22.12.2012 Views

Comparison of the TDCR method and the CIEMAT/NIST method for ...

Comparison of the TDCR method and the CIEMAT/NIST method for ...

Comparison of the TDCR method and the CIEMAT/NIST method for ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Comparison</strong> <strong>of</strong> <strong>the</strong> <strong>TDCR</strong> <strong>method</strong> <strong>and</strong><br />

<strong>the</strong> <strong>CIEMAT</strong>/<strong>NIST</strong> <strong>method</strong> <strong>for</strong> <strong>the</strong><br />

activity determination <strong>of</strong> beta<br />

emitting nuclides<br />

Ole Nähle <strong>and</strong> Karsten Kossert<br />

Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany<br />

LSC 2010, Advances in Liquid Scintillation Spectrometry,<br />

Paris, 6-10 September 2010<br />

Physikalisch-Technische Bundesanstalt


Motivation<br />

• <strong>CIEMAT</strong>/<strong>NIST</strong> <strong>and</strong> <strong>TDCR</strong> are based on <strong>the</strong> same<br />

free parameter model<br />

• A systematic comparison is difficult (different<br />

counters, different s<strong>of</strong>tware, different parameters)<br />

• At PTB both <strong>method</strong>s are applied <strong>and</strong> <strong>the</strong> same<br />

s<strong>of</strong>tware routines are used<br />

• Pure β-emitters should be a simple test<br />

O. Nähle <strong>and</strong> K. Kossert <strong>Comparison</strong> <strong>of</strong> <strong>TDCR</strong> <strong>and</strong> CN <strong>for</strong> β emitters


Free parameter model<br />

Basic assumptions:<br />

• Statistical distribution <strong>of</strong> emitted photoelectrons at <strong>the</strong> photo cathode<br />

<strong>of</strong> <strong>the</strong> PMT (e.g. Poisson distribution):<br />

with<br />

P(<br />

x,<br />

m(<br />

E<br />

))<br />

x number <strong>of</strong> electrons<br />

E’ energy deposit in <strong>the</strong> scintillator<br />

m(E’) mean number <strong>of</strong> electrons<br />

• low PMT noise (coincidence circuit)<br />

m(<br />

E<br />

• threshold adjustment (single electron peak)<br />

'<br />

=<br />

) e<br />

x!<br />

x −m(<br />

E<br />

O. Nähle <strong>and</strong> K. Kossert <strong>Comparison</strong> <strong>of</strong> <strong>TDCR</strong> <strong>and</strong> CN <strong>for</strong> β emitters<br />

'<br />

'<br />

)


Counting efficiency<br />

ε =<br />

Free parameter model<br />

'<br />

1−<br />

P(<br />

0,<br />

m(<br />

E ) pq)<br />

= 1−<br />

e<br />

−m(<br />

E<br />

with<br />

m(E’)pq=EQ(E)/(nM)<br />

Q(E) non-linear response function <strong>of</strong> <strong>the</strong> scintillator<br />

M is a free parameter (sometimes called “figure<br />

<strong>of</strong> merit”); it corresponds to <strong>the</strong> average energy<br />

which is required to produce photoelectron<br />

1/M average number <strong>of</strong> photoelectrons per energy<br />

deposited in keV<br />

O. Nähle <strong>and</strong> K. Kossert <strong>Comparison</strong> <strong>of</strong> <strong>TDCR</strong> <strong>and</strong> CN <strong>for</strong> β emitters<br />

'<br />

) pq<br />

1<br />

E dE<br />

Q(E) =<br />

E ∫0 1 + k ⋅ dE / dx<br />

B


ε<br />

electron spectrum S(E)<br />

1 PMT:<br />

2 PMTs:<br />

3 PMTs:<br />

ε<br />

ε<br />

ε<br />

1<br />

2<br />

=<br />

=<br />

E<br />

max<br />

E<br />

Free parameter model<br />

= −<br />

∫<br />

0<br />

max<br />

∫<br />

0<br />

E<br />

max<br />

T ∫<br />

0<br />

−EQ(<br />

E)/ M<br />

SE ( )(1 e ) dE<br />

S(<br />

E)(<br />

1−<br />

e<br />

S(<br />

E)(<br />

1−<br />

−EQ(<br />

E)<br />

/ 2M<br />

logical sum <strong>of</strong> double coincidences in a system with 3 PMTs:<br />

O. Nähle <strong>and</strong> K. Kossert <strong>Comparison</strong> <strong>of</strong> <strong>TDCR</strong> <strong>and</strong> CN <strong>for</strong> β emitters<br />

e<br />

−EQ(<br />

E)<br />

/ 3<br />

M<br />

)<br />

)<br />

2<br />

3<br />

dE<br />

dE<br />

D =<br />

Emax<br />

∫<br />

0<br />

−EQ( E)/3M2 −EQ(<br />

E)/3M3 SE ( )(3(1 −e) −2(1 −e)<br />

) dE


<strong>CIEMAT</strong>/<strong>NIST</strong> <strong>method</strong> (2 PMTs):<br />

ε<br />

2<br />

=<br />

E<br />

max<br />

∫<br />

0<br />

S(<br />

E)(<br />

1−<br />

e<br />

Free parameter model<br />

−EQ(<br />

E)<br />

/ 2M<br />

The free parameter M is obtained from a measurement <strong>of</strong> a tracer<br />

radionuclide (e.g. 3H) under same experimental conditions. Usually<br />

external quenching indicators are used <strong>for</strong> <strong>the</strong> efficiency transfer.<br />

O. Nähle <strong>and</strong> K. Kossert <strong>Comparison</strong> <strong>of</strong> <strong>TDCR</strong> <strong>and</strong> CN <strong>for</strong> β emitters<br />

)<br />

2<br />

dE


<strong>TDCR</strong> <strong>method</strong> (3 PMTs):<br />

ε<br />

ε<br />

D<br />

=<br />

E<br />

max<br />

T ∫<br />

0<br />

E<br />

max<br />

= ∫ S(<br />

E)<br />

3((<br />

1−<br />

e<br />

0<br />

S(<br />

E)(<br />

1−<br />

e<br />

Free parameter model<br />

−EQ(<br />

E)<br />

/ 3M<br />

)<br />

−EQ(<br />

E)<br />

/ 3M<br />

2(<br />

1<br />

− e<br />

−EQ(<br />

E)<br />

/ 3M<br />

) dE<br />

The free parameter is derived from <strong>the</strong> ratio <strong>of</strong> <strong>the</strong> experimental<br />

counting rates<br />

3<br />

dE<br />

O. Nähle <strong>and</strong> K. Kossert <strong>Comparison</strong> <strong>of</strong> <strong>TDCR</strong> <strong>and</strong> CN <strong>for</strong> β emitters<br />

)<br />

2<br />

−<br />

RT<br />

εT<br />

<strong>TDCR</strong> = =<br />

R ε<br />

D D<br />

)<br />

3


Nuclides<br />

Radionuclides measured at PTB since 2002 using<br />

<strong>CIEMAT</strong>/<strong>NIST</strong> + … <strong>and</strong> <strong>CIEMAT</strong>/<strong>NIST</strong> + <strong>TDCR</strong> +<br />

…<br />

H-3, Be-10, C-14, F-18, Na-22, P-32, P-33, S-35,<br />

Cl-36, K-40, Ca-41, Ca-45, Cr-51, Mn-54, Fe-55,<br />

Co-58, Fe-59, Co-60, Ni-63, Cu-64, Zn-65, Ga-68,<br />

Ge-68/Ga-68, Se-79, Sr-85, Rb-87, Y-88, Sr-89, Sr-<br />

90/Y-90, Nb-93m, Zr-95, Tc-99, Cd-109, In-111, Sn-<br />

113, Cd-113m, In-114m,<br />

I-123, Sb-124, I-124, Sb-125, I-125, I-129, I-131,<br />

Cs-134, Cs-137, Ce-139, Ce-141, Pm-147, Sm-<br />

147, Ho-166m, Lu-176, Lu-177, Re-186, Ir-192, Tl-<br />

204, Po-208, Pb-210, Ac-227, Th-228, U-233, Np-<br />

O. Nähle <strong>and</strong> K. Kossert <strong>Comparison</strong> <strong>of</strong> <strong>TDCR</strong> <strong>and</strong> CN <strong>for</strong> β emitters


Experimental details<br />

• Sample composition: 15 mL Ultima Gold TM + 1 mL<br />

water, glass vials, quenching agent: nitromethane<br />

• Preparation by difference weighing <strong>of</strong> a pycnometer<br />

with traceable balances<br />

(typical mass <strong>of</strong> active solution: 30 mg)<br />

• Background sample was prepared with <strong>the</strong> same<br />

composition<br />

• Solutions were checked <strong>for</strong> impurities by means <strong>of</strong><br />

gamma-ray spectrometry <strong>and</strong> long-term LS<br />

measurements<br />

O. Nähle <strong>and</strong> K. Kossert <strong>Comparison</strong> <strong>of</strong> <strong>TDCR</strong> <strong>and</strong> CN <strong>for</strong> β emitters


Wallac 1414<br />

PerkinElmer TriCarb<br />

2800<br />

Crucial points<br />

• Threshhold adjustments<br />

• Features <strong>of</strong> signal processing<br />

• Anti-coincidence detectors<br />

Detectors: <strong>CIEMAT</strong>/<strong>NIST</strong><br />

• Coincidence logic is not transparent<br />

O. Nähle <strong>and</strong> K. Kossert <strong>Comparison</strong> <strong>of</strong> <strong>TDCR</strong> <strong>and</strong> CN <strong>for</strong> β emitters


Crucial points<br />

• Threshhold adjustments by user<br />

Detector: <strong>TDCR</strong><br />

• Coincidence <strong>and</strong> deadtime logic well known<br />

(MAC3)<br />

• No mass processing <strong>of</strong> samples<br />

O. Nähle <strong>and</strong> K. Kossert <strong>Comparison</strong> <strong>of</strong> <strong>TDCR</strong> <strong>and</strong> CN <strong>for</strong> β emitters


Nuclides <strong>and</strong> nuclear data (DDEP)<br />

Radionuclide<br />

Maximum<br />

energy in keV<br />

Nature<br />

Shape-factor<br />

function C(W)<br />

32P 1711 Allowed 1<br />

33P 249 Allowed 1<br />

35S 167 Allowed 1<br />

45Ca 256 Allowed 1<br />

63Ni 67 Allowed 1<br />

89Sr 1495<br />

1st <strong>for</strong>bidden<br />

unique<br />

p2 +q2 90Y 2280<br />

1st <strong>for</strong>bidden<br />

unique<br />

p2 +q2 99Tc 294 2nd <strong>for</strong>bidden 0.54·p2 +q2 147 Pm 225 1 st <strong>for</strong>bidden 1+0.3/W<br />

O. Nähle <strong>and</strong> K. Kossert <strong>Comparison</strong> <strong>of</strong> <strong>TDCR</strong> <strong>and</strong> CN <strong>for</strong> β emitters


counts in arbitrary units<br />

0.005<br />

0.004<br />

0.003<br />

0.002<br />

0.001<br />

0<br />

63Ni<br />

35S<br />

147Pm<br />

99Tc<br />

33P<br />

45<br />

Wallac counter with logarithmic amplification<br />

Analysis<br />

0 200 400 600 800 1000<br />

O. Nähle <strong>and</strong> K. Kossert <strong>Comparison</strong> <strong>of</strong> <strong>TDCR</strong> <strong>and</strong> CN <strong>for</strong> β emitters<br />

Ca<br />

89Sr<br />

32P<br />

90<br />

channel number<br />

Y


Uncertainty budget 33 P<br />

u(a)/a in %<br />

Component<br />

<strong>CIEMAT</strong>/<br />

<strong>NIST</strong><br />

<strong>TDCR</strong><br />

Statistics (6 samples; ≥ 8 repetitions per counter) 0.02 0.01<br />

Weighing 0.08 0.08<br />

Dead time 0.10 0.08<br />

Background 0.03 0.03<br />

Time <strong>of</strong> measurements (starting time <strong>and</strong> duration (lifetime))<br />

0.01 0.01<br />

Adsorption 0.05 0.05<br />

Radionuclide impurities (none detected) 0.05 0.05<br />

3H activity/<strong>TDCR</strong> value <strong>and</strong> fit 0.07 0.02<br />

Decay data (endpoint energy <strong>and</strong> beta shape-factor<br />

function)<br />

0.06 0.03<br />

Ionization quenching 0.20 0.17<br />

Quenching indicator (SQP(E), tSIE) 0.01 --<br />

Decay correction 0.13 0.10<br />

Square root <strong>of</strong> <strong>the</strong> sum <strong>of</strong> quadratic components 0.30 0.24<br />

O. Nähle <strong>and</strong> K. Kossert <strong>Comparison</strong> <strong>of</strong> <strong>TDCR</strong> <strong>and</strong> CN <strong>for</strong> β emitters


Analysis: Overall uncertainties<br />

Radionuclid<br />

e<br />

<strong>TDCR</strong> <strong>CIEMAT</strong>/<strong>NIST</strong> E β,max in<br />

keV<br />

u(a)/a in %<br />

90 Y 0.12 0.16 2280<br />

32 P 0.23 0.25 1711<br />

89 Sr 0.25 0.26 1495<br />

99 Tc 0.27 0.45 294<br />

45 Ca 0.25 0.27 256<br />

33 P 0.24 0.30 249<br />

147 Pm 0.35 0.35 225<br />

35 S 0.33 0.29 167<br />

63 Ni 0.97 0.58 67<br />

O. Nähle <strong>and</strong> K. Kossert <strong>Comparison</strong> <strong>of</strong> <strong>TDCR</strong> <strong>and</strong> CN <strong>for</strong> β emitters


Radionuclide<br />

90 Y<br />

32 P<br />

89 Sr<br />

99 Tc<br />

45 Ca<br />

33 P<br />

147 Pm<br />

35 S<br />

63 Ni<br />

kB in<br />

cm/MeV<br />

<strong>TDCR</strong><br />

a in kBq/g<br />

<strong>CIEMAT</strong>/<br />

<strong>NIST</strong><br />

(a <strong>TDCR</strong> -<br />

a CN )/a <strong>TDCR</strong> in %<br />

Analysis<br />

Unweighted<br />

mean activity<br />

a mean in kBq/g<br />

0.0075 191.93 191.96 -0.02 191.95<br />

0.0110 191.95 191.95 0.00 191.95<br />

0.0075 198.86 198.76 0.05 198.81<br />

0.0110 198.88 198.75 0.07 198.82<br />

0.0075 189.45 189.16 0.15 189.31<br />

0.0110 189.49 189.14 0.18 189.32<br />

0.0075 169.22 169.29 -0.04 169.26<br />

0.0110 169.46 169.16 0.18 169.31<br />

0.0075 182.65 182.45 0.11 182.55<br />

0.0110 182.97 182.23 0.40 182.60<br />

0.0075 243.40 243.55 -0.06 243.48<br />

0.0110 243.81 243.08 0.30 243.45<br />

0.0075 9.923 9.914 0.09 9.919<br />

0.0110 9.948 9.899 0.49 9.924<br />

0.0075 191.67 191.30 0.19 191.49<br />

0.0110 192.23 190.94 0.67 191.59<br />

0.0075 11.04 10.95 0.82 11.00<br />

0.0110 11.14 10.91 2.06 11.03<br />

O. Nähle <strong>and</strong> K. Kossert <strong>Comparison</strong> <strong>of</strong> <strong>TDCR</strong> <strong>and</strong> CN <strong>for</strong> β emitters


Radionuclide<br />

89 Sr<br />

63 Ni<br />

kB in<br />

cm/MeV<br />

<strong>TDCR</strong><br />

a in kBq/g<br />

Analysis: kB-value<br />

<strong>CIEMAT</strong>/<br />

<strong>NIST</strong><br />

(a <strong>TDCR</strong> -a CN )/a <strong>TDCR</strong><br />

in %<br />

Unweighted<br />

mean activity<br />

a mean in<br />

kBq/g<br />

0.0075 189.45 189.16 0.15 189.31<br />

0.0110 189.49 189.14 0.18 189.32<br />

0.0075 11.04 10.95 0.82 11.00<br />

0.0110 11.14 10.91 2.06 11.03<br />

• A change in kB-value has inverse effect <strong>for</strong> <strong>TDCR</strong> <strong>and</strong><br />

<strong>CIEMAT</strong>/<strong>NIST</strong><br />

• Unweighted mean is robust against changes in kB<br />

• Applying both <strong>method</strong>s <strong>the</strong> model dependence can be<br />

reduced<br />

• Our analyses seem to favour kB=0.0075 cm/MeV<br />

O. Nähle <strong>and</strong> K. Kossert <strong>Comparison</strong> <strong>of</strong> <strong>TDCR</strong> <strong>and</strong> CN <strong>for</strong> β emitters


Radionuclide<br />

Maximum<br />

Energy in keV<br />

• Changing C(W) to 1:<br />

Analysis: shape-factor<br />

Nature<br />

• <strong>TDCR</strong> result increases by 0.05%<br />

• <strong>CIEMAT</strong>/<strong>NIST</strong> increases by 0.95%<br />

Shape-factor<br />

function C(W)<br />

99 Tc 293.8(14) 2 nd <strong>for</strong>bidden 0.54·p 2 +q 2<br />

Reference<br />

Reich <strong>and</strong><br />

Schüpferling<br />

(1974)<br />

• No compensation but clear indication that C(W)=1 is not<br />

a suitable shape factor <strong>for</strong> 99 Tc<br />

O. Nähle <strong>and</strong> K. Kossert <strong>Comparison</strong> <strong>of</strong> <strong>TDCR</strong> <strong>and</strong> CN <strong>for</strong> β emitters


Summary <strong>and</strong> Outlook<br />

• A combination <strong>of</strong> <strong>TDCR</strong> <strong>and</strong> <strong>CIEMAT</strong> increases <strong>the</strong><br />

underst<strong>and</strong>ing <strong>of</strong> free parameter models<br />

• Systematic uncertainties may be identified <strong>and</strong><br />

partly cancel out<br />

• Tests with <strong>the</strong> Hidex <strong>TDCR</strong>-system are promising<br />

• Extend investigation to electron capture nuclides<br />

• Establish sample changer with γ-detector<br />

O. Nähle <strong>and</strong> K. Kossert <strong>Comparison</strong> <strong>of</strong> <strong>TDCR</strong> <strong>and</strong> CN <strong>for</strong> β emitters


<strong>TDCR</strong> sample changer<br />

Light-tight housing<br />

γ-Detector<br />

O. Nähle <strong>and</strong> K. Kossert <strong>Comparison</strong> <strong>of</strong> <strong>TDCR</strong> <strong>and</strong> CN <strong>for</strong> β emitters


Lead shield<br />

<strong>TDCR</strong> Sample changer<br />

Optical chamber Sample depot<br />

O. Nähle <strong>and</strong> K. Kossert <strong>Comparison</strong> <strong>of</strong> <strong>TDCR</strong> <strong>and</strong> CN <strong>for</strong> β emitters


Sample changer<br />

O. Nähle <strong>and</strong> K. Kossert <strong>Comparison</strong> <strong>of</strong> <strong>TDCR</strong> <strong>and</strong> CN <strong>for</strong> β emitters


Physikalisch-Technische Bundesanstalt<br />

<strong>TDCR</strong>


4π(LS)β−γ-Coincidence counting<br />

+ Sample<br />

changer<br />

Physikalisch-Technische Bundesanstalt


• A sample changer will be established soon<br />

Physikalisch-Technische Bundesanstalt<br />

Outlook<br />

• Versatile system including γ-channel (NaI or HPGe)<br />

• <strong>TDCR</strong> <strong>and</strong> coincidence counting with high sample<br />

statistics <strong>and</strong> repetitions<br />

• Taking <strong>TDCR</strong> <strong>and</strong> coincidence data simultaniously<br />

using FPGA-module


Thank you <strong>for</strong> your attention<br />

O. Nähle <strong>and</strong> K. Kossert <strong>Comparison</strong> <strong>of</strong> <strong>TDCR</strong> <strong>and</strong> CN <strong>for</strong> β emitters

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!