21.09.2012 Views

MAFUND®

MAFUND®

MAFUND®

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

TECHNICAL DATA<br />

Dimensions: 500 x 250 x 25 mm<br />

Load: 2-20 N/cm² ≈ 0,2-2 kp/cm²<br />

in special cases<br />

40 N/cm² ≈ 4 kp/cm²<br />

TECHNICAL MATTERS<br />

The <strong>MAFUND®</strong>-Pad consists of a<br />

permanently resistant elastic special material<br />

with correspondingly proportioned air ducts.<br />

The dimensioning of the <strong>MAFUND®</strong>-Pad<br />

depends on the excitation frequency to be<br />

isolated. The diagram in Fig. 4 gives<br />

information about the resonant frequencies of<br />

the <strong>MAFUND®</strong>-Pad in dependence on the<br />

specific loading pressure. It shows relatively<br />

low resonant frequencies under various<br />

loadings. That is the reason why the<br />

<strong>MAFUND®</strong>-Pad is useable for a wide range of<br />

excitation frequencies.<br />

The relation between frequency ratio<br />

L=/f o - (f = excitation frequency, f o = resonant<br />

frequency) - and the degree of isolation is<br />

shown in Fig. 5 It is evident, that an isolation<br />

effect occurs only starting from a tuning ratio<br />

f/f o > 2. In this case we speak of an<br />

"overcritical" support.<br />

In case of an "undercritical" support -<br />

f/f o < 2 - there is no isolation effect for the<br />

basic frequency - number of revolutions of the<br />

machine - to be expected. As the sound<br />

frequencies are mostly much higher than the<br />

basic frequency - number of oscillatory Im<br />

pulses = excitation frequency - it is obvious.<br />

that also in case of "undercritical" support a<br />

good noise isolation can be obtained. If we<br />

consider, that forces and momentums due to<br />

the mass cause a great number of harmonic<br />

vibrations, it is explicable that even in case of<br />

an "undercritical" support a isolation effect is<br />

achieved, because thus amplitudes of the<br />

excitation frequencies, so to peak, are cut off.<br />

MAFUND ®<br />

Static module of<br />

elasticity: E st = 324 N/cm² ≈ 33 kp/cm²<br />

Dynamic module of<br />

elasticity: E d = 441 N/cm² ≈ 45 kp/cm²<br />

Springing: see Load deflection curve Fig.3<br />

Resonant frequency: see curves Fig. 4<br />

Temperature range: -20°C to +80°C<br />

Standard weight: ≈ 3 kp<br />

1 Newton (N) = 0,102 kp<br />

Fig. 3<br />

Load deflection curve of the <strong>MAFUND®</strong>-Pad<br />

Deflection in mm<br />

5<br />

4,5<br />

4<br />

3,5<br />

3<br />

2,5<br />

2<br />

1,5<br />

1<br />

0,5<br />

5 10 15 20 25 30 35 40 45 50<br />

Fig. 4<br />

Resonant frequencies of the <strong>MAFUND®</strong>-Pad<br />

Resonant frequency f o in Hz<br />

24<br />

23<br />

22<br />

21<br />

20<br />

19<br />

18<br />

17<br />

16<br />

15<br />

14<br />

13<br />

12<br />

11<br />

1 Layer<br />

10<br />

9<br />

8<br />

2 Layer<br />

7<br />

3 Layer<br />

6<br />

5<br />

4<br />

4 Layer<br />

3<br />

2<br />

1<br />

0 5 10 15 20 25 30 35 40 45 50 55 60<br />

Loading in N/cm²<br />

Fig. 5<br />

Degree of isolation in dependence to the<br />

relation of frequencies<br />

Oscillation isolation (dB)<br />

25<br />

24<br />

23<br />

22<br />

21<br />

20<br />

19<br />

18<br />

17<br />

16<br />

15<br />

14<br />

13<br />

12<br />

11<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

1,5 1,7 1,9 2,2 2,6 3 3,5 4 4,5 5 6 7<br />

Ratio of frequencies λ = f<br />

f o<br />

94,4<br />

93,7<br />

93<br />

92<br />

91<br />

90<br />

89<br />

87,5<br />

86<br />

84<br />

82<br />

80<br />

78<br />

75<br />

72<br />

68<br />

64<br />

60<br />

55<br />

50<br />

44<br />

37<br />

29<br />

21<br />

11<br />

Degree of isolation (%)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!