22.12.2012 Views

The effects of organic material-treated SiO2 dielectric surfaces on ...

The effects of organic material-treated SiO2 dielectric surfaces on ...

The effects of organic material-treated SiO2 dielectric surfaces on ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>organic</str<strong>on</strong>g> <str<strong>on</strong>g>material</str<strong>on</strong>g>-<str<strong>on</strong>g>treated</str<strong>on</strong>g> <str<strong>on</strong>g>SiO2</str<strong>on</strong>g> <str<strong>on</strong>g>dielectric</str<strong>on</strong>g> <str<strong>on</strong>g>surfaces</str<strong>on</strong>g> <strong>on</strong> the<br />

electrical characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> in<str<strong>on</strong>g>organic</str<strong>on</strong>g> amorphous In-Ga-Zn-O thin film<br />

transistors<br />

Mije<strong>on</strong>g Park, Jaeyoung Jang, Se<strong>on</strong>uk Park, Jiye Kim, Jiehyun Se<strong>on</strong>g et al.<br />

Citati<strong>on</strong>: Appl. Phys. Lett. 100, 102110 (2012); doi: 10.1063/1.3691920<br />

View <strong>on</strong>line: http://dx.doi.org/10.1063/1.3691920<br />

View Table <str<strong>on</strong>g>of</str<strong>on</strong>g> C<strong>on</strong>tents: http://apl.aip.org/resource/1/APPLAB/v100/i10<br />

Published by the American Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics.<br />

Related Articles<br />

Strain c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> AlGaN/GaN high electr<strong>on</strong> mobility transistor structures <strong>on</strong> silic<strong>on</strong> (111) by plasma assisted<br />

molecular beam epitaxy<br />

J. Appl. Phys. 111, 114516 (2012)<br />

HfO2 <str<strong>on</strong>g>dielectric</str<strong>on</strong>g>s engineering using low power SF6 plasma <strong>on</strong> InP and In0.53Ga0.47As metal-oxidesemic<strong>on</strong>ductor<br />

field-effect-transistors<br />

Appl. Phys. Lett. 100, 243508 (2012)<br />

Electrical instability <str<strong>on</strong>g>of</str<strong>on</strong>g> amorphous indium-gallium-zinc oxide thin film transistors under m<strong>on</strong>ochromatic light<br />

illuminati<strong>on</strong><br />

Appl. Phys. Lett. 100, 243505 (2012)<br />

Dual-purpose BGaN layers <strong>on</strong> performance <str<strong>on</strong>g>of</str<strong>on</strong>g> nitride-based high electr<strong>on</strong> mobility transistors<br />

Appl. Phys. Lett. 100, 243503 (2012)<br />

Simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tunneling field-effect transistors with extended source structures<br />

J. Appl. Phys. 111, 114514 (2012)<br />

Additi<strong>on</strong>al informati<strong>on</strong> <strong>on</strong> Appl. Phys. Lett.<br />

Journal Homepage: http://apl.aip.org/<br />

Journal Informati<strong>on</strong>: http://apl.aip.org/about/about_the_journal<br />

Top downloads: http://apl.aip.org/features/most_downloaded<br />

Informati<strong>on</strong> for Authors: http://apl.aip.org/authors<br />

Downloaded 15 Jun 2012 to 141.223.169.11. Redistributi<strong>on</strong> subject to AIP license or copyright; see http://apl.aip.org/about/rights_and_permissi<strong>on</strong>s


<str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>organic</str<strong>on</strong>g> <str<strong>on</strong>g>material</str<strong>on</strong>g>-<str<strong>on</strong>g>treated</str<strong>on</strong>g> <str<strong>on</strong>g>SiO2</str<strong>on</strong>g> <str<strong>on</strong>g>dielectric</str<strong>on</strong>g> <str<strong>on</strong>g>surfaces</str<strong>on</strong>g> <strong>on</strong> the<br />

electrical characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> in<str<strong>on</strong>g>organic</str<strong>on</strong>g> amorphous In-Ga-Zn-O thin film<br />

transistors<br />

Mije<strong>on</strong>g Park, 1,a) Jaeyoung Jang, 1,a) Se<strong>on</strong>uk Park, 1 Jiye Kim, 1 Jiehyun Se<strong>on</strong>g, 2<br />

Jiyoung Hwang, 2 and Chan E<strong>on</strong> Park 1,b)<br />

1 Postech Organic Electr<strong>on</strong>ics Laboratory, Polymer Research Institute, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Chemical Engineering,<br />

Pohang University <str<strong>on</strong>g>of</str<strong>on</strong>g> Science and Technology, Pohang, Gyungbuk 790-784, South Korea<br />

2 Corporate R&D, LG Chem Research Park, 104-1, Mo<strong>on</strong>ji-d<strong>on</strong>g, Yuse<strong>on</strong>g-gu, Daeje<strong>on</strong> 305-380, South Korea<br />

(Received 16 December 2011; accepted 15 February 2012; published <strong>on</strong>line 8 March 2012)<br />

We investigated the influence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>organic</str<strong>on</strong>g> <str<strong>on</strong>g>dielectric</str<strong>on</strong>g> <str<strong>on</strong>g>surfaces</str<strong>on</strong>g> <strong>on</strong> the electrical characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

in<str<strong>on</strong>g>organic</str<strong>on</strong>g> amorphous indium-gallium-zinc oxide (a-IGZO)-based thin film transistors (TFTs). To<br />

modify the <str<strong>on</strong>g>dielectric</str<strong>on</strong>g> surface, various self-assembled m<strong>on</strong>olayers and polymer thin films with<br />

different functi<strong>on</strong>al groups were introduced. Electrical measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> the a-IGZO TFTs using<br />

surface-modified gate <str<strong>on</strong>g>dielectric</str<strong>on</strong>g>s revealed that the threshold voltages shifted toward positive values<br />

as the surface functi<strong>on</strong>al groups attract more electr<strong>on</strong>s in the a-IGZO thin films. <str<strong>on</strong>g>The</str<strong>on</strong>g>se results<br />

indicate that the channel c<strong>on</strong>ductance and carrier density <str<strong>on</strong>g>of</str<strong>on</strong>g> a-IGZO TFTs could be tuned by<br />

simple modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>dielectric</str<strong>on</strong>g> <str<strong>on</strong>g>surfaces</str<strong>on</strong>g> with <str<strong>on</strong>g>organic</str<strong>on</strong>g> <str<strong>on</strong>g>material</str<strong>on</strong>g>s. VC 2012 American Institute <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Physics. [http://dx.doi.org/10.1063/1.3691920]<br />

Amorphous indium-gallium-zinc oxides (a-IGZO) have<br />

emerged as representative <str<strong>on</strong>g>of</str<strong>on</strong>g> transparent oxide semic<strong>on</strong>ductors<br />

in industry due to their high carrier mobility, low<br />

processing temperature, and compatibility with plastic substrates.<br />

1,2 <str<strong>on</strong>g>The</str<strong>on</strong>g> a-IGZO-based thin-film transistors (TFTs) are<br />

c<strong>on</strong>sidered to be the promising switching devices for use in<br />

the backplane circuits <str<strong>on</strong>g>of</str<strong>on</strong>g> transparent, flexible displays, or<br />

electr<strong>on</strong>ic paper. 3,4 For the purposes <str<strong>on</strong>g>of</str<strong>on</strong>g> dem<strong>on</strong>strating such<br />

electr<strong>on</strong>ic devices based <strong>on</strong> a-IGZO TFTs, polymers can be<br />

good <str<strong>on</strong>g>material</str<strong>on</strong>g> candidates as gate <str<strong>on</strong>g>dielectric</str<strong>on</strong>g> layers because <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

their high transparency and flexibility, low cost, easy processing<br />

from soluti<strong>on</strong>, and good insulating properties. 5–7 Prior<br />

to applying a polymer <str<strong>on</strong>g>dielectric</str<strong>on</strong>g>, in-depth studies <str<strong>on</strong>g>of</str<strong>on</strong>g> the compatibility<br />

between the a-IGZO and a polymer <str<strong>on</strong>g>dielectric</str<strong>on</strong>g> layer<br />

are needed. However, studies <str<strong>on</strong>g>of</str<strong>on</strong>g> the influence <str<strong>on</strong>g>of</str<strong>on</strong>g> an <str<strong>on</strong>g>organic</str<strong>on</strong>g><br />

<str<strong>on</strong>g>dielectric</str<strong>on</strong>g> surface <strong>on</strong> the characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> an a-IGZO in<str<strong>on</strong>g>organic</str<strong>on</strong>g><br />

semic<strong>on</strong>ductor have been largely unexplored in comparis<strong>on</strong><br />

to studies <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>organic</str<strong>on</strong>g> semic<strong>on</strong>ductors, such as<br />

pentacene, even though the <str<strong>on</strong>g>dielectric</str<strong>on</strong>g>-semic<strong>on</strong>ductor interface<br />

plays an important role in the operati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> TFTs. 8<br />

In general, for the practical applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> TFT devices,<br />

it is required that the device operati<strong>on</strong> be c<strong>on</strong>trolled via carrier<br />

density modulati<strong>on</strong> in the channel. In a-Si TFT technology,<br />

the channel carrier density is usually modulated via i<strong>on</strong><br />

implantati<strong>on</strong>-based doping methods that can potentially<br />

damage devices that include <str<strong>on</strong>g>organic</str<strong>on</strong>g> <str<strong>on</strong>g>material</str<strong>on</strong>g>s. Kobayashi<br />

et al. and Pernstich et al. established a simple and efficient<br />

method for modulating the charge carrier density by introducing<br />

surface dipoles <strong>on</strong>to <str<strong>on</strong>g>dielectric</str<strong>on</strong>g> <str<strong>on</strong>g>surfaces</str<strong>on</strong>g>. Manipulati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>dielectric</str<strong>on</strong>g> surface dipole provides a good alternative to<br />

c<strong>on</strong>trolling the channel carrier density and, therefore, the<br />

operati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> devices based <strong>on</strong> a-IGZO TFTs. This method<br />

particularly advances the realizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> transparent flexible<br />

electr<strong>on</strong>ic devices using polymer gate <str<strong>on</strong>g>dielectric</str<strong>on</strong>g>s.<br />

a) M. Park and J. Jang c<strong>on</strong>tributed equally to this work.<br />

b) Electr<strong>on</strong>ic mail: cep@postech.ac.kr.<br />

APPLIED PHYSICS LETTERS 100, 102110 (2012)<br />

In this letter, we describe how a-IGZO-based TFTs perform<br />

when functi<strong>on</strong>alized with a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>organic</str<strong>on</strong>g> <str<strong>on</strong>g>dielectric</str<strong>on</strong>g><br />

surface. To modify a 300 nm thick SiO 2 gate <str<strong>on</strong>g>dielectric</str<strong>on</strong>g> surface,<br />

we introduced an <str<strong>on</strong>g>organic</str<strong>on</strong>g> thin layers <strong>on</strong>to the <str<strong>on</strong>g>dielectric</str<strong>on</strong>g><br />

such as a self-assembled m<strong>on</strong>olayer (SAM) and an insulating<br />

polymer having any <str<strong>on</strong>g>of</str<strong>on</strong>g> a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> functi<strong>on</strong>al groups <strong>on</strong> the<br />

molecular ends, as shown in Fig. 1. 9–11 Ultraviolet photoemissi<strong>on</strong><br />

spectroscopy (UPS) analysis was used to measure the<br />

relative directi<strong>on</strong> and strength <str<strong>on</strong>g>of</str<strong>on</strong>g> the surface dipole formed in<br />

the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> the functi<strong>on</strong>al groups <strong>on</strong> the <str<strong>on</strong>g>SiO2</str<strong>on</strong>g> <str<strong>on</strong>g>dielectric</str<strong>on</strong>g><br />

<str<strong>on</strong>g>surfaces</str<strong>on</strong>g>. By measuring the electrical characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the a-<br />

IGZO TFTs functi<strong>on</strong>alized with various surface-modified<br />

gate <str<strong>on</strong>g>dielectric</str<strong>on</strong>g>s, the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>organic</str<strong>on</strong>g> <str<strong>on</strong>g>material</str<strong>on</strong>g>-<str<strong>on</strong>g>treated</str<strong>on</strong>g><br />

FIG. 1. (Color <strong>on</strong>line) Chemical structures <str<strong>on</strong>g>of</str<strong>on</strong>g> the SAMs (left) and the polymer<br />

thin films (right) employed as surface modificati<strong>on</strong> layers in this study. (Blue<br />

color: electr<strong>on</strong> d<strong>on</strong>ating, red color: electr<strong>on</strong> withdrawing.) <str<strong>on</strong>g>The</str<strong>on</strong>g> device structure<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a bottom-gated top-c<strong>on</strong>tact a-IGZO TFT used in this study (center).<br />

0003-6951/2012/100(10)/102110/4/$30.00 100, 102110-1<br />

VC 2012 American Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics<br />

Downloaded 15 Jun 2012 to 141.223.169.11. Redistributi<strong>on</strong> subject to AIP license or copyright; see http://apl.aip.org/about/rights_and_permissi<strong>on</strong>s


102110-2 Park et al. Appl. Phys. Lett. 100, 102110 (2012)<br />

<str<strong>on</strong>g>dielectric</str<strong>on</strong>g> <str<strong>on</strong>g>surfaces</str<strong>on</strong>g> <strong>on</strong> the electrical characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> a-IGZO<br />

TFTs were investigated.<br />

Three types <str<strong>on</strong>g>of</str<strong>on</strong>g> SAM <str<strong>on</strong>g>material</str<strong>on</strong>g> and two types <str<strong>on</strong>g>of</str<strong>on</strong>g> polymer<br />

with functi<strong>on</strong>al groups <str<strong>on</strong>g>of</str<strong>on</strong>g> varying electr<strong>on</strong>egativity were used<br />

as surface modificati<strong>on</strong> layers. <str<strong>on</strong>g>The</str<strong>on</strong>g> left side <str<strong>on</strong>g>of</str<strong>on</strong>g> Fig. 1 shows the<br />

chemical structures <str<strong>on</strong>g>of</str<strong>on</strong>g> each SAM: aminopropyltriethoxysilane<br />

(APS, Aldrich, 99%), mercaptopropyltriethoxysilane (MPS,<br />

Aldrich, 95%), and perfluorooctyltriethoxysilane (PFOTES,<br />

Aldrich, 98%). <str<strong>on</strong>g>The</str<strong>on</strong>g> chemical structures <str<strong>on</strong>g>of</str<strong>on</strong>g> the polymers, poly-<br />

4-vinyl pyridine (PVPyr, Aldrich) and CYTOP (AGC), are<br />

shown in the right-hand side <str<strong>on</strong>g>of</str<strong>on</strong>g> Fig. 1.<br />

Organosilane molecules, which have several functi<strong>on</strong>al<br />

groups <str<strong>on</strong>g>of</str<strong>on</strong>g> different electr<strong>on</strong>egativity, are characterized by an<br />

electric dipole determined by the charge distributi<strong>on</strong> within<br />

the molecule. 12 When these molecules closely pack to form<br />

a SAM, each molecule’s electric dipole produces an overall<br />

net polarizati<strong>on</strong> inside the SAM and introduces a surface<br />

dipole at the interface between the semic<strong>on</strong>ductor and the<br />

<str<strong>on</strong>g>dielectric</str<strong>on</strong>g>. A SAMs surface dipole modulates the energy<br />

level <str<strong>on</strong>g>of</str<strong>on</strong>g> the semic<strong>on</strong>ductor at the interface. 10 UPS analysis<br />

was used to determine the relative directi<strong>on</strong> and strength <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the surface dipole <str<strong>on</strong>g>of</str<strong>on</strong>g> a SAM (i.e., the electr<strong>on</strong>-withdrawing<br />

or -d<strong>on</strong>ating ability). 13 Figure 2(a) shows the UPS data for<br />

SiO 2 <str<strong>on</strong>g>surfaces</str<strong>on</strong>g> <str<strong>on</strong>g>treated</str<strong>on</strong>g> with each <str<strong>on</strong>g>of</str<strong>on</strong>g> the three SAMs. UPS<br />

equipment (Escalab 220IXL) was used al<strong>on</strong>g with the He(I)<br />

emissi<strong>on</strong> at 21.2 eV. Figure 2(a) shows that the highest <strong>on</strong>set<br />

point <str<strong>on</strong>g>of</str<strong>on</strong>g> sec<strong>on</strong>dary electr<strong>on</strong>s was observed from the PFOTES<br />

SAM (9.3 eV), followed by the MPS SAM (9.0 eV) and the<br />

APS SAM (8.75 eV). PFOTES induces a partial negative<br />

charge at the a-IGZO interface, thereby shifting the surface<br />

potential toward higher electr<strong>on</strong> energy levels. As a result,<br />

when a-IGZO is deposited <strong>on</strong> a PFOTES-<str<strong>on</strong>g>treated</str<strong>on</strong>g> <str<strong>on</strong>g>dielectric</str<strong>on</strong>g><br />

surface, band bending toward higher energy levels <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

lowest unoccupied molecular orbital (LUMO) and the highest<br />

occupied molecular orbital (HOMO) <str<strong>on</strong>g>of</str<strong>on</strong>g> the a-IGZO<br />

occurs at the nearest interface. PFOTES is, therefore,<br />

expected to decrease the electr<strong>on</strong> carrier density in an a-<br />

IGZO in the channel regi<strong>on</strong>. 10,11 Similar behavior was<br />

observed in the MPS-<str<strong>on</strong>g>treated</str<strong>on</strong>g> samples, although the strength<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong>-withdrawing properties was lower than that<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the PFOTES-<str<strong>on</strong>g>treated</str<strong>on</strong>g> surface. On the other hand, APS was<br />

expected to increase the electr<strong>on</strong> carrier density <str<strong>on</strong>g>of</str<strong>on</strong>g> an<br />

a-IGZO TFT in the channel regi<strong>on</strong> because its surface dipole<br />

directi<strong>on</strong> is opposite that <str<strong>on</strong>g>of</str<strong>on</strong>g> PFOTES. This property lowers<br />

the LUMO and HOMO level <str<strong>on</strong>g>of</str<strong>on</strong>g> a-IGZO and leads to electr<strong>on</strong><br />

accumulati<strong>on</strong>. 10,11 <str<strong>on</strong>g>The</str<strong>on</strong>g> energy level difference <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

FIG. 2. (Color <strong>on</strong>line) UPS spectra <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the surface-modified gate <str<strong>on</strong>g>dielectric</str<strong>on</strong>g>s<br />

with (a) three SAMs and (b) two polymer<br />

thin films.<br />

a-IGZO between <strong>on</strong> the <str<strong>on</strong>g>dielectric</str<strong>on</strong>g> <str<strong>on</strong>g>treated</str<strong>on</strong>g> with PFOTES and<br />

APS was expected to be 0.55 eV based <strong>on</strong> UPS analysis.<br />

Polymer thin films coated <strong>on</strong>to SiO 2 <str<strong>on</strong>g>dielectric</str<strong>on</strong>g>s can modulate<br />

the interface energy levels between the semic<strong>on</strong>ductor<br />

and the <str<strong>on</strong>g>dielectric</str<strong>on</strong>g>, similar to SAMs. 8 To modify the surface<br />

dipole characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the gate <str<strong>on</strong>g>dielectric</str<strong>on</strong>g>s with maintaining<br />

bulk properties (such as leakage currents and capacitances),<br />

the polymer thin-films were c<strong>on</strong>trolled to have an ultra-thin<br />

film thickness. <str<strong>on</strong>g>The</str<strong>on</strong>g> thicknesses <str<strong>on</strong>g>of</str<strong>on</strong>g> the ultra-thin polymer films<br />

were characterized by using an ellipsometer (J. A. Woollam.<br />

Co., Inc.) and found to be 12.2 6 0.3 nm (for CYTOP) and<br />

10.8 6 0.3 nm (for PVPyr), respectively. UPS data for polymer<br />

thin film-coated SiO 2 <str<strong>on</strong>g>dielectric</str<strong>on</strong>g>s are plotted in Fig. 2(b),<br />

showing a trend analogous to that observed for the SAM<str<strong>on</strong>g>treated</str<strong>on</strong>g><br />

samples. A higher <strong>on</strong>set point was observed for the<br />

CYTOP-coated <str<strong>on</strong>g>dielectric</str<strong>on</strong>g> (10.11 eV) than for the PVPyrcoated<br />

<str<strong>on</strong>g>dielectric</str<strong>on</strong>g> (9.0 eV). <str<strong>on</strong>g>The</str<strong>on</strong>g> UPS data associated with the<br />

SAM-<str<strong>on</strong>g>treated</str<strong>on</strong>g> and polymer-coated samples indicated that<br />

PFOTES and CYTOP-modified <str<strong>on</strong>g>dielectric</str<strong>on</strong>g> <str<strong>on</strong>g>surfaces</str<strong>on</strong>g> would be<br />

more highly electr<strong>on</strong>-withdrawing in an a-IGZO than the<br />

APS- or PVPyr-modified <str<strong>on</strong>g>dielectric</str<strong>on</strong>g> <str<strong>on</strong>g>surfaces</str<strong>on</strong>g>.<br />

Atomic force microscopy (AFM, characterized using a<br />

Multimode SPM, Digital Instruments) topographs <str<strong>on</strong>g>of</str<strong>on</strong>g> a-IGZO<br />

films deposited <strong>on</strong> various <str<strong>on</strong>g>dielectric</str<strong>on</strong>g> <str<strong>on</strong>g>surfaces</str<strong>on</strong>g> are shown in<br />

Fig. 3(a). <str<strong>on</strong>g>The</str<strong>on</strong>g>se images show that all a-IGZO films had similar<br />

morphologies with a 5–9 A ˚ r.m.s. roughness (Rq), regardless<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>dielectric</str<strong>on</strong>g> surface dipole difference. Figure 3(b)<br />

shows a scanning electr<strong>on</strong> microscopy (SEM) image and corresp<strong>on</strong>ding<br />

energy dispersive spectrometry (EDS) images <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Zn, Ga, and In atoms <str<strong>on</strong>g>of</str<strong>on</strong>g> a-IGZO films deposited <strong>on</strong> the<br />

polymer-coated (PVPyr) <str<strong>on</strong>g>SiO2</str<strong>on</strong>g> <str<strong>on</strong>g>dielectric</str<strong>on</strong>g>s. As shown in the<br />

SEM image, there are no aggregates or crystallites throughout<br />

the film. Moreover, the distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Zn, Ga, and In<br />

atoms is uniform, which implies the IGZO films are not crystalline.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> SEM and EDS results <str<strong>on</strong>g>of</str<strong>on</strong>g> the a-IGZO film deposited<br />

<strong>on</strong> SAM-<str<strong>on</strong>g>treated</str<strong>on</strong>g> (PFOTES) <str<strong>on</strong>g>dielectric</str<strong>on</strong>g>s are almost<br />

identical with Fig. 3(b) (data not shown). Also, the h-2h<br />

mode out-<str<strong>on</strong>g>of</str<strong>on</strong>g>-plane x-ray diffracti<strong>on</strong> (XRD) pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles <str<strong>on</strong>g>of</str<strong>on</strong>g> the a-<br />

IGZO films deposited <strong>on</strong> the various <str<strong>on</strong>g>dielectric</str<strong>on</strong>g> <str<strong>on</strong>g>surfaces</str<strong>on</strong>g>, as<br />

plotted in Figs. 3(c) and 3(d), revealed that all a-IGZO films<br />

had amorphous structures because they showed no peaks<br />

over the range 20 –40 (c<strong>on</strong>sidering that the IGZO crystals<br />

showed a sharp peak at 32 ). 14 <str<strong>on</strong>g>The</str<strong>on</strong>g> AFM, SEM, EDS, and<br />

XRD results suggest that the morphology and crystalline<br />

structure <str<strong>on</strong>g>of</str<strong>on</strong>g> the a-IGZO films were not significantly affected<br />

by the <str<strong>on</strong>g>organic</str<strong>on</strong>g> <str<strong>on</strong>g>dielectric</str<strong>on</strong>g> surface, in c<strong>on</strong>trast to the behavior<br />

Downloaded 15 Jun 2012 to 141.223.169.11. Redistributi<strong>on</strong> subject to AIP license or copyright; see http://apl.aip.org/about/rights_and_permissi<strong>on</strong>s


102110-3 Park et al. Appl. Phys. Lett. 100, 102110 (2012)<br />

observed for <str<strong>on</strong>g>organic</str<strong>on</strong>g> semic<strong>on</strong>ductors, such as pentacene, the<br />

grain size, and shape <str<strong>on</strong>g>of</str<strong>on</strong>g> which depend <strong>on</strong> the <str<strong>on</strong>g>dielectric</str<strong>on</strong>g> surface.<br />

9 <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, the electrical performances <str<strong>on</strong>g>of</str<strong>on</strong>g> the a-IGZO<br />

TFTs were thought to be mainly affected by the surface<br />

dipole at the semic<strong>on</strong>ductor–<str<strong>on</strong>g>dielectric</str<strong>on</strong>g> interface.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> various <str<strong>on</strong>g>dielectric</str<strong>on</strong>g> <str<strong>on</strong>g>surfaces</str<strong>on</strong>g> <strong>on</strong> the electrical<br />

characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the a-IGZO TFTs was characterized<br />

by fabricating bottom gate/top c<strong>on</strong>tact a-IGZO TFTs using<br />

the surface-modified gate <str<strong>on</strong>g>dielectric</str<strong>on</strong>g>s. Heavily doped n-type<br />

silic<strong>on</strong> wafers with 300 nm thick thermally grown SiO 2<br />

layers were used as the gate substrates. <str<strong>on</strong>g>The</str<strong>on</strong>g> SAMs were prepared<br />

<strong>on</strong> the cleaned silic<strong>on</strong> wafers using a dipping method<br />

following the procedure reported in the literature. <str<strong>on</strong>g>The</str<strong>on</strong>g> polymer<br />

thin films were made using spin-coating methods. 15 After<br />

forming the surface modificati<strong>on</strong> layers, a 40 nm thick a-<br />

IGZO active layer was deposited using an RF magnetr<strong>on</strong><br />

sputtering system with an a-IGZO target composed <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

In2O3:Ga2O3:ZnO ¼ 1:1:2 mol. % through a shadow mask.<br />

During depositi<strong>on</strong>, the c<strong>on</strong>diti<strong>on</strong>s, such as the RF power,<br />

working pressure, gas ratio, and substrate temperature were<br />

set to 50 W, 7 mTorr, Ar:O2 ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> 100:2 sccm, and 180 C<br />

(for SAM-<str<strong>on</strong>g>treated</str<strong>on</strong>g> devices) or 100 C (for polymer-coated<br />

devices), respectively. 16 To accurately compare all devices,<br />

the <str<strong>on</strong>g>treated</str<strong>on</strong>g> substrates were simultaneously deposited under<br />

identical sputtering c<strong>on</strong>diti<strong>on</strong>s. One-hundred nanometer<br />

source/drain electrodes were successively deposited <strong>on</strong>to the<br />

a-IGZO films via thermal evaporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Al through a<br />

shadow mask that defined 150 lm channel lengths (L) and<br />

1500 lm widths (W). All electrical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the fabricated<br />

devices were measured using a Keithley 2400 and 236<br />

Source Meter Instrument in ambient air. Figure 4 shows the<br />

source–drain current <strong>on</strong> a logarithmic scale as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the gate voltage (ID–VG) transfer curves in the saturati<strong>on</strong><br />

regi<strong>on</strong> at V D ¼ 80 V. <str<strong>on</strong>g>The</str<strong>on</strong>g> capacitance <str<strong>on</strong>g>of</str<strong>on</strong>g> all <str<strong>on</strong>g>of</str<strong>on</strong>g> the surfacemodified<br />

gate <str<strong>on</strong>g>dielectric</str<strong>on</strong>g>s is almost identical to that <str<strong>on</strong>g>of</str<strong>on</strong>g> bare<br />

FIG. 3. (Color <strong>on</strong>line) AFM topographs<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the a-IGZO films <strong>on</strong> (a) bare SiO 2,<br />

APS-, MPS-, PFOTES-<str<strong>on</strong>g>treated</str<strong>on</strong>g> <str<strong>on</strong>g>SiO2</str<strong>on</strong>g><br />

<str<strong>on</strong>g>dielectric</str<strong>on</strong>g>s, and PVPyr, CYTOP thinfilms<br />

coated <str<strong>on</strong>g>SiO2</str<strong>on</strong>g>. (b) A SEM image and<br />

corresp<strong>on</strong>ding EDS images <str<strong>on</strong>g>of</str<strong>on</strong>g> Zn, Ga,<br />

and In atoms <str<strong>on</strong>g>of</str<strong>on</strong>g> a-IGZO films deposited<br />

<strong>on</strong> PVPyr-coated SiO 2 <str<strong>on</strong>g>dielectric</str<strong>on</strong>g>s. XRD<br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles <str<strong>on</strong>g>of</str<strong>on</strong>g> a-IGZO films depending <strong>on</strong><br />

the (c) SAM and (d) polymer.<br />

300 nm-thick SiO 2 <str<strong>on</strong>g>dielectric</str<strong>on</strong>g> (i.e., 10 nF/cm 2 ). <str<strong>on</strong>g>The</str<strong>on</strong>g> transistor<br />

characteristics are summarized in Table I. <str<strong>on</strong>g>The</str<strong>on</strong>g> device mobilities<br />

(l) and threshold voltages (Vth) were calculated in the saturati<strong>on</strong><br />

regime using the equati<strong>on</strong> I D ¼ (WC i/2L)l(V G-V th) 2 ,<br />

where I D is the drain current, V G is the gate voltage, and C i is<br />

the capacitance per unit area <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>dielectric</str<strong>on</strong>g>s.<br />

During the sputtering <str<strong>on</strong>g>of</str<strong>on</strong>g> a-IGZO <strong>on</strong> top <str<strong>on</strong>g>of</str<strong>on</strong>g> the s<str<strong>on</strong>g>of</str<strong>on</strong>g>t polymers,<br />

plasma damage has to be c<strong>on</strong>sidered and need to be<br />

studied. To investigate the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> plasma <strong>on</strong> the polymer<br />

gate <str<strong>on</strong>g>dielectric</str<strong>on</strong>g>s, we exposed the polymer-coated (CYTOP<br />

and PVP) SiO 2 gate <str<strong>on</strong>g>dielectric</str<strong>on</strong>g>s to plasma for 30 s and characterized<br />

the surface roughness and thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> the polymer<br />

layer. <str<strong>on</strong>g>The</str<strong>on</strong>g> plasma c<strong>on</strong>diti<strong>on</strong> is the same with the experimental<br />

c<strong>on</strong>diti<strong>on</strong> for a-IGZO depositi<strong>on</strong>. Because the plasma<br />

damage would gradually decrease due to the early deposited<br />

a-IGZO layer, initial dozens <str<strong>on</strong>g>of</str<strong>on</strong>g> sec<strong>on</strong>ds <str<strong>on</strong>g>of</str<strong>on</strong>g> plasma exposure<br />

should be critical to the polymer <str<strong>on</strong>g>dielectric</str<strong>on</strong>g>s. As a result,<br />

although surface roughness values slightly increased after<br />

FIG. 4. (Color <strong>on</strong>line) Drain current–gate voltage (ID–VG) transfer characteristics<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a-IGZO TFTs with (a) SAM-<str<strong>on</strong>g>treated</str<strong>on</strong>g> and (b) thin polymer <str<strong>on</strong>g>treated</str<strong>on</strong>g><br />

SiO 2 <str<strong>on</strong>g>dielectric</str<strong>on</strong>g>s.<br />

Downloaded 15 Jun 2012 to 141.223.169.11. Redistributi<strong>on</strong> subject to AIP license or copyright; see http://apl.aip.org/about/rights_and_permissi<strong>on</strong>s


102110-4 Park et al. Appl. Phys. Lett. 100, 102110 (2012)<br />

TABLE I. Electrical parameters for a-IGZO TFTs prepared with SAM- and<br />

polymer-<str<strong>on</strong>g>treated</str<strong>on</strong>g> SiO 2 <str<strong>on</strong>g>dielectric</str<strong>on</strong>g>s.<br />

l<br />

(cm 2 /V s) I<strong>on</strong> I<str<strong>on</strong>g>of</str<strong>on</strong>g>f I<strong>on</strong>/I<str<strong>on</strong>g>of</str<strong>on</strong>g>f Vth (V)<br />

APS — 5.25 10 3 1.54 10 3<br />

3.41 –<br />

SAM MPS 1.21 5.54 10 4 6.70 10 6 8.26 10 1<br />

69.4<br />

PFOTES 1.18 3.06 10 4 1.96 10 12 1.56 10 8<br />

2.06<br />

PVP 1.73 4.35 10 4 2.85 10 10 1.52 10 6<br />

Polymer<br />

4 12 8<br />

CYTOP 1.04 3.06 10 1.96 10 1.56 10<br />

32.3<br />

0.55<br />

plasma exposure, they still maintained under 0.8 nm. Moreover,<br />

thicknesses <str<strong>on</strong>g>of</str<strong>on</strong>g> the plasma-exposed ultra-thin polymer<br />

films were found to be almost the same with those <str<strong>on</strong>g>of</str<strong>on</strong>g> bare<br />

films, which indicates no severe degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> polymer<br />

films (data not shown). Because the plasma exposure similarly<br />

affects all <str<strong>on</strong>g>organic</str<strong>on</strong>g> gate <str<strong>on</strong>g>dielectric</str<strong>on</strong>g> <str<strong>on</strong>g>material</str<strong>on</strong>g>s for the short<br />

moment, we speculate that the relative difference <str<strong>on</strong>g>of</str<strong>on</strong>g> surface<br />

dipoles for the <str<strong>on</strong>g>organic</str<strong>on</strong>g> <str<strong>on</strong>g>material</str<strong>on</strong>g>-<str<strong>on</strong>g>treated</str<strong>on</strong>g> gate <str<strong>on</strong>g>dielectric</str<strong>on</strong>g>s is<br />

still valid.<br />

As shown in Fig. 4(a), the value <str<strong>on</strong>g>of</str<strong>on</strong>g> Vth for the devices<br />

tended to shift toward the positive directi<strong>on</strong> as the SAM electr<strong>on</strong><br />

withdrawal properties increased. <str<strong>on</strong>g>The</str<strong>on</strong>g> a-IGZO TFTs<br />

with a PFOTES-<str<strong>on</strong>g>treated</str<strong>on</strong>g> <str<strong>on</strong>g>SiO2</str<strong>on</strong>g> <str<strong>on</strong>g>dielectric</str<strong>on</strong>g> yielded a more positive<br />

V th (2.06 V) than was observed with the APS-coated<br />

<str<strong>on</strong>g>SiO2</str<strong>on</strong>g> <str<strong>on</strong>g>dielectric</str<strong>on</strong>g> (–69.4 V). <str<strong>on</strong>g>The</str<strong>on</strong>g> devices with APS-<str<strong>on</strong>g>treated</str<strong>on</strong>g><br />

<str<strong>on</strong>g>dielectric</str<strong>on</strong>g>s even showed c<strong>on</strong>ductor-like behavior due to electr<strong>on</strong><br />

overflow in the channel regi<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> transfer curves and<br />

electrical characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the devices made with polymercoated<br />

<str<strong>on</strong>g>dielectric</str<strong>on</strong>g>s showed trends similar to those shown in<br />

Fig. 4(b) and Table I; the V th values increased from 32.3 V<br />

(for PVPyr samples) to 0.55 V (for CYTOP samples).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>se results were closely related to the surface dipole<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> introduced by the SAMs and the polymer thin films at<br />

the <str<strong>on</strong>g>dielectric</str<strong>on</strong>g> surface. As the <str<strong>on</strong>g>dielectric</str<strong>on</strong>g> surface withdrew<br />

electr<strong>on</strong> from the a-IGZO, a higher gate bias was needed for<br />

the device operati<strong>on</strong>. 10 Our study clearly shows that the<br />

charge carrier density in the channel regi<strong>on</strong>, and hence the<br />

TFT performance <str<strong>on</strong>g>of</str<strong>on</strong>g> a-IGZO thin film, can be c<strong>on</strong>trolled by<br />

modifying the gate <str<strong>on</strong>g>dielectric</str<strong>on</strong>g> surface with <str<strong>on</strong>g>organic</str<strong>on</strong>g> <str<strong>on</strong>g>material</str<strong>on</strong>g>s.<br />

In summary, we investigated the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>organic</str<strong>on</strong>g><br />

<str<strong>on</strong>g>dielectric</str<strong>on</strong>g> <str<strong>on</strong>g>surfaces</str<strong>on</strong>g> <strong>on</strong> the TFT characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> an in<str<strong>on</strong>g>organic</str<strong>on</strong>g><br />

semic<strong>on</strong>ductor, a-IGZO. By treating a SiO 2 <str<strong>on</strong>g>dielectric</str<strong>on</strong>g><br />

surface with two kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>organic</str<strong>on</strong>g> <str<strong>on</strong>g>material</str<strong>on</strong>g>s, SAMs and<br />

polymer thin films, a-IGZO-based TFTs using various <str<strong>on</strong>g>organic</str<strong>on</strong>g><br />

<str<strong>on</strong>g>material</str<strong>on</strong>g>-<str<strong>on</strong>g>treated</str<strong>on</strong>g> gate <str<strong>on</strong>g>dielectric</str<strong>on</strong>g>s were fabricated. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

SAMs and polymer thin films with electr<strong>on</strong>-withdrawing<br />

or -d<strong>on</strong>ating functi<strong>on</strong>al groups, respectively, decreased or<br />

increased the electr<strong>on</strong> carrier density in the a-IGZO channel<br />

regi<strong>on</strong>. Accordingly, str<strong>on</strong>ger surface dipoles withdrew<br />

electr<strong>on</strong>s, and a more positive gate bias was required to<br />

switch <strong>on</strong> the a-IGZO TFTs, which resulted in a positive<br />

shift in Vth.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> XRD experiments were performed at the 10C1<br />

beamline (wavelength 1.54 A ˚ ) <str<strong>on</strong>g>of</str<strong>on</strong>g> the Pohang Accelerator<br />

Laboratory in Korea. This work was supported by a grant<br />

from the Strategic Technology under the Ministry <str<strong>on</strong>g>of</str<strong>on</strong>g> Knowledge<br />

Ec<strong>on</strong>omy (MKE); a grant from the Korea Science and<br />

Engineering Foundati<strong>on</strong> (KOSEF) funded by the Korea government<br />

(MEST) (20110000330) and also by a grant from<br />

LG Chem, Ltd.<br />

1 K. Nomura, H. Ohta, A. Takagi, T. Kamiya, T. Kamiya, M. Hirano, and<br />

H. Hos<strong>on</strong>o, Nature 432, 488 (2004).<br />

2 T. Kamiya, K. Nomura and H. Hos<strong>on</strong>o, Sci. Techno. Adv. Mater. 11,<br />

044305 (2010).<br />

3 H. Hos<strong>on</strong>o, Thin Solid Films 515, 6000 (2007).<br />

4 H. Hos<strong>on</strong>o, Thin Solid Films 352, 851 (2006).<br />

5 C. Yang, K. H<strong>on</strong>g, J. Jang, D. S. Chung, T. K. An, W. Choi, and C. E.<br />

Park, Nanotechnology 20, 465201 (2009).<br />

6 J. Jang, S. H. Kim, S. Nam, D. S. Chung, C. Yang, W. M. Yun, C. E. Park,<br />

and J. B. Koo, Appl. Phys. Lett. 92, 143306 (2008).<br />

7 S. H. Kim, K. H<strong>on</strong>g, M. Jang, J. Jang, J. E. Anth<strong>on</strong>y, H. Yang, and C. E.<br />

Park, Adv. Mater. 22, 4809 (2010).<br />

8 S. H. Kim, M. Jang, H. Yang, and C. E. Park, J. Mater. Chem. 20, 5612<br />

(2010).<br />

9 S. Kobayashi, T. Nishikawa, T. Takenobu, S. Mori, T. Shimoda, T. Mitani,<br />

H. Shimotani, N. Youshimoto, S. Ogawa, and Y. Iwasa, Nature Mater. 3,<br />

317 (2004).<br />

10 K. P. Pernstich, S. Haas, D. Oberh<str<strong>on</strong>g>of</str<strong>on</strong>g>f, C. Goldmann, D. J. Gundlach, and<br />

B. Batlogg, J. Appl. Phys. 96, 6431 (2004).<br />

11 Y. Jang, J. H. Cho, D. H. Kim, Y. D. Park, M. Hwang, and K. Cho, Appl.<br />

Phys. Lett. 90, 132104 (2007).<br />

12 I. H. Campbell, S. Rubin, T. A. Zawodzinski, J. D. Kress, R. L. Martin,<br />

and D. L. Smith, Phys. Rev. B 54, 14321 (1996).<br />

13 H. Ishii, K. Sugiyama, E. Ito, and K. Seki, Adv. Mater. 11, 605 (1999).<br />

14 M. Orita, H. Ohta, M. Hirano, and H. Hos<strong>on</strong>o, Philos. Mag. B 81, 501<br />

(2001).<br />

15 H. Onoe, K. Matsumoto, and I. Shimoyama, J. Microelectromech. Syst.<br />

13, 603 (2004).<br />

16 H. Q. Chiang, B. R. McFarlane, D. H<strong>on</strong>g, R. E. Presley, J. F. Wager, J.<br />

N<strong>on</strong>-Cryst. Solids 354, 2826 (2008).<br />

Downloaded 15 Jun 2012 to 141.223.169.11. Redistributi<strong>on</strong> subject to AIP license or copyright; see http://apl.aip.org/about/rights_and_permissi<strong>on</strong>s

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!