20.12.2012 Views

Quantum Computing based on Tensor Products ... - Cinvestav

Quantum Computing based on Tensor Products ... - Cinvestav

Quantum Computing based on Tensor Products ... - Cinvestav

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Computing</str<strong>on</strong>g> <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>Tensor</strong> <strong>Products</strong><br />

Overview and Introducti<strong>on</strong><br />

Guillermo Morales Luna<br />

Computer Science Secti<strong>on</strong><br />

CINVESTAV-IPN<br />

E-mail: gmorales@cs.cinvestav.mx<br />

5-th Internati<strong>on</strong>al Workshop <strong>on</strong> Applied Category Theory<br />

Graph-Operad Logic<br />

Morales-Luna (CINVESTAV) QC <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>Tensor</strong> <strong>Products</strong> 5-th Int. WS App. Cat. Th. 1 / 38


Agenda<br />

1 Abstract<br />

2 Overview of the whole course<br />

3 References<br />

4 Hilbert Spaces<br />

5 Functi<strong>on</strong> Evaluati<strong>on</strong><br />

6 Deutsch-Jozsa’s Algorithm<br />

7 <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> Computati<strong>on</strong> of the Discrete Fourier Transform<br />

8 Shor Algorithm<br />

9 <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> Cryptography<br />

10 Communicati<strong>on</strong> Complexity<br />

Morales-Luna (CINVESTAV) QC <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>Tensor</strong> <strong>Products</strong> 5-th Int. WS App. Cat. Th. 2 / 38


Agenda<br />

1 Abstract<br />

2 Overview of the whole course<br />

3 References<br />

4 Hilbert Spaces<br />

5 Functi<strong>on</strong> Evaluati<strong>on</strong><br />

6 Deutsch-Jozsa’s Algorithm<br />

7 <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> Computati<strong>on</strong> of the Discrete Fourier Transform<br />

8 Shor Algorithm<br />

9 <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> Cryptography<br />

10 Communicati<strong>on</strong> Complexity<br />

Morales-Luna (CINVESTAV) QC <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>Tensor</strong> <strong>Products</strong> 5-th Int. WS App. Cat. Th. 3 / 38


Abstract<br />

We present a short introducti<strong>on</strong> to <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Computing</str<strong>on</strong>g> (QC) from a<br />

procedural point of view. Rather, it is a course of “parallel computing <str<strong>on</strong>g>based</str<strong>on</strong>g><br />

<strong>on</strong> tensor products”. We introduce primitive functi<strong>on</strong>s and the<br />

compositi<strong>on</strong>al schemes of QC. We use <strong>Tensor</strong> Product notati<strong>on</strong> instead of<br />

the more c<strong>on</strong>venti<strong>on</strong>al Dirac’s ket notati<strong>on</strong>. We introduce basic noti<strong>on</strong>s of<br />

<strong>Tensor</strong> <strong>Products</strong> and Hilbert Spaces and the qubits as points in the unit<br />

circle in the two-dimensi<strong>on</strong>al complex Hilbert space, then any word<br />

c<strong>on</strong>sisting of qubits lies in the corresp<strong>on</strong>ding unit sphere of the tensor<br />

product of these spaces. We illustrate the computing paradigm through the<br />

classical Deutsch-Josza algorithm. Then we show the quantum algorithm<br />

to compute the Discrete Fourier Transform in linear time and the famous<br />

polynomial-time Shor algorithm for integer factorizati<strong>on</strong>. We finish our<br />

expositi<strong>on</strong> with a basic introducti<strong>on</strong> to <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> Cryptography and<br />

<str<strong>on</strong>g>Quantum</str<strong>on</strong>g> Communicati<strong>on</strong> Complexity.<br />

Morales-Luna (CINVESTAV) QC <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>Tensor</strong> <strong>Products</strong> 5-th Int. WS App. Cat. Th. 4 / 38


Agenda<br />

1 Abstract<br />

2 Overview of the whole course<br />

3 References<br />

4 Hilbert Spaces<br />

5 Functi<strong>on</strong> Evaluati<strong>on</strong><br />

6 Deutsch-Jozsa’s Algorithm<br />

7 <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> Computati<strong>on</strong> of the Discrete Fourier Transform<br />

8 Shor Algorithm<br />

9 <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> Cryptography<br />

10 Communicati<strong>on</strong> Complexity<br />

Morales-Luna (CINVESTAV) QC <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>Tensor</strong> <strong>Products</strong> 5-th Int. WS App. Cat. Th. 5 / 38


Overview of the whole course<br />

C<strong>on</strong>tents<br />

1 Introducti<strong>on</strong><br />

2 <strong>Tensor</strong> <strong>Products</strong><br />

1 Vector and Space <strong>Products</strong><br />

2 <strong>Products</strong> of Linear Maps<br />

3 Basic Noti<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Computing</str<strong>on</strong>g><br />

1 Measurement Principle<br />

2 Qubits and Words of <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> Informati<strong>on</strong><br />

3 <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> Gates<br />

4 Observables and the Heisenberg Principle of Uncertainty<br />

5 Evaluati<strong>on</strong> of Boolean Functi<strong>on</strong>s<br />

6 Deutsch-Jozsa’s Algorithm<br />

4 <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> Computati<strong>on</strong> of the Discrete Fourier Transform<br />

Morales-Luna (CINVESTAV) QC <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>Tensor</strong> <strong>Products</strong> 5-th Int. WS App. Cat. Th. 6 / 38


5 Shor Algorithm<br />

1 A Short Refreshment of Number Theory<br />

2 <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> Algorithm to Calculate the Order of a Number<br />

1 Elements whose Order is a Power of 2<br />

2 Elements with Arbitrary Order<br />

6 <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> Cryptography: Key Agreement Protocols<br />

1 Channels without Noise<br />

2 Channels with Noise<br />

7 Communicati<strong>on</strong> Complexity<br />

1 Parities Additi<strong>on</strong><br />

2 C<strong>on</strong>gruent Functi<strong>on</strong>s with the Hamming Weight Map<br />

3 Identity Checking<br />

4 Inner Product<br />

1 Using an Entangled Pair of Qubits<br />

2 Algorithm without Entangled States<br />

5 Deutsch-Josza Relati<strong>on</strong><br />

Morales-Luna (CINVESTAV) QC <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>Tensor</strong> <strong>Products</strong> 5-th Int. WS App. Cat. Th. 7 / 38


Agenda<br />

1 Abstract<br />

2 Overview of the whole course<br />

3 References<br />

4 Hilbert Spaces<br />

5 Functi<strong>on</strong> Evaluati<strong>on</strong><br />

6 Deutsch-Jozsa’s Algorithm<br />

7 <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> Computati<strong>on</strong> of the Discrete Fourier Transform<br />

8 Shor Algorithm<br />

9 <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> Cryptography<br />

10 Communicati<strong>on</strong> Complexity<br />

Morales-Luna (CINVESTAV) QC <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>Tensor</strong> <strong>Products</strong> 5-th Int. WS App. Cat. Th. 8 / 38


General references<br />

<str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Computing</str<strong>on</strong>g><br />

D. Bouwmeester, A. K. Ekert, and A. Zeilinger. The Physics of <str<strong>on</strong>g>Quantum</str<strong>on</strong>g><br />

Informati<strong>on</strong>: <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> Cryptography, <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> Teleportati<strong>on</strong>, <str<strong>on</strong>g>Quantum</str<strong>on</strong>g><br />

Computati<strong>on</strong>. Springer, Berlin, 2000.<br />

G. Brassard. <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> communicati<strong>on</strong> complexity (a survey), 2001.<br />

G. Brassard, I. Chuang, S. Lloyds, and C. M<strong>on</strong>roe. <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> computing.<br />

Proc. Natl. Acad. Sci. USA, 95:11032–11033, Sept. 1998.<br />

M. Nielsen and I. Chuang. <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> Computati<strong>on</strong> and <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> Informati<strong>on</strong>.<br />

Cambridge University Press, Cambridge, 2000.<br />

Physics and Math<br />

R. Abraham, J. E. Marsden, and T. Ratiu. Manifolds, <strong>Tensor</strong> Analysis, and<br />

Applicati<strong>on</strong>s. Springer-Verlag, Berlin, 1998.<br />

J. S. Bell. On the Einstein-Podolsky-Rosen paradox. Physics, 1:195, 1964.<br />

S. Lang. Algebra, 4-th Editi<strong>on</strong>. Springer-Verlag, Berlin, 2004.<br />

Morales-Luna (CINVESTAV) QC <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>Tensor</strong> <strong>Products</strong> 5-th Int. WS App. Cat. Th. 9 / 38


Special topics<br />

Classics<br />

D. Deutsch. <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> Theory, the Church-Turing Principle and the Universal<br />

<str<strong>on</strong>g>Quantum</str<strong>on</strong>g> Computer. Proceedings of the Royal Society of L<strong>on</strong>d<strong>on</strong> Ser. A,<br />

400:96–117, 1985.<br />

D. Deutsch and R. Jozsa. Rapid soluti<strong>on</strong> of problems by quantum<br />

computati<strong>on</strong>. Proceedings of the Royal Society of L<strong>on</strong>d<strong>on</strong> Ser. A,<br />

439:553–558, 1992.<br />

A. S. Holevo. Some estimates of the informati<strong>on</strong> transmitted by a quantum<br />

communicati<strong>on</strong> channel. Probl. Peredachi Inf., 9:3, 1973. Also Probl. Inf.<br />

Transm. (USSR) 9, 177 (1973).<br />

P. W. Shor. Algorithms for quantum computati<strong>on</strong>: Discrete logarithms and<br />

factoring. In IEEE Symposium <strong>on</strong> Foundati<strong>on</strong>s of Computer Science, pages<br />

124–134. IEEE, 1994.<br />

P. W. Shor. Polynomial-Time Algorithms for Prime Factorizati<strong>on</strong> and Discrete<br />

Logarithms <strong>on</strong> a <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> Computer. SIAM Journal <strong>on</strong> <str<strong>on</strong>g>Computing</str<strong>on</strong>g>,<br />

26:1484–1509, 1997.<br />

Morales-Luna (CINVESTAV) QC <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>Tensor</strong> <strong>Products</strong> 5-th Int. WS App. Cat. Th. 10 / 38


Algorithmics and Crypto<br />

T. Hogg. Solving highly c<strong>on</strong>strained search problems with quantum<br />

computers. Journal of Artificial Intelligence Research, 10:39–66, 1999.<br />

C. Lavor, L. Manssur, and R. Portugal. Shor’s algorithm for factoring large<br />

integers. Mar. 2003.<br />

S. J. Lom<strong>on</strong>aco. A Quick Glance at <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> Cryptography. Cryptologia,<br />

23:1–41, 1999.<br />

S. J. Lom<strong>on</strong>aco. A Talk <strong>on</strong> <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> Cryptography or How Alice Outwits Eve.<br />

arXiv: quant-ph/0102016v1, 2001.<br />

Morales-Luna (CINVESTAV) QC <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>Tensor</strong> <strong>Products</strong> 5-th Int. WS App. Cat. Th. 11 / 38


<str<strong>on</strong>g>Quantum</str<strong>on</strong>g> complexity<br />

E. Bernstein and U. Vasirani. <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> complexity theory. In Proc. of the<br />

25-th Annual ACM Symposium <strong>on</strong> Theory of <str<strong>on</strong>g>Computing</str<strong>on</strong>g>, AIP C<strong>on</strong>ference<br />

Proceedings. Associati<strong>on</strong> of <str<strong>on</strong>g>Computing</str<strong>on</strong>g> Machinery, 1993.<br />

R. Cleve. An introducti<strong>on</strong> to quantum complexity theory, 1999.<br />

Entanglement<br />

G. Brassard, R. Cleve, and A. Tapp. Cost of exactly simulating quantum<br />

entanglement with classical communicati<strong>on</strong>. Phys. Rev. Lett., 83:1874–1877,<br />

1999.<br />

H. Buhrman, R. Cleve, and W. van Dam. <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> entanglement and<br />

communicati<strong>on</strong> complexity. SIAM J. Comp., 30(6):1829–1841, March 2001.<br />

S. Massar, D. Bac<strong>on</strong>, N. Cerf, and R. Cleve. Classical simulati<strong>on</strong> of quantum<br />

entanglement without local hidden variables. Phys. Rev. A, 63:52305, 2001.<br />

Morales-Luna (CINVESTAV) QC <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>Tensor</strong> <strong>Products</strong> 5-th Int. WS App. Cat. Th. 12 / 38


Agenda<br />

1 Abstract<br />

2 Overview of the whole course<br />

3 References<br />

4 Hilbert Spaces<br />

5 Functi<strong>on</strong> Evaluati<strong>on</strong><br />

6 Deutsch-Jozsa’s Algorithm<br />

7 <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> Computati<strong>on</strong> of the Discrete Fourier Transform<br />

8 Shor Algorithm<br />

9 <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> Cryptography<br />

10 Communicati<strong>on</strong> Complexity<br />

Morales-Luna (CINVESTAV) QC <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>Tensor</strong> <strong>Products</strong> 5-th Int. WS App. Cat. Th. 13 / 38


Hilbert Spaces<br />

Basic noti<strong>on</strong>s<br />

Complex field. C<br />

Vector space. H: N<strong>on</strong>-empty set. 0 ∈ H<br />

Additi<strong>on</strong>. + : H × H → H. (H, +) Abelian group<br />

Scalar multiplicati<strong>on</strong>. · : C × H → H. Distributive w.r.t. additi<strong>on</strong><br />

Inner product. 〈·|·〉 : H × H → C. Sesquilinear form. Positive definite.<br />

Norm. � · �2 : H → R + , x ↦→ � · �2 = √ 〈x|x〉.<br />

Completeness. Every Cauchy sequence is c<strong>on</strong>vergent.<br />

Autoduality. For each T ∈ H ∗ exists y ∈ H: T(x) = 〈y|x〉.<br />

Morales-Luna (CINVESTAV) QC <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>Tensor</strong> <strong>Products</strong> 5-th Int. WS App. Cat. Th. 14 / 38


Geometrical properties: m-dimensi<strong>on</strong>al Hilbert spaces<br />

Can<strong>on</strong>ical basis. ej = (δij) i


Measurement Principle<br />

In current state<br />

v = (vi1) i


Qubits and Quregisters<br />

Spaces and basis<br />

H1 = C 2 ; Hn = Hn−1 ⊗ H1<br />

dim(Hn) = 2 n<br />

e0 = [1 0] T and e1 = [0 1] T basis in H1.<br />

(eεn−1···ε1ε0 ) εn−1,...,ε1,ε0∈{0,1}<br />

basis in Hn.<br />

Qubits. z ∈ E2 unit sphere in H1.<br />

Quregister. z1 ⊗ · · · ⊗ zn−1 ⇐= zi, i ∈ N, qubits<br />

z1 ⊗ · · · ⊗ zn−1 ∈ E2n ⊂ Hn<br />

Morales-Luna (CINVESTAV) QC <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>Tensor</strong> <strong>Products</strong> 5-th Int. WS App. Cat. Th. 17 / 38


<str<strong>on</strong>g>Quantum</str<strong>on</strong>g> speed-up<br />

C<strong>on</strong>venti<strong>on</strong>al Dirac’s “ket” notati<strong>on</strong><br />

|εn−1 · · · ε1ε0〉 := eεn−1···ε1ε0<br />

= eεn−1 ⊗ · · · ⊗ eε1 ⊗ eε0<br />

=: |εn−1〉 · · · |ε1〉 |ε0〉 (1)<br />

Any state in Hn, σ(z) = � ε∈{0,1} n zεeε is determined by 2 n coordinates. If<br />

U : Hn → Hn is a quantum operator, the target state σ(Uz) c<strong>on</strong>sists also<br />

of 2 n coordinates.<br />

A calculus involving an exp<strong>on</strong>ential number of terms is performed in just<br />

“<strong>on</strong>e step” of the quantum computati<strong>on</strong>.<br />

Morales-Luna (CINVESTAV) QC <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>Tensor</strong> <strong>Products</strong> 5-th Int. WS App. Cat. Th. 18 / 38


Agenda<br />

1 Abstract<br />

2 Overview of the whole course<br />

3 References<br />

4 Hilbert Spaces<br />

5 Functi<strong>on</strong> Evaluati<strong>on</strong><br />

6 Deutsch-Jozsa’s Algorithm<br />

7 <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> Computati<strong>on</strong> of the Discrete Fourier Transform<br />

8 Shor Algorithm<br />

9 <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> Cryptography<br />

10 Communicati<strong>on</strong> Complexity<br />

Morales-Luna (CINVESTAV) QC <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>Tensor</strong> <strong>Products</strong> 5-th Int. WS App. Cat. Th. 19 / 38


Functi<strong>on</strong> Evaluati<strong>on</strong><br />

V = {0, 1}: binary digits<br />

Each index in the set {0, . . . , 2 n − 1} corresp<strong>on</strong>ds to a string<br />

ε = (εn−1, . . . , ε1, ε0) ∈ V n which in turn corresp<strong>on</strong>ds to eε ∈ Hn.<br />

Let f : V n → V m be a functi<strong>on</strong>.<br />

A quantum algorithm Uf : Hn+m → Hn+m computes f if<br />

Uf : eε ⊗ 0 ↦→ eε ⊗ ɛe f(ε)<br />

where |ɛ| = 1. A final measurement <strong>on</strong> last qubits provides the value f(ε),<br />

with probability 1.<br />

Morales-Luna (CINVESTAV) QC <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>Tensor</strong> <strong>Products</strong> 5-th Int. WS App. Cat. Th. 20 / 38


Agenda<br />

1 Abstract<br />

2 Overview of the whole course<br />

3 References<br />

4 Hilbert Spaces<br />

5 Functi<strong>on</strong> Evaluati<strong>on</strong><br />

6 Deutsch-Jozsa’s Algorithm<br />

7 <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> Computati<strong>on</strong> of the Discrete Fourier Transform<br />

8 Shor Algorithm<br />

9 <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> Cryptography<br />

10 Communicati<strong>on</strong> Complexity<br />

Morales-Luna (CINVESTAV) QC <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>Tensor</strong> <strong>Products</strong> 5-th Int. WS App. Cat. Th. 21 / 38


Deutsch-Jozsa’s Algorithm<br />

Let V = {0, 1} be the set of classical truth values.<br />

Deutsch-Jozsa’s problem<br />

Decide, for a given f : V → V, whether it is c<strong>on</strong>stant or balanced “in just<br />

<strong>on</strong>e computing step”.<br />

Given f, let Uf be the 2 2 × 2 2 -matrix s.t. Uf(ex ⊗ ez) = (ex ⊗ e (z+f(x)) mod 2).<br />

We have H2Uf H2 : e0 ⊗ e1 ↦→ εeS ⊗ e1<br />

where H2 is Hadamard’s operator, ε ∈ {−1, 1} is a sign and S is a signal<br />

indicating whether f is balanced or not.<br />

S coincides with f(0) ⊕ f(1).<br />

Morales-Luna (CINVESTAV) QC <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>Tensor</strong> <strong>Products</strong> 5-th Int. WS App. Cat. Th. 22 / 38


Agenda<br />

1 Abstract<br />

2 Overview of the whole course<br />

3 References<br />

4 Hilbert Spaces<br />

5 Functi<strong>on</strong> Evaluati<strong>on</strong><br />

6 Deutsch-Jozsa’s Algorithm<br />

7 <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> Computati<strong>on</strong> of the Discrete Fourier Transform<br />

8 Shor Algorithm<br />

9 <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> Cryptography<br />

10 Communicati<strong>on</strong> Complexity<br />

Morales-Luna (CINVESTAV) QC <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>Tensor</strong> <strong>Products</strong> 5-th Int. WS App. Cat. Th. 23 / 38


<str<strong>on</strong>g>Quantum</str<strong>on</strong>g> Computati<strong>on</strong> of the Discrete Fourier Transform<br />

Given f = � n−1<br />

j=0 f(j)ej ∈ C n , its discrete Fourier transform is<br />

DFT(f) = ˆ ⎡<br />

�n−1<br />

1 �n−1<br />

� � ⎤<br />

2πijk<br />

f = ⎢⎣ √ exp f(k) ⎥⎦<br />

n<br />

n<br />

ej ∈ C n .<br />

j=0<br />

k=0<br />

DFT is linear transform and, w.r.t. � �the can<strong>on</strong>ical �� basis, it is represented by<br />

2πijk<br />

exp n<br />

the unitary matrix DFT = 1 √ n<br />

Morales-Luna (CINVESTAV) QC <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>Tensor</strong> <strong>Products</strong> 5-th Int. WS App. Cat. Th. 24 / 38<br />

jk


If n = 2 ν , Hν = C n , and by identifying each j ∈ [[0, 2 ν − 1]] with<br />

εj = εj,ν−1 · · · εj,1εj,0:<br />

DFT(eεj ) =<br />

�ν−1<br />

�<br />

1<br />

√ e0 + exp<br />

2<br />

� �<br />

πij<br />

2 k<br />

e1<br />

k=0<br />

= 1 � �<br />

πij<br />

√ e0+exp<br />

2<br />

20 � �<br />

e1 ⊗ 1 � �<br />

πij<br />

√ e0+exp<br />

2<br />

21 � �<br />

e1 ⊗···⊗ 1 √<br />

2<br />

�<br />

� �<br />

πij<br />

e0+exp<br />

2ν−1 � �<br />

e1<br />

The products appearing in this tensor product suggest the operators<br />

Qk : H1 → H1 and their “c<strong>on</strong>trolled” versi<strong>on</strong>s:<br />

Qk =<br />

⎡<br />

⎢⎣<br />

1 0<br />

0 exp � πi<br />

2k �<br />

⎤<br />

⎥⎦ , Q c<br />

kj =<br />

⎡<br />

⎢⎣<br />

1 0<br />

0 exp � πi<br />

Morales-Luna (CINVESTAV) QC <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>Tensor</strong> <strong>Products</strong> 5-th Int. WS App. Cat. Th. 25 / 38<br />

j<br />

2k �<br />

⎤<br />

⎥⎦ .<br />

(2)


Algorithm for the Fourier transform<br />

Input. n = 2 ν , f ∈ C n = Hν.<br />

Output. ˆ f = DFT(f) ∈ Hν.<br />

Procedure DFT(n, f)<br />

1 Let x0 := H(e0).<br />

2 For each j ∈ [[0, 2 ν − 1]], or equivalently, for each<br />

(εj,ν−1 · · · εj,1εj,0) ∈ {0, 1} ν , do (in parallel):<br />

1 For each k ∈ [[0, ν − 1]] do (in parallel):<br />

� �<br />

1 Let δ :=<br />

�<br />

�<br />

Rk εj be the reverse of the chain c<strong>on</strong>sisting of<br />

�<br />

k<br />

the (k + 1) less significant bits.<br />

2 Let yjk := x0.<br />

3 For ℓ = 0 to k do { yjk := Q c2 (yjk , eδ ) } j,ℓ<br />

2 Let y j := y j0 ⊗ · · · ⊗ y j,ν−1 .<br />

3 Output as result ˆ f = � 2 ν −1<br />

j=0 fjy j .<br />

Morales-Luna (CINVESTAV) QC <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>Tensor</strong> <strong>Products</strong> 5-th Int. WS App. Cat. Th. 26 / 38


Agenda<br />

1 Abstract<br />

2 Overview of the whole course<br />

3 References<br />

4 Hilbert Spaces<br />

5 Functi<strong>on</strong> Evaluati<strong>on</strong><br />

6 Deutsch-Jozsa’s Algorithm<br />

7 <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> Computati<strong>on</strong> of the Discrete Fourier Transform<br />

8 Shor Algorithm<br />

9 <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> Cryptography<br />

10 Communicati<strong>on</strong> Complexity<br />

Morales-Luna (CINVESTAV) QC <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>Tensor</strong> <strong>Products</strong> 5-th Int. WS App. Cat. Th. 27 / 38


Let n be an integer to be factored<br />

1 Select an integer m such that 1 < m < n.<br />

2 If gcd(n, m) = d > 1, then d is a n<strong>on</strong>-trivial factor of n.<br />

3 Otherwise, m is in the multiplicative group of remainders of n.<br />

1 If m has an even order r, then k = m r<br />

2 will be such that k 2 = 1 mod n,<br />

and (k − 1)(k + 1) = 0 mod n.<br />

2 By calculating gcd(n, k − 1) and gcd(n, k + 1), <strong>on</strong>e gets n<strong>on</strong>-trivial<br />

factors of n.<br />

Morales-Luna (CINVESTAV) QC <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>Tensor</strong> <strong>Products</strong> 5-th Int. WS App. Cat. Th. 28 / 38


Biggest problem<br />

Calculate the order of a current element m in Φ(n)<br />

Let ν = ⌈log 2 n⌉, ν is the size of n.<br />

O(n) = O(2 ν ), thus an exhaustive procedure has exp<strong>on</strong>ential complexity<br />

with respect to the input size. Shor’s algorithm is <str<strong>on</strong>g>based</str<strong>on</strong>g> over a<br />

polynomial-time procedure in ν to calculate the order of an element.<br />

Morales-Luna (CINVESTAV) QC <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>Tensor</strong> <strong>Products</strong> 5-th Int. WS App. Cat. Th. 29 / 38


Agenda<br />

1 Abstract<br />

2 Overview of the whole course<br />

3 References<br />

4 Hilbert Spaces<br />

5 Functi<strong>on</strong> Evaluati<strong>on</strong><br />

6 Deutsch-Jozsa’s Algorithm<br />

7 <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> Computati<strong>on</strong> of the Discrete Fourier Transform<br />

8 Shor Algorithm<br />

9 <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> Cryptography<br />

10 Communicati<strong>on</strong> Complexity<br />

Morales-Luna (CINVESTAV) QC <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>Tensor</strong> <strong>Products</strong> 5-th Int. WS App. Cat. Th. 30 / 38


<str<strong>on</strong>g>Quantum</str<strong>on</strong>g> Cryptography: Key Agreement Protocols<br />

Two entities, Alice and Bob, should agree in private a comm<strong>on</strong> key.<br />

They may use two transmissi<strong>on</strong> channels<br />

<str<strong>on</strong>g>Quantum</str<strong>on</strong>g> channel Transmits just <strong>on</strong>e-way, say from Alice to Bob.<br />

Classical channel Transmits bidirecti<strong>on</strong>ally.<br />

We will present the BB84 Protocol, without and with noise.<br />

Morales-Luna (CINVESTAV) QC <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>Tensor</strong> <strong>Products</strong> 5-th Int. WS App. Cat. Th. 31 / 38


<str<strong>on</strong>g>Quantum</str<strong>on</strong>g> computing elements<br />

E0 = {e0 = (1, 0), e0 = (0, 1)}: can<strong>on</strong>ical basis of H1<br />

0 1<br />

H(E 0 ) = E1 = {e1, e1<br />

0 1 }: basis of H1 obtained by applying Hadamard’s<br />

operator to E0 .<br />

E0 corresp<strong>on</strong>ds to a spin with vertical–horiz<strong>on</strong>tal polarizati<strong>on</strong>, E0 = {↑, →},<br />

while<br />

E1 corresp<strong>on</strong>ds to a spin with oblique or NW–NE polarizati<strong>on</strong>,<br />

E1 = {↖, ↗}.<br />

The same sequence of qubits can be measured either w.r.t. to E0 or E1 .<br />

An eavesdropper can be detected quite directly!<br />

This is characteristic of <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> Cryptography.<br />

Morales-Luna (CINVESTAV) QC <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>Tensor</strong> <strong>Products</strong> 5-th Int. WS App. Cat. Th. 32 / 38


Agenda<br />

1 Abstract<br />

2 Overview of the whole course<br />

3 References<br />

4 Hilbert Spaces<br />

5 Functi<strong>on</strong> Evaluati<strong>on</strong><br />

6 Deutsch-Jozsa’s Algorithm<br />

7 <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> Computati<strong>on</strong> of the Discrete Fourier Transform<br />

8 Shor Algorithm<br />

9 <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> Cryptography<br />

10 Communicati<strong>on</strong> Complexity<br />

Morales-Luna (CINVESTAV) QC <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>Tensor</strong> <strong>Products</strong> 5-th Int. WS App. Cat. Th. 33 / 38


Communicati<strong>on</strong> Complexity<br />

The complexity of a communicati<strong>on</strong> process is determined by the minimum<br />

informati<strong>on</strong> quantity that should be transmitted, in order that the total<br />

informati<strong>on</strong> can be recovered by the receiving part, within a given c<strong>on</strong>text.<br />

Optimal Transmissi<strong>on</strong><br />

Let us assume that three sets X, Y, Z are given and a functi<strong>on</strong><br />

f : X × Y → Z. At some moment, Alice, who is a communicating part,<br />

possesses a point x ∈ X, Bob, who is a sec<strong>on</strong>d part, possesses a point<br />

y ∈ Y and both parts should calculate z = f(x, y), by interchanging the<br />

minimum informati<strong>on</strong> quantity.<br />

Morales-Luna (CINVESTAV) QC <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>Tensor</strong> <strong>Products</strong> 5-th Int. WS App. Cat. Th. 34 / 38


Identity Checking<br />

Exact and obvious method<br />

If f : (x, y) ↦→ χ=(x, y) is the characteristic functi<strong>on</strong> of the identity relati<strong>on</strong>:<br />

f(x, y) = 1 if and <strong>on</strong>ly if x = y,<br />

then Alice and Bob should interchange n bits to calculate f(x, y).<br />

n is exp<strong>on</strong>ential with respect to its size!<br />

Morales-Luna (CINVESTAV) QC <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>Tensor</strong> <strong>Products</strong> 5-th Int. WS App. Cat. Th. 35 / 38


An interesting questi<strong>on</strong> is whether an exact algorithm can be obtained with<br />

logarithmic complexity.<br />

The following theorem excludes the possibility to communicate more than<br />

k (classical) bits of informati<strong>on</strong> by transmitting k qubits.<br />

Holevo’s Theorem<br />

The informati<strong>on</strong> quantity recovered from a register of qubits is upperly<br />

bounded by the value of v<strong>on</strong> Neumann’s entropy, which is bounded by<br />

Shann<strong>on</strong>’s entropy. Both entropies coincide whenever the qubits are<br />

pairwise orthog<strong>on</strong>al.<br />

However, in <str<strong>on</strong>g>Quantum</str<strong>on</strong>g> <str<strong>on</strong>g>Computing</str<strong>on</strong>g> the use of the noti<strong>on</strong> of entangled states<br />

improves the communicati<strong>on</strong> complexities of several procedures.<br />

Morales-Luna (CINVESTAV) QC <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>Tensor</strong> <strong>Products</strong> 5-th Int. WS App. Cat. Th. 36 / 38


Deutsch-Josza Relati<strong>on</strong><br />

Pseudotelepathy Game<br />

Given four sets X, Y, A and B, a relati<strong>on</strong> R ⊂ X × and × A × B, and the<br />

fact that Alice and Bob are separated, far from each other, at a given<br />

moment Alice receives a point x ∈ X, Bob a y ∈ Y and they, trying to<br />

interchange the minimum informati<strong>on</strong>, should produce, respectively, a ∈ A<br />

and b ∈ B such that (x, y, a, b) ∈ R.<br />

Morales-Luna (CINVESTAV) QC <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>Tensor</strong> <strong>Products</strong> 5-th Int. WS App. Cat. Th. 37 / 38


In particular, for n = 2 k a power of 2, X = {0, 1} n = Y, A = {0, 1} k = B<br />

R is Deutsch-Josza relati<strong>on</strong><br />

(x, y, a, b) ∈ R ⇔<br />

�<br />

(Hn(x, y) = 0 ∧ a = b) ∨<br />

�<br />

Hn(x, y) � 0, n<br />

��<br />

2<br />

�<br />

Hn(x, y) = n<br />

2<br />

�<br />

∧ a � b<br />

If the points x and y of Alice and Bob coincide, then the sequences<br />

that they produce should coincide<br />

If x and y differ exactly in half of the bits, then the produced<br />

sequences should differ<br />

In any other case no restricti<strong>on</strong>s <strong>on</strong> produced sequences<br />

Morales-Luna (CINVESTAV) QC <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>Tensor</strong> <strong>Products</strong> 5-th Int. WS App. Cat. Th. 38 / 38<br />

∨<br />

(3)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!