22.12.2012 Views

Self-Assembled Monolayers of Long-Chain Hydroxamic Acids on ...

Self-Assembled Monolayers of Long-Chain Hydroxamic Acids on ...

Self-Assembled Monolayers of Long-Chain Hydroxamic Acids on ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

copyright o reeb by the A-""i"""TflJili'""i ff#tfl1TYJh133t;j1p""-i..i<strong>on</strong> or the copyright owner.<br />

<str<strong>on</strong>g>Self</str<strong>on</strong>g>-<str<strong>on</strong>g>Assembled</str<strong>on</strong>g> <str<strong>on</strong>g>M<strong>on</strong>olayers</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>L<strong>on</strong>g</str<strong>on</strong>g>-<str<strong>on</strong>g>Chain</str<strong>on</strong>g> <str<strong>on</strong>g>Hydroxamic</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Acids</str<strong>on</strong>g> <strong>on</strong> the Native Oxides <str<strong>on</strong>g>of</str<strong>on</strong>g> Metalsl<br />

John P. Folkers, Christopher B. Gorman, Paul E. Laibinis, Stefan Buchholz, and<br />

George M. Whitesides*<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Chemistry, Haruard Uniuersity, Cambridge, Massachusetts 02138<br />

Ralph G. Nuzzo*<br />

Departments <str<strong>on</strong>g>of</str<strong>on</strong>g> Materials Science and Engineering and Chemistry, Uniuersity <str<strong>on</strong>g>of</str<strong>on</strong>g> lllinois,<br />

Urbana-Champaign, (Irbana, Illinois 61801<br />

Receiued September 79, 1994e<br />

<str<strong>on</strong>g>L<strong>on</strong>g</str<strong>on</strong>g>-chain alkanehydroxamic acids adsorb <strong>on</strong> the native oxides <str<strong>on</strong>g>of</str<strong>on</strong>g> metals and formed oriented selfassembled<br />

m<strong>on</strong>olayers (SAMs). This study examined SAMs <str<strong>on</strong>g>of</str<strong>on</strong>g> hydroxamic acids <strong>on</strong> the native oxides <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

copper, silver, titanium, aluminum, zirc<strong>on</strong>ium, and ir<strong>on</strong>. These SAMs were characterized usingwettability,<br />

X-ray photoelectr<strong>on</strong> spectroscopy (XPS), and polarized infrared external reflectance spectroscopy (PIERS).<br />

Alkanehydroxamic acids give better m<strong>on</strong>olayers than the corresp<strong>on</strong>ding alkanecarboxylic acids <strong>on</strong> certain<br />

basic metal oxides (especially copper(Il) oxide). On the native oxide <str<strong>on</strong>g>of</str<strong>on</strong>g> copper (which has an isoelectric<br />

point greater than the pK" <str<strong>on</strong>g>of</str<strong>on</strong>g> the hydroxamic acid), the ligand is bound to the surface predominantly as<br />

the hydroxamate. The strength <str<strong>on</strong>g>of</str<strong>on</strong>g> the interacti<strong>on</strong> between copper oxide and the hydroxamate allows<br />

incorporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> polar tail groups into the m<strong>on</strong>olayer. On acidic or neutral metal oxides (e.g., TiO2), the<br />

predominant species bound to the surface is the hydroxamic acid. Alkanehvdroxamic acids <strong>on</strong> titanium<br />

dioxide bind relatively weakly but. n<strong>on</strong>etheless. form SAlts that are more stable than those from carboxylic<br />

acids (although not as stable as those from alkanephosph<strong>on</strong>ic acids r.<br />

Introducti<strong>on</strong><br />

We have examined the properties <str<strong>on</strong>g>of</str<strong>on</strong>g> self-assembled<br />

m<strong>on</strong>olayers (SAMs) obtained by the adsorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>gchain<br />

alkanehydroxamic acids (general formula CHs-<br />

(CHz),CONHOH) <strong>on</strong>to the native oxides <str<strong>on</strong>g>of</str<strong>on</strong>g> freshly evaporated<br />

frlms <str<strong>on</strong>g>of</str<strong>on</strong>g> copper, silver, titanium, aluminum, zirc<strong>on</strong>ium,<br />

and ir<strong>on</strong> and have compared these SAMs to others<br />

comm<strong>on</strong>ly used with these substrates. We have used<br />

wettability, X-ray photoelectr<strong>on</strong> spectroscopy (XPS ), and<br />

polarized infrared externai reflectance spectroscopy<br />

(PIERS) in characterizingthese m<strong>on</strong>olayers. We c<strong>on</strong>clude<br />

that m<strong>on</strong>olayers <str<strong>on</strong>g>of</str<strong>on</strong>g> alkanehydroxamic acids (or their<br />

ani<strong>on</strong>s) are more stable than m<strong>on</strong>olayers obtained by the<br />

adsorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> carboxylic acids <strong>on</strong> all <str<strong>on</strong>g>of</str<strong>on</strong>g> the surfaces<br />

(especially copper oxide and silver oxide), but they are<br />

less stable than m<strong>on</strong>olayers obtained by the adsorpti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> alkanethiols to copper or silver.<br />

Of the many systems available for the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> selfassembled<br />

m<strong>on</strong>olayers, m<strong>on</strong>olayers obtained by the chemisorpti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> alkanethiols <strong>on</strong>to gold and silver,2 a m<strong>on</strong>olayers<br />

obtained by the hydrolysis and polymerizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> alkyl<br />

trichlorosilanes <strong>on</strong>to hydrated surfaces,5'6 and m<strong>on</strong>olayers<br />

obtained by the adsorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> carboxylic acidsT-ls or<br />

phosph<strong>on</strong>ic acidslG <strong>on</strong>to metal oxides have been the most<br />

8 Abstract published in Aduance ACS Abstrocls, January 15,<br />

1995.<br />

(1) This research was supported in part by the Office <str<strong>on</strong>g>of</str<strong>on</strong>g> Naval<br />

Research and the Advanced Research Projects Agency (ARPA). XPS<br />

spectra were obtained using instrument facilities purchased under the<br />

ARPAruRI program and maintained by the Harvard University<br />

Materials Research Laboratory. S.B. acknowledges a grant from the<br />

Studienstiftung des deutschen Volkes (BASF-Forschungsstipendium ).<br />

R.G.N. acknowledges support from the Nati<strong>on</strong>al Science Foundati<strong>on</strong><br />

(cHE-930095).<br />

(2) Nuzzo, R. G.; Allara, D. L. J. Am. Chem. Soc. 1983, 105,4481-<br />

4483. Porter, M. D.; Bright, T. B.;Allara, D. L.; Chidsey, C. E. D. J.<br />

Am. Chem. Soc. 1987, 109, 3559-3568. Bain, C. D.;Trought<strong>on</strong>, E. B.;<br />

Tao, Y.-T.; Evall, J.; Whitesides, G. M.; Nuzzo, R. G. J. Am. Chem. Soc.<br />

1989,111,321-335.<br />

(3) Walczak, M.M.;Chung, C.;Stole, S. M.;Widrig, C.A.;Porter, M.<br />

D. J. Am. Chem. Soc. 1991. 113. 2370-2378.<br />

( 4) Laibinis, P. E. ; Whitesides, G. M.; Allara, D. L. ; Tao, Y.-T. ; Parikh,<br />

A.N.; Nuzzo, R. G. J. Am. Chem. Soc. 1991, 113,7152-7767.<br />

813<br />

thoroughly studied.l; SAMs <str<strong>on</strong>g>of</str<strong>on</strong>g> alkanethiolates <strong>on</strong> gold<br />

and silver are generally the most useful in scientific<br />

applicati<strong>on</strong>s,l8 because <str<strong>on</strong>g>of</str<strong>on</strong>g> their stability and because the<br />

specificity <str<strong>on</strong>g>of</str<strong>on</strong>g> coordinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the sulfur atom to the metal<br />

allows polar groups c<strong>on</strong>taining oxygen and nitrogen to be<br />

incorporated into the SAM.2'|1're<br />

Alkanethiols do not adsorb, however, to the surfaces <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

many metal oxides.20 Carboxylic acids and phosph<strong>on</strong>ic<br />

acids adsorb, but the adsorpti<strong>on</strong> can be weak.7-16 These<br />

07 43-74631951241I-0813$09.00/0 @ 1995 American Chemical Society<br />

. ('hen. Srrr'. 1980. 102.92*98. Netzer L.; Sagiv,<br />

1983. 105. 671- 676. Moaz, R.:Sae-tv, J.J.Colloid<br />

t00.165 496.<br />

S, R : Tao. \'.-T.: Whitesrdes, G. M. Langmuir 1989,<br />

D. Chem. Phys. Lett. 1990. 167. 198-


814 Langmuir, Vol. 11, No. 3, 1995<br />

systems also cannot be used to incorporate polar groups<br />

into a m<strong>on</strong>olayer.ll Phosph<strong>on</strong>ic acids have large head<br />

groups and can be inc<strong>on</strong>venient to synthesize.<br />

We have examined hydroxamic acids (1) as an alternative<br />

to carboxylic acids (3) for self-assembled m<strong>on</strong>olayers<br />

<strong>on</strong> the surfaces <str<strong>on</strong>g>of</str<strong>on</strong>g> metal oxides because their complexati<strong>on</strong><br />

c<strong>on</strong>stants with metal i<strong>on</strong>s in aqueous soluti<strong>on</strong> are several<br />

orders <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude larger than those <str<strong>on</strong>g>of</str<strong>on</strong>g>carboxylic acids2l<br />

and because they have similar sizes. Synthesis <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>gchain<br />

hydroxamic acids is also straightforward.22'23<br />

O O-'M<br />

tt - ' \ o<br />

When complexed to a single metal i<strong>on</strong> in soluti<strong>on</strong>, the<br />

greater stability <str<strong>on</strong>g>of</str<strong>on</strong>g> complexQs with hydroxamate relative<br />

to those with carboxylate reflects the larger bite size <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the hydroxamate, which forms five-member chelate rings<br />

with metal i<strong>on</strong>s (2t. Inc<strong>on</strong>trast, carboxyiate forms either<br />

strained. four-member chelate rings (4t or m<strong>on</strong>odentate<br />

species.rl r; We had hoped that this difference in binding<br />

c<strong>on</strong>stants in soluti<strong>on</strong> would also be reflected in the strength<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> binding <str<strong>on</strong>g>of</str<strong>on</strong>g> hydroxamic acids to the i<strong>on</strong>s <strong>on</strong> the surface<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a metal oxide. In fact, although hydroxamic acids do<br />

form more stable m<strong>on</strong>olayers than carboxylic acids, they<br />

seem to use <strong>on</strong>ly <strong>on</strong>e oxygen atom for coordinati<strong>on</strong>.<br />

Results<br />

F.r't<br />

# f-ot *Af.o ,Ao, ,Ad"<br />

HH<br />

1234<br />

Synthesis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Hydroxamic</str<strong>on</strong>g> <str<strong>on</strong>g>Acids</str<strong>on</strong>g>. The l<strong>on</strong>g-chain,<br />

methyl-terminated hydroxamic acids were synthesized<br />

by reacting the corresp<strong>on</strong>ding acid chloride and Obenzylhydroxylamine,<br />

followed by removal <str<strong>on</strong>g>of</str<strong>on</strong>g> the benzyl<br />

group by catalytic hydrogenati<strong>on</strong> over palladium <strong>on</strong> carb<strong>on</strong><br />

(Scheme 1).22 The hvdroxvl-terminated hvdroxamic acid<br />

r 18 r Applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> thiols <strong>on</strong> gold and silver: Chidsey, C. E. D. Science<br />

r\\'oshrngt<strong>on</strong>. D.Cl.r 1991. 251.9I9 922. Hickman, J. J.; Ofer, D.;<br />

Laibinis. P. E.: \\'hitesides. G. !I.:Wright<strong>on</strong>, M. S. Science(Washingt<strong>on</strong>.<br />

D.('., 1991. 252. 688 691. Prime, K. L.; Whitesides, G. M. Science<br />

r l|'os ht rtgtLtrt. D.C ., 1991. 252. 1164- 1 167. Joyce, S. A. ; Houst<strong>on</strong>, J. E.;<br />

)Iichalske. T. A. App/. Pht's. Lett. 1992,60,lI75-7177. Kumar, A.;<br />

Biebuvck. H. A.: Abbott. N. L.; Whitesides, G. M. J. Am. Chem. Soc.<br />

1992. 11J. 9188 9189. Abbott, N. L.; Folkers, J. P.;Whitesides, G. M.<br />

Science rV'ashingt<strong>on</strong>, D.C.) 1992,258,1380-1382. Ross, C. B.; Sun,<br />

L.: Clrooks. R. *-1. Langmuir 1993,9, 632-636. L6pez, G. L.; Biebuyck,<br />

H. A. : Frisbie. C. D. ; Whitesides, G. M. Science ( Washingt<strong>on</strong>, D.C.) 1993,<br />

260.647 619. Lopez, G. L.; Albers, M. W.; Schreiber, S. L.; Carrol, R.<br />

W.:Peralta. E.: Whitesides, G. M. J.Am.Chem. Soc. 1993, 115,5877-<br />

5878. Kumar. A.; Whitesides, G. M. Appl. Phys. Lett. 1993, 63, 2002<br />

2004.<br />

t 19 t Nuzzo, R. G.; Zegarski, B. R.; Dubois, L. H. J. Am. Chem. Soc.<br />

1987. 109, 733-740.<br />

r20r The excepti<strong>on</strong>s being copper oxide, silver oxide, and possibly<br />

other s<str<strong>on</strong>g>of</str<strong>on</strong>g>t metal oxides such as those <strong>on</strong> platinum, zinc, and lead. For<br />

studies <strong>on</strong> the removal the native oxides from copper and silver using<br />

alkanethiols, see ref 4 and Laibinis, P. E.; Whitesides, G.M. J. Am.<br />

Chem. Soc. 1992, 114.9022-9028.<br />

t21 i Martell, A. E.; Smith, R.M. Critical Stability C<strong>on</strong>stants; Plenum<br />

Press: New York, 1977; Vol. 3. For comparis<strong>on</strong>, the binding c<strong>on</strong>stants<br />

for acetohydroxamate with Fe3* and Al3* in aqueous soluti<strong>on</strong> are 2.6<br />

x 101r and 8.9 x 107 M r, respectively, and the binding c<strong>on</strong>stants for<br />

acetate with Fe3* andAl3* are2.4 x 103 and 3.2 x 10t M 1, respectively.<br />

t22t Hearns, M. T. W.; Ward, A. D. Ausl. J. Chem.1969,22,16l*<br />

173. Rowe, J. E.: Ward, A. D. Aust. J. Chem. 1968,21,2761- 2767.<br />

Fujii, T.; Hatanaka, Y. Tetrahedr<strong>on</strong> 1973,29,3825-383L. Sun, Y.;<br />

Martell, A. E.; Motekaitis, R. J. Inorg. Chem. 1985,24, 4343-4350.<br />

( 23 ) Karunatne, V. ; Hoveyda, H. R. ; Orvig, C. Tetrahedr<strong>on</strong> Lett. L992,<br />

,33. 1827- 1830.<br />

(24) Cott<strong>on</strong>, F. A.; Wilkins<strong>on</strong>, G. Adua nced Inorganic Chemistry, Sth<br />

Ed.; Wiley-Interscience: New York, 1988.<br />

{25) Entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> (due to chelati<strong>on</strong>) is the dominant factor<br />

rn the str<strong>on</strong>g binding between hydroxamic acids and discrete metal<br />

i<strong>on</strong>s in aqueous soluti<strong>on</strong>. The enthalpies <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> for these<br />

complexes in water tend to be small and positive. For examples, see<br />

ref 2 1 and M<strong>on</strong>zyk, B.; Crumbliss, A. L. J . Am. Chem. Soc . 1979, 101 ,<br />

6203-62L3.<br />

Folkers et al.<br />

Scheme 1. Synthesis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Hydroxamic</str<strong>on</strong>g> <str<strong>on</strong>g>Acids</str<strong>on</strong>g><br />

cH3(cH2)^coc, -<br />

"r*oP<br />

Ho{cH2}lscooH * H2NoJ<br />

l-\<br />

----_ cH'{cH2)^coN ^.p<br />

oo<br />

EDC > Ho{CH2t,"CoNroJ<br />

Y H2,Pd<br />

R(CH2).CONHO --l ---+ R(CH2).CONHOH<br />

R = CHs, OH<br />

was slmthesized using 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide<br />

(EDC) to couple the benzyl-protected<br />

hydroxylamine to 16-hydroxyhexadecanoic acid.23 The<br />

same deprotecti<strong>on</strong> scheme was used for this compound.<br />

Preparati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Substrates and<str<strong>on</strong>g>M<strong>on</strong>olayers</str<strong>on</strong>g>. MetaV<br />

metal oxide substrates were prepared by electr<strong>on</strong>-beam<br />

evaporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 600-1000 A <str<strong>on</strong>g>of</str<strong>on</strong>g> the pure metal <strong>on</strong>to silic<strong>on</strong><br />

wafers that had been precoated with 50 A <str<strong>on</strong>g>of</str<strong>on</strong>g> titanium as<br />

an adhesi<strong>on</strong> promoter. The samples were exposed to air<br />

up<strong>on</strong> removal from the chamber. because we were<br />

interested in studf ing the adsorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>olayers to<br />

the native oxides <str<strong>on</strong>g>of</str<strong>on</strong>g> the metals. In this paper, instead <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

writing "metaVmetal oxide" for each reference to a<br />

substrate with a native oxide, we will refer to them simply<br />

as the metal oxide. The oxidati<strong>on</strong> states <str<strong>on</strong>g>of</str<strong>on</strong>g> the metal in<br />

the native oxides are given in Table 1 and the Experimental<br />

Secti<strong>on</strong>.<br />

Soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> alkanehydroxamic acids and other adsorbates<br />

were prepared in either isooctane or ethanol and<br />

were not degassed. The nominal c<strong>on</strong>centrati<strong>on</strong> in each <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the soluti<strong>on</strong>s was 1 mM, although most <str<strong>on</strong>g>of</str<strong>on</strong>g> the hydroxamic<br />

acids were not soluble in isooctane to this extent.<br />

Substrates were left in soluti<strong>on</strong> for 1 to 2 days at room<br />

temperature. After removal from soluti<strong>on</strong>, the samples<br />

were rinsed with heptane and ethanol and then dried in<br />

a stream <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen.<br />

C<strong>on</strong>tact Angles <strong>on</strong> <str<strong>on</strong>g>M<strong>on</strong>olayers</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Hydroxamic</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Acids</str<strong>on</strong>g>. Table 1 summarizes advancing and receding<br />

c<strong>on</strong>tact angles <str<strong>on</strong>g>of</str<strong>on</strong>g> rvater and hexadecane <strong>on</strong> m<strong>on</strong>olayers<br />

obtained by the adsorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> octadecanehydroxamic acid,<br />

stearic acid, octadecanephosph<strong>on</strong>ic acid, and 16-hydroxyhexadecanehydroxamic<br />

acid <strong>on</strong> the six substrates surveyed<br />

in this study. We also present c<strong>on</strong>tact angles for m<strong>on</strong>olayers<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> octadecanethiolate <strong>on</strong> copper. silver, and gold<br />

for comparis<strong>on</strong>, and c<strong>on</strong>tact angles for surfaces obtained<br />

after attempting adsorpti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the hydroxamic acid <strong>on</strong>to<br />

gold. For c<strong>on</strong>sistency, all <str<strong>on</strong>g>of</str<strong>on</strong>g> the data in Table 1 were taken<br />

duringthis study, although several <str<strong>on</strong>g>of</str<strong>on</strong>g> these systems have<br />

been studied previously.'2 1;<br />

The presence <str<strong>on</strong>g>of</str<strong>on</strong>g> a closest-packed, methyl-terminated<br />

m<strong>on</strong>olayeris <str<strong>on</strong>g>of</str<strong>on</strong>g>ten indicated by an advancing c<strong>on</strong>tact angle<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> water (surface tensi<strong>on</strong> Tyv -- 72 mJlm2 at 25 oQ;2ti 2s<br />

above 110o, and an advancingc<strong>on</strong>tact angle <str<strong>on</strong>g>of</str<strong>on</strong>g>hexadecane<br />

(yr": 27 mJlm2)26 28 above 45".2 6'8'15 Nthough c<strong>on</strong>tact<br />

angles do not provide any structural informati<strong>on</strong> about<br />

m<strong>on</strong>olayers, they are useful as indicators <str<strong>on</strong>g>of</str<strong>on</strong>g> their quality.<br />

A low value <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tact angle, relative to a structurally<br />

well-characterized system such as alkanethiolates <strong>on</strong> gold,<br />

indicates disorder (and/or lower coverage) in the m<strong>on</strong>o-<br />

(26)Jasper, J. J.,J. Phys. Chem. Ref. Data 1972, 1,841-1009.<br />

(27 ) Cognard, J. J. Chim. Phys. 1987 , 84, 357 -362, and references<br />

therein.<br />

(28) These two probe liquids can provide different informati<strong>on</strong> about<br />

the surfaces, because the origins <str<strong>on</strong>g>of</str<strong>on</strong>g>their surface tensi<strong>on</strong>s are different.<br />

The surface tensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> water is dominated by its polar comp<strong>on</strong>ent (;'Lr,.pornr<br />

= 50 mJ/m2), and the surface tensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hexadecane originates entirely<br />

from disnersive interacti<strong>on</strong>s.2T


SAMs <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Hydroxamic</str<strong>on</strong>g> <str<strong>on</strong>g>Acids</str<strong>on</strong>g><br />

Langrnuir, Vol. 17, No. 3, 1995 815<br />

Table 1, Advancing and Recedidg C<strong>on</strong>tact Angles <str<strong>on</strong>g>of</str<strong>on</strong>g> Water and Ileradecane (HD) <strong>on</strong> <str<strong>on</strong>g>M<strong>on</strong>olayers</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Octadecanehydroxamic Acid Stearic Acid, Octadecanephosph<strong>on</strong>ic Acid, l6-Hydroryhexadecanehydroramic Acid, and<br />

Octadecanethiol <strong>on</strong> Copper, Silver, Titaniun, Zirc<strong>on</strong>ium, Ir<strong>on</strong>, Aluninum, and Gold"<br />

c<strong>on</strong>tact angles <strong>on</strong> various SAMs (advancing,receding)/deg<br />

isooctaneb<br />

ethanolh<br />

metal adsorbate Hzo HD HzO HD<br />

Cr-r/Cu(II)<br />

Ag/Ag{II)<br />

Ti/Ti(IV)<br />

AVAI(III)<br />

ZrlZriYl<br />

Fe,FerIII t<br />

Au<br />

cHs(cHz)rocoNHoH<br />

CHr(CHz)r6COOH<br />

CHr(CHz)r;POsHz<br />

CH;r(CHz )r;SH<br />

HO(CHz)TsCONHOH<br />

CHs(CHzhsCONHOH<br />

CHe(CHz)raCOOH<br />

CHs(CHz)rzPOsHz<br />

CHs(CHz)rrSH<br />

HO(CHz)TsCONHOH<br />

cHe(cHz)r6coNHoH<br />

CH:(CHz)raCOOH<br />

CH:r(CHz)rzPOgHz<br />

HO(CHz)TsCONHOH<br />

CHs(CHz)ToCONHOH<br />

CH:(CHz)raCOOH<br />

CHr(CHz)r;POsHz<br />

HO(CHz)TsCONHOH<br />

CH3(CH2 )T6CONHOH<br />

CH rt CH: )r oCOOH<br />

CH3tf 11, r1 ,PO,IH:<br />

HO,CH: r;CONHOH<br />

CH,r{CH: rre CONHOH<br />

CHsrf [1,rr.;COOH<br />

CH:tr CH: ,1;POrtH:<br />

HOtCH2 )T5CONHOH<br />

CH3tQ11, )T6CONHOH<br />

CH;t CHz )r;SH<br />

114.104<br />

113, 107<br />

115,98<br />

79,40<br />

113, 104<br />

113,107<br />

115, 103<br />

82, 50<br />

115,105<br />

107 ,71<br />

115, 100<br />

83, 60<br />

113, 104<br />

113, 105<br />

115,104<br />

49.29<br />

123, 99<br />

r22.100<br />

123.100<br />

1j]5.95<br />

1;16. S-1<br />

l3;.9;<br />

;9. jl-l<br />

106. 87<br />

47. 1r<br />

49. .1,1<br />

43. 35<br />

0.0<br />

51, 46<br />

52,47<br />

46,2:<br />

0,0<br />

46.42<br />

45,37<br />

42,36<br />

0,0<br />

.1 A- ,t,1<br />

,. ar<br />

18.11<br />

,18. jlE<br />

o. i)<br />

JJ<br />

.);<br />

r: ')Q<br />

:ll. lrr<br />

l:i. 1 ;<br />

li. tt<br />

21. r,<br />

(). o<br />

22. tr<br />

11.1. 101<br />

11 1. 82<br />

112.76<br />

117.93<br />

')7 1')<br />

113. 102<br />

81.61<br />

82. 60<br />

113, 102<br />

68, 39<br />

110,85<br />

50, 15<br />

110,95<br />

77, 5r<br />

111, 93<br />

110,82<br />

113,83<br />

72,36<br />

123, 95<br />

116.75<br />

1 19. 75<br />

ir().20<br />

1rl1 . 90<br />

111. 65<br />

12-1. tr)<br />

8-1. 63<br />

115, 103<br />

49,4r<br />

46, 38<br />

29,0<br />

62,28<br />

22,0<br />

5r,44<br />

21,0<br />

0,0<br />

49,43<br />

0,0<br />

45,29<br />

0,0<br />

41, 36<br />

0,0<br />

46,40<br />

43, 35<br />

37, 0<br />

0,0<br />

43.22<br />

23,0<br />

23.0<br />

0.0<br />

31,16<br />

23. 0<br />

20. 0<br />

0.0<br />

49. 39<br />

n Metals were exposed to air and covered witl native oxides before exposure to soluti<strong>on</strong>s c<strong>on</strong>taining the ligands. t Soluti<strong>on</strong>s from which<br />

m<strong>on</strong>olavers wete formed. " Denotes that m<strong>on</strong>olavers were not made from these soluti<strong>on</strong>s.<br />

layer; a value comparable to that <str<strong>on</strong>g>of</str<strong>on</strong>g> the ordered system<br />

does not necessarily indicate the same structure or a<br />

corresp<strong>on</strong>ding degfee <str<strong>on</strong>g>of</str<strong>on</strong>g> order. Using c<strong>on</strong>tact angles, we<br />

can infer the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e type <str<strong>on</strong>g>of</str<strong>on</strong>g> SAM relative to others<br />

with analogous structures <strong>on</strong> the same metal, but not<br />

relative to SAMs <strong>on</strong> different metals, because the roughness<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the surfaces <str<strong>on</strong>g>of</str<strong>on</strong>g> the various metals differ.2e'3o To<br />

reduce the variati<strong>on</strong> in roughness <str<strong>on</strong>g>of</str<strong>on</strong>g> structures for a<br />

particular metal, all <str<strong>on</strong>g>of</str<strong>on</strong>g> the samples for each metal listed<br />

in Table 1 were taken from the same evaporati<strong>on</strong>; the<br />

<strong>on</strong>ly excepti<strong>on</strong>s were the m<strong>on</strong>olayer <str<strong>on</strong>g>of</str<strong>on</strong>g> HO(CHz)ro-<br />

CONHOH <strong>on</strong> silver oxide from ethanol and the two sets<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>olayers <strong>on</strong> ir<strong>on</strong> oxide. We infer from Table 1 that<br />

the quality <str<strong>on</strong>g>of</str<strong>on</strong>g>methyl-terminated SAMs obtained from each<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the three acids formed from isooctane is greater than<br />

that <str<strong>on</strong>g>of</str<strong>on</strong>g> SAMs formed from ethanol, since they have higher<br />

advancing c<strong>on</strong>tact angles and lower values <str<strong>on</strong>g>of</str<strong>on</strong>g>hysteresis.30<br />

Table 2 summarizes the decrease in c<strong>on</strong>tact angles <strong>on</strong><br />

changing the solvent for adsorpti<strong>on</strong> from isooctane to<br />

ethanol. We use these values as qualitative indicators <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the stability <str<strong>on</strong>g>of</str<strong>on</strong>g> the m<strong>on</strong>olayers by assuming that ethanol<br />

competes for polar sites <strong>on</strong> the surface but that isooctane<br />

(29) The substrates <str<strong>on</strong>g>of</str<strong>on</strong>g> zirc<strong>on</strong>ium/zirc<strong>on</strong>ium oxide and ir<strong>on</strong>/ir<strong>on</strong> oxide,<br />

as we had prepared them, were much rougher than the other metals:<br />

advancing c<strong>on</strong>tact angles and values <str<strong>on</strong>g>of</str<strong>on</strong>g>hysteresis in the c<strong>on</strong>tact angles<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> water were c<strong>on</strong>sistently higher for m<strong>on</strong>olayers <strong>on</strong> these substrates.30<br />

We have not investigated these substrates with the scanning probe<br />

microscope, and we are not able to quantitate their relative roughness.<br />

(30) Hysteresis in c<strong>on</strong>tact angles, although poorly understood, is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten<br />

attributed to the chemical heterogeneity or the roughness <str<strong>on</strong>g>of</str<strong>on</strong>g>an interface.<br />

Since we have attempted to c<strong>on</strong>trol the relative roughnesses <str<strong>on</strong>g>of</str<strong>on</strong>g> our<br />

substrates for a given metal, we interpret the increase in hysteresis as<br />

an increase in the chemical heterogeneity <str<strong>on</strong>g>of</str<strong>on</strong>g> the surfaces. For examples<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>experimental and theoretical studies <strong>on</strong> hysteresis, see: Joanny, J.<br />

F.; de Gennes, P. G. J. Chem. Phys.1984,81,552-562. de Gennes, P.<br />

G. Reu . Mod. Phys. 1985, 57, 827 - 863,and references therein. Schwartz,<br />

L. W.; Gar<str<strong>on</strong>g>of</str<strong>on</strong>g>f, S. Langmuir, 1985, 1.219-230. Chen, Y. L.; Helm, C.<br />

A.; Israelachvili, J. N. J. Phy.s. Chem. 199L, 95, 10736-1'0747.<br />

Table 2. Decrease in Advancing and Receding C<strong>on</strong>taet<br />

Angles <str<strong>on</strong>g>of</str<strong>on</strong>g> Water (AOHro) and Hexadecane (AOHD) <strong>on</strong><br />

Changing Solvent from Isooctane to Ethanol for<br />

Adsorpti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Octadecanehydroxamic Acid, Stearic<br />

Acid, and Octadecanephosph<strong>on</strong>ic Acid (adv'rec)a<br />

iCH 3t('H2 11,;CON HOH (CH3(CH2h6COOH (CH3(CHz)uPOsHz<br />

metalh .\(/ilr(' \Fi tII) a0H2o aoHD A{/H:o AOHI<br />

Cu<br />

_ _ h<br />

fi<br />

AI<br />

Zr<br />

.2. il<br />

-2. '2<br />

). 20<br />

.2. 1 I<br />

. \) 1<br />

-2. ' 2 .2,25 3, 6 3,22 14, ' 35'i<br />

' 2. .2 32.46 37, >-47 33, 43 >-46, >28<br />

. 2. 13 57. 56 >-45. >_37 5, 5


8i6 Langmuir, Vol. 11, No. 3, 1995<br />

that hydroxamic acids form m<strong>on</strong>olayers <str<strong>on</strong>g>of</str<strong>on</strong>g> even higher<br />

stability <strong>on</strong> this substrate: this inference remains to be<br />

tested by direct competiti<strong>on</strong>. Fortitanium oxide, we infer<br />

that the phosph<strong>on</strong>ic acid forms the most stable m<strong>on</strong>olayers.<br />

Hvdroxamic acids do not form closest-packed m<strong>on</strong>olavers<br />

<strong>on</strong> gold, although the measured c<strong>on</strong>tact angles<br />

indicate some partial layer is adsorbed from isooctane.<br />

The c<strong>on</strong>tact angles were <strong>on</strong>ly slightly lower than that<br />

expected for a methyl-terminated m<strong>on</strong>olayer, but results<br />

from X-ray photoelectr<strong>on</strong> spectroscopy (XPS) showed that<br />

the "m<strong>on</strong>olayer" was approximately 11 A thinner than a<br />

m<strong>on</strong>olayer <str<strong>on</strong>g>of</str<strong>on</strong>g>octadecanethiolate <strong>on</strong> gold.3l The adsorpti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> hydroxamic acids to gold presumably occurs by physisorpti<strong>on</strong><br />

<strong>on</strong> the high-energy gold surface,32 as gold does<br />

not form a stable oxide under ambient c<strong>on</strong>diti<strong>on</strong>s; we have<br />

not determined the structure <str<strong>on</strong>g>of</str<strong>on</strong>g> this layer.<br />

Adsorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> alkanethiols <strong>on</strong> copper modifies its surface<br />

more than does the adsorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> any <str<strong>on</strong>g>of</str<strong>on</strong>g>the acid adsorbates<br />

used in this study, as judged by the larger values <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

c<strong>on</strong>tact angle hysteresis measured. Since the compositi<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the interfaces present in the two m<strong>on</strong>olayer classes are<br />

similar, we attribute the differences in hysteresis to<br />

variati<strong>on</strong>s in the microscopic roughness <str<strong>on</strong>g>of</str<strong>on</strong>g>the interface.;r0<br />

This roughening is presumably a direct c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the removal <str<strong>on</strong>g>of</str<strong>on</strong>g> the native oxide <strong>on</strong> copper that occurs<br />

during the adsorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the alkanethiol, as has been<br />

shown byXPS.{ 2( The native oxide is not removed during<br />

the adsorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the three acid adsorbates.33 The<br />

adsorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> alkanethiols <strong>on</strong> the native oxide <str<strong>on</strong>g>of</str<strong>on</strong>g> silver<br />

does not roughen the surface in the same way, even though<br />

the thin native silver oxide layer is lost during the<br />

adsorpti<strong>on</strong>.4'34<br />

The hydroxyl-terminated hydroxamic acid formed incomplete<br />

m<strong>on</strong>olayers <strong>on</strong> most <str<strong>on</strong>g>of</str<strong>on</strong>g> the substrates studied<br />

here, with the single excepti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the m<strong>on</strong>olayer formed <strong>on</strong><br />

copper oxide by adsorpti<strong>on</strong> from ethanol. We expected to<br />

measure an advancing c<strong>on</strong>tact angle <str<strong>on</strong>g>of</str<strong>on</strong>g> water below 30"<br />

for a complete m<strong>on</strong>olayer <str<strong>on</strong>g>of</str<strong>on</strong>g> a hydroxy-terminated<br />

ligan6''r* 'r5<br />

the observed value is gu r 27' (Table 1). Most<br />

substrates gave advancing c<strong>on</strong>tact angles <str<strong>on</strong>g>of</str<strong>on</strong>g>water between<br />

50" and 80o, suggesting the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>polar groups<br />

at the interface and possibly some "looping" <str<strong>on</strong>g>of</str<strong>on</strong>g>the hydroxyl<br />

group to the surface. Similar loop structures have been<br />

observed by Allara et al. with a l<strong>on</strong>g-chain cr,a;-dicarboxylic<br />

acid adsorbate <strong>on</strong> several oxide surfaces.ll X-ray photoelectr<strong>on</strong><br />

spectroscopy showed that the mass coverages <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the hydroxyl-terminated hydroxamic acid m<strong>on</strong>olayers<br />

were 6- 10 A less than those <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>olayers <str<strong>on</strong>g>of</str<strong>on</strong>g> CH:(CHrlru-<br />

CONHOH (see below).<br />

When a m<strong>on</strong>olayer <str<strong>on</strong>g>of</str<strong>on</strong>g> the hydroxyl-terminated hydroxamic<br />

acid was formed <strong>on</strong> copper oxide by adsorpti<strong>on</strong> from<br />

ethanol, the advancing c<strong>on</strong>tact angle <str<strong>on</strong>g>of</str<strong>on</strong>g> water indicated<br />

t31 r A "thinner" or "shorter" m<strong>on</strong>olayer as determined by XPS implies<br />

incomplete formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the m<strong>on</strong>olayer. XPS is used to measure the<br />

attenuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a signal from a substrate as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the amount <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

h.l'drocarb<strong>on</strong> <strong>on</strong> that substrate; the thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> the m<strong>on</strong>olayer is then<br />

determined after making several assumpti<strong>on</strong>s about this piocess (see<br />

eqs 1-3 t.<br />

t32 t Weak physisorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> amphiphilic molecules such as dodecanol<br />

from soluti<strong>on</strong> <strong>on</strong>to gold has been previously observed; see: Yeo, Y. H.;<br />

NlcG<strong>on</strong>igal, G. C.; Yackoboski, K.; Guo, C. X.; Thoms<strong>on</strong>, D. J. J. Phys.<br />

Chent. f992, 96, 6110 6111.<br />

t33 t The hydroxamic acids probably to dissolve some copper l<strong>on</strong>s<br />

from the oxide: when SAMs <str<strong>on</strong>g>of</str<strong>on</strong>g> hydroxamic acids were formed <strong>on</strong> silver<br />

oxide from ethanolic soluti<strong>on</strong>s that had been used previously for copper<br />

oxide, copper was evident in the XPS, but samples <strong>on</strong> silver made from<br />

fresh soluti<strong>on</strong>s showed no copper (Folkers, J. P.; Whitesides, G. M.<br />

Unpubiished results).<br />

r34t Laibinis, P. E.; Whitesides, G. M. J. Am. Chem. Soc. lgg2. 1 14.<br />

1990 1995.<br />

t35t Bain, C. D.; Whitesides, G. M. J. Am. Chem. Soc. 1988. 110.<br />

6560 6561. Bain, C. D.; Evall, J.; Whitesides, G. M. J.Am. Chem. Soc.<br />

1989.111. 7155-7\64.<br />

Folkers et al.<br />

the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a well-defined hydrophilic structure. The<br />

advancing c<strong>on</strong>tact angle <str<strong>on</strong>g>of</str<strong>on</strong>g> hexadecane was n<strong>on</strong>zero; this<br />

value is c<strong>on</strong>sistent with the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a hydroxylterminated<br />

m<strong>on</strong>olayer, <strong>on</strong> which a thin, adsorbed layer <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

water prevents the spreading <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>tacting hydrocarb<strong>on</strong><br />

liquid.:r6 The measured thickness <str<strong>on</strong>g>of</str<strong>on</strong>g>this m<strong>on</strong>olayer<br />

was intermediate between that <str<strong>on</strong>g>of</str<strong>on</strong>g> films formed by<br />

CHg(CHz)IaCONHOH and CHs(CHz)ToCONHOH (see Figure<br />

3 and the accompanying text below), suggesting that<br />

the adsorpti<strong>on</strong> proceeds to high mass coverages in an<br />

isostructural manner. Solvent plays a very important<br />

role in this assembly, however. We found, for example,<br />

that the hydroxyl-terminated hydroxamic acid forms an<br />

incomplete m<strong>on</strong>olayer <strong>on</strong> copper oxide when adsorbed from<br />

isooctane (the coverage was less than 70Vc).<br />

C<strong>on</strong>tact Angles <strong>on</strong> <str<strong>on</strong>g>M<strong>on</strong>olayers</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Hydroxamic</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Acids</str<strong>on</strong>g> as a Functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Chain</str<strong>on</strong>g> Length. Figure 1<br />

presents c<strong>on</strong>tact angles <str<strong>on</strong>g>of</str<strong>on</strong>g>water and hexadecane <strong>on</strong> SAMs<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> hydroxamic acids with the general formula CHr-<br />

(CHz),CONHOH <strong>on</strong> the native oxides <str<strong>on</strong>g>of</str<strong>on</strong>g> copper, silver,<br />

titanium, and aluminum as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> n (the number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> methylene groups ). M<strong>on</strong>olal,'ers <strong>on</strong> copper oxide and<br />

titanium oxide were formed br- adsorpti<strong>on</strong> from both<br />

isooctane and ethanol: m<strong>on</strong>olavers <strong>on</strong> silver oxide and<br />

aluminum oxrde were formed <strong>on</strong>lv using isooctane as a<br />

solvent.<br />

The c<strong>on</strong>tact angles measured <strong>on</strong> copper oxide were<br />

independent <str<strong>on</strong>g>of</str<strong>on</strong>g> n and <str<strong>on</strong>g>of</str<strong>on</strong>g>the solvent used for the adsorpti<strong>on</strong>.<br />

These results suggestthat m<strong>on</strong>olayers <str<strong>on</strong>g>of</str<strong>on</strong>g>hydroxamic acids<br />

<strong>on</strong> copper oxide have high stability. The trend in the data<br />

was similar for the m<strong>on</strong>olayers <strong>on</strong> silver oxide prepared<br />

by adsorpti<strong>on</strong> from isooctane. On titanium oxide and<br />

aluminum oxide, little variati<strong>on</strong> was observed in the chain<br />

length dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>tact angles for SAMs formed<br />

by adsorpti<strong>on</strong> from isooctane for n > 10; below this chain<br />

length, the c<strong>on</strong>tact angles decreased and the hysteresis<br />

increased markedly. Binding <str<strong>on</strong>g>of</str<strong>on</strong>g> alkanehydroxamic acids<br />

to the surfaces <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminum oxide and ir<strong>on</strong> oxide thus<br />

appears to be u'eak. as judged by the ability <str<strong>on</strong>g>of</str<strong>on</strong>g> ethanol (or<br />

impurities such as rvater)to interfere with the formati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> high coverage m<strong>on</strong>olavers.<br />

The c<strong>on</strong>tact angles for the m<strong>on</strong>olayer with n : 15 <strong>on</strong><br />

silver oxide were significantlr'lower than those <str<strong>on</strong>g>of</str<strong>on</strong>g> the two<br />

even-carb<strong>on</strong> chain lengths adjacent to it. The observed<br />

decrease is not due to an incompletell'formed m<strong>on</strong>olayer<br />

(as c<strong>on</strong>firmed by XPS r. but seems to be due to a change<br />

in the structure <str<strong>on</strong>g>of</str<strong>on</strong>g> the methl'l gloups at the interface (see<br />

below). This result is similar to the "odd-even" effects<br />

in c<strong>on</strong>tact angles which have been observed previously<br />

for m<strong>on</strong>olayers <str<strong>on</strong>g>of</str<strong>on</strong>g> carboxt'lic acidslt and alkanethiolates<br />

<strong>on</strong> silver.3 We note, however. that the structural origins<br />

in the other examples may be very different from those<br />

which peftain here.<br />

Formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Mixed M<strong>on</strong>olayrs <strong>on</strong> Copper Oxide.<br />

We formed mixed m<strong>on</strong>olayers by the competitive adsorpti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> HO(CHz)r sCONHOH and CHs(CH2)r ICONHOH <strong>on</strong><br />

copper oxide (Figure 2). These data dem<strong>on</strong>strate that<br />

these mixed m<strong>on</strong>olayers can be used to tailor the wettability<br />

(and, by extrapolati<strong>on</strong>, other properties) <str<strong>on</strong>g>of</str<strong>on</strong>g> these<br />

surfaces and illustrate the utility <str<strong>on</strong>g>of</str<strong>on</strong>g> hydroxamic acids in<br />

forming complex organic surfaces <strong>on</strong> copper oxide without<br />

significantly roughening the surface. These materials<br />

thus may have a significant advantage for the modificati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>the surfaces over the previously described alkanethiolate<br />

SAMs.<br />

Relative Thicknesses <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>M<strong>on</strong>olayers</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Hydroxamic</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Acids</str<strong>on</strong>g> from X-ray Photoelectr<strong>on</strong> Spectroscopy<br />

(36) Adams<strong>on</strong>, A. Physical Chemistry <str<strong>on</strong>g>of</str<strong>on</strong>g>' Surfa


SAMs <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Hydroxamic</str<strong>on</strong>g> <str<strong>on</strong>g>Acids</str<strong>on</strong>g><br />

lsooctane: .6f,o o e:t,o r elo D elD<br />

Ethanol: .elt'o oel,o<br />

0.2<br />

-cos 0 -0.2<br />

0.2<br />

-cos 0 -0.2<br />

-0.6<br />

-1.0<br />

"el'o<br />

o;- -t- -c - -O o. C-<br />

f<br />

-B- 4- € 0 $-<br />

S- -F-<br />

{<br />

-<br />

- r. s-<br />

- -E- +- € + =<br />

._<br />

cr<br />

_o_ _. _<br />

: _<br />

--- -J - 't, :_<br />

F \-<br />

lAslagol<br />

-Il-<br />

-l - -l -t_-<br />

E<br />

L-F<br />

I-<br />

o<br />

o<br />

o<br />

T<br />

a<br />

a<br />

-<br />

o<br />

I<br />

!<br />

aoagoa<br />

ooooQ<br />

8 10 12 14 16<br />

n in CH3(CH2)nCONHOH<br />

*0lo<br />

120<br />

120<br />

Figure l. Advancing (6,,) and receding (9,) c<strong>on</strong>tact angles <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

water and hexadecane (HD) <strong>on</strong> m<strong>on</strong>olayers derived from the<br />

adsorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hydroxamic acids <str<strong>on</strong>g>of</str<strong>on</strong>g> the general formula CH3tCH2<br />

I,CONHOH. where h:8,L0,12,14, 15, 16, <strong>on</strong>to the native<br />

oxides <str<strong>on</strong>g>of</str<strong>on</strong>g> copper. silver, titanium, and aluminum. <str<strong>on</strong>g>M<strong>on</strong>olayers</str<strong>on</strong>g><br />

<strong>on</strong> copper and titanium were formed from isooctane and ethanol;<br />

m<strong>on</strong>olayers <strong>on</strong> silver and aluminum were formed from isooctane.<br />

As a guide to the eye, the dashed lines in the plot for copper<br />

represent the average values <str<strong>on</strong>g>of</str<strong>on</strong>g>the c<strong>on</strong>tact angles for all values<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> z and both solvents: 118" for 0 ^Hro , 102' for O,Hro , 48' for<br />

6oHD, and 35" for g.HD. For the m<strong>on</strong>olayers <strong>on</strong> silver, the c<strong>on</strong>tact<br />

angles for n:15 were not used to calculate the average c<strong>on</strong>tact<br />

angles represented by the dashed lines; these values are ll2"<br />

for guH:o, 104'for 0,Hro,51'for O'HD, and 46" for 0,HD.<br />

(XPS). We have used the attenuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an XPS signal<br />

due to various substrate core levels (specific details are<br />

given in the Experimental Secti<strong>on</strong>) to estimate relative<br />

thicknesses <str<strong>on</strong>g>of</str<strong>on</strong>g> the SAMs formed by the adsorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

hydroxamic acids with different chain lengths.a'34.37 3e In<br />

this analysis, the intensity, Isana, <str<strong>on</strong>g>of</str<strong>on</strong>g> an XPS signal from<br />

n<br />

aot<br />

oog<br />

^o<br />

m,o;l<br />

TIN<br />

NDE<br />

lAyArF;l<br />

!:!<br />

30<br />

0<br />

30<br />

0<br />

30<br />

0<br />

120<br />

30<br />

0<br />

Langmuir, Vol. 11, No. 3, 1995 817<br />

s37 532 527<br />

Binding Energy in ev<br />

-OH 0.2 0.4 0'6 0.8 CHg<br />

X.rr,.o"<br />

Figure 2. C<strong>on</strong>tact angles <str<strong>on</strong>g>of</str<strong>on</strong>g> water <strong>on</strong> m<strong>on</strong>olayers formed by<br />

the competitrve:rdsorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CH:(CHz)r+CONHOH and HOtCHz<br />

TT.,CONHOH tinto copper, plotted against the compositi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the SAll presented as the mole fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the methylterminate-d<br />

comp<strong>on</strong>ent rn the SAII t/( It s.\rr t. The compositi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the SA\l ri'rrs dett'rmined br.XPS using the oxygen 1s signal<br />

for the tet'ntinul hr-clr',rxrl gr'oup nn HOTCHTI;CONHOH.<br />

\l<strong>on</strong>olavers \\'r'l'r, tirrnrecl irt room temperature from ethanolic<br />

solutr<strong>on</strong>s u'rth ii totul c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hydroxamic acid <str<strong>on</strong>g>of</str<strong>on</strong>g> 1<br />

m}l frir 5 duvs. Adr-ancing c<strong>on</strong>tact angles are shown as filled<br />

crrcles: recedrng c<strong>on</strong>tact angles are shown as open circles. Lines<br />

through the data are provided as guides to the eye. The error<br />

bars represent the approximate accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> acquiringand fitting<br />

the XPS data. The error in the measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>tact<br />

angles is smaller than the size <str<strong>on</strong>g>of</str<strong>on</strong>g> the circles. Above the plot,<br />

XPS spectra are presented for the oxygen ls regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>olayers<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> HO( CHz ) l5CONHOH ( left ) and CHs( CHz )14CONHOH<br />

(right) <strong>on</strong> copper. The peak at lower binding energy (-530 eV)<br />

is due to the oxide <strong>on</strong> the copper and the oxygens in the<br />

headgroup <str<strong>on</strong>g>of</str<strong>on</strong>g> the molecules. The peak at higher binding energy<br />

(-532.5 eVt is due to the terminal OH.<br />

a substrate covered with an alkyl-chain-terminated SAM<br />

is given b1' eq 1<br />

1r,\\r : 1,/ exp( -mdll sin 0)<br />

(1)<br />

where 1,, is the intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> the signal without the<br />

m<strong>on</strong>olayer.l/ scales the intensity for attenuati<strong>on</strong> through<br />

the head group <str<strong>on</strong>g>of</str<strong>on</strong>g> the ligand, m is the number <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong><br />

atoms in the aikyl chain (.m : n * l), d is the thickness<br />

for a methylene group, z, is the attenuati<strong>on</strong> length (or<br />

escape depth) <str<strong>on</strong>g>of</str<strong>on</strong>g> the photoelectr<strong>on</strong> through the hydrocarb<strong>on</strong><br />

layer, and I is the angle between the plane <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

surface and the detector (35o).3? 10 To obtain the value <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

d for a set <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>olayers, we compare the intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

XPS signal from a SAM to that from the shortest chain<br />

length SAIV[3e''11<br />

t37t Bain, C. D.:Whitesides, G. M. J. Phys. Chem.1989,93, 1670-<br />

1673.<br />

(38tLaibinis, P. E.; Bain, C. D.; Whitesides. G. M. J. Phys. Chem.<br />

1991. .95, 70r 7 702r.<br />

(39)Laibinis, P. E.; Fox, M. A.; Folkers, J. P.; Whitesides, G. M.<br />

Langmuir 1991. 47. 3167-3173. Folkers, J. P.; Laibinis, P. E.:<br />

Whitesides, G. M. Langmuir 1992,8, f330-1341.<br />

(40) Seah, M. P. In Practical Surface Analysis by Auger and X-ray<br />

Photoelectr<strong>on</strong> Spectroscopy; Briggs, D., Seah, M. P., Eds.;John Wiley:<br />

Chichester, 1983; Chapter 5.<br />

r4l rCalculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> absolute thicknesses using this method requires<br />

determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>10 and /. The primary reas<strong>on</strong> we have not determined<br />

these quantities is that cleaning metaVmetal oxide substrates by<br />

sputtering the surfaces with Ar* i<strong>on</strong>s in the XPS chamber <str<strong>on</strong>g>of</str<strong>on</strong>g>ten removes<br />

part <str<strong>on</strong>g>of</str<strong>on</strong>g> the oxide and changes the measured value <str<strong>on</strong>g>of</str<strong>on</strong>g>1s.<br />

120<br />

30<br />

0


818 Langmuir, Vol. 11, No. 3, 1995<br />

(m - m36)d - -A sin 0ln(I-l/*"n)<br />

In eq 2, nt36 is the number <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> atoms in the chain<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the shortest molecule. We use an empirical equati<strong>on</strong><br />

to estimate the attenuati<strong>on</strong> lengths (A) <str<strong>on</strong>g>of</str<strong>on</strong>g>the photoejected<br />

electr<strong>on</strong>s through the hydrocarb<strong>on</strong> layer (eq 3)<br />

A : 0.0228k + 9.0<br />

where Ep is the kinetic energy (eV) <str<strong>on</strong>g>of</str<strong>on</strong>g> the photoelectr<strong>on</strong>s;<br />

the validity <str<strong>on</strong>g>of</str<strong>on</strong>g> this equati<strong>on</strong> was established for SAMs <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

alkanethiolates <strong>on</strong> copper, silver, and gold.38<br />

Results for m<strong>on</strong>olayers <str<strong>on</strong>g>of</str<strong>on</strong>g>hydroxamic acids <strong>on</strong> the native<br />

oxides <str<strong>on</strong>g>of</str<strong>on</strong>g> copper, silver, and titanium are summarized in<br />

Figure 3. On copper oxide, a small decrease in thickness<br />

was observed for m<strong>on</strong>olayers formed by adsorpti<strong>on</strong> from<br />

ethanol <strong>on</strong> to copper oxide relative to those formed using<br />

isooctane. Both sets <str<strong>on</strong>g>of</str<strong>on</strong>g> data yield the same value for the<br />

average increase in thickness per methylene group, 1.1<br />

A/CH2. The value expected for a trans-extended alkyl<br />

chain oriented perpendicular to the surface is 1.36 NCH2.<br />

From this value, we estimate that the average tilt <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

chains in a m<strong>on</strong>olayer <str<strong>on</strong>g>of</str<strong>on</strong>g> hydroxamic acids <strong>on</strong> copper oxide<br />

is approximately 20o, in agreement with results from<br />

infrared spectroscopy (see below).<br />

On m<strong>on</strong>olayers <str<strong>on</strong>g>of</str<strong>on</strong>g> hydroxamic acids <strong>on</strong> silver oxide<br />

formed by adsorpti<strong>on</strong> from isooctane, we calculate a value<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> d <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.2 AJCHz from the data. This value suggests a<br />

cant angle for the alkyl chain <str<strong>on</strong>g>of</str<strong>on</strong>g> about 18" from the surface<br />

normal; the uncertainty in this value is large (*15" or<br />

+0.1 A/CH2 for d), however, because <str<strong>on</strong>g>of</str<strong>on</strong>g>the limited number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> points measured.<br />

On titanium oxide, we observed differences in the<br />

thicknesses <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>olayers formed by adsorpti<strong>on</strong> from<br />

isooctane or compared to those formed using ethanol as<br />

the solvent;32 the data suggest lower coverages for the<br />

SAMs prepared using ethanol. These data are poorly fit<br />

by our analytical model and, thus, our ability to estimate<br />

a value <str<strong>on</strong>g>of</str<strong>on</strong>g> d is limited. For the isooctane samples, the<br />

data are linear (two separate sets <str<strong>on</strong>g>of</str<strong>on</strong>g> data for isooctane are<br />

included in Figure 3t, but our analysis leads to an<br />

implausible estimated average increase in thickness per<br />

methylene group <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.4 NCH2. Several experimental<br />

issues. especially the roughness <str<strong>on</strong>g>of</str<strong>on</strong>g> substrate, can lead to<br />

a large error in the calculated value <str<strong>on</strong>g>of</str<strong>on</strong>g> the attenuati<strong>on</strong><br />

length. Variati<strong>on</strong>s in the thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> the native oxide<br />

am<strong>on</strong>g sampies also are believed to c<strong>on</strong>tribute to this<br />

discrepancy. Similar systematic errors for SAMs <strong>on</strong><br />

aluminum, ir<strong>on</strong>, and zirc<strong>on</strong>ium oxides precluded measurement<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> values <str<strong>on</strong>g>of</str<strong>on</strong>g> d <strong>on</strong> these substrates.<br />

Deprot<strong>on</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>Hydroxamic</str<strong>on</strong>g> <str<strong>on</strong>g>Acids</str<strong>on</strong>g> <strong>on</strong> the<br />

Various Oxides from )(PS. In the XPS data for<br />

m<strong>on</strong>olayers <str<strong>on</strong>g>of</str<strong>on</strong>g>hydroxamic acids, the N ls core level spectra<br />

prouded the most informati<strong>on</strong> <strong>on</strong> the nature <str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>on</strong>ding<br />

that occurs between the hydroxamic acid and the various<br />

surfaces. Figure 4 presents N 1s spectra for octadecane<br />

hydroxamic acid as a solid and for m<strong>on</strong>olayers adsorbed<br />

<strong>on</strong>to the native oxides <str<strong>on</strong>g>of</str<strong>on</strong>g> copper, silver, aluminum, and<br />

titanium. We calibrated the binding energies <str<strong>on</strong>g>of</str<strong>on</strong>g> these<br />

spectra by frxing the C 1s binding enerry <str<strong>on</strong>g>of</str<strong>on</strong>g> the main<br />

Gaussian comp<strong>on</strong>ent (due to the CH2 groups) at 284.6<br />

eV.12'13 The N 1s spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> the solid hydroxamic acid<br />

could be frt with a single peak centered at 400.7 eV. The<br />

spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> the m<strong>on</strong>olayers showed multiple comp<strong>on</strong>ents<br />

in the N 1s regi<strong>on</strong>: <strong>on</strong>e centered at -400.5 eV (in<br />

agreement with the peak for the solid hydroxamic acid)<br />

(3)<br />

(42iMuilenberg, G. 8., Ed., Handbook <str<strong>on</strong>g>of</str<strong>on</strong>g> X-ray PhotoeLectr<strong>on</strong><br />

Spectroscopy; Perkin Elmer Corp.: Eden Prairie, Mn, 1979. Wagner,<br />

C. D.: Gale. L. H.; Raym<strong>on</strong>d. R. H. Anal. Chem. 1979, 51, 466-482.<br />

Q)<br />

Thickness<br />

from XPS 6<br />

relative to<br />

shortest 4<br />

acid (A)<br />

2<br />

Thickness<br />

from XPS<br />

relalive to<br />

shortest<br />

acid (A)<br />

Thickness<br />

from XPS<br />

relative to<br />

shortest<br />

acid (A)<br />

-2<br />

12<br />

10<br />

8<br />

A<br />

4<br />

2<br />

Ag/AgO<br />

o lsooctane<br />

d = 1.2 A/CH2<br />

10 1'2 tc oH<br />

n in HONHOC(CH2)nCH3<br />

Folkers et al.<br />

Figure 3. Relative thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>olayers formed from<br />

adsorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hydroxamic acids <str<strong>on</strong>g>of</str<strong>on</strong>g> the general formula<br />

CHr(CHz),CONHOH and HOTCH: )r;CONHOH <strong>on</strong>to the native<br />

oxides <str<strong>on</strong>g>of</str<strong>on</strong>g> copper. silver. and titanium. All thicknesses were<br />

determined relatiye to the m<strong>on</strong>olayer <str<strong>on</strong>g>of</str<strong>on</strong>g> CH,r(CH:)gCONHOH<br />

from isooctane using the attentuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the XPS signals from<br />

the substrAtes { se(' t he text {br details i. Filled r O t and open (O)<br />

circles represent nrethr'l-tet-minated m<strong>on</strong>olavers formed from<br />

isooctane and ethanol. respectivell'. The thicknesses <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>olayers<br />

obtained b1'the acisorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> HOtCHztr;CONHOH from<br />

isooctane (O ) and from ethanol tC t are included at the positi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 15 methylene units in the alkyl chain. Lines through the<br />

data were determined by least-squares fits to the data and<br />

were determined without the data for the hydroxyl-terminated<br />

m<strong>on</strong>olayers.<br />

and a sec<strong>on</strong>d at -398.9 eV.aa The relative intensities <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

these peaks varied with the substrate used (as shown in<br />

Figure 4).aa From these data, we c<strong>on</strong>ciude that <strong>on</strong> copper<br />

oxide and silver oxide the predominant species bound to<br />

the surface is the m<strong>on</strong>odeprot<strong>on</strong>ated hydroxamate, while<br />

<strong>on</strong> aluminum oxide and titanium oxide, the predominant<br />

species bound to the surface is the hydroxamic acid.<br />

Data from the C 1s regi<strong>on</strong> also suggest varying extents<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> deprot<strong>on</strong>ati<strong>on</strong> in the different m<strong>on</strong>olayers (Figure 5).45<br />

The peak due to the carb<strong>on</strong>yl occurs at 287.6 eV for the<br />

solid hydroxarnic acid. In the m<strong>on</strong>olayer, this peak is<br />

shifted to287 .0 and 286.5 eV <strong>on</strong> titanium oxide and copper<br />

(43) Blements in m<strong>on</strong>olayers <strong>on</strong> thick layers <str<strong>on</strong>g>of</str<strong>on</strong>g> oxide, such a-s that<br />

<strong>on</strong> aluminum, have higher binding energ'les than those <strong>on</strong> thin layers<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> oxide due to the inhomogeneous charging that occurs <strong>on</strong> the thicker<br />

oxide substrate. To correct for these dif'ferences. u'e have referenced<br />

the binding energies <str<strong>on</strong>g>of</str<strong>on</strong>g> elements in the m<strong>on</strong>olayer relati ve to C 1 s binding<br />

energy <str<strong>on</strong>g>of</str<strong>on</strong>g> the hydrocarb<strong>on</strong> at 284.6 eV.a:<br />

G4)The measured binding energies <str<strong>on</strong>g>of</str<strong>on</strong>g> the peaks in the N ls regi<strong>on</strong><br />

for the m<strong>on</strong>olayer <strong>on</strong> silver are sigr-ri{icantlv ltiu'er than those for the<br />

other substrates (400.1 and 398.6 eVr These peaks are superimposed<br />

<strong>on</strong> the high-energy background following the Ag 3d peaks, which might<br />

complicate accurate determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the binding energies. The noise<br />

in this spectrum limited our abilitv to determine an accurate ratio <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

acid to m<strong>on</strong>oani<strong>on</strong>, although the m<strong>on</strong>oani<strong>on</strong> is clearly favored.<br />

(45) We used m<strong>on</strong>ola-n-ers <str<strong>on</strong>g>of</str<strong>on</strong>g> CHrrr CH:)ICONHOH to improve our<br />

sensitinty by decreasingthe attenuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the signal due tcl the carb<strong>on</strong>yl<br />

by the alkyl chain.


SAMs <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Hydroxamic</str<strong>on</strong>g> <str<strong>on</strong>g>Acids</str<strong>on</strong>g><br />

o<br />

j L<br />

tE<br />

o<br />

5<br />

o<br />

Metal I I Ratio<br />

Cu il I 1:8<br />

Ag tJ 1.1:1.7<br />

405 403 401 399 397 395<br />

Binding Energy in eV<br />

Figure 4. X-ray photoelectr<strong>on</strong> spectra forthe nitrogen 1s regi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>solid CHe(CHz)TaCONHOH (bottom) and m<strong>on</strong>olayers obtained<br />

by the adsorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>it <strong>on</strong>to the native oxides <str<strong>on</strong>g>of</str<strong>on</strong>g>copper, silver,<br />

aluminum, and titanium. Binding energies <str<strong>on</strong>g>of</str<strong>on</strong>g> the peaks are<br />

referenced to the carb<strong>on</strong> 1s peak for the alkyl chain at 284.6<br />

eV. Relative intensities could not be compared directly as they<br />

were not referenced to a standard. "Ratio" refers to the relative<br />

intensities <str<strong>on</strong>g>of</str<strong>on</strong>g> the peaks ascribed to -CONHOH and -CONHO.<br />

oxide, respectively. The observed line width is verv broad<br />

for the titanium oxide supported m<strong>on</strong>olayers and less so<br />

for the m<strong>on</strong>olayers <strong>on</strong> copper oxide. We take this as<br />

evidence <str<strong>on</strong>g>of</str<strong>on</strong>g> a heterogeneous envir<strong>on</strong>ment present at the<br />

headgroup <strong>on</strong> titanium oxide and, based <strong>on</strong> the clear<br />

distincti<strong>on</strong>s observed in the N 1s regi<strong>on</strong>, attribute this<br />

line width to a heterogeneous state <str<strong>on</strong>g>of</str<strong>on</strong>g> prot<strong>on</strong>ati<strong>on</strong>.<br />

Orientati<strong>on</strong> and Order in SAMs <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Hydroxamic</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Acids</str<strong>on</strong>g> from Polarized Infrared External Refl ectance<br />

Spectroscopy (PIERS).'16'47 Inspecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the PIERS<br />

data (Figure 6, Table 3) reveals that the m<strong>on</strong>ola;'ers formed<br />

by hydroxamic acids <strong>on</strong> many <str<strong>on</strong>g>of</str<strong>on</strong>g> the substrates examined<br />

in this study (i.e. those <strong>on</strong> copper, silver, aluminum, and<br />

titanium) are characterized by highl) organized structures.<br />

Quantitative evaluati<strong>on</strong>, however, indicates that<br />

each differs in the orientati<strong>on</strong> adopted by the chain. The<br />

mode assignments for the C-H stretching regi<strong>on</strong> follow<br />

from a similar analysis as that described for alkanethiolate<br />

SAMs <strong>on</strong> golda and alkanecarboxylic acid SAMs <strong>on</strong><br />

aluminum oxide.15 In the discussi<strong>on</strong> that follows, we<br />

analyze each system briefly in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> an average<br />

structure defined by the model shown in Scheme 2. This<br />

model assumes that a best fit to the data involves a specific<br />

average orientati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an all-trans chain. Such a structure<br />

is described uniquely by the two angles, a and p, shown<br />

in Scheme 2. The discussi<strong>on</strong>s that follow are qualitative<br />

(46) Greenler. R. G. J. Chem. Phys. 1966, 44, 370-315.<br />

(47) Snyder, R.G.;Strauss, H. L.; Elliger, C. A. J. Phys. Chem. 1982,<br />

86. 5145-5150.<br />

o<br />

.i<br />

G<br />

6<br />

o<br />

o<br />

<str<strong>on</strong>g>L<strong>on</strong>g</str<strong>on</strong>g>muir, Vol. i1, No. 3, 1995 819<br />

HONHOC(CHz)sCHg<br />

ll/llU2 +<br />

HONHOC(CHz)eCHg<br />

(cH2)r5cH<br />

2s1<br />

"r:".,::tr";;<br />

" l'<br />

Figure 5. X-rav phritoeiectrc-rn spectra for the carb<strong>on</strong> 1s regi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>olavers derived from the adsorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CH,r(CH2)s-<br />

CONHOH <strong>on</strong>to copper oxide and titanium oxide, and <str<strong>on</strong>g>of</str<strong>on</strong>g> solid<br />

CHr(CHz)TcCONHOH. Binding energies <str<strong>on</strong>g>of</str<strong>on</strong>g> the peaks are<br />

referenced to the carb<strong>on</strong> ls peak for the alkyl chain at 284.6<br />

eV. The dashed line through the spectra allows comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the binding energies <str<strong>on</strong>g>of</str<strong>on</strong>g> the peaks due to the carb<strong>on</strong>yl. Relative<br />

intensities could not be compared directly as they were not<br />

referenced to a standard.<br />

in that we have not performed specific calculati<strong>on</strong>s for<br />

each <str<strong>on</strong>g>of</str<strong>on</strong>g> these SAMs but. rather, used the well-established<br />

structures and optical functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the alkanethiolate<br />

m<strong>on</strong>olavers <strong>on</strong> copper, silver, and gold as benchmarks for<br />

comparis<strong>on</strong>. The C-H stretching regi<strong>on</strong> in the infrared<br />

spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> hydroxamic acid SAMs <strong>on</strong> copper oxide dem<strong>on</strong>strates<br />

an intriguing similarity to those <str<strong>on</strong>g>of</str<strong>on</strong>g> alkanethiolates<br />

<strong>on</strong> gold. Both the relative and absolute intensities<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the methyl and methylene modes suggest that the alkyl<br />

chains are canted from the surface normal directi<strong>on</strong>. This<br />

structure involves a chain tilt, a, <str<strong>on</strong>g>of</str<strong>on</strong>g> -20o (in agreement<br />

with the XPS results presented above) and a rotati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the plane <str<strong>on</strong>g>of</str<strong>on</strong>g> the trans-zigzag,0, <str<strong>on</strong>g>of</str<strong>on</strong>g> -50-55". Significant<br />

differences in structure are also evident between the two<br />

systems. The frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> the antisymmetric methylene<br />

stretch for the hydroxamic acid SAM <strong>on</strong> copper oxide is<br />

higher than that found for alkanethiolate SAMs <strong>on</strong> gold<br />

(2921cm I versus 2919 cm 1). This observati<strong>on</strong> suggests<br />

that the populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gauche c<strong>on</strong>formati<strong>on</strong>s in the alkyl<br />

chains must be relatively high in this system. If so, the<br />

values <str<strong>on</strong>g>of</str<strong>on</strong>g> cr and B are at best approximate given that the<br />

model is based <strong>on</strong> an all-trans c<strong>on</strong>formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the chain.<br />

Still, the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> a canted chain structure is str<strong>on</strong>gly<br />

suggested by the data. The hydroxamic acid SAMs <strong>on</strong><br />

copper oxide differ from the alkanthiolate SAMs <strong>on</strong> gold<br />

in another important respect. The data shown in Figure<br />

6 show very little, if any, sensitivity to chain length as<br />

evidenced by alternati<strong>on</strong>s in the intensities <str<strong>on</strong>g>of</str<strong>on</strong>g> the methyl<br />

symmetric (r-) and in-plane antisymmetric (r, ) stretching<br />

models. Alkanethiolate SAMs <strong>on</strong> gold show pr<strong>on</strong>ounced<br />

odd-even chain length progressi<strong>on</strong>s in the intensities <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

these modes, a feature c<strong>on</strong>sistent with a preferred absolute


820 <str<strong>on</strong>g>L<strong>on</strong>g</str<strong>on</strong>g>ntutr, \'ol. 11, No.3, 1995 Fr,lkers et al.<br />

r@Ttg<br />

--<br />

o.oo1<br />

r lo.oor<br />

--r-/\/\lt<br />

o<br />

',n,\.A<br />

(J ,l/\i Vl ,ary' '<br />

F -^-nJ'' ! \,.- *-'i<br />

€ii rI\<br />

o Jl " l\<br />

{ ^^/tl J\t'<br />

o<br />

c<br />

GI<br />

-o<br />

o<br />

I.*'<br />

2900 3000 2800<br />

Wavenumbers (cm-1)<br />

HONHOC(CH2)"CH3<br />

*_/A^\^* 14<br />

.-----l-rTr<br />

2900 3000 2800 2900<br />

T__-.<br />

3000<br />

Wavenumbers (cm'1)<br />

Figure 6. Polarized infrared external reflectance spectra li)r'<br />

the C-H stretching regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>olaS'ers <str<strong>on</strong>g>of</str<strong>on</strong>g> octadecant,-.<br />

heptadecane-, and hexadecanehydroxamic acid <strong>on</strong> copper. siiver'.<br />

titanium, and aluminum. Scale bars are presented in the<br />

figures for comparis<strong>on</strong>.<br />

Table 3. Frequencies <str<strong>on</strong>g>of</str<strong>on</strong>g> Peaks in the Infrared Spectra<br />

for <str<strong>on</strong>g>M<strong>on</strong>olayers</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Octadecanehydroxamic Acid <strong>on</strong><br />

Copper, Silver, Titanium, and Aluminum,<br />

and Octadecanethiolate<br />

(all Frequencies<br />

(RS ) <strong>on</strong> Gold<br />

in cm r)<br />

mode descripti<strong>on</strong>" Cu Ag Ti Al RS /Au'<br />

CH2, sym id. ) 2851<br />

CH3. sym u'- ) 2880<br />

CHz, asvm rd ) 2920<br />

CH3, sym tFRC tr' .'2938<br />

CH;l. ?SVITI ll',, )" 2967<br />

TE<br />

|ooo, /1<br />

| /1 .4/\<br />

*?v "L..-<br />

il<br />

^^J\td\'^*<br />

il<br />

2851 2850<br />

2879 2882<br />

2917 29t6<br />

-2937 2953'1<br />

2965 297r<br />

n<br />

16<br />

t5<br />

2851 2851<br />

2879 2878<br />

2922 2919<br />

-2938 -2936<br />

2967 2964<br />

" Assignments <str<strong>on</strong>g>of</str<strong>on</strong>g> peaks from ref 4. b FRC : Fermi res<strong>on</strong>ance<br />

splitting comp<strong>on</strong>ent.l ' For c<strong>on</strong>sistency, this spectrum was taken<br />

during the present study. '1 The assignment <str<strong>on</strong>g>of</str<strong>on</strong>g>this peak is uncertain;<br />

it may'corresp<strong>on</strong>d to an out-<str<strong>on</strong>g>of</str<strong>on</strong>g>-plane antisymmetric meth5rl stretch.<br />

No peak is visible for the expected Fermi res<strong>on</strong>ance peak at -2935<br />

cm 1. '' The frequencies listed are for the in-plane antisymmetric<br />

stretch; the frequencies <str<strong>on</strong>g>of</str<strong>on</strong>g> the out-<str<strong>on</strong>g>of</str<strong>on</strong>g>-plane mode (r,6 ) are uncertain<br />

tfor most SAMs except as noted in d) given the weak appearance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> this band as an unresolved shoulder <strong>on</strong> the r" band at lower<br />

frequencies.<br />

sign <str<strong>on</strong>g>of</str<strong>on</strong>g> the tilt angle, cr. The magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> the intensity<br />

progressi<strong>on</strong>s is "s<str<strong>on</strong>g>of</str<strong>on</strong>g>tened", however, by the presence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

gauche c<strong>on</strong>formers at the chain termina. In this respect,<br />

then, the hydroxamic acid SAMs <strong>on</strong> copper oxide appear<br />

to differ significantly from alkanethiolates <strong>on</strong> gold. One<br />

might assume, based <strong>on</strong> the model defined above, that<br />

the absolute sign <str<strong>on</strong>g>of</str<strong>on</strong>g>the chain cant angle, G, must alternate<br />

in an odd-even series. There exists great uncertainty as<br />

to whether the head group b<strong>on</strong>ding <str<strong>on</strong>g>of</str<strong>on</strong>g> the hydroxamate<br />

zl IL---}<br />

x<br />

MOx<br />

Cu<br />

Ag<br />

AI<br />

Ti<br />

Scheme 2<br />

z<br />

(.x<br />

120'l<br />

-14<br />

I 8'l<br />

oy<br />

54'-'<br />

3B'<br />

47'<br />

at the surface is indeed fluxi<strong>on</strong>al, however. The density<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> gauche c<strong>on</strong>fbrmati<strong>on</strong>s. which we expect to segregate to<br />

the chain termina,t 1; is sufficiently high in this system<br />

to prevent us from reaching a definitive c<strong>on</strong>clusi<strong>on</strong> <strong>on</strong><br />

this point. For example, relaxati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the chain ends via<br />

the gauche-trans isomerism might lead to similar surface<br />

structures (e.g. equivalent average orientati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

methyl groups)in an odd-even chain-length series which<br />

form a series <str<strong>on</strong>g>of</str<strong>on</strong>g> SAMs characterized by a single, absolute<br />

value <str<strong>on</strong>g>of</str<strong>on</strong>g> a.<br />

Structural arguments for hydroxamic acid SAMs <strong>on</strong><br />

srlver oxide are simpler. The mode assignments for these<br />

SAfIs fbllow similariy from those described above. The<br />

lori' fi'eque,no' <str<strong>on</strong>g>of</str<strong>on</strong>g> the d mode Q9IT cm 1) suggests a<br />

structure n'rth a f'eri' gauche c<strong>on</strong>formati<strong>on</strong>s. The relative<br />

and absoiute intensrtres <str<strong>on</strong>g>of</str<strong>on</strong>g> the d- and d modes also<br />

suggest ;,i unique structure fbr this SAM: the average<br />

values <str<strong>on</strong>g>of</str<strong>on</strong>g>'the charn r)l'rentirti<strong>on</strong> parameters, a and p, and<br />

unlike those found in unr- class <str<strong>on</strong>g>of</str<strong>on</strong>g> SAII studied to date.<br />

Using the models described above. we estimate that a ry<br />

-I4" and p ry 38" in this system. The odd-even progressi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> intensities <str<strong>on</strong>g>of</str<strong>on</strong>g> the methyl r,,, and l is pr<strong>on</strong>ounced,<br />

providing definitive evidence that the b<strong>on</strong>ding geometry<br />

present at the headgroups is c<strong>on</strong>served. The single sign<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cr and the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> signif,rcant surface rec<strong>on</strong>structi<strong>on</strong>s<br />

due to the populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gauche c<strong>on</strong>formati<strong>on</strong>s must result<br />

in a chain length dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> the orientati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

methyl groups that terminate the chains. It is important<br />

to note that hydroxamic acid SAMS <strong>on</strong> both copper oxide<br />

and silver oxide are canted chain structures and that the<br />

gauche c<strong>on</strong>formati<strong>on</strong> densities must depend <strong>on</strong> more than<br />

just the presence <str<strong>on</strong>g>of</str<strong>on</strong>g>this structural feature. It seems likely<br />

that surface roughness (which we expect to be significantly<br />

higher for the copper oxide surface) must c<strong>on</strong>tribute<br />

significantly as well. It is particularly intriguing that<br />

the wetting data for the hydroxamic acid SAMs <strong>on</strong> silver<br />

oxide (Figure 1t also show odd-even progressi<strong>on</strong>s. This<br />

observati<strong>on</strong> provides <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g>the best documented examples<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> this structural influence <strong>on</strong> wetting to date.<br />

The hydroxamic acid SAMs <strong>on</strong> aluminum oxide exhibit<br />

structural features that appear to be intermediate between<br />

those <str<strong>on</strong>g>of</str<strong>on</strong>g> SAMs <strong>on</strong> silver oxide and <strong>on</strong> copper oxide. The<br />

density <str<strong>on</strong>g>of</str<strong>on</strong>g> gauche populati<strong>on</strong>s is likely to be large (d at<br />

-2922 cm 1). Although the average chain tilt is small,<br />

we estimate an approximate structure with lal ry 8" and<br />

fi = 47". This descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the chain structure is, at<br />

best, approximate because <str<strong>on</strong>g>of</str<strong>on</strong>g> the complex chain c<strong>on</strong>for-


SAMs <str<strong>on</strong>g>of</str<strong>on</strong>g> Hvdroxamic <str<strong>on</strong>g>Acids</str<strong>on</strong>g><br />

.9<br />

.:<br />

o<br />

o<br />

CL<br />

E<br />

o ooG<br />

5<br />

a<br />

-CHs<br />

0,8<br />

0.6<br />

0.4<br />

0.2<br />

-oH<br />

0 0,01 0.1 1 10 100 -<br />

a I rsorn - [CH3(CH2)lo'HG']<br />

txb (cnr)rucoruttoxl<br />

Figure 7. Competitive adsorpti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> HO(CHz)TsCONHOH<br />

against CH3( CHzhsSH (open circles), against CHs(CHz)r4COOH<br />

(open squares), and against CHa(CHzh+CONHOH (filled circles)<br />

<strong>on</strong>to copper from ethanol. Ail mixed m<strong>on</strong>olayers were formed<br />

from ethanolic soluti<strong>on</strong>s c<strong>on</strong>taining a total c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

adsorbate <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 mM at room temperature for 1 day. Surface<br />

compositi<strong>on</strong> was determined by relating the measured advancing<br />

c<strong>on</strong>tact angle <str<strong>on</strong>g>of</str<strong>on</strong>g> water to the surface compositi<strong>on</strong>s determined<br />

in Figure 2 (see text). Lines through the data are present<br />

as guides to the eye.<br />

mati<strong>on</strong>s noted above. It initially seems c<strong>on</strong>tradictory that<br />

the chains are relatively uncanted yet still c<strong>on</strong>tain a large<br />

gauche populati<strong>on</strong>. Whether surface roughness or some<br />

other defect structure is resp<strong>on</strong>sible for this combinati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> features is unclear at present. Nevertheless. the data<br />

compel a model <str<strong>on</strong>g>of</str<strong>on</strong>g> a highly oriented charn. albeit <strong>on</strong>e with<br />

a complex c<strong>on</strong>formati<strong>on</strong>al architecture.<br />

We cannot estimate the orientati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the alkyl chains<br />

in the m<strong>on</strong>olayers <str<strong>on</strong>g>of</str<strong>on</strong>g> hydroxamic acids <strong>on</strong> titanium oxide,<br />

because the modes seen in the C-H stretching regi<strong>on</strong> are<br />

exceedingly complex and are superimposed <strong>on</strong> a n<strong>on</strong>linear<br />

substrate background (by necessity, a gold mirror was<br />

used as a reference). The organizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the alkyl chains<br />

in these SAMs is unclear to us. One might assume that<br />

the alkyl chains are predominantly in a trans zigzag<br />

arrangement, given that the stretching frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

d- band occurs at 29t6 cm-l. The broadness and<br />

complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> the lineshapes, however, str<strong>on</strong>gly suggest<br />

that these structures are disordered.<br />

Examinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> the various SAMs in the<br />

low-frequency regi<strong>on</strong> below 2000 cm 1 was relatively<br />

uninformative with <strong>on</strong>e significant excepti<strong>on</strong>. Modes<br />

corresp<strong>on</strong>ding to the stretching vibrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the carb<strong>on</strong>yl<br />

groups were not observed in any <str<strong>on</strong>g>of</str<strong>on</strong>g>the spectra. This result<br />

implies that either the transiti<strong>on</strong> moment <str<strong>on</strong>g>of</str<strong>on</strong>g> the carb<strong>on</strong>yl<br />

group, and therefore the C:O b<strong>on</strong>d, is oriented parallel<br />

to the surface or that the b<strong>on</strong>d between the carb<strong>on</strong> and<br />

the oxygen has substantial single-b<strong>on</strong>d character and as<br />

a result is shifted to a much lower frequency. For the<br />

m<strong>on</strong>olayers <strong>on</strong> silver oxide, a peak is observed at about<br />

1395 cm 1. By comparis<strong>on</strong> with studies <strong>on</strong> the infrared<br />

spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> metal hydroxamates, we assign this band as<br />

being due predominantly to the C -N stretching moti<strong>on</strong>.a8<br />

The presence <str<strong>on</strong>g>of</str<strong>on</strong>g> this band, in c<strong>on</strong>juncti<strong>on</strong> with the absence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> intensity in the carb<strong>on</strong>yl reg'i<strong>on</strong>, suggests that the C:O<br />

b<strong>on</strong>d is oriented largely parallel to the surface and that<br />

both oxygens are not bound to the surface in the form <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a chelate.<br />

Competitive Adsorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Hydroxamic</str<strong>on</strong>g> <str<strong>on</strong>g>Acids</str<strong>on</strong>g> and<br />

Other Adsorbates <strong>on</strong> Copper Oxide. Figure 7 qualitatively<br />

examines the relative affinities <str<strong>on</strong>g>of</str<strong>on</strong>g> different head<br />

groups for copper oxide. We used wettability to follow the<br />

competitive adsorpti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> HO(CH2)15CONHOH against<br />

(48) Brown, D. A.; McKeith, D.; Glass, W.K. Inorg. Chim. Acta lg7g,<br />

35,57-60. Brown, D. A.; Roche, A. L. Inorg. Chem. Ig83,22,2lgg-<br />

2202.<br />

Langmuir, Vol. 11, No. 3, 1995 827<br />

Scheme 3. Qualitative Ranking <str<strong>on</strong>g>of</str<strong>on</strong>g> Strengths <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Adsorpti<strong>on</strong><br />

Ranking <str<strong>on</strong>g>of</str<strong>on</strong>g> substrates for affinitres to hydroxamic acids:<br />

Ranking <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

oxides:<br />

".r:i<br />

A1 Ox<br />

'- !l.rlJl{: :i > PalaCIl<br />

eox > TLOX >> Au<br />

- iPf:iI:<br />

rnrr cr lrror<br />

ztrc<strong>on</strong>Lum, ano<br />

rli:l:r: netal oxide<br />

CHr(CHz)rr"HG", where the head group ("HG")was either<br />

COOH or CHzSH; we include "HG" : CONHOH for<br />

comparis<strong>on</strong>. We approximated the compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

SAMs by relating the advancing c<strong>on</strong>tact angles <str<strong>on</strong>g>of</str<strong>on</strong>g> water<br />

<strong>on</strong> the m<strong>on</strong>olayers to the surface compositi<strong>on</strong> measured<br />

byXPS (Figure 2). Although the advancingc<strong>on</strong>tact angles<br />

are not linear in the compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the SAM, we assume<br />

that the wettabilities <str<strong>on</strong>g>of</str<strong>on</strong>g> the mixed SAMs depend <strong>on</strong>ly <strong>on</strong><br />

the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> each tail group in the SAM and not <strong>on</strong> the<br />

head group ol'the methvl-terminated molecule.ae We have<br />

not established n'hether these results reflect kinetic or<br />

thermodvnamrc affinities.<br />

These results show that the hydroxamic acid is favored<br />

<strong>on</strong> the surface over the carboxylic acid, by a factor <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

approximately 4:1 (this value was determined from the<br />

compositi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the soluti<strong>on</strong> needed to form m<strong>on</strong>olayers<br />

with normalized advancing c<strong>on</strong>tact angles <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.5). It also<br />

shows that the thiol has a higher affinity for the surface<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the copper oxide than does the hydroxamic acid; the<br />

Iast data point, for example, is for a soluti<strong>on</strong> compositi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 30:1 which gives a m<strong>on</strong>olayer that is approximately<br />

25% rn hydroxamic acid.<br />

Discussi<strong>on</strong><br />

<str<strong>on</strong>g>L<strong>on</strong>g</str<strong>on</strong>g>-chain alkanehydroxamic acids form stable, oriented<br />

m<strong>on</strong>olayers <strong>on</strong> all <str<strong>on</strong>g>of</str<strong>on</strong>g>the substrates with native metal<br />

oxides surveved in this study. Scheme 3 summarizes<br />

rankings <str<strong>on</strong>g>of</str<strong>on</strong>g> the interacti<strong>on</strong>s we have investigated in this<br />

study. These c<strong>on</strong>clusi<strong>on</strong>s were reached from the various<br />

experiments described in this paper. We discuss each <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

these rankings in turn.<br />

Basic metal oxides are better substrates for<br />

hydroxamic acids than acidic metal oxides. <str<strong>on</strong>g>Hydroxamic</str<strong>on</strong>g><br />

acids form m<strong>on</strong>olayers <str<strong>on</strong>g>of</str<strong>on</strong>g> higher stability <strong>on</strong><br />

metal oxides with isoelectric points (IEPs) greater than<br />

the pK^ <str<strong>on</strong>g>of</str<strong>on</strong>g> the acid (pK. <str<strong>on</strong>g>of</str<strong>on</strong>g> acetohydroxamic acid:9.3)2t<br />

than <strong>on</strong> metal oxides with IEPs lower than the pK, (Table<br />

4).so-ss Most <str<strong>on</strong>g>of</str<strong>on</strong>g> the values in Table 4 were not measured<br />

<strong>on</strong> native oxides. but thev are n<strong>on</strong>theless useful for<br />

(49) We are assuming that the distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> molecules in the SAM<br />

is independent <str<strong>on</strong>g>of</str<strong>on</strong>g>the head group, and, therefore, the structure <str<strong>on</strong>g>of</str<strong>on</strong>g>the<br />

alkyl chains. This assumpti<strong>on</strong> becomes invalid when the structures<br />

and the packing <str<strong>on</strong>g>of</str<strong>on</strong>g> the alkyl chains <str<strong>on</strong>g>of</str<strong>on</strong>g> the single-comp<strong>on</strong>ent SAMs are<br />

sigaificantly different.<br />

(50) Parks, G. A. Chem. r?eu. 1965,65,177-I98.<br />

(51)Kallay, N.: Torbfc, Z.; Golic, M.; Matijevic. E. J. Phvs. Chem.<br />

1991,95,7028-7032.<br />

(52) Kallay, N.; Torbic, Z.; Barouch, E.;Jednacak-Bisan, J. J. Colloid<br />

Interface Sci. 1987, 118,43\-435.<br />

(53) Chau, L.-K.; Porter, M. D. J. Colloid Interface Sci.Iggl, 145,<br />

283-286.


822 <str<strong>on</strong>g>L<strong>on</strong>g</str<strong>on</strong>g>muir. \itl. /1. No. 3. 1995<br />

Table -1. Published Values <str<strong>on</strong>g>of</str<strong>on</strong>g> Isoelectric Points (IEPs) <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

]letal Oxides and Degree <str<strong>on</strong>g>of</str<strong>on</strong>g> Deprot<strong>on</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Surface-Bound Hvdroxamic Acid"<br />

l'. r.'..i l<br />

published<br />

values <str<strong>on</strong>g>of</str<strong>on</strong>g> IEP<br />

9.51'<br />

1 0. .1'1<br />

'2.h<br />

1-7'<br />

7- 106.<br />

j(.{'<br />

a<br />

5-9,<br />

IRCONHO 1",'rl<br />

tRCONHOHl,,.r<br />

8<br />

7.7<br />

0.43<br />

0.40<br />

\'.riu... tirkt'n Ii'om Figure 4. i'Values taken from refs 51 and<br />

rl \'.rlLrrs trtken fi-om ref 50. 'l Value taken from ref 53. " This<br />

', rilut' i. l,r' th€ naturally occurring mineral. Other values listed<br />

in rt.: it trl'ere measured <strong>on</strong> syntheticZrOz made under str<strong>on</strong>gly<br />

ilrt(l .l' :tr<strong>on</strong>glv basrc c<strong>on</strong>diti<strong>on</strong>s; the c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> preparati<strong>on</strong><br />

ri|)|)t,.irt,d t() rnfluence the measured value <str<strong>on</strong>g>of</str<strong>on</strong>g> the IEP. / Nitrogen 1s<br />

>l)t,r'll'ii s'rre not taken for these samples.<br />

ratr<strong>on</strong>alizing the trends we have observed.5a According<br />

to the data in Table 4, the most stable m<strong>on</strong>olayers should<br />

form <strong>on</strong> silver oxide and copper oxide. We note that there<br />

is <strong>on</strong>lv a ver)'loose correlati<strong>on</strong> between values <str<strong>on</strong>g>of</str<strong>on</strong>g> IEP and<br />

the ratios <str<strong>on</strong>g>of</str<strong>on</strong>g> deprot<strong>on</strong>ated hydroxamic acid to prot<strong>on</strong>ated<br />

hr-droxamic acid inferred from the N 1s spectra (Figure<br />

4t.<br />

Although thiolates are more stable <strong>on</strong> copper and<br />

silver, hydroxamic acids present a versatile alternative<br />

for these metals. Our results indicate that<br />

thiolates form the most stable system <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>olayers <strong>on</strong><br />

ccpper and silr.er.;; <str<strong>on</strong>g>Hydroxamic</str<strong>on</strong>g> acids form more stable<br />

overlal'ers than carboxylic acids or phosph<strong>on</strong>ic acids <strong>on</strong><br />

these substrates (Scheme 3 i and provide an important<br />

s]'stem for the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> thin organic f,rlms <strong>on</strong> the native<br />

oxides <str<strong>on</strong>g>of</str<strong>on</strong>g> copper and silver. There al'e two advantages to<br />

the use <str<strong>on</strong>g>of</str<strong>on</strong>g> h1'droxamic acids rather than thiols <strong>on</strong> copper<br />

and silver. First, in the case <str<strong>on</strong>g>of</str<strong>on</strong>g> copper oxide. the<br />

hydroxamic acid forms a str<strong>on</strong>g b<strong>on</strong>d to the surface but<br />

does not etch the surface during formati<strong>on</strong> as much as the<br />

thiol does. Sec<strong>on</strong>d, hydroxamic acids are not as pr<strong>on</strong>e to<br />

oxidati<strong>on</strong> as thiois and may be more stable to l<strong>on</strong>g-term<br />

exposure to ambient c<strong>on</strong>diti<strong>on</strong>s.20'56 <str<strong>on</strong>g>M<strong>on</strong>olayers</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> thiolates<br />

photooxidize <strong>on</strong> the surface, forming labile metalsulf<strong>on</strong>ate<br />

linkages with the surface.20':'6 The oxidative<br />

stability <str<strong>on</strong>g>of</str<strong>on</strong>g> the hydroxamic acids suggests their use as an<br />

aiternative to thiols as protective coatings. Potential uses<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> these m<strong>on</strong>oiayers will likely be found in lithography,<br />

corrosi<strong>on</strong> resistance, and tribology.le'20<br />

<str<strong>on</strong>g>Hydroxamic</str<strong>on</strong>g> acids present an alternative and<br />

improvement to other organic acids for the forma'<br />

ti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> self-assembled m<strong>on</strong>olayers <strong>on</strong> most acidic<br />

metal oxides. <str<strong>on</strong>g>Hydroxamic</str<strong>on</strong>g> acids form stable m<strong>on</strong>olayers<br />

<strong>on</strong> "acidic" metals oxides (i.e., those with isoelectric points<br />

lower than the pK, <str<strong>on</strong>g>of</str<strong>on</strong>g> the hydroxamic acid),:'a although<br />

they are bound predominantly as the parent acid. On the<br />

native oxides <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminum, zirc<strong>on</strong>ium, and ir<strong>on</strong>, hydroxamic<br />

acids appear to form more stable m<strong>on</strong>olayers than<br />

either carboxylic acids or phosph<strong>on</strong>ic acids (Scheme 3).<br />

The smaller size <str<strong>on</strong>g>of</str<strong>on</strong>g> the hydroxamic acid compared to the<br />

phosph<strong>on</strong>ic acid may allow the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> more coherent<br />

ro.1 r The most relevant set <str<strong>on</strong>g>of</str<strong>on</strong>g> IEPs were determined using metal<br />

bead-. b)' measuring the uptake <str<strong>on</strong>g>of</str<strong>on</strong>g> charged latex particles' although<br />

zirc<strong>on</strong>ium. ir<strong>on</strong>, and silver were not studied.rrl s2 Jhs IEP <str<strong>on</strong>g>of</str<strong>on</strong>g> the native<br />

oxide <str<strong>on</strong>g>of</str<strong>on</strong>g> silver was measured by measuring c<strong>on</strong>tact angles as a functi<strong>on</strong><br />

o{'the pH <str<strong>on</strong>g>of</str<strong>on</strong>g>'the drop.53<br />

r 55 r A 1:1 soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>octadecanethiolate and octadecane hydroxamic<br />

acid in ethanol yielded a m<strong>on</strong>olayer <strong>on</strong> silver oxide that was 9:1 in favor<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> thiolate by XPS: Folkers, J. P.; Whitesides, G. M. Unpublished results'<br />

r 56 i <str<strong>on</strong>g>M<strong>on</strong>olayers</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> thiolate are pr<strong>on</strong>e to oxidati<strong>on</strong> even <strong>on</strong> gold. For<br />

examples <strong>on</strong> gold, see: Tarlov, M. J.; Newman, J. G. Langm-uir 1992,<br />

7. 1398 1405. Huang, J.; Hemminger, J. C' J. Am. Chem. Soc. 1993,<br />

r I 5. 3342-3343.<br />

F,ilhers et al.<br />

and perhapS nlol'e ,,t'dereci tlr rflr r].lvt-l-: I n z:I'C(.)nIum oxide<br />

and therefore also be r:setul tIl :, ,ntt-' :..'.'hn:crtl ripplicati<strong>on</strong>s<br />

<strong>on</strong> zirc<strong>on</strong>ium oxtde for ri'hrch phL r:Dll,,flle .lclciS have been<br />

used.l6<br />

<str<strong>on</strong>g>Self</str<strong>on</strong>g>-assembied m<strong>on</strong>olavers hrrve not been previousiy<br />

studied <strong>on</strong> the surface <str<strong>on</strong>g>of</str<strong>on</strong>g> titanrum u\rde. Our results<br />

suggest that <strong>on</strong> titanium oxide. phosph<strong>on</strong>lc acids form<br />

more stable m<strong>on</strong>olayers than either h1'drorirnlic or carboxylic<br />

acids (Scheme 3). From the PIERS data. rt seems<br />

unlikely that well-ordered m<strong>on</strong>oiayers <str<strong>on</strong>g>of</str<strong>on</strong>g> alkane h.r'droxamic<br />

acids are obtained <strong>on</strong> titanium dioxide. The c<strong>on</strong>tact<br />

angles show that their stability is not as great as that <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

phosph<strong>on</strong>ic acid SAMs. Carboxylic acids do not form<br />

complete m<strong>on</strong>olayers <strong>on</strong> titanium oxide from ethanol.<br />

Experimental Secti<strong>on</strong><br />

General Informati<strong>on</strong>. Decanoy'l chloride (98ci t, dodecanoyl<br />

chloride $8%t. tetradecanoyl chloride (971.r t. hexadecanoyl<br />

chloride Q8%), heptadecanoyl chloride (98%), and octadecanol''l<br />

chloride QgE) were purchased from Aldrich and used as received;<br />

16-hydroxyhexadecanoic acid (99+Vc), 1-ethyl-3-(3-(dimethylamino<br />

)prop1'l tcarbodiimide. and O-benzi'lhydroxylamine hydrochloride<br />

rvere obtitined from Sigma and used without further<br />

purificati<strong>on</strong>. Steanc acid and palmitic acid were available in<br />

the laborat<strong>on</strong>' and u'ere not purified prior to use. Octadecanephosph<strong>on</strong>ic<br />

acrd u'as s1-nthesized using the Michaelis-Arbuzov<br />

reacti<strong>on</strong>.;; Isooctane r99*ci. Aldrich) and hexadecane (anhydrous.<br />

Aldrich ) were precolated twice through neutral alumina<br />

(Fisher); ethanol (Pharmco) was used as received. Copper<br />

(Aldrich ), silver (Johns<strong>on</strong> Matthey Electr<strong>on</strong>ics), titanium (Aesar),<br />

aluminum (Alfa). ir<strong>on</strong> (Alfa), and zirc<strong>on</strong>ium (Aldrich) used for<br />

evaporati<strong>on</strong>s were <str<strong>on</strong>g>of</str<strong>on</strong>g> 99.99% or higher purity. Single-crystal<br />

silic<strong>on</strong> wafers oriented in the [100] directi<strong>on</strong> were obtained from<br />

Silic<strong>on</strong> Sense (Nashua, NH). For infrared spectroscopy, wafers<br />

u'ere 2 in. in diameter and 0.01 in. thick; for all other uses, wafers<br />

u'ere 100 mm in diameter and -500 .am thick.<br />

()e n e ral Synthes is <str<strong>on</strong>g>of</str<strong>on</strong>g> O -Benzylhydroxamates. A soluti<strong>on</strong><br />

,,t'tht, rre id chloriclt' r 20 mmol t. O-benzylhydroxylamine (21 mmol),<br />

rrncl pr nci rr-rt.<br />

') I tt'tnrol , u'its stirred in dry THF for t h at room<br />

tenlperirt-irt' rutrl -ttIrseclttt'ntlv refluxed for t h. The soluti<strong>on</strong><br />

\\'il: c()n('(.nll'.rl('(l .itlti r.ht' t't'.idut' $-a's redissolved in 200 mL <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

elhvl iicetlrlt' I'it.. ., lLilt rlt \\'i1s ('xtl'ltcted twice with 100-mL<br />

porti<strong>on</strong>s rrt (-).li \l KI{:r):. ()l-}r'r'u'rth 1tlO mL <str<strong>on</strong>g>of</str<strong>on</strong>g> saturated<br />

NaHCO,r and <strong>on</strong>ce u-tth l()t)mL brtne. The organic layer was<br />

subsequently'dried over Na:SOr. The solr-ent wa's evaporated<br />

and the residue was redissolved in CH:C1:'hexane t1"1r. Amm<strong>on</strong>ia<br />

was bubbled through to precipitate traces <str<strong>on</strong>g>of</str<strong>on</strong>g> the free acid<br />

as the amm<strong>on</strong>ium salt. The soluti<strong>on</strong> was filtered. After<br />

evaporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the solvent, the corresp<strong>on</strong>ding O-benzylhydroxamate<br />

was obtained (92-987c crude yield).<br />

N-(Benzyloxy)decanamide.<br />

1H NMR (300 MHz, CDCI3) d<br />

8.17 (br s, 1H),7.35 (br s,5 H),4.88 (br s,2 H),2.01 (br, 1.6 H),<br />

1.57 (m, 2H),1..23 (br m, 12 H). 0.85 (t. 3 H, J :7 Hz); HRMS<br />

(FAB) calcd for CrHzxNO: tN{ * '<br />

H t 278.2120. found 278.2100.<br />

N-(Benzyloxy)dodecanamide. rH N\IR t250 NIHz. CDCl,r r<br />

d 8.37 (br s. 1 H), 7.38 (br s.5 Hr.'1.90 rbr s.2 Hr,2.35 (br.0.'l<br />

H).2.03 ft,2H,J :7 Hz), 1.59 (m,2 H t.1.25 (br m, 14 H),0.88<br />

(t. 3 H. J :7 Hz); HRNIS (FAB) calcd for CrgHszNOz (M + H+)<br />

306.2433, found 306.2428. Anal. Calcd for CrsH:lNOz: C, 7 4.7 l;<br />

H. 10.23: N. 4.59. Found: C,74.77; H, 10.64; N,4.51.<br />

N-(Benzyloxy)tetradecanamide.<br />

1H NMR (400 MHz,<br />

CDCl,ri) 7.95 rbr s. 1H).7.36 (br s,5 Ht,4.90 (br s,2 H),2.01<br />

(br. 2 Hr. 1.58 rm. 2 H ). 1.23(brm. 20 H), 0.86 (t, 3 H, J : 7 Hz);<br />

HRMS IFABr c:rlcd {br C:rH:raNO2 (M t Na*) 356.2565, found<br />

356.2550. Anal. Calcd ftir C:rH'r;NOz: C, 75.63; H, 10'58; N,<br />

4.2. Found: C, 75.51; H. 10.97; N, 4.21.<br />

N-(Benzyloxy)hexadecanamide.<br />

lH NMR (250 MHz,<br />

CDCIaI d 8.02 (br s. 1 H), 7.36 (br s, 5 H), 4.88 (br s, 2 H), 2.35<br />

(br s, 0.4 H), 2.01 (s, 2 H), 1.60 (m, 2}j),I.23 (br m, 24 H), 0.86<br />

(t, 3 H, J :7 Hz); HRMS (FAB) calcd for CzsHaoNOz (M + H+)<br />

(57)Kosolap<str<strong>on</strong>g>of</str<strong>on</strong>g>l G. M. J. Ant. Chem. Soc. 1945, 67, 1180-1182.<br />

Bhattacharya, A. K.: Thyagarajan, G. Chem. Reu. 1981, 81,415-430.<br />

(58 ) Microanalyses were performed by Oneida Research Services in<br />

Whitesboro. NY.


SAMs <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Hydroxamic</str<strong>on</strong>g> <str<strong>on</strong>g>Acids</str<strong>on</strong>g><br />

362.3059, found 362.3036. Anal. Calcd for CzrHrgNOz: C,76.4;<br />

H, 10.87; N,3.87. Found: C,76.25:' H, 11.29; N, 3'54.<br />

N-(Benzyloxy)heptadecanamide.<br />

1H NMR (250 MHz'<br />

CDCI3) 6 8.12 (br s, 1H),7.36 (br s,5 H),4.88 (br s,2 H),2.35<br />

(br s, 0.4 H), 2.01 (br,2 H), 1.58 (m, 2 H), 1.23 (br m,26 H)' 0.86<br />

(t, 3 H, J :6Hz);HRMS (EI) calcd for CzaH+zNOz (M*) 375.3138,<br />

found 375.3126. Anal. CalcdforCz+HarNOz: C,76.75; H, 11.0;<br />

N,3.73. Found: C,76.74; H, 11.14; N, 3.65'<br />

N-(Benrylory)octadecanamide.<br />

lH NMR (250 MHz, CDCIg)<br />

d 8.3? (br s, 1 H), 7.38 (br s, 5 H), 4.90 (br s, 2 H), 2.03 (br, 2 H),<br />

1.60 (m, 2H), L25 (br m, 28 H), 0.88 (t, 3 H, J :7 Hz); HRMS<br />

(FAB) calcd for Cz;H++NOz (M + H+) 390.3372, found 390.3358.<br />

Anal. Calcd for Cz;H.rsNO2: C, 77.07;H, 11.12;N,3.59' Found:<br />

C.77.17: H. 11.09; N,3.49.<br />

Synthesis <str<strong>on</strong>g>of</str<strong>on</strong>g> 16-Hydroxy'N'(benzyloxy)hexadecana'<br />

mide. 16-Hydroxy-.1/-(benzyloxy)hexadecanamide was prepared<br />

by a slight variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a method for synthesizing trihydroxamic<br />

acids that can tolerate hydroxyl groups.23 The pH <str<strong>on</strong>g>of</str<strong>on</strong>g> a soluti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 1 g (3.67 mmol) <str<strong>on</strong>g>of</str<strong>on</strong>g> 16-hydroxyhexadecanoic acid and 0.604 g<br />

(3.85 mmol) <str<strong>on</strong>g>of</str<strong>on</strong>g> O-benzylhydroxylamine hydrochloride in THF/<br />

lHzO (.2:l) was adjusted to 4.8 by adding 1 N NaOH. A 1.41-9<br />

(7.34 mmol) porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide<br />

was added in small amounts to the stirred soluti<strong>on</strong><br />

and the pH was held approximately c<strong>on</strong>stant by adding 1 N HCl.<br />

After being stirred for an additi<strong>on</strong>al 6 h, the reacti<strong>on</strong> mixture<br />

was extracted twice with 200-mL porti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> ethyl acetate. The<br />

combined organic phases were extracted, washed with 150 mL<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> saturated NaHCOg, 150 mL <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.5 M citric acid. 150 mL <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

u'ater. and 150 mL <str<strong>on</strong>g>of</str<strong>on</strong>g> brine. and dried over NazSO.r' The soluti<strong>on</strong><br />

\vas c<strong>on</strong>centrated and the residue rvas purified bv column<br />

chromatographr' , silica: hexane ethf i acetate methanol 7 6 2<br />

Yield: 0.8 g.60e. rH NllR 250 \IHz. CDCI, ,) 7.95 br s. 1 H .<br />

7.38 (br s,5 H .4.90,br s.2 H . 3.63 t. 2 H. J --; Hz . 2.35 br.<br />

0.4 H ).2.02 rbr. 1.6 Hr. 1.59 rm,4 H'. 1.25'br m. 22H: HR\IS<br />

(FAB) calcd for CzsHroNOs rII - H- ' 378.3008. found 378.2983.<br />

Anal. Calcd for CzsHseNOs: C, 73.I7 H. 10'41: N. 3.71' Found:<br />

C, 73.01; H, 10.29; N, 3.57,<br />

General Synthesis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Hydroxamic</str<strong>on</strong>g> <str<strong>on</strong>g>Acids</str<strong>on</strong>g>. The O-benzylhydroxamates<br />

(20 mmol) were dissolved in 200 mL <str<strong>on</strong>g>of</str<strong>on</strong>g> ethanol<br />

and hydrogenated for 6-12 h at a H2 pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 atm using 50<br />

mg <str<strong>on</strong>g>of</str<strong>on</strong>g> Pd <strong>on</strong> carb<strong>on</strong> as catalyst. The soluti<strong>on</strong>s were filtered over<br />

Celite and c<strong>on</strong>centrated, yielding 95-I00Vc <str<strong>on</strong>g>of</str<strong>on</strong>g> the free acid. Up<strong>on</strong><br />

recrystallizati<strong>on</strong> from CHzClzlhexane (1:1) 70-80Vc <str<strong>on</strong>g>of</str<strong>on</strong>g> the hydroxamic<br />

acid were recovered.<br />

N-Hydroxydecanamide.ss 1H NMR (400 MHz, DMSO-do)<br />

d 10.32 (s, 0.9 H), 9.67 (s, 0.1 H), 8.97 (s, 0.1 H), 8.65 (s, 0.9 Hl,<br />

2.25(t.0.2 H, J =7 Hz),L92 (t, 1.8 H, J: 7 Hil,I.47 (q,2H.<br />

J : 7 Hz), 1.3- 1.1 (br m, 12 H), 0.86 (t, 3 H, J : 7 Hz t; HRNIS<br />

(FAB) calcd for CroHzzNOz tM * H*t 188.1650, found 188.1626.<br />

Anal. Calcd for CroHzrNOz: C.64.13: H. 11.3: N. 7.48 Found:<br />

C, 63.91; H, 11.38; N, 7.4.<br />

N-Hydroxydodecanamide.<br />

1H NIIR r 250 llHz. DIISO-d6 r<br />

d 10.32 (s,0.9 H),9.71 (s,0.1 Hl,8.97 rs.0.1 Hr.8.65 rbr s.0.9<br />

H),2.24 (br,0.2 H), 1.92 (t, 1.8 H,J : i H2,.1.55-1.4 tm,2 Ht,<br />

1.3-1.1 (br m, 16 H), 0.86 (t, 3 H, J : i Hz r: HRIIS rFAB r calcd<br />

for CrzHzoNOz (M + H+) 216.1963, found 216.1948. Anal. Calcd<br />

for CrzHzsNOz: C, 66.93; H, 11.7; N, 6.5. Found: C. 67.00: H'<br />

11.37; N, 6.4.<br />

N-Hydrorytetradecanamide.<br />

lH NX'IR t250 N{Hz. DMSOde)<br />

d 10.3 (s,0.9 H),9.74 (s,0.1 H),8.97 (s.0.1 Ht.8.64 (s,0.9<br />

H),2.23 (br,0.2 H), 1.91 (t, 1.8 H. J: 7 H2t.1.55-1'4 (m,2 H),<br />

1.35-1.15 (br m,20 H),0.84 (t.3 H, J = i Hz); HRMS (FAB)<br />

calcd for Cr+HgoNOz (M -f H- I244.2276, found 224.2261. Anal'<br />

Calcd for Cr+HzgNOz: C, 69.09; H, 12.01; N, 5.75. Found: C'<br />

68.95; H, 11.88; N, 5.60.<br />

N-Hydroxyhexadecanamide.<br />

I H NMR (250 MHz, DM SO -<br />

do) d 10.3 (s, 0.9 H), 9.71 (s,0.1 H), 8.96 (s, 0.1 H), 8'64 (s, 0.9<br />

H),2.22 (br, 0.2 H), 1.90 (t, 1.8 H, J : 7 Hz), 1.55-7.4 (m, 2 H),<br />

1.35-1.15 (br m, 24 H),0.84 (t, 3 H, J : 7 Hz); HRMS (FAB)<br />

(59) Two sets <str<strong>on</strong>g>of</str<strong>on</strong>g> peaks in the lH NMR are observed for the hydrogens<br />

<strong>on</strong> the oxygen and nitrogen in the hydroxamic acid and the hydrogens<br />

in the methylene group o. to the hydroxamic acid. These two sets<br />

corresp<strong>on</strong>d toE andZ c<strong>on</strong>formati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the hydroxamic acid. For more<br />

detail. see: Brown, D. A.; Glass, W. K.; Mageswaran, R.; Girmay, B.<br />

Magn. Res<strong>on</strong>. Chem. t988,26,970-973. Brown, D. A.; Glass, W. K.;<br />

Mageswaran, R.; Mohammed, S. A. Magn. Res<strong>on</strong>. Chem. 1991, 29, 40-<br />

45.<br />

Langmuir,Vol. 11, No. 3, 1995 823<br />

calcd for CraHs+NOz (M + H') 272'2589, found 272.2573' Anal.<br />

CalcdforCreH3sNO2: C, 70.8; H, 12.25;N, 5.16. Found: C,70.74;<br />

H. 12.48: N, 5.10.<br />

N-Hydroxyheptadecanamide.<br />

1 H NMR CI50 MHz, DMSOdn)<br />

d 10.3 (s, 0.9 H). 9.71 (s, 0.1 H), 8'97 (s, 0.1 H), 8'64 (s, 1 H),<br />

2.23(br.0.2 H), 1.91 (t,2IH,,J:7 Hz),1.55-1.4 (m,2 H), 1.35-<br />

1.15 (br m. 26 H), 0.84 (t, 3 H, J :7 Hz); HRMS (FAB) calcd for<br />

Cr;HrsNO,:\a rN{ * Na* }308.2565, found 308'2575. Anal. Calcd<br />

for Cr;H:;NO:: C. 71.53: H. 12.36;N, 4.9i. Found: C,7l'72;H,<br />

12.35: N. 4.80.<br />

N-Hydroxyoctadecanamide. 1H NMR (250 MHz, DMSOda)<br />

d 10.31 {-s. 0.9 H r, 9.71 1s. 0.1 Hr. 8.97 (s, 0.1 H), 8.64 (s, 1 H),<br />

2.22 (br,0.2 H r. 1.91 rt. 1.8 H. J : 7 Hz),1.6-1.1 (br m, 30 H),<br />

0.84 (t. 3 H. J : 7 Hz); HRMS tFAB t calcd for CraHgeNOz (M +<br />

H*) 300.2902. found 300.2895. Anal. Calcd for CrsHazNO2: C,<br />

72.19:H.12.45: N,4.68. Found: C.72.23; H, 12.68; N,4.6.<br />

l6JV-Dihydroxyhexadecanamide.<br />

1H NMR (300 MHz'<br />

MeOH-d+) d 3.43 (t, 2 H, J : 7 Hz), 1.97 (t, 2 H, J : 7 Hz'),<br />

1.55-1.35 (m, 4 H), 1.3-1.1 (br m, 22H); HRMS (FAB) calcd for<br />

CroHaaNOa (M -r H*) 288.2539,found 288.2541. Anal. Calcd for<br />

CroHssNOs: C, 66.86; H, 11.57; N, 4.87. Found: C, 66.95; H,<br />

11.58; N, 4.75.<br />

Preparati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Substrates. The copper, silver, zirc<strong>on</strong>ium,<br />

ir<strong>on</strong>, and aluminum films (1000 A; thinner films, generally 600-<br />

800 A. were used for aluminum, because <str<strong>on</strong>g>of</str<strong>on</strong>g> the high power needed<br />

to evaporate the metal) were prepared by"evaporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

metals <strong>on</strong>to silic<strong>on</strong> wafers primed with 50 A <str<strong>on</strong>g>of</str<strong>on</strong>g> titanium as an<br />

adhesi<strong>on</strong> iaver: titanium {1000 Atrvas evaporated directly <strong>on</strong>to<br />

the silic<strong>on</strong> u-afers, All nietals were evaporated at a rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 3 A/s.<br />

The evaporatr(rns n'ere performed in a cr1'ogenically pumped<br />

electr<strong>on</strong>-be:tI'r^ e\-ilporatol base pressure < 1 x 10-; Torr). After<br />

cvaporatl<strong>on</strong> the chrlmber ri'as backfilled with nitrogen. The<br />

san-rples \\'ere tritnsf'erred through air to the soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

hvdroxamic acids ri'ithrn 5-10 min.<br />

Preparati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>M<strong>on</strong>olayers</str<strong>on</strong>g>. <str<strong>on</strong>g>M<strong>on</strong>olayers</str<strong>on</strong>g> were formed from<br />

soluti<strong>on</strong>s in either isooctane or ethanol with c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

1 mM in adsorbate. The hydroxamic acids, however, were not<br />

soluble in isooctane at 1 mM, but enough dissolved to form<br />

m<strong>on</strong>olayers. <str<strong>on</strong>g>M<strong>on</strong>olayers</str<strong>on</strong>g> for infrared spectroscopy were formed<br />

in glass Petri dishes, which had been cleaned with "piranha<br />

soluti<strong>on</strong>" (7:3 c<strong>on</strong>centrated HzSO,tl3j% HzOz) at -90 'C<br />

for 30<br />

min. rinsed with dei<strong>on</strong>ized water, and dried in an oven at 125<br />

"C prior to use.<br />

WARNING: Piranha soluti<strong>on</strong> should be handled with<br />

cauti<strong>on</strong>; it has det<strong>on</strong>ated unexpectedly.6o For all other uses,<br />

m<strong>on</strong>olavers were formed in single-use glass scintillati<strong>on</strong> vials<br />

r20 mL r. The slrdes were removed from soluti<strong>on</strong>s after 1-2 days,<br />

nnsed u'ith ethanol and heptane, blown dry with N2, and<br />

charactenzed. The method for forming soluti<strong>on</strong>s for mixed<br />

m<strong>on</strong>olavers has been described previously'34 35'3e<br />

Measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> C<strong>on</strong>tact Angles. C<strong>on</strong>tact angles were<br />

measured <strong>on</strong> a Rame-Hart }lodel 100 g<strong>on</strong>iometer at room<br />

temperature and ambient humidity. Water for c<strong>on</strong>tact angles<br />

was dei<strong>on</strong>ized and dtstilled in a glass and Tefl<strong>on</strong> apparatus.<br />

Advancing and receding c<strong>on</strong>tact angles were measured <strong>on</strong> both<br />

sides <str<strong>on</strong>g>of</str<strong>on</strong>g> at least three drops <str<strong>on</strong>g>of</str<strong>on</strong>g> each liquid per slide; data in the<br />

figures represent the average <str<strong>on</strong>g>of</str<strong>on</strong>g> these measurements' The<br />

following method was used for measuring c<strong>on</strong>tact angles: A drop<br />

approximately 1-21rL in volume was grown <strong>on</strong> the end <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

pipette tip (Micro-Electrapette syringe; Matrix Technologies:<br />

Lowell, MAt. The tip was then lowered to the surface until the<br />

drop came in c<strong>on</strong>tact with the surface. The drop was advanced<br />

by slowly increasing the volume <str<strong>on</strong>g>of</str<strong>on</strong>g> the drop (rate -l pUs)'<br />

Advancing c<strong>on</strong>tact angles <str<strong>on</strong>g>of</str<strong>on</strong>g> water were measured immediately<br />

after the fr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> the drop had smoothly moved a short distance<br />

across the surface. Receding angles were taken after the drop<br />

had smoothly retreated across the surface by decreasing the<br />

volume <str<strong>on</strong>g>of</str<strong>on</strong>g> the drop.<br />

X-ray Photoelectr<strong>on</strong> Spectroscopy (XPS). X-ray photoelectr<strong>on</strong><br />

spectra were collected <strong>on</strong> a Surface Science SSX-100<br />

spectrometer using a m<strong>on</strong>ochromatized Al Kct source (hv:1486.6<br />

eVi. Th" spectra were recorded using a spot size <str<strong>on</strong>g>of</str<strong>on</strong>g> 600 ,am and<br />

a pass energy <strong>on</strong> the detector <str<strong>on</strong>g>of</str<strong>on</strong>g> 50 eV (acquisiti<strong>on</strong> time for <strong>on</strong>e<br />

(60) Several warnings have appeared c<strong>on</strong>cerning "piranha soluti<strong>on</strong>":<br />

Dobbs, D. A.; Bergman, R. G.; Theopold. K. H. Chem. Eng.I'{ews<br />

1990.68 (17\.2. Wnuk, T.Chem.Eng.News 1990,68 (26),2. Matlow.<br />

S. L. Chem. Ens. News 1990, 68 (30). 2.


824 Langmuir, Vol. 11, No. 3, 1995<br />

scan was approximately 1.5 min). For the m<strong>on</strong>olayers, spectra<br />

u'ere collected for carb<strong>on</strong>, nitrogen, and oxygen using the 1s peaks<br />

iit 285. ,400. and 530 eV, respectively; the binding energies for<br />

element,s in the m<strong>on</strong>olayer were referenced to the peak due to<br />

hvdrocarb<strong>on</strong> in the C 1s regi<strong>on</strong>, for which we fixed the binding<br />

e.nergl at 284.6 eV.a2 Spectra for the solid hydroxamic acid were<br />

collected using an electr<strong>on</strong> flood gun <str<strong>on</strong>g>of</str<strong>on</strong>g> 4.5 eV to dissipate charge<br />

in the sample. The following sigaals were used for the substrates:<br />

Cu 2p,r .z at 932 eV for Cu(O), and at -934 eV for Cu(II);<br />

Ag 3d;,. 3d:;: at 368 and 374 eV for all oxidati<strong>on</strong> states <str<strong>on</strong>g>of</str<strong>on</strong>g> silver;<br />

Ti 2p'r,. 2pr: at 454 and 460 eV for Ti(O), and at 459 and 464.5<br />

eV fbr TirI\rr: Al 2p at 73 eV for Al(0), and at 75 eV for AI(III);<br />

Zr i)d;,.3d,r: at 179 and 181 eV for ZrQ), and at 183 and 185.5<br />

Folkers et al.<br />

eV for Zr(Nl Fe 2plz, 2pnat 706.5 eV and 719.5 eV for Fe(0),<br />

and at 710 and 723.5 eV for Fe(IIIt.12 The binding energies for<br />

the substrates were not standardized to a reference sample. All<br />

spectra were fitted using an 807r Gaussian/20% Lorentzian peak<br />

shape and a Shirley background subtracti<strong>on</strong>.6l<br />

Infrared Spectroscopy. The experimental apparatus for<br />

taking infrared spectra has been described previously.a 8 The<br />

angle between the incident beam and the surface normal was<br />

approximately 85".<br />

L49407 47r<br />

(61r Shirley, D. A. Pfrv.s. Rer'. B 1972.5,4709 4774

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!