22.12.2012 Views

Quantum Electrodynamics in Superconducting Circuits - LTL

Quantum Electrodynamics in Superconducting Circuits - LTL

Quantum Electrodynamics in Superconducting Circuits - LTL

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Quantum</strong> <strong>Electrodynamics</strong><br />

<strong>in</strong> Superconduct<strong>in</strong>g <strong>Circuits</strong><br />

Andreas Wallraff (ETH Zurich)<br />

P. Leek, J. F<strong>in</strong>k, R. Bianchetti,<br />

M. Göppl, M. Baur, A. Fragner,<br />

L. Steffen, S. Filipp, P. Maurer,<br />

T. Frey (ETH Zurich)<br />

A. Blais (Sherbrooke, Canada)<br />

J. Gambetta (Waterloo, Canada)<br />

D. Schuster, A. Houck, B. Johnson, J. Schreier,<br />

J. Chow, J. Majer, L. Frunzio, M. Devoret, S. Girv<strong>in</strong>, R. Schoelkopf<br />

(Yale University)


Motivation<br />

A. Blais, R.-S. Huang, A. Wallraff, S. M. Girv<strong>in</strong>, and R. J. Schoelkopf, PRA 69, 062320 (2004)<br />

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar,<br />

S. Girv<strong>in</strong>, and R. J. Schoelkopf, Nature (London) 431, 162 (2004)


Cavity <strong>Quantum</strong> <strong>Electrodynamics</strong><br />

D. Walls, G. Milburn, <strong>Quantum</strong> Optics (Sp<strong>in</strong>ger-Verlag, Berl<strong>in</strong>, 1994)


Dressed States Energy Level Diagram<br />

Atomic cavity quantum electrodynamics reviews:<br />

H. Mabuchi, A. C. Doherty Science 298, 1372 (2002)<br />

J. M. Raimond, M. Brune, & S. Haroche Rev. Mod. Phys. 73, 565 (2001)


Vacuum Rabi Oscillations with Rydberg Atoms<br />

Review: J. M. Raimond, M. Brune, and S. Haroche<br />

Rev. Mod. Phys. 73, 565 (2001)<br />

P. Hyafil, ..., J. M. Raimond, and S. Haroche,<br />

Phys. Rev. Lett. 93, 103001 (2004)


Vacuum Rabi Mode Splitt<strong>in</strong>g with Alkali Atoms<br />

R. J. Thompson, G. Rempe, & H. J. Kimble,<br />

Phys. Rev. Lett. 68 1132 (1992)<br />

A. Boca, ... , J. McKeever, & H. J. Kimble<br />

Phys. Rev. Lett. 93, 233603 (2004)


Photons and Artificial Atoms <strong>in</strong> a Circuit<br />

Review: M. H. Devoret, A. Wallraff and J. M. Mart<strong>in</strong>is,<br />

condmat/0411172 (2004)


Realizations of Superconduct<strong>in</strong>g Qubits<br />

NEC<br />

Chalmers<br />

JPL<br />

Yale<br />

NEC<br />

Saclay<br />

Yale<br />

Yale<br />

NIST<br />

Yale<br />

ETHZ<br />

Delft<br />

IPHT<br />

Delft<br />

NTT<br />

IPHT<br />

NIST<br />

Santa-Barbara<br />

Maryland<br />

review:<br />

G. Wend<strong>in</strong> and V.S. Shumeiko<br />

cond-mat/0508729 (2005)<br />

NIST<br />

Santa-Barbara<br />

Maryland


Cavity QED with Superconduct<strong>in</strong>g <strong>Circuits</strong><br />

• Y. Makhl<strong>in</strong>, G. Schön, and A. Shnirman, Rev. Mod. Phys. 73, 357 (2001).<br />

• O. Buisson and F. Hekk<strong>in</strong>g, <strong>in</strong> Macroscopic <strong>Quantum</strong> Coherence and<br />

<strong>Quantum</strong> Comput<strong>in</strong>g, edited by D. V. Aver<strong>in</strong>, B. Ruggiero, and P.<br />

Silvestr<strong>in</strong>i (Kluwer, New York, 2001).<br />

• F. Marquardt and C. Bruder, Phys. Rev. B 63, 054514 (2001).<br />

• F. Plast<strong>in</strong>a and G. Falci, Phys. Rev. B 67, 224514 (2003).<br />

• A. Blais, A. Maassen van den Br<strong>in</strong>k, and A. Zagosk<strong>in</strong>, Phys. Rev. Lett. 90,<br />

127901 (2003).<br />

• W. Al-Saidi and D. Stroud, Phys. Rev. B 65, 014512 (2001).<br />

• C.-P. Yang, S.-I. Chu, and S. Han, Phys. Rev. A 67, 042311 (2003).<br />

• J. Q. You and F. Nori, Phys. Rev. B 68, 064509 (2003).


Cavity QED with Superconduct<strong>in</strong>g <strong>Circuits</strong><br />

A. Blais, R.-S. Huang,<br />

A. Wallraff, S. M. Girv<strong>in</strong>, and<br />

R. J. Schoelkopf, PRA 69, 062320 (2004)


Circuit <strong>Quantum</strong> <strong>Electrodynamics</strong><br />

elements<br />

• the cavity: a superconduct<strong>in</strong>g 1D transmission l<strong>in</strong>e resonator<br />

with large vacuum field E0 and long photon life time 1/κ<br />

• the artificial atom: a Cooper pair box<br />

with large dipole moment d and long coherence time 1/γ<br />

A. Blais et al., PRA 69, 062320 (2004)


Vacuum Field <strong>in</strong> 1D Cavity<br />

1 mm<br />

E<br />

-<br />

B<br />

+ + -


Stor<strong>in</strong>g Photons and Controll<strong>in</strong>g their Life Time<br />

1 mm<br />

photon lifetime (quality factor)<br />

controlled by coupl<strong>in</strong>g capacitor C<strong>in</strong>/out<br />

100µm<br />

100µm<br />

100µm<br />

100µm


Resonator Quality Factor and Photon Lifetime


The Artificial Atom …<br />

fab: M. Goppl, P. Leek (<strong>Quantum</strong> Device Lab, ETHZ, 2007)<br />

transmon theory: J. Koch et al. Phys. Rev. A 76, 042319 (2007)


The Cooper Pair Box<br />

5 μm


The First Superconduct<strong>in</strong>g Cavity QED Circuit<br />

A. Wallraff, …, R. J. Schoelkopf, Nature (London) 431, 162 (2004)


Superconduct<strong>in</strong>g Qubit with Large Dipole Moment


Resonant Interaction: Vacuum Rabi Mode Splitt<strong>in</strong>g<br />

A. Wallraff, D. Schuster, ..., S. Girv<strong>in</strong>, and R. J. Schoelkopf,<br />

Nature (London) 431, 162 (2004)


Strong Coupl<strong>in</strong>g with Superconduct<strong>in</strong>g <strong>Circuits</strong><br />

Yale University (now also ETH Zurich)<br />

Nature (London) 431, 162 (2004)<br />

TU Delft.<br />

Nature (London) 431, 159 (2004)<br />

NIST Boulder (now also at UCSB)<br />

Nature (London) 449, 438 (2007)<br />

NTT<br />

PRL 96, 127006 (2006)<br />

NEC<br />

Nature (London) 449, 588 (2007)


Strong Coupl<strong>in</strong>g Cavity QED with Semiconductors<br />

Wurzburg<br />

Nature 432, 197 (2004)<br />

Paris<br />

PRL (2004)<br />

Arizona<br />

Nature 432, 200 (2004)<br />

Caltech<br />

Nature 450, 862 (2007)<br />

ETH Zurich<br />

Nature 445, 896 (2007)<br />

Stanford<br />

Nature 450, 857 (2007)


Strong Coupl<strong>in</strong>g Cavity <strong>Quantum</strong> <strong>Electrodynamics</strong><br />

ultra


Climb<strong>in</strong>g the Jaynes-Cumm<strong>in</strong>gs Ladder<br />

• Why climb the ladder?<br />

– In pr<strong>in</strong>ciple first doublet can be <strong>in</strong>terpreted classically<br />

– Sqrt(n) is a pure quantum effect<br />

• provides direct evidence for field quantization<br />

• studied <strong>in</strong> time-resolved measurements of ‘the atom’<br />

– No spectroscopic observation of the photons so far<br />

• How climb the ladder?<br />

– Cool cavity and qubit to ground state<br />

– Controllably <strong>in</strong>crease # of excitations <strong>in</strong> the system<br />

• Thermal photons (elevated temperatures)<br />

• Multi photon processes (high probe powers)<br />

• Pump and probe spectroscopy<br />

• We demonstrate <strong>in</strong> a pump and probe experiment<br />

J. F<strong>in</strong>k, A. Blais (<strong>Quantum</strong> Device Lab, ETHZ, 2007)


Resonant Vacuum Rabi Mode Splitt<strong>in</strong>g …<br />

J. F<strong>in</strong>k, A. Blais<br />

(<strong>Quantum</strong> Device Lab, ETHZ, 2007)


Resonant Vacuum Rabi Mode Splitt<strong>in</strong>g …<br />

J. F<strong>in</strong>k, A. Blais (<strong>Quantum</strong> Device Lab, ETHZ, 2007)


Sqrt(n) <strong>Quantum</strong> Nonl<strong>in</strong>earity<br />

• second doublet energy = pump+probe<br />

– notice shifts<br />

– consider 3rd qubit level (f state)<br />

– diagonalize Hamiltonian with f level<br />

– spectroscopic demonstration of field<br />

quantization <strong>in</strong> cavity QED<br />

J. F<strong>in</strong>k, A. Blais (<strong>Quantum</strong> Device Lab, ETHZ, 2007)


Dispersive Qubit-Photon Interaction<br />

A. Blais et al., PRA 69, 062320 (2004)


Qubit Spectroscopy & AC-Stark Effect<br />

D. I. Schuster et al., Phys. Rev. Lett. 94, 123062 (2005)


Fluctuations of the Photon Number: Shot Noise<br />

qubit response<br />

frequency, ω s


Non-Resonant Interaction: QND Readout of Field<br />

Schuster, Houck, Schreier, Wallraff, Gambetta, Blais, Frunzio,<br />

Johnson, Devoret, Girv<strong>in</strong>, Schoelkopf, Nature 445, 515 (2007)


Measur<strong>in</strong>g Photon Statistics<br />

Schuster, Houck, Schreier, Wallraff, Gambetta, Blais, Frunzio,<br />

Johnson, Devoret, Girv<strong>in</strong>, Schoelkopf, Nature 445, 515 (2007)


<strong>Quantum</strong> <strong>Electrodynamics</strong> with <strong>Circuits</strong><br />

Nature 431, 162 (2004)<br />

Nature 445, 515 (2007)<br />

unpublished (2008)


<strong>Quantum</strong> Information Process<strong>in</strong>g with Circuit QED<br />

Science 318, 1889 (2007)<br />

PRL 99, 050501 (2007)<br />

Nature 445, 443 (2007)


The ETH Zurich Circuit QED Team<br />

with fund<strong>in</strong>g from:<br />

lab started<br />

<strong>in</strong> April 2006


The Yale Circuit QED Team


Circuit QED Publications<br />

circuit QED proposal:<br />

• Blais, Huang, Wallraff, Girv<strong>in</strong>, Schoelkopf, PRA 69, 062320 (2004)<br />

strong coupl<strong>in</strong>g & vacuum Rabi mode splitt<strong>in</strong>g:<br />

• Wallraff, Schuster, Blais, Frunzio, Huang, Majer, Kumar, Girv<strong>in</strong>, Schoelkopf, Nature 431, 162 (2004)<br />

high visibility Rabi oscillations & coherence time measurements:<br />

• Wallraff, Schuster, Blais, Frunzio, Majer, Girv<strong>in</strong>, and Schoelkopf, PRL 95, 060501 (2005)<br />

ac Stark shift, number splitt<strong>in</strong>g & measurement <strong>in</strong>duced dephas<strong>in</strong>g:<br />

• Schuster, Wallraff, Blais, Frunzio, Huang, Majer, Girv<strong>in</strong>, Schoelkopf, PRL 94, 123062 (2005)<br />

• Gambetta, Blais, Schuster, Wallraff, Frunzio, Majer, Devoret, Girv<strong>in</strong>, Schoelkopf, PRA 74, 042318 (2006)<br />

• Schuster, Houck, Schreier, Wallraff, Gambetta, Blais, Frunzio, Johnson, Devoret, Girv<strong>in</strong>, Schoelkopf,<br />

Nature 445, 515 (2007)<br />

circuit QED gates, side band transitions:<br />

• Blais, Gambetta, Wallraff, Schuster, Devoret, Girv<strong>in</strong>, Schoelkopf, PRA 75, 032329 (2007)<br />

• Wallraff, Schuster, Blais, Gambetta, … , Frunzio, Devoret, Girv<strong>in</strong>, Schoelkopf, PRL 99, 050501 (2007)<br />

• Majer, Chow, Gambetta, Koch, Johnson, Schreier, Frunzio, Schuster, Houck, Wallraff, Blais, Devoret,<br />

Girv<strong>in</strong>, Schoelkopf, Nature 449, 443 (2007)<br />

• Leek, F<strong>in</strong>k, Blais, Bianchetti, Goeppl, Gambetta, Schuster, Frunzio, Schoelkopf, Wallraff, Science 318,<br />

1889 (2007)<br />

circuit QED device fabrication:<br />

• Frunzio, Wallraff, Schuster, Majer, Schoelkopf, IEEE Trans. Appl. Supercond. 15, 860 (2005)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!