26.01.2019 Views

Nutrition evaluation of an unconventional for ruminants estimated by the in vitro fermentation system

For sustainable intensification of ruminant industries, it would be wise to explore the potential of unconventional feedstuff resources. Chinese medicine residue (CMR) is of interest due to its high nutrient, low cost and large quantities, indicating its potential as an unconventional feedstuff for ruminants. In this study, in vitro ruminal fermentation technique was used to evaluate the potential ruminant feedstuff. The chemical analysis showed that CMR had higher concentrations of crude protein and lower concentrations of crude fiber, neutral detergent fiber and acid detergent fiber than those of some conventional feedstuff, such as peanut vines, chinese sedge and rice straw, indicating its high nutritional quality. Cumulative gas production was recorded at 6, 12, 18, 24 and 48 h of incubation periods and the pH, ammonia-N (NH3-N), microbial protein production (MCP) and volatile fatty acid (VFA) were estimated at 48 h of incubation period. Our results showed that the fermentation gas volume was greatest in CMR group, followed by peanut vines and chinese sedge group, and the gas volume in rice straw group was only 53.60 % of that from CMR group at 24 h. For MCP and VFA, CMR group also showed the highest value (MCP: 1.34 mg/ml; VFA: 4.33 mg/ml) than other groups, whereas rice straw group showed the least value (MCP: 1.03 mg/ml; VFA: 3.09 mg/ml). Besides that, we also found that the acetate to propionate ratio (A/P) was significantly lower in CMR group (1.21) than others. Based on these results therefore, Chinese medicine residue could be a valuable alternative unconventional animal feed source in ruminant feeding and could economize the ruminants production.

For sustainable intensification of ruminant industries, it would be wise to explore the potential of unconventional feedstuff resources. Chinese medicine residue (CMR) is of interest due to its high nutrient, low cost and large quantities, indicating its potential as an unconventional feedstuff for ruminants. In this study, in vitro ruminal fermentation technique was used to evaluate the potential ruminant feedstuff. The chemical analysis showed that CMR had higher concentrations of crude protein and lower concentrations of crude fiber, neutral detergent fiber and acid detergent fiber than those of some conventional feedstuff, such as peanut vines, chinese sedge and rice straw, indicating its high nutritional quality. Cumulative gas production was recorded at 6, 12, 18, 24 and 48 h of incubation periods and the pH, ammonia-N (NH3-N), microbial protein production (MCP) and volatile fatty acid (VFA) were estimated at 48 h of incubation period. Our results showed that the
fermentation gas volume was greatest in CMR group, followed by peanut vines and chinese sedge group, and the gas volume in rice straw group was only 53.60 % of that from CMR group at 24 h. For MCP and VFA, CMR group
also showed the highest value (MCP: 1.34 mg/ml; VFA: 4.33 mg/ml) than other groups, whereas rice straw group showed the least value (MCP: 1.03 mg/ml; VFA: 3.09 mg/ml). Besides that, we also found that the acetate to propionate ratio (A/P) was significantly lower in CMR group (1.21) than others. Based on these results therefore, Chinese medicine residue could be a valuable alternative unconventional animal feed source in ruminant feeding and could economize the ruminants production.

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Int. J. Biosci. 2016<br />

International Journal <strong>of</strong> Biosciences | IJB |<br />

ISSN: 2220-6655 (Pr<strong>in</strong>t), 2222-5234 (Onl<strong>in</strong>e)<br />

http://www.<strong>in</strong>nspub.net<br />

Vol. 9, No. 2, p. 27-36, 2016<br />

RESEARCH PAPER<br />

OPEN ACCESS<br />

<strong>Nutrition</strong> <strong>evaluation</strong> <strong>of</strong> <strong>an</strong> <strong>unconventional</strong> <strong>for</strong> rum<strong>in</strong><strong>an</strong>ts<br />

<strong>estimated</strong> <strong>by</strong> <strong>the</strong> <strong>in</strong> <strong>vitro</strong> <strong>fermentation</strong> <strong>system</strong><br />

P<strong>in</strong>g Sheng 1 , Ji<strong>an</strong>gli Hu<strong>an</strong>g 1 , Li He 1 , Shaoshi Ji 1 , Zhihong Zh<strong>an</strong>g 1 , Dongsheng<br />

W<strong>an</strong>g 1 , Yizun Yu 1 , Shaoxun T<strong>an</strong>g 2 , Ji<strong>an</strong>n<strong>an</strong> D<strong>in</strong>g *1<br />

1<br />

Institute <strong>of</strong> Biological Resources, Ji<strong>an</strong>gxi Academy <strong>of</strong> Sciences, N<strong>an</strong>ch<strong>an</strong>g, Ch<strong>in</strong>a<br />

2<br />

Institute <strong>of</strong> Subtropical Agriculture, The Ch<strong>in</strong>ese Academy <strong>of</strong> Sciences, Ch<strong>an</strong>gsha, Ch<strong>in</strong>a<br />

Key words: Unconventional feedstuff resources, Ch<strong>in</strong>ese medic<strong>in</strong>e residue, In <strong>vitro</strong> rum<strong>in</strong>al <strong>fermentation</strong>,<br />

<strong>Nutrition</strong> <strong>evaluation</strong>.<br />

http://dx.doi.org/10.12692/ijb/9.2.27-36 Article published on August 20, 2016<br />

Abstract<br />

For susta<strong>in</strong>able <strong>in</strong>tensification <strong>of</strong> rum<strong>in</strong><strong>an</strong>t <strong>in</strong>dustries, it would be wise to explore <strong>the</strong> potential <strong>of</strong><br />

<strong>unconventional</strong> feedstuff resources. Ch<strong>in</strong>ese medic<strong>in</strong>e residue (CMR) is <strong>of</strong> <strong>in</strong>terest due to its high nutrient, low<br />

cost <strong>an</strong>d large qu<strong>an</strong>tities, <strong>in</strong>dicat<strong>in</strong>g its potential as <strong>an</strong> <strong>unconventional</strong> feedstuff <strong>for</strong> rum<strong>in</strong><strong>an</strong>ts. In this study, <strong>in</strong><br />

<strong>vitro</strong> rum<strong>in</strong>al <strong>fermentation</strong> technique was used to evaluate <strong>the</strong> potential rum<strong>in</strong><strong>an</strong>t feedstuff. The chemical<br />

<strong>an</strong>alysis showed that CMR had higher concentrations <strong>of</strong> crude prote<strong>in</strong> <strong>an</strong>d lower concentrations <strong>of</strong> crude fiber,<br />

neutral detergent fiber <strong>an</strong>d acid detergent fiber th<strong>an</strong> those <strong>of</strong> some conventional feedstuff, such as pe<strong>an</strong>ut v<strong>in</strong>es,<br />

ch<strong>in</strong>ese sedge <strong>an</strong>d rice straw, <strong>in</strong>dicat<strong>in</strong>g its high nutritional quality. Cumulative gas production was recorded at<br />

6, 12, 18, 24 <strong>an</strong>d 48 h <strong>of</strong> <strong>in</strong>cubation periods <strong>an</strong>d <strong>the</strong> pH, ammonia-N (NH3-N), microbial prote<strong>in</strong> production<br />

(MCP) <strong>an</strong>d volatile fatty acid (VFA) were <strong>estimated</strong> at 48 h <strong>of</strong> <strong>in</strong>cubation period. Our results showed that <strong>the</strong><br />

<strong>fermentation</strong> gas volume was greatest <strong>in</strong> CMR group, followed <strong>by</strong> pe<strong>an</strong>ut v<strong>in</strong>es <strong>an</strong>d ch<strong>in</strong>ese sedge group, <strong>an</strong>d <strong>the</strong><br />

gas volume <strong>in</strong> rice straw group was only 53.60 % <strong>of</strong> that from CMR group at 24 h. For MCP <strong>an</strong>d VFA, CMR group<br />

also showed <strong>the</strong> highest value (MCP: 1.34 mg/ml; VFA: 4.33 mg/ml) th<strong>an</strong> o<strong>the</strong>r groups, whereas rice straw group<br />

showed <strong>the</strong> least value (MCP: 1.03 mg/ml; VFA: 3.09 mg/ml). Besides that, we also found that <strong>the</strong> acetate to<br />

propionate ratio (A/P) was signific<strong>an</strong>tly lower <strong>in</strong> CMR group (1.21) th<strong>an</strong> o<strong>the</strong>rs. Based on <strong>the</strong>se results <strong>the</strong>re<strong>for</strong>e,<br />

Ch<strong>in</strong>ese medic<strong>in</strong>e residue could be a valuable alternative <strong>unconventional</strong> <strong>an</strong>imal feed source <strong>in</strong> rum<strong>in</strong><strong>an</strong>t feed<strong>in</strong>g<br />

<strong>an</strong>d could economize <strong>the</strong> rum<strong>in</strong><strong>an</strong>ts production.<br />

* Correspond<strong>in</strong>g Author: Ji<strong>an</strong>n<strong>an</strong> D<strong>in</strong>g Ji<strong>an</strong>n<strong>an</strong>d<strong>in</strong>g@aliyun.com<br />

27 Sheng et al.


Int. J. Biosci. 2016<br />

Introduction<br />

In recent years, s<strong>in</strong>ce <strong>the</strong> competition <strong>for</strong> gra<strong>in</strong><br />

between people <strong>an</strong>d livestock, Ch<strong>in</strong>a rum<strong>in</strong><strong>an</strong>t<br />

<strong>in</strong>dustries are faced with <strong>the</strong> problems <strong>of</strong> meet<strong>in</strong>g <strong>the</strong><br />

nutritional requirement <strong>of</strong> <strong>the</strong> <strong>an</strong>imals, lack <strong>of</strong> feed<br />

gra<strong>in</strong> is one <strong>of</strong> <strong>the</strong> ma<strong>in</strong> choke po<strong>in</strong>ts <strong>in</strong> livestock<br />

production (Liu <strong>an</strong>d W<strong>an</strong>g, 2008). For susta<strong>in</strong>able<br />

<strong>in</strong>tensification <strong>of</strong> rum<strong>in</strong><strong>an</strong>t <strong>in</strong>dustries, it is imperative<br />

to explore <strong>the</strong> potential <strong>of</strong> <strong>unconventional</strong> feedstuff<br />

resources. This is <strong>of</strong> economic <strong>an</strong>d environmental<br />

benefits lead<strong>in</strong>g to a reduction <strong>in</strong> <strong>the</strong> cost <strong>of</strong> diets <strong>an</strong>d<br />

consequently to a reduction <strong>in</strong> <strong>the</strong> production cost.<br />

Ch<strong>in</strong>ese herbs as <strong>the</strong> traditional medic<strong>in</strong>e have been<br />

widely used <strong>in</strong> East Asi<strong>an</strong> countries, <strong>an</strong>d has<br />

experienced a history <strong>of</strong> thous<strong>an</strong>ds <strong>of</strong> years (Li<strong>an</strong>g et<br />

al., 2013). It has been well-known that Ch<strong>in</strong>ese<br />

medic<strong>in</strong>e residues are <strong>of</strong> <strong>in</strong>terest due to high nutrient,<br />

low cost <strong>an</strong>d availability <strong>in</strong> large qu<strong>an</strong>tities (Li et al.,<br />

2010). They are considered to be <strong>the</strong> major sources <strong>of</strong><br />

nutrients <strong>for</strong> rum<strong>in</strong><strong>an</strong>t. However, very little is known<br />

about <strong>the</strong>ir nutrition <strong>evaluation</strong>.<br />

The nutritive value <strong>of</strong> a rum<strong>in</strong><strong>an</strong>t feed is determ<strong>in</strong>ed<br />

<strong>by</strong> <strong>the</strong> concentrations <strong>of</strong> its chemical components, as<br />

well as <strong>the</strong>ir rates <strong>an</strong>d extent <strong>of</strong> digestion (Getachew<br />

et al., 2004). Determ<strong>in</strong><strong>in</strong>g <strong>the</strong> digestibility <strong>of</strong> feeds <strong>in</strong><br />

vivo is laborious, expensive, requires large qu<strong>an</strong>tities<br />

<strong>of</strong> feed, <strong>an</strong>d is largely unsuitable <strong>for</strong> s<strong>in</strong>gle feedstuff<br />

<strong>the</strong>re<strong>by</strong> mak<strong>in</strong>g it unsuitable <strong>for</strong> rout<strong>in</strong>e feed<br />

<strong>evaluation</strong> (Coelho et al., 1998). In <strong>vitro</strong> method <strong>of</strong><br />

feed <strong>evaluation</strong> is less expensive, less time consum<strong>in</strong>g<br />

<strong>an</strong>d more rapid alternative (Getachew et al., 2004;<br />

Ak<strong>in</strong>femi et al., 2009). Usually, <strong>the</strong> use <strong>of</strong> <strong>in</strong> <strong>vitro</strong><br />

<strong>fermentation</strong> methodology to estimate <strong>the</strong> rum<strong>in</strong><strong>an</strong>t<br />

feed is based on <strong>the</strong> gas production, <strong>an</strong>d <strong>in</strong><br />

comb<strong>in</strong>ation with <strong>the</strong> feed’s chemical composition<br />

(Menke <strong>an</strong>d Ste<strong>in</strong>gass, 1988).<br />

This present study was conducted to <strong>in</strong>vestigate<br />

Ch<strong>in</strong>ese medic<strong>in</strong>e residue <strong>for</strong> assessment as potential<br />

susta<strong>in</strong>able feed <strong>for</strong> rum<strong>in</strong><strong>an</strong>ts <strong>by</strong> compar<strong>in</strong>g with<br />

some commonly used roughage <strong>for</strong>ages us<strong>in</strong>g<br />

chemical <strong>an</strong>alysis <strong>an</strong>d <strong>in</strong> <strong>vitro</strong> rumen <strong>fermentation</strong><br />

methods.<br />

Materials <strong>an</strong>d methods<br />

Sample collection<br />

Dried samples <strong>of</strong> commonly used <strong>for</strong>ages (pe<strong>an</strong>ut<br />

v<strong>in</strong>es, Ch<strong>in</strong>ese sedge, rice straw) were collected from<br />

<strong>the</strong> S<strong>an</strong> W<strong>an</strong>g <strong>an</strong>imal husb<strong>an</strong>dry comp<strong>an</strong>y, Le p<strong>in</strong>g,<br />

Ji<strong>an</strong>gxi, Ch<strong>in</strong>a. And <strong>the</strong> Ch<strong>in</strong>ese medic<strong>in</strong>e residue was<br />

collected from a comp<strong>an</strong>y <strong>in</strong> N<strong>an</strong>ch<strong>an</strong>g, Ji<strong>an</strong>gxi,<br />

Ch<strong>in</strong>a. All <strong>the</strong> samples were mill through a 1 mm<br />

screen <strong>an</strong>d oven-treated at 65°C until a const<strong>an</strong>t<br />

weight was obta<strong>in</strong>ed <strong>for</strong> dry matter determ<strong>in</strong>ation.<br />

Chemical <strong>an</strong>alyses<br />

Samples <strong>of</strong> pe<strong>an</strong>ut v<strong>in</strong>es, Ch<strong>in</strong>ese sedge, rice straw<br />

<strong>an</strong>d Ch<strong>in</strong>ese medic<strong>in</strong>e residue were <strong>an</strong>alysed <strong>for</strong><br />

proximate <strong>an</strong>alysis. Dry matter (DM) was determ<strong>in</strong>ed<br />

at 105 °C <strong>for</strong> 24 h (Horwitz, 2000). Crude prote<strong>in</strong><br />

(CP) was determ<strong>in</strong>ed accord<strong>in</strong>g to Kjeldahl method<br />

us<strong>in</strong>g 2400 Kjeltec <strong>an</strong>alyser unit (Foss tecator) <strong>an</strong>d<br />

<strong>the</strong> crude fat (EE) content was determ<strong>in</strong>ed <strong>by</strong> <strong>the</strong><br />

e<strong>the</strong>r extraction method accord<strong>in</strong>g to AOAC (1990)<br />

(Horwitz, 2000). Crude fiber (CF), <strong>the</strong> neutral<br />

detergent fibre (NDF) <strong>an</strong>d acid detergent fibre (ADF)<br />

was <strong>an</strong>alysed accord<strong>in</strong>g to V<strong>an</strong> Soest et al. (1991).<br />

Chemical <strong>an</strong>alyses were per<strong>for</strong>med <strong>in</strong> triplicate.<br />

In <strong>vitro</strong> <strong>in</strong>cubation with sheep rum<strong>in</strong>al fluid<br />

Five sheep, ma<strong>in</strong>ta<strong>in</strong>ed on a basal diet, were used to<br />

provide rumen contents. After a adaptation period,<br />

approximately 500 ml <strong>of</strong> rumen contents was<br />

collected from each sheep us<strong>in</strong>g a rumen fluid<br />

sampl<strong>in</strong>g pump on <strong>the</strong> same day be<strong>for</strong>e <strong>the</strong> morn<strong>in</strong>g<br />

meal. The rumen liquid was immediately mixed with<br />

CO2 to avoid O2 contam<strong>in</strong>ation <strong>an</strong>d tr<strong>an</strong>sferred to <strong>the</strong><br />

laboratory <strong>in</strong> a <strong>the</strong>rmostatic box (39°C) under<br />

<strong>an</strong>aerobic conditions. The rumen liquid was <strong>the</strong>n<br />

filtered through four layers <strong>of</strong> cheesecloth <strong>in</strong>to a flask<br />

under a cont<strong>in</strong>uous flow <strong>of</strong> CO2. An aliquot <strong>of</strong> <strong>the</strong><br />

rumen liquid was buffered (1:3, v/v) <strong>by</strong> add<strong>in</strong>g <strong>an</strong><br />

artificial saliva solution (McDougall, 1948). Feeds<br />

(0.4 g <strong>of</strong> DM) were <strong>in</strong>cubated <strong>in</strong> triplicate with 40 ml<br />

<strong>of</strong> <strong>in</strong>oculum. Gas production was measured over <strong>the</strong><br />

r<strong>an</strong>ge <strong>of</strong> 0-48 h <strong>of</strong> <strong>in</strong>cubation at 6 h <strong>in</strong>tervals. At <strong>the</strong><br />

end <strong>of</strong> <strong>in</strong>cubation period (48 h), pH, meth<strong>an</strong>e (CH4),<br />

volatile fatty acid (VFA), ammonia-N (NH3-N) <strong>an</strong>d<br />

microbial prote<strong>in</strong> production (MCP) contents were<br />

measured.<br />

28 Sheng et al.


Int. J. Biosci. 2016<br />

Effects on <strong>fermentation</strong> parameters<br />

Fermented medium pH was determ<strong>in</strong>ed with a multiparameter<br />

pH meter (Sartorius PB-10, Sartorius,<br />

Gott<strong>in</strong>gen, Germ<strong>an</strong>y). At <strong>the</strong> end <strong>of</strong> <strong>in</strong>cubation (48 h),<br />

1 ml <strong>of</strong> <strong>the</strong> fermented medium was collected <strong>in</strong><br />

Eppendorf tubes conta<strong>in</strong><strong>in</strong>g 0.20 ml <strong>of</strong> 25 %<br />

metaphosphoric acid. The mixture was allowed to<br />

st<strong>an</strong>d <strong>for</strong> 2 h at room temperature <strong>an</strong>d centrifuged at<br />

5,000×g <strong>for</strong> 10 m<strong>in</strong>. The <strong>an</strong>alysis <strong>of</strong> VFA was<br />

conducted accord<strong>in</strong>g to <strong>the</strong> method described <strong>by</strong><br />

Agarwal et al. ( 2009). The ammonia-N was <strong>an</strong>alysed<br />

<strong>in</strong> <strong>the</strong> fermented medium as per <strong>the</strong> procedure<br />

described <strong>by</strong> Whea<strong>the</strong>rburn (1967). Concentrations <strong>of</strong><br />

<strong>the</strong> MCP were determ<strong>in</strong>ed based on pur<strong>in</strong>es us<strong>in</strong>g <strong>the</strong><br />

method <strong>of</strong> Z<strong>in</strong>n <strong>an</strong>d Owens (1986), modified <strong>by</strong><br />

Makkar <strong>an</strong>d Becker (1997), <strong>an</strong>d <strong>estimated</strong> from <strong>the</strong><br />

ratio <strong>of</strong> pur<strong>in</strong>es to N <strong>of</strong> isolated bacteria with yeast<br />

RNA as st<strong>an</strong>dard.<br />

Statistical <strong>an</strong>alysis<br />

Data on chemical composition <strong>an</strong>d <strong>fermentation</strong><br />

parameters were <strong>an</strong>alyzed us<strong>in</strong>g <strong>the</strong> one-way <strong>an</strong>alysis<br />

<strong>of</strong> vari<strong>an</strong>ce (ANOVA) procedure with SPSS 16.0.<br />

Multiple comparison tests used Dunc<strong>an</strong>’s multipler<strong>an</strong>ge<br />

test (Snedecor <strong>an</strong>d Cochr<strong>an</strong>, 1980).<br />

The correlations between chemical constituents <strong>an</strong>d<br />

<strong>fermentation</strong> products were established <strong>by</strong> calculat<strong>in</strong>g<br />

Pearson’s correlation coefficient us<strong>in</strong>g SPSS 16.0.<br />

Results<br />

Chemical composition<br />

Chemical compositions <strong>of</strong> pe<strong>an</strong>ut v<strong>in</strong>es, Ch<strong>in</strong>ese<br />

sedge, rice straw <strong>an</strong>d Ch<strong>in</strong>ese medic<strong>in</strong>e residue were<br />

shown <strong>in</strong> Table 1. There were observed variations <strong>in</strong><br />

<strong>the</strong> chemical composition <strong>of</strong> <strong>the</strong> different<br />

<strong>fermentation</strong> substrates, with DM r<strong>an</strong>g<strong>in</strong>g from 26.00<br />

% to 91.77 %, CP from 6.20 % to 13.50 %, EE from<br />

1.00 % to 7.26 %, CF from 18.95 % to 29.60 %, NDF<br />

from 33.03 % to 67.50 %, <strong>an</strong>d ADF from 24.33 % to<br />

46.34 %. Among <strong>the</strong>m, <strong>the</strong> Ch<strong>in</strong>ese medic<strong>in</strong>e residue<br />

showed <strong>the</strong> highest CP (13.50 %) <strong>an</strong>d EE (7.26 %), <strong>the</strong><br />

lowest CF (18.95 %), NDF (33.03 %) <strong>an</strong>d ADF (24.33<br />

%) (Table 1), which <strong>in</strong>dicated its good feed<strong>in</strong>g value<br />

<strong>for</strong> rum<strong>in</strong><strong>an</strong>ts <strong>in</strong> terms <strong>of</strong> feed <strong>in</strong>take <strong>an</strong>d digestibility<br />

<strong>an</strong>d might be <strong>an</strong>o<strong>the</strong>r good <strong>for</strong>age <strong>for</strong> rum<strong>in</strong><strong>an</strong>t.<br />

Table 1. Chemical composition <strong>of</strong> <strong>fermentation</strong> substrates.<br />

Items<br />

Dry matter<br />

DM %<br />

Crude prote<strong>in</strong><br />

CP %<br />

Crude fat<br />

EE %<br />

Crude fiber<br />

CF %<br />

Neutral detergent fiber<br />

NDF %<br />

Acid detergent fiber<br />

ADF %<br />

Pe<strong>an</strong>ut v<strong>in</strong>es 91.30 11.00 1.50 29.60 60.40 46.34<br />

Ch<strong>in</strong>ese sedge 91.77 10.11 4.96 24.40 66.21 35.72<br />

Rice straw 90.30 6.20 1.00 27.00 67.50 45.40<br />

Ch<strong>in</strong>ese medic<strong>in</strong>e residue 26.00 13.50 7.26 18.95 33.03 24.33<br />

Effects on <strong>fermentation</strong> parameters<br />

In <strong>vitro</strong> gas production<br />

The <strong>fermentation</strong> gas accumulation curves displayed<br />

a nonl<strong>in</strong>ear trend over <strong>the</strong> <strong>in</strong>cubation period, <strong>the</strong><br />

accumulated gas production reached asymptote<br />

around 24 h <strong>of</strong> <strong>in</strong>cubation except rice straw group,<br />

gas production <strong>in</strong> rice straw group <strong>in</strong>creased<br />

cont<strong>in</strong>uously over 48 h <strong>of</strong> <strong>in</strong>cubation. Among <strong>the</strong>se<br />

substrates, <strong>the</strong> <strong>fermentation</strong> gas accumulation rate<br />

<strong>an</strong>d volume was greatest <strong>in</strong> Ch<strong>in</strong>ese medic<strong>in</strong>e residue,<br />

followed <strong>by</strong> pe<strong>an</strong>ut v<strong>in</strong>es <strong>an</strong>d ch<strong>in</strong>ese sedge, <strong>the</strong> gas<br />

volume <strong>of</strong> rice straw was <strong>the</strong> least one, it was only<br />

53.60 % <strong>of</strong> that from Ch<strong>in</strong>ese medic<strong>in</strong>e residue at 24<br />

h (Fig. 1).<br />

pH, NH3-N, <strong>an</strong>d MCP<br />

The pH varied <strong>in</strong> different groups, but was still <strong>in</strong> <strong>the</strong><br />

normal r<strong>an</strong>ge throughout <strong>the</strong> <strong>in</strong>cubation, r<strong>an</strong>g<strong>in</strong>g<br />

from 6.44 to 6.57 (Table 2). Among <strong>the</strong>se groups,<br />

fermenters with Ch<strong>in</strong>ese medic<strong>in</strong>e residue as<br />

substrate had a signific<strong>an</strong>t lower pH value th<strong>an</strong> <strong>the</strong><br />

o<strong>the</strong>r substrates (P


Int. J. Biosci. 2016<br />

Table 2. Effects <strong>of</strong> different substrate on pH, NH3-N, <strong>an</strong>d MCP concentration <strong>in</strong> <strong>vitro</strong> rum<strong>in</strong>al <strong>fermentation</strong>.<br />

Items pH NH3-N (mg/dl) MCP (mg/ml)<br />

Pe<strong>an</strong>ut v<strong>in</strong>es 6.54a 6.05b 1.23ab<br />

Ch<strong>in</strong>ese sedge 6.57a 6.54a 1.18ab<br />

Rice straw 6.57a 5.90b 1.03b<br />

Ch<strong>in</strong>ese medic<strong>in</strong>e residue 6.44b 6.08b 1.34a<br />

P


Int. J. Biosci. 2016<br />

The concentration <strong>of</strong> butyrate produced <strong>in</strong> <strong>the</strong><br />

different groups also showed a similar trend to <strong>the</strong><br />

<strong>for</strong>mer acids, Ch<strong>in</strong>ese sedge (0.89 mg/ml) <strong>an</strong>d<br />

Ch<strong>in</strong>ese medic<strong>in</strong>e residue (0.83 mg/ml) groups<br />

produced <strong>the</strong> higher concentrations th<strong>an</strong> o<strong>the</strong>r<br />

groups, <strong>the</strong> pe<strong>an</strong>ut group (0.73 mg/ml) showed<br />

<strong>the</strong> least one (Table 3).<br />

The acetate to propionate ratio (A/P) was<br />

signific<strong>an</strong>tly lower <strong>in</strong> Ch<strong>in</strong>ese medic<strong>in</strong>e residue group<br />

(1.21) th<strong>an</strong> o<strong>the</strong>rs. The pe<strong>an</strong>ut <strong>an</strong>d rice straw groups<br />

showed <strong>the</strong> higher ratio (1.34 <strong>an</strong>d 1.32, respectively)<br />

(Table 3).<br />

Relationship between chemical constituents <strong>an</strong>d<br />

<strong>fermentation</strong> products<br />

The CP was positively correlated with 6 h (P


Int. J. Biosci. 2016<br />

Effects on <strong>in</strong> <strong>vitro</strong> <strong>fermentation</strong> parameters<br />

To our knowledge, <strong>in</strong> <strong>vitro</strong> gas production is used to<br />

measure <strong>fermentation</strong> properties <strong>of</strong> rum<strong>in</strong><strong>an</strong>t<br />

feedstuffs (Rymer et al., 2005; Posada et al., 2012).<br />

Gases c<strong>an</strong> be regarded as <strong>an</strong> <strong>in</strong>dicator <strong>of</strong> soluble <strong>an</strong>d<br />

<strong>in</strong>soluble carbohydrates degradation, <strong>an</strong>d are<br />

import<strong>an</strong>t end products <strong>of</strong> microbial <strong>fermentation</strong><br />

(Wol<strong>in</strong> et al., 1979; Menke <strong>an</strong>d Ste<strong>in</strong>gass, 1988).<br />

Some previous studies also showed that gas arises<br />

directly from microbial degradation <strong>of</strong> feeds<br />

(Getachew et al., 2004). By us<strong>in</strong>g <strong>in</strong> <strong>vitro</strong><br />

<strong>fermentation</strong> technique, we found <strong>the</strong> gas production<br />

was greatest <strong>in</strong> Ch<strong>in</strong>ese medic<strong>in</strong>e residue group, <strong>an</strong>d<br />

least <strong>in</strong> rice straw group. This demonstrates that this<br />

substrate may be more easily degraded <strong>by</strong><br />

microorg<strong>an</strong>isms th<strong>an</strong> o<strong>the</strong>r common feedstuffs.<br />

Besides that, we also found <strong>the</strong> gas production<br />

<strong>in</strong>creased with <strong>the</strong> decrease <strong>of</strong> NDF content <strong>of</strong> <strong>the</strong>se<br />

<strong>for</strong>ages. The decrease <strong>of</strong> NDF led to <strong>the</strong> <strong>in</strong>crease <strong>of</strong><br />

soluble carbohydrate fractions <strong>in</strong> <strong>for</strong>ages, which could<br />

be easily utilized <strong>by</strong> microorg<strong>an</strong>isms, this may be<br />

caused <strong>the</strong> <strong>in</strong>crease <strong>of</strong> <strong>in</strong> <strong>vitro</strong> gas production <strong>in</strong> this<br />

study (Chumpawadee et al., 2007). Our result is also<br />

<strong>in</strong> agreement with studies on <strong>the</strong> <strong>fermentation</strong> <strong>of</strong><br />

tropical trees <strong>an</strong>d several rum<strong>in</strong><strong>an</strong>t feeds, a negative<br />

relationship between NDF level <strong>an</strong>d gas production<br />

was also reported (Nsahlai et al., 1994; Larbi et al.,<br />

1998; Getachew et al., 2004).<br />

Fig. 1. Effects <strong>of</strong> different substrate on gas production <strong>in</strong> <strong>vitro</strong> rum<strong>in</strong>al <strong>fermentation</strong>.<br />

pH <strong>in</strong> digesta has been used as <strong>in</strong>dicators <strong>of</strong> <strong>in</strong>test<strong>in</strong>al<br />

health. Previous study showed that ma<strong>in</strong>ten<strong>an</strong>ce <strong>of</strong><br />

rumen pH <strong>an</strong>d prevention <strong>of</strong> rumen acidosis is<br />

import<strong>an</strong>t <strong>for</strong> efficient productivity, rumen function,<br />

<strong>an</strong>d <strong>an</strong>imal health (Owens et al., 1998). In <strong>the</strong> present<br />

study, we found that <strong>the</strong> pH <strong>in</strong> <strong>the</strong> Ch<strong>in</strong>ese medic<strong>in</strong>e<br />

residue group was still <strong>in</strong> <strong>the</strong> normal r<strong>an</strong>ge<br />

throughout <strong>the</strong> whole <strong>in</strong>cubation, suggest<strong>in</strong>g <strong>the</strong><br />

Ch<strong>in</strong>ese medic<strong>in</strong>e residue as a <strong>fermentation</strong> substrate<br />

showed no negative effect on <strong>the</strong> rumen pH.<br />

Nowadays, rum<strong>in</strong><strong>an</strong>t nutritional research has been<br />

focused on decreas<strong>in</strong>g ammoniagenesis (Patra <strong>an</strong>d<br />

Yu, 2014). Excessive am<strong>in</strong>o acid deam<strong>in</strong>ation <strong>in</strong> <strong>the</strong><br />

rumen are nutritionally<br />

wasteful processes because more ammonia is<br />

produced th<strong>an</strong> rumen microorg<strong>an</strong>isms c<strong>an</strong> utilize<br />

(Firk<strong>in</strong>s et al., 2007). In <strong>the</strong> present study, <strong>the</strong><br />

Ch<strong>in</strong>ese medic<strong>in</strong>e residue group produced a relatively<br />

lower ammonia-N, suggest<strong>in</strong>g that it might decrease<br />

deam<strong>in</strong>ation <strong>of</strong> dietary am<strong>in</strong>o acids (W<strong>an</strong>g et al.,<br />

2008) <strong>an</strong>d improve utilization <strong>of</strong> dietary prote<strong>in</strong> <strong>an</strong>d<br />

reduced excretion <strong>of</strong> excess N as urea to <strong>the</strong><br />

environment (Mueller-Harvey, 2006). This still need<br />

to be subst<strong>an</strong>tiated <strong>by</strong> <strong>in</strong>vestigat<strong>in</strong>g <strong>the</strong> effects on<br />

am<strong>in</strong>o-deam<strong>in</strong>at<strong>in</strong>g <strong>an</strong>d prote<strong>in</strong>-degrad<strong>in</strong>g rumen<br />

bacteria <strong>an</strong>d <strong>an</strong>alyz<strong>in</strong>g <strong>the</strong> proportion <strong>of</strong> br<strong>an</strong>chedcha<strong>in</strong><br />

VFA <strong>an</strong>d valeric acid (Parta <strong>an</strong>d Yu, 2014).<br />

32 Sheng et al.


Int. J. Biosci. 2016<br />

Volatile fatty acids (VFA) is considered to be <strong>the</strong> ma<strong>in</strong><br />

source <strong>of</strong> energy <strong>for</strong> ma<strong>in</strong>ten<strong>an</strong>ce, growth, <strong>an</strong>d<br />

lipogenesis <strong>for</strong> rum<strong>in</strong><strong>an</strong>ts (Russell et al., 1992;<br />

Bergm<strong>an</strong>, 1990). It represent <strong>the</strong> rumen <strong>fermentation</strong><br />

pattern <strong>an</strong>d efficiency <strong>of</strong> nutrient digestion (Fr<strong>an</strong>ce<br />

<strong>an</strong>d Dijkstra, 2005). Higher VFA concentrations<br />

reflect higher amounts <strong>of</strong> fermented substrate, higher<br />

qu<strong>an</strong>tities <strong>of</strong> microbial activity <strong>an</strong>d higher energy<br />

<strong>in</strong>take, <strong>in</strong>crease <strong>in</strong> propionate could <strong>in</strong>crease <strong>the</strong><br />

efficiency <strong>of</strong> acetate utilization (K<strong>in</strong>ley <strong>an</strong>d Fredeen,<br />

2015). As summarized <strong>by</strong> Bergm<strong>an</strong>, acetate was <strong>the</strong><br />

major end product <strong>of</strong> microbial <strong>fermentation</strong> <strong>in</strong> <strong>the</strong><br />

rumen <strong>an</strong>d it contributed about 40 % <strong>of</strong> a rum<strong>in</strong><strong>an</strong>t’s<br />

daily energy requirements (Bergm<strong>an</strong>, 1990). The<br />

present results showed that <strong>the</strong> effect <strong>of</strong> Ch<strong>in</strong>ese<br />

medic<strong>in</strong>e residue on rumen <strong>fermentation</strong> is<br />

considered positive when <strong>the</strong>re is <strong>an</strong> <strong>in</strong>creased total<br />

volatile fatty acid (TVFA), acetate, propionate <strong>an</strong>d<br />

butyrate production <strong>an</strong>d decreased A/P ratio<br />

(Castillejos et al., 2008), which are good <strong>in</strong>dications<br />

<strong>of</strong> <strong>the</strong> energy <strong>an</strong>d health <strong>of</strong> <strong>an</strong>imals.<br />

Relationship between chemical constituents <strong>an</strong>d<br />

<strong>fermentation</strong> products<br />

Gas volume is a good parameter from which to<br />

predict substrate digestibility, <strong>fermentation</strong> end<br />

product <strong>an</strong>d microbial prote<strong>in</strong> syn<strong>the</strong>sis <strong>by</strong> rumen<br />

microbes <strong>in</strong> <strong>the</strong> <strong>in</strong> <strong>vitro</strong> <strong>system</strong> (Sommart et al.,<br />

2000; Sallam, 2005). In <strong>the</strong> present study, we found<br />

that <strong>the</strong> gas production is positively affected <strong>by</strong> <strong>the</strong> CP<br />

level <strong>in</strong> feedstuffs, which is consistent with <strong>the</strong> f<strong>in</strong>d<strong>in</strong>g<br />

<strong>of</strong> Larbi et al. (1998) (Larbi et al., 1998). The high<br />

correlation between CP <strong>an</strong>d gas production might<br />

support high CP degradability. On <strong>the</strong> basis <strong>of</strong> our<br />

results, it is not surprised that <strong>the</strong> CP <strong>an</strong>d gas<br />

production both showed a signific<strong>an</strong>t positive<br />

correlation with MCP <strong>in</strong> this study. Beyond that,<br />

Krishnamoorthy et al. (1991) also showed <strong>the</strong> gas<br />

production is positively related to microbial prote<strong>in</strong><br />

syn<strong>the</strong>sis (Krishnamoorthy et al., 1991). Fu<strong>the</strong>rmore,<br />

we also found that <strong>the</strong> gas production at 48 h is<br />

negatively affected <strong>by</strong> NDF level, which is also<br />

consistent with some o<strong>the</strong>r studies (Nsahlai et al.,<br />

1994; Getachew et al., 2004).<br />

A high NDF level <strong>of</strong> feedstuffs directly decreased its<br />

digestibility (Elgh<strong>an</strong>dour et al., 2014), <strong>the</strong>n result<strong>in</strong>g<br />

<strong>in</strong> <strong>the</strong> decrease <strong>of</strong> gases, <strong>the</strong> import<strong>an</strong>t end products<br />

<strong>of</strong> microbial <strong>fermentation</strong> (Wol<strong>in</strong>, 1979;<br />

Chumpawadee<br />

et al., 2007).<br />

Volatile fatty acid represent <strong>the</strong> efficiency <strong>of</strong> nutrient<br />

digestion (Fr<strong>an</strong>ce <strong>an</strong>d Dijkstra, 2005). Higher VFA<br />

concentrations reflect higher qu<strong>an</strong>tities <strong>of</strong> microbial<br />

activity. In our study, a signific<strong>an</strong>tly positive<br />

correlation was observed between EE level <strong>an</strong>d total<br />

VFA production. However, EE showed a negative<br />

effect on <strong>the</strong> A/P ratio. Previous studies showed that<br />

<strong>in</strong>creased EE content <strong>in</strong> <strong>the</strong> feedstuff could <strong>in</strong>hibit <strong>the</strong><br />

growth <strong>of</strong> protozoa <strong>an</strong>d fur<strong>the</strong>r <strong>in</strong>crease <strong>the</strong> MCP,<br />

VFA <strong>an</strong>d propionate production (Johnson <strong>an</strong>d<br />

Johnson, 1995; Jou<strong>an</strong>y, 1996), <strong>an</strong>d <strong>the</strong> efficiency <strong>of</strong><br />

microbial <strong>fermentation</strong> was also <strong>in</strong>creased. Beyond<br />

that, we also found that <strong>the</strong> A/P ratio was positively<br />

correlated with CF, consider<strong>in</strong>g that lower A/P ratio<br />

<strong>an</strong>d lower CF content <strong>in</strong> feedstuffs <strong>in</strong>dicate <strong>the</strong> higher<br />

nutritive quality <strong>of</strong> <strong>the</strong>m, our result fu<strong>the</strong>r <strong>in</strong>dicate<br />

<strong>the</strong> Ch<strong>in</strong>ese medic<strong>in</strong>e residue was considered to be <strong>of</strong><br />

good to high quality <strong>an</strong>d might be <strong>an</strong>o<strong>the</strong>r good<br />

<strong>unconventional</strong> feedstuff resource <strong>for</strong> rum<strong>in</strong><strong>an</strong>ts <strong>in</strong><br />

Ch<strong>in</strong>a.<br />

Conclusion<br />

On <strong>the</strong> basis <strong>of</strong> chemical <strong>an</strong>alysis <strong>of</strong> <strong>the</strong>se feedstuffs,<br />

we found that <strong>the</strong> Ch<strong>in</strong>ese medic<strong>in</strong>e residue showed a<br />

higher crude prote<strong>in</strong> <strong>an</strong>d crude fat contents, <strong>an</strong>d a<br />

lower crude fiber, neutral detergent fibre <strong>an</strong>d acid<br />

detergent fibre contents, <strong>in</strong>dicat<strong>in</strong>g <strong>the</strong> Ch<strong>in</strong>ese<br />

medic<strong>in</strong>e residue was nutritionally better <strong>an</strong>d more<br />

suitable as <strong>for</strong>age <strong>for</strong> rum<strong>in</strong><strong>an</strong>ts. Results <strong>of</strong> <strong>in</strong> <strong>vitro</strong><br />

gas production <strong>an</strong>d rumen <strong>fermentation</strong> pr<strong>of</strong>iles from<br />

this study also <strong>in</strong>dicated that <strong>the</strong> Ch<strong>in</strong>ese medic<strong>in</strong>e<br />

residue could be expected to <strong>in</strong>crease <strong>the</strong> gas,<br />

microbial prote<strong>in</strong> <strong>an</strong>d volatile fatty acids production,<br />

<strong>an</strong>d reduce <strong>the</strong> acetate to propionate ratio, which are<br />

good <strong>in</strong>dications <strong>of</strong> <strong>the</strong> energy <strong>an</strong>d health <strong>of</strong> <strong>an</strong>imals.<br />

33 Sheng et al.


Int. J. Biosci. 2016<br />

Acknowledgment<br />

This research was supported <strong>by</strong> <strong>the</strong> National Science<br />

<strong>an</strong>d Technology M<strong>in</strong>istry (No. 2012BAD39B05-4),<br />

National Natural Science Foundation <strong>of</strong> Ch<strong>in</strong>a (No.<br />

31260556, No. 31460614 <strong>an</strong>d No. 31500006), <strong>an</strong>d<br />

Key science <strong>an</strong>d technology project <strong>of</strong> Hun<strong>an</strong><br />

prov<strong>in</strong>ce (2015NK3041).<br />

References<br />

Agarwal N, Shekhar C, Kumar R, Chaudhary<br />

LC, Kamra DN. 2009. Effect <strong>of</strong> pepperm<strong>in</strong>t<br />

(Mentha piperita) oil on <strong>in</strong> <strong>vitro</strong> meth<strong>an</strong>ogenesis <strong>an</strong>d<br />

<strong>fermentation</strong> <strong>of</strong> feed with buffalo rumen liquor.<br />

Animal Feed Science <strong>an</strong>d Technology 148, 321-327.<br />

http://dx.doi.org/10.1016/j.<strong>an</strong>ifeedsci.2008.04.004<br />

Ak<strong>in</strong>femi A, Ades<strong>an</strong>ya AO, Aya VE. 2009. Use <strong>of</strong><br />

<strong>an</strong> <strong>in</strong> <strong>vitro</strong> gas production technique to evaluate some<br />

Nigeri<strong>an</strong> feedstuffs. Americ<strong>an</strong>-Eurasi<strong>an</strong> Journal <strong>of</strong><br />

Scientific Research 4, 240-245.<br />

Bergm<strong>an</strong> EN. 1990. Energy contributions <strong>of</strong><br />

volatile fatty acids from <strong>the</strong> gastro<strong>in</strong>test<strong>in</strong>al tract <strong>in</strong><br />

various species. Physiological Reviews 70, 567-590.<br />

Castillejos L, Calsamiglia S, Martı´n-Tereso J,<br />

Ter Wijlen H. 2008. In <strong>vitro</strong> <strong>evaluation</strong> <strong>of</strong> effects <strong>of</strong><br />

ten essential oils at three doses on rum<strong>in</strong>al<br />

<strong>fermentation</strong> <strong>of</strong> high concentrate feedlot-type diets.<br />

Animal Feed Science <strong>an</strong>d Technology 145, 259-270.<br />

http://dx.doi.org/10.1016/j.<strong>an</strong>ifeedsci.2007.05.037<br />

Chumpawadee S, Ch<strong>an</strong>tiratikul A,<br />

Ch<strong>an</strong>tiratikul P. 2007. Chemical compositions <strong>an</strong>d<br />

nutritional <strong>evaluation</strong> <strong>of</strong> energy feeds <strong>for</strong> rum<strong>in</strong><strong>an</strong>t<br />

us<strong>in</strong>g <strong>in</strong> <strong>vitro</strong> gas production technique. Pakist<strong>an</strong><br />

Journal <strong>Nutrition</strong> 6, 607-612.<br />

Coelho M, Hembry FG, Barton FE, Saxton AM.<br />

1998. A comparison <strong>of</strong> microbial, enzymatic, chemical<br />

<strong>an</strong>d rear <strong>in</strong>frared reflect<strong>an</strong>ce spectroscopy method <strong>in</strong><br />

<strong>for</strong>age <strong>evaluation</strong>. Animal Feed Science <strong>an</strong>d<br />

Technology 20, 219.<br />

http://dx.doi.org/10.1016/0377-8401(88)90045-4<br />

Elgh<strong>an</strong>dour MM, Chagoyán JCV, Salem AZ,<br />

Kholif AE, Castañeda JSM, Camacho LM,<br />

Buendía G. 2014. In <strong>vitro</strong> fermentative capacity <strong>of</strong><br />

equ<strong>in</strong>e fecal <strong>in</strong>ocula <strong>of</strong> 9 fibrous <strong>for</strong>ages <strong>in</strong> <strong>the</strong><br />

presence <strong>of</strong> different doses <strong>of</strong> Saccharomyces<br />

cerevisiae. Journal <strong>of</strong> Equ<strong>in</strong>e Veter<strong>in</strong>ary Science 34,<br />

619-625.<br />

http://dx.doi.org/10.1016/j.jevs.2013.11.013<br />

Firk<strong>in</strong>s JL, Yu Z, Morrison M. 2007. Rum<strong>in</strong>al<br />

nitrogen metabolism: perspectives <strong>for</strong> <strong>in</strong>tegration <strong>of</strong><br />

microbiology <strong>an</strong>d nutrition <strong>for</strong> dairy. Journal <strong>of</strong> Dairy<br />

Science 90, E1-16.<br />

http://dx.doi.org/10.3168/jds.2006-518<br />

Fr<strong>an</strong>ce J, Dijkstra J. 2005. Volatile fatty acid<br />

production. In: J. Dijkstra, J.M. Forbes, J. Fr<strong>an</strong>ce<br />

(Eds), Qu<strong>an</strong>titative Aspects <strong>of</strong> Rum<strong>in</strong><strong>an</strong>t Digestion<br />

<strong>an</strong>d Metabolism, (CABI Publish<strong>in</strong>g, UK), 157-176.<br />

Getachew G, Rob<strong>in</strong>son P, DePeters E, Taylor<br />

S. 2004. Relationships between chemical<br />

composition, dry matter degradation <strong>an</strong>d <strong>in</strong> <strong>vitro</strong> gas<br />

production <strong>of</strong> several rum<strong>in</strong><strong>an</strong>t feeds. Animal Feed<br />

Science <strong>an</strong>d Technology 111, 57-71.<br />

http://dx.doi.org/10.1016/S0377-8401(03)00217-7<br />

Horwitz W. 2000. Official methods <strong>of</strong> <strong>an</strong>alysis <strong>of</strong><br />

AOAC International. Gai<strong>the</strong>rsburg: AOAC<br />

International.<br />

I<strong>an</strong>tcheva N, Ste<strong>in</strong>gass H, Todorov N, Pavlov<br />

D. 1999. A comparison <strong>of</strong> <strong>in</strong> <strong>vitro</strong> rumen fluid <strong>an</strong>d<br />

enzymatic methods to predict digestibility <strong>an</strong>d energy<br />

value <strong>of</strong> grass <strong>an</strong>d alfalfa hay. Animal Feed Science<br />

<strong>an</strong>d Technology 81, 333-344.<br />

http://dx.doi.org/10.1016/S0377-8401(99)00037-1<br />

Johnson KA, Johnson DE. 1995. Meth<strong>an</strong>e<br />

emissions from cattle. Journal <strong>of</strong> Animal Science 73,<br />

2483-2492.<br />

Jou<strong>an</strong>y JP. 1996. Effect <strong>of</strong> rumen protozoa on<br />

nitrogen utilization <strong>by</strong> rum<strong>in</strong><strong>an</strong>ts. Journal <strong>of</strong><br />

<strong>Nutrition</strong> 126, 1335S-1346S.<br />

34 Sheng et al.


Int. J. Biosci. 2016<br />

K<strong>in</strong>ley RD, Fredeen AH. 2015. In <strong>vitro</strong> <strong>evaluation</strong><br />

<strong>of</strong> feed<strong>in</strong>g North Atl<strong>an</strong>tic stormtoss seaweeds on<br />

rum<strong>in</strong>al digestion. Journal <strong>of</strong> Applied Phycology 27,<br />

2387-2393.<br />

http://dx.doi.org/10.1007/s10811-014-0487-z<br />

Krishnamoorthy U, Ste<strong>in</strong>gass H, Menke KH.<br />

1991. Prelim<strong>in</strong>ary observation on <strong>the</strong> relationship<br />

between gas production <strong>an</strong>d microbial prote<strong>in</strong><br />

syn<strong>the</strong>sis <strong>in</strong> <strong>vitro</strong>. Archives <strong>of</strong> Animal <strong>Nutrition</strong> 5,<br />

521-526.<br />

http://dx.doi.org/10.1080/17450399109428496<br />

Larbi A, Smith JW, Kurdi IO, Adekunle IO,<br />

Raji AM, Ladipo DO. 1998. Chemical composition,<br />

rumen degradation, <strong>an</strong>d gas production<br />

characteristics <strong>of</strong> some multipurpose fodder trees <strong>an</strong>d<br />

shrubs dur<strong>in</strong>g wet <strong>an</strong>d dry seasons <strong>in</strong> <strong>the</strong> humid<br />

tropics. Animal Feed Science <strong>an</strong>d Technology 72, 81-<br />

96.<br />

http://dx.doi.org/10.1016/S0377-8401(97)00170-3<br />

Li YJ, Gu ZL, Liu YJ. 2010. Development <strong>an</strong>d<br />

utilization <strong>of</strong> feed resources <strong>of</strong> traditional Ch<strong>in</strong>ese<br />

medic<strong>in</strong>e residues. Additive world 4, 25-26.<br />

McDougall EI. 1948. Studies on rum<strong>in</strong><strong>an</strong>t saliva. 1.<br />

The composition <strong>an</strong>d output <strong>of</strong> sheep’s saliva.<br />

Biochemical Journal 43, 99-109.<br />

Menke KH, Ste<strong>in</strong>gass H. 1988. Estimation <strong>of</strong> <strong>the</strong><br />

energetic feed value obta<strong>in</strong>ed from chemical <strong>an</strong>alysis<br />

<strong>an</strong>d <strong>in</strong> <strong>vitro</strong> gas production us<strong>in</strong>g rumen fluid. Animal<br />

Research <strong>an</strong>d Development 28, 7-55.<br />

Mueller-Harvey I. 2006. Unravel<strong>in</strong>g <strong>the</strong><br />

conundrum <strong>of</strong> t<strong>an</strong>n<strong>in</strong>s <strong>in</strong> <strong>an</strong>imal nutrition <strong>an</strong>d health.<br />

Journal <strong>of</strong> <strong>the</strong> Science <strong>of</strong> Food <strong>an</strong>d Agriculture 86,<br />

2010-2037.<br />

http://dx.doi.org/10.1002/jsfa.2577<br />

Nsahlai IV, Siaw DEKA, Osuji PO. 1994. The<br />

relationships between gas-production<strong>an</strong>d chemicalcomposition<br />

<strong>of</strong> 23 browses <strong>of</strong> <strong>the</strong> genus Sesb<strong>an</strong>ia.<br />

Journal <strong>of</strong> <strong>the</strong> Science <strong>of</strong> Food <strong>an</strong>d Agriculture 65,<br />

13-20.<br />

http://dx.doi.org/10.1002/jsfa.2740650104<br />

Owens FN, Secrist DS, Hill WJ, Gill DR. 1998.<br />

Acidosis <strong>in</strong> cattle: a review. Journal <strong>of</strong> Animal Science<br />

76, 275-286.<br />

http://dx.doi.org/10.1998.761275x<br />

Li<strong>an</strong>g X, Yamazaki K, Kamruzzam<strong>an</strong> M, Bi X,<br />

P<strong>an</strong><strong>the</strong>e A, S<strong>an</strong>o H. 2013. Effects <strong>of</strong> Ch<strong>in</strong>ese herbal<br />

medic<strong>in</strong>e on plasma glucose, prote<strong>in</strong> <strong>an</strong>d energy<br />

metabolism <strong>in</strong> sheep. Journal <strong>of</strong> Animal Science <strong>an</strong>d<br />

Biotechnology 4, 51.<br />

http://dx.doi.org/10.1186/2049-1891-4-51<br />

Liu JX, W<strong>an</strong>g JK. 2008. Roughage resources <strong>an</strong>d<br />

<strong>the</strong>ir potential use <strong>for</strong> rum<strong>in</strong><strong>an</strong>t <strong>in</strong> Ch<strong>in</strong>a. Ch<strong>in</strong>a Feed<br />

Industry 1, 27-30.<br />

Patra AK, Yu ZT. 2014. Effects <strong>of</strong> v<strong>an</strong>ill<strong>in</strong>, quillaja<br />

sapon<strong>in</strong>, <strong>an</strong>d essential oils on <strong>in</strong> <strong>vitro</strong> <strong>fermentation</strong><br />

<strong>an</strong>d prote<strong>in</strong>-degrad<strong>in</strong>g microorg<strong>an</strong>isms <strong>of</strong> <strong>the</strong> rumen.<br />

Applied Microbiology <strong>an</strong>d Biotechnology 98, 897-<br />

905.<br />

http://dx.doi.org/10.10.1007/s00253-013-4930-x<br />

Posada SL, Noguera RR, Segura JA. 2012.<br />

Rum<strong>in</strong><strong>an</strong>t feces used as <strong>in</strong>oculum <strong>for</strong> <strong>the</strong> <strong>in</strong> <strong>vitro</strong> gas<br />

production technique. Rev Colom Cienc Pecua 25,<br />

407-414.<br />

Makkar HPS, Becker K. 1997. Degradation <strong>of</strong><br />

Quillaja sapon<strong>in</strong>s <strong>by</strong> mixed culture <strong>of</strong> rumen<br />

microbes. Letters <strong>in</strong> Applied Microbiology 25, 243-<br />

245.<br />

http://dx.doi.org/10.1046/j.1472-765X.1997.00207.x<br />

Rob<strong>in</strong>son PH, Mcqueen RE. 1997. Influence <strong>of</strong><br />

level <strong>of</strong> concentrate allocation <strong>an</strong>d fermentability <strong>of</strong><br />

<strong>for</strong>age fiber on chew<strong>in</strong>g behavior <strong>an</strong>d production <strong>of</strong><br />

dairy cows. Journal <strong>of</strong> Dairy Science 80, 681-691.<br />

http://dx.doi.org/10.10.3168/jds.S00220302(97)759<br />

87-3<br />

35 Sheng et al.


Int. J. Biosci. 2016<br />

Russell J, O'connor J, Fox D, V<strong>an</strong> Soest P,<br />

Sniffen C. 1992. A net carbohydrate <strong>an</strong>d prote<strong>in</strong><br />

<strong>system</strong> <strong>for</strong> evaluat<strong>in</strong>g cattle diets: I. Rum<strong>in</strong>al<br />

<strong>fermentation</strong>. Journal <strong>of</strong> Animal Science 70, 3551-<br />

3561.<br />

http://dx.doi.org/10.1992.70113551x<br />

Rymer C, Hunt<strong>in</strong>gton JA, Williams BA, Givens<br />

DI. 2005. In <strong>vitro</strong> cumulative gas production<br />

techniques:history, methodological considerations<br />

<strong>an</strong>d challenges. Animal Feed Science <strong>an</strong>d Technology<br />

123-124, 9-30.<br />

DOI: 10.10.1016/j.<strong>an</strong>ifeedsci.2005.04.055<br />

Sallam SMA. 2005. Nutritive value assessement <strong>of</strong><br />

alternative feed resources <strong>by</strong> gas production <strong>an</strong>d<br />

rumen <strong>fermentation</strong> <strong>in</strong> <strong>vitro</strong>. Research Journal <strong>of</strong><br />

Agriculture Biological Sciences 1, 200.<br />

Sommart KD, Parker S, Rowl<strong>in</strong>son P,<br />

W<strong>an</strong>apat M. 2000. Fermentation Characteristics<br />

<strong>an</strong>d microbial prote<strong>in</strong> syn<strong>the</strong>sis <strong>in</strong> <strong>an</strong> <strong>in</strong> <strong>vitro</strong> <strong>system</strong><br />

us<strong>in</strong>g cassava, rice, straw <strong>an</strong>d dried ruzi grass as<br />

substrates. Asi<strong>an</strong>-Austalasi<strong>an</strong> Journal <strong>of</strong> Animal<br />

Sciences 13, 1084-1093.<br />

V<strong>an</strong> Soest PJ, Robertson J, Lewis B. 1991.<br />

Methods <strong>for</strong> dietary fiber, neutral detergent fiber, <strong>an</strong>d<br />

nonstarch polysaccharides <strong>in</strong> relation to <strong>an</strong>imal<br />

nutrition. Journal <strong>of</strong> Dairy Science 74, 3583-3597.<br />

DOI : 10.10.3168/jds.S00220302(91)78551-2<br />

W<strong>an</strong>g Y, Xu Z, Bach SJ, McAllister TA. 2008.<br />

Effects <strong>of</strong> phlorot<strong>an</strong>n<strong>in</strong>s from Ascophyllum nodosum<br />

(brown seaweed) on <strong>in</strong> <strong>vitro</strong> rum<strong>in</strong>al digestion <strong>of</strong><br />

mixed <strong>for</strong>age or barley gra<strong>in</strong>. Animal Feed Science<br />

<strong>an</strong>d Technology 145, 375-395.<br />

DOI: 10.10.1016/j.<strong>an</strong>ifeedsci.2007.03.013<br />

Whea<strong>the</strong>rburn MW. 1967. Phenol-hypochlorite<br />

reaction <strong>for</strong> determ<strong>in</strong>ation <strong>of</strong> ammonia. Analytical<br />

Chemistry 39, 971-974.<br />

http://dx.doi.org/10.10.1021/ac60252a045<br />

36 Sheng et al.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!