17.12.2012 Views

Horticulture Lighting - Brochure - GE Lighting

Horticulture Lighting - Brochure - GE Lighting

Horticulture Lighting - Brochure - GE Lighting

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>GE</strong><br />

<strong>Lighting</strong><br />

<strong>Lighting</strong> for growth<br />

Lamps and lighting for horticulture


Extending daylight<br />

Growth and development of plants<br />

and vegetables is strongly influenced<br />

by the quality and amount of light<br />

they receive, and the cycle of day and<br />

night. Artificial lighting therefore plays<br />

a significant role in the horticultural<br />

industry, where it enables producers to<br />

extend and control the periods of plant<br />

growth. <strong>GE</strong> horticultural lamps allow<br />

growers to be less reliant on daylight<br />

and improve their productivity.<br />

2<br />

PAR<br />

Photosynthesis Active Radiation (PAR,<br />

measured in micromole/sec) is essential<br />

for plant growth. <strong>GE</strong> Lucalox PSL<br />

(PhotoSynthesis Light) high pressure<br />

sodium lamps are designed to produce the<br />

best possible PAR performance and this<br />

performance is covered by warranty.<br />

Spectral range<br />

Plants respond to light of varying colour. In<br />

general, red light causes plants to become<br />

tall and “leggy” while blue light, when<br />

used alone, can cause low, stocky growth.<br />

A proper balance of red and blue energy<br />

produces plants that have normal growth<br />

and shape.<br />

Relative sensitivity<br />

l <strong>GE</strong> lamps enable<br />

lighting regimes that<br />

assist the natural<br />

cycles of plants<br />

l <strong>GE</strong> horticultural lamps<br />

are colour balanced<br />

for growth and shape<br />

1<br />

0.5<br />

0<br />

PAR in relation to wavelength.<br />

Wavelength<br />

nm<br />

Plants have different sensitivity to<br />

different wavelengths.


<strong>GE</strong> lighting<br />

for fruit and<br />

vegetables<br />

Growers of food plants find artificial light<br />

just as important as it is for flowering<br />

plants. Artificial light can improve the<br />

yield of a crop, and its quality. As with<br />

flowering plants, it enables growth to be<br />

timed to meet market demands.<br />

When an artificial lighting regime is<br />

applied to food crops, these are some of<br />

the benefits:<br />

l Plants can be used over a<br />

longer period<br />

l In winter, fruit can be produced with<br />

taste to match summer fruit<br />

l Production can start earlier<br />

l Year-round cultivation is possible<br />

It is therefore possible for growers<br />

to enhance product quality and take<br />

advantage of marketing opportunities<br />

throughout the year.<br />

Effect on plants<br />

UV-B<br />

UV-A<br />

BLUE<br />

GREEN<br />

RED<br />

IR<br />

(Far-red)<br />

280-320 nm<br />

Deleterious for growth.<br />

320-400 nm<br />

Might have additive<br />

effect to blue radiation.<br />

400-500 nm<br />

Necessary for<br />

elongation control.<br />

500-600 nm<br />

Less important in<br />

photosynthesis than<br />

red spectral range for<br />

certain plants.<br />

600-700 nm<br />

Optimisation is<br />

necessary because<br />

unoptimised<br />

red portion will<br />

cause abnormal<br />

development.<br />

700-750 nm<br />

Enhancement of<br />

flowering & stem<br />

elongation.<br />

Research examples<br />

Cucumber<br />

Blue only or green only irradiation did not<br />

cause development. Optimal growth was<br />

found when the irradiation of the plants<br />

contained 15-20% blue irradiation, rest of<br />

the spectrum was balanced with green<br />

and red irradiation.<br />

Tomato<br />

High productivity requires the dominance<br />

of the 600nm-700nm red part in<br />

irradiation spectrum. Saturation of the<br />

crop yield was achieved with 60-65% red<br />

irradiation, the rest of the spectrum was<br />

balanced by blue and green irradiation.<br />

Reference:<br />

Prikupets & Tikhomirov, proceedings of<br />

Int. <strong>Lighting</strong> in controlled environments<br />

workshop, Univ of Wisconsin, Madison,<br />

Wisconsin, 1994, p31<br />

3


Nature’s rhythms<br />

The relative length of day and night and the seasons is important to plants.<br />

The number of hours of darkness in a 24-hour cycle is an important factor in<br />

determining blossoming and growing time.<br />

Photoperiodism<br />

Night length triggers seed germination, tuber and bulb formation, and other<br />

growth characteristics such as colour, enlargement of leaves and stem size and<br />

shape. This rhythmic characteristic is called photoperiodism and is of great value<br />

to growers.<br />

Plants can be classified according to photoperiodicity.<br />

l Short day (long night)<br />

l Long day (short night)<br />

l Indeterminate or day neutral<br />

4<br />

Short day<br />

(long night)<br />

Long day<br />

Day neutral<br />

The perennial Chrysanthemum and the Poinsettia, which<br />

flower in the autumn, are examples of short-day (longnight)<br />

plants. They fail to flower when the day length, or<br />

period of light, is extended beyond a critical value.<br />

Long-day plants, such as the China Aster and Tuberous<br />

Rooted Begonia, flower only with a day length longer<br />

than a critical value.<br />

Day-neutral plants, such as the Rose and<br />

Carnation are not limited by photoperiod.<br />

Understanding these principles enables commercial growers to use artificial light<br />

profitably, so that flowering and vegetable harvesting can be timed for markets.<br />

Day length<br />

Short day length<br />

The Perennial Chrysanthemum is a short<br />

day length plant that will not flower when<br />

the day is long (short-night). To postpone<br />

flowering Chrysanthemum growers, instead<br />

of lengthening the day, interrupt the night<br />

for about four hours. This makes the night<br />

appear short to plants, which then continue<br />

to grow vegetatively instead of starting<br />

to flower.<br />

A more economical method of postponing<br />

flowering of chrysanthemums is to apply<br />

cycles of light, switching light on for 10<br />

minutes and off for 50 minutes, for four<br />

hours during the night, instead of applying<br />

light continuously. This is cyclic lighting. It<br />

is an effective way of growing flowers. If<br />

lighting levels are higher then the grower<br />

will see better stem and flower quality and<br />

less opportunity for disease.<br />

Long day length<br />

The China Aster is a typical long-day<br />

(short-night) plant. Long-day plants can<br />

be brought to flower ahead of the normal<br />

time by lengthening the day. Relatively low<br />

intensities of light are enough to induce<br />

flowering, when applied early in the morning<br />

or at the end of the day. A dark-period<br />

interruption - from a few minutes to a<br />

few hours - as with other long-day plants,<br />

effectively induces flowering just as it<br />

inhibits flowering of short-day plants.<br />

Poinsettias must have complete and<br />

continuous darkness for about 12 hours a<br />

day in order to flower. Even 1 minute of light<br />

in the middle of the dark period will prevent<br />

their flowering.<br />

Tuberous Begonias flower only when daily<br />

dark periods are short - less than 12 hours -<br />

but they require long dark periods for best<br />

production of tubers. Flowering of tomatoes,<br />

however, is not influenced by photoperiod.


Plant colour and<br />

leaf formation<br />

Photoperiod also influences plant<br />

responses such as colour and<br />

formation of the leaves.<br />

Coleus, for example, under continuous<br />

lighting, produces dark red leaves with<br />

bright green edges. Less than 10 hours<br />

of light per day results in less sturdy<br />

plants and paler colours. The tulip bulb<br />

is the main source of food reserve,<br />

and the light is needed mainly to<br />

develop the plants’ green colour. Stems<br />

attain their greatest length if grown<br />

under lighting.<br />

Setting the clock<br />

Artificial light can be used in a variety of lighting regimes.<br />

EXTEND EXTEND<br />

ADD<br />

SUBSTITUTE<br />

As an additional<br />

daytime source of<br />

light, boosting existing<br />

light levels and aiding<br />

photosynthesis.<br />

As an extension to the<br />

growing season through<br />

usage during the winter<br />

months.<br />

As a means of<br />

extending the growth<br />

time per day. Lights<br />

can be switched on<br />

at dusk or other non<br />

daylight hours.<br />

As a complete natural<br />

light substitute for total<br />

environmental control<br />

in growing rooms and<br />

biological research<br />

establishments.<br />

5


Quality from start to finish<br />

<strong>GE</strong> horticulture lamps have a long history of manufacture in the Budapest light source<br />

factory in Hungary. Quality is a fundamental part of all lamp manufacture but in<br />

particular the manufacture of horticulture lamps, where users rely on the lamp as a<br />

critical production tool.<br />

Automated testing process<br />

Testing spheres<br />

Long t erm t esting r acks<br />

6<br />

High quality components are used in<br />

all aspects of manufacture to ensure<br />

consistent lamp to lamp performance.<br />

Arc tube production takes place<br />

in an argon box which ensures a<br />

clean environment so there is no<br />

contamination and seal protection<br />

ensures the lamps do not fail early.<br />

At the end of the manufacturing process<br />

every lamp is tested and samples from<br />

every production run are placed on<br />

long term testing racks. Light output is<br />

measured in spheres to ensure lamps<br />

meet specification.


Reliable performance 60<br />

Reliability (%)<br />

Relative PAR maintenance (%)<br />

PSL data<br />

Typical lamp survival<br />

100<br />

95<br />

90<br />

85<br />

80<br />

75<br />

70<br />

65<br />

60<br />

55<br />

50<br />

0 2 4 6 8 10 12<br />

Life (thousand hours)<br />

Typical PAR maintenance<br />

100<br />

95<br />

90<br />

85<br />

80<br />

75<br />

70<br />

65<br />

60<br />

55<br />

50<br />

0 2 4 6 8 10 12<br />

Life (thousand hours)<br />

While light quality is paramount,<br />

reliability and performance have<br />

also been key factors in the<br />

development of the Lucalox PSL<br />

lamp range.<br />

Guaranteed<br />

<strong>GE</strong> is constantly engaged in a global<br />

quality process. A statistical quality<br />

system, designated SIX SIGMA, is<br />

applied in all areas of the company from<br />

manufacturing through to sales.<br />

<strong>GE</strong> offers warranties to distributors of<br />

its <strong>GE</strong> brand 230V 250W, 400W, 600W,<br />

and 750W and 400V 600W and 750W<br />

Lucalox PSL (PhotoSynthesis Light) High<br />

Pressure Sodium lamps.<br />

The lamps comply with the IEC/EN 62035<br />

standards, and are in accordance with the<br />

specifications set out in the <strong>GE</strong> Consumer<br />

& Industrial - <strong>Lighting</strong> Spectrum Lamp<br />

catalogue, and in the “Lucalox PSL,<br />

PhotoSynthesis Light Lamp” brochure.<br />

The warranty comprises two parts:<br />

l Warranty on Lamp Reliability<br />

(Lamp Survival)<br />

l Warranty on PAR (Photosynthesis<br />

Active Radiation) Maintenance<br />

Reliability (%)<br />

Relative PAR maintenance (%)<br />

Typical lamp survival<br />

100<br />

95<br />

90<br />

85<br />

80<br />

75<br />

70<br />

65<br />

55<br />

50<br />

0 2 4 6 8 10 12<br />

Life (thousand hours)<br />

100<br />

95<br />

90<br />

85<br />

80<br />

75<br />

70<br />

65<br />

60<br />

55<br />

50<br />

PSL data<br />

Typical PAR maintenance<br />

0 2 4 6 8 10 12<br />

Life (thousand hours)<br />

Robust construction, reliable starting<br />

technology and improved lumen<br />

maintenance ensure peace of mind<br />

against early lamp failures and provide<br />

the consistency demanded for perfect<br />

growing conditions.<br />

Packed for<br />

convenience<br />

Production quality is important, but <strong>GE</strong><br />

also ensures that lamps reach users in the<br />

condition in which they left the factory, and<br />

packaged for users’ convenience.<br />

Bulk Pack<br />

Lamps are available in a time-saving<br />

bulk pack for easy installation on site<br />

and transporting used lamps to recycling<br />

centres. The sturdy recycled cardboard pack<br />

has carrying handles, and is provided at<br />

no extra cost. Lamps are also still available<br />

in 12 packs for smaller installations or<br />

replacements.<br />

63 lamps/box<br />

12 boxes/pallet<br />

7


The Lucalox PhotoSynthesis Lamp<br />

PSL technology<br />

Superb performance and high reliability:<br />

- <strong>GE</strong>’s advanced sodium resistant ceramic<br />

helps eliminate early failures to give a<br />

rated service life of 10,000 to 12,000 hours<br />

for Lucalox PSL products.<br />

- In order to achieve maximum<br />

performance, <strong>GE</strong> recommends lamp<br />

replacement when the Rated Service Life<br />

is reached.<br />

- The lamps use extra rugged monolithic arc<br />

tubes equipped with <strong>GE</strong> Reliable Starting<br />

Technology which provides continuous<br />

high performance.<br />

8<br />

l Specially developed for<br />

horticulture<br />

l Provide an average<br />

5% additional PAR<br />

(Photosynthesis<br />

Active Radiation) over<br />

standard HPS lamps<br />

l Stable PAR<br />

maintenance<br />

l 250W, 400W, 600W<br />

and 750W<br />

High xenon-fill gas delivers:<br />

- Extra light and PAR<br />

(Photosynthesis Active Radiation) output.<br />

- More resistance to mains voltage<br />

fluctuations.<br />

Zirconium gettering system improves PAR<br />

maintenance that drives constant and<br />

uniform plant growth.<br />

- The diameter of the frame wire in the lamp<br />

has been minimised to reduce shading<br />

in the installation without affecting the<br />

robustness of the lamp.<br />

- Monolithic arc tube construction for<br />

durability and lumen maintenance.<br />

Code Volts Current Power 100 hour 100 hour PAR<br />

V A W Lumens μmole/sec<br />

LU250W/PSL 115 2.7 250 33,000 430<br />

LU400W/PSL 110 4.3 420 56,500 710<br />

LU600W/PSL 115 6.0 615 90,000 1080<br />

LU750W/PSL 115 7.4 755 112,000 1320<br />

LU400V/600W/PSL 200 3.6 620 85,000 1120<br />

LU400V/750W/PSL 205 4.4 765 104,000 1390<br />

Specially developed for greenhouses,<br />

Lucalox PSL high pressure sodium<br />

lamps offer the benefits of stable lumen<br />

and micromole maintenance and a<br />

full spectrum content that promotes<br />

photosynthesis. Photosynthesis Active<br />

Radiation (PAR, measured in micromole/<br />

sec) is essential for plant growth.<br />

Lucalox is available in four wattages,<br />

250W, 400W, 600W and 750W.<br />

Simple light or lumen maintenance is not<br />

enough to create plant growth. Plants<br />

require a certain radiation level to help<br />

with photosynthesis. The Lucalox PSL<br />

lamp has been specially developed to<br />

provide stable lumen maintenance and<br />

increased PAR output.


(PSL) range<br />

What is PAR ?<br />

The effect of optical radiation on plants<br />

has been studied extensively; generally,<br />

photons emitted in the spectral region of<br />

400nm-700nm are particularly effective.<br />

Therefore the simple measurement<br />

of quantity of light - Lux - is not<br />

sufficient for the horticultural market.<br />

Photosynthetically Active Radiation (PAR)<br />

and Photosynthetic Photon Flux (PPF), are<br />

more useful measurements. PPF is defined<br />

as flux of the photons emitted in the 400<br />

nm-700 nm wavelength range by the light<br />

source. It is expressed in micromoles/<br />

second (μmol/s), where 1 micromole<br />

means 6x10 17 photons.<br />

HPS - the natural choice<br />

Different lamp types have different<br />

spectral output characteristics as well<br />

as different PPF/W efficiencies. The<br />

most commonly used lamp type in the<br />

horticultural market is High Pressure<br />

Sodium (HPS) due to its favourable PPF/W<br />

value, low early and mid life failure rate,<br />

and its close to flat PAR maintenance<br />

over it useful life. The HPS PSL range from<br />

<strong>GE</strong> has specially optimised spectra for<br />

greenhouse use, by enhancing the red<br />

portion of its light output.<br />

This means that HPS lamps designed for<br />

the horticulture market can have lower<br />

light level (lumen) in the visible spectral<br />

range compared to HPS lamps designed<br />

for street lighting. Despite a lower initial<br />

lumen level, HPS PSL lamps, are perfectly<br />

suited to horticulture.<br />

PPF/W<br />

Spectral power [W/nm]<br />

2.0<br />

1.6<br />

1.2<br />

0.8<br />

0.4<br />

0<br />

7.0<br />

6.0<br />

5.0<br />

4.0<br />

3.0<br />

2.0<br />

1.0<br />

LFL<br />

SOX<br />

Halogen<br />

Incandescent<br />

CMH<br />

HPS<br />

High Pressure Mercury<br />

0 100 200 300 400 500 600 700 800<br />

Nominal Watts<br />

The PSL spectrum<br />

LU400/PSL<br />

The spectral distribution of a typical Lucalox lamp shows that light is<br />

emitted in the wavelengths best suited to plant growth.<br />

380 430 480 530 580 630 680 730<br />

Wavelength [nm]<br />

9


230V<br />

The new 250W addition to the range is<br />

ideal for use in between crops or for crops<br />

that require lower light levels.<br />

Supply voltage<br />

Suitable for supplies in the range 220V to<br />

250V 50/60Hz for appropriately rated series<br />

choke (reactor) ballasts.<br />

Spectral power [W/nm]<br />

The Lucalox PhotoSynthesis Lamp<br />

250W<br />

Code V A W 100 h 100 h<br />

PAR<br />

Lumens μmole/<br />

sec<br />

LU250W/PSL 115 2.7 250 33,000 430<br />

Runup times<br />

140%<br />

120%<br />

100%<br />

80%<br />

60%<br />

40%<br />

20%<br />

140%<br />

120% 4.5<br />

100% 4.0<br />

3.5 80%<br />

3.0 60%<br />

2.5 40%<br />

2.0 20%<br />

1.50%<br />

1.0<br />

0.5<br />

0.0<br />

0%<br />

160%<br />

140%<br />

120%<br />

100%<br />

1080%<br />

60%<br />

LU250PSL<br />

0 200 400 600 800 1000<br />

Time [s]<br />

Spectra<br />

LU400PSL<br />

LU250/PSL<br />

Power<br />

Lamp voltage<br />

Current<br />

PAR<br />

Power<br />

Lamp voltage<br />

Current<br />

PAR<br />

0 200 400 600 800 1000<br />

Time [s]<br />

380 430 480 530 580 630 680 730<br />

LU600PSL<br />

Wavelength [nm]<br />

Power<br />

Lamp voltage<br />

Lamp power<br />

Depending on system conditions, lamp<br />

power can vary by ±2.5%.<br />

Ballasts<br />

It is essential to use a ballast appropriate to<br />

the supply voltage at the luminaire.<br />

140%<br />

400W<br />

120%<br />

140%<br />

600W<br />

120%<br />

80%<br />

80%<br />

Code<br />

60%<br />

40%<br />

V A W 100 h 100 h<br />

Power PAR<br />

Lamp voltage<br />

Lumens Current μmole/<br />

Code<br />

60%<br />

40%<br />

V A W 100 h 100 h<br />

Power<br />

PAR<br />

Lamp voltage<br />

Lumens Current μmole/<br />

20%<br />

LU400W/PSL<br />

0%<br />

0 200<br />

110 4.3 420<br />

400 600<br />

Time [s]<br />

PAR<br />

56,500<br />

800<br />

sec<br />

710<br />

1000<br />

20%<br />

LU600W/PSL<br />

0%<br />

0 200<br />

PAR<br />

115 6.0 615 90,000<br />

400 600 800<br />

Time [s]<br />

sec<br />

1080<br />

1000<br />

140% 7.0<br />

120%<br />

6.0<br />

100%<br />

Spectral power [W/nm]<br />

100%<br />

140%<br />

120%<br />

100%<br />

80%<br />

60%<br />

40%<br />

20%<br />

0%<br />

160%<br />

80% 5.0<br />

60%<br />

4.0<br />

40%<br />

20% 3.0<br />

0%<br />

2.0<br />

1.0<br />

0.0<br />

140%<br />

120%<br />

100%<br />

80%<br />

60%<br />

LU250PSL<br />

LU400PSL<br />

0 200 400 600 800 1000<br />

Time [s]<br />

LU600PSL<br />

LU400/PSL<br />

Power<br />

Lamp voltage<br />

Current<br />

PAR<br />

Power<br />

Lamp voltage<br />

Current<br />

PAR<br />

0 200 400 600 800 1000<br />

Time [s]<br />

380 430 480 530 580 630 680 730<br />

Wavelength LU750PSL [nm]<br />

Power<br />

Lamp voltage<br />

120% 10.0<br />

9.0<br />

100%<br />

Spectral power [W/nm]<br />

140%<br />

120%<br />

100%<br />

80%<br />

60%<br />

40%<br />

20%<br />

0%<br />

100%<br />

160%<br />

140%<br />

120%<br />

100%<br />

80%<br />

60%<br />

40%<br />

20%<br />

0%<br />

140%<br />

8.0<br />

80%<br />

7.0<br />

60%<br />

6.0<br />

40%<br />

5.0<br />

20% 4.0<br />

3.0 0%<br />

2.0<br />

1.0<br />

0.0<br />

160%<br />

140%<br />

120%<br />

100%<br />

80%<br />

60%<br />

40%<br />

LU250PSL<br />

0 200 400 600 800 1000<br />

Time [s]<br />

LU400PSL<br />

LU600PSL<br />

0 200 400 600 800 1000<br />

Time [s]<br />

LU750PSL<br />

Power<br />

Lamp voltage<br />

Current<br />

PAR<br />

Power<br />

Lamp voltage<br />

Current<br />

PAR<br />

Power<br />

Lamp voltage<br />

Current<br />

PAR<br />

0 200 400 600 800 1000<br />

Time [s]<br />

380 430 480 530 580 630 680 730<br />

LU600/400PSL<br />

Wavelength [nm]<br />

Power<br />

Lamp voltage<br />

Current


140%<br />

120%<br />

100%<br />

(PSL) range<br />

40%<br />

120% Supply voltage<br />

Suitable for supplies in the range 390V to<br />

80%<br />

420V 50Hz for appropriately rated series<br />

60%<br />

choke (reactor) ballasts.<br />

160%<br />

160%<br />

140%<br />

140%<br />

750W 600W 750W<br />

140%<br />

120%<br />

100%<br />

80%<br />

Code<br />

60%<br />

V A W 100 h 100 h<br />

Power<br />

Lamp voltage<br />

PAR<br />

40%<br />

Lumens Current μmole/<br />

20%<br />

PAR sec<br />

LU750W/PSL 0%<br />

115 7.4 755 112,000 1320<br />

0 200 400 600<br />

Time [s]<br />

800 1000<br />

140%<br />

12.0<br />

120%<br />

100%<br />

10.0<br />

80%<br />

Spectral power [W/nm]<br />

80%<br />

60%<br />

20%<br />

0%<br />

140%<br />

120%<br />

100%<br />

80%<br />

60%<br />

40%<br />

20%<br />

0%<br />

140%<br />

120%<br />

100%<br />

80%<br />

60%<br />

40%<br />

20%<br />

0%<br />

160%<br />

60% 8.0<br />

40%<br />

20% 6.0<br />

0%<br />

4.0 0 200 400 600 800 1000<br />

2.0<br />

0.0<br />

160%<br />

140%<br />

120%<br />

100%<br />

80%<br />

60%<br />

0 200 400 600 800 1000<br />

Time [s]<br />

LU400PSL<br />

0 200 400 600 800 1000<br />

Time [s]<br />

LU600PSL<br />

LU750PSL<br />

0 200 400 600 800 1000<br />

Time [s]<br />

LU600/400PSL<br />

LU750/PSL<br />

Time [s]<br />

Power<br />

Lamp voltage<br />

Current<br />

PAR<br />

Power<br />

Lamp voltage<br />

Current<br />

PAR<br />

Power<br />

Lamp voltage<br />

Current<br />

PAR<br />

Power<br />

Lamp voltage<br />

Current<br />

PAR<br />

380 430 480 530 580 630 680 730<br />

LU750/400PSL<br />

Wavelength [nm]<br />

Power<br />

Lamp voltage<br />

0 200 400 600 800 1000<br />

Time [s]<br />

400V<br />

Spectral power [W/nm]<br />

140%<br />

120%<br />

100%<br />

80%<br />

60%<br />

40%<br />

20%<br />

0%<br />

160%<br />

140%<br />

100%<br />

40%<br />

20%<br />

0%<br />

120%<br />

100%<br />

Code 80%<br />

V A W 100 h 100 h<br />

60%<br />

Power<br />

PAR<br />

40%<br />

Lumens Lamp voltage μmole/<br />

Current sec<br />

LU400V/600W/PSL 20%<br />

200 3.6 620<br />

PAR<br />

85,000 1120<br />

0%<br />

160%<br />

140%<br />

120%<br />

100%<br />

80%<br />

60%<br />

40%<br />

20%<br />

7.0<br />

140%<br />

120%<br />

6.0<br />

100%<br />

5.0<br />

80%<br />

4.0 60%<br />

40%<br />

3.0<br />

20%<br />

2.0 0%<br />

1.0<br />

0.0<br />

LU600PSL<br />

0 200 400 600 800 1000<br />

Time [s]<br />

LU750PSL<br />

0 200 400 600 800 1000<br />

Time [s]<br />

LU600/400PSL<br />

0%<br />

0 200 400 600 800 1000<br />

160%<br />

Time [s]<br />

LU750/400PSL<br />

LU600/400PSL<br />

Power<br />

Lamp voltage<br />

Current<br />

PAR<br />

Power<br />

Lamp voltage<br />

Current<br />

PAR<br />

Power<br />

Lamp voltage<br />

Current<br />

PAR<br />

Power<br />

Lamp voltage<br />

Current<br />

PAR<br />

0 200 400 600 800 1000<br />

Time [s]<br />

380 430 480 530 580 630 680 730<br />

Wavelength [nm]<br />

Lamp 100% power<br />

Depending 80% on system conditions, lamp<br />

power 60% can vary by ±2.5%.<br />

Ballasts<br />

40%<br />

It 20% is essential to use a ballast appropriate to<br />

the 0% supply voltage at the luminaire.<br />

120%<br />

100%<br />

Code 80%<br />

60%<br />

V A W 100 h 100 h<br />

Power<br />

Lamp voltage PAR<br />

40%<br />

20%<br />

Lumens Current μmole/<br />

PAR sec<br />

LU400V/750W/PSL 0%<br />

205 4.4 765 104,000 1390<br />

0 200 400 600 800 1000<br />

Spectral power [W/nm]<br />

160%<br />

140%<br />

120%<br />

100%<br />

80%<br />

60%<br />

40%<br />

20%<br />

0%<br />

140%<br />

120%<br />

160%<br />

140%<br />

120%<br />

100%<br />

80%<br />

60%<br />

40%<br />

20%<br />

0%<br />

10.0<br />

9.0<br />

8.0<br />

7.0<br />

6.0<br />

5.0<br />

4.0<br />

3.0<br />

2.0<br />

1.0<br />

0.0<br />

0 200 400 600 800 1000<br />

Time [s]<br />

LU750PSL<br />

0 200 400 600 800 1000<br />

Time [s]<br />

LU600/400PSL<br />

Time [s]<br />

LU750/400PSL<br />

LU750/400PSL<br />

Power<br />

Lamp voltage<br />

Current<br />

PAR<br />

Power<br />

Lamp voltage<br />

Current<br />

PAR<br />

Power<br />

Lamp voltage<br />

Current<br />

PAR<br />

0 200 400 600 800 1000<br />

Time [s]<br />

380 430 480 530 580 630 680 730<br />

Wavelength [nm]<br />

11


Specifying Lucalox <br />

The Lucalox range<br />

Technical data<br />

12<br />

Volts Current Power 100<br />

hour<br />

Lamp operation<br />

Watts 250 400 600 750<br />

Maximum bulb temperature 400°C 400°C 410°C 410°C<br />

Maximum cap temperature 250°C 250°C 250°C 250°C<br />

Voltage rise<br />

To achieve rated lamp life and optimal PAR maintenance it is<br />

essential that luminaires are designed so that when lamps are<br />

enclosed, lamp voltage rise does not exceed 12V<br />

Lamp / Watts Max. Arc LCL Diameter Cap Bulb Operating Standard Bulk<br />

length gap<br />

Glass position product product<br />

A B C D<br />

code (12) code (63)<br />

mm mm mm mm<br />

LU250W/PSL 260 64 158 48 E40/45 Hard Universal 88665 N/A<br />

LU400W/PSL 292 87 175 48 E40/45 Hard Universal 17106 44304<br />

LU600W/PSL 292 125 169 48 E40/45 Hard Universal 17107 44305<br />

LU750W/PSL 293 130 178 51 E40/45 Hard Universal 17108 44306<br />

LU400V600W/PSL 292 124.5 169 48 E40/45 Hard Universal 43440 43439<br />

LU400V750W/PSL 293 143 175 51 E40/45 Hard Universal 43438 43437<br />

Cross reference<br />

<strong>GE</strong> Philips Osram Sylvania<br />

LU250W/PSL Plantastar Inter 250<br />

LU400W/PSL MASTER GreenPower 400W EM 230V Plantastar 400 SHP-TS GroLux 400W<br />

LU600W/PSL<br />

LU750W/PSL<br />

MASTER GreenPower 600W EM 230V Plantastar 600 SHP-TS GroLux 600W<br />

LU400V/600W/PSL<br />

LU400V/750W/PSL<br />

MASTER GreenPower 600W EM 400V<br />

MASTER GreenPower 600W EL 400V<br />

MASTER GreenPower TD 1000W EL 400V<br />

SHP-TS GroLux 600W-400V<br />

Full details of the <strong>GE</strong> lamp<br />

range can be found in<br />

the 2010 - 2011 Spectrum<br />

catalogue, or the <strong>GE</strong> website.<br />

100 hour<br />

PAR<br />

V A W Lumens μmole/sec<br />

LU250W/PSL 115 2.7 250 33,000 430<br />

LU400W/PSL 110 4.3 420 56,500 710<br />

LU600W/PSL 115 6.0 615 90,000 1080<br />

LU750W/PSL 115 7.4 755 112,000 1320<br />

LU400V/600W/PSL 200 3.6 620 85,000 1120<br />

LU400V/750W/PSL 205 4.4 765 104,000 1390<br />

Depending on system conditions, lamp power can vary by ±2.5%<br />

www.gelighting.com/eu<br />

and General Electric are registered trademarks<br />

of the General Electric Company. ©2010<br />

Picture credits: Nico Romers<br />

<strong>GE</strong> <strong>Lighting</strong> is constantly developing and improving its products. For this reason, all product descriptions in this brochure are intended as<br />

a general guide, and we may change specifications from time to time in the interest of product development, without prior notification or<br />

public announcement. All descriptions in this publication present only general particulars of the goods to which they refer and shall not<br />

form part of any contract. Data in this guide has been obtained in controlled experimental conditions. However, <strong>GE</strong> <strong>Lighting</strong> cannot accept<br />

any liability arising from the reliance on such data to the extent permitted by law.<br />

B<br />

C<br />

<strong>Horticulture</strong> leaflet – English – 2010<br />

D<br />

A

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!