14.12.2012 Views

The Transannular Diels-Alder Reaction - ACS Organic Division

The Transannular Diels-Alder Reaction - ACS Organic Division

The Transannular Diels-Alder Reaction - ACS Organic Division

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>The</strong> <strong>Transannular</strong> <strong>Diels</strong>-<strong>Alder</strong><br />

<strong>Reaction</strong>: Applications in<br />

Complex Molecule Synthesis<br />

Craig R. Smith<br />

Department of Chemistry, <strong>The</strong> Ohio State University, 100 W. 18 th Avenue, Columbus,<br />

Ohio 43210<br />

csmith@chemistry.ohio-state.edu<br />

Me<br />

RO<br />

ABSTRACT<br />

<strong>The</strong> <strong>Diels</strong>-<strong>Alder</strong> (DA) reaction is arguably one of the most powerful carbon-carbon bond forming reactions in<br />

synthesis due to atom economy, broad versatility, and high levels of stereocontrol. When the broad features of<br />

<strong>Diels</strong>-<strong>Alder</strong> chemistry are implemented in transannular systems, the results have been especially impressive. <strong>The</strong><br />

transannular <strong>Diels</strong>-<strong>Alder</strong> (TADA) reaction will be discussed in the context of four recently disclosed syntheses.<br />

<strong>The</strong> discovery of the <strong>Diels</strong>-<strong>Alder</strong> reaction in 1928, 1 or<br />

rather the proper identification of the cycloaddition<br />

adduct of cyclopentadiene and quinone, marked a<br />

tremendous advance in the field of organic synthesis.<br />

<strong>The</strong> visionary insight of <strong>Diels</strong> and <strong>Alder</strong> predicted the<br />

importance of the reaction in natural product synthesis,<br />

and in particular, to the synthesis of terpenes,<br />

sesquiterpenes and alkaloids. <strong>The</strong> first application of this<br />

pericyclic reaction in natural product synthesis occurred<br />

more than twenty years after its discovery. In 1951,<br />

Stork et al. applied the <strong>Diels</strong>-<strong>Alder</strong> reaction to the<br />

stereocontrolled synthesis of cantharidin, 2 while only a<br />

few months later, the pericyclic process was employeed<br />

in the first total synthesis of morphine. 3 Other landmark<br />

applications of the intermolecular <strong>Diels</strong>-<strong>Alder</strong> reaction<br />

e<br />

(1) <strong>Diels</strong>, O.; <strong>Alder</strong>, K. Justus Liebigs Ann. Chem. 1928, 460, 98.<br />

(2) (a) Stork, G.; Van Tamalen, E. E.; Friedman, L. J.; Burgstahler,<br />

A. W. J. Am. Chem. Soc. 1951, 73, 4501. (b) Stork, G.; Van Tamalen,<br />

E. E.; Friedman, L. J.; Burgstahler, A. W. J. Am. Chem. Soc. 1953, 75,<br />

384.<br />

(3) (a) Gates, M.; Tschudi, G. J. Am. Chem. Soc. 1952, 74, 1109. (b)<br />

Gates, M.; Tschudi, G. J. Am. Chem. Soc. 1956, 78, 1380. (c) Gates, M.<br />

J. Am. Chem. Soc. 1950, 72, 228.<br />

Me<br />

O<br />

O t OR<br />

Me<br />

OR'<br />

Me<br />

Bu<br />

O<br />

RO<br />

R=TES,R'=TMS<br />

are the syntheses of cortisone and cholesterol 4 disclosed<br />

by Woodward et al. in 1952, and to forge the D,E bicycle<br />

of reserpine 5 (4) in 1956 (Scheme 1).<br />

Scheme 1. DA in Woodward’s Synthesis of 4.<br />

O<br />

endo TS<br />

O<br />

O<br />

H<br />

PhH<br />

DA<br />

+<br />

heat O<br />

D E<br />

O<br />

1<br />

CO2Me<br />

2<br />

MeO2C<br />

H<br />

O CO2Me<br />

3<br />

MeO<br />

Me<br />

t BuO<br />

OR<br />

Me H<br />

Tandem <strong>Transannular</strong> <strong>Diels</strong>-<strong>Alder</strong> Sequence<br />

H<br />

O<br />

R'O<br />

O<br />

Me<br />

Me<br />

H<br />

A<br />

B<br />

N<br />

H H<br />

C<br />

N<br />

D H<br />

H E<br />

O<br />

MeO2C O<br />

Reserpine (4)<br />

OMe<br />

OMe<br />

OMe<br />

OMe<br />

steps


As intermolecular variations of the DA have been<br />

employed in a number of syntheses, more recent<br />

endevours have used the intramolecular DA with great<br />

efficiency. Here, the benefit is that the product outcome<br />

can be predicted with high accuracy due to the<br />

stereochemical requirements of the pre-existing<br />

functionalities. <strong>The</strong> power of the DA was again<br />

demonstrated by Corey et al. in a brilliant synthesis of<br />

gibberellic acid, 6 in which a chemo- and regioselective<br />

intermolecular DA introduced the relative<br />

stereochemistry in the B and C rings of the final product,<br />

followed by an intramolecular substrate-controlled DA to<br />

forge the A ring of gibberellic acid.<br />

Deslongchamps envisioned that a TADA would<br />

possess high chemo-, regio-, and diastereoselectivity. It<br />

would also generate highly complex carbocyclic systems<br />

as a result of both entropic activation and conformational<br />

restraints in the macrocyclic environment. His seminal<br />

work in the area layed the foundation for future synthetic<br />

endevours, four of which will be examined in detail.<br />

Deslongchamps influential contributions include TADA<br />

reactions of 13-membered macrocyclic trienones, 7 TADA<br />

reactions of 14-membered macrocycles, 8 dienedienophile<br />

reactivity studies for the TADA, 9 and the<br />

synthesis of a number of natural products including<br />

cassaine A (5) 10 and aphidicolin (6, Figure 1). 11<br />

Deslonchamps noted, 12 “…the complexity and power of<br />

HO<br />

H<br />

Figure 1. Cassaine A and Aphidicolin.<br />

H<br />

O<br />

O<br />

Cassaine A (5)<br />

O<br />

N<br />

HO<br />

HO<br />

H<br />

Aphidicolin (6)<br />

the TADA strategy arises from a judicious choice of<br />

substituents that will govern the conformation adopted by<br />

the macrocycle at the transition state level, via<br />

transannular steric repulsion and electronic interactions,”<br />

or more plainly, an in-depth analysis of the macrocycle<br />

and the potential transition states leads to a high fidelity<br />

e<br />

(4) Woodward, R. B.; Sondheimer, F.; Taub, D.; Heusler, K.;<br />

McLamore, W. M. J. Am. Chem. Soc. 1952, 74, 4223.<br />

(5) (a) Woodward, R. B.; Bader, F. E.; Bickel, H.; Frey, A. J.;<br />

Kierstead, R. W. J. Am. Chem. Soc. 1956, 78, 2023. (b) Woodward, R.<br />

B.; Bader, F. E.; Bickel, H.; Frey, A. J.; Kierstead, R. W. J. Am. Chem.<br />

Soc. 1956, 78, 2657.<br />

(6) (a) Corey, E. J.; Danheiser, R. L.; Chandrasekaran, S.; Siret, P.;<br />

Keck, G. E.; Gras, J.-L. J. Am. Chem. Soc. 1978, 100, 8031. (b) Corey,<br />

E. J.; Danheiser, R. L.; Chandrasekaran, S.; Keck, G. E.; Gopalan, B.;<br />

Larsen, S. D.; Siret, P.; Gras, J.-L. J. Am. Chem. Soc. 1978, 100, 8034.<br />

(7) (a) Baettig, K.; Dallaire, C.; Pitteloud, R.; Deslongchamps, P.<br />

Tetrahedron Lett. 1987, 28, 5249. (b) Baettig, K.; Marinier, A.;<br />

Pitteloud, R.; Deslongchamps, P. Tetrahedron Lett. 1987, 28, 5253. (c)<br />

Bérubé, G.; Deslongchamps, P. Tetrahedron Lett. 1987, 28, 5255.<br />

(8) (a) Lamothe, S.; Ndibwani, A.; Deslongchamps, P. Tetrahedron<br />

Lett. 1988, 29, 1641. (b) Marinier, A.; Deslongchamps, P. Tetrahedron<br />

Lett. 1988, 29, 6215.<br />

OH<br />

OH<br />

prediction of the stereocontrolled assembly of densely<br />

populated carbocyclic arrays.<br />

Recently, a number of biologically and structurally<br />

interesting carbocyclic natural products have been<br />

assembled via the TADA reaction including (+)-<br />

FR182877, (+)-macquaramicin A, (-)-spinosyn A, and<br />

(+)-superstolide A. Among these compounds, (+)-<br />

FR182877 is interesting as it possesses a highly oxygen<br />

and carbon functionalized hexacyclic core, 12 stereogenic<br />

centers, and significant microtubule stabilizing activity.<br />

In 2001, Sorensen and co-workers 13 suggested that 11<br />

Me<br />

R'O<br />

Scheme 2. Sorensen’s Synthesis of (+)-FR182877.<br />

Bu t O2C<br />

RO<br />

CO 2Me<br />

O<br />

1. PhSeBr<br />

2. mCPBA<br />

Me<br />

OR<br />

OR<br />

Pd2dba3<br />

R=TES<br />

R' = TMS<br />

Bu t O2C<br />

Me<br />

R'O<br />

Me<br />

Me<br />

Me<br />

7 8<br />

Me<br />

Me<br />

RO<br />

O<br />

O t OR<br />

Me<br />

OR'<br />

Me<br />

Bu<br />

O<br />

Me<br />

9 and (Z)-isomer<br />

Me<br />

H<br />

H<br />

OR<br />

H<br />

H CO2Bu<br />

H<br />

O<br />

Me<br />

OR'<br />

t<br />

Me<br />

H<br />

steps<br />

H<br />

Me<br />

H<br />

OH<br />

H<br />

H O<br />

H<br />

O O<br />

H<br />

Me<br />

Me<br />

10 (+)-FR182877 (11)<br />

O<br />

HO<br />

Me<br />

CHCl3<br />

40°C<br />

may arise from a polyunsaturated linear biosynthetic<br />

intermediate that undergoes a cascade of intramolecular<br />

reactions. To date, Sorensen’s synthesis 14 (Scheme 2) of<br />

(+)-FR182877 is the supreme expression of the TADA in<br />

action. <strong>The</strong> synthesis of the key 19-membered<br />

macrocyclic precursor culminated, after 16 steps, with a<br />

palladium-mediated Tsuji-Trost reaction. Heating the<br />

macrocycle in CHCl3 at 40°C induced the sequential<br />

TADA and hetero-TADA reactions that stereoselectively<br />

e<br />

(9) (a) Cantin, M.; Xu, Y.-C.; Deslongchamps, P. Can. J. Chem.<br />

1990, 68, 2144. (b) Roberge, J. Y.; Giguere, P.; Soucy, P.; Dory, Y. L.;<br />

Deslongchamps, P. Can. J. Chem. 1994, 72, 1820.<br />

(10) Pheonix, S.; Bourque, E.; Deslongchamps, P. Org. Lett. 2000, 2,<br />

4149.<br />

(11) (a) Bélanger, G.; Deslongchamps, P. Org. Lett. 2000, 2, 285. (b)<br />

Bélanger, G.; Deslongchamps, P. J. Org. Chem. 2000, 65, 7070.<br />

(12) Deslongchamps, P. Pure & Appl. Chem. 1992, 64, 1831.<br />

(13) (a) Vanderwal, C. D.; Vosburg, D. A.; Weiler, S.; Sorensen, E. J.<br />

Org. Lett. 1999, 1, 645. (b) Vanderwal, C. D.; Vosburg, D. A.;<br />

Sorensen, E. J. Org. Lett. 2001, 3, 4307.<br />

(14) Vosburg, D. A.; Vanderwal, C. D.; Sorensen, E. J. J. Am. Chem.<br />

Soc. 2002, 124, 4552.<br />

Me<br />

OR<br />

OR<br />

Me


fashioned 10 as a single diastereomer. In a single step,<br />

the overall process generated a pentacyclic structure with<br />

concomitant installation of seven contiguous stereogenic<br />

centers in 40% isolated yield. Most notably, this work<br />

elicited the first example of a tandem or sequential<br />

TADA reaction, which highlights the utility of the TADA<br />

in complex molecule synthesis. As Deslongchamps<br />

eluded to previously, the capacity of the tandem reaction<br />

is governed by entropic and enthalpic activation in the<br />

macrocycle with product geometry determined by<br />

transannular repulsion and electronic interactions in the<br />

transition state of the pericyclic reaction. Shortly after<br />

Sorensen’s disclosure of (+)-FR182877, both Evans 15 and<br />

Sorensen 13 published syntheses of the natural enantiomer,<br />

(-)-FR182877, both utilizing TADA strategies.<br />

<strong>The</strong> macquarimicins are a polyketide based class of<br />

natural products that are comprised of a cistetrahydroindanone<br />

ring, a β-keto-δ-lactone, and a 10membered<br />

carbocycle. Biologically, these compounds<br />

MeO 2CO<br />

MeO<br />

Scheme 3. Synthesis of (+)-Macquarimicin A.<br />

Me<br />

MPMO<br />

Pd 2dba 3<br />

MeO2C<br />

OR<br />

O O OR OR R=TBS<br />

O<br />

12 13<br />

H<br />

Me<br />

steps<br />

H<br />

H<br />

O<br />

HO<br />

steps<br />

Me OMPM<br />

OR<br />

Me<br />

OMPM<br />

H<br />

O<br />

BHT<br />

toluene<br />

130°C<br />

H<br />

H<br />

OMPM<br />

H<br />

H<br />

O<br />

O O<br />

H<br />

O<br />

OH<br />

14<br />

O<br />

H<br />

15<br />

H<br />

H H Me<br />

O<br />

O<br />

O<br />

HO<br />

H H<br />

(+)-Macquarimicin A (16)<br />

exhibit selective inhibition of neutral sphingomyelinase<br />

and antiinflammatory activity. Inspired by a series of<br />

enzymatic reactions, 16 Tadano and co-workers achieved<br />

the total synthesis of (+)-macquarimicin A (Scheme 3) by<br />

implementing a late stage TADA reaction to assemble<br />

three of the four rings found in the natural product. <strong>The</strong><br />

acyclic polyene precursor to the macrocycle was<br />

assembled via a Stille reaction of an (E)-vinyliodide and a<br />

(Z)-vinylstannane. <strong>The</strong> 17-membered macrocycle was<br />

e<br />

(15) Evans, D. A.; Starr, J. T. Angew. Chem. Int. Ed. 2002, 41, 1787.<br />

(16) Munakata, R.; Katakai, H.; Ueki, T.; Kurosaka, J.; Takao, K.;<br />

Tadano, K. J. Am. Chem. Soc. 2003, 125, 14722.<br />

closed by an intramolecular Tsuji-Trost reaction. Under<br />

thermal conditions, 14 underwent TADA smoothly to<br />

form a single diastereomer without event. <strong>The</strong> E,Z<br />

geometry of the diene (14) is most likely the origin of<br />

the spectacular endo-selectivity, 17 as only one endo<br />

transition state is free of steric and transannular<br />

interactions. Tadano and co-workers further elaborated<br />

Scheme 4. Synthesis of (+)-Macquarimicin B & C.<br />

(+)-16<br />

Me<br />

H<br />

HO<br />

O<br />

O<br />

MeO<br />

H<br />

H<br />

O<br />

OH<br />

H<br />

Me<br />

Me<br />

H<br />

(+)-Macquarimicin B (18)<br />

O<br />

MeO<br />

Me<br />

H<br />

O H<br />

H<br />

O<br />

CSA<br />

O<br />

OH<br />

17<br />

H<br />

Me<br />

H<br />

H<br />

Me<br />

O<br />

O<br />

O<br />

O<br />

O<br />

H<br />

H<br />

H<br />

H<br />

Me<br />

H<br />

O<br />

(+)-Macquarimicin C (19)<br />

16 (Scheme 4) via an intermolecular hetero-DA reaction<br />

via transcient pentacyclic intermediate 17 to afford (+)macquarimicin<br />

B (18). Furthermore, treatment of 18 with<br />

CSA lead to (+)-macquarimicin C (19) via an<br />

intramolecular dehydrative alkylation.<br />

<strong>The</strong> highly insecticidal spinosyns have attracted much<br />

synthetic attention in the past decade. Notably, total<br />

syntheses of (-)-spinosyn A have been completed by both<br />

Evans 18 and Paquette. 19 <strong>The</strong> (-)-spinosyn A structure<br />

contains a key 12-membered lactone fused to the 5,6,5cis-anti-trans<br />

carbocyclic ring system. It has been<br />

proposed that the biogenesis of (-)-spinosyn A 20 involves<br />

a late stage TADA followed by a nucleophile induced<br />

transannular Michael cyclization. Recently, Roush and<br />

co-workers, 21 finished (-)-spinosyn A (24, Scheme 5) by<br />

treating 20 with iPr2NEt and LiCl in MeCN expecting<br />

formation of 21, but the macrocyclization conditions in<br />

reality afforded TADA product 22 in 75% isolated yield<br />

as a mixture of diastereomers. Presumably, cycloadduct<br />

e<br />

(17) (a) Dineen, T. A.; Roush, W. R. Org. Lett. 2003, 5, 4725. (b)<br />

Paquette, L. A.; Chang, J.; Liu, Z. J. Org. Chem. 2004, 69, 6441.<br />

(18) Evans, D. A.; Black, W. C. J. Am. Chem. Soc. 1993, 115, 4497.<br />

(19) (a) Paquette, L. A.; Gao, Z.; Ni, Z.; Smith, G. F. J. Am. Chem.<br />

Soc. 1998, 120, 2543. (b) Paquette, L. A.; Collado, I.; Purdie, M. J. Am.<br />

Chem. Soc. 1998, 120, 2553.<br />

(20) (a) Oikawa, H.; Tokiwano, T. Nat. Prod. Rep. 2004, 21, 321.<br />

(b) Kim, H. J.; Pongdee, R.; Wu, Q.; Hong, L.; Liu, H.-W. J. Am. Chem.<br />

Soc. 2007, 129, 14582.<br />

(21) (a) Mergott, D. J.; Frank, S. A.; Roush, W. R. Proc. Natl. Acad.<br />

Sci. U.S.A. 2004, 101, 11955. (b) Winbush, S. A.; Mergott, D. J.;<br />

Roush, W. R. J. Org. Chem. 2008, 73, 1818.


22 arose from the tandem macrocyclization-TADA<br />

process with good selectivity, which was driven by the<br />

Scheme 5. <strong>The</strong> TADA in the synthesis of (-)-Spinosyn A.<br />

Rham<br />

O<br />

RhamO<br />

RhamO<br />

H<br />

Br<br />

steps<br />

Br<br />

Br<br />

21<br />

O<br />

20<br />

O<br />

O<br />

Me<br />

O<br />

P<br />

O<br />

OPMB<br />

Et<br />

(OEt)2<br />

Me OPMB<br />

O<br />

O<br />

Et H<br />

O<br />

iPr2NEt, LiCl<br />

MeCN, 23°C<br />

OPMB<br />

Me<br />

Rham<br />

Me<br />

O<br />

O<br />

Me3P<br />

O<br />

O Et<br />

H<br />

H H<br />

22<br />

Br<br />

23<br />

Me<br />

O<br />

O<br />

Me<br />

OMe<br />

OMe Me<br />

O O<br />

O<br />

O<br />

O<br />

O Et<br />

H H<br />

(-)-SpinosynA (24)<br />

75%<br />

(ds = 73:12:9:6)<br />

OPMB<br />

O<br />

O<br />

O<br />

NMe2<br />

Me<br />

conformational preference of the C6-brominated<br />

macrocycle in the TADA. <strong>The</strong> division of the remaining<br />

15-membered macrocycle to complete the tetracyclic core<br />

was achieved via a transannular vinylogous Morita-<br />

Baylis-Hillman reaction to afford cycloadduct 23.<br />

Installation of the forosamine unit completed (-)-spinosyn<br />

A in 31 linear steps in a three percent overall yield from<br />

readily available materials.<br />

(+)-Superstolide A (28) is a member of a class of<br />

structurally unique macrolides isolated from Neosiphomia<br />

superstes. 22 <strong>The</strong> superstolides exhibit highly cytotoxic<br />

activity toward a number of cancer cell lines including<br />

murine P388 leukemia cells. Roush 23 and co-workers’<br />

critical step in the synthesis of 28 (Scheme 6) was a late<br />

stage TADA used to segment the 24-membered<br />

macrocycle into the tricyclic core of the natural product.<br />

Treatment of 25 with Pd(PPh3)4 and TlOEt realized an<br />

e<br />

(22) (a) D’Auria, M. V.; Debitus, C.; Paloma, L. G.; Minale, L.;<br />

Zampella, A. J. Am. Chem. Soc. 1994, 116, 6658.<br />

(23) Tortosa, M.; Yakelis, N. A.; Roush, W. R. J. Am. Chem. Soc.<br />

2008, 130, 2722<br />

(24) Balskus, E. P.; Jacobsen, E. N. Science, 2007, 317, 1736.<br />

Et<br />

intramolecular Suzuki-Miyaura coupling to afford the 24-<br />

membered macrocyle. Macrocycle 26 underwent a highly<br />

Scheme 6. <strong>The</strong> Roush Synthesis of (+)-Superstolide A.<br />

TBDPSO<br />

MeO<br />

25<br />

TBDPSO<br />

O<br />

O<br />

B<br />

I<br />

Me<br />

Me<br />

O<br />

Me O<br />

O<br />

Me<br />

O<br />

Me<br />

O<br />

Me<br />

MeO<br />

Me<br />

Me<br />

O<br />

26<br />

Me<br />

Me Me<br />

Me<br />

NBoc<br />

NBoc<br />

TBDPSO<br />

H<br />

Me<br />

Me<br />

Me<br />

MeO O<br />

H<br />

NBoc<br />

O<br />

27<br />

Me Me<br />

Me<br />

O<br />

Suzuki<br />

80°C, 2 h,<br />

toluene<br />

steps<br />

NH2OCO<br />

H<br />

Me<br />

Me<br />

Me<br />

MeO<br />

H<br />

OH<br />

NHAc<br />

O<br />

(+)-Superstolide A (28)<br />

Me Me<br />

Me<br />

O<br />

regio- and diastereoselective TADA reaction to yield 27<br />

as the only observed cycloadduct. Moreover, this<br />

example reinforces Deslonchamps conclusions that the<br />

conformation of the macrocycle in the transition state,<br />

which is governed by transannular and electronic<br />

interactions, dictates the product outcome in the TADA.<br />

Sequential treatment of 27 with TBAF, trichloroacetyl<br />

isocyanate, and removal of the acetonide and Boc<br />

protecting groups, followed by an acylation of the<br />

primary amine afforded the desired product, (+)superstolide<br />

A (28).<br />

<strong>The</strong>se examples verify the power of the TADA to<br />

generate complex arrays of densely populated cyclic<br />

structures, which is the most significant feature of this<br />

methodology. Future work on the TADA most likely will<br />

include the development of ligand-controlled highly<br />

enantio- and diastereoselective variants 24 and potentially<br />

tandem TADA/1,3-dipolar cycloaddition reactions to<br />

generate highly functionalized heterocyclic arrays. As<br />

natural product targets become more complex, one should<br />

expect to see the full potential of the TADA unveiled.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!