21.05.2019 Views

The use of pesticides in agriculture in North-East Benin

In Benin, agriculture sector contributes to 26 % of the Gross Domestic Product in 2016. Intensification of agriculture has led to increase the use of new pesticides. This paper aims to asses practice attitudes of chemical pesticide use by farmers in North-East of Benin. Semi-structured interviews were conducted among 100 farmers chosen by the ‘‘snowball sampling’’ process in the communes of Banikoara, Kandi, Bembereke and Kalale. Survey was focused on farmer status, farming crops, pesticides and their use in agriculture. Descriptive statistics were performed with MS Excel while SAS software was used to perform chi-2 tests. Multiple correspondence analysis and hierarchical classification analysis were conducted to establish a farmer typology. Ninety-one percent of farmers were men and the predominant ethnic groups (p<0.01) were Bariba (31 %), Gando (29 %) and Mokole (23 %). Farmers were mostly uneducated (68 %) (p<0.001). The main activity of these farmers was agriculture (85 %) (p<0.001) before livestock (8 %) and trade (7 %).Surveyed farmers cultivated several crops of which maize (97.9±0.57 %), cotton (88.4±1.26 %) and sorghum (81.1±1.45 %) were predominant (p<0.01). Pesticides were mostly used to grow maize, cotton, sorghum and leguminous by 96, 94, 77 and 67 % of farmers, respectively. Thirteen herbicide active ingredients were found on labels of 21 chemical productswhile 14 active principles were found from 35 insecticide products. Seventy-eight percent of farmers purchased pesticides both in formal and illegal sectors while 17 % and 5 % of them shoped it from formal sector only and unauthorized market only, respectively. The modals of the pesticide use had sometimes known by 53 % of farmers. Farmers were classed in three groups: cluster 1 was high-risk class while clusters 2 and 3 were lower-risk classes able to cause contamination of environment and foods from animal bred in the study area by the pesticide residues. The use of pesticides as above described, suggests adverse health effects on farmers and on livestock animals.

In Benin, agriculture sector contributes to 26 % of the Gross Domestic Product in 2016. Intensification of agriculture has led to increase the use of new pesticides. This paper aims to asses practice attitudes of chemical pesticide use by farmers in North-East of Benin. Semi-structured interviews were conducted among 100 farmers chosen by the ‘‘snowball sampling’’ process in the communes of Banikoara, Kandi, Bembereke and Kalale. Survey was focused on farmer status, farming crops, pesticides and their use in agriculture. Descriptive statistics were performed with MS Excel while SAS software was used to perform chi-2 tests. Multiple correspondence analysis and hierarchical classification analysis were conducted to establish a farmer typology. Ninety-one percent of farmers were men and the predominant ethnic groups (p<0.01) were Bariba (31 %), Gando (29 %) and Mokole (23 %). Farmers were mostly uneducated (68 %) (p<0.001). The main activity of these farmers was agriculture (85 %) (p<0.001) before livestock (8 %) and trade (7 %).Surveyed farmers cultivated several crops of which maize
(97.9±0.57 %), cotton (88.4±1.26 %) and sorghum (81.1±1.45 %) were predominant (p<0.01). Pesticides were mostly used to grow maize, cotton, sorghum and leguminous by 96, 94, 77 and 67 % of farmers, respectively. Thirteen herbicide active ingredients were found on labels of 21 chemical productswhile 14 active principles were
found from 35 insecticide products. Seventy-eight percent of farmers purchased pesticides both in formal and illegal sectors while 17 % and 5 % of them shoped it from formal sector only and unauthorized market only, respectively. The modals of the pesticide use had sometimes known by 53 % of farmers. Farmers were classed in three groups: cluster 1 was high-risk class while clusters 2 and 3 were lower-risk classes able to cause contamination of environment and foods from animal bred in the study area by the pesticide residues. The use of pesticides as above described, suggests adverse health effects on farmers and on livestock animals.

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Int. J. Agron. Agri. R.<br />

International Journal <strong>of</strong> Agronomy and Agricultural Research (IJAAR)<br />

ISSN: 2223-7054 (Pr<strong>in</strong>t) 2225-3610 (Onl<strong>in</strong>e)<br />

http://www.<strong>in</strong>nspub.net<br />

Vol. 12, No. 6, p. 48-63, 2018<br />

RESEARCH PAPER<br />

OPEN ACCESS<br />

<strong>The</strong> <strong>use</strong> <strong>of</strong> <strong>pesticides</strong> <strong>in</strong> <strong>agriculture</strong> <strong>in</strong> <strong>North</strong>-<strong>East</strong> Ben<strong>in</strong><br />

Sèmanou Robert Dognon *1,2 , H<strong>in</strong>dé Re<strong>in</strong>e Dognon 3 , Alassane Youssao Abdou Karim 4 ,<br />

Marie-Louise Scippo 2 , Issaka Youssao Abdou Karim 1<br />

1<br />

Department <strong>of</strong> Animal Production and Health, Laboratory <strong>of</strong> Animal Biotechnology and Meat Technology,<br />

Polytechnic School <strong>of</strong> Abomey-Calavi, University <strong>of</strong> Abomey-Calavi, Cotonou, Ben<strong>in</strong><br />

2<br />

Department <strong>of</strong> Food Sciences, Laboratory <strong>of</strong> Food Analysis, Faculty <strong>of</strong> Veter<strong>in</strong>ary Medic<strong>in</strong>e,<br />

FARAH-Veter<strong>in</strong>ary Public Health, University <strong>of</strong> Liège, bât. B43bis, 10 Avenue de Cureghem,<br />

Sart-Tilman, Liège, Belgium<br />

3<br />

Department <strong>of</strong> Hydrology and Management <strong>of</strong> Water Resources, National Institute <strong>of</strong> Water,<br />

Laboratory <strong>of</strong> Applied Hydrology, University <strong>of</strong> Abomey-Calavi, Cotonou, Ben<strong>in</strong><br />

4<br />

Unit <strong>of</strong> Research <strong>in</strong> Ecotoxicology and Study Quality, Laboratory <strong>of</strong> Research <strong>in</strong> Applied Chemistry,<br />

Polytechnic School <strong>of</strong> Abomey-Calavi, Cotonou, Ben<strong>in</strong><br />

Article published on June 30, 2018<br />

Key words: Pesticide, Agriculture, Survey, Ben<strong>in</strong><br />

Abstract<br />

In Ben<strong>in</strong>, <strong>agriculture</strong> sector contributes to 26 % <strong>of</strong> the Gross Domestic Product <strong>in</strong> 2016. Intensification <strong>of</strong><br />

<strong>agriculture</strong> has led to <strong>in</strong>crease the <strong>use</strong> <strong>of</strong> new <strong>pesticides</strong>. This paper aims to asses practice attitudes <strong>of</strong> chemical<br />

pesticide <strong>use</strong> by farmers <strong>in</strong> <strong>North</strong>-<strong>East</strong> <strong>of</strong> Ben<strong>in</strong>. Semi-structured <strong>in</strong>terviews were conducted among 100 farmers<br />

chosen by the ‘‘snowball sampl<strong>in</strong>g’’ process <strong>in</strong> the communes <strong>of</strong> Banikoara, Kandi, Bembereke and Kalale. Survey<br />

was foc<strong>use</strong>d on farmer status, farm<strong>in</strong>g crops, <strong>pesticides</strong> and their <strong>use</strong> <strong>in</strong> <strong>agriculture</strong>. Descriptive statistics were<br />

performed with MS Excel while SAS s<strong>of</strong>tware was <strong>use</strong>d to perform chi-2 tests. Multiple correspondence analysis<br />

and hierarchical classification analysis were conducted to establish a farmer typology. N<strong>in</strong>ety-one percent <strong>of</strong><br />

farmers were men and the predom<strong>in</strong>ant ethnic groups (p


Int. J. Agron. Agri. R.<br />

Introduction<br />

In Ben<strong>in</strong>, <strong>agriculture</strong> is the second sector (after<br />

services) that contributes to 26 % <strong>of</strong> the Gross<br />

Domestic Product <strong>in</strong> 2016 (<strong>The</strong> World Bank, 2016;<br />

Unpublished). Several vegetable crops as cotton are<br />

cultivated <strong>in</strong> this country. Cotton is the ma<strong>in</strong> groundrent<br />

crop <strong>in</strong> the country (Lau et al., 2015). <strong>The</strong>re is a<br />

strong l<strong>in</strong>k between cotton prices and rural welfare <strong>in</strong><br />

Ben<strong>in</strong> (M<strong>in</strong>ot and Daniels, 2005). So, cotton culture<br />

is very important for this country development.<br />

However, cotton plant is very sensitive to several<br />

diseases from arthropod ravagers, <strong>of</strong> which<br />

Helicoverpa armigera ca<strong>use</strong>s mostly nuisances<br />

(Alavo et al., 2010). Among all the exist<strong>in</strong>g methods<br />

<strong>of</strong> fight, chemical control is the most dom<strong>in</strong>ant with<br />

spray<strong>in</strong>g <strong>of</strong> very important annual quantities <strong>of</strong><br />

various <strong>pesticides</strong> (Agbohessi et al., 2011). In<br />

addition, <strong>in</strong> relation to rapid human population<br />

<strong>in</strong>crease, <strong>in</strong>tensification <strong>of</strong> <strong>agriculture</strong> to satisfy food<br />

needs and to contribute to global hunger reduction<br />

has led to <strong>in</strong>creas<strong>in</strong>g <strong>use</strong> <strong>of</strong> new <strong>pesticides</strong> (Pretty et<br />

al., 2011; Tscharntke et al., 2012; Sarwar and Salman,<br />

2015).<br />

Pesticides are very important for food crops<br />

production and for human health. <strong>The</strong>se products are<br />

<strong>use</strong>d to prevent and/or control undesirable organisms<br />

<strong>in</strong> <strong>agriculture</strong> or public health (Damalas et al., 2011;<br />

Sarwar and Salman, 2015).<br />

Several studies proved that pesticide <strong>use</strong> <strong>in</strong>volves<br />

presence <strong>of</strong> their residues <strong>in</strong> environment and ca<strong>use</strong>d<br />

many nuisances liv<strong>in</strong>g be<strong>in</strong>gs beca<strong>use</strong> <strong>of</strong> pesticide<br />

toxicity to animals and human health (Dawson et al.,<br />

2010 ; Damalas et al., 2011; Gbaguidi et al., 2011;<br />

Mesnage et al., 2014; Aïkpo et al., 2016). Others<br />

authors found pesticide residues <strong>in</strong> foods from<br />

vegetables and animals (Krüger et al., 2014; Shehata<br />

et al., 2014; Ehl<strong>in</strong>g and Reddy, 2015; Ezemonye et al.,<br />

2015).<br />

Nevertheless, most <strong>of</strong> farmers liv<strong>in</strong>g <strong>in</strong> some African<br />

rural areas <strong>use</strong>d <strong>pesticides</strong> follow<strong>in</strong>g bad attitude<br />

practices (Agbohessi et al., 2011; H<strong>in</strong>son et al., 2015;<br />

Negatu et al., 2016). Thus, it was necessary that this<br />

study assessed practice attitudes <strong>of</strong> chemical<br />

<strong>pesticides</strong> by agricultural farmers <strong>in</strong> <strong>North</strong>-<strong>East</strong> <strong>of</strong><br />

Ben<strong>in</strong>. Different <strong>pesticides</strong> <strong>use</strong>d <strong>in</strong> the study area had<br />

been <strong>in</strong>ventoried.<br />

Materials and methods<br />

Study area<br />

In this study, data were collected <strong>in</strong> the<br />

departments <strong>of</strong> Borgou and Alibori <strong>in</strong> the <strong>North</strong>-<br />

<strong>East</strong> <strong>of</strong> Ben<strong>in</strong> (Fig. 1).<br />

Fig. 1. Location <strong>of</strong> surveyed farmers <strong>in</strong> the departments <strong>of</strong> Borgou and Alibori.<br />

Dognon et al. Page 49


Int. J. Agron. Agri. R.<br />

<strong>The</strong> department <strong>of</strong> Alibori is located <strong>in</strong> the extreme<br />

<strong>North</strong> <strong>of</strong> Ben<strong>in</strong>. It is bounded on the <strong>East</strong> by the<br />

Federal Republic <strong>of</strong> Nigeria, to the <strong>North</strong> by the<br />

republics <strong>of</strong> Burk<strong>in</strong>a-Faso and Niger, to the South by<br />

the department <strong>of</strong> Borgou and to the West by the<br />

department <strong>of</strong> Atacora.<br />

It has an area <strong>of</strong> 26,242 km² (23 % <strong>of</strong> national<br />

territory) and a population estimated at 867,463<br />

<strong>in</strong>habitants (8.7 % <strong>of</strong> the national population) <strong>in</strong> 2013<br />

(INSAE, 2015, Unpublished).<br />

<strong>The</strong> climate is Sudano-Sahelian and the annual<br />

ra<strong>in</strong>fall varies between 700 and 1200 mm (Adam et<br />

Boko, 1993).<br />

<strong>The</strong> Department <strong>of</strong> Borgou covers 25,856 km². It is<br />

bounded to the <strong>North</strong> by the department <strong>of</strong> Alibori,<br />

South by the departments <strong>of</strong> Coll<strong>in</strong>es and Donga, to<br />

the <strong>East</strong> by the Federal Republic <strong>of</strong> Nigeria, and to the<br />

West by the department <strong>of</strong> Atacora.<br />

Its population was estimated at 1,214,249 <strong>in</strong>habitants<br />

(12.1% <strong>of</strong> the national population) <strong>in</strong> 2013 (INSAE,<br />

2015; Unpublished). <strong>The</strong> climate is Sudanese type and<br />

the annual ra<strong>in</strong>fall varies from 900 to 1300 mm<br />

(Adam et Boko, 1993).<br />

In the two departments, the ma<strong>in</strong> activity <strong>of</strong> the<br />

populations is <strong>agriculture</strong> that is family-type.<br />

Livestock is very developed with large herds <strong>of</strong> cattle,<br />

sheep, goats, poultry, etc.<br />

Interviews<br />

Choice <strong>of</strong> the survey communes<br />

Four communes were chosen follow<strong>in</strong>g two steps.<br />

Firstly, accord<strong>in</strong>g to data available <strong>in</strong> activity reports<br />

<strong>of</strong> the Regional Agricultural Centre for Rural<br />

Development <strong>of</strong> the departments <strong>of</strong> Borgou and<br />

Alibori, the first three communes <strong>of</strong> cotton<br />

production <strong>in</strong> 2014-2015 were pre-selected by<br />

department. Among these preselected communes, the<br />

first two,which had more bov<strong>in</strong>e herd were chosen <strong>in</strong><br />

each department. In f<strong>in</strong>e, the communes <strong>of</strong> Banikoara<br />

and Kandi <strong>in</strong> the department <strong>of</strong> Alibori ; Bembereke<br />

and Kalale <strong>in</strong> Borgou were selected (Fig. 1).<br />

Choice <strong>of</strong> the surveyed farmers<br />

Farmers were selected accord<strong>in</strong>g to the ''snowball<br />

sampl<strong>in</strong>g '' process. <strong>The</strong> first respondents were<br />

chosen with the help <strong>of</strong> the service <strong>of</strong> Communal<br />

Sector for Agricultural Development <strong>in</strong> each selected<br />

commune. Four Specialized Technicians <strong>of</strong> Vegetable<br />

Production (TSPV) were<strong>in</strong>terviewed as key<br />

<strong>in</strong>formants. <strong>The</strong> first respondents helpt to choose the<br />

followsurveyed farmers. <strong>The</strong> availability <strong>of</strong><br />

respondents to provide the maximum <strong>of</strong> <strong>in</strong>formation<br />

was a key factor <strong>in</strong> their choice. A total <strong>of</strong> 100 farmers<br />

were <strong>in</strong>terviewed (25 farmers by commune).<br />

Data collection<br />

From September to November 2015, semi-structured<br />

<strong>in</strong>terviews were conducted <strong>in</strong> face to face with each <strong>of</strong><br />

the selected farmers. With the help <strong>of</strong> a translator,<br />

<strong>in</strong>terviews were conducted <strong>in</strong> local languages on the<br />

topics relat<strong>in</strong>g to the farmer status, growncrops,<br />

<strong>pesticides</strong> <strong>use</strong>d and attitude practices <strong>of</strong> farmer to<br />

apply <strong>pesticides</strong>. Some <strong>in</strong>formations such as<br />

cultivated superficie <strong>of</strong> each crop, pesticide <strong>use</strong>d on<br />

vegetable andpesticide sources were systematically<br />

recorded to be analyzed quantitatively.<br />

Data analysis<br />

Data from semi-sructured survey were translated <strong>in</strong> a<br />

structured form <strong>in</strong> MS Excel 2013 to perform<br />

descriptive statistics. SAS s<strong>of</strong>tware (version 9) was<br />

<strong>use</strong>d to perform chi-2 test for the statistical<br />

comparisons between proportions <strong>of</strong> each modality.<br />

In the data base, surveyed farmers were numbered<br />

from 1 to 100 follow<strong>in</strong>g the <strong>in</strong>terview rank. Banikoara<br />

farmers were numbered from 1 to 25, those <strong>of</strong> Kandi<br />

26 to 50, those <strong>of</strong> Bembèrèkè 51 to 75 and those <strong>of</strong><br />

Kalalé 76-100.<br />

R s<strong>of</strong>tware version 3.2.5 (package Facto M<strong>in</strong>e R,<br />

functions MCA and HCPC) was <strong>use</strong>d as described by<br />

Husson et al. (2017) to perform multiple<br />

correspondence analysis (MCA) and hierarchical<br />

classification analysis (HCA) <strong>of</strong> variables related to<br />

risk practices <strong>in</strong> the <strong>use</strong> <strong>of</strong> <strong>pesticides</strong> by farmers. MCA<br />

is a statistical method to analyze the pattern <strong>of</strong><br />

relationships between a set <strong>of</strong> qualitative variables.<br />

Dognon et al. Page 50


Int. J. Agron. Agri. R.<br />

This method projects the variable modalities on maps<br />

based on their correlations. As for the HCA, it based<br />

on the MCA results <strong>in</strong> order to project each <strong>of</strong> the<br />

farmers accord<strong>in</strong>g to their modalities on an area map<br />

def<strong>in</strong>ed by virtual axis.<br />

This algorithmic approach allowed def<strong>in</strong><strong>in</strong>g<br />

hierarchically discrete groups (clusters) follow<strong>in</strong>g the<br />

branches <strong>of</strong> a dendrogram. MCA and HCA results<br />

were <strong>in</strong>terpreted as described by Dognon et al.<br />

(2018).<br />

In this study, 9 variables with 26 modalities were<br />

<strong>use</strong>d (Table 1) <strong>in</strong> order to establish a typology <strong>of</strong> the<br />

farmers accord<strong>in</strong>g to their practices. Statistical<br />

comparisons were performed between farmer<br />

proportions (p) relative to different modalities <strong>of</strong> the<br />

clusters by determ<strong>in</strong><strong>in</strong>g confidence <strong>in</strong>tervals (CIs) at<br />

95 % us<strong>in</strong>g the formula<br />

(n=total number <strong>in</strong> the sampled population). Each<br />

farmer cluster was then classified accord<strong>in</strong>g to the<br />

risk-group us<strong>in</strong>g an assessment grid <strong>of</strong> practices able<br />

to ca<strong>use</strong> contam<strong>in</strong>ation <strong>of</strong> environment and food<br />

products by pesticide residues (Table 2 adapted from<br />

Dognon et al. (2018)).<br />

This assessment grid was based on modalities l<strong>in</strong>ked<br />

to good practices <strong>of</strong> pesticide <strong>use</strong>. In relation to each<br />

<strong>of</strong> these modalities, the risk was considered as high,<br />

medium and low if proportion <strong>of</strong> associate farmers<br />

was lower than 20 %, between 20 % and 50 %, and<br />

above 50 % <strong>of</strong> the total cluster farmers, respectively<br />

(Table 2). <strong>The</strong> risk level <strong>of</strong> each cluster was taken as<br />

the highest rate presented by the cluster across the<br />

grid.<br />

Results<br />

Farmer status<br />

Table 3 shows the proportions <strong>of</strong> farmers <strong>in</strong> relation<br />

to their status modalities and the results <strong>of</strong><br />

significance tests between the f<strong>in</strong>al proportions and<br />

between farmer percentages follow<strong>in</strong>g sampled<br />

commune. N<strong>in</strong>ety-one percent <strong>of</strong> farmers were men.<br />

Seventy-four percent <strong>of</strong> the respond<strong>in</strong>g had age<br />

rang<strong>in</strong>g from 30 to 59 old years.<br />

Table 1. Codes <strong>of</strong> modalities <strong>use</strong>d for the MCA and the HCA.<br />

Variables Modalities Codes<br />

Commune Bembèrèkè bke<br />

Kandi<br />

kdi<br />

Banilkoara<br />

bnk<br />

Kalalé<br />

kal<br />

Instruction level No <strong>in</strong>struction <strong>in</strong>st0<br />

Primary school<br />

<strong>in</strong>st1<br />

Secondary school<br />

<strong>in</strong>st2<br />

Local language literate No lang0<br />

Yes<br />

lang1<br />

Knowledge <strong>of</strong> <strong>use</strong> modal <strong>of</strong> the <strong>pesticides</strong> No know0<br />

Yes<br />

know1<br />

Yes sometimes<br />

know2<br />

Technician help<strong>in</strong>g No tech0<br />

Yes<br />

tech1<br />

Yes sometimes<br />

tech2<br />

Purchase site <strong>of</strong> the <strong>pesticides</strong> Market sourceM<br />

SCDA<br />

sourceS<br />

SCDA and market<br />

sourceT<br />

Management <strong>of</strong> empty bottles No disposal precaution bottle0<br />

Burnt<br />

bottle1<br />

Recycled for sell<br />

bottle2<br />

Buried<br />

bottle3<br />

Recycled for <strong>use</strong><br />

bottle4<br />

Pastur<strong>in</strong>g <strong>of</strong> crop residues by own bov<strong>in</strong>es No past0<br />

Yes<br />

past1<br />

Pastur<strong>in</strong>g <strong>of</strong> crop residues by other bov<strong>in</strong>es Yes past<br />

Dognon et al. Page 51


Int. J. Agron. Agri. R.<br />

<strong>The</strong> predom<strong>in</strong>ant ethnic groups were Bariba (31 %),<br />

Gando (29 %) and Mokole (23 %).<br />

Farmers were mostly uneducated (68 %) (p


Int. J. Agron. Agri. R.<br />

Table 3. Status <strong>of</strong> farmers.<br />

Variables and modalities Proportion <strong>of</strong> farmers (%) Distribution <strong>in</strong> communes (%)<br />

Bnk Kdi Bke Kal<br />

Sex<br />

Male 91 a 24.18 e 27.47 e 23.08 e 25.27 e<br />

Female 9 b 33.33 e 0.00 f 44.44 e 22.22 ef<br />

Ages (years)<br />

Age < 30 9 b 22.22 e 33.33 e 22.22 e 22.22 e<br />

30 ≤ Age ≤ 59 74 a 24.32 e 28.38 e 25.68 e 21.62 e<br />

Age ≥ 60 17 b 29.41 ef 5.88 f 23.53 ef 41.18 e<br />

Ethnic groups<br />

Bariba 31 a 61.29 e 3.23 h 35.48 f 0.00 h<br />

Gando 29 a 0.00 h 0.00 h 24.14 f 75.86 e<br />

Mokole 23 a 0.00 f 100.00 e 0.00 f 0.00 f<br />

Fulani 8 b 75.00 e 0.00 f 12.50 f 12.50 f<br />

Djerma 7 bc 0.00 f 14.29 f 71.43 e 14.29 f<br />

Boo 1 c 0.00 e 0.00 e 0.00 e 100.00 e<br />

Nago 1 c 0.00 e 0.00 e 100.00 e 0.00 e<br />

Instruction level<br />

Uneducated 68 a 32.35 e 17.65 f 22.06 ef 27.94 ef<br />

Primary school 15 b 13.33 f 46.67 e 33.33 ef 6.67 f<br />

Secondary school 17 b 5.88 f 35.29 e 29.41 ef 29.41 ef<br />

Local language literate<br />

No 65 a 29.23 e 29.23 e 27.69 e 13.85 f<br />

Yes 35 b 17.14 f 17.14 f 20.00 f 45.71 e<br />

Religion<br />

Islam 71 a 23.94 e 29.58 e 25.35 e 21.13 e<br />

Christianity 26 b 23.08 e 15.38 e 23.08 e 38.46 e<br />

Non-religious 3 c 66.67 e 0.00 e 33.33 e 0.00 e<br />

Pr<strong>in</strong>cipal activities<br />

Agriculture 85 a 21.18 e 24.71 e 25.88 e 28.24 e<br />

Breed<strong>in</strong>g 8 b 75.00 e 0.00 f 12.50 f 12.50 f<br />

Trade 7 b 14.29 ef 57.14 e 28.57 ef 0.00 f<br />

Secondary activities<br />

Breed<strong>in</strong>g 65 a 20.00 e 26.15 e 30.77 e 23.08 e<br />

Agriculture 15 b 46.67 e 26.67 ef 20.00 ef 6.67 f<br />

Trade 20 b 25.00 ef 20.00 ef 10.00 f 45.00 e<br />

Bnk : Banikoara ; Kdi : Kandi ; Bke : Bembereke ; Kal : Kalale ; Letters a, b and c were <strong>use</strong>d to notify significant<br />

difference between proportions <strong>of</strong> modalities for the same variable; Letters e, f and h were <strong>use</strong>d to notify<br />

significant difference between proportions <strong>of</strong> the same modality <strong>in</strong> different communes.<br />

<strong>The</strong>se last proportions were significantly different to<br />

the percentages <strong>of</strong> farmers us<strong>in</strong>g others weedkillers<br />

(p


Int. J. Agron. Agri. R.<br />

Table 4. Proportions <strong>of</strong> farmers us<strong>in</strong>g <strong>pesticides</strong> follow<strong>in</strong>g crops <strong>in</strong> the sampled communes.<br />

Variables and modalities<br />

Proportion <strong>of</strong><br />

farmers (%)<br />

Distribution <strong>in</strong> communes (%)<br />

Bnk Kdi Bke Kal<br />

Maize<br />

Herbicide 96 a 26.04 e 26.04 e 22.92 e 25.00 e<br />

No <strong>use</strong> <strong>of</strong> pesticide 4 b 0.00 f 0.00 f 75.00 e 25.00 f<br />

Cotton<br />

Herbicide and Insecticide 94 a 26.60 e 26.60 e 21.28 e 25.53 e<br />

No <strong>use</strong> <strong>of</strong> pesticide 6 b 0.00 f 0.00 f 83.33 e 16.67 f<br />

Sorghum<br />

Herbicide 77 a 27.27 e 25.97 e 20.78 e 25.97 e<br />

No <strong>use</strong> <strong>of</strong> pesticide 23 b 17.39 e 21.74 e 39.13 e 21.74 e<br />

Legum<strong>in</strong>ous<br />

Herbicide and Insecticide 26 b 53.85 e 15.38 fh 3.85 h 26.92 f<br />

Insecticide 41 a 0.00 h 46.34 e 34.15 ef 19.51 f<br />

No <strong>use</strong> <strong>of</strong> pesticide 33 ab 33.33 e 6.06 f 30.30 e 30.30 e<br />

Garden<strong>in</strong>g<br />

Herbicide and Insecticide 15 b 20.00 ef 33.33 e 0.00 f 46.67 e<br />

Insecticide 14 b 7.14 f 21.43 ef 28.57 ef 42.86 e<br />

No <strong>use</strong> <strong>of</strong> pesticide 71 a 29.58 e 23.94 e 29.58 e 16.90 e<br />

Rice<br />

Herbicide 22 b 22.73 e 31.82 e 18.18 e 27.27 e<br />

No <strong>use</strong> <strong>of</strong> pesticide 78 a 25.64 e 23.08 e 26.92 e 24.36 e<br />

Roots and tubers<br />

Herbicide 17 b 23.53 e 0.00 f 47.06 e 29.41 e<br />

No <strong>use</strong> <strong>of</strong> pesticide 83 a 25.30 e 30.12 e 20.48 e 24.10 e<br />

Bnk : Banikoara ; Kdi : Kandi ; Bke : Bembereke ; Kal : Kalale ; Letters a and b were <strong>use</strong>d to notify significant difference between<br />

modality proportions for the same variable; Letters e, f and h were <strong>use</strong>d to notify significant difference between proportions <strong>of</strong><br />

the same modality <strong>in</strong> different communes.<br />

Table 5. Herbicides <strong>use</strong>d by respond<strong>in</strong>g farmers <strong>in</strong> 2015.<br />

N° Trade names Active <strong>in</strong>gredients Farmer frequency±CI(%)<br />

1 Cottonex PG 560SC Fluometuron+ Prometr<strong>in</strong>+ Glyphosate 55±9.75 a<br />

2 Nicomaïs Nicosulfuron 47±9.78 a<br />

3 Spr<strong>in</strong>g PFG 560SC** Fluometuron+ Prometr<strong>in</strong>+ Glyphosate 29±8.89 b<br />

4 Kalach 360SL Glyphosate 28±8.80 b<br />

5 Spider** Fluometuron+ Prometr<strong>in</strong>+ Glyphosate 28±8.80 b<br />

6 Glyphos 360 SL Glyphosate 26±8.60 b<br />

7 Glyphospr<strong>in</strong>g 410SL** Glyphosate 26±8.60 b<br />

8 Glycel 41% Glyphosate 18±7.53 bc<br />

9 JAF PFG** Fluometuron+ Prometr<strong>in</strong>+ Glyphosate 13±6.59 c<br />

10 Atra force* Atraz<strong>in</strong>e# 8±5.32 c<br />

11 Buster* Butachlor 1±1.95 d<br />

12 Buta force* Butachlor 1±1.95 d<br />

13 Callifor G Fluometuron+ Prometr<strong>in</strong>+ Glyphosate 1±1.95 d<br />

14 Force Up** Glyphosate 1±1.95 d<br />

15 GALLANT Super Haloxyfop methyl ester 1±1.95 d<br />

16 Garill Triclopyr+ Propanil 1±1.95 d<br />

17 Glyphogan 360SL Glyphosate 1±1.95 d<br />

18 Lagon 380 SC Isoxaflutole+ Aclonifene 1±1.95 d<br />

19 ITABARKA** Prometr<strong>in</strong> 1±1.95 d<br />

20 Terbulor Metolachlor+ Terburn<strong>in</strong> 1±1.95 d<br />

21 TRIPRO Triclopyr+ Propanil 1±1.95 d<br />

Farmer frequency (%): proportion <strong>of</strong> farmer us<strong>in</strong>g product. CI: Confident <strong>in</strong>terval at 95 %. Letters from a to d were <strong>use</strong>d to<br />

notify significant difference between the percentages. *: Product thattrade name and actives <strong>in</strong>gredients were not found on the<br />

list <strong>of</strong> authorized pesticide by the National Comity <strong>of</strong> Consent and Control <strong>of</strong> Phytopharmaceutical Products (CNAC) <strong>in</strong> Ben<strong>in</strong><br />

(CNAC, 2014; unpublished). **: Product that trade name was not found on the list <strong>of</strong> authorized pesticide <strong>of</strong> CNAC (2014;<br />

unpublished) while actives agents were found on that list.<br />

Practices <strong>of</strong> <strong>use</strong> <strong>of</strong> <strong>pesticides</strong> <strong>in</strong> the area study<br />

All surveyed farmers <strong>use</strong>d <strong>pesticides</strong> for control and<br />

prevention <strong>of</strong> harmful organisms.<br />

Table 7 shows practices <strong>of</strong> <strong>use</strong> <strong>of</strong> <strong>pesticides</strong>. Seventyeight<br />

percent <strong>of</strong> farmers purchased <strong>pesticides</strong> <strong>in</strong> both<br />

authorized shop <strong>of</strong> communal sector for agricultural<br />

developpment (SCDA) and illegal market while 17 %<br />

and 5 % <strong>of</strong> them shoped from SCDA only and illegal<br />

market only, respectively.<br />

Dognon et al. Page 54


Int. J. Agron. Agri. R.<br />

Table 6. Insecticides <strong>use</strong>d by the respond<strong>in</strong>g farmers <strong>in</strong> 2015.<br />

N° Trade names Active <strong>in</strong>gredients Farmer frequency ± CI (%)<br />

1 Ema star 112 EC Emamect<strong>in</strong>e+ Acetamipride 89±6.13 a<br />

2 Acer 35EC** λ-Cyhalothr<strong>in</strong>+Acetamipride 78±8.12 b<br />

3 Cutter 112EC Emamect<strong>in</strong>e+ Acetamipride 47±9.78 c<br />

4 Napeco Metafos** Emamect<strong>in</strong>e+ Acetamipride 33±9.22 cd<br />

5 LAMENET 46EC** λ-Cyhalothr<strong>in</strong>+Acetamipride 25±8.49 d<br />

6 Caïman B** Emamect<strong>in</strong>e 10±5.88 e<br />

7 Lamber** λ-Cyhalothr<strong>in</strong>+Acetamipride 10±5.88 e<br />

8 Sharp Shoster** Cypermethr<strong>in</strong>+Pr<strong>of</strong>en<strong>of</strong>os 10±5.88 e<br />

9 Conquest 88 Cypermethr<strong>in</strong>+ Acetamipride 7±5.00 ef<br />

10 Chemaprid** Cypermethr<strong>in</strong>+ Acetamipride 3±3.34 f<br />

11 Karto Super 2.5 EC** λ-Cyhalothr<strong>in</strong> 3±3.34 f<br />

12 Aceta star** Bifenthr<strong>in</strong>+ Acetamipride 2±2.74 f<br />

13 Conquest plus 388EC Cypermethr<strong>in</strong>+ Acetamipride+<br />

2±2.74 f<br />

Triazophos<br />

14 Cyperkill 10EC** Cypermethr<strong>in</strong> 2±2.74 f<br />

15 EMA SUPER 56 DC Emamect<strong>in</strong>e+ Acetamipride 2±2.74 f<br />

16 Fanga 500EC Pr<strong>of</strong>en<strong>of</strong>os 2±2.74 f<br />

17 KD+** λ-Cyhalothr<strong>in</strong>+ Chlorpyriphos 2±2.74 f<br />

18 Lampride** λ-Cyhalothr<strong>in</strong>+ Acetamipride 2±2.74 f<br />

19 Moacartar<strong>in</strong>e** λ-Cyhalothr<strong>in</strong>+ Acetamipride 2±2.74 f<br />

20 Nurelle D 35/300 Cypermethr<strong>in</strong>+ Chlorpyriphos<br />

2±2.74 f<br />

ethyl<br />

21 Pr<strong>of</strong>enet 500 EC** Pr<strong>of</strong>en<strong>of</strong>os 2±2.74 f<br />

22 Steward 150 EC Indoxacarbe 2±2.74 f<br />

23 Tenor 500 EC** Pr<strong>of</strong>en<strong>of</strong>os 2±2.74 f<br />

24 Thunder 145 o-teq Imidaclopride+ Beta-cyfluthr<strong>in</strong> 2±2.74 f<br />

25 Tihan 175 o-teq Spirotetramate+ Flubendiamide 2±2.74 f<br />

26 CALIF 500EC Pr<strong>of</strong>en<strong>of</strong>os 1±1.95 f<br />

27 Champion Cyhalon 2.5 EC** λ-Cyhalothr<strong>in</strong> 1±1.95 f<br />

28 D-BAN Super 480EC** Chlorpyrifos-ethyl 1±1.95 f<br />

29 Emacot 019EC Emamect<strong>in</strong>e 1±1.95 f<br />

30 Emect<strong>in</strong>e 19.2EC** Emamect<strong>in</strong>e 1±1.95 f<br />

31 EMIR 88EC Cypermethr<strong>in</strong>+ Acetamipride 1±1.95 f<br />

32 FAIZER** Indoxacarbe 1±1.95 f<br />

33 Lamdacal P 315 EC λ-Cyhalothr<strong>in</strong>+ Pr<strong>of</strong>en<strong>of</strong>os 1±1.95 f<br />

34 Nurelle D 36/200 Cypermethr<strong>in</strong>+ Chlorpyriphos<br />

1±1.95 f<br />

ethyl<br />

35 Pr<strong>of</strong>en<strong>of</strong>os** Pr<strong>of</strong>en<strong>of</strong>os 1±1.95 f<br />

Farmer frequency (%): proportion <strong>of</strong> farmer us<strong>in</strong>g product; CI: Confident <strong>in</strong>terval at 95 %; Letters from a to f<br />

were <strong>use</strong>d to notify significant difference between percentages. **: Product that trade name was not found on the<br />

list <strong>of</strong> authorized pesticide by the CNAC (2014, unpublished) <strong>in</strong> Ben<strong>in</strong> while actives <strong>in</strong>gredients were found on<br />

that list.<br />

Proportion <strong>of</strong> farmers who purshased <strong>pesticides</strong> <strong>in</strong><br />

SCDA shop exclusivelly was more <strong>in</strong> Banikoara<br />

(47.06 %) and Kalale (47.06 %) than Kandi (5.88 %)<br />

and Bembereke (0 %). This last commune had the<br />

highest proportion (80 %) <strong>of</strong> farmers who solely got<br />

<strong>pesticides</strong> from illegal market.<br />

<strong>The</strong> modals <strong>of</strong> the pesticide <strong>use</strong> had sometimes been<br />

known by 53 % <strong>of</strong> farmers and regulary known by<br />

45 % <strong>of</strong> them. Sixteen percent <strong>of</strong> the farmers were not<br />

ever assisted by the technicians <strong>of</strong> vegetable<br />

production.<br />

As for the management <strong>of</strong> pesticide empty bottles,<br />

‘‘no disposal precaution’’ (60 %) was the dom<strong>in</strong>ant<br />

modality (p


Int. J. Agron. Agri. R.<br />

Table 7. Practice <strong>of</strong> <strong>use</strong> <strong>of</strong> <strong>pesticides</strong>.<br />

Variables and modalities Proportion <strong>of</strong> farmers (%) Distribution <strong>in</strong> communes (%)<br />

Bnk Kdi Bke Kal<br />

Purchase site<br />

SCDA and Market 78 a 21.79 e 29.49 e 26.92 e 21.79 e<br />

SCDA 17 b 47.06 e 5.88 f 0.00 f 47.06 e<br />

Market 5 c 0.00 f 20.00 f 80.00 e 0.00 f<br />

Knowledge <strong>of</strong> <strong>use</strong> modal<br />

Yes sometimes 53 a 43.40 e 43.40 e 9.43 f 3.77 f<br />

Yes 45 a 4.44 f 4.44 f 44.44 e 46.67 e<br />

No 2 b 0.00 f 0.00 f 0.00 f 100.00 e<br />

Technician help<strong>in</strong>g<br />

Yes sometimes 52 a 46.15 e 44.23 e 9.62 f 0.00 h<br />

Yes 32 b 3.13 f 6.25 f 43.75 e 46.88 e<br />

No 16 c 0.00 f 0.00 f 37.50 e 62.50 e<br />

Management <strong>of</strong> empty bottles<br />

No disposal precaution 60 a 36.67 e 15.00 f 28.33 ef 20.00 f<br />

Burnt 17 b 0.00 f 17.65 f 29.41 e 52.94 e<br />

Recycled for sell 12 bc 0.00 f 83.33 e 16.67 f 0.00 f<br />

Buried 6 c 0.00 f 16.67 f 16.67 f 66.67 e<br />

Recycled for <strong>use</strong> 5 c 60.00 e 40.00 ef 0.00 f 0.00 f<br />

Knowledge <strong>of</strong> adverse effect <strong>of</strong> <strong>pesticides</strong><br />

No effect 42 a 45.24 e 23.81 f 23.81 f 7.14 h<br />

Human diseases 24 b 25.00 f 0.00 h 0.00 h 75.00 e<br />

Animal diseases 18 b 0.00 f 44.44 e 55.56 e 0.00 f<br />

Animal and human diseases 16 b 0.00 f 43.75 e 31.25 e 25.00 e<br />

Bov<strong>in</strong>e herd holder<br />

Yes 85 a 29.41 e 27.06 e 14.12 f 29.41 e<br />

No 15 b 0.00 f 13.33 f 86.67 e 0.00 e<br />

Pastur<strong>in</strong>g <strong>of</strong> crop residues by own bov<strong>in</strong>es<br />

Yes 84 a 29.76 e 27.38 e 13.10 f 29.76 e<br />

No 16 b 0.00 f 12.50 f 87.50 e 0.00 f<br />

Pastur<strong>in</strong>g <strong>of</strong> crop residues by other bov<strong>in</strong>es<br />

Yes 100 25.00 e 25.00 e 25.00 e 25.00 e<br />

Bnk : Banikoara ; Kdi : Kandi ; Bke : Bembereke ; Kal : Kalale ; Letters a, b and c were <strong>use</strong>d to notify significant<br />

difference between proportions <strong>of</strong> modalities for the same variable; Letters e, f and h were <strong>use</strong>d to notify<br />

significant difference between proportions <strong>of</strong> the same modality <strong>in</strong> different communes.<br />

Many farmers (42 %) declared that they did not know<br />

any adverse effect ca<strong>use</strong>d by <strong>pesticides</strong> on animal and<br />

human be<strong>in</strong>gs.<br />

As for the human diseases, farmers declared that<br />

<strong>pesticides</strong> made themself fell dizzy. Eighty-five<br />

percent <strong>of</strong> farmers were bov<strong>in</strong>e herd holders.<br />

This proportion is significantly upper (p


Int. J. Agron. Agri. R.<br />

Table 8. Distribution <strong>of</strong> farmers <strong>in</strong> the three classes accord<strong>in</strong>g to the whole modalities.<br />

Variables/Modalities Farmer number (n=100) Proportions <strong>of</strong> farmer distribution <strong>in</strong> the clusters (% ± CI)<br />

Cluster 1 Cluster 2 Cluster 3<br />

Commune<br />

Bembèrèkè 25 0.0 ± 0.0 b 100.0 ± 0.0 a 6.9 ± 9.2 b<br />

Kandi 25 50.0 ± 14.1 a 0.0 ± 0.0 b 3.4 ± 6.6 b<br />

Banikoara 25 50.0 ± 14.1 a 0.0 ± 0.0 b 3.4 ± 6.6 b<br />

Kalalé 25 0.0 ± 0.0 b 0.0 ± 0.0 b 86.2 ± 12.6 a<br />

Instruction level<br />

No <strong>in</strong>struction 68 70.8 ± 12.9 a 56.5 ± 20.3 a 72.4 ± 16.3 a<br />

Primary school 15 16.7 ± 10.5 a 21.7 ± 16.9 a 6.9 ± 9.2 a<br />

Secondary school 17 12.5 ± 9.4 a 21.7 ± 16.9 a 20.7 ± 14.7 a<br />

Local language literate<br />

No 65 79.2 ± 11.5 a 78.3 ± 16.9 a 31.0 ± 16.8 b<br />

Yes 35 20.8 ± 11.5 b 21.7 ± 16.9 b 69.0 ± 16.8 a<br />

Knowledge <strong>of</strong> <strong>use</strong> modal<br />

No 2 0.0 ± 0.0 a 0.0 ± 0.0 a 6.9 ± 9.2 a<br />

Yes 45 4.2 ± 5.7 b 78.3 ± 16.9 a 86.2 ± 12.6 a<br />

Yes sometimes 53 95.8 ± 5.7 a 21.7 ± 16.9 b 6.9 ± 9.2 b<br />

Technician help<strong>in</strong>g<br />

No 16 0.0 ± 0.0 b 21.7 ± 16.9 a 37.9 ± 17.7 a<br />

Yes 32 4.2 ± 5.7 b 56.5 ± 20.3 a 58.6 ± 17.9 a<br />

Yes sometimes 52 95.8 ± 5.7 a 21.7 ± 16.9 b 3.4 ± 6.6 c<br />

Purchase site<br />

Market 5 2.1 ± 4.0 ab 17.4 ± 15.5 a 0.0 ± 0.0 b<br />

SCDA 17 18.8 ± 11.0 a 0.0 ± 0.0 b 27.6 ± 16.3 a<br />

SCDA and market 78 79.2 ± 11.5 a 82.6 ± 15.5 a 72.4 ± 16.3<br />

Management <strong>of</strong> empty bottles<br />

No disposal<br />

60 62.5 ± 13.7 ab 69.6 ± 18.8 a 48.3 ± 18.2 b<br />

precaution<br />

Burnt 17 4.2 ± 5.7 b 17.4 ± 15.5 b 37.9 ± 17.7 a<br />

Recycled for sell 12 20.8 ± 11.5 a 8.7 ± 11.5 b 0.0 ± 0.0 b<br />

Buried 6 2.1 ± 4.0 a 4.3 ± 8.3 a 13.8 ± 12.6 a<br />

Recycled for <strong>use</strong> 5 10.4 ± 8.6 a 0.0 ± 0.0 b 0.0 ± 0.0 b<br />

Pastur<strong>in</strong>g <strong>of</strong> crop residues by own bov<strong>in</strong>es<br />

No 16 4.2 ± 5.7 b 60.9 ± 19.9 a 0.0 ± 0.0 b<br />

Yes 84 95.8 ± 5.7 a 39.1 ± 19.9 b 100.0 ± 0.0 a<br />

Pastur<strong>in</strong>g <strong>of</strong> crop residues by other bov<strong>in</strong>es<br />

Yes 100 100.0 ± 0.0 a 100.0 ± 0.0 a 100.0 ± 0.0 a<br />

CI: Confidence <strong>in</strong>terval at 95 %; Letters a, b and c were <strong>use</strong>d to notify significant difference between proportions<br />

<strong>of</strong> modalities about <strong>in</strong> clusters.<br />

<strong>The</strong> analysis <strong>of</strong> the <strong>in</strong>dicator matrix shown<br />

respectively for the axes 1, 2 and 3 a value <strong>of</strong> 18.69 %,<br />

13.06 % and 9.77 % <strong>of</strong> the total <strong>in</strong>ertia (Fig. 3 and 4).<br />

<strong>The</strong> component 1 opposes the districts <strong>of</strong> Banikoara<br />

and Kandi, associated to modalities <strong>of</strong> farmers who<br />

did not follow local language literate, who sometimes<br />

know the <strong>use</strong> modal <strong>of</strong> the <strong>pesticides</strong> and get<br />

agricultural technician helps for the pesticide <strong>use</strong><br />

(negative coord<strong>in</strong>ates, Fig. 3), to the district <strong>of</strong> Kalalé,<br />

where some farmers received local language lecture<br />

and were not helped by the agricultural technicians<br />

(positive coord<strong>in</strong>ates, Fig. 3).<br />

<strong>The</strong> component 2 discrim<strong>in</strong>ates the group <strong>of</strong><br />

modalities related to farmers <strong>in</strong> the district <strong>of</strong><br />

Bembèrèkè (positive coord<strong>in</strong>ates, Fig. 3) to other<br />

groups <strong>of</strong> farmers <strong>in</strong> Banikoara on the one hand and<br />

Kalalé on the other hand (negative coord<strong>in</strong>ates,<br />

Fig. 3).<br />

As for the component 3, it opposes farmers who<br />

purchase <strong>pesticides</strong> from legal shop (SCDA) to those<br />

who <strong>use</strong> local market as sources <strong>of</strong> supply <strong>of</strong><br />

<strong>pesticides</strong>.<br />

Dognon et al. Page 57


Int. J. Agron. Agri. R.<br />

Hierarchical classification analysis and description<br />

<strong>of</strong> classes<br />

Fig. 4 shows the projection <strong>of</strong> <strong>in</strong>dividual farmers on<br />

the plane def<strong>in</strong>ed by the factorial axes 1 and 2, which<br />

allowed observ<strong>in</strong>g the aff<strong>in</strong>ity groups <strong>in</strong> three<br />

clusters, hold<strong>in</strong>g 48 % <strong>of</strong> the total variability between<br />

groups. Table 8 shows the distribution <strong>of</strong> farmers <strong>in</strong><br />

the three classes accord<strong>in</strong>g to all modalities <strong>of</strong> which<br />

the most relevant by farmer class are presented <strong>in</strong><br />

Table 9.<br />

Table 9. Distribution <strong>of</strong> farmers <strong>in</strong> the three classes accord<strong>in</strong>g to the most relevant modalities (percentage <strong>of</strong><br />

modalities compared to the farmer number <strong>in</strong> each cluster).<br />

Variables/Modalities<br />

Proportions <strong>of</strong> farmer distribution <strong>in</strong> the clusters<br />

(% ± CI)<br />

Cluster 1 Cluster 2 Cluster 3<br />

Specific modalities to cluster 1<br />

Commune : Kandi 50.0 ± 14.1 a 0.0 ± 0.0 b 3.4 ± 6.6 b<br />

Commune : Banikoara 50.0 ± 14.1 a 0.0 ± 0.0 b 3.4 ± 6.6 b<br />

Knowledge <strong>of</strong> <strong>use</strong> modal : yes sometimes 95.8 ± 5.7 a 21.7 ± 16.9 b 6.9 ± 9.2 b<br />

Technician help<strong>in</strong>g : yes sometimes 95.8 ± 5.7 a 21.7 ± 16.9 b 3.4 ± 6.6 c<br />

Management <strong>of</strong> empty bottles : recycled for sell 20.8 ± 11.5 a 8.7 ± 11.5 b 0.0 ± 0.0 b<br />

Management <strong>of</strong> empty bottles : recycled for <strong>use</strong> 10.4 ± 8.6 a 0.0 ± 0.0 b 0.0 ± 0.0 b<br />

Specific modalities to cluster 2<br />

Commune : Bembèrèkè 0.0 ± 0.0 b 100.0 ± 0.0 a 6.9 ± 9.2 b<br />

Pastur<strong>in</strong>g <strong>of</strong> crop residues by own bov<strong>in</strong>es : no 4.2 ± 5.7 b 60.9 ± 19.9 a 0.0 ± 0.0 b<br />

Specific modalities to cluster 3<br />

Commune : Kalalé 0.0 ± 0.0 b 0.0 ± 0.0 b 86.2 ± 12.6 a<br />

Local language literate : yes 20.8 ± 11.5 b 21.7 ± 16.9 b 69.0 ± 16.8 a<br />

Management <strong>of</strong> empty bottles : burnt 4.2 ± 5.7 b 17.4 ± 15.5 b 37.9 ± 17.7 a<br />

Common modalities to at least two clusters<br />

Pastur<strong>in</strong>g <strong>of</strong> crop residues by other bov<strong>in</strong>es : yes 100.0 ± 0.0 a 100.0 ± 0.0 a 100.0 ± 0.0 a<br />

Purchase site : SCDA and market 79.2 ± 11.5 a 82.6 ± 15.5 a 72.4 ± 16.3 a<br />

Instruction level : no <strong>in</strong>struction 70.8 ± 12.9 a 56.5 ± 20.3 a 72.4 ± 16.3 a<br />

Local language literate : no 79.2 ± 11.5 a 78.3 ± 16.9 a 31.0 ± 16.8 b<br />

Management <strong>of</strong> empty bottles : no disposal precaution 62.5 ± 13.7 ab 69.6 ± 18.8 a 48.3 ± 18.2 b<br />

Pastur<strong>in</strong>g <strong>of</strong> crop residues by own bov<strong>in</strong>es : yes 95.8 ± 5.7 a 39.1 ± 19.9 b 100.0 ± 0.0 a<br />

Knowledge <strong>of</strong> <strong>use</strong> modal : yes 4.2 ± 5.7 b 78.3 ± 16.9 a 86.2 ± 12.6 a<br />

Technician help<strong>in</strong>g : yes 4.2 ± 5.7 b 56.5 ± 20.3 a 58.6 ± 17.9 a<br />

CI: Confidence <strong>in</strong>terval at 95 %; Letters a, b and c were <strong>use</strong>d to notify significant difference between proportions<br />

<strong>of</strong> modalities about <strong>in</strong> clusters.<br />

Cluster 1 counted 48 farmers (48 ± 14.1 % <strong>of</strong> total<br />

farmers) from Banikoara and Kandi districts.<br />

<strong>The</strong>y sometimes get helps <strong>of</strong> agricultural<br />

technician and sometimes know the <strong>use</strong> modal <strong>of</strong><br />

<strong>pesticides</strong> (Table 9).<br />

Cluster 2 was composed <strong>of</strong> 23 ± 17.2 % <strong>of</strong> the farmers<br />

(all from Bembèrèkè) (Table 8). Several farmers <strong>of</strong><br />

this group (60.9 ± 19.9 %) were characterized by the<br />

modality <strong>of</strong> “pastur<strong>in</strong>g <strong>of</strong> crop residues by own<br />

bov<strong>in</strong>es (no)” (Table 9).<br />

As for the cluster 3, it conta<strong>in</strong>ed 29 farmers (29 ± 16.5<br />

% <strong>of</strong> the total farmers which <strong>of</strong> 25 from Kalalé, 2 from<br />

Bembèrèkè, 1 <strong>in</strong> Kandi and 1 <strong>in</strong> Banikoara). Most <strong>of</strong><br />

these farmers followed local language literate and<br />

burned the empty bottles <strong>of</strong> <strong>pesticides</strong> (Table 9).<br />

<strong>The</strong> specific modalities <strong>of</strong> each cluster (Table 9)<br />

crossed with the assessment grid <strong>of</strong> the risk level <strong>of</strong><br />

practices (Table 2), allowed identify<strong>in</strong>g clusters 2 and<br />

3 as the lower-risk classes while cluster 1 was highrisk<br />

class able to ca<strong>use</strong> contam<strong>in</strong>ation <strong>of</strong> environment<br />

and foods from animal bred <strong>in</strong> the study area by the<br />

pesticide residues.<br />

Dognon et al. Page 58


Int. J. Agron. Agri. R.<br />

Discussion<br />

Status <strong>of</strong> the farmers<br />

Surveyed farmers were dom<strong>in</strong>ated by men (91 %). <strong>The</strong><br />

same observation was done by H<strong>in</strong>son et al. (2015) <strong>in</strong><br />

Banikoara where respond<strong>in</strong>g farmer sample<br />

conta<strong>in</strong>ed 94.8 % <strong>of</strong> men. <strong>The</strong>se last authors showed<br />

that farmers were majoritary uneducated (80.3 %).<br />

That seemed to be similar to the whole <strong>of</strong> <strong>in</strong>struction<br />

level <strong>in</strong> this study (68 % <strong>of</strong> farmers were unaducated).<br />

So, few farmers attended primary and secondary school.<br />

In addition, only 35 % <strong>of</strong> them were done local language<br />

literate. Thus, <strong>in</strong>formations on pesticide labels would not<br />

be understood by majoritary <strong>of</strong> the farmers. This<br />

situation could favour the bad <strong>use</strong> <strong>of</strong> <strong>pesticides</strong>.<br />

Fig. 2. Average proportions <strong>of</strong> farmers follow<strong>in</strong>g crops cultivated from 2006 to 2015. Error bars represent<br />

standard deviations (SD) while letters from a to h were <strong>use</strong>d to notify significant difference between percentages<br />

(p


Int. J. Agron. Agri. R.<br />

<strong>The</strong> same reasons justify the production <strong>of</strong> sorghum<br />

<strong>in</strong> the area study where this cereal is mostly <strong>use</strong>d for<br />

their own foods. As for the cotton, this plant is the<br />

ma<strong>in</strong> ground-rent crop which contributes strongly to<br />

the country economy (M<strong>in</strong>ot and Daniels, 2005; Lau<br />

et al., 2015). So, cotton crop is not only very<br />

important for the study area economy but also for the<br />

development <strong>of</strong> the whole <strong>of</strong> the country.<br />

Accord<strong>in</strong>g to Alavo et al. (2010), cotton plant is very<br />

sensitive to several diseases from arthropod ravagers<br />

as H. armigera. That justifies the <strong>use</strong> <strong>of</strong> many<br />

<strong>in</strong>secticide products on cotton plant by almost <strong>of</strong> the<br />

farmers (94 %). This level is very upper than the 69 %<br />

<strong>of</strong> chemical pesticide <strong>use</strong>rs surveyed <strong>in</strong> Banikoara <strong>in</strong><br />

2011 (Agbohessi et al., 2011).<br />

Fig. 4. Graphic representation <strong>of</strong> farmer clusters on the factorial axes 1 and 2. <strong>The</strong> numbers correspond to the<br />

farmers who are represented on the map by “ ”, “<br />

” and “ ” <strong>in</strong> the clusters 1, 2 and 3, respectively.<br />

Banikoara is the first commune <strong>of</strong> cotton production<br />

<strong>in</strong> Ben<strong>in</strong>. Thus, several <strong>of</strong> cotton harmful <strong>in</strong>sects<br />

attack also legum<strong>in</strong>ous dur<strong>in</strong>g grow<strong>in</strong>g. This situation<br />

justifies the proportion <strong>of</strong> the pesticide <strong>use</strong>rs on<br />

legum<strong>in</strong>ous crops <strong>in</strong> Banikoara (53.85 %) which was<br />

significantly higher (p


Int. J. Agron. Agri. R.<br />

But <strong>in</strong> 2011, Banikoara’s farmers <strong>use</strong>d n<strong>in</strong>e active<br />

chemicls from seven products to kill cotton harmful<br />

<strong>in</strong>sects (Agbohessi et al., 2011). Accord<strong>in</strong>g to H<strong>in</strong>son<br />

et al. (2015), acetamipride was present <strong>in</strong> 13/27 <strong>of</strong> the<br />

<strong>in</strong>secticide products, this chemical was also the most<br />

active compounds <strong>in</strong> 37 % <strong>of</strong> the <strong>in</strong>secticide products<br />

documented dur<strong>in</strong>g this survey.<br />

Practices <strong>of</strong> pesticide <strong>use</strong> by the farmers<br />

Contrary to Agbohessi et al. (2011) results, which<br />

showed that 67 % <strong>of</strong> farmers purchased <strong>pesticides</strong><br />

from formal sector <strong>in</strong> Banikoara, this study revealed<br />

that only 17 % <strong>of</strong> surveyed farmers got pesticide from<br />

authorized shop. Thus, 83 % <strong>of</strong> the farmers purchased<br />

<strong>pesticides</strong> <strong>in</strong> both illegal markets and/or <strong>in</strong><br />

authorized shop. Accord<strong>in</strong>g to Agbohessi et al. (2011),<br />

any control was performed about <strong>pesticides</strong> sold <strong>in</strong><br />

<strong>in</strong>formal sector from cross-border trad<strong>in</strong>g (Togo,<br />

Nigeria, Ghana, etc.). <strong>The</strong>se products could be store<br />

<strong>in</strong> bad conditions and are more cheaper than <strong>of</strong>ficial<br />

<strong>pesticides</strong>. Thus, farmers accessed easily to these<br />

prohibited and smuggled products. This situation<br />

justify the presence <strong>of</strong> some <strong>pesticides</strong> that active<br />

<strong>in</strong>gredient was not authorized. For example, Atra<br />

force, Buster and Buta force conta<strong>in</strong>ed Atraz<strong>in</strong>e and<br />

Butachlor that were not authorized to be <strong>use</strong>d <strong>in</strong><br />

Ben<strong>in</strong> (CNAC, 2014, Unpublished). This Ben<strong>in</strong>ese<br />

situation is similar to that <strong>of</strong> Ethiopia where direct<br />

import <strong>of</strong> <strong>pesticides</strong> outside <strong>of</strong> legal cha<strong>in</strong> was<br />

observed (Negatu et al., 2016).<br />

Despite <strong>of</strong> the bann<strong>in</strong>g <strong>of</strong> endosulfan <strong>use</strong> <strong>in</strong> Ben<strong>in</strong><br />

s<strong>in</strong>ce 2007 (Badarou and Coppieters, 2009), this<br />

pesticide was us<strong>in</strong>g <strong>in</strong> Banikoara three years after the<br />

deadl<strong>in</strong>e (December 2008) (Agbohessi et al., 2011).<br />

Fortunately, this study did not show any endosulfan<br />

product. This happy situation was not similar to that<br />

<strong>of</strong> Ethiopia where illegitimate usages <strong>of</strong> DDT and<br />

endosulfan on food crops cont<strong>in</strong>ued until 2016<br />

(Negatu et al., 2016).<br />

Moreover, the difference between percentages <strong>of</strong><br />

farmers helped by the technician from the different<br />

communes could be justified by an unequal<br />

distribution <strong>of</strong> the technicians <strong>in</strong> these municipalities.<br />

Farmer group accord<strong>in</strong>g to risky practices<br />

<strong>The</strong> typology <strong>of</strong> the farmers <strong>in</strong> <strong>North</strong>-<strong>East</strong> Ben<strong>in</strong> as<br />

established <strong>in</strong> this study allowed characteriz<strong>in</strong>g two<br />

categories <strong>of</strong> farmers. Cluster 1 was the high-risk class<br />

and mostly composed <strong>of</strong> farmers from Banikoara and<br />

Kandi districts <strong>in</strong> the Department <strong>of</strong> Alibori, while the<br />

lower-risk classes (clusters 2 and 3) were mostly<br />

composed <strong>of</strong> farmers from Bembèrèkè and Kalalé<br />

districts <strong>in</strong> the Department <strong>of</strong> Borgou. Thus, the<br />

Departments were strongly liked to the risky practices<br />

<strong>of</strong> the <strong>use</strong> <strong>of</strong> the pesticide products. In fact, Alibori is<br />

the first Department <strong>of</strong> cotton production <strong>in</strong> Ben<strong>in</strong>.<br />

<strong>The</strong> limited number <strong>of</strong> the agricultural technician <strong>in</strong><br />

this locality did not allow cover<strong>in</strong>g the most <strong>of</strong> these<br />

cotton farmers who largely <strong>use</strong>d <strong>pesticides</strong> from<br />

several illegal sources. However, concern<strong>in</strong>g the<br />

common modalities (Table 9), it is important to recall<br />

that none <strong>of</strong> the three farmer classes displays the<br />

m<strong>in</strong>imum conditions for ensur<strong>in</strong>g a healthy<br />

environment for food safety.<br />

All these observations support the hypothesis that the<br />

pesticide sector <strong>in</strong> Ben<strong>in</strong> should be reorganized with<br />

enhanced measures <strong>of</strong> control and follow<br />

recommended practices. Based on these observations,<br />

it is necessary to study the prevalence <strong>of</strong> pesticide<br />

residues <strong>in</strong> foods <strong>in</strong> generally and particularly <strong>in</strong><br />

foods from livestock animals. F<strong>in</strong>ally, the<br />

re<strong>in</strong>forcement <strong>of</strong> the legislation on pesticide practices<br />

is essential for the well-be<strong>in</strong>g <strong>of</strong> animals and animal<br />

food consumers.<br />

Acknowledgements<br />

<strong>The</strong> authors are grateful to farmers, rural<br />

development <strong>of</strong>ficers <strong>of</strong> Communal Sectors for the<br />

Agricultural Development <strong>of</strong> the study area and the<br />

translators for their respective <strong>in</strong>terests <strong>in</strong> the<br />

<strong>in</strong>vestigation.<br />

Compet<strong>in</strong>g <strong>in</strong>terests<br />

<strong>The</strong> authors declare that they have no f<strong>in</strong>ancial or<br />

personal relationships that may have <strong>in</strong>appropriately<br />

<strong>in</strong>fluenced them <strong>in</strong> writ<strong>in</strong>g <strong>of</strong> this article.<br />

References<br />

Adam SK, Boko M. 1993. Le climat du Bén<strong>in</strong>. In : le<br />

Bén<strong>in</strong>, Ed. Sodimas-Edicef. Paris. 96 p.<br />

Dognon et al. Page 61


Int. J. Agron. Agri. R.<br />

Agbohessi PT, Imorou Toko I, Yabi JA, sous<br />

autorisation provisoire Dassoundo-Assogba JFC,<br />

Kestemont P. 2011. Caractérisation des <strong>pesticides</strong><br />

chimiques utilisés en production cotonnière et impact<br />

sur les <strong>in</strong>dicateurs économiques dans la Commune de<br />

Banikoara au nord du Bén<strong>in</strong>. International Journal <strong>of</strong><br />

Biological and Chemical Sciences 5(5), 1828-1841.<br />

http://dx.doi.org/10.4314/ijbcs.v5i5.6<br />

Aïkpo FH, Chabi CB, Ayi V, Koumolou L,<br />

Houssou CS, Edorh PA. 2015. Evaluation de la<br />

contam<strong>in</strong>ation des eaux du fleuve Couffo dans la zone<br />

cotonnière de Djidja (Bén<strong>in</strong>) par les <strong>pesticides</strong>.<br />

International Journal <strong>of</strong> Biological and Chemical<br />

Sciences 9(3), 1725-1732.<br />

http://dx.doi.org/10.4314/ijbcs.v9i3.50<br />

Alavo TBC, Yarou BB, Atachi P. 2010. Field<br />

effects <strong>of</strong> kaol<strong>in</strong> particle film formulation aga<strong>in</strong>st<br />

major cotton lepidopteran pests <strong>in</strong> <strong>North</strong> Ben<strong>in</strong>, West<br />

Africa. International Journal <strong>of</strong> Pest Management<br />

56(4), 287-290.<br />

http://dx.doi.org/10.1080/09670871003628389<br />

Badarou S, Coppieters Y. 2009. Intoxication<br />

alimentaire due à l’endosulfan: mise en place d’un<br />

système de notification et de prise en charge au Bén<strong>in</strong>.<br />

Environnement Risques et santé 8(2), 133-136.<br />

Bajwa AA. 2014. Susta<strong>in</strong>able weed management <strong>in</strong><br />

conservation <strong>agriculture</strong>. Crop Protection 65, 105-113.<br />

http://dx.doi.org/10.1016/j.cropro.2014.07.014<br />

Chauhan BS, S<strong>in</strong>gh RG, Mahajan G. 2012.<br />

Ecology and management <strong>of</strong> weeds under<br />

conservation <strong>agriculture</strong>: A review. Crop Protection<br />

38, 57-65.<br />

http://dx.doi.org/10.1016/j.cropro.2012.03.010<br />

CNAC (Comité National d’Agrément et de<br />

Contrôle des Produits<br />

Phytopharmaceutiques). 2014. Liste des produits<br />

phytopharmaceutiques de vente (APV) et agrément<br />

homologation (AH). Liste actualisé en ju<strong>in</strong> 2014.<br />

République du Bén<strong>in</strong>. 6p (Unpublished).<br />

Damalas CA, Eleftherohor<strong>in</strong>os IG. 2011. Pesticide<br />

Exposure, Safety Issues, and Risk Assessment<br />

Indicators. International Journal <strong>of</strong> Environmental<br />

Research and Public Health 8, 1402-1419.<br />

http://dx.doi.org/10.3390/ijerph8051402<br />

Dawson AH, Eddleston M, Senarathna L,<br />

Mohamed F, Gawarammana I, Bowe SJ,<br />

Manuweera G, Buckley NA. 2010. Acute Human<br />

Lethal Toxicity <strong>of</strong> Agricultural Pesticides: A Prospective<br />

Cohort Study. PLOS Medic<strong>in</strong>e 7(10), e1000357.<br />

https://doi.org/10.1371/journal.pmed.1000357<br />

Dognon SR, Anto<strong>in</strong>e-Moussiaux N, Douny C,<br />

Gust<strong>in</strong> P, Moula N, Scippo ML, Youssao AKI.<br />

2018. <strong>The</strong> <strong>use</strong> <strong>of</strong> antibiotics <strong>in</strong> cattle <strong>in</strong> <strong>North</strong>-<strong>East</strong> Ben<strong>in</strong><br />

: pharmaceutical <strong>in</strong>ventory and risk practices <strong>of</strong> cattle<br />

breeders. Tropical Animal Health and Production.<br />

https://doi.org/10.1007/s11250-018-1612-9<br />

Duke SO, Powles SB. 2008. Glyphosate: a once-<strong>in</strong>a-century<br />

herbicide. Pest Management Science 64,<br />

319–325.<br />

http://dx.doi.org/10.1002/ps.1518<br />

Ehl<strong>in</strong>g S, Reddy TM. 2015. Analysis <strong>of</strong> Glyphosate<br />

and Am<strong>in</strong>omethylphosphonic Acid <strong>in</strong> Nutritional<br />

Ingredients and Milk by Derivatization with<br />

Fluorenylmethyloxycarbonyl Chloride and Liquid<br />

Chromatography. Mass Spectrometry. Journal <strong>of</strong><br />

Agricultural and Food Chemistry 63, 10562−10568.<br />

http://dx.doi.org/10.1021/acs.jafc.5b04453<br />

Ezemonye LI, Ogbeide OS, Tongo I, Enuneku<br />

AA, Ogbomida E. 2015. Pesticide contam<strong>in</strong>ants <strong>in</strong><br />

Clarias gariep<strong>in</strong>us and Tilapia zilli from three rivers<br />

<strong>in</strong> Edo State, Nigeria; implications for human<br />

exposure. International Journal <strong>of</strong> Food<br />

Contam<strong>in</strong>ation 2, 3.<br />

http://dx.doi.org/10.1186/s40550-015-0009-z<br />

Gbaguidi MAN, Soclo HH, Issa YM, Fayomi B,<br />

Dognon R, Agagbe A, Bonou C, Youssao A,<br />

Dovonou LF, Sanni A. 2011. Evaluation<br />

quantitative des résidus de pyréthr<strong>in</strong>oïdes,<br />

d’am<strong>in</strong>ophosphate et de triaz<strong>in</strong>es en zones de<br />

production de coton au Bén<strong>in</strong> par la méthode ELISA<br />

en phase liquide: cas des eaux de la rivière Agbado.<br />

International Journal <strong>of</strong> Biological and Chemical<br />

Sciences 5(4), 1476-1490.<br />

Dognon et al. Page 62


Int. J. Agron. Agri. R.<br />

H<strong>in</strong>son AV, Law<strong>in</strong> H, Gounongbe F, Dossou F,<br />

Fayomi B. 2015. Attitudes, Practices <strong>of</strong> farmers<br />

exposed to <strong>pesticides</strong> at Banikoara Township<br />

(Republic <strong>of</strong> Ben<strong>in</strong>). Journal <strong>of</strong> Environment and<br />

Health Sciences 1(2), 1-5.<br />

http://dx.doi.org/10.15436/2378-6841.15.013<br />

Husson F, Josse J, Le S, Mazet J. 2017.<br />

Multivariate Exploratory Data Analysis and Data<br />

M<strong>in</strong><strong>in</strong>g: Package ‘Facto M<strong>in</strong>eR’. 96 p. (Unpublished).<br />

Available onl<strong>in</strong>e<br />

http://mirror.its.sfu.ca/mirror/CRAN/web/packages<br />

/FactoM<strong>in</strong>eR/FactoM<strong>in</strong>eR.pdf<br />

INSAE (Institut National de la Statistique et<br />

de l’Analyse Economique). 2015. RGPH4 : Que<br />

retenir des effectifs de population en 2013 ? Cotonou,<br />

République du Bén<strong>in</strong> : Direction des études<br />

démographiques. 33 p. (Non publié).<br />

www.<strong>in</strong>sae-bj.org/recensementpopulation.html?file=files/enquetesrecensements/rgph/RGPH4/Pricipaux%20<strong>in</strong>dicateur<br />

s/R%C3%A9sultats_d%C3%A9f<strong>in</strong>itifs_RGPH4.pdf<br />

Krüger M, Schledorn P, Schrödl W, Hoppe<br />

HW, Lutz W, Shehata AA. 2014. Detection <strong>of</strong><br />

Glyphosate Residues <strong>in</strong> Animals and Humans.<br />

Journal <strong>of</strong> Environmental and Analytical Toxicology<br />

4(2), 1-5.<br />

http://dx.doi.org/10.4172/2161-0525.1000210.<br />

Lau C, Schropp S, Sumner DA. 2015. <strong>The</strong> 2014 US<br />

Farm Bill and its Effects on the World Market for Cotton.<br />

Issue Paper No. 58; International Centre for Trade and<br />

Susta<strong>in</strong>able Development, Geneva, Switzerland<br />

www.ictsd.org<br />

Mesnage R, Defarge N, Spiroux de Vendômois J,<br />

Séral<strong>in</strong>i G-E. 2014. Major Pesticides Are More Toxic to<br />

Human Cells Than <strong>The</strong>ir Declared Active Pr<strong>in</strong>ciples.<br />

BioMed Research International, Article ID 179691.<br />

http://dx.doi.org/10.1155/2014/179691<br />

M<strong>in</strong>ot N, Daniels L. 2005. Impact <strong>of</strong> global cotton<br />

markets on rural poverty <strong>in</strong> Ben<strong>in</strong>. Agricultural<br />

Economics 33, 453–466.<br />

Negatu B, Kromhout H, Mekonnen Y,<br />

Vermeulen R. 2016. Use <strong>of</strong> Chemical Pesticides <strong>in</strong><br />

Ethiopia: A Cross-Sectional Comparative Study on<br />

Knowledge, Attitude and Practice <strong>of</strong> Farmers and<br />

Farm Workers <strong>in</strong> Three Farm<strong>in</strong>g Systems. Annals <strong>of</strong><br />

Occupational Hygiene 60(5), 551–566.<br />

http://dx.doi.org/10.1093/annhyg/mew004<br />

ONS (Office National de Soutien des revenus<br />

agricoles). 2011. Rapport d’étude du prix plancher du<br />

maïs au titre de la campagne 2010-2011. ONS/MAEP.<br />

République du Bén<strong>in</strong>. 79 p.<br />

(Non publié).<br />

Pretty J, Toulm<strong>in</strong> C, Williams S. 2011.<br />

Susta<strong>in</strong>able <strong>in</strong>tensification <strong>in</strong> African <strong>agriculture</strong>.<br />

International Journal <strong>of</strong> Agricultural Susta<strong>in</strong>ability<br />

9(1), 5-24.<br />

https://doi.org/10.3763/ijas.2010.0583<br />

Sarwar M, Salman M. 2015. <strong>The</strong> Paramount<br />

Benefits <strong>of</strong> Us<strong>in</strong>g Insecticides and <strong>The</strong>ir Worldwide<br />

Importance <strong>in</strong> Food Production. International<br />

Journal <strong>of</strong> Bio<strong>in</strong>formatics and Biomedical<br />

Eng<strong>in</strong>eer<strong>in</strong>g 1(3), 359-365.<br />

Shehata AA, Schrödl W, Schledorn P, Krüger<br />

M. 2014. Distribution <strong>of</strong> Glyphosate <strong>in</strong> Chicken Organs<br />

and its Reduction by Humic Acid Supplementation.<br />

Journal <strong>of</strong> Poultry Science 51, 333-337.<br />

http://dx.doi.org/10.2141/jpsa.0130169<br />

<strong>The</strong> World Bank. 2016. World Development<br />

Indicators: Structure <strong>of</strong> output. (Unpublished)<br />

http://wdi.worldbank.org/table/4.2<br />

Tscharntke T, Clough Y, Wanger TC, Jackson<br />

L, Motzke I, Perfecto I, Vandermeer J,<br />

Whitbread A. 2012. Global food security,<br />

biodiversity conservation and the future <strong>of</strong><br />

agricultural <strong>in</strong>tensification. Biological Conservation<br />

151, 53–59.<br />

http://dx.doi.org/10.1016/j.biocon.2012.01.068<br />

Dognon et al. Page 63

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!