong>in</strong> an<br />

environment <strong>of</strong> very low energy; <strong>in</strong> o<strong>the</strong>rs, <strong>the</strong> run<strong>of</strong>f is more active<br />

with <strong>the</strong> formation <strong>of</strong> <strong>sedimentary</strong> crusts.<br />

In <strong>the</strong> wall <strong>of</strong> <strong>the</strong> SE sec<strong>to</strong>r <strong>of</strong> Can Sadurní (CS.VIII, 6.5e5.9 <strong>ka</strong> <strong>BP</strong>)<br />

staggered gours follow <strong>the</strong> slope <strong>of</strong> <strong>the</strong> wall, <strong>in</strong> contact with <strong>the</strong><br />

<strong>sedimentary</strong> deposit <strong>of</strong> <strong>the</strong> cavity (Fig. 5g). These are very similar <strong>in</strong><br />

morphology <strong>to</strong> lithochemi<strong>cal</strong> gours but have a matrix <strong>of</strong> silts <strong>and</strong><br />

dark clays with s<strong>and</strong>s. The microstructure is massive, with some<br />

traces <strong>of</strong> carbonates (Fig. 5h). They have been formed by <strong>the</strong><br />

percolation <strong>of</strong> water <strong>from</strong> <strong>the</strong> wall <strong>of</strong> <strong>the</strong> cavity, which leaches <strong>the</strong><br />

f<strong>in</strong>e sediment deposited on it. The f<strong>in</strong>e sediment accumulates <strong>in</strong> a<br />

f<strong>in</strong>e corrugated l<strong>in</strong>e <strong>of</strong> small puddles created <strong>from</strong> <strong>the</strong> irregularities<br />

<strong>of</strong> <strong>the</strong> floor <strong>and</strong> where <strong>the</strong> slope weakens. The repetition, perhaps<br />

seasonal, <strong>of</strong> this phenomenon causes <strong>the</strong> wall <strong>to</strong> grow without<br />

erosion, thus <strong>the</strong> dam <strong>in</strong>creases its height <strong>and</strong> thickness for new<br />

contributions <strong>of</strong> water with a new load <strong>of</strong> muddy sediment. The<br />

cont<strong>in</strong>uity <strong>of</strong> <strong>the</strong> growth without <strong>the</strong> erosion break<strong>in</strong>g <strong>the</strong> form is<br />

because <strong>the</strong> water never surpasses lam<strong>in</strong>ar slip-flow. When <strong>the</strong><br />

gours are well formed <strong>the</strong>y are staggered downwards <strong>and</strong> <strong>the</strong> lower<br />

ones receive <strong>the</strong> water <strong>from</strong> <strong>the</strong> overflow <strong>of</strong> <strong>the</strong> higher ones. This<br />

has a regulat<strong>in</strong>g <strong>and</strong> lam<strong>in</strong>at<strong>in</strong>g effect on <strong>the</strong> flow <strong>and</strong> guarantees<br />

<strong>the</strong> cont<strong>in</strong>uity <strong>of</strong> <strong>the</strong> process. They mark a stable episode <strong>in</strong>side <strong>the</strong><br />

cavity.<br />

4.2. Anthropic sedimentation located between c. 7.4e6.0 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong><br />

The sedimentation generated by <strong>the</strong> <strong>human</strong> <strong>activity</strong> <strong>of</strong> this<br />

period is closely related <strong>to</strong> stabl<strong>in</strong>g practices, ma<strong>in</strong>ly ovicaprids, <strong>in</strong><br />

<strong>the</strong> studied sites. Different types <strong>of</strong> contributions are located:<br />

4.2.1. Clayey silts with s<strong>and</strong>s <strong>and</strong> s<strong>to</strong>nes with herbivore excremental<br />

aggregates <strong>and</strong> phosphated <strong>in</strong>clusions<br />

The evidence is found <strong>in</strong> Can Sadurni, <strong>in</strong> <strong>the</strong> <strong>Early</strong> Cardial<br />

<strong>Neolithic</strong> between 7.4 <strong>and</strong> 7.2 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong> (CS.XII, layer 18). It is<br />

notable for <strong>the</strong> presence <strong>of</strong> fae<strong>cal</strong> <strong>cal</strong>cium spherulites (Canti, 1997)<br />

<strong>in</strong> <strong>the</strong> groundmass. Also, <strong>the</strong>re is an appearance <strong>of</strong> excremental<br />

aggregates that because <strong>of</strong> <strong>the</strong>ir composition <strong>and</strong> <strong>in</strong>ternal fabric<br />

may be <strong>from</strong> ovicapr<strong>in</strong>es (Courty et al., 1989; Bergada, 1998; Polo<br />

Díaz, 2010). Diagnostic components <strong>of</strong> this <strong>activity</strong> are scarce <strong>and</strong><br />

spatially very dispersed which leads us <strong>to</strong> suggest that some ovicaprid<br />

stabl<strong>in</strong>g has occurred (Bergada <strong>and</strong> Cervello, 2011; Bergada<br />

et al., <strong>in</strong> press). They are comparable <strong>to</strong> o<strong>the</strong>r Mediterranean <strong>records</strong><br />

<strong>of</strong> similar chronologies (Angelucci et al., 2009). It should also<br />

be added that colluvial reactivations <strong>and</strong> <strong>the</strong> sepulchral use<br />

(An<strong>to</strong>lín et al., 2011a) could have contributed <strong>to</strong> <strong>the</strong> dispersal <strong>of</strong> <strong>the</strong><br />

rema<strong>in</strong>s <strong>of</strong> <strong>the</strong>se occupations.<br />

Dur<strong>in</strong>g <strong>the</strong> Late Cardial <strong>Neolithic</strong> <strong>and</strong> Epicardial <strong>in</strong> Can Sadurni<br />

between 7.2 <strong>and</strong> 6.6 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong> (CS.XI, layers 17 <strong>and</strong> 16 <strong>and</strong> CS X<br />

layers 15, 14, 13) <strong>the</strong> presence <strong>of</strong> <strong>the</strong>se components <strong>in</strong>creases,<br />

although <strong>the</strong>y are still spatially dispersed. Some <strong>of</strong> <strong>the</strong> excrements<br />

appear with slight traces <strong>of</strong> combustion. Also, <strong>the</strong> <strong>cal</strong>citic<br />

pseudomorphs (druses), which are <strong>in</strong>dica<strong>to</strong>rs <strong>of</strong> ash, present<br />

vary<strong>in</strong>g morphologies, more or less spheri<strong>cal</strong> that accord<strong>in</strong>g <strong>to</strong><br />

Brochier (1996) are more commonly found <strong>in</strong> leaves <strong>of</strong> woody<br />

materials. In addition, phy<strong>to</strong>liths <strong>of</strong> silica <strong>of</strong> varied morphologies<br />

appear.<br />

The <strong>sedimentary</strong> contributions are <strong>of</strong> lower <strong>in</strong>tensity, which<br />

favours <strong>the</strong>ir preservation <strong>in</strong> <strong>the</strong> <strong>sedimentary</strong> record. Rema<strong>in</strong>s <strong>of</strong><br />

bird eggshell are also located <strong>in</strong> <strong>the</strong> groundmass, which demonstrates<br />

that <strong>the</strong>re were phases <strong>of</strong> ab<strong>and</strong>onment <strong>in</strong> Can Sadurní that<br />

would have been used by <strong>the</strong> birds <strong>to</strong> nest (Bergada et al., <strong>in</strong> press).<br />

Regard<strong>in</strong>g Gu<strong>in</strong>eu (G.Ie), at <strong>the</strong> moment, rema<strong>in</strong>s <strong>of</strong> pas<strong>to</strong>ral <strong>activity</strong><br />

have not been documented, but only a sec<strong>to</strong>r <strong>of</strong> 4e5m 2 <strong>in</strong> <strong>the</strong><br />

exterior <strong>of</strong> <strong>the</strong> cave has been excavated <strong>to</strong> date.<br />

4.2.2. M<strong>in</strong>eralized <strong>and</strong> charred erubified residues <strong>of</strong> herbivore<br />

excrements <strong>and</strong> plants <strong>in</strong> situ<br />

These are located dur<strong>in</strong>g <strong>the</strong> Postcardial <strong>Mid</strong>dle <strong>Neolithic</strong> correspond<strong>in</strong>g<br />

<strong>to</strong> Can Sadurní, c. 6.6e5.9 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong> (CS.X, layer 12 <strong>and</strong><br />

CS.VIII layer 11) <strong>and</strong> <strong>in</strong> Gu<strong>in</strong>eu, c. 6.4e5.9 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong> (G. IIb). The<br />

detrital sedimentation decreases markedly <strong>and</strong> <strong>the</strong>re are areas with<br />

combustion, which are characterized by <strong>the</strong> follow<strong>in</strong>g sequence <strong>of</strong><br />

micr<strong>of</strong>acies (<strong>from</strong> <strong>to</strong>p <strong>to</strong> bot<strong>to</strong>m):<br />

1. M<strong>in</strong>eralized residues (ash). Among <strong>the</strong> components are: excremental<br />

aggregates, <strong>cal</strong>citic pseudomorphs (druses <strong>and</strong> prisms)<br />

(Canti, 2003) <strong>and</strong> rounded micritic residues <strong>cal</strong>led droplets<br />

(Courty et al., 1989; Polo Díaz, 2010). The prismatic pseudomorphs<br />

correspond, as druses, <strong>to</strong> <strong>the</strong> rema<strong>in</strong>s <strong>of</strong> woody plants;<br />

although <strong>the</strong> prisms are <strong>in</strong> <strong>the</strong> bark <strong>and</strong> <strong>the</strong> druses <strong>in</strong> <strong>the</strong> leaves<br />

(Brochier, 1996). The droplet micriti<strong>cal</strong> residues are <strong>the</strong> result <strong>of</strong><br />

a very high combustion <strong>of</strong> <strong>the</strong> vegetal rema<strong>in</strong>s (Courty et al.,<br />

1989; Polo Díaz, 2010).<br />

2. Woody charcoal residues (<strong>in</strong> some cases this micr<strong>of</strong>acies is<br />

located <strong>in</strong> Can Sadurní).<br />

3. Charred <strong>and</strong> rubified residues. It consists ma<strong>in</strong>ly <strong>of</strong> charred <strong>and</strong><br />

rubified excremental <strong>and</strong> plant fragments, amorphous yellow<br />

phosphated accumulations <strong>and</strong> organic f<strong>in</strong>e material.<br />

These accumulations recorded <strong>in</strong> Can Sadurní <strong>and</strong> Gu<strong>in</strong>eu<br />

(Bergada et al., 2005a <strong>and</strong> Bergada et al., <strong>in</strong> press) (Fig. 6a <strong>and</strong> b),<br />

have been referred <strong>to</strong> as a layer-cake stratigraphy (Macphail et al.,<br />

1997). Once <strong>the</strong> animals leave <strong>the</strong> cavity, <strong>the</strong> excremental residues<br />

are exposed at <strong>the</strong> surface <strong>and</strong> after that, burn<strong>in</strong>g would occur<br />

at a low temperature <strong>and</strong> <strong>in</strong> reduc<strong>in</strong>g conditions (Fig. 6b <strong>and</strong> e) e<br />

micr<strong>of</strong>acies 3 -. The presence <strong>of</strong> an upper layer e micr<strong>of</strong>acies 1-<br />

mostly formed by woody plants (Fig. 6d) <strong>and</strong> by some excrements<br />

(Fig. 6c) <strong>in</strong> such cases, <strong>the</strong> combustion would have been more<br />

ventilated <strong>and</strong> at a higher temperature; <strong>the</strong> fact that woody charcoals<br />

are located (micr<strong>of</strong>acies 2) would correspond <strong>to</strong> <strong>the</strong> same<br />

episode but with less ventilation. The accumulation <strong>of</strong> woody rema<strong>in</strong>s<br />

<strong>from</strong> <strong>the</strong> stable structure or <strong>from</strong> rema<strong>in</strong>s <strong>of</strong> tree branches<br />

that would have served as food for lives<strong>to</strong>ck (Bergada et al., <strong>in</strong><br />

press).<br />

The reason for <strong>the</strong>se burn<strong>in</strong>g practices may lie <strong>in</strong> a need <strong>to</strong> clean<br />

up <strong>the</strong> place, once <strong>the</strong> occupation is restarted as has been documented<br />

<strong>in</strong> o<strong>the</strong>r <strong>records</strong> (Angelucci et al., 2009; Bergada et al.,<br />

2005b; Courty et al., 1991; Macphail et al., 1997; Polo Díaz, 2010;<br />

Polo Díaz et al., 2014; Verdasco, 2016). This practice has also been<br />

documented experimentally (Verges et al., 2016) <strong>and</strong> ethnographi<strong>cal</strong>ly<br />

(Verdasco, 2016).<br />

Please cite this article <strong>in</strong> press as: Bergada, M.M., et al., <strong>Chronostratigraphy</strong> <strong>in</strong> <strong><strong>ka</strong>rst</strong> <strong>records</strong> <strong>from</strong> <strong>the</strong> <strong>Epipaleolithic</strong> <strong>to</strong> <strong>the</strong> <strong>Mid</strong>/<strong>Early</strong> <strong>Neolithic</strong> (c.<br />

<strong>13.0e6.0</strong> <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>) <strong>in</strong> <strong>the</strong> <strong>Catalan</strong> <strong>Coastal</strong> <strong>Ranges</strong> <strong>of</strong> <strong>NE</strong> <strong>Iberia</strong>: <strong>environmental</strong> <strong>changes</strong>, <strong>sedimentary</strong> <strong>processes</strong> <strong>and</strong> <strong>human</strong> <strong>activity</strong>, Quaternary<br />

Science Reviews (2017), https://doi.org/10.1016/j.quascirev.2017.09.008


M.M. Bergada et al. / Quaternary Science Reviews xxx (2017) 1e21 15<br />

Fig. 7. Stabl<strong>in</strong>g area without combustion. Can Sadurní (CS. VIII): micromorphologi<strong>cal</strong> features.<br />

a. Layers <strong>of</strong> disarticulated silica phy<strong>to</strong>liths with a f<strong>in</strong>e organophosphate groundmass, slightly compacted next <strong>to</strong> a dung (D). PPL.<br />

b. Same as (a) <strong>in</strong> XPL. Undifferentiated b-fabric is dist<strong>in</strong>guished <strong>in</strong> <strong>the</strong> phosphated area with silica phy<strong>to</strong>liths.<br />

c. See <strong>in</strong> detail <strong>the</strong> silica phy<strong>to</strong>liths (arrows). PPL.<br />

d. Fragment <strong>of</strong> bov<strong>in</strong>e coprolite. Note <strong>the</strong> articulation <strong>of</strong> phy<strong>to</strong>liths <strong>in</strong>side (arrow). PPL.<br />

e. Same as (d) <strong>in</strong> XPL.<br />

These areas with combustion alternate with o<strong>the</strong>rs without<br />

combustion, especially <strong>in</strong> Can Sadurní. It is common <strong>of</strong> this type <strong>of</strong><br />

deposit <strong>and</strong> has also been described <strong>in</strong> o<strong>the</strong>r <strong>Neolithic</strong> Mediterranean<br />

<strong>records</strong> <strong>in</strong> caves <strong>and</strong> rockshelters (Angelucci et al., 2009;<br />

Boschian, 2006; Boschian <strong>and</strong> Miracle, 2007). Although for <strong>the</strong><br />

moment its <strong>in</strong>terpretation is complex, it has been suggested that it<br />

may be <strong>the</strong> result <strong>of</strong> <strong>the</strong> alteration <strong>and</strong> trampl<strong>in</strong>g <strong>of</strong> unburned or<br />

partially burned stabl<strong>in</strong>g areas (Boschian, 2006), also as a product<br />

<strong>of</strong> very irregular combustion (Brochier, 2002) or <strong>of</strong> domestic activities<br />

simultaneous <strong>to</strong> or between this pas<strong>to</strong>ral <strong>activity</strong> (Bergada,<br />

1997; Polo Díaz, 2010; Egüez et al., 2016).<br />

4.2.3. Layers <strong>of</strong> phy<strong>to</strong>liths <strong>and</strong> organophosphated herbivore<br />

excrements <strong>in</strong> situ<br />

In some sec<strong>to</strong>rs <strong>of</strong> Can Sadurní, such as <strong>in</strong> F-9 (CS.VIII layer 11)<br />

<strong>and</strong> <strong>the</strong> Postcardial <strong>Mid</strong>dle <strong>Neolithic</strong>, layers have been located<br />

consist<strong>in</strong>g <strong>of</strong> articulated <strong>and</strong> disarticulated phy<strong>to</strong>liths <strong>of</strong> varied<br />

morphologies with a f<strong>in</strong>e organophosphated groundmass (Fig. 7a, b<br />

<strong>and</strong> 7c) <strong>and</strong> coprolites which correspond <strong>in</strong> composition <strong>and</strong> <strong>in</strong>ternal<br />

fabric most likely <strong>to</strong> cattle (Fig. 7d <strong>and</strong> c) (Bergada, 1998; Polo<br />

Díaz, 2010) <strong>and</strong> o<strong>the</strong>rs <strong>to</strong> ovicapr<strong>in</strong>es (Bergada et al., <strong>in</strong> press).<br />

These accumulations represent a pattern different <strong>from</strong> <strong>the</strong> previous<br />

one, with vegetal, excremental accumulations or a comb<strong>in</strong>ation<br />

Fig. 8. Cumulated probability curves obta<strong>in</strong>ed <strong>from</strong> <strong>the</strong> CalPal2007- Hulu <strong>cal</strong>ibration <strong>of</strong> <strong>the</strong> dates com<strong>in</strong>g <strong>from</strong> Cova de Can Sadurní <strong>and</strong> Cova de la Gu<strong>in</strong>eu compared with <strong>the</strong> d 18 O<br />

variation curves obta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> NGRIP <strong>and</strong> GRIP cores, follow<strong>in</strong>g <strong>the</strong> GICC05 Age Model (Lowe et al., 2008). It is observed as <strong>from</strong> c. 12.7e7.4 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong> <strong>the</strong>re is a great discont<strong>in</strong>uity<br />

<strong>in</strong> <strong>the</strong> recorded caves dom<strong>in</strong>at<strong>in</strong>g <strong>the</strong> hiatus phases. From c. 7.4e6.0 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong> <strong>the</strong>re is a certa<strong>in</strong> cont<strong>in</strong>uity <strong>in</strong> <strong>the</strong> sequence <strong>and</strong> climatic variability.<br />

Please cite this article <strong>in</strong> press as: Bergada, M.M., et al., <strong>Chronostratigraphy</strong> <strong>in</strong> <strong><strong>ka</strong>rst</strong> <strong>records</strong> <strong>from</strong> <strong>the</strong> <strong>Epipaleolithic</strong> <strong>to</strong> <strong>the</strong> <strong>Mid</strong>/<strong>Early</strong> <strong>Neolithic</strong> (c.<br />

<strong>13.0e6.0</strong> <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>) <strong>in</strong> <strong>the</strong> <strong>Catalan</strong> <strong>Coastal</strong> <strong>Ranges</strong> <strong>of</strong> <strong>NE</strong> <strong>Iberia</strong>: <strong>environmental</strong> <strong>changes</strong>, <strong>sedimentary</strong> <strong>processes</strong> <strong>and</strong> <strong>human</strong> <strong>activity</strong>, Quaternary<br />

Science Reviews (2017), https://doi.org/10.1016/j.quascirev.2017.09.008


16<br />

M.M. Bergada et al. / Quaternary Science Reviews xxx (2017) 1e21<br />

Table 7<br />

<strong>Chronostratigraphy</strong> <strong>in</strong> <strong><strong>ka</strong>rst</strong> <strong>records</strong> <strong>from</strong> <strong>Epipaleolithic</strong> <strong>to</strong> <strong>the</strong> <strong>Mid</strong>/<strong>Early</strong> <strong>Neolithic</strong> (c. <strong>13.0e6.0</strong> <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>) <strong>in</strong> <strong>the</strong> <strong>Catalan</strong> <strong>Coastal</strong> <strong>Ranges</strong>: Cova de Can Sadurní <strong>and</strong> Cova de la<br />

Gu<strong>in</strong>eu. In gray, <strong>the</strong> recorded <strong>sedimentary</strong> episodes; <strong>in</strong> orange, <strong>the</strong> episodes where a detrital sedimentation dom<strong>in</strong>ates with collapses <strong>and</strong> debris cones <strong>of</strong> an arid environment<br />

<strong>and</strong>, <strong>in</strong> blue, episodes where anthropic sedimentation dom<strong>in</strong>ates <strong>in</strong> a humid <strong>and</strong> stable environment. Can Sadurní (S) <strong>and</strong> Gu<strong>in</strong>eu (G).<br />

Age<br />

yr <strong>BP</strong><br />

Pedo<strong>sedimentary</strong> <strong>and</strong> anthropic <strong>processes</strong><br />

Can<br />

Sadurní<br />

VII-VI<br />

(10 - 10b)<br />

Gu<strong>in</strong>eu<br />

Palaeoenvironment<br />

<strong>cal</strong> <strong>ka</strong> <strong>BP</strong><br />

Cultural sequence<br />

Late Postcardial <strong>Mid</strong>dle<br />

<strong>Neolithic</strong><br />

6.000<br />

Colluvium <strong>and</strong> clastic dejection. High energy. Erosive contact (S/G)<br />

Id Arid ( c.6.2 - 5.7)<br />

Stabl<strong>in</strong>g area/Layer cake (S/G)<br />

X-VIII<br />

Humid (stability <strong>in</strong> <strong>the</strong> Postcardial <strong>Mid</strong>dle<br />

IIb<br />

Diffuse run<strong>of</strong>f (S/G) / gours with high detrital component (S) (12 - 11)<br />

environment) (c. 6.6 - 5.9) <strong>Neolithic</strong><br />

Colluvium <strong>and</strong> clastic dejection. High energy. Erosive contact (S/G) IX (11b) II Arid (c. 6.8 - 6.3)<br />

Hydromorphism (S) ?<br />

Epicardial <strong>and</strong> Late<br />

7.000 Humid (c. 7.1 - 6.7)<br />

Cardial <strong>Neolithic</strong><br />

Unlam<strong>in</strong>ated colluvium (S/G), Stabl<strong>in</strong>g area (+) (S) XI-X (17-13) Ie<br />

Colluvium <strong>and</strong> clastic dejection. High energy. Stabl<strong>in</strong>g area (-) (S) XII (18) ? Arid (c. 7.4 - 7.2) Cardial <strong>Neolithic</strong><br />

8.000<br />

Hiatus Hiatus Hiatus Hiatus<br />

Solifluction <strong>processes</strong>/cryoturbation XIII (20-19) Less humid (c. 8.2 - 8.0) Mesolithic<br />

9.000<br />

Hiatus Hiatus Hiatus Hiatus Hiatus<br />

10.00<br />

(c. 10.7 - 10.4)<br />

XIV (21)<br />

F<strong>in</strong>e material colluvium with gravitational movements/Solifluction<br />

11.00 Fresh <strong>and</strong> humid <strong>Epipaleolithic</strong><br />

<strong>processes</strong><br />

IIIa (c.11.5 - 11.1)<br />

12.00 Hiatus Hiatus Hiatus<br />

F<strong>in</strong>e material colluvium with gravitational movements/Solifluction<br />

<strong>processes</strong><br />

(c. 12.7 - 12.2)<br />

XIV (21) IIIa Fresh <strong>and</strong> humid <strong>Epipaleolithic</strong><br />

<strong>of</strong> both <strong>in</strong> <strong>the</strong> form <strong>of</strong> beds without traces <strong>of</strong> combustion. It should<br />

be noted that <strong>the</strong>y exhibit some scatter<strong>in</strong>g due <strong>to</strong> <strong>the</strong> diffuse run<strong>of</strong>f,<br />

trampl<strong>in</strong>g effects <strong>and</strong> biologi<strong>cal</strong> <strong>activity</strong>.<br />

We propose that <strong>the</strong> combustion would occur <strong>in</strong> <strong>the</strong> accumulations<br />

where woody debris would be present. Episodes <strong>of</strong> ab<strong>and</strong>onment<br />

have also been detected, characterized by <strong>the</strong> presence <strong>of</strong><br />

eggshell fragments <strong>in</strong>dicat<strong>in</strong>g birds nest<strong>in</strong>g <strong>in</strong> <strong>the</strong> cave.<br />

5. Discussion<br />

5.1. Are <strong>the</strong>re any chronostratigraphic discont<strong>in</strong>uities dur<strong>in</strong>g <strong>the</strong><br />

<strong>Epipaleolithic</strong> <strong>and</strong> Mesolithic?<br />

In <strong>the</strong> studied caves dur<strong>in</strong>g c. 12.7e7.4 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong> several stages <strong>of</strong><br />

hiatus are dist<strong>in</strong>guished <strong>and</strong> are reflected <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g episodes<br />

(Fig. 8 <strong>and</strong> Table 7):<br />

- c. 12.7e11.1/10.4 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong><br />

This episode would co<strong>in</strong>cide with <strong>the</strong> Younger Dryas <strong>and</strong> <strong>the</strong><br />

start <strong>of</strong> <strong>the</strong> Holocene. In general, YD has been widely recognized <strong>in</strong><br />

different proxies <strong>in</strong> <strong>Iberia</strong> <strong>and</strong> has a tendency <strong>to</strong>wards cold <strong>and</strong><br />

relatively arid conditions (Bar<strong>to</strong>lome et al., 2012; Cacho et al., 2010).<br />

In our <strong>records</strong>, <strong>the</strong>re is a dom<strong>in</strong>ance <strong>of</strong> solifluction <strong>and</strong> colluvial<br />

deposits <strong>of</strong> f<strong>in</strong>e <strong>and</strong> gravitational material <strong>in</strong> fresh <strong>and</strong> humid<br />

conditions. This agrees with <strong>the</strong> archaeobotani<strong>cal</strong> <strong>and</strong> faunistic<br />

data <strong>of</strong> Can Sadurní (An<strong>to</strong>lín et al., 2011b, 2013) <strong>and</strong> <strong>the</strong>re is a hiatus<br />

between 12.2 <strong>and</strong> 11.5/10.7 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>.<br />

In <strong>the</strong> stratigraphic <strong>and</strong> <strong>sedimentary</strong> sequences <strong>of</strong> caves <strong>and</strong><br />

rockshelters <strong>of</strong> <strong>the</strong> Mediterranean bas<strong>in</strong> <strong>and</strong> Ebro valley, cold/fresh<br />

episodes are documented (Angelucci, 2005; Aura et al., 2011;<br />

Bergada, 1998; Ferrer, 2015; García-Argüelles et al., 2013 Montes<br />

et al., 2016), some with erosive events (Aura et al., 2011). In <strong>the</strong><br />

north-east <strong>of</strong> <strong>the</strong> <strong>Iberia</strong>n Pen<strong>in</strong>sula <strong>the</strong>re is generally a hiatus that<br />

co<strong>in</strong>cides with <strong>the</strong> second half <strong>of</strong> <strong>the</strong> YD <strong>and</strong> <strong>the</strong> start <strong>of</strong> <strong>the</strong> Holocene<br />

(García-Argüelles et al., 2013) correspond<strong>in</strong>g <strong>to</strong> <strong>the</strong> <strong>records</strong><br />

analyzed <strong>in</strong> this paper (Fig. 9).<br />

This <strong>in</strong>terruption could be related <strong>to</strong> <strong>the</strong> phase <strong>of</strong> <strong>in</strong>creased<br />

humidity observed <strong>in</strong> speleo<strong>the</strong>m <strong>records</strong> that would have allowed<br />

<strong>the</strong> advance <strong>of</strong> <strong>the</strong> glaciers <strong>in</strong> <strong>the</strong> nor<strong>the</strong>rn <strong>Iberia</strong>n mounta<strong>in</strong>s<br />

(García-Ruiz et al., 2016). On <strong>the</strong> contrary, <strong>in</strong> o<strong>the</strong>r areas such as<br />

Arba de Biel <strong>in</strong> <strong>the</strong> Ebro Valley, an occupation gap (Montes et al.,<br />

Please cite this article <strong>in</strong> press as: Bergada, M.M., et al., <strong>Chronostratigraphy</strong> <strong>in</strong> <strong><strong>ka</strong>rst</strong> <strong>records</strong> <strong>from</strong> <strong>the</strong> <strong>Epipaleolithic</strong> <strong>to</strong> <strong>the</strong> <strong>Mid</strong>/<strong>Early</strong> <strong>Neolithic</strong> (c.<br />

<strong>13.0e6.0</strong> <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>) <strong>in</strong> <strong>the</strong> <strong>Catalan</strong> <strong>Coastal</strong> <strong>Ranges</strong> <strong>of</strong> <strong>NE</strong> <strong>Iberia</strong>: <strong>environmental</strong> <strong>changes</strong>, <strong>sedimentary</strong> <strong>processes</strong> <strong>and</strong> <strong>human</strong> <strong>activity</strong>, Quaternary<br />

Science Reviews (2017), https://doi.org/10.1016/j.quascirev.2017.09.008


M.M. Bergada et al. / Quaternary Science Reviews xxx (2017) 1e21 17<br />

Fig. 9. Stages <strong>of</strong> discont<strong>in</strong>uities referenced on <strong>the</strong> basis <strong>of</strong> <strong>the</strong> data obta<strong>in</strong>ed <strong>from</strong> <strong>Iberia</strong>n <strong>NE</strong> archaeologi<strong>cal</strong> sites, mentioned <strong>in</strong> <strong>the</strong> text, <strong>from</strong> <strong>the</strong>ir probability curves obta<strong>in</strong>ed <strong>from</strong><br />

<strong>the</strong> CalPal2007- Hulu <strong>cal</strong>ibration, compared with <strong>the</strong> d 18 O variation curves obta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> NGRIP <strong>and</strong> GRIP cores, follow<strong>in</strong>g <strong>the</strong> GICC05 Age Model (Lowe et al., 2008). We observe<br />

that <strong>in</strong> <strong>the</strong> second half <strong>of</strong> Younger Dryas <strong>the</strong>re is a generalized hiatus with <strong>the</strong> exception <strong>of</strong> Parco <strong>and</strong> Cativera <strong>and</strong> <strong>sedimentary</strong> episodes <strong>and</strong> <strong>human</strong> occupations are presented <strong>in</strong> a<br />

more fragmented way dur<strong>in</strong>g <strong>Early</strong> Holocene.<br />

2016) is detected between 12.2 <strong>and</strong> 10.1 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>, l<strong>in</strong>ked only <strong>to</strong> a<br />

cultural strategy <strong>of</strong> terri<strong>to</strong>rial use <strong>and</strong> not <strong>to</strong> an episode <strong>of</strong> depositional<br />

hiatus.<br />

This change <strong>in</strong> <strong>the</strong> environment that is reflected <strong>in</strong> <strong>the</strong> second<br />

half <strong>of</strong> <strong>the</strong> YD <strong>and</strong> Preboreal could have contributed <strong>to</strong> <strong>the</strong> very<br />

uneven <strong>Epipaleolithic</strong> occupation registered <strong>in</strong> different contexts<br />

<strong>and</strong> geographi<strong>cal</strong> areas.<br />

- c. 11.1/10.4e7.4 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong><br />

This co<strong>in</strong>cides fully with <strong>the</strong> Holocene Climatic Optimum<br />

(Morellon et al., 2009) although it appears apparently synchronous<br />

<strong>in</strong> different <strong>records</strong> <strong>of</strong> <strong>Iberia</strong>, <strong>the</strong> climatic conditions were not<br />

reached at <strong>the</strong> same time (Moreno et al., 2012) <strong>and</strong> <strong>the</strong>re are differences<br />

between <strong>the</strong> nor<strong>the</strong>rn <strong>and</strong> sou<strong>the</strong>rn areas as mentioned <strong>in</strong><br />

<strong>the</strong> <strong>in</strong>troduction. Rapid climatic <strong>changes</strong> (RCCs) beg<strong>in</strong> <strong>to</strong> manifest<br />

at early dates <strong>in</strong> different types <strong>of</strong> <strong>records</strong> <strong>and</strong> both lacustr<strong>in</strong>e <strong>and</strong><br />

<strong><strong>ka</strong>rst</strong> speleo<strong>the</strong>ms (Burjachs et al., 2016; Moreno et al., 2013; Perez-<br />

Sanz et al., 2013).<br />

In <strong>the</strong> studied caves, this stage is characterized by a phase <strong>of</strong><br />

hiatus that is <strong>in</strong>terrupted <strong>in</strong> Can Sadurní by <strong>the</strong> <strong>sedimentary</strong><br />

episode CS.XIII dated 8.2e8.0 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>. In <strong>the</strong> pollen studies <strong>of</strong> cores<br />

near our study area, subhumid climatic conditions occur between c.<br />

10.7/8.9 <strong>and</strong> 7.9 <strong>cal</strong> <strong>BP</strong>, although <strong>in</strong> <strong>the</strong> Garraf massif vegetal <strong>the</strong>rmophilic<br />

communities beg<strong>in</strong> <strong>to</strong> appear, which would demonstrate<br />

<strong>the</strong> <strong>in</strong>itiation <strong>of</strong> Mediterranean climatic conditions dur<strong>in</strong>g this time<br />

(Riera et al., 2007).<br />

In sites, generally caves <strong>and</strong> rockshelters, <strong>of</strong> <strong>NE</strong> <strong>Iberia</strong> between<br />

c.11.1/10.4e8.2 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong> <strong>the</strong>re is a variability <strong>of</strong> <strong>sedimentary</strong> contributions<br />

marked by stages <strong>of</strong> discont<strong>in</strong>uities that mostly respond<br />

<strong>to</strong> hiatuses (Fig. 9). In Cova del Vidre (Tarragona) <strong>and</strong> Cova del Parco<br />

(Lleida) <strong>the</strong>se gaps are generalized dur<strong>in</strong>g this period (Bergada,<br />

Please cite this article <strong>in</strong> press as: Bergada, M.M., et al., <strong>Chronostratigraphy</strong> <strong>in</strong> <strong><strong>ka</strong>rst</strong> <strong>records</strong> <strong>from</strong> <strong>the</strong> <strong>Epipaleolithic</strong> <strong>to</strong> <strong>the</strong> <strong>Mid</strong>/<strong>Early</strong> <strong>Neolithic</strong> (c.<br />

<strong>13.0e6.0</strong> <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>) <strong>in</strong> <strong>the</strong> <strong>Catalan</strong> <strong>Coastal</strong> <strong>Ranges</strong> <strong>of</strong> <strong>NE</strong> <strong>Iberia</strong>: <strong>environmental</strong> <strong>changes</strong>, <strong>sedimentary</strong> <strong>processes</strong> <strong>and</strong> <strong>human</strong> <strong>activity</strong>, Quaternary<br />

Science Reviews (2017), https://doi.org/10.1016/j.quascirev.2017.09.008


18<br />

M.M. Bergada et al. / Quaternary Science Reviews xxx (2017) 1e21<br />

1998); <strong>in</strong> o<strong>the</strong>rs, <strong>the</strong>re are occasional episodes <strong>of</strong> detrital <strong>in</strong>puts<br />

characteristic <strong>of</strong> wet, fresh or arid contexts as <strong>in</strong> Balma del Gai<br />

(Barcelona), Abric del Filador y Molí del Salt (Tarragona) (Bergada,<br />

1998; García-Argüelles et al., 2013; Vallverdú <strong>and</strong> Carrancho,<br />

2004); some are also characterized by a beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> pedogenesis<br />

with carbonation <strong>processes</strong> as <strong>in</strong> Abric de la Cativera (Tarragona)<br />

(Angelucci, 2005) or travert<strong>in</strong>ization <strong>in</strong> Font del Ros (Barcelona)<br />

(Jorda et al., 1992) or by stalagmite formation <strong>in</strong> Cueva de Seso<br />

(Huesca) (Bar<strong>to</strong>lome et al., 2012). One aspect that we would like <strong>to</strong><br />

emphasize by <strong>the</strong> documented data is that perhaps <strong>the</strong> rockshelters<br />

may be a type <strong>of</strong> record that better reflects <strong>the</strong> <strong>sedimentary</strong> <strong>and</strong><br />

palaeo<strong>environmental</strong> variations <strong>of</strong> this stage.<br />

A solifluction level (c. 8.2e8.0 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>) is located <strong>in</strong> Can<br />

Sadurní, <strong>in</strong> a less humid environment with slight traces <strong>of</strong> cryoturbation<br />

that could be related <strong>to</strong> <strong>the</strong> global event <strong>of</strong> 8.2 Ka <strong>cal</strong> <strong>BP</strong><br />

with a tendency <strong>to</strong> cold <strong>and</strong> arid conditions. At <strong>the</strong> same time between<br />

c. 8.4 <strong>and</strong> 7.9 <strong>cal</strong> <strong>BP</strong> <strong>in</strong> <strong>the</strong> Delta del Llobregat near <strong>the</strong> site,<br />

<strong>the</strong> existence <strong>of</strong> pre-<strong>Neolithic</strong> fires with a brief climatic oscillation<br />

<strong>of</strong> drier conditions <strong>to</strong>wards c. 7.9 <strong>cal</strong> <strong>BP</strong> has been demonstrated<br />

(Riera et al., 2007).<br />

This event is not very well represented <strong>in</strong> <strong>the</strong> <strong>Iberia</strong>n Mediterranean<br />

bas<strong>in</strong> <strong>in</strong> rockshelters <strong>and</strong> caves; but some dated<br />

around this event are characterized <strong>from</strong> a <strong>sedimentary</strong> po<strong>in</strong>t <strong>of</strong><br />

view by an arid environment, such as Tossal de la Roca <strong>and</strong> Abric<br />

de la Falguera, both <strong>in</strong> Alicante (Cacho <strong>and</strong> Jorda, 2009; García-<br />

Puchol <strong>and</strong> Aura, 2006), or by a clear truncation episode, an<br />

erosive phase, such as <strong>the</strong> Balma Marg<strong>in</strong>eda rockshelter (Berger<br />

<strong>and</strong> Guila<strong>in</strong>e, 2009). These traits would co<strong>in</strong>cide at <strong>the</strong> <strong>human</strong><br />

level with <strong>the</strong> pre-<strong>Neolithic</strong> gap (Morales <strong>and</strong> Oms, 2012) or<br />

archaeologi<strong>cal</strong> silence (Gonzalez-Samperiz et al., 2009). The latter<br />

authors attributed this <strong>to</strong> <strong>environmental</strong> conditions be<strong>in</strong>g<br />

unfavourable for habitability <strong>in</strong> some areas. It is noteworthy that<br />

<strong>in</strong> this episode <strong>the</strong>re is a tendency <strong>to</strong> a cultural gap <strong>in</strong> <strong>the</strong><br />

Mediterranean <strong>from</strong> Greece <strong>to</strong> <strong>Iberia</strong> (Berger <strong>and</strong> Guila<strong>in</strong>e, 2009).<br />

Therefore, it seems that a change <strong>in</strong> <strong>the</strong> distribution pattern <strong>of</strong><br />

<strong>human</strong> occupation co<strong>in</strong>cides with <strong>the</strong> c. 8.2 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong> event, with<br />

paleoecologi<strong>cal</strong> <strong>and</strong> palaeo<strong>environmental</strong> implications <strong>of</strong> great<br />

importance.<br />

Towards c. 8.0e7.4 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>, at <strong>the</strong> transition between <strong>the</strong><br />

Mesolithic <strong>and</strong> <strong>the</strong> <strong>Neolithic</strong>, most <strong>records</strong> <strong>of</strong> cont<strong>in</strong>ental <strong>and</strong> mar<strong>in</strong>e<br />

cont<strong>in</strong>uous sequences <strong>of</strong> <strong>Iberia</strong> experienced conditions tend<strong>in</strong>g<br />

<strong>to</strong> aridity, as <strong>in</strong>dicated <strong>in</strong> <strong>the</strong> Introduction. In o<strong>the</strong>r contexts a climatic<br />

variability is observed, such as <strong>in</strong> <strong>the</strong> river <strong>records</strong> <strong>of</strong> <strong>the</strong><br />

middle Rhone valley where stability episodes dat<strong>in</strong>g <strong>from</strong> 8.05 <strong>to</strong><br />

7.7 <strong>ka</strong> <strong>and</strong> o<strong>the</strong>rs with a high hydrologi<strong>cal</strong> <strong>activity</strong> dat<strong>in</strong>g <strong>to</strong><br />

7.7e7.49 <strong>ka</strong> are located (Berger et al. al., 2016).<br />

In Can Sadurní <strong>and</strong> Gu<strong>in</strong>eu, it is difficult <strong>to</strong> verify this episode<br />

because it is also represented by ano<strong>the</strong>r hiatus phase, co<strong>in</strong>cid<strong>in</strong>g<br />

with o<strong>the</strong>r cavities such as Cova d'en Pardo (Ferrer, 2015) <strong>and</strong> Cova<br />

del Vidre (oral communication Dr. Josep Bosch). There are data<br />

based on <strong>the</strong> study <strong>of</strong> speleo<strong>the</strong>ms <strong>in</strong> <strong>the</strong> Cueva de los Mol<strong>in</strong>os<br />

(Teruel) through <strong>the</strong> analysis <strong>of</strong> stable iso<strong>to</strong>pes (d 18 O <strong>and</strong> d 13 C) <strong>and</strong><br />

trace elements <strong>of</strong> speleo<strong>the</strong>mic carbonate (Moreno et al., 2013),<br />

which <strong>in</strong>dicate <strong>the</strong> existence <strong>of</strong> two events dated 8.2 <strong>and</strong> 7.4 <strong>ka</strong> that<br />

are <strong>in</strong>terpreted as cold <strong>and</strong> very humid, typi<strong>cal</strong> <strong>of</strong> an environment<br />

with a very dense vegetation cover.<br />

Toge<strong>the</strong>r, <strong>the</strong>se data allow us <strong>to</strong> develop <strong>the</strong> hypo<strong>the</strong>sis that,<br />

despite this be<strong>in</strong>g a complex stage <strong>and</strong> marked <strong>in</strong> some <strong>records</strong> by<br />

climatic variability, <strong>the</strong> signals reflected <strong>in</strong> <strong>the</strong> cavities, dur<strong>in</strong>g c.<br />

12.7e7.4 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong> are those represent<strong>in</strong>g episodes <strong>of</strong> some stability.<br />

This could also correspond <strong>to</strong> an environment lack<strong>in</strong>g seasonal<br />

acute episodes; which would expla<strong>in</strong> <strong>the</strong> <strong>in</strong>terruptions <strong>in</strong><br />

detrital contributions <strong>in</strong><strong>to</strong> <strong>the</strong> <strong>in</strong>terior <strong>of</strong> <strong>the</strong> caves at <strong>the</strong> analyzed<br />

sites.<br />

5.2. Are <strong>the</strong>re any episodes <strong>of</strong> climatic variability <strong>in</strong> caves <strong>from</strong> <strong>the</strong><br />

<strong>Early</strong> <strong>Neolithic</strong> period onwards?<br />

The geoarchaeologi<strong>cal</strong> <strong>and</strong> microstatigraphic study <strong>of</strong> <strong>the</strong> cavities<br />

that are <strong>the</strong> object <strong>of</strong> our study reveals that <strong>from</strong> c. 7.4 <strong>to</strong> 6.0 <strong>cal</strong><br />

<strong>ka</strong> <strong>BP</strong> <strong>the</strong>re was a certa<strong>in</strong> chronostratigraphic cont<strong>in</strong>uity (Fig. 8)<br />

with a series <strong>of</strong> successive <strong>sedimentary</strong> <strong>processes</strong> ma<strong>in</strong>ly <strong>of</strong> <strong>the</strong><br />

detrital <strong>and</strong> anthropic type that are expressed <strong>in</strong> episodes <strong>of</strong> short<br />

duration (Table 7). From <strong>the</strong>se we highlight:<br />

a) Detrital sedimentation formed by collapses that <strong>in</strong>volved <strong>the</strong><br />

formation <strong>of</strong> debris cones <strong>and</strong> <strong>the</strong> entrance <strong>of</strong> detrital materials<br />

<strong>in</strong> mass, with blocks <strong>and</strong> s<strong>to</strong>nes, typi<strong>cal</strong> <strong>of</strong> an arid environment,<br />

with colluvium reactivations.<br />

They have been identified <strong>in</strong> different episodes:<br />

- <strong>from</strong> 7.4 <strong>to</strong> 7.2 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong> correspond<strong>in</strong>g <strong>to</strong> <strong>the</strong> Cardial <strong>Early</strong><br />

<strong>Neolithic</strong> <strong>in</strong> Can Sadurní (CS. XII, layer 18).<br />

- <strong>from</strong> 6.8 <strong>to</strong> 6.3 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong> correspond<strong>in</strong>g <strong>to</strong> <strong>the</strong> <strong>Early</strong> Postcardial<br />

<strong>Mid</strong>dle <strong>Neolithic</strong> <strong>in</strong> Can Sadurní (CS IX, layer 11b) <strong>and</strong> probably<br />

<strong>in</strong> Gu<strong>in</strong>eu (G. II)<br />

- <strong>from</strong> 6.2 <strong>to</strong> 5.7 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong> correspond<strong>in</strong>g <strong>to</strong> <strong>the</strong> Late Postcardial<br />

<strong>Mid</strong>dle <strong>Neolithic</strong> <strong>in</strong> Can Sadurní (CS.VII-VI, layer 10b <strong>and</strong> 10) <strong>and</strong><br />

Gu<strong>in</strong>eu (G. Id)<br />

These episodes would be <strong>in</strong> accordance with <strong>the</strong> proposal <strong>of</strong><br />

Wanner et al. (2011) on a global s<strong>cal</strong>e <strong>in</strong> which he identified a more<br />

recent phase <strong>of</strong> Bond 5 (5a) dated around 7.5 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong> <strong>and</strong> located a<br />

concentration <strong>of</strong> dry events between <strong>the</strong> 7.2e5.7 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>.<br />

In <strong>the</strong>se episodes, <strong>the</strong> one that corresponds <strong>to</strong> <strong>the</strong> Cardial <strong>Early</strong><br />

<strong>Neolithic</strong> compares <strong>the</strong> best with o<strong>the</strong>r sites <strong>in</strong> o<strong>the</strong>r zones <strong>of</strong> <strong>Iberia</strong><br />

as well as <strong>the</strong> Levante area, where <strong>the</strong> <strong>processes</strong> <strong>of</strong> mass movement<br />

<strong>and</strong> colluviation have caused fill<strong>in</strong>gs <strong>in</strong> <strong>the</strong> slopes <strong>and</strong> caves (Ferrer,<br />

2015; Fumanal, 1995).<br />

Fire episodes were located <strong>in</strong> <strong>the</strong> pollen core <strong>from</strong> <strong>the</strong> Delta del<br />

Besos <strong>in</strong> Barcelona, an area close <strong>to</strong> our studies, (Riera et al., 2007),<br />

as well as <strong>in</strong> <strong>the</strong> Rhone middle valley (Berger et al., 2016) where<br />

<strong>in</strong>tense peaks <strong>of</strong> lo<strong>cal</strong>ized fires occurr<strong>in</strong>g between 7.57 <strong>and</strong> 7.32 <strong>ka</strong><br />

were revealed. For Berger et al. (2016), <strong>the</strong>se episodes reflect variations<br />

<strong>in</strong> climatic <strong>and</strong> atmospheric <strong>activity</strong> responsible for periods<br />

<strong>of</strong> aridity. Data co<strong>in</strong>cid<strong>in</strong>g with <strong>the</strong> contributions <strong>of</strong> Vanniere et al.<br />

(2011) <strong>in</strong>dicate that <strong>in</strong> <strong>the</strong> Mediterranean <strong>the</strong>re is a synchronicity<br />

between <strong>the</strong> episodes <strong>of</strong> fires with <strong>the</strong> climatic droughts that were<br />

determ<strong>in</strong>ant dur<strong>in</strong>g <strong>the</strong>se stages.<br />

These traits <strong>in</strong>dicate that <strong>the</strong> Cardial <strong>Neolithic</strong> was a stage <strong>of</strong><br />

very active morphogenesis with a high probability <strong>of</strong> not be<strong>in</strong>g able<br />

<strong>to</strong> identify settlements <strong>in</strong> <strong>the</strong> open air <strong>of</strong> this stage <strong>and</strong> even earlier<br />

(Berger <strong>and</strong> Guila<strong>in</strong>e, 2009; Berger, 2011; Berger et al., 2016); which<br />

would lead us <strong>to</strong> consider that <strong>the</strong> cavities would act as sedimentation<br />

traps capable <strong>of</strong> reta<strong>in</strong><strong>in</strong>g such contributions <strong>from</strong> <strong>the</strong><br />

outside <strong>and</strong> would constitute <strong>the</strong> most favourable deposits for <strong>the</strong><br />

conservation <strong>of</strong> <strong>the</strong>se occupations.<br />

Subsequently, two events dated 6.8e6.3 <strong>and</strong> 6.2e5.7 <strong>ka</strong> <strong>cal</strong> <strong>BP</strong><br />

correspond <strong>to</strong> phases <strong>of</strong> <strong>in</strong>stability with reactivations <strong>of</strong> gravitational<br />

<strong>processes</strong>. These reactivations caused erosive contacts <strong>in</strong> <strong>the</strong><br />

underly<strong>in</strong>g <strong>sedimentary</strong> levels <strong>in</strong> some sec<strong>to</strong>rs <strong>of</strong> <strong>the</strong> cavities that <strong>in</strong><br />

Gu<strong>in</strong>eu occurred <strong>in</strong> <strong>the</strong> <strong>Epipaleolithic</strong> level. From this stage, correlations<br />

with o<strong>the</strong>r nearby <strong>records</strong> have not yet been observed.<br />

b) (Less) detrital sedimentation <strong>and</strong> (more) anthropic sedimentation.<br />

It is located <strong>in</strong> two episodes dated c.7.1e6.7 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong> correspond<strong>in</strong>g<br />

<strong>to</strong> <strong>the</strong> Epicardial <strong>and</strong> Late Cardial periods <strong>and</strong> c.<br />

6.6e5.9 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>, Postcardial <strong>Mid</strong>dle period, <strong>the</strong> latter with<br />

greater representation <strong>in</strong> <strong>the</strong> sequences. The sedimentation<br />

Please cite this article <strong>in</strong> press as: Bergada, M.M., et al., <strong>Chronostratigraphy</strong> <strong>in</strong> <strong><strong>ka</strong>rst</strong> <strong>records</strong> <strong>from</strong> <strong>the</strong> <strong>Epipaleolithic</strong> <strong>to</strong> <strong>the</strong> <strong>Mid</strong>/<strong>Early</strong> <strong>Neolithic</strong> (c.<br />

<strong>13.0e6.0</strong> <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>) <strong>in</strong> <strong>the</strong> <strong>Catalan</strong> <strong>Coastal</strong> <strong>Ranges</strong> <strong>of</strong> <strong>NE</strong> <strong>Iberia</strong>: <strong>environmental</strong> <strong>changes</strong>, <strong>sedimentary</strong> <strong>processes</strong> <strong>and</strong> <strong>human</strong> <strong>activity</strong>, Quaternary<br />

Science Reviews (2017), https://doi.org/10.1016/j.quascirev.2017.09.008


M.M. Bergada et al. / Quaternary Science Reviews xxx (2017) 1e21 19<br />

generated by <strong>human</strong> <strong>activity</strong> is strongly present <strong>in</strong> <strong>the</strong> caves<br />

with animal stabl<strong>in</strong>g practices (ma<strong>in</strong>ly ovicaprids) <strong>in</strong> which<br />

levels with burnt material (layer-cake) or without are alternated.<br />

The environment was humid, with some stability, especially<br />

dur<strong>in</strong>g <strong>the</strong> Late Cardial/Epicardial period, <strong>in</strong> which an<br />

<strong>in</strong>crease <strong>of</strong> hydromorphic <strong>processes</strong> is detected, possibly<br />

reflect<strong>in</strong>g non-permanent water saturation. It correlates with<br />

<strong>the</strong> data provided by anthracology <strong>of</strong> Gu<strong>in</strong>eu (Allue et al., 2009);<br />

as well as <strong>the</strong> palynologi<strong>cal</strong> analyses <strong>in</strong>dicat<strong>in</strong>g an expansion <strong>of</strong><br />

wetl<strong>and</strong>s <strong>in</strong> <strong>the</strong> deltaic pla<strong>in</strong>s <strong>of</strong> Llobregat (Riera et al., 2007). It<br />

also reflects <strong>the</strong> same <strong>environmental</strong> conditions dur<strong>in</strong>g <strong>the</strong><br />

Postcardial <strong>Mid</strong>dle <strong>Neolithic</strong> <strong>and</strong> <strong>the</strong> appearance <strong>of</strong> detrital<br />

gours <strong>in</strong> Can Sadurní are typi<strong>cal</strong> <strong>of</strong> a stable environment.<br />

It is at this episode that <strong>the</strong> use <strong>of</strong> <strong>the</strong> cavities for animal pens is<br />

recorded with good resolution, quite possibly favoured by <strong>the</strong><br />

<strong>environmental</strong> conditions. Most probably this anthropic sedimentation<br />

is responsible for <strong>the</strong> episodes <strong>of</strong> oscillat<strong>in</strong>g humidity reflected<br />

<strong>in</strong> <strong>the</strong> sequences <strong>of</strong> <strong>the</strong> caves where, if not for this<br />

contribution, perhaps a hiatus would be located. On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>,<br />

<strong>the</strong> detrital contributions are smaller <strong>and</strong> this can favour <strong>the</strong> tendency<br />

<strong>to</strong> create palimpsests <strong>in</strong> <strong>the</strong> different occupations <strong>of</strong> <strong>the</strong><br />

cavities. This is <strong>the</strong> case <strong>in</strong> Can Sadurní CS.VIII (level 11) where a<br />

burial phase dated 6.3e6.1 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong> overlaps a stabl<strong>in</strong>g phase dated<br />

6.6e6.4 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong> (An<strong>to</strong>lín et al., <strong>in</strong> press; Edo et al., <strong>in</strong> press a).<br />

6. Conclusions<br />

Holocene climatic variability is clearly reflected <strong>in</strong> caves <strong>in</strong> <strong>the</strong><br />

<strong>Catalan</strong> <strong>Coastal</strong> <strong>Ranges</strong> <strong>of</strong> <strong>NE</strong> <strong>Iberia</strong> dur<strong>in</strong>g <strong>the</strong> <strong>Mid</strong>dle <strong>and</strong> <strong>Early</strong><br />

<strong>Neolithic</strong>.<br />

The detailed analysis <strong>of</strong> <strong>the</strong> <strong>sedimentary</strong> sequences <strong>of</strong> <strong>the</strong>se<br />

caves <strong>of</strong>fers data that complement <strong>the</strong> palaeo<strong>environmental</strong><br />

studies obta<strong>in</strong>ed <strong>from</strong> high resolution <strong>records</strong> <strong>and</strong> especially at this<br />

stage, c.13e6.0 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>, <strong>in</strong> which <strong>the</strong>re are considerable <strong>changes</strong> <strong>in</strong><br />

ecosystems <strong>and</strong> with<strong>in</strong> <strong>human</strong> communities.<br />

Through <strong>the</strong> geoarchaeologi<strong>cal</strong> <strong>and</strong> microstratigraphic studies<br />

<strong>of</strong> <strong>the</strong> analyzed <strong><strong>ka</strong>rst</strong> <strong>records</strong> we highlight two stages:<br />

a) c. 12.7e7.4 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>, correspond<strong>in</strong>g <strong>to</strong> <strong>the</strong> <strong>Epipaleolithic</strong> <strong>and</strong><br />

Mesolithic. This period is characterized by <strong>the</strong> presence <strong>of</strong><br />

stratigraphic, chronologi<strong>cal</strong> <strong>and</strong> cultural discont<strong>in</strong>uities. Episodes<br />

dated 12.7e12.2 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong> (Younger Dryas first half), 11.5/<br />

11.1e10.7/10.4 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong> (beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> <strong>the</strong> <strong>Early</strong> Holocene) <strong>and</strong><br />

8.2e8.0 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong> (onset <strong>of</strong> <strong>the</strong> <strong>Mid</strong>dle Holocene). The conditions<br />

are fresh <strong>and</strong> humid; although <strong>in</strong> <strong>the</strong> range 8.2e8.0 <strong>the</strong>re is less<br />

humid.<br />

However, <strong>the</strong> trait characteriz<strong>in</strong>g this episode is <strong>the</strong> location <strong>of</strong><br />

<strong>the</strong> hiatus phases - depositional pauses - <strong>in</strong>dicative <strong>of</strong> biostasy<br />

phases or absence <strong>of</strong> seasonal acute episodes. This is corroborated<br />

<strong>in</strong> <strong>the</strong> caves <strong>of</strong> <strong>the</strong> <strong>NE</strong> <strong>of</strong> <strong>Iberia</strong>; as well also as a certa<strong>in</strong> tendency <strong>in</strong><br />

<strong>the</strong> Mediterranean area (Berger <strong>and</strong> Guila<strong>in</strong>e, 2009).<br />

Our op<strong>in</strong>ion is that, added <strong>to</strong> <strong>the</strong>se hiatuses, <strong>the</strong>re is a lack <strong>of</strong><br />

anthropic occupation that suggests dur<strong>in</strong>g this period <strong>the</strong>re was a<br />

change <strong>of</strong> strategy <strong>of</strong> <strong>the</strong> hunter-ga<strong>the</strong>rer communities <strong>in</strong> <strong>the</strong> use <strong>of</strong><br />

<strong>the</strong> cavities.<br />

b) c. 7.4e6.0 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>, correspond<strong>in</strong>g <strong>to</strong> <strong>the</strong> <strong>Neolithic</strong>, is <strong>the</strong> one<br />

that <strong>of</strong>fers <strong>the</strong> greatest resolution <strong>in</strong> <strong>the</strong> cavities. It is manifested<br />

<strong>in</strong> our <strong>records</strong> with an important detrital <strong>and</strong> anthropic sedimentation<br />

rate.<br />

Climate variability is recorded. There are alternat<strong>in</strong>g cumulative<br />

episodes <strong>of</strong> short duration, characteristic <strong>of</strong> <strong>the</strong> morphogenesis <strong>of</strong><br />

slopes <strong>in</strong> an arid Mediterranean environment.<br />

These short <strong>and</strong> cycli<strong>cal</strong> periods could be correlated with <strong>the</strong> so<strong>cal</strong>led<br />

RCCs, arid events, which <strong>in</strong> our context would be <strong>the</strong><br />

follow<strong>in</strong>g: c. 7.4e7.2 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>- Cardial <strong>Neolithic</strong>; c. 6.8e6.3 <strong>cal</strong> <strong>ka</strong><br />

<strong>BP</strong>- <strong>Early</strong> Postcardial <strong>Mid</strong>dle <strong>Neolithic</strong> <strong>and</strong> c.6.2e5.7 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>- Late<br />

Postcardial <strong>Mid</strong>dle <strong>Neolithic</strong>.<br />

These arid events alternate with episodes <strong>of</strong> stability that are<br />

more humid <strong>and</strong> co<strong>in</strong>cide with a better <strong>sedimentary</strong> record <strong>of</strong> <strong>the</strong><br />

pas<strong>to</strong>ral <strong>activity</strong> dur<strong>in</strong>g <strong>the</strong> Epicardial <strong>and</strong> Late Cardial <strong>Neolithic</strong> (c.<br />

7.1e6.7 <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>) <strong>and</strong> Postcardial <strong>Mid</strong>dle <strong>Neolithic</strong> (c. 6.6e5.9 <strong>cal</strong> <strong>ka</strong><br />

<strong>BP</strong>).<br />

It is <strong>in</strong>terest<strong>in</strong>g <strong>to</strong> emphasize <strong>from</strong> an archaeologi<strong>cal</strong> po<strong>in</strong>t <strong>of</strong><br />

view that <strong>the</strong> caves played an important role <strong>in</strong> <strong>the</strong> use <strong>of</strong> terri<strong>to</strong>ry<br />

<strong>in</strong> <strong>Neolithic</strong> communities; <strong>the</strong>y were used ma<strong>in</strong>ly as stabl<strong>in</strong>g, which<br />

is a great anthropic contribution <strong>to</strong> <strong>the</strong> <strong>sedimentary</strong> record.<br />

Acknowledgments<br />

This research is part <strong>of</strong> <strong>the</strong> HAR2014-55131 research project <strong>of</strong><br />

<strong>the</strong> MICINN, 2014/100780 <strong>and</strong> 2014/100482 <strong>of</strong> Generalitat de Catalunya<br />

<strong>and</strong> <strong>the</strong> Quality Research Group <strong>of</strong> Generalitat de Catalunya<br />

SRG2014-108.<br />

References<br />

Alley, R.B., Mayewski, P.A., Sowers, T., Stuiver, M., Taylor, K.C., Clark, P.U., 1997.<br />

Holocene climatic <strong>in</strong>stability: a prom<strong>in</strong>ent widespread event 8200 yr ago. Geology<br />

25, 483e486.<br />

Allue, E., Vernet, J.L., Cebria, A., 2009. Holocene vegetational l<strong>and</strong>scapes <strong>of</strong> <strong>NE</strong><br />

<strong>Iberia</strong>: charcoal analysis <strong>from</strong> Cova de la Gu<strong>in</strong>eu, Barcelona, Spa<strong>in</strong>. Holocene 19<br />

(5), 765e773.<br />

Amigo, J., 1983. Estructura del contacte entre la Serralada Preli<strong>to</strong>ral i la Depressio<br />

del Penedes (Torrelles de Foix, Pon<strong>to</strong>ns, Font-Rubí). Report Facultat de Geologia.<br />

Universitat de Barcelona (Unpublished).<br />

Angelucci, D.E., 2005. Nuevas aportaciones sobre el límite Pleis<strong>to</strong>ceno e holoceno<br />

en Catalu~na: los yacimien<strong>to</strong>s del abric de la Cativera y de Picamoixons (Tarragona).<br />

In: San<strong>to</strong>nja, M., Perez-Gonzalez, A., Machado, M.J. (Eds.), Geoarqueología<br />

y Patrimonio en la península Iberica y el en<strong>to</strong>rno mediterraneo.<br />

Adema, Soria, pp. 395e409.<br />

Angelucci, D.E., Boschian, G., Fontanals, M., Pedrotti, A., Verges, J.M., 2009. Shepherds<br />

<strong>and</strong> <strong><strong>ka</strong>rst</strong>: <strong>the</strong> use <strong>of</strong> caves <strong>and</strong> rock-shelters <strong>in</strong> <strong>the</strong> Mediterranean region<br />

dur<strong>in</strong>g <strong>the</strong> <strong>Neolithic</strong>. World Archaeol. 41 (2), 191e214.<br />

An<strong>to</strong>lín, F., Ache, M., Bergada, M.M., Blasco, A., Buxo, R., Edo, M., Gibaja, J.F.,<br />

Mensua, C., Palomo, A., Pique, R., Ruiz, J., Sa~na, M., Verdún, E., Villalba, M.J.,<br />

2011a. Aproximacio <strong>in</strong>terdiscipl<strong>in</strong>aria a l'accio del foc en les <strong>in</strong>humacions i<br />

aixovars del Neolític antic cardial de Can Sadurní (Begues, Baix Llobregat). In:<br />

Blasco, A., Edo, M., Villalba, M.J. (Eds.), La Cova de Can Sadurní i la Prehis<strong>to</strong>ria de<br />

Garraf. Recull de 30 anys d'<strong>in</strong>vestigacio, Begues, desembre 2008. EDAR, Milano,<br />

pp. 151e158.<br />

An<strong>to</strong>lín, F., Buxo, R., Mensua, C., Pique, R., 2011b. Vegetacio i apr<strong>of</strong>itament de<br />

recursos forestals al Garraf durant la Prehis<strong>to</strong>ria. In: Blasco, A., Edo, M.,<br />

Villalba, M.J. (Eds.), La Cova de Can Sadurní i la Prehis<strong>to</strong>ria de Garraf. Recull de<br />

30 anys d'<strong>in</strong>vestigacio. Begues, desembre 2008. EDAR, Milano, pp. 221e226.<br />

An<strong>to</strong>lín, F., Pique, R., Ballesteros, A., Burjachs, F., Buxo, R., Mensua, C., Edo, M., 2013.<br />

Changes <strong>in</strong> <strong>the</strong> <strong>in</strong>teraction between society <strong>and</strong> <strong>the</strong> environment <strong>from</strong> Mesolithic<br />

(10300-8500 <strong>cal</strong> BC) <strong>to</strong> <strong>the</strong> <strong>Early</strong> <strong>Neolithic</strong> (c. 5400 <strong>cal</strong> BC) <strong>in</strong> Can sadurní<br />

cave (Begues, Barcelona prov<strong>in</strong>ce, Spa<strong>in</strong>) a view <strong>from</strong> <strong>the</strong> archaeobotani<strong>cal</strong> data.<br />

BAR Int. Ser. 2486, 19e29.<br />

An<strong>to</strong>lín, F., Martínez, P., Fierro, E., Leon, M., Martínez, H., Gascon, M., Bergada, M. M.,<br />

Prats, G., Barcelo, J.A., Edo, M., <strong>in</strong> press. Towards <strong>the</strong> periodization <strong>of</strong> <strong>the</strong> uses <strong>of</strong><br />

Can Sadurní Cave (Begues, Catalonia) dur<strong>in</strong>g <strong>the</strong> <strong>Mid</strong>dle <strong>Neolithic</strong> I. The<br />

contribution <strong>of</strong> Bayesian modell<strong>in</strong>g <strong>to</strong> radiocarbon dat<strong>in</strong>g sequences. In:<br />

Barcelo, J.A., Bogdanovick, I., Morell, B. (eds.) Ibercrono. Cronometrías para la<br />

his<strong>to</strong>ria y arqueología de la Península iberica.<br />

Aura, J.E., Jorda, J.F., Montes, L., Utrilla, P., 2011. Human responses <strong>to</strong> younger Dryas<br />

<strong>in</strong> <strong>the</strong> Ebro Valley <strong>and</strong> mediterranean watershed (eastern Spa<strong>in</strong>). Quat. Int. 242,<br />

348e359.<br />

Bar<strong>to</strong>lome, M., Moreno, A., Sancho, C., Hellstrom, J., Belmonte, A., 2012. Cambios<br />

climaticos cor<strong>to</strong>s em El Pir<strong>in</strong>eo central durante El f<strong>in</strong>al del Pleis<strong>to</strong>ceno superior<br />

y Holoceno a partir del registro estalagmítico de la cueva de Seso (Huesca).<br />

Geogaceta 51, 59e62.<br />

Bartr<strong>in</strong>a, M.T., Cabrera, L.L., Jurado, M.L., Guimera, J., Roca, E., 1992. Cenozoic evolution<br />

<strong>of</strong> <strong>the</strong> central catalan marg<strong>in</strong> (Valencia Trough, western mediterranean).<br />

Tec<strong>to</strong>nophysics 203, 219e248.<br />

Bartrolí, R., Bergada, M.M., Cebria, A., Fontugne, M., 1992. El model microlam<strong>in</strong>ar<br />

geometric a la Catalunya meridional: aportacions del projecte d’<strong>in</strong>vestigacio de<br />

la Serra de Font-Rubí (Alt Penedes). 9e Col.loqui Internacional d'Arqueologia de<br />

Please cite this article <strong>in</strong> press as: Bergada, M.M., et al., <strong>Chronostratigraphy</strong> <strong>in</strong> <strong><strong>ka</strong>rst</strong> <strong>records</strong> <strong>from</strong> <strong>the</strong> <strong>Epipaleolithic</strong> <strong>to</strong> <strong>the</strong> <strong>Mid</strong>/<strong>Early</strong> <strong>Neolithic</strong> (c.<br />

<strong>13.0e6.0</strong> <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>) <strong>in</strong> <strong>the</strong> <strong>Catalan</strong> <strong>Coastal</strong> <strong>Ranges</strong> <strong>of</strong> <strong>NE</strong> <strong>Iberia</strong>: <strong>environmental</strong> <strong>changes</strong>, <strong>sedimentary</strong> <strong>processes</strong> <strong>and</strong> <strong>human</strong> <strong>activity</strong>, Quaternary<br />

Science Reviews (2017), https://doi.org/10.1016/j.quascirev.2017.09.008


20<br />

M.M. Bergada et al. / Quaternary Science Reviews xxx (2017) 1e21<br />

Puigcerda. Estat la Investig. sobre el Neolític Catalunya, Andorra, pp. 34e37.<br />

Benyarku, C.A., S<strong>to</strong>ops, G., 2005. Guidel<strong>in</strong>es for Preparation <strong>of</strong> Rock <strong>and</strong> Soil Th<strong>in</strong><br />

Sections <strong>and</strong> Polished Sections. Department <strong>of</strong> Environment <strong>and</strong> Soil Science,<br />

University <strong>of</strong> Lleida, Lleida.<br />

Bergada, M.M., 1997. Actividad antropica en el Neolítico antiguo catalan a traves del<br />

analisis micromorfologico. Trab. Prehist. 54 (2), 151e162.<br />

Bergada, M.M., 1998. Estudio geoarqueologico de los asentamien<strong>to</strong>s prehis<strong>to</strong>ricos<br />

del Pleis<strong>to</strong>ceno Superior y el Holoceno <strong>in</strong>icial en Catalunya. BAR International<br />

Series 742. Archaeopress, Oxford, p. 267.<br />

Bergada, M.M., Cervello, J.M., 2011. Estratigrafia, micromorfologia paleoambient de<br />

la Cova de Can Sadurní (Begues, Baix Llobregat) des dels c. 11.000 f<strong>in</strong>s els 5.000<br />

anys B.P. In: Blasco, A., Edo, M., Villalba, M.J. (Eds.), La Cova de Can Sadurní i la<br />

Prehis<strong>to</strong>ria de Garraf. Recull de 30 anys d'<strong>in</strong>vestigacio. Begues, desembre 2008.<br />

EDAR, Milano, pp. 97e108.<br />

Bergada, M.M., Cebria, A., Mestres, J., 2005a. Practicas de estabulacion durante el<br />

Neolítico antiguo en Catalu~na a traves de la micromorfología: cueva de la<br />

Gu<strong>in</strong>eu (Font-Rubí, Alt Penedes, Barcelona). In: III Congr. del Neolítico la<br />

Península Iberica, Sant<strong>and</strong>er, pp. 187e196.<br />

Bergada, M.M., Guerrero, V.M., Ensenyat, J., 2005b. Primeras evidencias de<br />

estabulacion en el yacimien<strong>to</strong> de Son Matge (Serra de Tramuntana, Mallorca) a<br />

traves del registro sedimentario. Mayurqa 30, 153e180.<br />

Bergada, M. M., Cervello, J.M., Edo, M., An<strong>to</strong>lín, F., Martínez, P., <strong>in</strong> press. Procesos<br />

deposicionales y antropicos en el registro holoceno de la Cova de Can Sadurní<br />

(Begues, Barcelona, Espa~na): aportaciones microestratigraficas. Geoarqueología,<br />

entre las Ciencias de la Tierra y la Hist./Geoarchaeology, between Earth Sci. Hist.<br />

Bol. Geol. M<strong>in</strong>ero (2018, 129 (1e2) (Accepted).<br />

Berger, J.F., 2011. Hydrologi<strong>cal</strong> <strong>and</strong> post-depositional impacts on <strong>the</strong> distribution <strong>of</strong><br />

Holocene archaeologi<strong>cal</strong> sites: <strong>the</strong> case <strong>of</strong> <strong>the</strong> Holocene middle Rh^one River<br />

bas<strong>in</strong>, France. Geomorphology 129, 167e182.<br />

Berger, J.F., Guila<strong>in</strong>e, J., 2009. The 8200 <strong>cal</strong> <strong>BP</strong> abrupt <strong>environmental</strong> change <strong>and</strong> <strong>the</strong><br />

<strong>Neolithic</strong> transition: a Mediterranean perspective. Quat. Int. 200 (1), 31e49.<br />

Berger, J.F., Delhon, C., Magn<strong>in</strong>, F., Bonte, S., Peyric, D., Thiebault, T., Guilbert, R.,<br />

Beech<strong>in</strong>g, A., 2016. A fluvial record <strong>of</strong> <strong>the</strong> mid-Holocene rapid climatic <strong>changes</strong><br />

<strong>in</strong> <strong>the</strong> middle Rhone valley (Espeluche-Lalo, France) <strong>and</strong> <strong>of</strong> <strong>the</strong>ir impact on Late<br />

Mesolithic <strong>and</strong> <strong>Early</strong> <strong>Neolithic</strong> societies. Quat. Sci. Rev. 136, 66e84.<br />

Bertran, P., Coutard, J.P., 2004. Solifluxion. In: Bertran, P. (Ed.), Dep^ot de pente<br />

cont<strong>in</strong>entaux dynamique et facies, vol. 1. Quaternaire, pp. 80e109.<br />

Bertran, P., Texier, J.P., 1999. Facies <strong>and</strong> micr<strong>of</strong>acies <strong>of</strong> slope deposits. Catena 35,<br />

99e121.<br />

Blasco, A., Edo, M., Villalba, M.J., 2005a. Cardial, Epicardial y Postcardial en Can<br />

Sadurní (Begues, Baix Llobregat). El largo f<strong>in</strong> del Neolítico antiguo en Catalu~na.<br />

In: III Congreso del Neolítico en la península Iberica. Sant<strong>and</strong>er, pp. 867e876.<br />

Blasco, A., Edo, M., Villalba, M.J., 2005b. Primeros da<strong>to</strong>s sobre la utilizacion sepulcral<br />

de la cueva de Can Sadurní (Begues, Baix Llobregat) en el Neolítico Cardial. In:<br />

III Congreso del Neolítico en la península Iberica. Sant<strong>and</strong>er, pp. 625e633.<br />

Bond, G., Showers, W., Cheseby, M., Lotti, R., Almasi, P., Demeno<strong>cal</strong>, P., Priore, P.,<br />

Cullen, H., Hajdas, I., Bonani, G., 1997. A pervasive millenial-s<strong>cal</strong>e cycle <strong>in</strong> North<br />

Atlantic Holocene <strong>and</strong> glacial climates. Science 278, 1257e1266.<br />

Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M.N., Showers, W., H<strong>of</strong>fmann, S.,<br />

Lotti-Bond, R., Hajdas, I. y, Bonani, G., 2001. Persistent solar <strong>in</strong>fluence on North<br />

Atlantic climate dur<strong>in</strong>g <strong>the</strong> Holocene. Science 294, 2130e2136.<br />

Boschian, G., 2006. Geoarchaeology <strong>of</strong> pupic<strong>in</strong>a cave. In: Miracle, P.T., Forenbaher, S.<br />

(Eds.), Prehis<strong>to</strong>ric Herders <strong>in</strong> Istria (Croatia): <strong>the</strong> Archaeology <strong>of</strong> Pupic<strong>in</strong>a Cave<br />

(1). Archaeologi<strong>cal</strong> Museum <strong>of</strong> Istria, Pula.<br />

Boschian, G., Miracle, P.T., 2007. Shepherds <strong>and</strong> caves <strong>in</strong> <strong>the</strong> <strong><strong>ka</strong>rst</strong> <strong>of</strong> Istria (Croatia).<br />

Atti Soc. Tosc. Sci. Nat. Mem. Ser. A 112, 173e180.<br />

Brochier, J.E., 1996. Feullies ou fumiers? Observations sur le r^ole des opusieres<br />

spherolitiques dans l'<strong>in</strong>terpretation des dep^ots archeologiques holocenes.<br />

Anthropozoologica 24, 19e30.<br />

Brochier, J.E., 2002. Les sediments anthropiques: methodes d’etude et perspectives.<br />

In: Miskovsky, J.C. (Ed.), Geologie de la Prehis<strong>to</strong>ire: methodes, techniques, applications,<br />

second ed. Geopre, Paris, pp. 453e477.<br />

Bullock, P., Fedor<strong>of</strong>f, N., Jongerius, A., S<strong>to</strong>ops, G., Turs<strong>in</strong>a, T., 1985. H<strong>and</strong>book for Soil<br />

Th<strong>in</strong> Section Description. Wa<strong>in</strong>e research publ., Wolverhamp<strong>to</strong>n.<br />

Burjachs, F., Samantha, E.J., Giralt, S.J., Fern<strong>and</strong>ez-Lopez de Pablo, J., 2016. Lateglacial<br />

<strong>to</strong> <strong>Early</strong> Holocene recursive aridity events <strong>in</strong> <strong>the</strong> SE Mediterranean <strong>Iberia</strong>n<br />

Pen<strong>in</strong>sula: <strong>the</strong> Sal<strong>in</strong>es playa lake case study. Quat. Int. 403, 187e200.<br />

Cacho, I., Grimalt, J.O., Canals, M., Sbaffi, L., Shackle<strong>to</strong>n, N.J., Sch€onfeld, J., Zahn, R.,<br />

2001. Variability <strong>of</strong> <strong>the</strong> western Mediterranean Sea surface temperature dur<strong>in</strong>g<br />

<strong>the</strong> last 25,000 years <strong>and</strong> its connection with <strong>the</strong> Nor<strong>the</strong>rn Hemisphere climatic<br />

<strong>changes</strong>. Paleoceanography 16/1, 40e52.<br />

Cacho, I., Valero-Garces, B., Gonzalez-Samperiz, P., 2010. Revision de las reconstrucciones<br />

paleoclimaticas en la Península Iberica desde el último periodo<br />

glacial. In: Perez, F.F., Boscolo, R. (Eds.), Clima en Espa~na: pasado, presente y<br />

futuro. Informe de evaluacion del cambio climatico regional, pp. 9e24.<br />

Canti, M.G., 1997. An <strong>in</strong>vestigation <strong>of</strong> microscopic <strong>cal</strong>careous spherulites <strong>from</strong><br />

herbivore dungs. J. Archaeol. Sci. 24, 219e231.<br />

Canti, M.G., 2003. Aspects <strong>of</strong> <strong>the</strong> chemi<strong>cal</strong> <strong>and</strong> microscopic characteristics <strong>of</strong> plant<br />

ashes found <strong>in</strong> archaeologi<strong>cal</strong> soils. Catena 54, 339e361.<br />

Carrion, J.S., Fern<strong>and</strong>ez, S., Gonzalez-Samperiz, P., Gil-Romera, G., Badal, E., Carrion-<br />

Marco, Y., Lopez-Mer<strong>in</strong>o, L., Lopez-Saez, J.A., Fierro, E., Burjachs, F., 2010. Expected<br />

trends <strong>and</strong> surprises <strong>in</strong> <strong>the</strong> lateglacial <strong>and</strong> Holocene vegetation his<strong>to</strong>ry<br />

<strong>of</strong> <strong>the</strong> iberian pen<strong>in</strong>sula <strong>and</strong> balearic Isl<strong>and</strong>s. Rev. Palaeobot. Palynology 162 (3),<br />

458e475.<br />

Cacho, C., Jorda, J.F., 2009. El Tossal de la Roca: <strong>the</strong> Pleis<strong>to</strong>cene-Holocene Transition<br />

<strong>in</strong> <strong>the</strong> Mediterranean Region <strong>of</strong> Eastern Spa<strong>in</strong>. J. Anthropol. Res. 65 (2),<br />

221e236.<br />

Combourieu-Nebout, N., Peyron, O., Bout-Roumazeilles, V., Gor<strong>in</strong>g, S., Dormoy, I.,<br />

Joann<strong>in</strong>, S., Sadori, L., Siani, G., Magny, M., 2013. Holocene vegetation <strong>and</strong><br />

climate <strong>changes</strong> <strong>in</strong> <strong>the</strong> central Mediterranean <strong>in</strong>ferred <strong>from</strong> a high-resolution<br />

mar<strong>in</strong>e pollen record (Adriatic Sea). Clim. Past. 9 (5), 2023e2042.<br />

Cortes Sanchez, M., Jimenez Espejo, F.J., Simon Vallejo, M.D., Gibaja Bao, J.F.,<br />

Carvalho, A.F., Mart<strong>in</strong>ez-Ruiz, F., Rodrigo Gamiz, M., Flores, J.-A., Paytan, A.,<br />

Lopez Saez, J.A., Pe~na-Chocarro, L., Carrion, J.S., Morales Mu~niz, A., Rosello<br />

Izquierdo, E., Riquelme Cantal, J.A., Dean, R.M., Salgueiro, E., Martínez<br />

Sanchez, R.M., De la Rubia de Gracia, J.J., Lozano Francisco, M.C., Vera Pelaez, J.L.,<br />

Rodríguez, L.L., Bicho, N.F., 2012. The mesolithiceneolithic transition <strong>in</strong> sou<strong>the</strong>rn<br />

<strong>Iberia</strong>. Quat. Res. 77 (2), 221e234.<br />

Courty, M.A., Goldberg, P., Macphail, R.I., 1989. Soils <strong>and</strong> Micromorphology <strong>in</strong><br />

Archaeology. Cambridge University Press.<br />

Courty, M.A., Macphail, R.I., Wattez, J., 1991. Soil micromorphologi<strong>cal</strong> <strong>in</strong>dica<strong>to</strong>rs <strong>of</strong><br />

pas<strong>to</strong>ralism; with special reference <strong>to</strong> Arene C<strong>and</strong>ide, F<strong>in</strong>ale Ligure, Italy. Riv.<br />

Studiiguri, LVII 1e4, 127e150.<br />

Davis, B.A., Brewer, S., Stevenson, A.C., Guiot, J., 2003. The temperature <strong>of</strong> Europe<br />

dur<strong>in</strong>g <strong>the</strong> Holocene reconstructed <strong>from</strong> pollen data. Quat. Sci. Rev. 22,<br />

1701e1716.<br />

Dorronsoro, B., Aguilar, J., Dorronsoro-Díaz, C., S<strong>to</strong>ops, G., Sierra, M., Fern<strong>and</strong>ez, J.,<br />

Dorronsoro-Fdez, C., 2015. HydroSols. Hidromorfía en suelos. http://www.<br />

edafologia.net/hidro/<strong>in</strong>dex.htm (02/05/2017).<br />

Dur<strong>and</strong>, N., Curtis, H., Canti, M.G., 2010. Calcium carbonate features. In: S<strong>to</strong>ops, G.,<br />

Marcel<strong>in</strong>o, V., Mees, F. (Eds.), Interpretation <strong>of</strong> Micromorphologi<strong>cal</strong> Features <strong>of</strong><br />

Soils <strong>and</strong> Regoliths. Elsevier, Amsterdam, pp. 149e194.<br />

Edo, M., Blasco, A., Villalba, M.J., 2011. La cova de Can Sadurní, guio s<strong>in</strong>tetic de la<br />

prehis<strong>to</strong>ria recent de Garraf. In: Blasco, A., Edo, M., Villalba, M.J. (Eds.), La Cova<br />

de Can Sadurní i la prehis<strong>to</strong>ria de Garraf. Recull de 30 anys d’<strong>in</strong>vestigacions.<br />

EDAR, Milano, pp. 13e95.<br />

Edo, M., An<strong>to</strong>lín, F., Martínez, P., Castellana, C., Bardera, R., Sa~na, M., Bergada, M. M.,<br />

Fullola, J. M., Barrio, C., Fierro, E., Castillo, T., Fornell, E., <strong>in</strong> press a. Cueva de Can<br />

Sadurní (Begues, Barcelona). Hacia la def<strong>in</strong>icion del modelo funerario en cueva<br />

para el Neolítico Medio I del nordeste pen<strong>in</strong>sular. In: Gibaja, J.F., Subira, M.E.,<br />

Martín, A., Mozota, M., Roig, J. Mir<strong>and</strong>o a la Muerte. Las practicas funerarias<br />

durante el neolítico en el noreste pen<strong>in</strong>sular. E-ditArx - Publicaciones Digitales,<br />

Castellon.<br />

Edo M., An<strong>to</strong>lín, F., Martínez, P., Villalba, M.J., Fullola, J.M., Bergada, M.M., Sa~na, M.,<br />

Verdún, E., Fern<strong>and</strong>ez-Domínguez, E., Gamba, C., Arroyo-Pardo, E., Ache, M.,<br />

Gibaja, J.F., Palomo, A., Clop, X., Manen, C., <strong>in</strong> press b. El episodio funerario del<br />

neolítico antiguo cardial pleno de la cueva de Can Sadurní (Begues, Barcelona).<br />

Estado actual de la cuestion. In: Gibaja, J.F., Subira, M.E., Martín, A., Mozota, M.,<br />

Roig, J. Mir<strong>and</strong>o a la Muerte. Las practicas funerarias durante el neolítico en el<br />

noreste pen<strong>in</strong>sular. E-ditArx - Publicaciones Digitales, Castellon.<br />

Egüez, N., Mallol, C., Martín-Socas, D., Camalich, M.D., 2016. Radiometric dates <strong>and</strong><br />

micromorphologi<strong>cal</strong> evidence for synchronous domestic <strong>activity</strong> <strong>and</strong> sheep<br />

penn<strong>in</strong>g <strong>in</strong> a <strong>Neolithic</strong> cave: cueva de El Toro (Malaga, Antequera, Spa<strong>in</strong>).<br />

Archaeol. Anthropol. Sci. 8 (1), 107e123.<br />

Equip Gu<strong>in</strong>eu, 1995. Elaboracio d’una cronoestratigrafia per a la prehis<strong>to</strong>ria del<br />

Penedes. Trib. d’Arqueologia 1993e1994, 7e24.<br />

Fern<strong>and</strong>ez, J., Jochim, M.A., 2010. The impact <strong>of</strong> <strong>the</strong> 8,200 <strong>cal</strong> <strong>BP</strong> climatic event on<br />

<strong>human</strong> mobility strategies dur<strong>in</strong>g <strong>the</strong> <strong>Iberia</strong>n late Mesolithic. J. Anthropol. Res.<br />

66, 39e68.<br />

Fern<strong>and</strong>ez, F., Dorronsoro-Fdez, C., Aguilar, J., Dorronsoro, B., S<strong>to</strong>ops, G., Dorronsoro<br />

Díaz, C., 2015. IlluviaSols. El proceso de iluviacion de arcilla en los suelos (02/05/<br />

2017). http://www.edafologia.net/iluv/<strong>in</strong>dex.htm.<br />

Ferrer, C., 2015. Estudios geoarqueologicos en las comarcas merid<strong>in</strong>ales valencianas.<br />

Procesos sedimentarios holocenos. PhD Thesis. Universitat de Valencia (Unpublished).<br />

417 pp. http://roderic.uv.es/h<strong>and</strong>le/10550/49367.<br />

Fitzpatrick, E.A., 1990. Micromorfología de suelos. Compa~nía edi<strong>to</strong>rial cont<strong>in</strong>ental,<br />

Mexico.<br />

Fletcher, W.J., Zielh<strong>of</strong>er, C., 2013. Fragility <strong>of</strong> Western Mediterranean l<strong>and</strong>scapes<br />

dur<strong>in</strong>g Holocene rapid climate <strong>changes</strong>. Catena 103, 16e29.<br />

Frigola, J., Moreno, A., Cacho, I., Canals, M., Sierro, J.F., Flores, J.A., Grimalt, J.O.,<br />

Hodell, D.A., Curtis, J.H., 2007. Holocene climate variability <strong>in</strong> <strong>the</strong> western<br />

Mediterranean region <strong>from</strong> a deepwater sediment record. Paleoceanography<br />

22, PA2209. https://doi.org/10.1029/2006PA001307, 2007.<br />

Fullola, J.M., García-Argüelles, P., Mangado, X., Med<strong>in</strong>a, B., 2011. Paleolític i epipaleolític<br />

al Garraf-Ordal. On erem i on som. In: Blasco, A., Edo, M., Villalba, M.J.<br />

(Eds.), La Cova de Can Sadurní i la prehis<strong>to</strong>ria de Garraf. Recull de 30 anys<br />

d’<strong>in</strong>vestigacions. EDAR, Milano, pp. 227e243.<br />

Fumanal, M.P., 1995. Los deposi<strong>to</strong>s cuaternarios en cuevas y abrigos. Implicaciones<br />

sedimen<strong>to</strong>climaticas. El Cuaternario del País Valenciano. Universitat de.<br />

Valencia, Valencia, pp. 115e124.<br />

García-Argüelles, P., Fullola, J.M., Roman, D., Nadal, J., Bergada, M.M., 2013. El<br />

modelo epipaleolítico geometrico tipo Filador 40 a~nos despues: vigencia y<br />

nuevas propuestas Estudios en Homenaje a Javier Fortea Perez. Universitatis<br />

Ovetensis Magister. Mensula. Edi<strong>to</strong>rial: Servicio de publicaciones de la Universidad<br />

de Oviedo, Oviedo, pp. 151e165.<br />

García-Puchol, O., Aura, J.E., 2006. El Abric de la Falguera (Alcoi, Alacant). 8000 a~nos<br />

de ocupacion <strong>human</strong>a en la cabecera del río Alcoi. Diputacion de Alicante.<br />

Ayuntamien<strong>to</strong> de Alcoi y Caja de Ahorros Mediterraneo, Alcoi.<br />

García-Ruiz, J.M., Palacios, D., Gonzalez-Samperiz, P., Andres, de N., Moreno, A.,<br />

Valero-garces, B., Gomez-Villar, A., 2016. Mounta<strong>in</strong> glaciar evolution <strong>in</strong> <strong>the</strong><br />

Please cite this article <strong>in</strong> press as: Bergada, M.M., et al., <strong>Chronostratigraphy</strong> <strong>in</strong> <strong><strong>ka</strong>rst</strong> <strong>records</strong> <strong>from</strong> <strong>the</strong> <strong>Epipaleolithic</strong> <strong>to</strong> <strong>the</strong> <strong>Mid</strong>/<strong>Early</strong> <strong>Neolithic</strong> (c.<br />

<strong>13.0e6.0</strong> <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>) <strong>in</strong> <strong>the</strong> <strong>Catalan</strong> <strong>Coastal</strong> <strong>Ranges</strong> <strong>of</strong> <strong>NE</strong> <strong>Iberia</strong>: <strong>environmental</strong> <strong>changes</strong>, <strong>sedimentary</strong> <strong>processes</strong> <strong>and</strong> <strong>human</strong> <strong>activity</strong>, Quaternary<br />

Science Reviews (2017), https://doi.org/10.1016/j.quascirev.2017.09.008


M.M. Bergada et al. / Quaternary Science Reviews xxx (2017) 1e21 21<br />

iberian pen<strong>in</strong>sula dur<strong>in</strong>g <strong>the</strong> younger Dryas. Quat. Sci. Rev. 138, 16e30.<br />

Gonzalez-Samperiz, P., Valero-Garces, B.L., Moreno, A., Jalut, G., García-Ruiz, J.M.,<br />

Martí-Bono, C., Delgado-Huertas, A., Navas, A., Ot<strong>to</strong>, T., Dedoubat, J.L., 2006.<br />

Climate variability <strong>in</strong> <strong>the</strong> Spanish Pyrenees dur<strong>in</strong>g <strong>the</strong> last 30,000 yr revealed<br />

by <strong>the</strong> Portalet sequence. Quat. Res. 66 (1), 38e52.<br />

Gonzalez-Samperiz, P., Utrilla, P., Mazo, C., Valero-Garces, B., Sopena, M.C.,<br />

Morellon, M., Sebastian, M., Moreno, A., Martínez-Bea, M., 2009. Patterns <strong>of</strong><br />

<strong>human</strong> occupation dur<strong>in</strong>g <strong>the</strong> early Holocene <strong>in</strong> <strong>the</strong> Central Ebro Bas<strong>in</strong> (<strong>NE</strong><br />

Spa<strong>in</strong>) <strong>in</strong> response <strong>to</strong> <strong>the</strong> 8.2 <strong>ka</strong> climatic event. Quat. Res. 71 (2), 121e132.<br />

Jalut, G., Esteban Amat, A., Bonnet, L., Gauquel<strong>in</strong>, T., Fontugne, M., 2000. Holocene<br />

climatic <strong>changes</strong> <strong>in</strong> <strong>the</strong> Western Mediterranean, <strong>from</strong> south-east France <strong>to</strong><br />

south-east Spa<strong>in</strong>. Palaeogeogr. Palaeoclima<strong>to</strong>l. Palaeoecol. 160 (3), 255e290.<br />

Jalut, G., Dedoubat, J.J., Fontugne, M., Ot<strong>to</strong>, T., 2009. Holocene circum-<br />

Mediterranean vegetation <strong>changes</strong>: climate forc<strong>in</strong>g <strong>and</strong> <strong>human</strong> impact. Quat.<br />

Int. 200 (1), 4e18.<br />

Jorda, J.F., Mora, R., Pique, R., 1992. La secuencia li<strong>to</strong>estratigrafica y arqueologica del<br />

yacim<strong>in</strong>e<strong>to</strong> de la Font del Ros (Berga, Barcelona). Cuaternario Geomorfol. 6,<br />

21e30.<br />

Kar<strong>ka</strong>nas, P., Goldberg, P., 2010. Phosphatic features. In: S<strong>to</strong>ops, G., Marcel<strong>in</strong>o, V.,<br />

Mees, F. (Eds.), Interpretation <strong>of</strong> Micromorphologi<strong>cal</strong> Features <strong>of</strong> Soils <strong>and</strong><br />

Regoliths. Elsevier, Amsterdam, pp. 521e541.<br />

Kar<strong>ka</strong>nas, P., Goldberg, P., 2013. Micromorphology <strong>of</strong> cave sediments. In:<br />

Shroder, John F., Frumk<strong>in</strong>, A. (Eds.), Treatise on Geomorphology, vol. 6. Karst<br />

Geomorphology, Academic Press, San Diego, pp. 286e297.<br />

Lowe, J.J., Rasmussen, S.O., Bj€orck, S., Hoek, W.Z., Steffensen, J.P., Walker, M.J.C.,<br />

Yu, Z.C., 2008. Synchronisation <strong>of</strong> palaeo<strong>environmental</strong> events <strong>in</strong> <strong>the</strong> North<br />

Atlantic region dur<strong>in</strong>g <strong>the</strong> Last Term<strong>in</strong>ation: a revised pro<strong>to</strong>col recommended<br />

by <strong>the</strong> INTIMATE group. Quat. Sci. Rev. 27, 6e17.<br />

Macphail, R.I., Courty, M.A., Ha<strong>the</strong>r, J., Wattez, J., 1997. The soil micromorphologi<strong>cal</strong><br />

evidence <strong>of</strong> domestic occupation <strong>and</strong> stabl<strong>in</strong>g activities. Mem. dell’Institu<strong>to</strong> Ital.<br />

Paleon<strong>to</strong>l. Um. 53e86.<br />

Martrat, B., Grimalt, J.O., Shackle<strong>to</strong>n, N.J., de Abreu, L., Hutterli, M.A., S<strong>to</strong>cker, T.F.,<br />

2007. Four climate cycles <strong>of</strong> recurr<strong>in</strong>g deep <strong>and</strong> surface water destabilizations<br />

on <strong>the</strong> <strong>Iberia</strong>n marg<strong>in</strong>. Science 317 (5837), 502e507.<br />

Mayewski, P.A., Rohl<strong>in</strong>g, E.E., Stager, J.C., Karlen, W., Maasch, K.A., Meeker, L.D.,<br />

Meyerson, E.A., Gasse, F., van Kreveld, S., Holmgren, K., Lee-Thorp, J.,<br />

Rosqvist, G., Rack, F., Staubwasser, M., Schneider, R.R., Steig, E.J., 2004. Holocene<br />

climate variability. Quat. Res. 62, 243e255.<br />

McGowan, G., Prangnell, J., 2006. The significance <strong>of</strong> vivianite <strong>in</strong> archaeologi<strong>cal</strong><br />

sett<strong>in</strong>gs. Geoarchaeology An Int. J. 21 (1), 93e111.<br />

Montes, L., Dom<strong>in</strong>go, R., Gonzalez-Samperiz, P., Sebastian, M., Aranbarri, J.,<br />

Casta~nos, P., García-Simon, L.M., Alcolea, M., Laborda, R., 2016. L<strong>and</strong>scape, resources<br />

<strong>and</strong> people dur<strong>in</strong>g <strong>the</strong> Mesolithic <strong>and</strong> <strong>Neolithic</strong> times <strong>in</strong> <strong>NE</strong> <strong>Iberia</strong>: <strong>the</strong><br />

Arba de Biel Bas<strong>in</strong>. Quat. Int. 403, 133e150.<br />

Morales, J.I., Oms, X., 2012. Las últimas evidencias mesolíticas del <strong>NE</strong> pen<strong>in</strong>sular y el<br />

vacío pre-neolítico. Rubricatum 5, 35e41.<br />

Morellon, M., Valero-Garces, B., Vegas-Villarrúbia, T., Gonzalez-Samperiz, P.,<br />

Romero, O., Delgado-Huertas, A., Mata, P., Moreno, A., Rico, M., Corella, J.P.,<br />

2009. Lateglacial <strong>and</strong> Holocene palaeohydrology <strong>in</strong> <strong>the</strong> western Mediteranean<br />

regio: <strong>the</strong> lake Estanya record (<strong>NE</strong> Spa<strong>in</strong>). Quat. Sci. Rev. 28 (25e26),<br />

2582e2599.<br />

Moreno, A., Gonzalez-Samperiz, P., Morellon, M., Valero-Garces, B.L., 2012. Nor<strong>the</strong>rn<br />

<strong>Iberia</strong>n abrupt climate change dynamics dur<strong>in</strong>g <strong>the</strong> last glacial cycle: a view<br />

<strong>from</strong> lacustr<strong>in</strong>e sediments. Quat. Sci. Rev. 36, 139e153.<br />

Moreno, A., Sancho, C., Oliva, B., Bar<strong>to</strong>lome, M., Cacho, I., S<strong>to</strong>ll, H., Edwards, I.R.,<br />

Cheng, H., Hellstrom, J., 2013. Registro espeleotemico de la variabilidad climatica<br />

durante el Holoceno: la cueva de Mol<strong>in</strong>os (Teruel). In: Banea, R.,<br />

Fern<strong>and</strong>ez, J.J., Guerrero, y I. (Eds.), El cuaternario iberico: <strong>in</strong>vestigacion en el s.<br />

XXI. Sevilla, pp. 118e122.<br />

Mücher, H., Van Steijn, H., Kwaad, F., 2010. Colluvial <strong>and</strong> mass wast<strong>in</strong>g deposits. In:<br />

S<strong>to</strong>ops, G., Marcel<strong>in</strong>o, V., Mees, F. (Eds.), Interpretation <strong>of</strong> Micromorphologi<strong>cal</strong><br />

Features <strong>of</strong> Soils <strong>and</strong> Regoliths. Elsevier, Amsterdam, pp. 37e48.<br />

Nicosia, C., 2008. Micromorphology <strong>of</strong> some phosphatic <strong>in</strong>clusions <strong>and</strong> ne<strong>of</strong>ormations<br />

<strong>of</strong> ocurr<strong>in</strong>g <strong>in</strong> archaeologi<strong>cal</strong> deposits. Frankf. Geowiss. Arb. 30,<br />

85e94.<br />

Oms, F.X., Mestres, J., Cebria, A., Morales, J.I., Nadal, J., Pedro, M., Mendiela, S.,<br />

Martín, P., Fullola, J.M., 2016. La Cova de la Gu<strong>in</strong>eu (Font-Rubí, Barcelona) i les<br />

relacions plana e muntanya al Penedes durant el Neolític <strong>in</strong>icial. Tv. SIP 119,<br />

97e107.<br />

Perez-Obiol, R., Jalut, G., Julia, R., Pelachs Ma~nosa, A., Iriarte Chiapusso, M.J., Ot<strong>to</strong>, T.,<br />

Hern<strong>and</strong>ez Beloqui, B., 2011. <strong>Mid</strong>-Holocene vegetation <strong>and</strong> climatic his<strong>to</strong>ry <strong>of</strong><br />

<strong>the</strong> <strong>Iberia</strong>n Pen<strong>in</strong>sula. Holocene 21 (1), 75e93.<br />

Perez-Sanz, A., Gonzalez-Samperiz, P., Moreno, A., Valero-Garces, B., Gil-Romera, G.,<br />

Rieradevall, M., Tarrats, P., Lasheras- Alvarez, L., Morellon, M., Belmonte, A.,<br />

Sancho, C., Sevilla-Callejo, M., Navase, A., 2013. Holocene climate variability,<br />

vegetation dynamics <strong>and</strong> fire regime <strong>in</strong> <strong>the</strong> central Pyrenees: <strong>the</strong> Basa de la<br />

Mora sequence (<strong>NE</strong> Spa<strong>in</strong>). Quat. Sci. Rev. 73, 149e169.<br />

Petit, M.A., Mangado, X., Fullola, J.M., Bartrolí, R., Bergada, M.M., Esteve, X., 2009. Els<br />

caçadors-recol.lec<strong>to</strong>rs de la cova del Parco (Alos de Balaguer, La Noguera,<br />

Lleida): L'Epipaleolític microlam<strong>in</strong>ar: cont<strong>in</strong>uïtat o canvi?. In: Els Pir<strong>in</strong>eus i les<br />

arees circumdants durant el Tardiglacial. Mutacions i filiacions tecnoculturals,<br />

evolucion paleoambiental (16.000-10.000 B.P.), XIV Col.loqui Internacional<br />

d'Arqueologia de Puigcerda. Inst. d'Estudis. Ceretans i Patronat F. Eiximenis,<br />

Puigcerda, pp. 579e591.<br />

Polo Díaz, A., 2010. Rediles prehis<strong>to</strong>ricos y uso del espacio en abrigos bajo roca en la<br />

Cuenca Alta del Ebro: geoarqueología y procesos de formacion durante el<br />

Holoceno. PhD Thesis. Universidad del País Vasco-Eus<strong>ka</strong>l Herriko Unibertsitatea<br />

(Unpublished).<br />

Polo Díaz, A., Martínez-Moreno, J., Beni<strong>to</strong>-Calvo, A., Mora, R., 2014. Prehis<strong>to</strong>ric<br />

herd<strong>in</strong>g facilities: site formation <strong>and</strong> archaeologi<strong>cal</strong> dynamics <strong>in</strong> Cova Gran de<br />

Santa L<strong>in</strong>ya (Sou<strong>the</strong>astern Prepyrenees, <strong>Iberia</strong>). J. Archaeol. Sci. 41, 784e800.<br />

Reed, J.M., Stevenson, A.C. y, Jugg<strong>in</strong>s, S., 2001. A multi-proxy record <strong>of</strong> Holocene<br />

climatic change <strong>in</strong> Southwestern Spa<strong>in</strong>: <strong>the</strong> Laguna de Med<strong>in</strong>a, Cadiz. Holocene<br />

11 (6), 707e719.<br />

Riera, S., Esteve, X., Nadal, J., 2007. Systemes d’exploitation et anthropisation du<br />

paysage mediterraneen du Neolithique ancien au premier ^age du Fer: le cas de<br />

la depression de Penedes (nord-est de la pen<strong>in</strong>sule iberique). Environnements<br />

et cultures a l’^age du Bronze en Europe Occidentale, (Actes des congres nationaux<br />

des Societes his<strong>to</strong>riques et scientifiques 129e, Besançon, 2004) Editions du<br />

CTHS, Paris, pp. 121e141.<br />

Rohl<strong>in</strong>g, E.J., P€alike, H., 2005. Centennial-s<strong>cal</strong>e climate cool<strong>in</strong>g with a sudden cold<br />

event around 8,200 years ago. Nature 434 (7036), 975e979.<br />

S<strong>to</strong>ops, G., 2003. Guidel<strong>in</strong>es for Analysis <strong>and</strong> Description <strong>of</strong> Soil <strong>and</strong> Regolith Th<strong>in</strong><br />

Section. Soil Science Society <strong>of</strong> America, Ionc, Wiscons<strong>in</strong>, Madison.<br />

Valero-Garces, B.L., Moreno, A., 2011. <strong>Iberia</strong>n lacustr<strong>in</strong>e sediment <strong>records</strong>: responses<br />

<strong>to</strong> past <strong>and</strong> recent global <strong>changes</strong> <strong>in</strong> <strong>the</strong> Mediterranean region. J. Paleolimnol.<br />

46, 319e325.<br />

Vallverdú, J., Carrancho, A., 2004. Estratigrafia del Molí del Salt. In Vaquero, M. Els<br />

darrers caçadors erecol.lec<strong>to</strong>rs de la conca de Barbera: el jaciment del Molí del<br />

Salt (Vimbodí). Excavacions, pp. 1999e2003. Montblanc, pp.61 e 68.<br />

Vanniere, B., Power, M.J., Roberts, N., T<strong>in</strong>ner, W., Carrion, J., Magny, M., Bartle<strong>in</strong>, P.,<br />

2011. Circum-Mediterranean fire <strong>activity</strong> <strong>and</strong> climate <strong>changes</strong> dur<strong>in</strong>g <strong>the</strong> mid<br />

Holocene <strong>environmental</strong> transition (8500 e 2500 <strong>cal</strong> yr <strong>BP</strong>). Holocene 21 (1),<br />

53e73.<br />

Verdasco, C., 2016. Estudio microsedimen<strong>to</strong>logico de niveles arqueosedimentarios<br />

depositados en cuevas y abrigos en el país valenciano durante el Pleis<strong>to</strong>ceno-<br />

Holoceno (11.000e5.000 <strong>BP</strong>). PhD Thesis. Universitat de Valencia (Unpublished).<br />

http://roderic.uv.es/h<strong>and</strong>le/10550/50641.<br />

Verges, J.M., Burguet-Coca, A., Allue, E., Exposi<strong>to</strong>, I., Guardiola, M., Martín, P.,<br />

Morales, J.I., Burjachs, F., Cabanes, D., Carrancho, A., Vallverdú, J., 2016. The Mas<br />

del Pepet experimental programme for <strong>the</strong> study <strong>of</strong> prehis<strong>to</strong>ric lives<strong>to</strong>ck<br />

practices: prelim<strong>in</strong>ary data <strong>from</strong> dung burn<strong>in</strong>g. Quat. Int. 414, 304e315.<br />

Van Vliet-Lano€e, B., 2010. Frost action. In: S<strong>to</strong>ops, G., Marcel<strong>in</strong>o, V., Mees, F. (Eds.),<br />

Interpretation <strong>of</strong> Micromorphologi<strong>cal</strong> Features <strong>of</strong> Soils <strong>and</strong> Regoliths. Elsevier,<br />

Amsterdam, pp. 81e108.<br />

Wanner, H., Solom<strong>in</strong>a, O., Grosjean, M., Ritz, S.P., Jetel, M., 2011. Structure <strong>and</strong> orig<strong>in</strong><br />

<strong>of</strong> Holocene cold events. Quat. Sci. Rev. 30, 3109e3123.<br />

Wen<strong>in</strong>ger, B., J€oris, O., Danzeglocke, U., 2007. Glacial Radiocarbon Age Conversion.<br />

Cologne Radiocarbon Calibration <strong>and</strong> Palaeoclimate Research Pac<strong>ka</strong>ge< CAL-<br />

PAL> User Manual. Universit€at zu K€oln, Institut für Ur-und Frühgeschichte<br />

(2009 on l<strong>in</strong>e). www.<strong>cal</strong>pal.de/.<br />

Please cite this article <strong>in</strong> press as: Bergada, M.M., et al., <strong>Chronostratigraphy</strong> <strong>in</strong> <strong><strong>ka</strong>rst</strong> <strong>records</strong> <strong>from</strong> <strong>the</strong> <strong>Epipaleolithic</strong> <strong>to</strong> <strong>the</strong> <strong>Mid</strong>/<strong>Early</strong> <strong>Neolithic</strong> (c.<br />

<strong>13.0e6.0</strong> <strong>cal</strong> <strong>ka</strong> <strong>BP</strong>) <strong>in</strong> <strong>the</strong> <strong>Catalan</strong> <strong>Coastal</strong> <strong>Ranges</strong> <strong>of</strong> <strong>NE</strong> <strong>Iberia</strong>: <strong>environmental</strong> <strong>changes</strong>, <strong>sedimentary</strong> <strong>processes</strong> <strong>and</strong> <strong>human</strong> <strong>activity</strong>, Quaternary<br />

Science Reviews (2017), https://doi.org/10.1016/j.quascirev.2017.09.008

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!