24.12.2012 Views

CERTIFICATE Inactivation of bacteria, viruses and other pathogens ...

CERTIFICATE Inactivation of bacteria, viruses and other pathogens ...

CERTIFICATE Inactivation of bacteria, viruses and other pathogens ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

ecoscope Hochgratweg 12 D-88279 Amtzell<br />

1. Summary<br />

<strong>CERTIFICATE</strong><br />

- page 1 <strong>of</strong> 17 -<br />

Priv. Doz. Dr. Ingo Maier - Dr. Ulrike Plum<br />

Hochgratweg 12<br />

D-88279 Amtzell<br />

Tel. 07520-953 660<br />

Fax 07520-953 661<br />

info@ecoscope.de<br />

www.ecoscope.de<br />

<strong>Inactivation</strong> <strong>of</strong> <strong>bacteria</strong>, <strong>viruses</strong> <strong>and</strong> <strong>other</strong> <strong>pathogens</strong><br />

by UVC irradiation<br />

in the Leica cryostat product family<br />

UVC radiation is effective in disinfecting surfaces <strong>and</strong> air within the irradiated working<br />

space <strong>of</strong> the cryostats Leica CM1850UV, CM1900UV <strong>and</strong> CM1950 at -20 °C (Table 1).<br />

For high-level disinfection, irradiation for three hours (CM1850UV/CM1950) <strong>and</strong> four<br />

hours (CM1900UV) is recommended. Vegetative <strong>bacteria</strong> including Mycobacterium<br />

tuberculosis, <strong>bacteria</strong>l endospores (Bacillus sp.) <strong>and</strong> fungi are inactivated within this<br />

period <strong>of</strong> time. Viruses are also inactivated by at least 4 log10 units (99,99 %), including<br />

resistent species like hepatitis <strong>viruses</strong>.<br />

Intermediate level disinfection can be achieved by short-term irradiation <strong>of</strong> 30 minutes<br />

(CM1850UV/CM1950) <strong>and</strong> 40 minutes(CM1900UV). This reduces vegetative <strong>bacteria</strong><br />

including Mycobacterium tuberculosis <strong>and</strong> sensitive <strong>viruses</strong> like Influenza A virus<br />

(including highly pathogenic avian influenza A type H5N1 <strong>viruses</strong>) <strong>and</strong> Poliovirus by at<br />

least 5 log10 units (99,999%).<br />

UVC irradiation within the working space <strong>of</strong> the cryostats can provide safe <strong>and</strong><br />

effective surface <strong>and</strong> air disinfection <strong>and</strong> significantly reduces infection risk.<br />

It is recommended to wipe <strong>of</strong>f visible contamination in the cryostat with an alcoholic<br />

based disinfectant before using the UV lamp. The germicidal effect <strong>of</strong> radiation is<br />

restricted to directly illuminated areas. Therefore, UVC irradiation cannot replace<br />

regular chemical disinfection <strong>of</strong> the cryostat chamber.<br />

Amtzell, 31 October 2007<br />

Ingo Maier, PhD, PD<br />

ecoscope does not accept any responsibility for misleading citations due to incomplete<br />

reproduction <strong>of</strong> this certificate.


Table 1: Predicted UVC disinfection efficacy 1 for selected <strong>pathogens</strong> in the cryostats<br />

Leica CM1850UV/CM1950 <strong>and</strong> CM1900UV 2<br />

Species<br />

Bacteria 3<br />

Bacillus ssp. (spores)<br />

page 2 <strong>of</strong> 17<br />

Irradiation time 2<br />

30 min / 40 min 3 h / 4 h<br />

Enterobacter faecium yes yes<br />

Escherichia coli yes<br />

Klebsiella pneumoniae yes yes<br />

Mycobacterium tuberculosis yes<br />

Proteus mirabilis yes yes<br />

Pseudomonas aeruginosa yes<br />

Salmonella sp. ser. enteritidis yes yes<br />

Salmonella sp. ser. typhimurium yes<br />

Staphylococcus aureus yes yes<br />

Vibrio cholerae yes<br />

Yeasts 3 <strong>and</strong> moulds 3<br />

Aspergillus fumigatus (spores)<br />

C<strong>and</strong>ida albicans yes<br />

Cryptococcus ne<strong>of</strong>ormans<br />

Viruses 4<br />

Adeno<strong>viruses</strong><br />

Hepatitis A virus yes<br />

Hepatitis B virus<br />

Herpes <strong>viruses</strong> yes<br />

Influenza <strong>viruses</strong> yes<br />

Poliovirus yes<br />

SARS coronavirus<br />

Simian virus 40<br />

Vaccinia virus yes<br />

yes: disinfection achieved<br />

1: valid only for conditions equivalent to those in the tests<br />

2 : 40 min/4h irradiation periods apply to the cryostat CM1900UV<br />

3 : reduction by 5 log10 units (<strong>bacteria</strong>, fungi incl. yeasts)<br />

4 : reduction by 4 log10 units (<strong>viruses</strong>)<br />

yes<br />

yes<br />

yes<br />

yes<br />

yes<br />

yes<br />

yes<br />

yes<br />

yes<br />

yes<br />

yes<br />

yes<br />

yes<br />

yes<br />

yes<br />

yes<br />

yes<br />

yes


2. Experimental basis<br />

Leica Microsystems Nussloch GmbH (now Leica Biosystems Nussloch GmbH, Nussloch,<br />

Germany) contracted the laboratory ecoscope Priv. Doz. Dr. Ingo Maier (Amtzell, Germany)<br />

in 2004 to evaluate the surface disinfection efficacy <strong>of</strong> ultraviolet irradiation in the cryostat<br />

CM1850. The apparatus was equipped with a low pressure mercury arc lamp (SterilAir,<br />

Kreuzlingen, Switzerl<strong>and</strong>).<br />

The evaluation consisted <strong>of</strong> determining the inactivation by UVC light (254 nm) irradiation <strong>of</strong><br />

test <strong>bacteria</strong> <strong>and</strong> <strong>viruses</strong> on stainless steel surfaces in the cryostat chamber at -20 °C<br />

(display).<br />

In a first project, the bacterium Staphylococcus aureus ATCC 6538 was used as a<br />

biodosimetry strain. Bacteria were dried onto stainless steel plates from suspensions in<br />

distilled water. The germ carriers were placed into different, defined positions within the<br />

cryostat chamber. The results (EcoScope 2004a) indicated that under the specified test<br />

conditions, UV irradiation was capable <strong>of</strong> inactivating S. aureus by >5 log10 units after 15 - 30<br />

min irradiation, depending on the test position.<br />

In two independent experimental series, the inactivation <strong>of</strong> the test virus Simian virus 40 (SV<br />

40, a polyomavirus) exposed to UVC for different periods <strong>of</strong> time was investigated. Viruses<br />

suspended in cell culture medium containing 2 % bovine fetal serum were dried onto<br />

stainless steel plates. The virus carriers were placed in a fixed position in the cryostat<br />

chamber. After irradiation, the <strong>viruses</strong> were rinsed <strong>of</strong>f <strong>and</strong> in blind tests applied to monkey<br />

kidney cell cultures (CV-1) for virus propagation. After 12-14 <strong>and</strong> 15-18 days incubation, the<br />

cell cultures were examined for virus-specific cytopathic effects <strong>and</strong> the infectivity titres were<br />

determined. The results were presented in a separate test report (EcoScope 2004b). It was<br />

shown that the inactivation <strong>of</strong> SV 40 by >4 log10 units was achieved by UV irradiation for 95 -<br />

180 minutes.<br />

Leica Microsystems Nussloch GmbH supplied comparative measurements <strong>of</strong> UVC intensities<br />

at differents positions in the working spaces <strong>of</strong> the cryostats CM1850UV, CM1950 <strong>and</strong><br />

CM1900UV.<br />

On the basis <strong>of</strong> these experimental results <strong>and</strong> available scientific information the inactivating<br />

effect <strong>of</strong> UVC irradiation in the cryostats on pathogenic microorganisms <strong>and</strong> <strong>viruses</strong> could be<br />

assessed (Table 1). Literature data on UVC (254 nm) radiation doses required for the<br />

inactivation <strong>of</strong> various microorganisms <strong>and</strong> <strong>viruses</strong> are summarized in appendix I.<br />

3. The mechanism <strong>of</strong> UV damage<br />

Low pressure mercury arc lamp radiation is essentially monochromatic with an peak output<br />

at 253.7 nm, close to the absorption maximum <strong>of</strong> nucleic acids (DNA, RNA), the carrier <strong>of</strong><br />

genetic information. Absorption <strong>of</strong> UV photon energy causes photochemical damage in<br />

micro-organisms by formation <strong>of</strong> lesions, in particular through dimerization <strong>of</strong> adjacent<br />

pyrimidine nucleotides. Accumulated lesions may overwhelm the cellular capacity for repair,<br />

induce mutations, inhibit replication <strong>and</strong> thus finally kill the organism (Friedberg et al. 1995).<br />

page 3 <strong>of</strong> 17


4. Influence <strong>of</strong> nucleic acid conformation on UV resistance<br />

Nucleic acids in viral genomes may have different conformations: single-str<strong>and</strong>ed DNA resp.<br />

-RNA (ssDNA resp. ssRNA) or double-str<strong>and</strong>ed DNA resp. -RNA (dsDNA resp. dsRNA). In<br />

inactivation experiments on ssRNA <strong>and</strong> dsRNA obtained from the same virus it was shown<br />

that ssRNA is more sensitive against UVC radiation than dsRNA (Bishop et al. 1967,<br />

Závadová et al. 1968). The same is true for ssDNA <strong>and</strong> dsDNA (Abraham P. J. & van der Eb<br />

A. J. 1976, Jansz et al. 1963, van der Eb & Cohen 1967, Yarus & Sinsheimer 1964). DNA<br />

<strong>viruses</strong> are more sensitive than RNA <strong>viruses</strong>. These results are supported by available data<br />

on UV inactivation: ssRNA <strong>viruses</strong> like Caliciviridae, Orthomyxoviridae, Picornaviridae <strong>and</strong><br />

Togaviridae are entirely highly sensitive, whereas dsRNA- <strong>and</strong> dsDNA <strong>viruses</strong> <strong>of</strong> comparable<br />

genome size (Adenoviridae, Reoviridae, Polyomaviridae) are clearly more resistant to UVC<br />

(Table 2). The differences in sensitivity most probably reflect different capacities for host cell<br />

repair.<br />

5. Kinetics <strong>of</strong> UV inactivation in microorganisms<br />

Germicidal UV irradiation inactivates <strong>pathogens</strong> according to the st<strong>and</strong>ard decay equation<br />

S = exp (-k*I*t). In this equation, S represents the fraction <strong>of</strong> the original population that<br />

survives exposure at time t, <strong>and</strong> I represents the light intensity. Mathematical modeling <strong>of</strong> UV<br />

decay curves has been reviewed by Kowalski et al. (2000).<br />

The rate constant k <strong>and</strong> lethal ultraviolet dosages (I*t) have been determined experimentally<br />

for a large number <strong>of</strong> <strong>bacteria</strong>, fungi, <strong>viruses</strong> <strong>and</strong> protozoa in numerous studies. UVC doses<br />

required for the inactivation <strong>of</strong> a selection <strong>of</strong> microorganisms, especially <strong>viruses</strong>, are given in<br />

appendix I. Although the results vary depending on experimental design, UV measurement<br />

<strong>and</strong> state <strong>of</strong> the biological material, a conclusive picture <strong>of</strong> relative UV sensitivities has been<br />

obtained. By use <strong>of</strong> biodosimetry test strains, conclusions about UV dosages can be drawn<br />

<strong>and</strong> predictions made on their effect on <strong>other</strong> organisms (Lytle & Sagripanti 2005).<br />

6. Staphylococcus aureus as a test bacterium<br />

Staphylococcus aureus 6538 has been chosen as test strain, because it is one <strong>of</strong> the listed<br />

test strains in st<strong>and</strong>ardized disinfection testing <strong>and</strong> a potential pathogen in humans. In<br />

addition, data on the UVC sensitivity <strong>of</strong> S. aureus are available from the scientific literature<br />

(Appendix I).<br />

7. SV 40 as a surrogate virus in disinfection testing<br />

A surrogate virus employed in the testing <strong>of</strong> disinfection methods should respond to the<br />

disinfectant in question in a similar way as the pathogen against which it was designed. At<br />

best, the surrogate virus should be somewhat more resistant. Among the different virus<br />

groups, small dsDNA <strong>viruses</strong> show the highest resistance against UVC.<br />

SV 40 was chosen as test virus because <strong>of</strong> several advantageous properties. It is a relatively<br />

small virus (ca. 50 nm) possessing a small genome <strong>of</strong> dsDNA (5.2 kbp) <strong>and</strong> a very high<br />

resistance to UVC radiation (see appendix I). SV 40 propagates in mammalian cells<br />

(monkey, man). It is classified in risk class 2 <strong>and</strong> can thus be h<strong>and</strong>led at reasonable<br />

expense. The virus <strong>and</strong> a suitable test system (monkey kidney cells) are available. SV 40 is<br />

page 4 <strong>of</strong> 17


iochemically <strong>and</strong> genetically well characterized. Moreover, SV 40 is one <strong>of</strong> the test <strong>viruses</strong><br />

in the st<strong>and</strong>ardized testing <strong>of</strong> chemical disinfectants against <strong>viruses</strong> (Bundesgesundheitsamt<br />

1982, 1990). Contrary to the European st<strong>and</strong>ard (BS EN 14676, DIN EN 14476), the German<br />

Federal Health Office (Robert Koch Institute) dem<strong>and</strong>s tests on SV 40 in addition to<br />

Poliovirus <strong>and</strong> Adenovirus because it proved to be more resistant in some investigations<br />

(RKI, DVV & DGHM 2004).<br />

SV 40 is among the <strong>viruses</strong> most resistant to UVC, surpassing vegetative <strong>bacteria</strong> <strong>and</strong><br />

<strong>bacteria</strong>l spores (appendix I). Scientific data prove that ssRNA- <strong>and</strong> ssDNA <strong>viruses</strong> are<br />

inactivated faster, as well as large dsDNA <strong>viruses</strong> like herpes <strong>viruses</strong> <strong>and</strong> Vaccinia virus, for<br />

example. Among the small dsDNA <strong>viruses</strong>, adeno<strong>viruses</strong> are more sensitive to UVC than<br />

polyoma<strong>viruses</strong> including SV 40. Hepatitis B virus is <strong>of</strong> similar size as SV 40 (Table 2) <strong>and</strong><br />

therefore, a similar or higher sensitivity to UVC is postulated. Presence or absence <strong>of</strong> an viral<br />

envelope is irrelevant in relation to UVC sensitivity. In conclusion, SV 40 is regarded as a<br />

suitable surrogate for pathogenic <strong>viruses</strong> in UVC inactivation studies.<br />

Table 2: Overview on important <strong>viruses</strong> infecting humans <strong>and</strong> predicted UVC<br />

sensitivity<br />

virus family<br />

genome<br />

type<br />

enve-<br />

lope<br />

genome<br />

size<br />

(kb/kbp)<br />

page 5 <strong>of</strong> 17<br />

D90<br />

(mWcm -2 )<br />

virus<br />

Adenoviridae dsDNA no 28-45 27-49 Human adenovirus A to F<br />

Arenaviridae ssRNA yes 10-11 3.5 Lassa virus<br />

Astroviridae ssRNA no 6.8 10-12 Astrovirus<br />

Bunyaviridae ssRNA yes 11-12 2.0-3.5<br />

California encephalitis<br />

virus<br />

Hantaan virus<br />

Caliciviridae ssRNA no 7.5 9.7-11 Norwalk virus (NoV)<br />

Sapporo virus<br />

Hepatitis E virus<br />

Coronaviridae ssRNA yes 30 0.7-1.1 SARS coronavirus<br />

Deltaviridae ssRNA yes 1.7 22<br />

Hepatitis D virus (assoc.<br />

to HBV)<br />

Filoviridae ssRNA yes 19.1 2.0<br />

<strong>viruses</strong> causing<br />

haemorrhagic fevers:<br />

Marburg-, Ebola virus<br />

Flaviviridae ssRNA yes 10-12 6.8-8.4 Hepatitis C virus<br />

Yellow fever virus<br />

Tick-borne encephalitis<br />

virus<br />

Hepadnaviridae dsDNA yes 3.2 3.8-4.1 Hepatitis B virus (HBV)<br />

Herpesviridae dsDNA yes 125-235 3.5-7.0 Herpes simplex virus 1, 2<br />

Varicella zoster virus<br />

Cytomegalovirus<br />

Epstein Barr virus<br />

Human herpes virus 6, 7<br />

Human herpes virus 8<br />

Orthomyxoviridae ssRNA yes 13.6 2.0-3.0 Influenza virus A-C


Papovaviridae dsDNA no 5-8 68-103 Polyomavirus<br />

Papillomavirus (warts)<br />

Paramyxoviridae ssRNA yes 15-16 3.0 Measles virus<br />

Mumps virus<br />

Parainfluenza virus<br />

Human respiratory<br />

syncytial virus<br />

Parvoviridae ssDNA no 5.5 2.1-3.2 Parvovirus B19<br />

Picornaviridae ssRNA no 7-8 12-14 Hepatitis A virus (HAV)<br />

Poliovirus<br />

Coxsackievirus<br />

Echovirus<br />

page 6 <strong>of</strong> 17<br />

Rhinovirus<br />

Poxviridae dsDNA yes 130-375 1.8-4.3<br />

Smallpox virus,<br />

molluscum contagiosum<br />

Reoviridae dsRNA no 16-27 19-32 Reovirus<br />

Human rotavirus A, B<br />

Retroviridae ssRNA yes 7-11 18-30<br />

Human<br />

immunodeficiency virus<br />

(HIV) types 1 <strong>and</strong> 2<br />

Human T-lymphotropic<br />

<strong>viruses</strong> (HTLV-1, -2)<br />

Rhabdoviridae ssRNA yes 12 0.9-1.2 Rabies virus<br />

Togaviridae ssRNA yes 10-12 4.9-6.5 Rubella virus<br />

Table 2:<br />

Morphological characters apply to the respective virus family.<br />

abbreviations<br />

D90: UVC dose required for 90% inactivation (1 log10 unit reduction)<br />

dsDNA: double-str<strong>and</strong>ed desoxyribonucleic acid<br />

dsRNA: double-str<strong>and</strong>ed ribonucleic acid<br />

kb/kbp: x 1000 (kilo) bases resp. basepairs<br />

nm: nanometer = 10 -9 m<br />

ssDNA: single-str<strong>and</strong>ed desoxyribonucleic acid<br />

ssRNA: single-str<strong>and</strong>ed ribonucleic acid<br />

The list <strong>of</strong> <strong>viruses</strong> was compiled according to a corresponding list published by the Robert<br />

Koch Institute in cooperation with the German Association for the Control <strong>of</strong> Virus Diseases<br />

<strong>and</strong> the German Society for Hygiene <strong>and</strong> Microbiology (RKI, DVV, DGHM 2004), according<br />

to the U.S. Departments <strong>of</strong> Health <strong>and</strong> Human Services (CDC 2004) <strong>and</strong> Büchen-Osmond<br />

2003a, b). The predicted values for UVC sensitivity were adopted from Lytle & Sagripanti<br />

(2005).


8. Disinfection: definitions<br />

The guidelines <strong>of</strong> the German Society for Hygiene <strong>and</strong> Microbiology (DGHM, 1991) for the<br />

evaluation <strong>of</strong> chemical surface disinfectants provide that <strong>bacteria</strong> <strong>and</strong> fungi are usually<br />

inactivated by a factor <strong>of</strong> at least 5 log10 units. This corresponds to the European st<strong>and</strong>ard<br />

EN 1040 on the testing <strong>of</strong> chemical disinfectants in suspension tests (phase 1).<br />

For the certification <strong>of</strong> virus disinfection, the guidelines <strong>of</strong> the German Association for the<br />

Control <strong>of</strong> Virus Diseases (Bundesgesundheitsamt 1990, DVV 1997) for chemical surface<br />

disinfection require a reduction in infectivity by minimum 4 log10 units.<br />

In addition, the following classification scheme <strong>of</strong> disinfection levels are used:<br />

1. Low-level disinfection can kill most <strong>bacteria</strong>, some <strong>viruses</strong>, <strong>and</strong> some fungi, but it cannot<br />

be relied on to kill resistant microorganims such as Mycobacterium tuberculosis or <strong>bacteria</strong>l<br />

spores.<br />

2. Intermediate-level disinfection inactivates Mycobacterium tuberculosis, vegetative<br />

<strong>bacteria</strong>, most <strong>viruses</strong>, <strong>and</strong> most fungi, but it does not necessarily kill <strong>bacteria</strong>l spores.<br />

3. High-level disinfection: Destruction <strong>of</strong> all microorganisms, with the exception <strong>of</strong> high<br />

numbers <strong>of</strong> <strong>bacteria</strong>l spores.<br />

4. Sterilisation: Complete elimination <strong>of</strong> microorganisms <strong>and</strong> <strong>viruses</strong>.<br />

These definitions are used by the U. S. Department <strong>of</strong> Health <strong>and</strong> Human Services<br />

(CDC 1986, 2003), the Association for Pr<strong>of</strong>essionals in Infection Control <strong>and</strong> Epidemiology<br />

(APIC, Rutala 1996), the WHO (WHO 1999, 2003) <strong>and</strong> <strong>other</strong>s.<br />

The st<strong>and</strong>ards refer to the effectiveness <strong>of</strong> chemical disinfectants. In analogy, they are<br />

applied to surface disinfection by UVC irradiation in the following.<br />

9. Effectiveness <strong>of</strong> disinfection by UVC irradiation<br />

<strong>Inactivation</strong> experiments with Staphylococcus aureus ATCC 6538 showed that the number <strong>of</strong><br />

viable <strong>bacteria</strong> was reduced by more than 5 log10 units after irradiation for 30 minutes in the<br />

cryostat CM1850UV. The disinfection efficacy corresponded to the guideline <strong>of</strong> the German<br />

Society for Hygiene <strong>and</strong> Microbiology (DGHM, 1991) for surface disinfection methods <strong>and</strong> to<br />

an intermediate-level disinfection as defined above.<br />

Disinfection <strong>of</strong> vegetative <strong>bacteria</strong> (≥5 log10 units reduction) including Staphylococcus aureus<br />

is achieved by UV-C dosages <strong>of</strong> ≤41 mWs cm -2 (appendix I). No literature data are available<br />

for S. aureus ATCC 6538. However, it is not to be expected that the test strain differs<br />

significantly in sensitivity from <strong>other</strong> S. aureus strains. The UV sensitivity <strong>of</strong> Mycobacterium<br />

terrae, the surrogate organism for M. tuberculosis in disinfectant testing, has not been<br />

reported. Therefore, M. tuberculosis was included in table 1. The similarity in the UV<br />

response allows the prediction that disinfection <strong>of</strong> all vegetative <strong>bacteria</strong> listed in table 1 is<br />

achieved by 30 minutes or 40 minutes UV irradiation. In contrast, spore-forming <strong>bacteria</strong> like<br />

Bacillus subtilis <strong>and</strong> B. anthracis are not inactivated to the same extent, in particular because<br />

the increased sensitivity <strong>of</strong> frozen cells does not apply for spores.<br />

page 7 <strong>of</strong> 17


While the UV sensitivity <strong>of</strong> the yeast C<strong>and</strong>ida albicans compares to that <strong>of</strong> vegetative<br />

<strong>bacteria</strong>, Aspergillus spores <strong>and</strong> the melanized form <strong>of</strong> Cryptococcus ne<strong>of</strong>ormans are highly<br />

resistent to UV irradiation.<br />

Within the given experimental conditions, an inactivation <strong>of</strong> the test virus SV 40 by minimum<br />

4 log10 units was achieved by UV irradiation for 95 minutes <strong>and</strong> longer in the cryostat<br />

CM1850UV. This inactivation level corresponds to the accepted guideline <strong>of</strong> the German<br />

Association for the Control <strong>of</strong> Virus Diseases for the effectiveness <strong>of</strong> disinfectants against<br />

<strong>viruses</strong> (DVV 1997).<br />

An account <strong>of</strong> the, compared to <strong>other</strong> <strong>pathogens</strong>, high resistance <strong>of</strong> the test virus SV 40 to<br />

UVC (appendix I), it can be assumed according to the scientific state <strong>of</strong> knowledge that <strong>other</strong><br />

resistant <strong>viruses</strong> including hepatitis B virus <strong>and</strong> fungal spores are inactivated to the same<br />

extent within the same irradiation time <strong>and</strong> also that vegetative <strong>bacteria</strong> including<br />

Mycobacterium tuberculosis, <strong>bacteria</strong>l spores, fungi, <strong>and</strong> most <strong>viruses</strong> are destroyed with<br />

higher effectivity, as long as they are directly subjected to irradiation on surfaces or in the air<br />

(Table 1). The inactivation effect can be classified as high-level disinfection as defined<br />

above.<br />

The test results showed that the effect <strong>of</strong> irradiation was considerably affected by<br />

components <strong>of</strong> the cell culture medium <strong>and</strong> the addition <strong>of</strong> 2 % bovine fetal serum: irradiation<br />

times above 95 minutes did not result in significantly increased inactivation. This has to be<br />

seen as an approximation to practical situations. It is recommended, to remove visible<br />

contamination in the cryostat by wiping with disinfectant before using the UV lamp. For this<br />

purpose, an alcoholic based disinfectant recommended by the cryostat manufacturer should<br />

be used.<br />

Dependent on the position in the cryostat, the radiation dose received by a surface area can<br />

be less than that in the test position used with SV 40. For disinfecting these areas the<br />

irradiation time has to be increased proportionally. In consideration <strong>of</strong> results from the study<br />

on S. aureus (EcoScope 2004a) <strong>and</strong> with inclusion <strong>of</strong> an additional safety margin, a factor <strong>of</strong><br />

1.5 + 0.4 = 1.9 is proposed for prolongation <strong>of</strong> the irradiation period. Therefore, irradiation for<br />

3 hours is recommended for high-level disinfection in directly irradiated areas <strong>of</strong> the cryostat<br />

chamber <strong>of</strong> the CM1850UV. Comparative measurements showed that the incident UVC<br />

radiation on surfaces <strong>of</strong> the cryostat chamber <strong>of</strong> the CM1950 reaches the same intensity as<br />

that in the CM1850UV. Accordingly, irradiation for 30 min is also recommended for an<br />

intermediate level <strong>of</strong> disinfection in the CM1950 UV, <strong>and</strong> 3 hours for high-level disinfection.<br />

The UVC radiation intensity on surfaces <strong>of</strong> the cryostat chamber <strong>of</strong> the CM1900UV is by 25<br />

% lower than in the CM1850UV. Therefore, 40 min resp. 4 hours irradiation are<br />

recommended for an intermediate resp. high-level disinfection in th CM1900 UV (Table 1).<br />

The test results <strong>and</strong> assessment <strong>of</strong> disinfection efficacy refer to the full radiation output <strong>of</strong> a<br />

lamp such as employed in the test.<br />

Disinfection at the predicted level is restricted to directly illuminated air <strong>and</strong> surface areas.<br />

page 8 <strong>of</strong> 17


10. UV inactivation <strong>of</strong> Avian influenza A/(H5N1) virus<br />

Avian influenza<br />

Avian influenza ("bird flu") is an infectious disease <strong>of</strong> poultry caused by influenza type A<br />

<strong>viruses</strong>. An unprecedented epidemic <strong>of</strong> highly pathogenic avian flu (HPAI) spreads across<br />

large populations <strong>of</strong> domestic birds <strong>and</strong> migratory water fowl in Asia since 2003 <strong>and</strong> has<br />

reached Europe in late 2005 (FAO 2005, WHO 2004, 2005).<br />

Avian influenza <strong>viruses</strong> do not normally infect humans. However, about 200 people have<br />

already died from the current epidemic (WHO 2007). This raises serious concerns that<br />

genetic reassortment with a human flu strain, possibly involving pigs as intermediate hosts,<br />

will result in the next influenza p<strong>and</strong>emic with massive fatalities worldwide (Bush 2004, Fleck<br />

2004, Cyranoski 2005, Khamsi 2005, Williams 2005, Zeitlin & Maslow 2005).Because <strong>of</strong> this,<br />

special attention is given here to inactivation <strong>of</strong> influenza <strong>viruses</strong> by UVC irradiation.<br />

Influenza <strong>viruses</strong><br />

Influenza ("flu") <strong>viruses</strong> are classified into types A, B or C. Humans can be infected by all<br />

three types. Influenza <strong>viruses</strong> that infect birds are called “avian influenza <strong>viruses</strong>”. Only<br />

influenza type A <strong>viruses</strong> infect birds. Influenza A <strong>viruses</strong> can infect people, birds, pigs,<br />

horses, <strong>and</strong> <strong>other</strong> animals, but wild birds are the natural hosts for these <strong>viruses</strong>. Influenza<br />

type A <strong>viruses</strong> are divided into subtypes based on two proteins on the surface <strong>of</strong> the virus<br />

called hemagglutinin (H) <strong>and</strong> neuraminidase (N). There are 14 hemagglutinin subtypes <strong>and</strong> 9<br />

neuraminidase subtypes <strong>of</strong> influenza A <strong>viruses</strong>, <strong>and</strong> potentially all H/N-combinations are<br />

possible. To date, all outbreaks <strong>of</strong> HPAI have been caused by influenza A <strong>viruses</strong> <strong>of</strong><br />

subtypes H5 or H7. HPAI is usually associated with high mortality in poultry.<br />

Influenza <strong>viruses</strong> are members <strong>of</strong> the family Orthomyxoviridae. Their genome consists <strong>of</strong><br />

eight segments <strong>of</strong> linear, single-str<strong>and</strong>ed RNA with a total length <strong>of</strong> 13,600 nucleotides.<br />

Influenza <strong>viruses</strong> are enveloped <strong>viruses</strong>. In spherical forms, the virion diameter is 80-120 nm.<br />

UVC inactivation <strong>of</strong> influenza virus<br />

Viruses like influenza virus with genomes comprised <strong>of</strong> single-str<strong>and</strong>ed RNA are particularly<br />

sensitive to UVC radiation. This is supported by available data on UV inactivation (Table 2,<br />

Appendix I). Accordingly, the decimal UVC (254 nm) inactivation dose for influenza A virus<br />

strains has been found to be as low as 1.8 - 4.1 mWs cm -2 <strong>and</strong> that for the entire virus family<br />

has been predicted as 2.0 - 3.0 mWs cm -2 . It is thus in the same range as that for vegetative<br />

<strong>bacteria</strong> like Escherichia coli <strong>and</strong> Staphylococcus aureus 12-14 . The susceptibility <strong>of</strong> influenza<br />

virus to UVC disinfection has also been noted by Riley (1977).<br />

The morphology, general structure <strong>and</strong> genome organization is the same in all influenza<br />

<strong>viruses</strong>. Data on UVC sensitivity <strong>of</strong> human influenza virus strains are thus equally applicable<br />

to avian influenza <strong>viruses</strong> including influenza A subtype H5N1.<br />

It is concluded that a 30 min period <strong>of</strong> germicidal UVC irradiation in the cryostats CM1850<br />

UV/CM1950 <strong>and</strong> a 40 min period in the CM1900UV results in an inactivation <strong>of</strong> Influenza A<br />

virus by at least 5 log10 units. This corresponds to high-level disinfection.<br />

page 9 <strong>of</strong> 17


11. References<br />

Abraham P. J., van der Eb A. J. 1976. Host cell reactivation <strong>of</strong> ultraviolet-irradiated SV 40<br />

DNA in five complementation groups <strong>of</strong> xeroderma pigmentosum. Mut. Res. 35: 13-22.<br />

Bishop J. M., Quintrell N., Koch G. 1967. Poliovirus double-str<strong>and</strong>ed RNA: <strong>Inactivation</strong> by<br />

ultraviolet light. J. molec. Biol. 24:125.<br />

Büchen-Osmond C. 2003a. Taxonomy <strong>and</strong> classification <strong>of</strong> <strong>viruses</strong>. In: Manual <strong>of</strong> Clinical<br />

Microbiology, 8th Ed., Vol. 2, pp. 1217-1226, ASM Press, Washington DC.<br />

Büchen-Osmond C. (ed) 2003b. ICTVdB - The Universal virus database, version 3. ICTVdB<br />

Management, The Earth Institute <strong>and</strong> Department <strong>of</strong> Epidemiology, Mailman School <strong>of</strong> Public Health,<br />

Columbia University, New York (http://www.ncbi.nlm.nih.gov/ICTVdb/ICTVdB/index.htm)<br />

BS EN 14676 (2005). Chemical disinfectants <strong>and</strong> antiseptics. Virucidal quantitative suspension test for<br />

chemical disinfectants <strong>and</strong> antiseptics used in human medicine. Test method <strong>and</strong> requirements<br />

(phase 2, step 1).<br />

Bundesgesundheitsamt 1982. Richtlinie des Bundesgesundheitsamtes und der Deutschen<br />

Vereinigung zur Bekämpfung der Viruskrankheiten zur Prüfung von chemischen<br />

Desinfektionsmitteln auf Wirksamkeit gegen Viren. Bundesgesundheitsblatt 25: 397-398.<br />

(Bundesgesundheitsamt = German Federal Health Office, now Robert Koch Institute, RKI)<br />

Official translation <strong>of</strong> Bundesgesundheitsamt 1982:<br />

Bundesgesundheitsamt 1990. Guidelines <strong>of</strong> Bundesgesundheitsamt (BGA; German Federal Health<br />

Office) <strong>and</strong> Deutsche Vereinigung zur Bekämpfung der Viruskrankheiten e. V. (DVV; German<br />

Association for the Control <strong>of</strong> Virus Diseases) for testing the effectiveness <strong>of</strong> chemical disinfectants<br />

against <strong>viruses</strong>. Zbl. Hyg. 189: 554-562.<br />

Bush RM 2004. Influenza as a model system for studying the cross-species transfer <strong>and</strong> evolution <strong>of</strong><br />

the SARS coronavirus. Phil. Trans. R. Soc. Lond. B 359: 1067-1073.<br />

CDC 1986. CDC guideline for h<strong>and</strong>washing <strong>and</strong> hospital environmental control. Infection<br />

Control 7: 231-243.<br />

CDC 2003. Guidelines for environmental infection control in health-care facilities.<br />

Recommendations <strong>of</strong> CDC <strong>and</strong> the healthcare infection control practises advisory committee<br />

(HICPAC). U. S. Department <strong>of</strong> Health <strong>and</strong> Human Services. Centers for Disease Control<br />

<strong>and</strong> Prevention (CDC), Atlanta, GA.<br />

CDC 2004. U. S. Department <strong>of</strong> Health <strong>and</strong> Human Services. Centers for Disease Control<br />

<strong>and</strong> Prevention, National Center for Infectious Diseases, Division <strong>of</strong> Viral <strong>and</strong> Rikettsial<br />

Diseases (DVRD) 2004. http://www.cdc.gov/ncidod/dvrd/index.htm (20.12.2004)<br />

Cyranoski D 2005. Bird flu spreads among Java´s pigs. Nature 435 (7041): 390-391.<br />

DIN EN 14476 (2006). Chemische Desinfektionsmittel und Antiseptika – Quantitativer<br />

Suspensionsversuch Viruzidie für in der Humanmedizin verwendete chemische Desinfektionsmittel<br />

und Antiseptika – Prüfverfahren und Anforderungen (Phase 2, Stufe 1).<br />

page 10 <strong>of</strong> 17


DGHM 1991. Prüfung und Bewertung chemischer Desinfektionsverfahren -St<strong>and</strong><br />

12.07.1991 [Testing <strong>and</strong> evaluation <strong>of</strong> chemical disinfection methods]. Hyg. Med. Sonderdruck, mhp-<br />

Verlag, Wiesbaden.<br />

DVV 1997. Kommission für Virusdesinfektion in der Humanmedizin der Deutschen Vereinigung zur<br />

Bekämpfung der Viruskrankheiten e.V. (DVV) 1997. Geschäftsordnung für die Zertifizierung der<br />

Viruswirksamkeit von Desinfektionsmitteln [Commission on virus disinfection in human medicine <strong>of</strong> the<br />

German Association for the Control <strong>of</strong> Virus Diseases: Rules for the certification <strong>of</strong> virucidal efficacy <strong>of</strong><br />

disinfectants, in German]. Hyg. Med. 22: 220-224.<br />

EcoScope 2004a. Test report - <strong>Inactivation</strong> <strong>of</strong> <strong>bacteria</strong> by UV-C irradiation in the cryostat CM 1850.<br />

EcoScope 2004b. Test report - <strong>Inactivation</strong> <strong>of</strong> Simian Virus 40 by UVC irradiation in the Cryostat CM<br />

1850 UV.<br />

EN 1040: 1997. Chemical disinfectants <strong>and</strong> antiseptics. Basic bactericidal activity. Test method <strong>and</strong><br />

requirements (phase 1).<br />

FAO 2005. Avian influenza disease emergency news special issue. Update on the avian influenza<br />

situation (As <strong>of</strong> 12/11/2005) - issue no. 36. Avian influenza spread into Europe situations update (July<br />

- October 2005). www.fao.org/ag/againfo/subjects/documents/ai/ AVIbull036.pdf<br />

Fleck F. 2004. Avian flu virus could evolve into dangerous human pathogen, experts fear. Bull. World<br />

Health Organ. 82(3): 236-237.<br />

Friedberg E. C., Walker G. C., Siede W. 1995. DNA repair <strong>and</strong> mutagenesis. American<br />

Society for Microbiology Press, Washington, DC, 698 S., ISBN 1-55581-088-8<br />

Jansz H. S., Pouwels P. H., van Rotterdam C. 1963. Sensitivity to ultraviolet light <strong>of</strong> single <strong>and</strong> doublestr<strong>and</strong>ed<br />

DNA. Biochem. Biophys. Res. Commun. 76: 655-657.<br />

Khamsi R 2005. Deadly combinations. Nature 435 (7041): 408<br />

Kowalski W. J., Bahnfleth W. P., Witham D. L., Severin B. F., Whittam T. S. 2000.<br />

Mathematical modeling <strong>of</strong> ultraviolet germicidal irradiation for air disinfection. Quantitative<br />

Microbiology 2: 249-270.<br />

Lytle C. D., Sagripanti J-L. 2005. Predicted inactivation <strong>of</strong> <strong>viruses</strong> <strong>of</strong> relevance to biodefense by solar<br />

radiation. J. Virol. 79: 14244-14252.<br />

Riley RL 1977. Ultraviolet air disinfection for protection against influenza. The Johns Hopkins Med. J.<br />

140: 25-27.<br />

RKI, DVV, DGHM 2004. Testing <strong>and</strong> declaration <strong>of</strong> effectiveness <strong>of</strong> disinfectants against <strong>viruses</strong> [in<br />

German, Prüfung und Deklaration der Wirksamkeit von Desinfektionsmitteln<br />

gegen Viren]. Bundesgesundheitsbl-Gesundheitsforsch-Gesundheitsschutz 47: 62-66.<br />

Rutala W. A. 1996. APIC guideline for selection <strong>and</strong> use <strong>of</strong> disinfectants. Am. J. Infection<br />

Control 24: 313-342.<br />

van der Eb A. J., Cohen J. A. 1967. The effect <strong>of</strong> UV-irradiation on the plaque-forming ability<br />

<strong>of</strong> single-<strong>and</strong> double-str<strong>and</strong>ed polyoma virus DNA. Biochem. Biophys. Res. Commun. 28:<br />

284-288.<br />

page 11 <strong>of</strong> 17


WHO 1999. Safe management <strong>of</strong> wastes from health care activities. World Health Organization.<br />

WHO 2003. Practical guidelines for infection control in health care facilities. World Health<br />

Organization.<br />

WHO 2004. Avian influenza ("bird flu") <strong>and</strong> the significance <strong>of</strong> its transmission to humans.<br />

www.who.int/mediacentre/factsheets/avian_influenza/en/print.html (15 January 2004).<br />

WHO 2005. Geographical spread <strong>of</strong> H5N1 avian influenza in birds - update 28. Situation assessment<br />

<strong>and</strong> implications for human health. www.who.int/csr/don/2005_08_18/ en/print.html (18 August 2005).<br />

WHO 2007. Cumulative number <strong>of</strong> confirmed human cases <strong>of</strong> avian influenza A/(H5N1) reported to<br />

WHO. www.who.int/csr/disease/avian_influenza/country/cases_table_2007_10_31/en/index.html (31<br />

October 2007).<br />

Williams N 2005. Flu p<strong>and</strong>emic fears continue. Curr. Biol. 15 (9): R313-R314.<br />

Yarus M., Sinsheimer R. L. 1964. The UV-resistance <strong>of</strong> double-str<strong>and</strong>ed Φ X174 DNA. J.<br />

mol. Biol. 8: 614-615.<br />

Závadova Z., Gresl<strong>and</strong> L., Rosenbergová M. 1968. <strong>Inactivation</strong> <strong>of</strong> single-<strong>and</strong> doublestr<strong>and</strong>ed<br />

ribonucleic acid <strong>of</strong> encephalomyocarditis virus by ultraviolet light. Acta virol. 12: 515-522.<br />

Zeitlin G. A., Maslow M. J. 2005. Avian influenza. Curr. Infect. Dis. Rep. 7: 193-199.<br />

page 12 <strong>of</strong> 17


APPENDIX I<br />

UVC (254 nm) radiation dose required for the inactivation <strong>of</strong> microorganisms <strong>and</strong><br />

<strong>viruses</strong> (at room temperature, mWs cm -2 )<br />

species<br />

VEGETATIVE BACTERIA<br />

inactivation - log10 units /<br />

% inactivation<br />

1 2 3 4 5<br />

90 99 99.9 99.99 99.999<br />

page 13 <strong>of</strong> 17<br />

references<br />

Bacillus anthracis 4.5-28 8.7-42 8.7-56 12-70 15-84 3, 37, 39, 56<br />

Bacillus subtilis 3.7-12 7.4-18 11-14 15 18<br />

Escherichia coli 1.3-5.1 2.8-10 4.1-16 5.0-28 7.7-36<br />

3, 37, 39, 52,<br />

68, 87<br />

3, 4, 6, 8, 13,<br />

15, 22, 30, 31,<br />

34, 37, 39, 41,<br />

49, 58, 69, 70,<br />

73, 75, 76, 78,<br />

79, 80, 88, 91<br />

Klebsiella pneumoniae 15 11-31 29-39 49, 80, 91<br />

Mycobacterium tuberculosis 0.5-2.3 1.0-6.0 1.5-10 2.0-13 2.4-17<br />

Proteus mirabilis 0.9 1.8 2.7 3.6 4.5 34<br />

Pseudomonas aeruginosa 1.0-5.5 1.9-11 2.9 -17 3.9-22 4.8-28<br />

Salmonella sp. 1.8-5.0 3.2-7.0 5.4-9.0 7.1-25 8.3-15<br />

Staphylococcus aureus 1.9 -5.5 3.9-11 5.8-17 7.8-22 9.7-28<br />

Vibrio cholerae 0.8 1.4-6.5 2.2-12 5.0-21 19<br />

BACTERIAL SPORES<br />

Bacillus anthracis 74 149 223 297 371 42<br />

Bacillus anthracis 28 42 56 70 84 56<br />

Bacillus pumilus 20 55<br />

Bacillus subtilis 10-39 17-38 22-58 29-80 36-121<br />

YEASTS<br />

C<strong>and</strong>ida albicans 7.6-12 11-17 15-22 18-27 22-32 60<br />

Cryptococcus ne<strong>of</strong>ormans,<br />

melanized<br />

34 68 102 136 170 84<br />

Cryptococcus ne<strong>of</strong>ormans,<br />

non-pigmented<br />

16 32 48 64 80 84<br />

3, 21, 38, 39,<br />

42<br />

3, 37, 39, 42,<br />

80<br />

3, 15, 37, 39,<br />

41, 49, 79, 80,<br />

88<br />

3, 15, 16, 37,<br />

39<br />

3, 37, 39, 64,<br />

79, 80<br />

3, 15, 22, 37,<br />

45, 53, 56, 59,<br />

61, 62, 68, 73-<br />

75


MOLD SPORES<br />

Aspergillus sp. 35-67 134 99-330 117-440 147-550 29, 37, 39, 42<br />

Aspergillus fumigatus 54 108 162 216 270 29<br />

VIRUSES<br />

Adenoviridae 27-49* 47<br />

Adenovirus 1 35 69 103 138 57<br />

Adenovirus 2 40-61 78-109 119-163 160 198 22, 23, 28, 42<br />

Adenovirus 5 216-240 305 38, 83<br />

Adenovirus 6 39 77 115 154 57<br />

Adenovirus 40 30 61 93 124 155 51<br />

Adenovirus 41 24 53 82 112 141 51<br />

Arenaviridae 3.5* 47<br />

Astroviridae 10-12* 47<br />

Bunyaviridae 2.0-3.5* 47<br />

Caliciviridae 9.7-11* 47<br />

Canine calicivirus 20 24<br />

Feline calicivirus<br />

4.8 12 19 24, 78<br />

Coronaviridae 0.7-1.1* 47<br />

SARS coronavirus 91 114-162 25, 40<br />

Berne virus 5 85<br />

Deltaviridae 22* 47<br />

Filoviridae 2.0* 47<br />

Flaviviridae 6.8-8.4* 47<br />

Hepadnaviridae 3.8-4.1* 47<br />

Herpesviridae 3.5-7.0* 47<br />

Epstein Barr virus 16 - 23 32<br />

Herpes simplex virus 1 3.7-10 7.4-20 11 24 37 32, 63, 86<br />

Herpes simplex virus 2 0.4 0.7 11 13 86<br />

Equine herpes virus 7.5 85<br />

Orthomyxoviridae 2.0-3.0* 47<br />

Influenza A 1.8 1.3-8.2 2.0 3.3 1, 12, 35<br />

Papovaviridae 68-103* 47<br />

Polyomavirus 47 43-94 141 44, 81<br />

Simian virus 40 105-300 130-261 440 551<br />

page 14 <strong>of</strong> 17<br />

2, 9-11, 18, 26,<br />

38, 65, 66, 77


Paramyxoviridae 3.0* 47<br />

Parvoviridae 2.1-3.2* 47<br />

Parvovirus H-1, hamster<br />

osteolytic virus<br />

23 46 19<br />

Porcine parvovirus ca. 83 17<br />

Murine parvovirus


References<br />

1. Abraham G. 1979. Virology 97: 177-182.<br />

2. Abraham P. J., Van der Eb A. J. 1976. Mut. Res. 35: 13-22.<br />

3. AWWOA 1999. Overview <strong>of</strong> wastewater disinfection. Alberta Water <strong>and</strong> Wastewater Operators Association<br />

4. Basaran N., Quintero-Ramos A., Moake M. M., Churey, J. J., Worobo R. W. 2004. Appl. Environ. Microbiol.<br />

70: 6061-6065.<br />

5. Battigelli D. A., Sobsey M. D., Lobe D. C. 1993. Water Sci. Technol. 27: 339-342.<br />

6. Beggs C. B. 2002. Photochem. Photobiol. Sci. 1: 431-437.<br />

7. Bishop J. M., Quintrell N., Koch G. 1967. J. molec. Biol. 24:125.<br />

8. Blatchley E. R. 3rd, Dumoutier N., Halaby T. N., Levi Y., Laine J. M. 2001. Water Sci. Technol. 43: 179-186.<br />

9. Bourre F., Benoit A., Sarasin A. 1989. J. Virol. 63: 4520-4524.<br />

10. Brown T. C., Cerutti P. A. 1986. EMBO J. 5: 197-203.<br />

11. Brown T. C., Cerutti P. A. 1989. Mut. Res. 218: 211-217.<br />

12. Budowsky E. I. et al. 1981. Arch. Virol. 68: 239-247.<br />

13. Butler R. C., Lund V., Carlson D. A. 1987. Appl. Environ. Microbiol. 53:375-378.<br />

14. Caillet-Fauquet P., Di Giambattista M., Draps M. L., S<strong>and</strong>ras F., Branckaet T., de Launoit, Y., Laub R. 2004.<br />

J. Virol. Methods 118: 131-139.<br />

15. Chang J. C., Oss<strong>of</strong> S. F., Lobe D. C., Dorfman M. H., Dumais C. M., Qualls R. G., Johnson J. D. 1985. Appl.<br />

Environ. Microbiol. 49: 1361-1365.<br />

16. Chapple R. M., Inglis B., Stewart P. R. 1992. Arch. Microbiol. 157: 242-248.<br />

17. Chin S, Jin R, Wang X. L., Hamman J et al. 1997. Photochem. Photobiol. 65: 432-435.<br />

18. Cornelis J. J., Lupker J. H., van der Eb A. J. 1980. Mut. Res. 71: 139-146.<br />

19. Cornelis J. J., Su Z. Z., Rommelaere J. 1982. EMBO J. 1: 693-699.<br />

20. Danner K., Mayr A. 1979. Arch. Virol. 61: 261-271.<br />

21. David H. L. 1973. Am. Rev. Resp. Dis. 108: 1175-1184.<br />

22. Day R. S. III. 1974a. Cancer Research 34: 1965-1970.<br />

23. Day R. S. III. 1974b. Photochem. Photobiol. 19: 9-14.<br />

24. de Roda Husman A. M., Bijkerk P., Lodder W., van den Berg H., Pribil W., Cabaj A., Gehringer P., Sommer<br />

R., Duizer E. 2004. Appl. Environ. Microbiol. 70: 5089-5093.<br />

25. Duan S. M., Zhao X. S., Wen R. F., Huang J. J., Pi G. H., Zhang S. X., Han J., Bi S. L., Ruan L., Dong X. P.,<br />

SARS Research Team 2003. Biomed. Environ. Sci. 16: 246-255.<br />

26. Edenberg H. J., Roman A. 1983. Photochem. Photobiol. 37: 297-299.<br />

27. Gardner D. W., Shama G. 2000. J. Food Prot. 63: 63-70.<br />

28. Gerba C. P., Gramos, D. M., Nwachuku N. 2002. Appl. Environ. Microbiol. 68: 5167-5169.<br />

29. Green C. F., Scarpino P. V., Jensen P., Jensen N. J., Gibbs S. G. 2004. Can. J. Microbiol. 50: 221-224.<br />

30. Gurzadyan G. G., Görner H., Schulte-Frohlinde D. 1995. Radiat. Res. 141(3): 244-251.<br />

31. Harris G. D., Adams V. D., Sorenson D. L., Curtis M. S. 1987. Water Res. 21: 687-692.<br />

32. Henderson E., Heston L., Grogan E., Miller G. 1978. Virol. 25: 51-59.<br />

33. Hill W. F. Jr., Hamblett F. E., Benton W. H., Akin E. W. 1970. Appl. Microbiol. 19: 805-812.<br />

34. H<strong>of</strong>emeister J., Böhme H. 1975. Mol. Gen. Genet. 141: 147-161.<br />

35. Hollaender A., Oliphant J. W. 1944. J. Bacteriol. 48: 447-454.<br />

36. Hughes J. H., Mitchell M., Hamparian V. V. 1979. Arch. Virol. 61: 313-319.<br />

37. International Water-Guard Industries Inc. 2003. Disinfection <strong>of</strong> aircraft potable water by ultraviolet light.<br />

Burnaby, B.C., Canada. www.waterknowledge.com<br />

38. Kallenbach N. R., Cornelius P. A., Negus D., Montgomerie D., Engl<strong>and</strong>er S. 1989. Curr. Stud. Hematol.<br />

Blood Transfus. No. 56 (J.-J. Morgenthaler, ed.), pp. 70-82, Karger, Basel<br />

39. Kano et al. (Millipore) 2003. UV technologies in water purification systems. RD009, Millipore Corporation,<br />

Bedford, MA, USA<br />

40. Kariwa H., Fujii N., Takashima I. 2004. Jpn. J. Vet. Res. 52: 105-112.<br />

41. Kim T., Silva J. L., Chen T. C. 2002. J. Food Prot. 65: 1142-1145.<br />

42. Kowalski W. J., Bahnfleth W. P., Witham D. L., Severin B. F., Whittam T. S. 2000. Quant. Microbiol. 2: 249-<br />

270.<br />

43. Latarjet R., Cramer R., Montagnier L. 1967. Virology 33: 104-111.<br />

44. Lazarova V., Savoye Ph. 2004. Water Sci. Technol. 50: 203-209.<br />

45. Lindberg C., Horneck G. 1991. J. Photochem. Photobiol. B (Biol.) 11: 69-80.<br />

46. Lytle C. D., Aaronson S. A., Harvey E. 1972. Int. J. Radiat. Biol. 22: 159-165.<br />

47. Lytle C. D., Sagripanti J.-L. 2005. J. Virol. 79: 14244-14252.<br />

48. Ma J.-F., Straub T. M., Pepper I. L., Gerba C. P. 1994. Appl. Environ. Microbiol. 60: 4203-4206<br />

49. Martiny H., Wlodavezyk K., Harms G., Ruden H. 1988. Zentralbl. Bakteriol. Mikrobiol. Hyg. B 185: 350-367.<br />

50. McClain M. E., Spendlove R. S. 1966. J. Bacteriol. 92: 1422-1429.<br />

51. Meng Q. S., Gerba C. P. 1996. Water Res. 30: 2665-2668.<br />

52. Meng Z. D., Birch C., Heath R., Gust I. 1987. Appl. Environ. Microbiol. 53: 727-730.<br />

page 16 <strong>of</strong> 17


53. Munakata N. 1974. J. Bacteriol. 120: 59-65.<br />

54. Nakashima H. Koyanagi Y., Harada S., Yamamoto N. 1986. J. Invest. Dermatol. 87: 239-243.<br />

55. Newcombe D. A., Schuerger A. C., Benardini J. N., Dickinson D., Tanner R., Venkateswaran K. 2005. Appl.<br />

Environ. Microbiol. 71: 8147-8156.<br />

56. Nicholson W. L., Galeano B. 2003. Appl. Environ. Microbiol. 69: 1327-1330.<br />

57. Nwachuku N., Gerba C. P., Oswald A., Mashadi F. D. 2005. Appl. Environ. Microbiol. 71: 5633-5636.<br />

58. Pelico J. V., Gomes R. A. 1979. Bras. Pesqui. Med. Biol. 12: 67-73.<br />

59. Qualls R. G., Johnson J. D. 1983. Appl. Environ. Microbiol. 45: 872-877.<br />

60. Rhoads D. D., Sarachek A. 1984. Mycopathologica 87: 35-41.<br />

61. Rice J. K., Ewell M. 2001. Appl. Environ. Microbiol. 67: 5830-5832.<br />

62. Riesenman P. J., Nickolson W. L. 2000. Appl. Environ. Microbiol. 66: 620-626.<br />

63. Ross L. J. N., Wildy P., Cameron K. R. 1971. Virology 45: 808-812.<br />

64. Samad S. A., Bhattacharyya S. C., Chatterjee S. N. 1987. Radiat. Environ. Biophys. 26: 295-300.<br />

65. Sarasin A., Hanawalt P. C. 1978. Proc. Natl. Acad. Sci. U.S.A. 75: 346-350.<br />

66. Sarasin A., Hanawalt P. C. 1980. J. Mol. Biol. 138: 299-319.<br />

67. Schmitz H., Draeger J. 1986. Klin. Monatsbl. Augenheilkd. 189: 154-157.<br />

68. Setlow P. 1992. Journal <strong>of</strong> Bacteriology 174: 2737-2741.<br />

69. Severin B. F., Suidan M. T., Engelbrecht R. S. 1983. Envir. Sci. Technol. 17: 717-721.<br />

70. Silva B. S., Leitão A. C. 1984. Photochem. Photobiol. 39: 781-785.<br />

71. Smirnov Y. A., Kapitulets S. P., Amitina N. N., Ginevskaya V. A., Kaverin N. V. 1991. Acta Virol. 35: 1-6.<br />

72. Smirnov Y. A., Kapitulez S. P., Kaverin N. V. 1992. Virus Res. 22: 151-158.<br />

73. Sommer R., Weber G., Cabaj A., Wekerle J., Keck G., Schauberger, G. 1989. Zentralbl. Hyg. Umweltmed.<br />

189: 214-224.<br />

74. Sommer R., Cabaj A., Schoenen D., Gebel J., Kolch A., Havelaar A. H., Shets F. M. 1995. Water Sci.<br />

Technol. 31: 147-156.<br />

75. Sommer R., Haider T., Cabaj, A., Heidenreich E., Kundi M. 1996. Appl. Environ. Microbiol. 62: 1977-1983<br />

76. Sommer R., Pribil W., Appelt S., Gehringer P., Eschweiler H., Leth H., Cabaj A., Haider T. 2001. Water Res.<br />

35: 3109-3116.<br />

77. Stacks P. C., White J. H. Dixon K. 1983. Mol. Cell. Biol. 3: 1403-1411.<br />

78. Tree J. A., Adams M. R., Lees D. N. 2005. J. Appl. Microbiol. 98: 155-162.<br />

79. Trojan Technologies Inc. 2003. UV disinfection for drinking water: c<strong>and</strong>idate for best available technology.<br />

Trojan Technical Bulletin #52. Trojan Technologies Inc., London, Ontario, Canada.<br />

80. U. S. Food <strong>and</strong> Drug Administration, Center for Food Safety <strong>and</strong> Applied Nutrition 2000. Kinetics <strong>of</strong> microbial<br />

inactivation for alternative food processing technologies - ultraviolet light.<br />

http://www.cfsan.fda.gov/~ift-uv.html<br />

81. van der Eb A. J., Cohen J. A. 1967. Biochem. Biophys. Res. Commun. 28: 284-288.<br />

82. Wang C. H., Tschen S. Y., Flehmig B. 1995. Vaccine 13: 835-840.<br />

83. Wang J. et al. 2004. Vox Sanguinis 86: 230-238.<br />

84. Wang Y., Casadevall A. 1994. Appl. Environ. Microbiol. 60: 3864-3866.<br />

85. Weiss M., Horzinek M. C. 1986. Vet. Microbiol. 11: 41-49.<br />

86. Wolff M. H., Schneweis K. E. 1973. Zentralbl. Bakteriol. Hyg. I. Abt. Orig. A 223: 470-477.<br />

87. Xue Y., Nicholson W. L. 1996. Appl. Environ. Microbiol. 62: 2221-2227.<br />

88. Yaun B. R., Sumner S. S., Eifert J. D., Marcy J. E. 2003. J. Food Prot. 66: 1071-1073.<br />

89. Závadová Z., Gresl<strong>and</strong> L., Rosenbergová M. 1968. Acta Virol. 12: 515-522.<br />

90. Závadová Z., Libikova H. 1975. Acta Virol. 19: 88-90.<br />

91. Zemke V., Podgorsek L., Schoenen D. 1990. Zentralbl. Hyg. Umweltmed. 190: 51-61.<br />

page 17 <strong>of</strong> 17

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!