24.12.2012 Views

Nanotechnology in Cancer Treatment and Detection

Nanotechnology in Cancer Treatment and Detection

Nanotechnology in Cancer Treatment and Detection

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Nanotechnology</strong> <strong>in</strong> <strong>Cancer</strong> <strong>Treatment</strong> <strong>and</strong> <strong>Detection</strong><br />

Richard Acosta


Motivation<br />

• Ineffectiveness of many <strong>Cancer</strong> treatments<br />

• Numerous side effects<br />

• Difficulties <strong>in</strong> early <strong>Cancer</strong> detection<br />

• No immunization


The nanoparticles discussed <strong>in</strong><br />

this presentation are typically<br />

between 20-150 nm or roughly<br />

100 times smaller than most<br />

human cells<br />

<strong>Cancer</strong> <strong>Nanotechnology</strong> research<br />

is <strong>in</strong>terdiscipl<strong>in</strong>ary <strong>and</strong><br />

<strong>in</strong>corporates Biology, Chemistry,<br />

Eng<strong>in</strong>eer<strong>in</strong>g, Medic<strong>in</strong>e, <strong>and</strong><br />

Physics<br />

Scale <strong>and</strong> Scope


Properties of <strong>Cancer</strong> Cells<br />

• Epidermal Growth Factor Receptor (EGFR)<br />

over expression <strong>and</strong> over activity<br />

have been associated many different<br />

types of <strong>Cancer</strong><br />

• <strong>Cancer</strong> cells have a unique properties that can be exploited by nanoparticles<br />

• Their rapid rate of growth causes them to <strong>in</strong>take an abnormal amount of<br />

nutrients (i.e., folic acid)<br />

• Nanoparticles can be used to target bio-markers or antigens that are<br />

highly specific to <strong>Cancer</strong> cells


Nanoparticle Specialization<br />

• 99% of chemotherapy drugs do not reach the<br />

<strong>Cancer</strong> cells<br />

• Nanotubes, nanorods, dendrimers,<br />

nanospheres, nanoantennas, … us<strong>in</strong>g<br />

carbon, iron, gadol<strong>in</strong>ium, gold, silicon, etc.<br />

• Antigen b<strong>in</strong>d<strong>in</strong>g peptide lig<strong>and</strong>s are attached<br />

to the nanostructures<br />

• Folic acid bait<strong>in</strong>g<br />

• Passive target<strong>in</strong>g - Leaky blood vessels near<br />

tumors cause the nanoparticles to cluster<br />

around the tumors


Intracellular Drug Delivery<br />

The Trojan Horse<br />

Cytotoxic chemical payload<br />

Methotrexate, Docetaxel, etc…<br />

Uses <strong>in</strong> <strong>Treatment</strong>


Experiment on mice bear<strong>in</strong>g<br />

human prostate tumors<br />

After approximately 3 months<br />

100% of the mice treated with the<br />

targeted nanoparticles survived<br />

57% of the mice treated with<br />

untargeted nanoparticles survived<br />

14% of the mice with Docetaxel<br />

alone survived<br />

Uses <strong>in</strong> <strong>Treatment</strong><br />

Amount of weight loss <strong>and</strong> white<br />

blood cell count confirmed far lower<br />

toxicity for the targeted nanoparticles


©2006 by National Academy of Sciences<br />

Comparative efficacy study <strong>in</strong> LNCaP s.c. xenograft nude mouse model of PCa<br />

Farokhzad O. C. et.al. PNAS 2006;103:6315-6320


Photothermal Ablation<br />

Uses <strong>in</strong> <strong>Treatment</strong><br />

<strong>Cancer</strong> cells die at 42° C (108° F), normal cells die at about 46° C (115° F)<br />

Current optical fiber treatment<br />

Hollow, gold nanospheres are 50 times more effective at absorb<strong>in</strong>g light near the<br />

<strong>in</strong>frared than solid gold nanoparticles<br />

Nanoparticles can be tuned to be excited only by certa<strong>in</strong> ranges of light


Uses <strong>in</strong> <strong>Treatment</strong><br />

In another study, pre-cl<strong>in</strong>ical trials reveal that a s<strong>in</strong>gle <strong>in</strong>travenous nanoparticle<br />

<strong>in</strong>jection eradicated 100 percent of tumors <strong>in</strong> mice when exposed to<br />

near-<strong>in</strong>frared light.<br />

Most work is be<strong>in</strong>g done with near-<strong>in</strong>frared light, which is harmless to humans but<br />

can only penetrate human tissue about 1.5 <strong>in</strong>ches. Nanoparticles heated up<br />

to 70° C (160° F)<br />

The Kanzius RF Mach<strong>in</strong>e uses radio waves for dielectric heat<strong>in</strong>g


Uses <strong>in</strong> <strong>Detection</strong><br />

Gold nanoparticles <strong>in</strong> this image showed 600 percent more aff<strong>in</strong>ity to <strong>Cancer</strong><br />

cells than healthy cells (EGFR b<strong>in</strong>d<strong>in</strong>g)<br />

White light <strong>and</strong> simple, <strong>in</strong>expensive microscope is all that’s necessary for<br />

powerful ex vivo <strong>Cancer</strong> detection.<br />

The scatter<strong>in</strong>g is so strong that even one nanoparticle can be detected.


Uses <strong>in</strong> <strong>Detection</strong><br />

Us<strong>in</strong>g a metal-organic framework with metals such as gadol<strong>in</strong>ium or iron,<br />

nanoparticles can be used as MRI contrast agents<br />

For the same amount of contrast, only 1/3 of the contrast agent is necessary<br />

us<strong>in</strong>g nanoparticle target<strong>in</strong>g


Fluorescent Microscopy<br />

Uses <strong>in</strong> <strong>Detection</strong><br />

Nanoparticles can serve as dual detection devices for both magnetic<br />

resonance <strong>and</strong> microscopy


Current Limitations<br />

<strong>Cancer</strong> target<strong>in</strong>g is highly dependent on surface chemistry. Not just any<br />

nanoparticle will work.<br />

The need for biocompatible <strong>and</strong> stable nanoparticles<br />

Side-effects <strong>and</strong> toxicity<br />

Environmental impact<br />

Uncharted territory


Future<br />

Human cl<strong>in</strong>ical trials with<strong>in</strong> the next 2-3 years<br />

Highly specific team of communicat<strong>in</strong>g multifunctional nanoparticles used<br />

<strong>in</strong> the discovery, treatment, <strong>and</strong> prevention of <strong>Cancer</strong> growth<br />

Safer, more consistent, <strong>and</strong> highly specific nanoparticle production<br />

Turn<strong>in</strong>g <strong>Cancer</strong> <strong>in</strong>to a chronic, but manageable disease with<strong>in</strong> the next<br />

15-20 years


Summary<br />

-Different types of <strong>Cancer</strong> cells have unique properties that can be<br />

exploited by nanoparticles to target the <strong>Cancer</strong> cells<br />

-Nanoparticles can be used to detect/monitor (by utiliz<strong>in</strong>g or add<strong>in</strong>g optic,<br />

magnetic, <strong>and</strong> fluorescent properties) <strong>and</strong> to treat <strong>Cancer</strong> (by Heat ablation,<br />

chemotherapy, gene therapy).<br />

-No human trials have been performed yet <strong>and</strong> human trials are still at<br />

least a few years away. (Unknown side effects, toxicity, difficulty <strong>in</strong><br />

manufactur<strong>in</strong>g <strong>and</strong> harmful byproducts, need for highly specific<br />

nanoparticles)


Sources<br />

• University of California - Santa Cruz (2009, March 28). Hollow Gold Nanospheres Show Promise For Biomedical And Other<br />

Applications. ScienceDaily. Retrieved May 24, 2009, from http://www.sciencedaily.com- /releases/2009/03/090322154415.htm<br />

• University of Texas M. D. Anderson <strong>Cancer</strong> Center (2009, February 8). Targeted Nanospheres F<strong>in</strong>d, Penetrate, Then Fuel<br />

Burn<strong>in</strong>g Of Melanoma. ScienceDaily. Retrieved May 24, 2009,<br />

from http://www.sciencedaily.com- /releases/2009/02/090202074856.htm<br />

• Couvreur P, Vauthier C. <strong>Nanotechnology</strong>: <strong>in</strong>telligent design to treat complex disease. Pharmaceutical<br />

Research. 2006; 23(7): 1417-50.<br />

• Sunderl<strong>and</strong> CJ, Steiert M, Talmadge JE, Derfus AM, Barry SE. Targeted nanoparticles for<br />

detect<strong>in</strong>g <strong>and</strong> treat<strong>in</strong>g cancer. Drug Development Research. 2006; 67: 70-93.<br />

• Yih TC, Al-F<strong>and</strong>i M. Eng<strong>in</strong>eered nanoparticles as precise drug delivery systems. Journal of Cellular<br />

Biochemistry. 2006; 97: 1184-90.<br />

• El-Sayed, Mostafa. Gold Nanoparticles May Simplify <strong>Cancer</strong> <strong>Detection</strong>. Georgia Institute of Technology. 2005<br />

• Misty D. Rowe, Douglas H. Thamm, Susan L. Kraft, Stephen G. Boyes. Polymer-Modified Gadol<strong>in</strong>ium Metal-Organic Framework<br />

Nanoparticles Used as Multifunctional Nanomedic<strong>in</strong>es for the Targeted Imag<strong>in</strong>g <strong>and</strong> <strong>Treatment</strong> of <strong>Cancer</strong>.<br />

Biomacromolecules 2009 10 (4), 983-993<br />

• Chungang Wang, Jiji Chen, Tom Talavage, Joseph Irudayaraj. Gold Nanorod/Fe3O4 Nanoparticle Nano-Pearl-Necklaces for<br />

Simultaneous Target<strong>in</strong>g, Dual-Mode Imag<strong>in</strong>g, <strong>and</strong> Photothermal Ablation of <strong>Cancer</strong> Cells. Angew<strong>and</strong>te<br />

Chemie International Edition (2009)<br />

• L. Denton, Michael S. Foltz, Gary D. Nooj<strong>in</strong>, Larry E. Estlack, Robert J. Thomas, <strong>and</strong> Benjam<strong>in</strong> A. Rockwell. Determ<strong>in</strong>ation of<br />

threshold average temperature for cell death <strong>in</strong> an <strong>in</strong> vitro ret<strong>in</strong>al model us<strong>in</strong>g thermograph Proc. SPIE 7175,<br />

71750G (2009), DOI:10.1117/12.807861<br />

• Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy <strong>in</strong> vivo PNAS 2006 103:6315-6320; published onl<strong>in</strong>e<br />

before pr<strong>in</strong>t April 10, 2006, doi:10.1073/pnas.0601755103<br />

• http://en.wikipedia.org/wiki/Epidermal_growth_factor_receptor<br />

• http://en.wikipedia.org/wiki/Nanomedic<strong>in</strong>e<br />

• http://en.wikipedia.org/wiki/Surface_plasmon_resonance<br />

• http://en.wikipedia.org/wiki/Fluorescence_microscopy<br />

• http://en.wikipedia.org/wiki/Methotrexate<br />

• http://en.wikipedia.org/wiki/Docetaxel


Questions<br />

1) Which of the follow<strong>in</strong>g are not potential methods for treat<strong>in</strong>g <strong>Cancer</strong><br />

us<strong>in</strong>g nanotechnology.<br />

a) Photothermal ablation<br />

b) Folic acid <strong>in</strong>troduction<br />

c) Cytotoxic drug delivery<br />

d) Gene therapy<br />

e) None of the above<br />

2) A cause for the stall <strong>in</strong> utiliz<strong>in</strong>g nanotechnology treatment on a mass scale is<br />

a) Unknown toxic effects of nanoparticles<br />

b) Environmental repercussions<br />

c) Lack of human cl<strong>in</strong>ical trials<br />

d) Inefficient nanoparticle creation techniques<br />

e) All of the above

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!