19.12.2012 Views

Auslander-Reiten Translations in Monomorphism Categories

Auslander-Reiten Translations in Monomorphism Categories

Auslander-Reiten Translations in Monomorphism Categories

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Auslander</strong>-<strong>Reiten</strong> <strong>Translations</strong> <strong>in</strong> <strong>Monomorphism</strong><br />

<strong>Categories</strong><br />

Bao-L<strong>in</strong> Xiong<br />

(Jo<strong>in</strong>t work with P. Zhang and Y. H. Zhang)<br />

Department of Mathematics, Shanghai Jiao Tong University<br />

Shanghai, 2011.10.4<br />

Bao-L<strong>in</strong> Xiong (SJTU) <strong>Auslander</strong>-<strong>Reiten</strong> <strong>Translations</strong> <strong>in</strong> <strong>Monomorphism</strong> <strong>Categories</strong> ISPN ’80 1 / 24


Motivation<br />

C. M. R<strong>in</strong>gel and M. Schmidmeier, 2008:<br />

1 The submodule category S(A) of an Art<strong>in</strong> algebra A has<br />

AR-sequences.<br />

2 τSX ∼ = Mimo τ CokX for X ∈ S(A), where τS (resp. τ) is the<br />

AR-translation <strong>in</strong> S(A) (resp. A-mod).<br />

3 If A is commutative uniserial then τ 6 S X ∼ = X for each<br />

<strong>in</strong>decomposable nonprojective object X ∈ S(A).<br />

Bao-L<strong>in</strong> Xiong (SJTU) <strong>Auslander</strong>-<strong>Reiten</strong> <strong>Translations</strong> <strong>in</strong> <strong>Monomorphism</strong> <strong>Categories</strong> ISPN ’80 2 / 24


Motivation<br />

C. M. R<strong>in</strong>gel and M. Schmidmeier, 2008:<br />

1 The submodule category S(A) of an Art<strong>in</strong> algebra A has<br />

AR-sequences.<br />

2 τSX ∼ = Mimo τ CokX for X ∈ S(A), where τS (resp. τ) is the<br />

AR-translation <strong>in</strong> S(A) (resp. A-mod).<br />

3 If A is commutative uniserial then τ 6 S X ∼ = X for each<br />

<strong>in</strong>decomposable nonprojective object X ∈ S(A).<br />

Question: Can we generalize the above theory?<br />

Bao-L<strong>in</strong> Xiong (SJTU) <strong>Auslander</strong>-<strong>Reiten</strong> <strong>Translations</strong> <strong>in</strong> <strong>Monomorphism</strong> <strong>Categories</strong> ISPN ’80 2 / 24


The notions<br />

A: an Art<strong>in</strong> algebra, A-mod: the category of all f<strong>in</strong>. gen. left A-modules<br />

Bao-L<strong>in</strong> Xiong (SJTU) <strong>Auslander</strong>-<strong>Reiten</strong> <strong>Translations</strong> <strong>in</strong> <strong>Monomorphism</strong> <strong>Categories</strong> ISPN ’80 3 / 24


The notions<br />

A: an Art<strong>in</strong> algebra, A-mod: the category of all f<strong>in</strong>. gen. left A-modules<br />

Morn(A): the morphism category<br />

�<br />

of A-mod, n ≥ 2<br />

Objects: X (φi ) =<br />

Xn<br />

� X1<br />

.<br />

Xn<br />

(φ i )<br />

φn−1 ��<br />

Xn−1<br />

, φ i : X i+1 → X i are A-maps, i.e.<br />

φn−2 ��<br />

· · ·<br />

φ2 ��<br />

X2<br />

φ1 ��<br />

X1<br />

Bao-L<strong>in</strong> Xiong (SJTU) <strong>Auslander</strong>-<strong>Reiten</strong> <strong>Translations</strong> <strong>in</strong> <strong>Monomorphism</strong> <strong>Categories</strong> ISPN ’80 3 / 24


The notions<br />

A: an Art<strong>in</strong> algebra, A-mod: the category of all f<strong>in</strong>. gen. left A-modules<br />

Morn(A): the morphism category<br />

�<br />

of A-mod, n ≥ 2<br />

Objects: X (φi ) =<br />

Xn<br />

� X1<br />

.<br />

Xn<br />

(φ i )<br />

φn−1 ��<br />

Xn−1<br />

, φ i : X i+1 → X i are A-maps, i.e.<br />

φn−2 ��<br />

· · ·<br />

� f1<br />

φ2 ��<br />

X2<br />

φ1 ��<br />

X1<br />

Morphisms: f : X (φi ) → Y (θi ) is f =<br />

.<br />

, where fi : Xi → Yi are<br />

fn<br />

A-maps for 1 ≤ i ≤ n, such that the follow<strong>in</strong>g diagram commutes<br />

fn<br />

Xn<br />

��<br />

Yn<br />

φn−1<br />

θn−1 �<br />

��<br />

Xn−1<br />

fn−1<br />

��<br />

� Yn−1<br />

φn−2<br />

��<br />

· · ·<br />

θn−2 ��<br />

· · ·<br />

�<br />

φ2<br />

θ2 �<br />

��<br />

X2<br />

f2<br />

��<br />

� Y2<br />

φ1<br />

θ1 �<br />

��<br />

f1<br />

X1<br />

��<br />

� Y1.<br />

Bao-L<strong>in</strong> Xiong (SJTU) <strong>Auslander</strong>-<strong>Reiten</strong> <strong>Translations</strong> <strong>in</strong> <strong>Monomorphism</strong> <strong>Categories</strong> ISPN ’80 3 / 24


The notions<br />

The monomorphism category Sn(A) is the full subcategory of<br />

Morn(A) consist<strong>in</strong>g of all the objects X (φi ) where φ i : X i+1 −→ X i<br />

are monomorphisms for 1 ≤ i ≤ n − 1.<br />

Bao-L<strong>in</strong> Xiong (SJTU) <strong>Auslander</strong>-<strong>Reiten</strong> <strong>Translations</strong> <strong>in</strong> <strong>Monomorphism</strong> <strong>Categories</strong> ISPN ’80 4 / 24


The notions<br />

The monomorphism category Sn(A) is the full subcategory of<br />

Morn(A) consist<strong>in</strong>g of all the objects X (φi ) where φ i : X i+1 −→ X i<br />

are monomorphisms for 1 ≤ i ≤ n − 1.<br />

The epimorphism category Fn(A) is the full subcategory of<br />

Morn(A) consist<strong>in</strong>g of all the objects X (φi ) where φ i : X i+1 −→ X i<br />

are epimorphisms for 1 ≤ i ≤ n − 1.<br />

Bao-L<strong>in</strong> Xiong (SJTU) <strong>Auslander</strong>-<strong>Reiten</strong> <strong>Translations</strong> <strong>in</strong> <strong>Monomorphism</strong> <strong>Categories</strong> ISPN ’80 4 / 24


The kernel and cokernel functors<br />

Ker : Morn(A) −→ Sn(A),<br />

⎛<br />

⎜<br />

⎝<br />

X1<br />

X2<br />

.<br />

Xn−1<br />

Xn<br />

⎞<br />

⎟<br />

⎠<br />

(φ i )<br />

⎛<br />

⎜<br />

↦→ ⎜<br />

⎝<br />

Xn<br />

Ker(φ1···φn−1)<br />

.<br />

Ker(φn−2φn−1)<br />

Ker φn−1<br />

where φ ′ i : Ker(φ i · · · φn−1) ↩→ Ker(φ i−1 · · · φn−1), 2 ≤ i ≤ n − 1, and<br />

φ ′ 1 : Ker(φ1 · · · φn−1) ↩→ Xn are the canonical monomorphisms.<br />

Bao-L<strong>in</strong> Xiong (SJTU) <strong>Auslander</strong>-<strong>Reiten</strong> <strong>Translations</strong> <strong>in</strong> <strong>Monomorphism</strong> <strong>Categories</strong> ISPN ’80 5 / 24<br />

⎞<br />

⎟<br />

⎠<br />

(φ ′ i )<br />

,


The kernel and cokernel functors<br />

Cok : Morn(A) −→ Fn(A),<br />

⎛<br />

⎜<br />

⎝<br />

X1<br />

X2<br />

.<br />

Xn−1<br />

Xn<br />

⎞<br />

⎟<br />

⎠<br />

(φ i )<br />

⎛<br />

⎜<br />

↦→ ⎜<br />

⎝<br />

Coker φ1<br />

Coker(φ1φ2)<br />

.<br />

Coker(φ1···φn−1)<br />

X1<br />

⎞<br />

⎟<br />

⎠<br />

(φ ′′<br />

i )<br />

where φ ′′<br />

i : Coker(φ1 · · · φ i+1) ↠ Coker(φ1 · · · φ i), 1 ≤ i ≤ n − 2, and<br />

φ ′′<br />

n−1 : X1 ↠ Coker(φ1 · · · φn−1) are the canonical epimorphisms.<br />

Bao-L<strong>in</strong> Xiong (SJTU) <strong>Auslander</strong>-<strong>Reiten</strong> <strong>Translations</strong> <strong>in</strong> <strong>Monomorphism</strong> <strong>Categories</strong> ISPN ’80 6 / 24<br />

,


The functor: Mono<br />

Mono : Morn(A) −→ Sn(A),<br />

⎛<br />

⎜<br />

⎝<br />

X1<br />

X2<br />

.<br />

Xn−1<br />

Xn<br />

⎞<br />

⎟<br />

⎠<br />

(φ i )<br />

⎛<br />

⎜<br />

↦→ ⎜<br />

⎝<br />

X1<br />

Im φ1<br />

.<br />

Im(φ1···φn−2)<br />

Im(φ1···φn−1)<br />

where φ ′ i : Im(φ1 · · · φ i) ↩→ Im(φ1 · · · φ i−1), 2 ≤ i ≤ n − 1, and<br />

φ ′ 1 : Im φ1 ↩→ X1 are the canonical monomorphisms.<br />

Bao-L<strong>in</strong> Xiong (SJTU) <strong>Auslander</strong>-<strong>Reiten</strong> <strong>Translations</strong> <strong>in</strong> <strong>Monomorphism</strong> <strong>Categories</strong> ISPN ’80 7 / 24<br />

⎞<br />

⎟<br />

⎠<br />

(φ ′ i )<br />

,


The object MimoX (φi)<br />

Let X (φi ) ∈ Morn(A).<br />

The object MimoX (φi ) ∈ Sn(A) is def<strong>in</strong>ed as follows.<br />

For each 1 ≤ i ≤ n − 1, fix an <strong>in</strong>jective envelope<br />

Then we have an extension<br />

e ′ i : Ker φ i ↩→ IKer φ i.<br />

e i : X i+1 −→ IKer φ i.<br />

Bao-L<strong>in</strong> Xiong (SJTU) <strong>Auslander</strong>-<strong>Reiten</strong> <strong>Translations</strong> <strong>in</strong> <strong>Monomorphism</strong> <strong>Categories</strong> ISPN ’80 8 / 24


The object MimoX (φi)<br />

Def<strong>in</strong>e MimoX (φi ) to be the object<br />

⎛<br />

⎜<br />

⎝<br />

That is<br />

Xn<br />

X1⊕IKer φ1⊕···⊕IKer φn−1<br />

X2⊕IKer φ2⊕···⊕IKer φn−1<br />

.<br />

Xn−1⊕IKer φn−1<br />

Xn<br />

⎞<br />

⎟<br />

⎠<br />

θn−1 ��<br />

Xn−1 ⊕ IKer φn−1<br />

(θ i )<br />

⎛<br />

⎜<br />

where θi = ⎜<br />

⎝<br />

θn−2 ��<br />

· · ·<br />

φi 0 0 ··· 0<br />

ei 0 0 ··· 0<br />

0 1 0 ··· 0<br />

0 0 1 ··· 0<br />

. . . ··· .<br />

0 0 0 ··· 1<br />

⎞<br />

⎟<br />

⎠<br />

(n−i+1)×(n−i)<br />

θ1 ��<br />

X1 ⊕ IKer φ1 ⊕ · · · ⊕ IKer φn−1 .<br />

Bao-L<strong>in</strong> Xiong (SJTU) <strong>Auslander</strong>-<strong>Reiten</strong> <strong>Translations</strong> <strong>in</strong> <strong>Monomorphism</strong> <strong>Categories</strong> ISPN ’80 9 / 24<br />

.


The <strong>Auslander</strong>-<strong>Reiten</strong> translation <strong>in</strong> Sn(A)<br />

Theorem 2.1<br />

(i) The subcategories Sn(A) and Fn(A) are functorially f<strong>in</strong>ite <strong>in</strong><br />

Morn(A) and hence have AR-sequences.<br />

(ii) For an object X (φi ) ∈ Sn(A), the <strong>Auslander</strong>-<strong>Reiten</strong> translate is<br />

given by<br />

τSX (φi ) ∼ = Mimo τ CokX (φi )<br />

(1).<br />

Bao-L<strong>in</strong> Xiong (SJTU) <strong>Auslander</strong>-<strong>Reiten</strong> <strong>Translations</strong> <strong>in</strong> <strong>Monomorphism</strong> <strong>Categories</strong> ISPN ’80 10 / 24


Remark 2.2<br />

The process means:<br />

Give an object X (φi ) <strong>in</strong> Sn(A)<br />

τSX (φi ) ∼ = Mimo τ CokX (φi ). (1)<br />

Take the cokernel object X ′ (φ ′ i ) = CokX (φ i ).<br />

Apply τ to these maps φ ′ i (1 ≤ i ≤ n − 1).<br />

Represent τCokX (φi ) by an object X ′′<br />

(φ ′′<br />

i<br />

) =<br />

� X ′′<br />

1<br />

.<br />

X ′′<br />

n<br />

�<br />

(φ ′′<br />

i )<br />

where X ′′<br />

1 , X ′′<br />

2 , · · · , X ′′<br />

n−1 have no nonzero <strong>in</strong>jective direct<br />

summands.<br />

Apply Mimo, there is a well-def<strong>in</strong>ed object <strong>in</strong> Sn(A) up to<br />

isomorphism.<br />

<strong>in</strong> Morn(A)<br />

Bao-L<strong>in</strong> Xiong (SJTU) <strong>Auslander</strong>-<strong>Reiten</strong> <strong>Translations</strong> <strong>in</strong> <strong>Monomorphism</strong> <strong>Categories</strong> ISPN ’80 11 / 24


An example<br />

k: a field; A = k[X]/〈X 2 〉, S = k[X]/〈X〉, i : S −→ A, π : A −→ S.<br />

� �<br />

AS0<br />

� �<br />

SAA<br />

= Mimoτ<br />

� �<br />

S00<br />

= Mimo<br />

� �<br />

S00<br />

=<br />

τS<br />

τS<br />

τS<br />

τS<br />

� S00<br />

� SSS<br />

� AAS<br />

�<br />

�<br />

�<br />

(0,i)<br />

(0,0)<br />

(1,1)<br />

(i,1)<br />

�<br />

SSS<br />

= Mimoτ<br />

�<br />

00S<br />

= Mimoτ<br />

�<br />

0SA<br />

= Mimoτ<br />

�<br />

�<br />

�<br />

(1,π)<br />

(1,1)<br />

(0,0)<br />

(π,0)<br />

�<br />

SSS<br />

= Mimo<br />

�<br />

00S<br />

= Mimo<br />

�<br />

0S0<br />

= Mimo<br />

�<br />

�<br />

�<br />

(0,0)<br />

(1,1)<br />

(0,0)<br />

(0,0)<br />

=<br />

=<br />

=<br />

� SSS<br />

� AAS<br />

� AS0<br />

�<br />

�<br />

�<br />

(0,0)<br />

(1,1)<br />

—————————————————————————————–<br />

� �<br />

SS0<br />

� �<br />

0SS<br />

= Mimoτ<br />

� �<br />

0SS<br />

= Mimo<br />

� �<br />

ASS<br />

=<br />

τS<br />

τS<br />

� ASS<br />

�<br />

(0,1)<br />

(1,i)<br />

�<br />

SSA<br />

= Mimoτ<br />

�<br />

(1,0)<br />

(π,1)<br />

�<br />

SS0<br />

= Mimo<br />

�<br />

(1,0)<br />

(0,1)<br />

=<br />

� SS0<br />

�<br />

(i,1)<br />

(1,i)<br />

(1,i)<br />

(0,1)<br />

Bao-L<strong>in</strong> Xiong (SJTU) <strong>Auslander</strong>-<strong>Reiten</strong> <strong>Translations</strong> <strong>in</strong> <strong>Monomorphism</strong> <strong>Categories</strong> ISPN ’80 12 / 24


An example<br />

The <strong>Auslander</strong>-<strong>Reiten</strong> quiver of S3(A) looks like<br />

A A<br />

A<br />

00 �<br />

A<br />

��<br />

0 �<br />

A<br />

���<br />

��<br />

�<br />

�<br />

�<br />

A ��<br />

��<br />

��<br />

���<br />

�<br />

�<br />

�<br />

� ��<br />

�<br />

�<br />

��<br />

�<br />

S �<br />

��<br />

��<br />

A �<br />

A ��<br />

��<br />

S<br />

00 ��<br />

�<br />

S ��<br />

��<br />

0 �<br />

A ��<br />

�<br />

�<br />

�<br />

S �<br />

S<br />

���<br />

��<br />

�<br />

�<br />

�<br />

�<br />

S<br />

��<br />

��<br />

���<br />

��<br />

� �<br />

�<br />

��<br />

�<br />

S �<br />

��<br />

��<br />

A � ��<br />

S ��<br />

S ��<br />

0 �<br />

S ��<br />

� ��<br />

�<br />

S �<br />

S<br />

�<br />

� ��<br />

� ���<br />

0<br />

�<br />

�<br />

��<br />

��<br />

� ��<br />

S � ��<br />

S ��<br />

S ��<br />

00<br />

S<br />

Remark: This AR-quiver has been described by A.Moore.<br />

Bao-L<strong>in</strong> Xiong (SJTU) <strong>Auslander</strong>-<strong>Reiten</strong> <strong>Translations</strong> <strong>in</strong> <strong>Monomorphism</strong> <strong>Categories</strong> ISPN ’80 13 / 24


Applications to self<strong>in</strong>jective algebras<br />

A: a self<strong>in</strong>jective Art<strong>in</strong> algebra,<br />

A-mod: the stable category of A-mod<br />

Morn(A-mod): the morphism category of A-mod<br />

�<br />

Objects: X (φi ) =<br />

� X1<br />

.<br />

Xn<br />

(φi )<br />

, φi : Xi+1 → Xi <strong>in</strong> A-mod,<br />

Bao-L<strong>in</strong> Xiong (SJTU) <strong>Auslander</strong>-<strong>Reiten</strong> <strong>Translations</strong> <strong>in</strong> <strong>Monomorphism</strong> <strong>Categories</strong> ISPN ’80 14 / 24


Applications to self<strong>in</strong>jective algebras<br />

A: a self<strong>in</strong>jective Art<strong>in</strong> algebra,<br />

A-mod: the stable category of A-mod<br />

Morn(A-mod): the morphism category of A-mod<br />

�<br />

Objects: X (φi ) =<br />

⎛<br />

f1<br />

� X1<br />

⎞<br />

.<br />

Xn<br />

(φi )<br />

, φi : Xi+1 → Xi <strong>in</strong> A-mod,<br />

Morphisms: ⎝ ⎠ : X (φi .<br />

) → Y (θi ), fi : Xi → Yi such that the follow<strong>in</strong>g<br />

fn<br />

diagram commutes <strong>in</strong> A-mod<br />

fn<br />

Xn<br />

��<br />

Yn<br />

φn−1<br />

θn−1<br />

��<br />

Xn−1<br />

fn−1<br />

��<br />

��<br />

Yn−1<br />

φn−2<br />

θn−2<br />

��<br />

· · ·<br />

��<br />

· · ·<br />

φ2<br />

θ2<br />

��<br />

X2<br />

f2<br />

��<br />

��<br />

Y2<br />

φ1<br />

θ1<br />

��<br />

f1<br />

X1<br />

��<br />

��<br />

Y1.<br />

Bao-L<strong>in</strong> Xiong (SJTU) <strong>Auslander</strong>-<strong>Reiten</strong> <strong>Translations</strong> <strong>in</strong> <strong>Monomorphism</strong> <strong>Categories</strong> ISPN ’80 14 / 24


The rotation of X (φi)<br />

For X (φi ) ∈ Morn(A-mod), we have the follow<strong>in</strong>g commutative diagram<br />

with exact rows <strong>in</strong> A-mod,<br />

Xn<br />

φn−1<br />

��<br />

Xn−1<br />

��<br />

.<br />

φn−2<br />

φ3<br />

��<br />

X3<br />

φ2<br />

��<br />

X2<br />

φ1<br />

��<br />

��<br />

��<br />

X1 ψn−1<br />

X1<br />

.<br />

X1<br />

��<br />

X1<br />

��<br />

Y 1<br />

n<br />

ψn−2<br />

��<br />

��<br />

Y 1 n−1<br />

��<br />

.<br />

��<br />

��<br />

Y 1<br />

3<br />

��<br />

��<br />

Y 1<br />

2<br />

ψn−3<br />

ψ2<br />

ψ1<br />

��<br />

Ω −1 Xn<br />

��<br />

��<br />

Ω−1Xn−1 ��<br />

.<br />

��<br />

��<br />

Ω−1X3 ��<br />

��<br />

Ω−1X2. Bao-L<strong>in</strong> Xiong (SJTU) <strong>Auslander</strong>-<strong>Reiten</strong> <strong>Translations</strong> <strong>in</strong> <strong>Monomorphism</strong> <strong>Categories</strong> ISPN ’80 15 / 24


The rotation of X (φi)<br />

The rotation RotX (φi ) of X (φi ) is def<strong>in</strong>ed to be<br />

(X1<br />

ψn−1<br />

��Y<br />

1<br />

n<br />

��<br />

· · · ψ1<br />

��Y<br />

1<br />

2 ) ∈ Morn(A-mod)<br />

(here,a for convenience we write the rotation <strong>in</strong> a row). We remark that<br />

RotX (φi ) is well-def<strong>in</strong>ed.<br />

Lemma 3.1<br />

Let X (φi ) ∈ Morn(A). Then RotX (φi ) ∼ = Cok MimoX (φi ) <strong>in</strong> Morn(A-mod).<br />

Bao-L<strong>in</strong> Xiong (SJTU) <strong>Auslander</strong>-<strong>Reiten</strong> <strong>Translations</strong> <strong>in</strong> <strong>Monomorphism</strong> <strong>Categories</strong> ISPN ’80 16 / 24


For X (φi ) ∈ Morn(A-mod), def<strong>in</strong>e Ω−1X (φi ) to be<br />

�<br />

Ω−1 �<br />

X1<br />

.<br />

Ω −1 Xn<br />

(Ω −1 φ i )<br />

∈ Morn(A-mod).<br />

Bao-L<strong>in</strong> Xiong (SJTU) <strong>Auslander</strong>-<strong>Reiten</strong> <strong>Translations</strong> <strong>in</strong> <strong>Monomorphism</strong> <strong>Categories</strong> ISPN ’80 17 / 24


For X (φi ) ∈ Morn(A-mod), def<strong>in</strong>e Ω−1X (φi ) to be<br />

�<br />

Ω−1 �<br />

X1<br />

.<br />

Ω −1 Xn<br />

(Ω −1 φ i )<br />

Proposition 3.2<br />

∈ Morn(A-mod).<br />

Let A be a self<strong>in</strong>jective algebra, X (φi ) ∈ Sn(A). Then there are the<br />

follow<strong>in</strong>g isomorphisms <strong>in</strong> Morn(A-mod)<br />

(i) τ j<br />

S X (φ i ) ∼ = τ j Rot j X (φi ) for j ≥ 1. In particular, τSX (φi ) ∼ = τ CokX (φi ).<br />

(ii) τ s(n+1)<br />

S X (φi ) ∼ = τ s(n+1) Ω−s(n−1) X (φi ), ∀ s ≥ 1.<br />

Bao-L<strong>in</strong> Xiong (SJTU) <strong>Auslander</strong>-<strong>Reiten</strong> <strong>Translations</strong> <strong>in</strong> <strong>Monomorphism</strong> <strong>Categories</strong> ISPN ’80 17 / 24


Theorem 3.3<br />

Let A be a self<strong>in</strong>jective algebra, and X (φi ) ∈ Sn(A). Then we have<br />

τ s(n+1)<br />

S X (φi ) ∼ = Mimo τ s(n+1) Ω −s(n−1) X (φi ), s ≥ 1. (2)<br />

Bao-L<strong>in</strong> Xiong (SJTU) <strong>Auslander</strong>-<strong>Reiten</strong> <strong>Translations</strong> <strong>in</strong> <strong>Monomorphism</strong> <strong>Categories</strong> ISPN ’80 18 / 24


Theorem 3.3<br />

Let A be a self<strong>in</strong>jective algebra, and X (φi ) ∈ Sn(A). Then we have<br />

τ s(n+1)<br />

S X (φi ) ∼ = Mimo τ s(n+1) Ω −s(n−1) X (φi ), s ≥ 1. (2)<br />

Apply<strong>in</strong>g the above theorem to the self<strong>in</strong>jective Nakayama algebras<br />

A(m, t), we get<br />

Corollary 3.4<br />

For an <strong>in</strong>decomposable nonprojective object X (φi ) ∈ Sn(A(m, t)),<br />

m ≥ 1, t ≥ 2, there are the follow<strong>in</strong>g isomorphisms:<br />

(i) If n is odd, then τ m(n+1)<br />

S X (φi ) ∼ = X (φi );<br />

(ii) If n is even, then τ 2m(n+1)<br />

S X (φi ) ∼ = X (φi ).<br />

Bao-L<strong>in</strong> Xiong (SJTU) <strong>Auslander</strong>-<strong>Reiten</strong> <strong>Translations</strong> <strong>in</strong> <strong>Monomorphism</strong> <strong>Categories</strong> ISPN ’80 18 / 24


An example<br />

Let A = kQ/〈δα, βγ, αδ − γβ〉, where Q is the quiver 2•<br />

��<br />

α ��<br />

1•<br />

Then A is self<strong>in</strong>jective with τ ∼ = Ω −1 and Ω 6 ∼ = id on the object of<br />

A-mod. The <strong>Auslander</strong>-<strong>Reiten</strong> quiver of A is<br />

3<br />

1<br />

1<br />

2 3<br />

���<br />

2 ���<br />

1<br />

��<br />

�<br />

��<br />

�<br />

� ��<br />

��<br />

���<br />

3 �<br />

��<br />

1 ��<br />

3 ��<br />

��<br />

�<br />

�<br />

�<br />

�<br />

2 �<br />

� ���<br />

� 1 �<br />

�<br />

��<br />

�<br />

�<br />

2 �<br />

�<br />

�<br />

� �<br />

�<br />

���<br />

���<br />

��<br />

�<br />

����<br />

�<br />

��<br />

��<br />

��<br />

��<br />

��<br />

���<br />

��<br />

��<br />

1 ��<br />

2 3<br />

2 3 1 ��<br />

��<br />

1<br />

��<br />

� ��<br />

�<br />

� �<br />

1<br />

��<br />

�<br />

�<br />

2 3<br />

��<br />

��<br />

�<br />

��<br />

�<br />

� ��<br />

��<br />

�<br />

� ��<br />

��<br />

�<br />

���<br />

��<br />

�<br />

1 ��<br />

���<br />

2 ��<br />

��<br />

2 ��<br />

�<br />

3 � 1<br />

3<br />

� ��<br />

��<br />

��<br />

��<br />

2 ��<br />

1<br />

3<br />

Bao-L<strong>in</strong> Xiong (SJTU) <strong>Auslander</strong>-<strong>Reiten</strong> <strong>Translations</strong> <strong>in</strong> <strong>Monomorphism</strong> <strong>Categories</strong> ISPN ’80 19 / 24<br />

δ<br />

��<br />

β<br />

��<br />

γ<br />

3•


An example<br />

Let X (φi ) be an <strong>in</strong>decomposable nonprojective object <strong>in</strong> Sn(A).<br />

By (2), for s ≥ 1 we have<br />

τ s(n+1)<br />

S X (φi ) ∼ = Mimo τ s(n+1) Ω −s(n−1) X (φi ) ∼ = Mimo Ω −2sn X (φi )<br />

<strong>in</strong> Sn(A).<br />

Then we get<br />

(i) if n ≡ 0, or 3 (mod6), then τ n+1<br />

S X (φi ) ∼ = X (φi ); and<br />

(ii) if n ≡ ±1, or ± 2 (mod6), then τ 3(n+1)<br />

S X (φi ) ∼ = X (φi ).<br />

Bao-L<strong>in</strong> Xiong (SJTU) <strong>Auslander</strong>-<strong>Reiten</strong> <strong>Translations</strong> <strong>in</strong> <strong>Monomorphism</strong> <strong>Categories</strong> ISPN ’80 20 / 24


Serre functors of stable monomorphism categories<br />

A: a f<strong>in</strong>ite-dimensional self<strong>in</strong>jective algebra over a field<br />

Sn(A) is a Frobenius category.<br />

Sn(A): the stable category of Sn(A)<br />

Sn(A) is a Hom-f<strong>in</strong>ite Krull-Schmidt triangulated category with<br />

suspension functor Ω −1<br />

S<br />

= Ω−1<br />

Sn(A) . S<strong>in</strong>ce Sn(A) has <strong>Auslander</strong>-<strong>Reiten</strong><br />

sequences, it follows that Sn(A) has <strong>Auslander</strong>-<strong>Reiten</strong> triangles, and<br />

hence, by a theorem of <strong>Reiten</strong> and Van den Bergh, it has a Serre<br />

functor FS = F Sn(A), which co<strong>in</strong>cides with Ω −1<br />

S �τS on the objects of<br />

Sn(A).<br />

Bao-L<strong>in</strong> Xiong (SJTU) <strong>Auslander</strong>-<strong>Reiten</strong> <strong>Translations</strong> <strong>in</strong> <strong>Monomorphism</strong> <strong>Categories</strong> ISPN ’80 21 / 24


Theorem 4.1<br />

Let A be a self<strong>in</strong>jective algebra, and FS be the Serre functor of Sn(A).<br />

Then we have an isomorphism <strong>in</strong> Sn(A) for X (φi ) ∈ Sn(A) and for s ≥ 1<br />

F s(n+1)<br />

S X (φi ) ∼ = Mimo τ s(n+1) Ω −2sn X (φi ). (4.4)<br />

Moreover, if d1 and d2 are positive <strong>in</strong>tegers such that τ d1M ∼ = M and<br />

Ω d2M ∼ = M for each <strong>in</strong>decomposable nonprojective A-module M, then<br />

F N(n+1)<br />

S<br />

X (φi ) ∼ d1<br />

= X (φi ), where N = [ (n+1,d1) ,<br />

d2<br />

(2n,d2) ].<br />

Bao-L<strong>in</strong> Xiong (SJTU) <strong>Auslander</strong>-<strong>Reiten</strong> <strong>Translations</strong> <strong>in</strong> <strong>Monomorphism</strong> <strong>Categories</strong> ISPN ’80 22 / 24


Apply<strong>in</strong>g the above theorem to the self<strong>in</strong>jective Nakayama algebras<br />

A(m, t), we get<br />

Corollary 4.2<br />

Let FS be the Serre functor of Sn(A(m, t)) with m ≥ 1, t ≥ 2, and X be<br />

an arbitrary object <strong>in</strong> Sn(A(m, t)). Then<br />

(i) If t = 2, then F N(n+1)<br />

S X ∼ = X, where N = m<br />

(m,n−1) .<br />

(ii) If t ≥ 3, then F N(n+1)<br />

S X ∼ = X, where N = m<br />

(m,t,n+1) .<br />

Bao-L<strong>in</strong> Xiong (SJTU) <strong>Auslander</strong>-<strong>Reiten</strong> <strong>Translations</strong> <strong>in</strong> <strong>Monomorphism</strong> <strong>Categories</strong> ISPN ’80 23 / 24


Thank you!<br />

E-mail: xiongbaol<strong>in</strong>@gmail.com<br />

Bao-L<strong>in</strong> Xiong (SJTU) <strong>Auslander</strong>-<strong>Reiten</strong> <strong>Translations</strong> <strong>in</strong> <strong>Monomorphism</strong> <strong>Categories</strong> ISPN ’80 24 / 24

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!