19.12.2012 Views

Auslander-Reiten Translations in Monomorphism Categories

Auslander-Reiten Translations in Monomorphism Categories

Auslander-Reiten Translations in Monomorphism Categories

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Auslander</strong>-<strong>Reiten</strong> <strong>Translations</strong> <strong>in</strong> <strong>Monomorphism</strong><br />

<strong>Categories</strong><br />

Bao-L<strong>in</strong> Xiong<br />

(Jo<strong>in</strong>t work with P. Zhang and Y. H. Zhang)<br />

Department of Mathematics, Shanghai Jiao Tong University<br />

Shanghai, 2011.10.4<br />

Bao-L<strong>in</strong> Xiong (SJTU) <strong>Auslander</strong>-<strong>Reiten</strong> <strong>Translations</strong> <strong>in</strong> <strong>Monomorphism</strong> <strong>Categories</strong> ISPN ’80 1 / 24


Motivation<br />

C. M. R<strong>in</strong>gel and M. Schmidmeier, 2008:<br />

1 The submodule category S(A) of an Art<strong>in</strong> algebra A has<br />

AR-sequences.<br />

2 τSX ∼ = Mimo τ CokX for X ∈ S(A), where τS (resp. τ) is the<br />

AR-translation <strong>in</strong> S(A) (resp. A-mod).<br />

3 If A is commutative uniserial then τ 6 S X ∼ = X for each<br />

<strong>in</strong>decomposable nonprojective object X ∈ S(A).<br />

Bao-L<strong>in</strong> Xiong (SJTU) <strong>Auslander</strong>-<strong>Reiten</strong> <strong>Translations</strong> <strong>in</strong> <strong>Monomorphism</strong> <strong>Categories</strong> ISPN ’80 2 / 24


Motivation<br />

C. M. R<strong>in</strong>gel and M. Schmidmeier, 2008:<br />

1 The submodule category S(A) of an Art<strong>in</strong> algebra A has<br />

AR-sequences.<br />

2 τSX ∼ = Mimo τ CokX for X ∈ S(A), where τS (resp. τ) is the<br />

AR-translation <strong>in</strong> S(A) (resp. A-mod).<br />

3 If A is commutative uniserial then τ 6 S X ∼ = X for each<br />

<strong>in</strong>decomposable nonprojective object X ∈ S(A).<br />

Question: Can we generalize the above theory?<br />

Bao-L<strong>in</strong> Xiong (SJTU) <strong>Auslander</strong>-<strong>Reiten</strong> <strong>Translations</strong> <strong>in</strong> <strong>Monomorphism</strong> <strong>Categories</strong> ISPN ’80 2 / 24


The notions<br />

A: an Art<strong>in</strong> algebra, A-mod: the category of all f<strong>in</strong>. gen. left A-modules<br />

Bao-L<strong>in</strong> Xiong (SJTU) <strong>Auslander</strong>-<strong>Reiten</strong> <strong>Translations</strong> <strong>in</strong> <strong>Monomorphism</strong> <strong>Categories</strong> ISPN ’80 3 / 24


The notions<br />

A: an Art<strong>in</strong> algebra, A-mod: the category of all f<strong>in</strong>. gen. left A-modules<br />

Morn(A): the morphism category<br />

�<br />

of A-mod, n ≥ 2<br />

Objects: X (φi ) =<br />

Xn<br />

� X1<br />

.<br />

Xn<br />

(φ i )<br />

φn−1 ��<br />

Xn−1<br />

, φ i : X i+1 → X i are A-maps, i.e.<br />

φn−2 ��<br />

· · ·<br />

φ2 ��<br />

X2<br />

φ1 ��<br />

X1<br />

Bao-L<strong>in</strong> Xiong (SJTU) <strong>Auslander</strong>-<strong>Reiten</strong> <strong>Translations</strong> <strong>in</strong> <strong>Monomorphism</strong> <strong>Categories</strong> ISPN ’80 3 / 24


The notions<br />

A: an Art<strong>in</strong> algebra, A-mod: the category of all f<strong>in</strong>. gen. left A-modules<br />

Morn(A): the morphism category<br />

�<br />

of A-mod, n ≥ 2<br />

Objects: X (φi ) =<br />

Xn<br />

� X1<br />

.<br />

Xn<br />

(φ i )<br />

φn−1 ��<br />

Xn−1<br />

, φ i : X i+1 → X i are A-maps, i.e.<br />

φn−2 ��<br />

· · ·<br />

� f1<br />

φ2 ��<br />

X2<br />

φ1 ��<br />

X1<br />

Morphisms: f : X (φi ) → Y (θi ) is f =<br />

.<br />

, where fi : Xi → Yi are<br />

fn<br />

A-maps for 1 ≤ i ≤ n, such that the follow<strong>in</strong>g diagram commutes<br />

fn<br />

Xn<br />

��<br />

Yn<br />

φn−1<br />

θn−1 �<br />

��<br />

Xn−1<br />

fn−1<br />

��<br />

� Yn−1<br />

φn−2<br />

��<br />

· · ·<br />

θn−2 ��<br />

· · ·<br />

�<br />

φ2<br />

θ2 �<br />

��<br />

X2<br />

f2<br />

��<br />

� Y2<br />

φ1<br />

θ1 �<br />

��<br />

f1<br />

X1<br />

��<br />

� Y1.<br />

Bao-L<strong>in</strong> Xiong (SJTU) <strong>Auslander</strong>-<strong>Reiten</strong> <strong>Translations</strong> <strong>in</strong> <strong>Monomorphism</strong> <strong>Categories</strong> ISPN ’80 3 / 24


The notions<br />

The monomorphism category Sn(A) is the full subcategory of<br />

Morn(A) consist<strong>in</strong>g of all the objects X (φi ) where φ i : X i+1 −→ X i<br />

are monomorphisms for 1 ≤ i ≤ n − 1.<br />

Bao-L<strong>in</strong> Xiong (SJTU) <strong>Auslander</strong>-<strong>Reiten</strong> <strong>Translations</strong> <strong>in</strong> <strong>Monomorphism</strong> <strong>Categories</strong> ISPN ’80 4 / 24


The notions<br />

The monomorphism category Sn(A) is the full subcategory of<br />

Morn(A) consist<strong>in</strong>g of all the objects X (φi ) where φ i : X i+1 −→ X i<br />

are monomorphisms for 1 ≤ i ≤ n − 1.<br />

The epimorphism category Fn(A) is the full subcategory of<br />

Morn(A) consist<strong>in</strong>g of all the objects X (φi ) where φ i : X i+1 −→ X i<br />

are epimorphisms for 1 ≤ i ≤ n − 1.<br />

Bao-L<strong>in</strong> Xiong (SJTU) <strong>Auslander</strong>-<strong>Reiten</strong> <strong>Translations</strong> <strong>in</strong> <strong>Monomorphism</strong> <strong>Categories</strong> ISPN ’80 4 / 24


The kernel and cokernel functors<br />

Ker : Morn(A) −→ Sn(A),<br />

⎛<br />

⎜<br />

⎝<br />

X1<br />

X2<br />

.<br />

Xn−1<br />

Xn<br />

⎞<br />

⎟<br />

⎠<br />

(φ i )<br />

⎛<br />

⎜<br />

↦→ ⎜<br />

⎝<br />

Xn<br />

Ker(φ1···φn−1)<br />

.<br />

Ker(φn−2φn−1)<br />

Ker φn−1<br />

where φ ′ i : Ker(φ i · · · φn−1) ↩→ Ker(φ i−1 · · · φn−1), 2 ≤ i ≤ n − 1, and<br />

φ ′ 1 : Ker(φ1 · · · φn−1) ↩→ Xn are the canonical monomorphisms.<br />

Bao-L<strong>in</strong> Xiong (SJTU) <strong>Auslander</strong>-<strong>Reiten</strong> <strong>Translations</strong> <strong>in</strong> <strong>Monomorphism</strong> <strong>Categories</strong> ISPN ’80 5 / 24<br />

⎞<br />

⎟<br />

⎠<br />

(φ ′ i )<br />

,


The kernel and cokernel functors<br />

Cok : Morn(A) −→ Fn(A),<br />

⎛<br />

⎜<br />

⎝<br />

X1<br />

X2<br />

.<br />

Xn−1<br />

Xn<br />

⎞<br />

⎟<br />

⎠<br />

(φ i )<br />

⎛<br />

⎜<br />

↦→ ⎜<br />

⎝<br />

Coker φ1<br />

Coker(φ1φ2)<br />

.<br />

Coker(φ1···φn−1)<br />

X1<br />

⎞<br />

⎟<br />

⎠<br />

(φ ′′<br />

i )<br />

where φ ′′<br />

i : Coker(φ1 · · · φ i+1) ↠ Coker(φ1 · · · φ i), 1 ≤ i ≤ n − 2, and<br />

φ ′′<br />

n−1 : X1 ↠ Coker(φ1 · · · φn−1) are the canonical epimorphisms.<br />

Bao-L<strong>in</strong> Xiong (SJTU) <strong>Auslander</strong>-<strong>Reiten</strong> <strong>Translations</strong> <strong>in</strong> <strong>Monomorphism</strong> <strong>Categories</strong> ISPN ’80 6 / 24<br />

,


The functor: Mono<br />

Mono : Morn(A) −→ Sn(A),<br />

⎛<br />

⎜<br />

⎝<br />

X1<br />

X2<br />

.<br />

Xn−1<br />

Xn<br />

⎞<br />

⎟<br />

⎠<br />

(φ i )<br />

⎛<br />

⎜<br />

↦→ ⎜<br />

⎝<br />

X1<br />

Im φ1<br />

.<br />

Im(φ1···φn−2)<br />

Im(φ1···φn−1)<br />

where φ ′ i : Im(φ1 · · · φ i) ↩→ Im(φ1 · · · φ i−1), 2 ≤ i ≤ n − 1, and<br />

φ ′ 1 : Im φ1 ↩→ X1 are the canonical monomorphisms.<br />

Bao-L<strong>in</strong> Xiong (SJTU) <strong>Auslander</strong>-<strong>Reiten</strong> <strong>Translations</strong> <strong>in</strong> <strong>Monomorphism</strong> <strong>Categories</strong> ISPN ’80 7 / 24<br />

⎞<br />

⎟<br />

⎠<br />

(φ ′ i )<br />

,


The object MimoX (φi)<br />

Let X (φi ) ∈ Morn(A).<br />

The object MimoX (φi ) ∈ Sn(A) is def<strong>in</strong>ed as follows.<br />

For each 1 ≤ i ≤ n − 1, fix an <strong>in</strong>jective envelope<br />

Then we have an extension<br />

e ′ i : Ker φ i ↩→ IKer φ i.<br />

e i : X i+1 −→ IKer φ i.<br />

Bao-L<strong>in</strong> Xiong (SJTU) <strong>Auslander</strong>-<strong>Reiten</strong> <strong>Translations</strong> <strong>in</strong> <strong>Monomorphism</strong> <strong>Categories</strong> ISPN ’80 8 / 24


The object MimoX (φi)<br />

Def<strong>in</strong>e MimoX (φi ) to be the object<br />

⎛<br />

⎜<br />

⎝<br />

That is<br />

Xn<br />

X1⊕IKer φ1⊕···⊕IKer φn−1<br />

X2⊕IKer φ2⊕···⊕IKer φn−1<br />

.<br />

Xn−1⊕IKer φn−1<br />

Xn<br />

⎞<br />

⎟<br />

⎠<br />

θn−1 ��<br />

Xn−1 ⊕ IKer φn−1<br />

(θ i )<br />

⎛<br />

⎜<br />

where θi = ⎜<br />

⎝<br />

θn−2 ��<br />

· · ·<br />

φi 0 0 ··· 0<br />

ei 0 0 ··· 0<br />

0 1 0 ··· 0<br />

0 0 1 ··· 0<br />

. . . ··· .<br />

0 0 0 ··· 1<br />

⎞<br />

⎟<br />

⎠<br />

(n−i+1)×(n−i)<br />

θ1 ��<br />

X1 ⊕ IKer φ1 ⊕ · · · ⊕ IKer φn−1 .<br />

Bao-L<strong>in</strong> Xiong (SJTU) <strong>Auslander</strong>-<strong>Reiten</strong> <strong>Translations</strong> <strong>in</strong> <strong>Monomorphism</strong> <strong>Categories</strong> ISPN ’80 9 / 24<br />

.


The <strong>Auslander</strong>-<strong>Reiten</strong> translation <strong>in</strong> Sn(A)<br />

Theorem 2.1<br />

(i) The subcategories Sn(A) and Fn(A) are functorially f<strong>in</strong>ite <strong>in</strong><br />

Morn(A) and hence have AR-sequences.<br />

(ii) For an object X (φi ) ∈ Sn(A), the <strong>Auslander</strong>-<strong>Reiten</strong> translate is<br />

given by<br />

τSX (φi ) ∼ = Mimo τ CokX (φi )<br />

(1).<br />

Bao-L<strong>in</strong> Xiong (SJTU) <strong>Auslander</strong>-<strong>Reiten</strong> <strong>Translations</strong> <strong>in</strong> <strong>Monomorphism</strong> <strong>Categories</strong> ISPN ’80 10 / 24


Remark 2.2<br />

The process means:<br />

Give an object X (φi ) <strong>in</strong> Sn(A)<br />

τSX (φi ) ∼ = Mimo τ CokX (φi ). (1)<br />

Take the cokernel object X ′ (φ ′ i ) = CokX (φ i ).<br />

Apply τ to these maps φ ′ i (1 ≤ i ≤ n − 1).<br />

Represent τCokX (φi ) by an object X ′′<br />

(φ ′′<br />

i<br />

) =<br />

� X ′′<br />

1<br />

.<br />

X ′′<br />

n<br />

�<br />

(φ ′′<br />

i )<br />

where X ′′<br />

1 , X ′′<br />

2 , · · · , X ′′<br />

n−1 have no nonzero <strong>in</strong>jective direct<br />

summands.<br />

Apply Mimo, there is a well-def<strong>in</strong>ed object <strong>in</strong> Sn(A) up to<br />

isomorphism.<br />

<strong>in</strong> Morn(A)<br />

Bao-L<strong>in</strong> Xiong (SJTU) <strong>Auslander</strong>-<strong>Reiten</strong> <strong>Translations</strong> <strong>in</strong> <strong>Monomorphism</strong> <strong>Categories</strong> ISPN ’80 11 / 24


An example<br />

k: a field; A = k[X]/〈X 2 〉, S = k[X]/〈X〉, i : S −→ A, π : A −→ S.<br />

� �<br />

AS0<br />

� �<br />

SAA<br />

= Mimoτ<br />

� �<br />

S00<br />

= Mimo<br />

� �<br />

S00<br />

=<br />

τS<br />

τS<br />

τS<br />

τS<br />

� S00<br />

� SSS<br />

� AAS<br />

�<br />

�<br />

�<br />

(0,i)<br />

(0,0)<br />

(1,1)<br />

(i,1)<br />

�<br />

SSS<br />

= Mimoτ<br />

�<br />

00S<br />

= Mimoτ<br />

�<br />

0SA<br />

= Mimoτ<br />

�<br />

�<br />

�<br />

(1,π)<br />

(1,1)<br />

(0,0)<br />

(π,0)<br />

�<br />

SSS<br />

= Mimo<br />

�<br />

00S<br />

= Mimo<br />

�<br />

0S0<br />

= Mimo<br />

�<br />

�<br />

�<br />

(0,0)<br />

(1,1)<br />

(0,0)<br />

(0,0)<br />

=<br />

=<br />

=<br />

� SSS<br />

� AAS<br />

� AS0<br />

�<br />

�<br />

�<br />

(0,0)<br />

(1,1)<br />

—————————————————————————————–<br />

� �<br />

SS0<br />

� �<br />

0SS<br />

= Mimoτ<br />

� �<br />

0SS<br />

= Mimo<br />

� �<br />

ASS<br />

=<br />

τS<br />

τS<br />

� ASS<br />

�<br />

(0,1)<br />

(1,i)<br />

�<br />

SSA<br />

= Mimoτ<br />

�<br />

(1,0)<br />

(π,1)<br />

�<br />

SS0<br />

= Mimo<br />

�<br />

(1,0)<br />

(0,1)<br />

=<br />

� SS0<br />

�<br />

(i,1)<br />

(1,i)<br />

(1,i)<br />

(0,1)<br />

Bao-L<strong>in</strong> Xiong (SJTU) <strong>Auslander</strong>-<strong>Reiten</strong> <strong>Translations</strong> <strong>in</strong> <strong>Monomorphism</strong> <strong>Categories</strong> ISPN ’80 12 / 24


An example<br />

The <strong>Auslander</strong>-<strong>Reiten</strong> quiver of S3(A) looks like<br />

A A<br />

A<br />

00 �<br />

A<br />

��<br />

0 �<br />

A<br />

���<br />

��<br />

�<br />

�<br />

�<br />

A ��<br />

��<br />

��<br />

���<br />

�<br />

�<br />

�<br />

� ��<br />

�<br />

�<br />

��<br />

�<br />

S �<br />

��<br />

��<br />

A �<br />

A ��<br />

��<br />

S<br />

00 ��<br />

�<br />

S ��<br />

��<br />

0 �<br />

A ��<br />

�<br />

�<br />

�<br />

S �<br />

S<br />

���<br />

��<br />

�<br />

�<br />

�<br />

�<br />

S<br />

��<br />

��<br />

���<br />

��<br />

� �<br />

�<br />

��<br />

�<br />

S �<br />

��<br />

��<br />

A � ��<br />

S ��<br />

S ��<br />

0 �<br />

S ��<br />

� ��<br />

�<br />

S �<br />

S<br />

�<br />

� ��<br />

� ���<br />

0<br />

�<br />

�<br />

��<br />

��<br />

� ��<br />

S � ��<br />

S ��<br />

S ��<br />

00<br />

S<br />

Remark: This AR-quiver has been described by A.Moore.<br />

Bao-L<strong>in</strong> Xiong (SJTU) <strong>Auslander</strong>-<strong>Reiten</strong> <strong>Translations</strong> <strong>in</strong> <strong>Monomorphism</strong> <strong>Categories</strong> ISPN ’80 13 / 24


Applications to self<strong>in</strong>jective algebras<br />

A: a self<strong>in</strong>jective Art<strong>in</strong> algebra,<br />

A-mod: the stable category of A-mod<br />

Morn(A-mod): the morphism category of A-mod<br />

�<br />

Objects: X (φi ) =<br />

� X1<br />

.<br />

Xn<br />

(φi )<br />

, φi : Xi+1 → Xi <strong>in</strong> A-mod,<br />

Bao-L<strong>in</strong> Xiong (SJTU) <strong>Auslander</strong>-<strong>Reiten</strong> <strong>Translations</strong> <strong>in</strong> <strong>Monomorphism</strong> <strong>Categories</strong> ISPN ’80 14 / 24


Applications to self<strong>in</strong>jective algebras<br />

A: a self<strong>in</strong>jective Art<strong>in</strong> algebra,<br />

A-mod: the stable category of A-mod<br />

Morn(A-mod): the morphism category of A-mod<br />

�<br />

Objects: X (φi ) =<br />

⎛<br />

f1<br />

� X1<br />

⎞<br />

.<br />

Xn<br />

(φi )<br />

, φi : Xi+1 → Xi <strong>in</strong> A-mod,<br />

Morphisms: ⎝ ⎠ : X (φi .<br />

) → Y (θi ), fi : Xi → Yi such that the follow<strong>in</strong>g<br />

fn<br />

diagram commutes <strong>in</strong> A-mod<br />

fn<br />

Xn<br />

��<br />

Yn<br />

φn−1<br />

θn−1<br />

��<br />

Xn−1<br />

fn−1<br />

��<br />

��<br />

Yn−1<br />

φn−2<br />

θn−2<br />

��<br />

· · ·<br />

��<br />

· · ·<br />

φ2<br />

θ2<br />

��<br />

X2<br />

f2<br />

��<br />

��<br />

Y2<br />

φ1<br />

θ1<br />

��<br />

f1<br />

X1<br />

��<br />

��<br />

Y1.<br />

Bao-L<strong>in</strong> Xiong (SJTU) <strong>Auslander</strong>-<strong>Reiten</strong> <strong>Translations</strong> <strong>in</strong> <strong>Monomorphism</strong> <strong>Categories</strong> ISPN ’80 14 / 24


The rotation of X (φi)<br />

For X (φi ) ∈ Morn(A-mod), we have the follow<strong>in</strong>g commutative diagram<br />

with exact rows <strong>in</strong> A-mod,<br />

Xn<br />

φn−1<br />

��<br />

Xn−1<br />

��<br />

.<br />

φn−2<br />

φ3<br />

��<br />

X3<br />

φ2<br />

��<br />

X2<br />

φ1<br />

��<br />

��<br />

��<br />

X1 ψn−1<br />

X1<br />

.<br />

X1<br />

��<br />

X1<br />

��<br />

Y 1<br />

n<br />

ψn−2<br />

��<br />

��<br />

Y 1 n−1<br />

��<br />

.<br />

��<br />

��<br />

Y 1<br />

3<br />

��<br />

��<br />

Y 1<br />

2<br />

ψn−3<br />

ψ2<br />

ψ1<br />

��<br />

Ω −1 Xn<br />

��<br />

��<br />

Ω−1Xn−1 ��<br />

.<br />

��<br />

��<br />

Ω−1X3 ��<br />

��<br />

Ω−1X2. Bao-L<strong>in</strong> Xiong (SJTU) <strong>Auslander</strong>-<strong>Reiten</strong> <strong>Translations</strong> <strong>in</strong> <strong>Monomorphism</strong> <strong>Categories</strong> ISPN ’80 15 / 24


The rotation of X (φi)<br />

The rotation RotX (φi ) of X (φi ) is def<strong>in</strong>ed to be<br />

(X1<br />

ψn−1<br />

��Y<br />

1<br />

n<br />

��<br />

· · · ψ1<br />

��Y<br />

1<br />

2 ) ∈ Morn(A-mod)<br />

(here,a for convenience we write the rotation <strong>in</strong> a row). We remark that<br />

RotX (φi ) is well-def<strong>in</strong>ed.<br />

Lemma 3.1<br />

Let X (φi ) ∈ Morn(A). Then RotX (φi ) ∼ = Cok MimoX (φi ) <strong>in</strong> Morn(A-mod).<br />

Bao-L<strong>in</strong> Xiong (SJTU) <strong>Auslander</strong>-<strong>Reiten</strong> <strong>Translations</strong> <strong>in</strong> <strong>Monomorphism</strong> <strong>Categories</strong> ISPN ’80 16 / 24


For X (φi ) ∈ Morn(A-mod), def<strong>in</strong>e Ω−1X (φi ) to be<br />

�<br />

Ω−1 �<br />

X1<br />

.<br />

Ω −1 Xn<br />

(Ω −1 φ i )<br />

∈ Morn(A-mod).<br />

Bao-L<strong>in</strong> Xiong (SJTU) <strong>Auslander</strong>-<strong>Reiten</strong> <strong>Translations</strong> <strong>in</strong> <strong>Monomorphism</strong> <strong>Categories</strong> ISPN ’80 17 / 24


For X (φi ) ∈ Morn(A-mod), def<strong>in</strong>e Ω−1X (φi ) to be<br />

�<br />

Ω−1 �<br />

X1<br />

.<br />

Ω −1 Xn<br />

(Ω −1 φ i )<br />

Proposition 3.2<br />

∈ Morn(A-mod).<br />

Let A be a self<strong>in</strong>jective algebra, X (φi ) ∈ Sn(A). Then there are the<br />

follow<strong>in</strong>g isomorphisms <strong>in</strong> Morn(A-mod)<br />

(i) τ j<br />

S X (φ i ) ∼ = τ j Rot j X (φi ) for j ≥ 1. In particular, τSX (φi ) ∼ = τ CokX (φi ).<br />

(ii) τ s(n+1)<br />

S X (φi ) ∼ = τ s(n+1) Ω−s(n−1) X (φi ), ∀ s ≥ 1.<br />

Bao-L<strong>in</strong> Xiong (SJTU) <strong>Auslander</strong>-<strong>Reiten</strong> <strong>Translations</strong> <strong>in</strong> <strong>Monomorphism</strong> <strong>Categories</strong> ISPN ’80 17 / 24


Theorem 3.3<br />

Let A be a self<strong>in</strong>jective algebra, and X (φi ) ∈ Sn(A). Then we have<br />

τ s(n+1)<br />

S X (φi ) ∼ = Mimo τ s(n+1) Ω −s(n−1) X (φi ), s ≥ 1. (2)<br />

Bao-L<strong>in</strong> Xiong (SJTU) <strong>Auslander</strong>-<strong>Reiten</strong> <strong>Translations</strong> <strong>in</strong> <strong>Monomorphism</strong> <strong>Categories</strong> ISPN ’80 18 / 24


Theorem 3.3<br />

Let A be a self<strong>in</strong>jective algebra, and X (φi ) ∈ Sn(A). Then we have<br />

τ s(n+1)<br />

S X (φi ) ∼ = Mimo τ s(n+1) Ω −s(n−1) X (φi ), s ≥ 1. (2)<br />

Apply<strong>in</strong>g the above theorem to the self<strong>in</strong>jective Nakayama algebras<br />

A(m, t), we get<br />

Corollary 3.4<br />

For an <strong>in</strong>decomposable nonprojective object X (φi ) ∈ Sn(A(m, t)),<br />

m ≥ 1, t ≥ 2, there are the follow<strong>in</strong>g isomorphisms:<br />

(i) If n is odd, then τ m(n+1)<br />

S X (φi ) ∼ = X (φi );<br />

(ii) If n is even, then τ 2m(n+1)<br />

S X (φi ) ∼ = X (φi ).<br />

Bao-L<strong>in</strong> Xiong (SJTU) <strong>Auslander</strong>-<strong>Reiten</strong> <strong>Translations</strong> <strong>in</strong> <strong>Monomorphism</strong> <strong>Categories</strong> ISPN ’80 18 / 24


An example<br />

Let A = kQ/〈δα, βγ, αδ − γβ〉, where Q is the quiver 2•<br />

��<br />

α ��<br />

1•<br />

Then A is self<strong>in</strong>jective with τ ∼ = Ω −1 and Ω 6 ∼ = id on the object of<br />

A-mod. The <strong>Auslander</strong>-<strong>Reiten</strong> quiver of A is<br />

3<br />

1<br />

1<br />

2 3<br />

���<br />

2 ���<br />

1<br />

��<br />

�<br />

��<br />

�<br />

� ��<br />

��<br />

���<br />

3 �<br />

��<br />

1 ��<br />

3 ��<br />

��<br />

�<br />

�<br />

�<br />

�<br />

2 �<br />

� ���<br />

� 1 �<br />

�<br />

��<br />

�<br />

�<br />

2 �<br />

�<br />

�<br />

� �<br />

�<br />

���<br />

���<br />

��<br />

�<br />

����<br />

�<br />

��<br />

��<br />

��<br />

��<br />

��<br />

���<br />

��<br />

��<br />

1 ��<br />

2 3<br />

2 3 1 ��<br />

��<br />

1<br />

��<br />

� ��<br />

�<br />

� �<br />

1<br />

��<br />

�<br />

�<br />

2 3<br />

��<br />

��<br />

�<br />

��<br />

�<br />

� ��<br />

��<br />

�<br />

� ��<br />

��<br />

�<br />

���<br />

��<br />

�<br />

1 ��<br />

���<br />

2 ��<br />

��<br />

2 ��<br />

�<br />

3 � 1<br />

3<br />

� ��<br />

��<br />

��<br />

��<br />

2 ��<br />

1<br />

3<br />

Bao-L<strong>in</strong> Xiong (SJTU) <strong>Auslander</strong>-<strong>Reiten</strong> <strong>Translations</strong> <strong>in</strong> <strong>Monomorphism</strong> <strong>Categories</strong> ISPN ’80 19 / 24<br />

δ<br />

��<br />

β<br />

��<br />

γ<br />

3•


An example<br />

Let X (φi ) be an <strong>in</strong>decomposable nonprojective object <strong>in</strong> Sn(A).<br />

By (2), for s ≥ 1 we have<br />

τ s(n+1)<br />

S X (φi ) ∼ = Mimo τ s(n+1) Ω −s(n−1) X (φi ) ∼ = Mimo Ω −2sn X (φi )<br />

<strong>in</strong> Sn(A).<br />

Then we get<br />

(i) if n ≡ 0, or 3 (mod6), then τ n+1<br />

S X (φi ) ∼ = X (φi ); and<br />

(ii) if n ≡ ±1, or ± 2 (mod6), then τ 3(n+1)<br />

S X (φi ) ∼ = X (φi ).<br />

Bao-L<strong>in</strong> Xiong (SJTU) <strong>Auslander</strong>-<strong>Reiten</strong> <strong>Translations</strong> <strong>in</strong> <strong>Monomorphism</strong> <strong>Categories</strong> ISPN ’80 20 / 24


Serre functors of stable monomorphism categories<br />

A: a f<strong>in</strong>ite-dimensional self<strong>in</strong>jective algebra over a field<br />

Sn(A) is a Frobenius category.<br />

Sn(A): the stable category of Sn(A)<br />

Sn(A) is a Hom-f<strong>in</strong>ite Krull-Schmidt triangulated category with<br />

suspension functor Ω −1<br />

S<br />

= Ω−1<br />

Sn(A) . S<strong>in</strong>ce Sn(A) has <strong>Auslander</strong>-<strong>Reiten</strong><br />

sequences, it follows that Sn(A) has <strong>Auslander</strong>-<strong>Reiten</strong> triangles, and<br />

hence, by a theorem of <strong>Reiten</strong> and Van den Bergh, it has a Serre<br />

functor FS = F Sn(A), which co<strong>in</strong>cides with Ω −1<br />

S �τS on the objects of<br />

Sn(A).<br />

Bao-L<strong>in</strong> Xiong (SJTU) <strong>Auslander</strong>-<strong>Reiten</strong> <strong>Translations</strong> <strong>in</strong> <strong>Monomorphism</strong> <strong>Categories</strong> ISPN ’80 21 / 24


Theorem 4.1<br />

Let A be a self<strong>in</strong>jective algebra, and FS be the Serre functor of Sn(A).<br />

Then we have an isomorphism <strong>in</strong> Sn(A) for X (φi ) ∈ Sn(A) and for s ≥ 1<br />

F s(n+1)<br />

S X (φi ) ∼ = Mimo τ s(n+1) Ω −2sn X (φi ). (4.4)<br />

Moreover, if d1 and d2 are positive <strong>in</strong>tegers such that τ d1M ∼ = M and<br />

Ω d2M ∼ = M for each <strong>in</strong>decomposable nonprojective A-module M, then<br />

F N(n+1)<br />

S<br />

X (φi ) ∼ d1<br />

= X (φi ), where N = [ (n+1,d1) ,<br />

d2<br />

(2n,d2) ].<br />

Bao-L<strong>in</strong> Xiong (SJTU) <strong>Auslander</strong>-<strong>Reiten</strong> <strong>Translations</strong> <strong>in</strong> <strong>Monomorphism</strong> <strong>Categories</strong> ISPN ’80 22 / 24


Apply<strong>in</strong>g the above theorem to the self<strong>in</strong>jective Nakayama algebras<br />

A(m, t), we get<br />

Corollary 4.2<br />

Let FS be the Serre functor of Sn(A(m, t)) with m ≥ 1, t ≥ 2, and X be<br />

an arbitrary object <strong>in</strong> Sn(A(m, t)). Then<br />

(i) If t = 2, then F N(n+1)<br />

S X ∼ = X, where N = m<br />

(m,n−1) .<br />

(ii) If t ≥ 3, then F N(n+1)<br />

S X ∼ = X, where N = m<br />

(m,t,n+1) .<br />

Bao-L<strong>in</strong> Xiong (SJTU) <strong>Auslander</strong>-<strong>Reiten</strong> <strong>Translations</strong> <strong>in</strong> <strong>Monomorphism</strong> <strong>Categories</strong> ISPN ’80 23 / 24


Thank you!<br />

E-mail: xiongbaol<strong>in</strong>@gmail.com<br />

Bao-L<strong>in</strong> Xiong (SJTU) <strong>Auslander</strong>-<strong>Reiten</strong> <strong>Translations</strong> <strong>in</strong> <strong>Monomorphism</strong> <strong>Categories</strong> ISPN ’80 24 / 24

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!