24.12.2012 Views

DIN V 18599-5 Energy efficiency of buildings — Calculation of the ...

DIN V 18599-5 Energy efficiency of buildings — Calculation of the ...

DIN V 18599-5 Energy efficiency of buildings — Calculation of the ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Date: 2007 February<br />

<strong>DIN</strong> V <strong>18599</strong>-5<br />

<strong>Energy</strong> <strong>efficiency</strong> <strong>of</strong> <strong>buildings</strong> <strong>—</strong> <strong>Calculation</strong> <strong>of</strong> <strong>the</strong> energy needs, delivered energy and<br />

primary energy for heating, cooling, ventilation, domestic hot water and lighting <strong>—</strong> Part<br />

5: Delivered energy for heating systems<br />

Energetische Bewertung von Gebäuden <strong>—</strong> Berechnung des Nutz-, End- und Primärenergiebedarfs für Heizung,<br />

Kühlung, Lüftung, Trinkwarmwasser und Beleuchtung <strong>—</strong> Teil 5: Endenergiebedarf von Heizsystemen<br />

Supersedes <strong>DIN</strong> V <strong>18599</strong>-5:2005-07


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

Contents Page<br />

Foreword..............................................................................................................................................................7<br />

Introduction .........................................................................................................................................................9<br />

1 Scope ................................................................................................................................................... 10<br />

2 Normative references ......................................................................................................................... 11<br />

3 Terms and definitions, symbols and units....................................................................................... 13<br />

3.1 Terms and definitions ........................................................................................................................ 13<br />

3.2 Symbols, units and subscripts.......................................................................................................... 17<br />

4 Relationship between <strong>the</strong> parts <strong>of</strong> <strong>the</strong> <strong>DIN</strong> V <strong>18599</strong> series <strong>of</strong> prestandards ................................ 20<br />

4.1 Input parameters from o<strong>the</strong>r parts <strong>of</strong> <strong>the</strong> <strong>DIN</strong> V <strong>18599</strong> series <strong>of</strong> prestandards ........................... 21<br />

4.2 Output parameters for o<strong>the</strong>r parts <strong>of</strong> <strong>the</strong> <strong>DIN</strong> V <strong>18599</strong> series <strong>of</strong> prestandards ........................... 22<br />

4.2.1 Generator heat output ........................................................................................................................ 23<br />

4.2.2 Delivered heat ..................................................................................................................................... 24<br />

4.2.3 Auxiliary energy.................................................................................................................................. 25<br />

4.2.4 Uncontrolled heat gains due to <strong>the</strong> heating system ....................................................................... 25<br />

5 Boundary conditions for <strong>the</strong> individual subsystems...................................................................... 26<br />

5.1 Part load levels.................................................................................................................................... 26<br />

5.1.1 Heat control and emission................................................................................................................. 26<br />

5.1.2 Heat distribution ................................................................................................................................. 26<br />

5.1.3 Storage................................................................................................................................................. 26<br />

5.1.4 Heat generation................................................................................................................................... 27<br />

5.2 Temperatures ...................................................................................................................................... 27<br />

5.3 Boiler rated output.............................................................................................................................. 29<br />

5.4 Times.................................................................................................................................................... 29<br />

5.4.1 Running times..................................................................................................................................... 29<br />

5.4.2 Distribution <strong>of</strong> annual values over individual months.................................................................... 32<br />

6 Determination <strong>of</strong> energy expenditure............................................................................................... 32<br />

6.1 Heat control and emission................................................................................................................. 32<br />

6.1.1 Efficiencies for free emitters (radiators); room heights ≤ 4 m ....................................................... 33<br />

6.1.2 Efficiencies for water based embedded systems (surface heating); room heights ≤ 4 m.......... 35<br />

6.1.3 Efficiencies for electric heating; (room heights ≤ 4 m)................................................................... 36<br />

6.1.4 Efficiencies for air heating/residential ventilation; room heights ≤ 4 m ....................................... 36<br />

6.1.5 Efficiencies for air heating (HVAC systems); room heights ≤ 4 m ................................................ 37<br />

6.1.6 Efficiencies for rooms with heights ≥ 4 m (large indoor spaces) .................................................. 37<br />

6.1.7 Efficiencies for rooms with heights > 10 m...................................................................................... 39<br />

6.1.8 Auxiliary energy Q h,ce,aux ................................................................................................................... 40<br />

6.2 Heat distribution Q h,d – central hot water heating pipe system ..................................................... 43<br />

6.2.1 Auxiliary energy for central hot water heating pipe system .......................................................... 45<br />

6.3 Storage................................................................................................................................................. 50<br />

6.4 Heat generator..................................................................................................................................... 52<br />

6.4.1 Solar systems supporting domestic hot water heating and space heating systems<br />

(combination systems)....................................................................................................................... 53<br />

6.4.1.1 Satisfaction <strong>of</strong> energy need by solar combination systems.......................................................... 53<br />

6.4.1.2 <strong>Energy</strong> contribution <strong>of</strong> solar combination systems........................................................................ 54<br />

6.4.1.3 <strong>Calculation</strong> procedure for combination systems ............................................................................ 56<br />

6.4.1.4 <strong>Calculation</strong> procedure for large combination systems .................................................................. 60<br />

6.4.1.5 Auxiliary energy for operation <strong>of</strong> <strong>the</strong> solar pump ........................................................................... 60<br />

6.4.2 Heat pump ........................................................................................................................................... 61<br />

6.4.2.1 Principles <strong>of</strong> <strong>the</strong> calculation .............................................................................................................. 62<br />

2


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

6.4.2.2 Outdoor air as heat source; average climatic data for Germany ...................................................65<br />

6.4.2.3 <strong>Energy</strong> need for domestic hot water ................................................................................................69<br />

6.4.2.4 <strong>Calculation</strong> <strong>of</strong> <strong>the</strong> fraction <strong>of</strong> heating energy to be provided by <strong>the</strong> second generator<br />

(back-up heating).................................................................................................................................69<br />

6.4.2.5 Heat output and coefficient <strong>of</strong> performance <strong>of</strong> <strong>the</strong> heat pump at full load (steady-state<br />

operation) .............................................................................................................................................73<br />

6.4.2.6 Coefficient <strong>of</strong> performance in part load operation...........................................................................76<br />

6.4.2.7 Generator <strong>the</strong>rmal losses ...................................................................................................................78<br />

6.4.2.8 <strong>Calculation</strong> <strong>of</strong> total energy consumption..........................................................................................79<br />

6.4.2.9 Auxiliary energy...................................................................................................................................80<br />

6.4.2.10<strong>Energy</strong> consumption <strong>of</strong> <strong>the</strong> second generator (back-up heating system)....................................81<br />

6.4.2.11Total energy consumption .................................................................................................................82<br />

6.4.2.12Regenerative energy contribution.....................................................................................................82<br />

6.4.2.13Performance factor to account for <strong>the</strong> generator subsystem ........................................................82<br />

6.4.3 Conventional boilers ...........................................................................................................................83<br />

6.4.3.1 Multiple boiler systems.......................................................................................................................83<br />

6.4.3.2 Fuel-fired systems (boilers) ...............................................................................................................84<br />

6.4.3.3 Hand stocked biomass combustion systems ..................................................................................94<br />

6.4.3.4 Decentralized fuel-fired systems .......................................................................................................99<br />

6.4.4 Electric heaters..................................................................................................................................101<br />

6.4.4.1 Decentralized electric heaters..........................................................................................................101<br />

6.4.4.2 Central electric heaters.....................................................................................................................101<br />

6.4.5 District heating and local heating....................................................................................................101<br />

6.4.6 Decentralized CHP.............................................................................................................................102<br />

Annex A (normative) <strong>Energy</strong> use to meet <strong>the</strong> heating need.......................................................................103<br />

A.1 Electrically driven heat pumps ........................................................................................................103<br />

A.2 Heat pumps with combustion drive.................................................................................................104<br />

A.3 Default values for heat pump calculations .....................................................................................105<br />

A.3.1 Default power values and coefficients <strong>of</strong> performance for electrically driven heat pumps......105<br />

A.4 Default power values and coefficients <strong>of</strong> performance for combustion engine-driven heat<br />

pumps.................................................................................................................................................106<br />

A.4.1 Air-to-water heat pumps ...................................................................................................................106<br />

A.4.2 Combustion engine-driven air-to-water heat pumps.....................................................................107<br />

A.4.3 Air-to-air heat pumps ........................................................................................................................107<br />

A.4.4 Absorption heat pumps ....................................................................................................................108<br />

A.5 Correction factor for part load operation........................................................................................110<br />

A.5.1 Electrically driven heat pumps ........................................................................................................110<br />

A.5.2 Absorption heat pumps with modulation burner...........................................................................111<br />

A.6 <strong>Calculation</strong> procedure for source and sink temperature corrections with a set exergetic<br />

<strong>efficiency</strong> ............................................................................................................................................111<br />

A.7 VRF systems: relative heat output performance ...........................................................................113<br />

Annex B (informative) Dimensioning <strong>of</strong> <strong>buildings</strong> ......................................................................................116<br />

B.1 General information ..........................................................................................................................116<br />

Bibliography....................................................................................................................................................119<br />

3


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

Figures<br />

Figure 1 <strong>—</strong> Overview <strong>of</strong> <strong>the</strong> parts <strong>of</strong> <strong>DIN</strong> V <strong>18599</strong> .............................................................................................. 9<br />

Figure 2 <strong>—</strong> Content and scope <strong>of</strong> <strong>DIN</strong> V <strong>18599</strong>-5 (schematic diagram) ........................................................... 11<br />

Figure 3 <strong>—</strong> Subscript system............................................................................................................................. 20<br />

Figure 4 <strong>—</strong> Designation <strong>of</strong> pipes in hot water heating pipe systems................................................................. 44<br />

Figure 5 <strong>—</strong> Distribution <strong>of</strong> cumulated bin hours for <strong>the</strong> outdoor air temperature .............................................. 63<br />

Figure 6 <strong>—</strong> Bin hours and energy fractions <strong>of</strong> <strong>the</strong> heat pump and <strong>the</strong> second generator (back-up<br />

heating) in alternate operation.................................................................................................................... 70<br />

Figure 7 <strong>—</strong> Bin hours and energy fractions <strong>of</strong> <strong>the</strong> heat pump and <strong>the</strong> second generator (back-up<br />

heating) in parallel operation ...................................................................................................................... 71<br />

Figure 8 <strong>—</strong> Bin hours and energy fractions <strong>of</strong> <strong>the</strong> heat pump and <strong>the</strong> second generator (back-up<br />

heating) in partly parallel operation ............................................................................................................ 72<br />

Figure A.1 <strong>—</strong> <strong>Energy</strong> balance <strong>of</strong> <strong>the</strong> generator subsystem (electrically driven heat pump) ........................... 103<br />

Figure A.2 <strong>—</strong> <strong>Energy</strong> balance <strong>of</strong> <strong>the</strong> generator subsystem (heat pump with combustion drive) .................... 104<br />

Figure A.3 <strong>—</strong> Heat output <strong>of</strong> combustion engine-driven air-to-water heat pumps at various source and<br />

sink temperatures ..................................................................................................................................... 106<br />

Figure A.4 <strong>—</strong> Standard coefficients <strong>of</strong> performance for combustion engine-driven air-to-water heat<br />

pumps at various source and sink temperatures...................................................................................... 107<br />

Figure A.5 <strong>—</strong> Heat output <strong>of</strong> combustion engine-driven air-to-air heat pumps ............................................... 107<br />

Figure A.6 <strong>—</strong> Standard coefficient <strong>of</strong> performance <strong>of</strong> combustion engine-driven air-to-air heat pumps ........ 108<br />

Figure A.7 <strong>—</strong> Heat output <strong>of</strong> water-to-water NH 3 /H 2 O absorption heat pumps at various source and sink<br />

temperatures............................................................................................................................................. 108<br />

Figure A.8 <strong>—</strong> Heat output <strong>of</strong> water-to-water H 2 O/LiBr absorption heat pumps at various source and sink<br />

temperatures............................................................................................................................................. 109<br />

Figure A.9 <strong>—</strong> VRF systems: COP heating for load ratios between 10 % and 100 %...................................... 114<br />

Figure A.10 <strong>—</strong> VRF systems: relative heat output performance ..................................................................... 114<br />

Figure A.11 <strong>—</strong> VRF systems: relative COP heating for load ratios between 10 % and 100 % ....................... 115<br />

Figure B.1 <strong>—</strong> Building geometry...................................................................................................................... 116<br />

Tables<br />

Table 1 <strong>—</strong> Symbols and units............................................................................................................................ 17<br />

Table 2 <strong>—</strong> Subscripts......................................................................................................................................... 19<br />

Table 3 <strong>—</strong> Input parameters .............................................................................................................................. 21<br />

Table 4 <strong>—</strong> Output parameters ........................................................................................................................... 23<br />

Table 5 <strong>—</strong> Design temperatures........................................................................................................................ 28<br />

Table 6 <strong>—</strong> Efficiencies for free emitters (radiators); room heights ≤ 4 m .......................................................... 34<br />

Table 7 <strong>—</strong> Efficiencies for water based embedded systems (surface heating); room heights ≤ 4 m................ 35<br />

Table 8 <strong>—</strong> Efficiencies for electric heating; (room heights ≤ 4 m) ..................................................................... 36<br />

Table 9 <strong>—</strong> Efficiencies for air heating (HVAC systems); (room heights ≤ 4 m)................................................. 37<br />

4


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

Table 10 <strong>—</strong> Efficiencies for rooms with heights from 4 m to 10 m.....................................................................38<br />

Table 11 <strong>—</strong> Efficiencies for rooms with heights > 10 m .....................................................................................39<br />

Table 12 <strong>—</strong> Default values for auxiliary energy for <strong>the</strong> control system..............................................................41<br />

Table 13 <strong>—</strong> Default values for <strong>the</strong> auxiliary energy <strong>of</strong> fans for air supply in rooms where h ≤ 4 m ...................41<br />

Table 14 <strong>—</strong> Default values for <strong>the</strong> auxiliary energy <strong>of</strong> fans and for <strong>the</strong> control system in rooms h > 4 m<br />

in height (large indoor spaces)....................................................................................................................42<br />

Table 15 <strong>—</strong> Default values .................................................................................................................................44<br />

Table 16 <strong>—</strong> Assumptions for heat transfer coefficients U i in W/(m · K) .............................................................45<br />

Table 17 <strong>—</strong> Constants C P1 ,C P2 for calculation <strong>of</strong> <strong>the</strong> expenditure factor <strong>of</strong> heat pumps ..................................49<br />

Table 18 <strong>—</strong> Distribution <strong>of</strong> annual solar contribution over months.....................................................................56<br />

Table 19 <strong>—</strong> Correction factor for inclination and alignment ...............................................................................57<br />

Table 20 <strong>—</strong> Correction factor for <strong>the</strong> solar load ratio (f slr )..................................................................................58<br />

Table 21 <strong>—</strong> Correction factor for <strong>the</strong> heat loss rate <strong>of</strong> <strong>the</strong> storage tank or tanks (f s,loss )...................................58<br />

Table 22 <strong>—</strong> Correction factor for <strong>the</strong> temperature level <strong>of</strong> <strong>the</strong> space heating f h,T .............................................59<br />

Table 23 <strong>—</strong> <strong>Energy</strong> fraction from <strong>the</strong> combination system for domestic water heating.....................................60<br />

Table 24 <strong>—</strong> Hours frequency <strong>of</strong> outdoor temperature (reference location: Würzburg)......................................66<br />

Table 25 <strong>—</strong> Monthly hours sum in <strong>the</strong> individual bins, distributed according to <strong>the</strong> testing points from<br />

<strong>DIN</strong> EN 14511 (all parts) .............................................................................................................................69<br />

Table 26 <strong>—</strong> Mean source temperature for ground and groundwater as a function <strong>of</strong> <strong>the</strong> average outdoor<br />

temperature .................................................................................................................................................74<br />

Table 27 <strong>—</strong> Mean source temperature for ground and groundwater as a function <strong>of</strong> <strong>the</strong> average monthly<br />

outdoor temperature....................................................................................................................................74<br />

Table 28 <strong>—</strong> Correction factors f ∆ϑ to account for deviations in temperature differences in heat pump<br />

measurement and operation .......................................................................................................................75<br />

Table 29 <strong>—</strong> Boiler temperatures ........................................................................................................................87<br />

Table 30 <strong>—</strong> Temperature correction factors.......................................................................................................87<br />

Table 31 <strong>—</strong> Efficiency factors.............................................................................................................................90<br />

Table 32 <strong>—</strong> Radiation loss factors .....................................................................................................................91<br />

Table 33 <strong>—</strong> Stand-by heat factors......................................................................................................................92<br />

Table 34 <strong>—</strong> Auxiliary energy factors ..................................................................................................................93<br />

Table 35 <strong>—</strong> Default values .................................................................................................................................99<br />

Table 36 <strong>—</strong> Efficiency factor.............................................................................................................................100<br />

Table 37 <strong>—</strong> D DS as a function <strong>of</strong> <strong>the</strong> primary temperature and type <strong>of</strong> dwelling substation............................102<br />

Table 38 <strong>—</strong> Coefficient B DS as a function <strong>of</strong> <strong>the</strong> class <strong>of</strong> insulation and <strong>the</strong> type <strong>of</strong> dwelling substation ........102<br />

Table A.1 <strong>—</strong> Air-to-water heat pumps with a supply temperature <strong>of</strong> 35 °C .....................................................105<br />

Table A.2 <strong>—</strong> Air-to-water heat pumps with a supply temperature <strong>of</strong> 50 °C .....................................................105<br />

Table A.3 <strong>—</strong> Brine-water heat pumps with supply temperatures <strong>of</strong> 35°C and 50 °C.......................................105<br />

Table A.4 <strong>—</strong> Water-water heat pumps with supply temperatures <strong>of</strong> 35°C and 50 °C .....................................106<br />

Table A.5 <strong>—</strong> Correction factor for part load operation <strong>of</strong> electrically driven heat pumps with radiators ..........110<br />

5


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

Table A.6 <strong>—</strong> Correction factor for part load operation <strong>of</strong> electrically driven heat pumps with surface<br />

heating systems........................................................................................................................................ 110<br />

Table A.7 <strong>—</strong> Correction factor for part load operation <strong>of</strong> absorption heat pumps........................................... 111<br />

Table A.8 <strong>—</strong> Relative heat output performance .............................................................................................. 113<br />

6


Foreword<br />

<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

This prestandard has been prepared by <strong>DIN</strong> Joint Committee NA 005-56-20 GA Energetische Bewertung von<br />

Gebäuden <strong>of</strong> <strong>the</strong> Normenausschuss Bauwesen (Building and Civil Engineering Standards Committee), which<br />

also lead-managed <strong>the</strong> work, and Normenausschuss Heiz- und Raumlufttechnik (Heating and Ventilation<br />

Standards Committee) with <strong>the</strong> co-operation <strong>of</strong> <strong>the</strong> Normenausschuss Lichttechnik (Lighting Technology<br />

Standards Committee).<br />

A prestandard is a standard which cannot be given full status, ei<strong>the</strong>r because certain reservations still exist as<br />

to its content, or because <strong>the</strong> manner <strong>of</strong> its preparation deviates in some way from <strong>the</strong> normal procedure.<br />

No draft <strong>of</strong> <strong>the</strong> present prestandard has been published.<br />

Comments on experience with this prestandard should be sent:<br />

⎯ preferably by e-mail containing a table <strong>of</strong> <strong>the</strong> data, to nabau@din.de. A template for this table is provided<br />

on <strong>the</strong> Internet under <strong>the</strong> URL http://www.din.de/stellungnahme;<br />

⎯ or as hard-copy to Normenausschuss Bauwesen (NABau) im <strong>DIN</strong> Deutsches Institut für Normung e. V.,<br />

10772 Berlin, Germany (<strong>of</strong>fice address: Burggrafenstrasse 6, 10787 Berlin, Germany).<br />

The <strong>DIN</strong> V <strong>18599</strong> series <strong>of</strong> prestandards <strong>Energy</strong> <strong>efficiency</strong> <strong>of</strong> <strong>buildings</strong> <strong>—</strong> <strong>Calculation</strong> <strong>of</strong> <strong>the</strong> energy needs,<br />

delivered energy and primary energy for heating, cooling, ventilation, domestic hot water and lighting consists<br />

<strong>of</strong> <strong>the</strong> following parts:<br />

⎯ Part 1: General balancing procedures, terms and definitions, zoning and evaluation <strong>of</strong> energy carriers<br />

⎯ Part 2: <strong>Energy</strong> needs for heating and cooling <strong>of</strong> building zones<br />

⎯ Part 3: <strong>Energy</strong> need for air conditioning<br />

⎯ Part 4: <strong>Energy</strong> need and delivered energy for lighting<br />

⎯ Part 5: Delivered energy for heating systems<br />

⎯ Part 6: Delivered energy for ventilation systems and air heating systems for residential <strong>buildings</strong><br />

⎯ Part 7: Delivered energy for air handling and air conditioning systems for non-residential <strong>buildings</strong><br />

⎯ Part 8: <strong>Energy</strong> need and delivered energy for domestic hot water systems<br />

⎯ Part 9: Delivered and primary energy for combined heat and power plants<br />

⎯ Part 10: Boundary conditions <strong>of</strong> use, climatic data<br />

The <strong>DIN</strong> V <strong>18599</strong> series <strong>of</strong> prestandards provides a methodology for assessing <strong>the</strong> overall energy <strong>efficiency</strong> <strong>of</strong><br />

<strong>buildings</strong>. The calculations enable all energy quantities required for <strong>the</strong> purpose <strong>of</strong> heating, domestic hot water<br />

heating, ventilation, air conditioning and lighting <strong>of</strong> <strong>buildings</strong> to be assessed.<br />

In <strong>the</strong> described procedures, <strong>the</strong> <strong>DIN</strong> V <strong>18599</strong> series <strong>of</strong> prestandards also takes into account <strong>the</strong> interactive<br />

effects <strong>of</strong> energy flows and points out <strong>the</strong> related consequences for planning work. In addition to <strong>the</strong><br />

calculation procedures, <strong>the</strong> use- and operation-related boundary conditions for an unbiased assessment (i.e.<br />

7


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

independent <strong>of</strong> <strong>the</strong> behaviour <strong>of</strong> individual users and <strong>of</strong> <strong>the</strong> local climatic data) to determine <strong>the</strong> energy needs<br />

are specified.<br />

The <strong>DIN</strong> V <strong>18599</strong> series <strong>of</strong> prestandards is suitable for determining <strong>the</strong> long-term energy needs <strong>of</strong> <strong>buildings</strong> or<br />

parts <strong>of</strong> <strong>buildings</strong> as well as for assessing <strong>the</strong> possible use <strong>of</strong> renewable sources <strong>of</strong> energy in <strong>buildings</strong>. The<br />

procedure is designed both for <strong>buildings</strong> yet to be constructed and for existing <strong>buildings</strong>, and for retr<strong>of</strong>it<br />

measures for existing <strong>buildings</strong>.<br />

Amendments<br />

This prestandard differs from <strong>DIN</strong> V <strong>18599</strong>-5:2005-07 in that it has been revised in form and content.<br />

Previous edition<br />

<strong>DIN</strong> V <strong>18599</strong>-5: 2005-07<br />

8


Introduction<br />

<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

When an energy balance is calculated in accordance with <strong>the</strong> <strong>DIN</strong> V <strong>18599</strong> series <strong>of</strong> prestandards, an<br />

integrative approach is taken, i.e. <strong>the</strong> building, <strong>the</strong> use <strong>of</strong> <strong>the</strong> building and <strong>the</strong> building’s technical installations<br />

and equipment are assessed toge<strong>the</strong>r, taking <strong>the</strong> interaction <strong>of</strong> <strong>the</strong>se factors into consideration. In order to<br />

provide a clearer structure, <strong>the</strong> <strong>DIN</strong> V <strong>18599</strong> series <strong>of</strong> prestandards is divided into several parts, each having<br />

a particular focus. Figure 1 provides an overview <strong>of</strong> <strong>the</strong> topics dealt with in <strong>the</strong> individual parts <strong>of</strong> <strong>the</strong> series.<br />

Figure 1 <strong>—</strong> Overview <strong>of</strong> <strong>the</strong> parts <strong>of</strong> <strong>DIN</strong> V <strong>18599</strong><br />

9


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

1 Scope<br />

The <strong>DIN</strong> V <strong>18599</strong> series <strong>of</strong> prestandards provides a methodology for calculating <strong>the</strong> overall energy balance <strong>of</strong><br />

<strong>buildings</strong>. The described algorithm is applicable to <strong>the</strong> calculation <strong>of</strong> energy balances for:<br />

⎯ residential <strong>buildings</strong> and non-residential <strong>buildings</strong>;<br />

⎯ planned or new building construction and existing <strong>buildings</strong>.<br />

The procedure for calculating <strong>the</strong> balances is suitable for:<br />

⎯ balancing <strong>the</strong> energy use <strong>of</strong> <strong>buildings</strong> with partially pre-determined boundary conditions;<br />

⎯ balancing <strong>the</strong> energy use <strong>of</strong> <strong>buildings</strong> with freely-selectable boundary conditions from <strong>the</strong> general<br />

engineering aspect, e.g. with <strong>the</strong> objective <strong>of</strong> achieving a good comparison between calculated and<br />

measured energy ratings.<br />

The balance calculations take into account <strong>the</strong> energy use for:<br />

⎯ heating,<br />

⎯ ventilation,<br />

⎯ air conditioning (including cooling and humidification),<br />

⎯ heating <strong>the</strong> domestic hot water supply, and<br />

⎯ lighting<br />

<strong>of</strong> <strong>buildings</strong>, including <strong>the</strong> additional electric power input (auxiliary energy) which is directly related to <strong>the</strong><br />

energy supply.<br />

This document determines <strong>the</strong> energy use <strong>of</strong> <strong>the</strong> heating system for <strong>the</strong> building according to its different<br />

subsystems. It is also possible to use <strong>the</strong> results from some subsystems for calculating <strong>the</strong> delivery <strong>of</strong> heat to<br />

<strong>the</strong> sectors covered by <strong>DIN</strong> V <strong>18599</strong>-6, <strong>DIN</strong> V <strong>18599</strong>-8 and vice-versa.<br />

It is also possible to calculate <strong>the</strong> energy balances <strong>of</strong> several building zones in which <strong>the</strong>re are several units to<br />

be balanced.<br />

This document describes <strong>the</strong> energy use <strong>of</strong> heating systems with <strong>the</strong>ir subsystems (control and emission,<br />

distribution, storage and generation). For this purpose, both <strong>the</strong> <strong>the</strong>rmal losses and <strong>the</strong> auxiliary energy <strong>of</strong> <strong>the</strong><br />

individual subsystems are determined and, provided <strong>the</strong>se occur within <strong>the</strong> heated zone, are made available<br />

for <strong>the</strong> ensuing calculations described in <strong>DIN</strong> V <strong>18599</strong>-1 and <strong>DIN</strong> V <strong>18599</strong>-2. Information is given on <strong>the</strong><br />

possible influence <strong>of</strong> domestic hot water generation according to <strong>DIN</strong> V <strong>18599</strong>-8. Recourse to <strong>the</strong> heating<br />

system by o<strong>the</strong>r systems (e.g. ventilation <strong>of</strong> residential <strong>buildings</strong> as in <strong>DIN</strong> V <strong>18599</strong>-6, or ventilation and air<br />

conditioning systems in non-residential <strong>buildings</strong> as in <strong>DIN</strong> V <strong>18599</strong>-7), that can make demands on certain<br />

subsystems, can accordingly be taken into account and analysed, with <strong>DIN</strong> V <strong>18599</strong>-1 acting as <strong>the</strong> link<br />

between <strong>the</strong> Parts.<br />

It is assumed that heating systems are operated as intended and in keeping with accepted best practices.<br />

Special guidance (e.g. with regard to <strong>the</strong> hydraulic balance <strong>of</strong> <strong>the</strong> hot water heating system) is given in<br />

VDMA 24199.<br />

10


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

The required energy use can be calculated using ei<strong>the</strong>r <strong>the</strong> methods described in clause 6, or by o<strong>the</strong>r<br />

calculation methods (e.g. <strong>DIN</strong> V 4701-10, <strong>DIN</strong> V 4701-12 and PAS 1027), provided <strong>the</strong>se alternative methods<br />

deliver equivalent results under comparable boundary conditions (see <strong>DIN</strong> V <strong>18599</strong>-10). The assumptions and<br />

boundary conditions on which <strong>the</strong>se calculations are based shall be recorded systematically and shall apply to<br />

<strong>the</strong> annual heating need Q h,b .<br />

The energy need values calculated using this procedure cannot be used to size individual components.<br />

Systems not covered by this document shall be assessed by analogy with this document while taking account<br />

<strong>of</strong> <strong>the</strong> physics specific to <strong>the</strong> individual systems.<br />

Figure 2 shows <strong>the</strong> scope <strong>of</strong> <strong>the</strong> present document as a diagram. For <strong>the</strong> reader’s orientation, all o<strong>the</strong>r parts<br />

<strong>of</strong> <strong>the</strong> <strong>DIN</strong> <strong>18599</strong> series <strong>of</strong> prestandards contain an illustration similar to Figure 2 as shown here, and in which<br />

<strong>the</strong> respective energy components dealt with are shown in colour.<br />

2 Normative references<br />

Figure 2 <strong>—</strong> Content and scope <strong>of</strong> <strong>DIN</strong> V <strong>18599</strong>-5 (schematic diagram)<br />

The following referenced documents are indispensable for <strong>the</strong> application <strong>of</strong> this document. For dated<br />

references, only <strong>the</strong> edition cited applies. For undated references, <strong>the</strong> latest edition <strong>of</strong> <strong>the</strong> referenced<br />

document (including any amendments) applies.<br />

<strong>DIN</strong> V 4701-10, <strong>Energy</strong> <strong>efficiency</strong> <strong>of</strong> heating and ventilation systems in <strong>buildings</strong> <strong>—</strong> Part 10: Heating, domestic<br />

hot water supply, ventilation<br />

<strong>DIN</strong> V 4701-12, Energetic evaluation <strong>of</strong> heating and ventilation systems in existing <strong>buildings</strong> <strong>—</strong> Part 12: Heat<br />

generation and domestic hot water generation<br />

<strong>DIN</strong> V 4753-8, Water heaters and water heating installations for drinking water and for service water <strong>—</strong> Part 8:<br />

Thermal insulation for water heaters with nominal capacity up to 1 000 l <strong>—</strong> Requirements and testing<br />

11


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

<strong>DIN</strong> V <strong>18599</strong>-1, <strong>Energy</strong> <strong>efficiency</strong> <strong>of</strong> <strong>buildings</strong> <strong>—</strong> <strong>Calculation</strong> <strong>of</strong> <strong>the</strong> energy needs, delivered energy and<br />

primary energy for heating, cooling, ventilation, domestic hot water and lighting <strong>—</strong> Part 1: General balancing<br />

procedures, terms and definitions, zoning and evaluation <strong>of</strong> energy carriers<br />

<strong>DIN</strong> V <strong>18599</strong>-2, <strong>Energy</strong> <strong>efficiency</strong> <strong>of</strong> <strong>buildings</strong> <strong>—</strong> <strong>Calculation</strong> <strong>of</strong> <strong>the</strong> energy needs, delivered energy and<br />

primary energy use for heating, cooling, ventilation, domestic hot water and lighting <strong>—</strong> Part 2: <strong>Energy</strong> need for<br />

heating and cooling <strong>of</strong> building zones<br />

<strong>DIN</strong> V <strong>18599</strong>-3, <strong>Energy</strong> <strong>efficiency</strong> <strong>of</strong> <strong>buildings</strong> <strong>—</strong> <strong>Calculation</strong> <strong>of</strong> <strong>the</strong> energy needs, delivered energy and<br />

primary energy for heating, cooling, ventilation, domestic hot water and lighting <strong>—</strong> Part 3: <strong>Energy</strong> need for air<br />

conditioning<br />

<strong>DIN</strong> V <strong>18599</strong>-4, <strong>Energy</strong> <strong>efficiency</strong> <strong>of</strong> <strong>buildings</strong> <strong>—</strong> <strong>Calculation</strong> <strong>of</strong> <strong>the</strong> energy needs, delivered energy and<br />

primary energy for heating, cooling, ventilation, domestic hot water and lighting <strong>—</strong> Part 4: <strong>Energy</strong> need and<br />

delivered energy for lighting<br />

<strong>DIN</strong> V <strong>18599</strong>-6, <strong>Energy</strong> <strong>efficiency</strong> <strong>of</strong> <strong>buildings</strong> <strong>—</strong> <strong>Calculation</strong> <strong>of</strong> <strong>the</strong> energy needs, delivered energy and<br />

primary energy for heating, cooling, ventilation, domestic hot water and lighting <strong>—</strong> Part 6: Delivered energy for<br />

ventilation systems and air heating systems for residential <strong>buildings</strong><br />

<strong>DIN</strong> V <strong>18599</strong>-7, <strong>Energy</strong> <strong>efficiency</strong> <strong>of</strong> <strong>buildings</strong> <strong>—</strong> <strong>Calculation</strong> <strong>of</strong> <strong>the</strong> energy needs, delivered energy primary<br />

energy for heating, cooling, ventilation, domestic hot water and lighting <strong>—</strong> Part 7: Delivered energy for air<br />

handling and air conditioning systems for non-residential <strong>buildings</strong><br />

<strong>DIN</strong> V <strong>18599</strong>-8, <strong>Energy</strong> <strong>efficiency</strong> <strong>of</strong> <strong>buildings</strong> <strong>—</strong> <strong>Calculation</strong> <strong>of</strong> <strong>the</strong> energy needs, delivered energy and<br />

primary energy for heating, cooling, ventilation, domestic hot water and lighting <strong>—</strong> Part 8: <strong>Energy</strong> need and<br />

delivered energy for domestic hot water systems<br />

<strong>DIN</strong> V <strong>18599</strong>-9, <strong>Energy</strong> <strong>efficiency</strong> <strong>of</strong> <strong>buildings</strong> <strong>—</strong> <strong>Calculation</strong> <strong>of</strong> <strong>the</strong> energy needs, delivered energy and<br />

primary energy for heating, cooling, ventilation, domestic hot water and lighting <strong>—</strong> Part 9: Delivered and<br />

primary energy for combined heat and power plants<br />

<strong>DIN</strong> V <strong>18599</strong>-10, <strong>Energy</strong> <strong>efficiency</strong> <strong>of</strong> <strong>buildings</strong> <strong>—</strong> <strong>Calculation</strong> <strong>of</strong> <strong>the</strong> energy needs, delivered energy and<br />

primary energy for heating, cooling, ventilation, domestic hot water and lighting <strong>—</strong> Part 10: Boundary<br />

conditions <strong>of</strong> use, climatic data<br />

<strong>DIN</strong> 18892, Inserts for solid fuel to be built in ceramic stoves ("Kacheloefen/Putzoefen")<br />

<strong>DIN</strong> EN 297, Gas-fired central heating boilers <strong>—</strong> Type B boilers, fitted with atmospheric burners <strong>of</strong> nominal<br />

heat input not exceeding 70 kW<br />

<strong>DIN</strong> EN 303-5, Heating boilers <strong>—</strong> Part 5: Heating boilers for solid fuels, hand and automatically stocked,<br />

nominal heat output <strong>of</strong> up to 300 kW <strong>—</strong> Terminology, requirements, testing and marking<br />

<strong>DIN</strong> EN 304, Heating boilers <strong>—</strong> Test code for heating boilers for atomizing oil burners<br />

<strong>DIN</strong> EN 308, Heat exchangers <strong>—</strong> Test procedures for establishing performance <strong>of</strong> air-to-air and flue gases<br />

heat recovery devices<br />

<strong>DIN</strong> EN 656, Gas-fired hot water boilers <strong>—</strong> Type B boilers <strong>of</strong> nominal heat input exceeding 70 kW but not<br />

exceeding 300 kW<br />

<strong>DIN</strong> EN 1264, Floor heating <strong>—</strong> Systems and components (all parts)<br />

<strong>DIN</strong> EN 12828, Heating systems in <strong>buildings</strong> <strong>—</strong> Design <strong>of</strong> water-based heating systems<br />

<strong>DIN</strong> EN 12975-1, Thermal solar systems and components <strong>—</strong> Solar collectors <strong>—</strong> Part 1: General requirements<br />

12


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

<strong>DIN</strong> EN 12975-2, Thermal solar systems and components <strong>—</strong> Solar collectors <strong>—</strong> Part 2: Test methods<br />

<strong>DIN</strong> EN 13229, Inset appliances including open fires fired by solid fuels <strong>—</strong> Requirements and test methods<br />

<strong>DIN</strong> EN 13240, Roomheaters fired by solid fuel <strong>—</strong> Requirements and test methods<br />

<strong>DIN</strong> EN 13410, Gas-fired overhead radiant heaters <strong>—</strong> Ventilation requirements for non-domestic premises<br />

<strong>DIN</strong> EN 14511, Air conditioners, liquid chilling packages and heat pumps with electrically driven compressors<br />

for space heating and cooling (all parts)<br />

<strong>DIN</strong> CEN/TS 14825, Air conditioners, liquid chilling packages and heat pumps with electrically driven<br />

compressors for space heating and cooling <strong>—</strong> Testing and rating at part load conditions<br />

<strong>DIN</strong> EN ISO 12241, Thermal insulation for building equipment and industrial installations <strong>—</strong> <strong>Calculation</strong> rules<br />

<strong>DIN</strong> V ENV 12977-3, Thermal solar systems and components <strong>—</strong> Custom built systems <strong>—</strong> Part 3:<br />

Performance characterization <strong>of</strong> stores for solar heating systems<br />

Council Directive 92/42/EEC <strong>of</strong> 21 May 1992 on <strong>efficiency</strong> requirements for new hot water boilers fired with<br />

liquid or gaseous fuels<br />

Energieeinsparverordnung (EnEV) (German <strong>Energy</strong> Saving Ordinance) 2002/2004<br />

VDMA 24199, Regelungstechnische Anforderungen an die Hydraulik bei Planung und Ausführung von<br />

Heizungs-, Kälte-, Trinkwarmwasser- und Raumlufttechnischen Anlagen (Hydraulic system control<br />

requirements in <strong>the</strong> planning and execution <strong>of</strong> heating, cooling, domestic hot water and ventilation systems)<br />

3 Terms and definitions, symbols and units<br />

3.1 Terms and definitions<br />

For <strong>the</strong> purposes <strong>of</strong> this document, <strong>the</strong> terms and definitions given in <strong>the</strong> o<strong>the</strong>r parts <strong>of</strong> <strong>the</strong> <strong>DIN</strong> V <strong>18599</strong><br />

series <strong>of</strong> prestandards and <strong>the</strong> following apply.<br />

3.1.1<br />

expenditure factor<br />

ratio <strong>of</strong> expenditure to desired use (need) in an energy system<br />

3.1.2<br />

operating range<br />

range indicated by <strong>the</strong> manufacturer, located within <strong>the</strong> upper and lower limits (e.g. in respect <strong>of</strong> temperature,<br />

air humidity, voltage) within which <strong>the</strong> unit is deemed to be fit for use and has <strong>the</strong> product data stated by <strong>the</strong><br />

manufacturer<br />

3.1.3<br />

operating time<br />

heating time and running time in set-back/cut-out or switch-<strong>of</strong>f mode<br />

3.1.4<br />

reference area<br />

usable area within <strong>the</strong> conditioned volume <strong>of</strong> <strong>the</strong> building<br />

NOTE The net floor area (A NGF ) is used as <strong>the</strong> reference area.<br />

13


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

3.1.5<br />

calculation period<br />

period for which <strong>the</strong> balance <strong>of</strong> relevant energy flows in a building is calculated<br />

NOTE The calculation period for calculating <strong>the</strong> delivered energy and primary energy is one year; periods <strong>of</strong> one<br />

month or one day can be used for calculating partial energy characteristics.<br />

3.1.6<br />

balance point temperature<br />

temperature at which <strong>the</strong> heat output <strong>of</strong> <strong>the</strong> heat pump and <strong>the</strong> energy need <strong>of</strong> <strong>the</strong> building are equal<br />

3.1.7<br />

decentralized heating system<br />

heating system in which heat is generated in a unit and is emitted into <strong>the</strong> same space, with water or air<br />

serving as <strong>the</strong> heat carrier<br />

3.1.8<br />

delivered energy use (“energy use” in this document)<br />

calculated quantity <strong>of</strong> energy delivered to <strong>the</strong> technical building installations (heating system) in order to<br />

ensure <strong>the</strong> specified room temperature throughout <strong>the</strong> entire year<br />

NOTE This energy includes <strong>the</strong> auxiliary energy required to operate <strong>the</strong> technical building installations. The delivered<br />

energy is transferred at <strong>the</strong> “interface” constituted by <strong>the</strong> external building envelope and thus represents <strong>the</strong> amount <strong>of</strong><br />

energy which <strong>the</strong> connected load requires in order to use <strong>the</strong> building for its intended purpose under standardized<br />

boundary conditions. Against this background, <strong>the</strong> energy use is expressed individually for each energy carrier.<br />

3.1.9<br />

generation<br />

subsystem which provides, and may also deliver, <strong>the</strong> quantity <strong>of</strong> heat required by <strong>the</strong> systems (e.g. extract air<br />

heat pump, see <strong>DIN</strong> V <strong>18599</strong>-6)<br />

3.1.10<br />

heat output<br />

Θ g<br />

heat delivered from <strong>the</strong> unit to <strong>the</strong> heat carrier per unit <strong>of</strong> time<br />

NOTE If heat is removed from <strong>the</strong> internal heat exchanger for defrosting purposes it is taken into account.<br />

3.1.11<br />

heating area<br />

area that encompasses those parts <strong>of</strong> <strong>the</strong> building that are supplied by <strong>the</strong> same heating system; it can extend<br />

over a number <strong>of</strong> zones, and at <strong>the</strong> same time one zone can include a number <strong>of</strong> heating areas<br />

3.1.12<br />

heating time<br />

running time <strong>of</strong> <strong>the</strong> heating system to ensure <strong>the</strong> temperatures specified for use<br />

3.1.13<br />

auxiliary energy<br />

energy (electric power), that is not used to directly satisfy <strong>the</strong> heating need (e.g. energy for <strong>the</strong> drive <strong>of</strong> system<br />

components, circulation pumps, controls, "Carter" heating in <strong>the</strong> case <strong>of</strong> heat pumps, etc.)<br />

3.1.14<br />

internal temperature, mean<br />

temperature felt in <strong>the</strong> interior <strong>of</strong> a building, given as <strong>the</strong> internal temperature for <strong>the</strong> space, averaged over<br />

space and time<br />

NOTE This parameter is specified as part <strong>of</strong> <strong>the</strong> planning process.<br />

14


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

3.1.15<br />

combined operation<br />

operation <strong>of</strong> a heat generator with double service (e.g. for space heating and domestic hot water)<br />

3.1.16<br />

conditioning<br />

generation <strong>of</strong> defined conditions in spaces by means <strong>of</strong> heating, cooling, ventilation, humidification, lighting<br />

and domestic hot water supply<br />

NOTE Conditioning aims to meet requirements relating to <strong>the</strong> room temperature, fresh air supply, light, humidity<br />

and/or domestic hot water.<br />

3.1.17<br />

conditioned space<br />

space and/or enclosure which is heated and/or cooled to a defined set-point temperature and/or humidified<br />

and/or illuminated and/or provided with ventilation and/or domestic hot water<br />

NOTE Zones are conditioned spaces having at least one mode <strong>of</strong> conditioning. Spaces which have no form <strong>of</strong><br />

conditioning are called “unconditioned spaces”.<br />

3.1.18<br />

load factor<br />

ratio between <strong>the</strong> running time <strong>of</strong> <strong>the</strong> compressor and <strong>the</strong> total time over which <strong>the</strong> generator is switched on<br />

(stand-by and operation)<br />

3.1.19<br />

coefficient <strong>of</strong> performance COP<br />

ratio <strong>of</strong> <strong>the</strong> heating capacity to <strong>the</strong> effective power input <strong>of</strong> a unit<br />

3.1.20<br />

energy need<br />

energy that is supplied by <strong>the</strong> heating system under standard conditions in order to meet <strong>the</strong> space heating<br />

need and, if necessary, <strong>the</strong> heating need for domestic hot water<br />

NOTE See <strong>DIN</strong> V <strong>18599</strong>-8.<br />

3.1.21<br />

heat output<br />

part <strong>of</strong> <strong>the</strong> quantity <strong>of</strong> heat that is transferred to <strong>the</strong> ensuing system<br />

3.1.22<br />

energy need for heating<br />

calculated heat energy required in order to maintain <strong>the</strong> specified <strong>the</strong>rmal room conditions within a building<br />

zone during <strong>the</strong> heating period<br />

NOTE See <strong>DIN</strong> V <strong>18599</strong>-1.<br />

3.1.23<br />

product data<br />

manufacturer-specific data on <strong>the</strong> basis <strong>of</strong><br />

⎯ a declaration <strong>of</strong> conformity to harmonized European specifications or corresponding European directives,<br />

or<br />

⎯ a declaration <strong>of</strong> conformity to generally recognized technical standards, or<br />

⎯ a building-inspectorate certificate <strong>of</strong> usability<br />

that is suitable for this calculation procedure<br />

15


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

3.1.24<br />

simultaneous operation<br />

simultaneous generation <strong>of</strong> heat energy for space heating and for domestic water heating<br />

3.1.25<br />

storage<br />

subsystem in which heat contained in a medium is stored<br />

NOTE In heating circuits this is <strong>the</strong> buffer storage tank (e.g. in heat pump systems).<br />

3.1.26<br />

default value<br />

data which can be used for <strong>the</strong> calculation if no suitable product data are available for <strong>the</strong> calculation<br />

procedure<br />

3.1.27<br />

part load operation<br />

operating status <strong>of</strong> <strong>the</strong> heat pump in which <strong>the</strong> actual load requirement lies below <strong>the</strong> actual load capacity <strong>of</strong><br />

<strong>the</strong> heat pump<br />

3.1.28<br />

control and emission<br />

subsystem in which energy is emitted (e.g. into <strong>the</strong> space), whilst maintaining <strong>the</strong> defined requirements<br />

(notably in respect <strong>of</strong> comfort) (see <strong>DIN</strong> V <strong>18599</strong>-10)<br />

3.1.29<br />

loss<br />

losses (heat emission) occurring in <strong>the</strong> subsystems between <strong>the</strong> energy need and <strong>the</strong> delivered energy, i.e.<br />

losses occurring due to control and emission, distribution, storage and generation. Where such losses occur<br />

within <strong>the</strong> conditioned spaces, <strong>the</strong>y count as heat sources<br />

3.1.30<br />

distribution<br />

subsystem in which <strong>the</strong> required quantity <strong>of</strong> energy is transported from <strong>the</strong> generator to <strong>the</strong> heat control and<br />

emission system<br />

3.1.31<br />

heat energy<br />

energy used directly to meet <strong>the</strong> energy need for heating (e.g. oil, gas, wood or electric power)<br />

3.1.32<br />

heat generator with double service<br />

heat generator which supplies energy to two different systems (e.g. <strong>the</strong> space heating system and <strong>the</strong><br />

domestic hot water system in combined operation)<br />

3.1.33<br />

heat carrier<br />

any medium (water, air, etc.) used for <strong>the</strong> transfer <strong>of</strong> heat without changing its state<br />

NOTE In addition to <strong>the</strong> water circulating in <strong>the</strong> heating circuits, such media also include:<br />

⎯ <strong>the</strong> cooled fluid circulating in an evaporator;<br />

⎯ <strong>the</strong> refrigerant circulating in a condenser;<br />

⎯ <strong>the</strong> heat recovery medium circulating in a heat recovery heat exchanger.<br />

16


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

3.1.34<br />

central heating system<br />

heating system in which <strong>the</strong> heat is generated in a unit and is transported via distribution piping to a number <strong>of</strong><br />

rooms in a building, with water serving as <strong>the</strong> heat carrier<br />

3.1.35<br />

zone<br />

basic unit <strong>of</strong> space for calculating energy balances<br />

NOTE 1 A zone is a cumulative term for a section <strong>of</strong> <strong>the</strong> floor area or certain part <strong>of</strong> a building having uniform boundary<br />

conditions <strong>of</strong> use and which does not exhibit any relevant differences in <strong>the</strong> mode <strong>of</strong> conditioning and o<strong>the</strong>r zone criteria.<br />

NOTE 2 <strong>DIN</strong> V <strong>18599</strong>-10 contains a compilation <strong>of</strong> boundary conditions <strong>of</strong> use.<br />

3.1.36<br />

cycle time<br />

time for one cycle <strong>of</strong> <strong>the</strong> generator, consisting <strong>of</strong> an ON period t ON , where <strong>the</strong> generator is running, and an<br />

OFF period t OFF , where <strong>the</strong> generator is in stand-by mode<br />

3.2 Symbols, units and subscripts<br />

Table 1 <strong>—</strong> Symbols and units<br />

Symbol Meaning Common unit<br />

Ac collector area m 2<br />

b factor –<br />

B width m<br />

Bezugsgröße reference quantity –<br />

c specific heat capacity kWh/(kg · K)<br />

C constant –<br />

COP coefficient <strong>of</strong> performance –<br />

d time d/a, d/mth<br />

e expenditure factor –<br />

f factor –<br />

FC load factor –<br />

h height m<br />

HDH heating degree hours Kh<br />

IAM incidence angle modifier –<br />

k coefficient –<br />

L length m<br />

n number –<br />

p pressure kPa<br />

P power, energy output W, kW<br />

PE power input, power consumption W, kW<br />

q loss –<br />

17


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

18<br />

Table 1 (continued)<br />

Symbol Meaning Common unit<br />

Q energy kWh/mth<br />

R heat loss rate –<br />

SPF seasonal performance factor –<br />

t time, period h/d, h/mth, h/y<br />

U heat transfer coefficient (<strong>the</strong>rmal transmittance) W/m · K<br />

UA heat loss rate W/K<br />

V volume m 3<br />

V & volume flow m 3 /h<br />

W auxiliary energy kWh/mth<br />

z daily running time h/d<br />

α time component –<br />

β part load level, (load factor) –<br />

η <strong>efficiency</strong>, conversion factor –<br />

Θ energy W, kW<br />

ϑ temperature °C<br />

ρ density kg/l


Table 2 <strong>—</strong> Subscripts<br />

<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

Subscript Meaning Subscript Meaning<br />

a year, over- mth monthly, in <strong>the</strong> respective month<br />

A connection, branching, design n nominal, rated, index, exponent<br />

Abgl balance N night-time set-back/switch-<strong>of</strong>f<br />

App unit NA inclination, night<br />

aux auxiliary energy outg generator heat output<br />

b need, use P pump<br />

B stand-by, shut down, components pl part load<br />

Betrieb operation PM pump management<br />

bin bin prim primary<br />

Bio biomass PS buffer storage tank<br />

bp balance point Q heat quantity<br />

bu back up heating rB design operating time<br />

C space temperature control rd recovered<br />

ce control and emission, over-heating reg regenerative<br />

combi<br />

combination <strong>of</strong> heating and domestic hot<br />

rl recoverable<br />

water<br />

d distribution rL design running time<br />

DS dwelling substation RL return, outlet<br />

e electric, <strong>efficiency</strong>, external, outdoor rv residential ventilation system<br />

ex exhaust air, extract air RV reverse flow inhibitor<br />

f delivered energy, factor s storage, emitted radiation, upper<br />

FBH underfloor heating S main supply pipe<br />

fl full load SB stand-by<br />

G building/zone Sch circuit<br />

ges total, overall sek secondary<br />

Grenz limit sin heating mode only<br />

GZ base cycle SL stub pipe, branching<br />

h heating slr solar load ratio (system utilization)<br />

H heating system sol solar<br />

HK heating circuit soll required value, set-point<br />

hours hours sys reference, system<br />

Hs/Hi gross calorific value/net calorific value T day<br />

hydr hydraulic Test test condition<br />

i interior, serial counter, lower, bin TH <strong>the</strong>rmostat valve<br />

I internal, indoor upper upper<br />

in consumption, input v loss<br />

int intermittent V vertical distribution<br />

intern internal VL supply<br />

Itc cut-out point w domestic hot water<br />

k cold water, boiler W heat<br />

K combination system WA weekend set-back/switch-<strong>of</strong>f<br />

km mean boiler (temperature) WE heat generator<br />

L air temperature pr<strong>of</strong>ile, running time WP heat pump<br />

loss loss WRG heat recovery<br />

lower lower z circulation circuit<br />

m average, mean 70 temperature boundary condition<br />

max maximum 100 % at rated load<br />

mot engine<br />

19


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

Subscript system<br />

Figure 3 shows <strong>the</strong> system <strong>of</strong> subscripts used for <strong>the</strong> characteristic values <strong>of</strong> <strong>the</strong> building’s technical<br />

installations and equipment. The various types <strong>of</strong> system, subsystem and energy are also listed.<br />

20<br />

Figure 3 <strong>—</strong> Subscript system<br />

4 Relationship between <strong>the</strong> parts <strong>of</strong> <strong>the</strong> <strong>DIN</strong> V <strong>18599</strong> series <strong>of</strong> prestandards<br />

The following two subclauses<br />

⎯ summarize <strong>the</strong> input parameters to be used in this document,<br />

⎯ provide an overview <strong>of</strong> how <strong>the</strong> part-balances calculated using <strong>the</strong> method explained here are applied in<br />

o<strong>the</strong>r parts <strong>of</strong> <strong>the</strong> <strong>DIN</strong> V <strong>18599</strong> series.<br />

For simplification, nei<strong>the</strong>r <strong>the</strong> parameters nor <strong>the</strong> reasons why <strong>the</strong> data are needed in o<strong>the</strong>r calculations are<br />

explained here.<br />

This document is intended to be used in <strong>the</strong> calculation <strong>of</strong> <strong>the</strong> <strong>the</strong>rmal losses and <strong>the</strong> auxiliary energy for<br />

⎯ <strong>the</strong> control and emission <strong>of</strong> heat to <strong>the</strong> space or to air as <strong>the</strong> heat carrier, or to an ensuing system such<br />

as in <strong>DIN</strong> V <strong>18599</strong>-7,<br />

⎯ distribution in <strong>the</strong> heating circuit, or to an ensuing system such as in <strong>DIN</strong> V <strong>18599</strong>-6 or <strong>DIN</strong> V <strong>18599</strong>-7,<br />

⎯ storage and<br />

⎯ heat generation<br />

<strong>of</strong> heating systems for <strong>the</strong> ensuing balancing procedures according to <strong>DIN</strong> V <strong>18599</strong>-1.


4.1 Input parameters from o<strong>the</strong>r parts <strong>of</strong> <strong>the</strong> <strong>DIN</strong> V <strong>18599</strong> series <strong>of</strong> prestandards<br />

Table 3 <strong>—</strong> Input parameters<br />

<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

Symbol Meaning Source<br />

B G Width <strong>of</strong> building, in m –<br />

h G Storey height, in m –<br />

f Hs/Hi<br />

Ratio <strong>of</strong> gross calorific value to net calorific value according to<br />

energy carrier<br />

L G Length <strong>of</strong> building, in m –<br />

n G Number <strong>of</strong> heated storeys –<br />

Qh, max<br />

& Maximum heat load, in kW<br />

see <strong>DIN</strong> V <strong>18599</strong>-1<br />

see <strong>DIN</strong> V <strong>18599</strong>-2,<br />

Annex B<br />

Q h,b <strong>Energy</strong> need (in <strong>the</strong> respective month), in kWh see <strong>DIN</strong> V <strong>18599</strong>-1<br />

Q rv,h,outg<br />

Q h*,b<br />

Generator heat output <strong>of</strong> residential ventilation unit (in <strong>the</strong><br />

respective month), in kWh<br />

Generator heat output <strong>of</strong> air handling unit<br />

(in <strong>the</strong> respective month), in kWh<br />

see <strong>DIN</strong> V <strong>18599</strong>-6<br />

see <strong>DIN</strong> V <strong>18599</strong>-7<br />

Q c,f Delivered energy for chiller (in <strong>the</strong> respective month), in kWh see <strong>DIN</strong> V <strong>18599</strong>-7<br />

Q w,outg<br />

Generator heat output to domestic hot water system (in <strong>the</strong><br />

respective month), in kWh<br />

see <strong>DIN</strong> V <strong>18599</strong>-1<br />

t w,100% Daily running time <strong>of</strong> boiler for domestic hot water heating, in h see <strong>DIN</strong> V <strong>18599</strong>-8<br />

t c,op Daily operating time <strong>of</strong> space cooling system, in h see <strong>DIN</strong> V <strong>18599</strong>-10<br />

t h Heating hours (in <strong>the</strong> respective month), in h see <strong>DIN</strong> V <strong>18599</strong>-2<br />

t h,op Daily duration <strong>of</strong> heating operation, in h see <strong>DIN</strong> V <strong>18599</strong>-10<br />

t h*,op Daily operating time <strong>of</strong> HVAC heating coil, in h see <strong>DIN</strong> V <strong>18599</strong>-10<br />

d mth Number <strong>of</strong> days per month, in d/mth see <strong>DIN</strong> V <strong>18599</strong>-10<br />

t Nutz,d Daily usage period, in h see <strong>DIN</strong> V <strong>18599</strong>-10<br />

d Nutz,a Number <strong>of</strong> usage days per annum see <strong>DIN</strong> V <strong>18599</strong>-10<br />

ϑ e Monthly average outdoor temperature, in °C see <strong>DIN</strong> V <strong>18599</strong>-10<br />

ϑ e,min<br />

Daily average outdoor temperature on a design reference day<br />

for heating, in °C<br />

see <strong>DIN</strong> V <strong>18599</strong>-10<br />

ϑ i a Ambient temperature, in °C see <strong>DIN</strong> V <strong>18599</strong>-2<br />

21


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

22<br />

Table 3 (continued)<br />

Symbol Meaning Source<br />

ϑ i,h,soll Internal set-point temperature for heating, in °C see <strong>DIN</strong> V <strong>18599</strong>-10<br />

ϑ h*<br />

ϑ r,Nutz<br />

Mean heating medium temperature for heating coil during <strong>the</strong><br />

usage time, in °C<br />

Mean heating medium temperature for absorption chiller during<br />

<strong>the</strong> usage time, in °C<br />

see <strong>DIN</strong> V <strong>18599</strong>-7<br />

see <strong>DIN</strong> V <strong>18599</strong>-7<br />

a <strong>—</strong> ϑ i,h , is to be used for system components in a heated zone, taking into account reduced heating operation (without taking into<br />

account weekends and holidays).<br />

<strong>—</strong> ϑ i,c is to be used for system components in a cooled zone (<strong>the</strong> user shall decide whe<strong>the</strong>r a cooled zone exists).<br />

<strong>—</strong> ϑ u is to be used for system components in an unheated and uncooled zone.<br />

<strong>—</strong> If a zone is heated and cooled in <strong>the</strong> same month, it shall be determined which occurred more <strong>of</strong>ten and <strong>the</strong> appropriate<br />

temperature used.<br />

NOTE Examples <strong>of</strong> <strong>the</strong> dimensioning <strong>of</strong> <strong>buildings</strong> are to be found in Annex B.<br />

Daily operation shall be considered <strong>the</strong> normal case and is to be taken into account by <strong>the</strong> heating time<br />

(operating hours/duration) t h,op . <strong>Calculation</strong>s are to be based on <strong>the</strong> assumption that <strong>the</strong>re is always only one<br />

connected load. Where <strong>the</strong>re are a number <strong>of</strong> different loads a differentiation shall be made between <strong>the</strong><br />

individual requirements for each case.<br />

The illustrations in Annex B may be helpful when determining L G and B G .<br />

Heating is only necessary if <strong>the</strong> monthly energy need Q h,b,i is greater than 1 kWh.<br />

4.2 Output parameters for o<strong>the</strong>r parts <strong>of</strong> <strong>the</strong> <strong>DIN</strong> V <strong>18599</strong> series <strong>of</strong> prestandards<br />

Values are calculated for <strong>the</strong> zones specified in <strong>DIN</strong> V <strong>18599</strong>-1.<br />

If components are used in more than one subsystem, values are to be added toge<strong>the</strong>r for use in <strong>the</strong> ensuing<br />

calculations, taking into account <strong>the</strong> fact that <strong>the</strong> <strong>the</strong>rmal data relate to <strong>the</strong> gross calorific value unless <strong>the</strong><br />

heat is generated by electric power or district heating.<br />

In <strong>the</strong> following, <strong>the</strong> fractions <strong>of</strong> <strong>the</strong>rmal and auxiliary energy in <strong>the</strong> different subsystems are determined for<br />

use in <strong>the</strong> ensuing calculations in <strong>DIN</strong> V <strong>18599</strong>-1.


Table 4 <strong>—</strong> Output parameters<br />

<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

Symbol Meaning Used in<br />

dh,rB Monthly design operating time, in d see 5.4.1<br />

Q h,ce<br />

Q h,ce,aux<br />

Q h,d<br />

Q h,d,aux<br />

Q I,h,d<br />

Q h,s<br />

Q h,s,aux<br />

Q I,h,s<br />

Q h,g<br />

Q h,g,aux<br />

Q I,h,g<br />

Q h,reg<br />

Control and emission <strong>the</strong>rmal losses <strong>of</strong> heating system to <strong>the</strong> surrounding<br />

environment (e.g. space, room, zone, basement) (in <strong>the</strong> respective month),<br />

in kWh<br />

Auxiliary energy for heating system control and emission (in <strong>the</strong> respective<br />

month), in kWh<br />

Distribution <strong>the</strong>rmal losses <strong>of</strong> heating system to <strong>the</strong> surrounding<br />

environment (e.g. room, zone, basement) (in <strong>the</strong> respective month), in kWh<br />

Auxiliary energy for heating system distribution (in <strong>the</strong> respective month),<br />

in kWh<br />

Uncontrolled internal heat gains in <strong>the</strong> zone due to heating system<br />

distribution (in <strong>the</strong> respective month), in kWh<br />

Storage <strong>the</strong>rmal losses <strong>of</strong> heating system to <strong>the</strong> installation space (in <strong>the</strong><br />

respective month), in kWh<br />

Auxiliary energy for heating system storage (in <strong>the</strong> respective month), in<br />

kWh<br />

Uncontrolled internal heat gains in <strong>the</strong> zone due to heating system storage<br />

(in <strong>the</strong> respective month), in kWh<br />

Generation <strong>the</strong>rmal losses <strong>of</strong> heating system to <strong>the</strong> installation space (in<br />

<strong>the</strong> respective month), in kWh<br />

Auxiliary energy for heating system generation (in <strong>the</strong> respective month), in<br />

kWh<br />

Uncontrolled internal heat gains in <strong>the</strong> zone due to heating system heat<br />

generation (in <strong>the</strong> respective month), in kWh<br />

Regenerative energy contribution (in <strong>the</strong> respective month), in kWh<br />

see 6.1<br />

see 6.2<br />

see 6.3<br />

see 6.4<br />

If <strong>the</strong>re are different configurations for individual components <strong>of</strong> <strong>the</strong> heating system within one zone (e.g.<br />

underfloor heating, radiators, air heating) an overall value is to be used in <strong>the</strong> calculations that is determined<br />

by calculating <strong>the</strong> proportion <strong>of</strong> each parameter in relation to <strong>the</strong> net floor area.<br />

4.2.1 Generator heat output<br />

The generator heat is obtained from <strong>the</strong> energy need and from <strong>the</strong> losses from <strong>the</strong> individual subsystems.<br />

Q h, outg Qh,<br />

b + Qh,<br />

ce + Qh,<br />

d + Qh,<br />

s<br />

= (1)<br />

For <strong>the</strong> heating <strong>of</strong> heating coils in HVAC systems <strong>the</strong> generator heat output is determined as follows:<br />

Q h, outg Qh*,<br />

b + Qh,<br />

d + Qh,<br />

s<br />

= (2)<br />

For <strong>the</strong> heating <strong>of</strong> absorption chillers in HVAC systems <strong>the</strong> generator heat output is determined as follows:<br />

Q h, outg Qc,<br />

f + Qh,<br />

d + Qh,<br />

s<br />

= (3)<br />

23


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

If <strong>the</strong> heat generator delivers heat to several subsystems Q h,outg is <strong>the</strong> sum <strong>of</strong> <strong>the</strong> values <strong>of</strong> Q h,outg from <strong>the</strong><br />

individual subsystems, taking into account <strong>the</strong> fact that <strong>the</strong> data relate to <strong>the</strong> gross calorific value (unless <strong>the</strong><br />

heat is generated by electric power).<br />

In <strong>the</strong> above,<br />

24<br />

Q h,outg is <strong>the</strong> generator heat output to <strong>the</strong> heating system (see <strong>DIN</strong> V <strong>18599</strong>-1, <strong>DIN</strong> V <strong>18599</strong>-6 or<br />

<strong>DIN</strong> V <strong>18599</strong>-7);<br />

Q h,b<br />

Q h*,b<br />

Q c,f<br />

Q h,ce<br />

Q h,d<br />

Q h,s<br />

4.2.2 Delivered heat<br />

where<br />

is <strong>the</strong> energy need (see <strong>DIN</strong> V <strong>18599</strong>-2);<br />

is <strong>the</strong> generation heat output <strong>of</strong> <strong>the</strong> air handling unit (see <strong>DIN</strong> V <strong>18599</strong>-7), in kWh;<br />

is <strong>the</strong> delivered energy for <strong>the</strong> chiller (in <strong>the</strong> respective month) (see <strong>DIN</strong> V <strong>18599</strong>-7), in kWh;<br />

are <strong>the</strong> control and emission <strong>the</strong>rmal losses <strong>of</strong> <strong>the</strong> heating system to <strong>the</strong> surrounding<br />

environment (e.g. room, zone, basement) (in <strong>the</strong> respective month) (see 6.1), in kWh;<br />

are <strong>the</strong> distribution <strong>the</strong>rmal losses <strong>of</strong> <strong>the</strong> heating system to <strong>the</strong> surrounding environment (e.g.<br />

room, zone, basement) (in <strong>the</strong> respective month) (see 6.2), in kWh;<br />

are <strong>the</strong> storage <strong>the</strong>rmal losses <strong>of</strong> <strong>the</strong> heating system to <strong>the</strong> surrounding environment (in <strong>the</strong><br />

respective month) (see 6.3), in kWh.<br />

Qh, f ( Qh,<br />

outg + Qh,<br />

g)<br />

⋅ fg,<br />

PM − Qh,<br />

reg<br />

= (4)<br />

with Q h,reg = Q h,sol + Q h,in<br />

Q h,f<br />

is <strong>the</strong> delivered energy for <strong>the</strong> heat generator (see <strong>DIN</strong> V <strong>18599</strong>-1);<br />

Q h,outg is <strong>the</strong> generator heat output to <strong>the</strong> heating system (see <strong>DIN</strong> V <strong>18599</strong>-1);<br />

Q h,g<br />

Q h,reg<br />

Q h,in<br />

Q h,sol<br />

f g,PM<br />

are <strong>the</strong> generation losses <strong>of</strong> <strong>the</strong> heating system to <strong>the</strong> installation space (in <strong>the</strong> respective<br />

month) (see 6.4), in kWh;<br />

is <strong>the</strong> regenerative energy contribution (in <strong>the</strong> respective month) (see 6.4), in kWh;<br />

is <strong>the</strong> ambient heat (in <strong>the</strong> respective month) (see 6.4), in kWh;<br />

is <strong>the</strong> solar energy contribution (in <strong>the</strong> respective month), in kWh;<br />

is <strong>the</strong> correction factor for heat generators with integrated pump management.<br />

It shall be taken into account that <strong>the</strong> data relate to <strong>the</strong> gross calorific value unless <strong>the</strong> heat is generated by<br />

electric power. If <strong>the</strong> delivered energy is electric power, <strong>the</strong>re is no difference between gross calorific value<br />

and net calorific value.<br />

For <strong>the</strong> purposes <strong>of</strong> this document, integrated pump management is <strong>the</strong> coupling <strong>of</strong> <strong>the</strong> heating circulation<br />

pump with <strong>the</strong> operation <strong>of</strong> <strong>the</strong> burner in <strong>the</strong> generator for control purposes.


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

The correction factor for heat generators with integrated pump management takes into account <strong>the</strong> energy<br />

used for operation at a higher temperature over shorter pump running times. Pump running times are<br />

considered in 6.2.1.<br />

Heat generators with integrated pump management f g,PM<br />

⎯ For heat generators with integrated pump management, f g,PM is equal to 1.<br />

⎯ For heat generators with integrated pump management and boiler temperature control with outdoor<br />

sensors, f g,PM is equal to 1,03.<br />

⎯ For heat generators with integrated pump management and boiler temperature control with indoor<br />

sensors, f g,PM is equal to 1,06.<br />

4.2.3 Auxiliary energy<br />

where<br />

Q h, aux Qh,<br />

ce, aux + Qh,<br />

d, aux + Qh,<br />

s, aux + Qh,<br />

g, aux<br />

Q h,aux<br />

= (5)<br />

is <strong>the</strong> auxiliary energy for <strong>the</strong> heating system (see <strong>DIN</strong> V <strong>18599</strong>-1);<br />

Q h,ce,aux is <strong>the</strong> auxiliary energy for heating system control and emission (in <strong>the</strong> respective month) (see<br />

6.1), in kWh;<br />

Q h,d,aux<br />

Q h,s,aux<br />

Q h,g,aux<br />

is <strong>the</strong> auxiliary energy for heating system distribution (in <strong>the</strong> respective month) (see 6.2), in<br />

kWh;<br />

is <strong>the</strong> auxiliary energy for heating system storage (in <strong>the</strong> respective month) (see 6.3), in kWh;<br />

is <strong>the</strong> auxiliary energy for heating system generation (in <strong>the</strong> respective month) (see 6.4), in<br />

kWh;<br />

4.2.4 Uncontrolled heat gains due to <strong>the</strong> heating system<br />

It shall be identified which subsystems are located in <strong>the</strong> respective zone and are to be taken into account<br />

accordingly:<br />

where<br />

Q I, h QI,<br />

h, d + QI,<br />

h, s + QI,<br />

h, g<br />

Q I,h<br />

Q I,h,d<br />

Q I,h,s<br />

Q I,h,g<br />

= (6)<br />

are <strong>the</strong> uncontrolled internal heat gains in <strong>the</strong> zone due to <strong>the</strong> heating system (in <strong>the</strong> respective<br />

month), in kWh (see <strong>DIN</strong> V <strong>18599</strong>-2);<br />

are <strong>the</strong> uncontrolled internal heat gains in <strong>the</strong> zone due to distribution (in <strong>the</strong> respective month)<br />

(see 6.2), in kWh;<br />

are <strong>the</strong> uncontrolled internal heat gains in <strong>the</strong> zone due to storage (in <strong>the</strong> respective month) (see<br />

6.3), in kWh;<br />

are <strong>the</strong> uncontrolled internal heat gains in <strong>the</strong> zone due to generation (in <strong>the</strong> respective month)<br />

(see 6.4), in kWh.<br />

25


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

Values shall be calculated for <strong>the</strong> zones specified in <strong>DIN</strong> V <strong>18599</strong>-1.<br />

5 Boundary conditions for <strong>the</strong> individual subsystems<br />

If <strong>the</strong> specifications result in a usage time t h,Nutz = 0, <strong>the</strong> associated part load β i is similarly zero. If<br />

requirements from <strong>DIN</strong> V <strong>18599</strong>-7 exist, <strong>the</strong>n t h,Nutz shall be determined according to <strong>the</strong> times specified in<br />

that document.<br />

5.1 Part load levels<br />

5.1.1 Heat control and emission<br />

The mean part load for a heating circuit in <strong>the</strong> control and emission subsystem is<br />

where<br />

26<br />

Qh,<br />

b<br />

h, ce =<br />

Q&<br />

h, max ⋅th<br />

β (7)<br />

Q h,b<br />

is <strong>the</strong> energy need in <strong>the</strong> calculation period (in <strong>the</strong> respective month) (see 4.1), in kWh;<br />

Qh, max<br />

& is <strong>the</strong> maximum heat load required by <strong>the</strong> building (see 4.1), in kW;<br />

t h<br />

5.1.2 Heat distribution<br />

is <strong>the</strong> number <strong>of</strong> heating hours in <strong>the</strong> respective month (see 4.1).<br />

The mean part load in <strong>the</strong> distribution subsystem is<br />

where<br />

Qh,<br />

b + Qh,<br />

ce<br />

h,d =<br />

Q&<br />

h, max ⋅ th<br />

β (8)<br />

Q h,b<br />

Q h,ce<br />

is <strong>the</strong> energy need in <strong>the</strong> calculation period (in <strong>the</strong> respective month) (see 4.1), in kWh;<br />

are <strong>the</strong> monthly control and emission <strong>the</strong>rmal losses <strong>of</strong> <strong>the</strong> heating system to <strong>the</strong> surrounding<br />

environment (e.g. room, zone, basement) (see 4.2), in kWh;<br />

Qh, max<br />

& is <strong>the</strong> maximum heat load required by <strong>the</strong> building (see 4.1), in kW;<br />

t h<br />

5.1.3 Storage<br />

is <strong>the</strong> number <strong>of</strong> heating hours in <strong>the</strong> respective month (see 4.1).<br />

The design temperature required for <strong>the</strong> storage tank is <strong>the</strong> mean heating circuit temperature as specified in<br />

5.2. The mean part load <strong>of</strong> <strong>the</strong> storage tank in <strong>the</strong> heating circuit is:<br />

Qh,<br />

b + Qh,<br />

ce + Qh,d<br />

h,s =<br />

Q&<br />

h, max ⋅th<br />

β (9)


where<br />

Q h,b<br />

Q h,ce<br />

Q h,d<br />

is <strong>the</strong> monthly energy need in <strong>the</strong> calculation period (see 4.1), in kWh;<br />

<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

are <strong>the</strong> monthly control and emission <strong>the</strong>rmal losses <strong>of</strong> <strong>the</strong> heating system (in <strong>the</strong> respective<br />

month) (see 4.2), in kWh;<br />

are <strong>the</strong> monthly distribution <strong>the</strong>rmal losses <strong>of</strong> <strong>the</strong> heating system (in <strong>the</strong> respective month) (see<br />

4.2), in kWh;<br />

Qh, max<br />

& is <strong>the</strong> maximum heat load required by <strong>the</strong> building (see 4.1), in kW;<br />

t h<br />

5.1.4 Heat generation<br />

is <strong>the</strong> number <strong>of</strong> heating hours in <strong>the</strong> respective month (see 4.1).<br />

Distribution losses Q h,d and <strong>the</strong>rmal losses from any storage tank that may be present, Q h,s , result in an<br />

increase in <strong>the</strong> mean generation part load, as a result <strong>of</strong> which <strong>the</strong> distribution subsystem has to be fed at a<br />

higher temperature. The mean generation part load in <strong>the</strong> heating circuit is:<br />

where<br />

Qh,<br />

b + Qh,<br />

ce + Qh,d<br />

+ Qh,s<br />

h,g =<br />

Q&<br />

h, max ⋅th<br />

β (10)<br />

Q h,b<br />

Q h,ce<br />

Q h,d<br />

Q h,s<br />

is <strong>the</strong> energy need in <strong>the</strong> calculation period (in <strong>the</strong> respective month) (see 4.1), in kWh;<br />

are <strong>the</strong> heating system control and emission <strong>the</strong>rmal losses (in <strong>the</strong> respective month) (see 4.2),<br />

in kWh;<br />

are <strong>the</strong> heating system distribution <strong>the</strong>rmal losses (in <strong>the</strong> respective month) (see 4.2), in kWh;<br />

are <strong>the</strong> heating system storage <strong>the</strong>rmal losses (in <strong>the</strong> respective month) (see 4.2), in kWh;<br />

Qh, max<br />

& is <strong>the</strong> maximum heat load required by <strong>the</strong> building (see 4.1), in kW;<br />

t h<br />

5.2 Temperatures<br />

is <strong>the</strong> number <strong>of</strong> heating hours in <strong>the</strong> respective month (see 4.1).<br />

For automatic temperature-controlled heating circuits <strong>the</strong> following shall apply for <strong>the</strong> individual subsystems as<br />

a function <strong>of</strong> <strong>the</strong> mean part load and <strong>the</strong> mean temperature difference under design conditions:<br />

and<br />

ϑ HK,m (β i ) = 0,5 · (ϑ VL,m (β i ) + ϑ RL,m (β i )) (11)<br />

∆ϑ HK (β i ) = ϑ VL,m (β i ) – ϑ RL,m (β i ) (12)<br />

VL, m<br />

1<br />

i<br />

( β ) ( ϑ −ϑ<br />

) ⋅ β n ϑi,<br />

h,soll<br />

ϑ = +<br />

(13)<br />

i<br />

VA<br />

i, h,soll<br />

27


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

where<br />

28<br />

RL, m<br />

1<br />

i<br />

( β ) ( ϑ −ϑ<br />

) ⋅ β n ϑi,<br />

h,soll<br />

ϑ = +<br />

(14)<br />

β i<br />

ϑ VA<br />

ϑ RA<br />

i<br />

RA<br />

i, h,soll<br />

is <strong>the</strong> mean part load in <strong>the</strong> subsystem;<br />

is <strong>the</strong> supply temperature <strong>of</strong> <strong>the</strong> heating medium under design conditions;<br />

is <strong>the</strong> return temperature <strong>of</strong> <strong>the</strong> heating medium under design conditions;<br />

n is <strong>the</strong> emitter exponent (default values: 1,33 for radiators; 1,1 for underfloor heating);<br />

ϑ i,h,soll is <strong>the</strong> room temperature during <strong>the</strong> usage time (see 4.1), in °C.<br />

The mean over-temperature <strong>of</strong> <strong>the</strong> heating medium is obtained as follows:<br />

where<br />

ϑVA<br />

+ ϑ<br />

∆ ϑ RA<br />

A =<br />

−ϑi,<br />

h,soll<br />

(15)<br />

2<br />

∆ϑ A<br />

is <strong>the</strong> mean over-temperature <strong>of</strong> <strong>the</strong> heating medium under design conditions.<br />

For constant temperature boilers with mixers, over-temperatures shall be used for distribution and control and<br />

emission, while a mean temperature <strong>of</strong> 70 °C shall be assumed for boilers without mixers.<br />

The design temperatures can be adjusted where existing <strong>buildings</strong> have been refurbished.<br />

If no new detailed design is to be carried out and <strong>the</strong> existing emitters are retained, <strong>the</strong> design temperatures<br />

from Table 5 can be roughly adjusted as a function <strong>of</strong> <strong>the</strong> old and new heat load according to <strong>DIN</strong> V <strong>18599</strong>-2,<br />

Annex B. In <strong>the</strong> case <strong>of</strong> intermediate values, <strong>the</strong> next higher pair <strong>of</strong> temperatures shall be selected.<br />

Old design temperatures<br />

Table 5 <strong>—</strong> Design temperatures<br />

70/55 °C<br />

Q&<br />

N, neu / Q&<br />

N, alt<br />

at new design temperatures<br />

55/45 °C 35/28 °C<br />

90/70 °C 63,8 % 40,6 % 11,3 %<br />

70/55 °C − 63,7 % 17,8 %<br />

55/45 °C − − 27,9 %<br />

The mean required (supply and return) temperatures for heat generators without a storage tank are calculated<br />

according to equation (11). If a buffer storage tank is interposed, <strong>the</strong> required temperatures shall be calculated<br />

using equation (11) unless o<strong>the</strong>r provisions are given in 6.3 or are dependent on <strong>the</strong> system (see 6.4.3.3).<br />

This temperature is assumed to be <strong>the</strong> storage temperature and <strong>the</strong> supply pipe temperature.<br />

If different heating circuits are operated, <strong>the</strong> maximum temperature is dependent on <strong>the</strong> requirement to be met<br />

by <strong>the</strong> heat generator.


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

Where constant temperature boilers and biomass boilers are used, a mean temperature <strong>of</strong> 70 °C can be<br />

assumed for heat generation.<br />

Fuel conversion and solid fuel boilers shall be treated in <strong>the</strong> same way as constant temperature boilers.<br />

Return temperatures shall be taken into account when calculating efficiencies <strong>of</strong> condensing boilers.<br />

For all low temperature and condensing boilers <strong>the</strong> stand-by loss shall be related to <strong>the</strong> mean heating circuit<br />

temperature.<br />

5.3 Boiler rated output<br />

The rated output QN & <strong>of</strong> boilers to be installed in newly erected <strong>buildings</strong> is calculated as follows:<br />

Firstly, <strong>the</strong> rated output <strong>of</strong> <strong>the</strong> boiler and <strong>the</strong> required maximum output for all connected loads (consumers)<br />

are determined. Depending on <strong>the</strong> extent to which requirements need to be met simultaneously, <strong>the</strong> boiler<br />

rated output QN & shall be determined ei<strong>the</strong>r from <strong>the</strong> largest individual output or by adding toge<strong>the</strong>r <strong>the</strong><br />

simultaneous requirements according to 6.4.3. The value <strong>of</strong> QN, h<br />

& for space heating generation is obtained as<br />

follows:<br />

where<br />

QN, h<br />

& = 1,3 · h, max<br />

Q & (16)<br />

Qh, max<br />

& is <strong>the</strong> maximum heat load required by <strong>the</strong> building (see 4.1), in kW.<br />

For existing <strong>buildings</strong> <strong>the</strong> rated output <strong>of</strong> <strong>the</strong> existing heat generation system is used. If this cannot be<br />

established, <strong>the</strong>n for heat generators that have been installed before 1994, <strong>the</strong> required heat output shall be<br />

calculated according to equation (17):<br />

QN, h<br />

& = 2,5 h, max<br />

Q & in kW (17)<br />

The maximum generator output required by a building or building zone for space heating, central domestic<br />

water heating, residential ventilation and air conditioning is <strong>the</strong> sum <strong>of</strong> all outputs that are required<br />

simultaneously ( ∑QN, gleichzeitig)<br />

& , or from <strong>the</strong> largest output in prioritized operation ( QVorrang ) & :<br />

&<br />

N max( Q&<br />

N, gleichzeitig,<br />

Q&<br />

∑<br />

Vorrang )<br />

Q<br />

5.4 Times<br />

= (18)<br />

5.4.1 Running times<br />

If in <strong>DIN</strong> V <strong>18599</strong>-2 night-time or weekend set-back or switch-<strong>of</strong>f has been taken into account, this shall also<br />

be included when considering <strong>the</strong> heating system. Boost operation is taken into account in <strong>the</strong> time data given<br />

in <strong>DIN</strong> V <strong>18599</strong>-10.<br />

Design running time <strong>of</strong> a heating system<br />

The design running time shall be used for determining <strong>the</strong>rmal losses from distribution piping and, where<br />

applicable, a heat generator. It takes into account both <strong>the</strong> reduced running time as a result <strong>of</strong> night-time or<br />

weekend set-back or switch-<strong>of</strong>f and also <strong>the</strong> set-back temperatures and, alternatively, continuous operation.<br />

29


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

Daily design heating running time<br />

where<br />

30<br />

t = − f ⋅ ( 24 − t )<br />

(19)<br />

h, rL, T<br />

t h,rL,T<br />

f L,NA<br />

t h,op<br />

24 L, NA h, op<br />

is <strong>the</strong> daily design running time, in h;<br />

is <strong>the</strong> running time factor for night-time set-back or switch-<strong>of</strong>f;<br />

is <strong>the</strong> daily heating time, in h.<br />

The running time factor taking into account night-time set-back or switch-<strong>of</strong>f, f L,NA is as follows:<br />

⎯ for continuous night-time operation: f L,NA = 0;<br />

⎯ for night-time switch-<strong>of</strong>f: f L,NA = 1;<br />

⎯ for night-time set-back:<br />

where<br />

ϑNA,<br />

Grenz − ϑe<br />

f L, NA = 1−<br />

with f L, NA ≤ 1<br />

(20)<br />

ϑNA,<br />

Grenz − ϑe,<br />

min<br />

ϑ NA,Grenz<br />

ϑ e<br />

ϑ e,min<br />

Monthly design operating days<br />

where<br />

is <strong>the</strong> night-time set-back temperature limit <strong>of</strong> 10 °C;<br />

is <strong>the</strong> monthly average outdoor temperature (see 4.1), in °C;<br />

is <strong>the</strong> daily mean design temperature (see 4.1), in °C.<br />

365 − fL,WA<br />

⋅ ( 365 − dNutz,<br />

a ) th<br />

d h, rB = dmth<br />

⋅<br />

⋅<br />

(21)<br />

365<br />

d ⋅ 24<br />

d h,rB<br />

d mth<br />

f L,WA<br />

d Nutz,a<br />

t h<br />

is <strong>the</strong> design number <strong>of</strong> operating days in <strong>the</strong> respective month;<br />

mth<br />

is <strong>the</strong> number <strong>of</strong> days in <strong>the</strong> respective month (see 4.1);<br />

is <strong>the</strong> factor taking into account weekend set-back or switch-<strong>of</strong>f;<br />

is <strong>the</strong> annual usage time (see 4.1), in d;<br />

is <strong>the</strong> number <strong>of</strong> heating hours in <strong>the</strong> respective month (see 4.1), in h.<br />

The running time factor taking into account weekend set-back or switch-<strong>of</strong>f, f L,WA is as follows:<br />

⎯ for continuous operation over <strong>the</strong> weekend: f L,WA = 0;


⎯ for weekend switch-<strong>of</strong>f: f L,WA = 1;<br />

⎯ for weekend set-back:<br />

where<br />

<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

ϑWA,<br />

Grenz − ϑe<br />

f L,WA = 1−<br />

with f L,WA ≤ 1<br />

(22)<br />

ϑWA,<br />

Grenz − ϑe,<br />

min<br />

ϑ WA,Grenz<br />

ϑ e<br />

ϑ e,min<br />

is <strong>the</strong> weekend set-back temperature limit <strong>of</strong> 15 °C;<br />

is <strong>the</strong> monthly average outdoor temperature (see 4.1), in °C;<br />

is <strong>the</strong> daily mean design temperature (see 4.1), in °C.<br />

Monthly design heating running time<br />

where<br />

t = t ⋅ d<br />

(23)<br />

h, rL<br />

t h,rL<br />

t h,rL,T<br />

d h,rB<br />

h, rL, T<br />

h, rB<br />

is <strong>the</strong> monthly design running time, in h;<br />

is <strong>the</strong> daily design running time, in h;<br />

is <strong>the</strong> monthly design number <strong>of</strong> operating days.<br />

If different heating circuits are operated differently, or if o<strong>the</strong>r loads in addition to <strong>the</strong> heating system are<br />

connected to a heat generator or to a distribution (e.g. a chiller or air handling unit) <strong>the</strong>n accordingly <strong>the</strong><br />

longest operating time shall be taken into account for <strong>the</strong> heat generators. Domestic water heating is dealt<br />

with in <strong>DIN</strong> V <strong>18599</strong>-8.<br />

The number <strong>of</strong> heating days in <strong>the</strong> respective month is given by<br />

where<br />

th<br />

d h, mth = (24)<br />

24<br />

t h<br />

is <strong>the</strong> number <strong>of</strong> heating hours in <strong>the</strong> respective month.<br />

The monthly number <strong>of</strong> usage days is given by<br />

where<br />

dNutz,<br />

a<br />

dNutz, mth ⋅ dmth<br />

365<br />

d Nutz,a<br />

d mth<br />

= (25)<br />

is <strong>the</strong> annual usage time, in d;<br />

is <strong>the</strong> number <strong>of</strong> days in <strong>the</strong> respective month.<br />

31


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

5.4.2 Distribution <strong>of</strong> annual values over individual months<br />

The energy use <strong>of</strong> components (e.g. for circulation pumps) can take <strong>the</strong> form <strong>of</strong> an annual mean if this is not<br />

needed in <strong>the</strong> balance for individual zones according to <strong>DIN</strong> V <strong>18599</strong>-2.<br />

If <strong>the</strong> energy use in <strong>the</strong> zone is to be balanced monthly, <strong>the</strong> annual values shall be converted by means <strong>of</strong> <strong>the</strong><br />

following equation.<br />

32<br />

Wh,<br />

d, e, M<br />

=<br />

Wh,<br />

d, e, a<br />

βh,<br />

d, M ⋅ tNutz,<br />

mth<br />

h, d, a ⋅ th,<br />

op ⋅ dNutz,<br />

a<br />

β<br />

6 Determination <strong>of</strong> energy expenditure<br />

The energy need from 6.4 shall be used as <strong>the</strong> input parameter for calculation <strong>of</strong> <strong>the</strong> characteristic values<br />

relating to <strong>the</strong> heating system.<br />

If <strong>the</strong>re are additional requirements from ano<strong>the</strong>r part <strong>of</strong> <strong>the</strong> <strong>DIN</strong> V <strong>18599</strong> series (e.g. for HVAC systems<br />

according to <strong>DIN</strong> V <strong>18599</strong>-7) this is also to be considered taking into account <strong>the</strong> required temperature,<br />

compared with that <strong>of</strong> conventional heating systems (provided it is higher). The different subsystems shall be<br />

analysed according to <strong>the</strong>ir usage, in <strong>the</strong> same way as for <strong>the</strong> heating system.<br />

6.1 Heat control and emission<br />

In <strong>the</strong> following, <strong>the</strong> energy characteristics required to determine <strong>the</strong> losses associated with <strong>the</strong> transfer <strong>of</strong><br />

heat to <strong>the</strong> room are specified.<br />

Q h,ce is calculated for each month according to equation (27).<br />

Q<br />

where<br />

h, ce<br />

Q h,ce<br />

Q h,b<br />

f hydr<br />

f int<br />

⎛ f<br />

= ⎜<br />

⎝<br />

Radiant<br />

η<br />

f<br />

int<br />

h, ce<br />

f<br />

hydr<br />

⎞<br />

− 1⎟Q ⎟<br />

⎠<br />

h, b<br />

is <strong>the</strong> additional loss due to control and emission (in <strong>the</strong> respective month), in kWh;<br />

is <strong>the</strong> energy need (in <strong>the</strong> respective month) (see 4.1), in kWh;<br />

is <strong>the</strong> factor to account for hydraulic balance, currently equal to 1;<br />

is <strong>the</strong> factor to account for intermittent operation (intermittent operation is understood to be <strong>the</strong><br />

option <strong>of</strong> reducing <strong>the</strong> temperature in individual rooms at certain times);<br />

f Radiant is <strong>the</strong> factor to account for <strong>the</strong> effect <strong>of</strong> radiation (only relevant when heating large indoor spaces<br />

where h > 4 m);<br />

η h,ce<br />

is <strong>the</strong> overall <strong>efficiency</strong> for heat emission in <strong>the</strong> room.<br />

f int and f Radiant shall be set at 1, unless described in more detail in <strong>the</strong> following clauses.<br />

(26)<br />

(27)


The overall <strong>efficiency</strong> η h,ce is generally calculated as follows:<br />

where<br />

<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

1<br />

ηh,<br />

ce = (28)<br />

( 4 − ( ηL<br />

+ ηC<br />

+ ηB<br />

))<br />

η L is <strong>the</strong> partial <strong>efficiency</strong> for a vertical air temperature pr<strong>of</strong>ile;<br />

η C is <strong>the</strong> partial <strong>efficiency</strong> for room temperature control;<br />

η B is <strong>the</strong> partial <strong>efficiency</strong> for specific <strong>the</strong>rmal losses via external components.<br />

In some cases a breakdown <strong>of</strong> <strong>the</strong> <strong>efficiency</strong> is not required. The annual expenditure for heat emission in <strong>the</strong><br />

space is calculated as<br />

where<br />

∑<br />

h, ce, a = Q h, ce<br />

Q (29)<br />

Q h,ce,a is <strong>the</strong> annual heat loss due to control and emission, in kWh;<br />

Q h,ce<br />

is <strong>the</strong> heat loss due to control and emission (in <strong>the</strong> respective month) according to equation (27),<br />

in kWh.<br />

The partial and <strong>the</strong> overall <strong>efficiency</strong> given in <strong>the</strong> following tables are based on <strong>the</strong> following assumptions:<br />

⎯ standard room heights h ≤ 4m (with <strong>the</strong> exception <strong>of</strong> large indoor spaces where h > 4 m);<br />

⎯ residential and non-residential <strong>buildings</strong>;<br />

⎯ different levels <strong>of</strong> <strong>the</strong>rmal insulation;<br />

⎯ continuous operating mode (intermittent operation in excess <strong>of</strong> that specified in <strong>DIN</strong> V <strong>18599</strong>-2 is<br />

accounted for by <strong>the</strong> factor f int );<br />

⎯ reference is to one room in each case.<br />

System solutions not covered in this clause<br />

⎯ are dealt with in 6.4<br />

NOTE The systems dealt with here are mainly heating equipment or individual fireplaces in which a differentiation<br />

between heat generation and heat control and emission is not appropriate.<br />

or<br />

⎯ shall be interpolated or adjusted in a suitable manner.<br />

6.1.1 Efficiencies for free emitters (radiators); room heights ≤ 4 m<br />

Table 6 specifies <strong>the</strong> efficiencies for free emitters.<br />

33


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

Room temperature<br />

control<br />

Over-temperature<br />

(reference ϑ i =<br />

20 °C)<br />

Specific <strong>the</strong>rmal<br />

losses via external<br />

components<br />

(GF = glazing<br />

surfaces)<br />

34<br />

Table 6 <strong>—</strong> Efficiencies for free emitters (radiators); room heights ≤ 4 m<br />

Parameters<br />

Efficiencies<br />

η L η C η B<br />

Uncontrolled, with central supply temperature control 0,80<br />

Master space 0,88<br />

P controller (2 K) 0,93<br />

P controller (1 K) 0,95<br />

PI controller 0,97<br />

PI controller (with optimum tuning function, e.g. presence<br />

management, adaptive controller)<br />

0,99<br />

ηL1 ηL2 60 K (e.g. 90/70) 0,88<br />

42,5 K (e.g. 70/55) 0,93<br />

30 K (e.g. 55/45) 0,95<br />

Radiator located on internal wall<br />

Radiator located on external wall<br />

0,87 1<br />

<strong>—</strong> glazing surface (GF) without radiation protection 0,83 1<br />

<strong>—</strong> glazing surface (GF) with radiation protectiona 0,88 1<br />

<strong>—</strong> normal external wall 0,95 1<br />

a Radiation protection must prevent 80 % <strong>of</strong> <strong>the</strong> radiation losses from <strong>the</strong> radiator to <strong>the</strong> glazing surface by means <strong>of</strong> insulation<br />

and/or reflection.<br />

The overall <strong>efficiency</strong> η h,ce is obtained by means <strong>of</strong> equation (28).<br />

For η L a mean value shall be calculated from <strong>the</strong> data for <strong>the</strong> main parameters “over-temperature” and<br />

”specific <strong>the</strong>rmal losses via external components”.<br />

η L = (η L1 +η L2 )/2 (30)<br />

EXAMPLE Radiator on external wall; over-temperature 42,5 K; P controller (2 K)<br />

η L = (η L1 + η L2 )/2 = (0,93 + 0,95)/2 = 0,94<br />

η C = 0,93<br />

η B = 1<br />

η h,ce = 1/(4 – (0,94 + 0,93 + 1)) = 0,88<br />

Factor to account for intermittent operation: f int = 0,97<br />

NOTE For continuous operation f int is given a value <strong>of</strong> 1.<br />

Factor to account for <strong>the</strong> effect <strong>of</strong> radiation: f Radiant = 1,0


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

6.1.2 Efficiencies for water based embedded systems (surface heating); room heights ≤ 4 m<br />

Table 7 specifies <strong>the</strong> efficiencies for water based embedded systems (surface heating) for room heights<br />

≤ 4 m.<br />

Table 7 <strong>—</strong> Efficiencies for water based embedded systems (surface heating); room heights ≤ 4 m<br />

Room<br />

temperature<br />

control<br />

System<br />

Specific <strong>the</strong>rmal<br />

losses via laying<br />

surfaces<br />

Parameters<br />

Part efficiencies<br />

η L η C η B<br />

Water as heat transfer medium<br />

<strong>—</strong> uncontrolled 0,75<br />

<strong>—</strong> uncontrolled, with central supply temperature control 0,78<br />

<strong>—</strong> uncontrolled, with mean value (ϑ V –ϑ R ) 0,83<br />

<strong>—</strong> master space 0,88<br />

<strong>—</strong> two-step controller/P controller 0,93<br />

<strong>—</strong> PI controller 0,95<br />

Electric heating<br />

<strong>—</strong> two-step controller 0,91<br />

<strong>—</strong> PI controller 0,93<br />

Underfloor heating η B1 η B2<br />

<strong>—</strong> wet system 1 0,93<br />

<strong>—</strong> dry system 1 0,96<br />

<strong>—</strong> dry system with thin cover 1 0,98<br />

Wall heating 0,96 0,93<br />

Ceiling heating 0,93 0,93<br />

Underfloor heating without minimum insulation to<br />

<strong>DIN</strong> EN 1264<br />

Underfloor heating with minimum insulation to <strong>DIN</strong> EN 1264 0,95<br />

Underfloor heating with 100 % better insulation than<br />

required by <strong>DIN</strong> EN 1264<br />

The overall <strong>efficiency</strong> η h,ce shall be determined using equation (28).<br />

For η B , a mean value shall be calculated from <strong>the</strong> data for <strong>the</strong> parameters “system” and “specific <strong>the</strong>rmal<br />

losses via laying surfaces”.<br />

η B = (η B1 + η B2 )/2 (31)<br />

EXAMPLE Underfloor heating – wet system (water); two-step controller; underfloor heating with a high level <strong>of</strong><br />

<strong>the</strong>rmal insulation<br />

η L = 1,0<br />

η C = 0,93<br />

η B = (η B1 + η B2 )/2= (0,93 + 0,95)/2 = 0,94<br />

η h,ce = 1/(4 – (1,0 + 0,93 + 0,94)) = 0,88<br />

0,86<br />

0,99<br />

35


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

Factor to account for intermittent operation: f int = 0,98<br />

NOTE For continuous operation f int is given a value <strong>of</strong> 1.<br />

Factor to account for <strong>the</strong> effect <strong>of</strong> radiation: f Radiant = 1,0<br />

6.1.3 Efficiencies for electric heating; room heights ≤ 4 m<br />

Table 8 specifies <strong>the</strong> efficiencies for electric heating for room heights ≤ 4 m.<br />

At external wall<br />

At internal wall<br />

36<br />

Table 8 <strong>—</strong> Efficiencies for electric heating; room heights ≤ 4 m<br />

Parameters<br />

Overall <strong>efficiency</strong><br />

η h,ce<br />

P controller (1 K) for direct electric heating 0,91<br />

PI controller (with optimum tuning) for direct electric heating 0,94<br />

Storage heating uncontrolled without outdoor-temperature-dependent charging<br />

and static/dynamic discharging<br />

Storage heating P controller (1 K) with outdoor-temperature-dependent charging<br />

and static/dynamic discharging<br />

Storage heating PID controller (with optimum tuning) with outdoor-temperaturedependent<br />

charging and static and continuous dynamic discharging<br />

P controller (1 K) for direct electric heating 0,88<br />

PI controller (with optimum tuning) for direct electric heating 0,91<br />

Storage heating, uncontrolled without outdoor-temperature-dependent charging<br />

and static/dynamic discharging<br />

Storage heating P controller (1 K) with outdoor-temperature-dependent charging<br />

and static/dynamic discharging<br />

Storage heating PID controller (with optimum tuning) with outdoor-temperaturedependent<br />

charging and static and continuous dynamic discharging<br />

Factor to account for intermittent operation: f int = 0,97 (to be used for electric heating systems with<br />

integrated backward charging)<br />

NOTE For continuous operation f int is given a value <strong>of</strong> 1.<br />

Factor to account for <strong>the</strong> effect <strong>of</strong> radiation: f Radiant = 1,0<br />

6.1.4 Efficiencies for air heating/residential ventilation; room heights ≤ 4 m<br />

Residential ventilation systems are systems that supply and/or extract air, supplying residential <strong>buildings</strong> with<br />

outdoor air, possibly combined with heat recovery and air handling.<br />

Efficiencies η h,ce for air heating and residential ventilation are described in <strong>DIN</strong> V <strong>18599</strong>-6.<br />

0,78<br />

0,88<br />

0,91<br />

0,75<br />

0,85<br />

0,88


6.1.5 Efficiencies for air heating (HVAC systems); (room heights ≤ 4 m)<br />

<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

Table 9 specifies <strong>the</strong> efficiencies η h,ce for air heating (non-residential HVAC systems) for room heights ≤ 4 m.<br />

Table 9 <strong>—</strong> Efficiencies for air heating (HVAC systems) for room heights ≤ 4 m<br />

System configuration Control parameter<br />

Supply air back-up<br />

heating (additional<br />

heater)<br />

Recirculation air heating<br />

(induction terminal units,<br />

fan convectors)<br />

Low quality <strong>of</strong> control<br />

η h,ce<br />

High quality <strong>of</strong><br />

control<br />

Room temperature 0,82 0,87<br />

Room temperature (cascade control<br />

<strong>of</strong> supply air temperature)<br />

0,88 0,90<br />

Extract air temperature 0,81 0,85<br />

Room temperature 0,89 0,93<br />

The auxiliary energy for recirculation air heating shall be taken from Table 9. The data for residential<br />

ventilation systems from <strong>DIN</strong> V <strong>18599</strong>-6 can be used as <strong>the</strong> values for ventilation systems with a partial<br />

heating function.<br />

6.1.6 Efficiencies for rooms with heights ≥ 4 m (large indoor spaces)<br />

Efficiencies for rooms with heights from 4 m to 10 m are specified in Table 10.<br />

37


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

Space<br />

temp.<br />

control<br />

Heating<br />

systems<br />

38<br />

Table 10 <strong>—</strong> Efficiencies for rooms with heights from 4 m to 10 m<br />

Parameters<br />

Part efficiencies<br />

ηL 4 m 6 m 8 m 10 m<br />

Uncontrolled 0,80<br />

Two-step controller 0,93<br />

P controller (2 K) 0,93<br />

P controller (1 K) 0,95<br />

PI controller 0,97<br />

PI controller with optimum tuning 0,99<br />

Warm air heating Air outlet at <strong>the</strong> side 0,98 0,94 0,88 0,83 1<br />

Air distribution with normal induction<br />

ratio<br />

Air outlet above 0,99 0,96 0,91 0,87 1<br />

Warm air heating Air outlet at <strong>the</strong> side 0,99 0,97 0,94 0,91 1<br />

Air distribution with controlled vertical<br />

recirculation<br />

Air outlet above 0,99 0,98 0,96 0,93 1<br />

Ceiling mounted radiant panels 1,00 0,99 0,97 0,96 1<br />

Radiant tube heaters 1,00 0,99 0,97 0,96 1<br />

Luminous radiant heaters 1,00 0,99 0,97 0,96 1<br />

Underfloor heating (with a high level <strong>of</strong><br />

<strong>the</strong>rmal insulation)<br />

1,00 0,99 0,97 0,96<br />

Integrated floor heating 0,95<br />

Thermally decoupled<br />

underfloor heating<br />

Evaluation <strong>of</strong> heating systems for large indoor spaces with radiators (existing <strong>buildings</strong>):<br />

Assumptions shall be based on warm air heating with a normal induction ratio and side air outlet.<br />

Warm air heating systems with high air distribution induction ratio:<br />

Characteristic values shall be determined by calculating <strong>the</strong> arithmetic mean <strong>of</strong> <strong>the</strong> values <strong>of</strong> <strong>the</strong> systems with<br />

air outlets at <strong>the</strong> side and above.<br />

When ceiling mounted radiant panels are used in rooms with a height <strong>of</strong> less than 4 m, <strong>the</strong> overall <strong>efficiency</strong><br />

η h,ce for a room height <strong>of</strong> 4 m shall be used. Fur<strong>the</strong>rmore, <strong>the</strong> factor f Radiant is equal to 1.<br />

The overall <strong>efficiency</strong> η h,ce is determined using equation (28).<br />

EXAMPLE Room height 8 m, warm air heating with air outlet above, P controller (1 K)<br />

ηL = 0,91<br />

ηC = 0,95<br />

ηB = 1<br />

ηges = 1/(4 – (0,91 + 0,95 + 1)) = 0,88<br />

η C<br />

η B<br />

1


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

Factor to account for <strong>the</strong> effect <strong>of</strong> radiation: f Radiant = 0,85 for ceiling mounted radiant panels, luminous<br />

radiant heaters, radiant tube heaters and underfloor heating.<br />

The efficiencies <strong>of</strong> heating systems in large indoor spaces and <strong>the</strong> factor f Radiant are mean values based on a<br />

heating system and product typology, which can also be used as a basis for approximations <strong>of</strong> deviating<br />

configurations.<br />

6.1.7 Efficiencies for rooms with heights > 10 m<br />

Table 11 specifies efficiencies for room heights > 10 m.<br />

Space<br />

temp.<br />

control<br />

Heating<br />

systems<br />

Table 11 <strong>—</strong> Efficiencies for rooms with heights > 10 m<br />

Parameters<br />

Part efficiencies<br />

η L<br />

12 m 15 m 20 m<br />

Uncontrolled 0,80<br />

Two-step controller 0,93<br />

P controller (2 K) 0,93<br />

P controller (1 K) 0,95<br />

PI controller 0,97<br />

PI controller with optimum tuning 0,99<br />

Warm air heating Air outlet at <strong>the</strong> side 0,78 0,72 0,63 1<br />

Air distribution with normal induction ratio Air outlet above 0,84 0,78 0,71 1<br />

Warm air heating Air outlet at <strong>the</strong> side 0,88 0,84 0,77 1<br />

Air distribution with controlled vertical<br />

recirculation<br />

Air outlet above 0,91 0,88 0,83 1<br />

Ceiling mounted radiant panels 0,94 0,92 0,89 1<br />

Radiant tube heaters 0,94 0,92 0,89 1<br />

Luminous radiant heaters 0,94 0,92 0,89 1<br />

Underfloor heating (with a high level <strong>of</strong><br />

<strong>the</strong>rmal insulation)<br />

Warm air heating systems with high air distribution induction ratio:<br />

0,94 0,92 0,89<br />

Integrated floor heating 0,95<br />

Thermally decoupled<br />

underfloor heating<br />

1<br />

The characteristic values shall be determined by calculating <strong>the</strong> arithmetic mean <strong>of</strong> <strong>the</strong> values <strong>of</strong> systems with<br />

an air outlet at <strong>the</strong> side and above.<br />

The overall <strong>efficiency</strong> η h,ce is calculated using equation (28).<br />

EXAMPLE Room height 12 m, radiant tube heaters, P controller (2 K)<br />

η L = 0,94<br />

η C = 0,93<br />

η C<br />

η B<br />

39


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

40<br />

η B = 1<br />

η ges = 1/(4 –(0,94 + 0,93 + 1)) = 0,88<br />

Factor to account for <strong>the</strong> effect <strong>of</strong> radiation: f Radiant = 0,85 for ceiling mounted radiant panels, luminous<br />

radiant heaters, radiant tube heaters and underfloor heating.<br />

The characteristic values <strong>of</strong> <strong>the</strong> efficiencies <strong>of</strong> heating systems in large indoor spaces and <strong>the</strong> factor f Radiant<br />

are mean values for <strong>the</strong> heating systems and product types, which can also be used as a basis for<br />

approximation <strong>of</strong> deviating configurations.<br />

6.1.8 Auxiliary energy Q h,ce,aux<br />

The auxiliary energy that is used to improve heat transfer processes in <strong>the</strong> room and is not dealt with in 6.1.2<br />

and 6.1.4 is calculated according to equation (32).<br />

where<br />

Q h, ce, aux QC<br />

+ QV,<br />

P<br />

Q h,ce,aux<br />

Q C<br />

Q V,P<br />

= (32)<br />

is <strong>the</strong> auxiliary energy (in <strong>the</strong> respective month), in kWh;<br />

is <strong>the</strong> auxiliary energy <strong>of</strong> <strong>the</strong> control system (in <strong>the</strong> respective month), in kWh;<br />

is <strong>the</strong> auxiliary energy <strong>of</strong> fans and additional pumps (in <strong>the</strong> respective month), in kWh.<br />

The individual fractions Q C and Q V,P shall be determined using equations (33) and (34) respectively.<br />

where<br />

PC<br />

⋅ dmth<br />

⋅ 24<br />

Q C =<br />

(33)<br />

1000<br />

( P ⋅ n + P ⋅ n )<br />

V V P P ⋅ th,<br />

rL<br />

QV,<br />

P = (34)<br />

1 000<br />

P C<br />

d mth<br />

n V<br />

n P<br />

P V<br />

P P<br />

is <strong>the</strong> electrical rated power consumption <strong>of</strong> <strong>the</strong> control system with auxiliary energy (from<br />

Table 12 or product data), in W;<br />

is <strong>the</strong> number <strong>of</strong> days in <strong>the</strong> respective month (see 4.1);<br />

is <strong>the</strong> number <strong>of</strong> fan units;<br />

is <strong>the</strong> number <strong>of</strong> additional pumps;<br />

is <strong>the</strong> electrical rated power consumption <strong>of</strong> <strong>the</strong> fans (from Table 13 or product data), in W;<br />

is <strong>the</strong> electrical power consumption <strong>of</strong> <strong>the</strong> pump from manufacturer’s data, in W<br />

or<br />

[ ] 08 , 0 &<br />

P<br />

50 ⋅ QLH<br />

= (35)


where<br />

QLH & is <strong>the</strong> electrical rated power consumption <strong>of</strong> <strong>the</strong> heating coil, in kW;<br />

t h,rL<br />

is <strong>the</strong> monthly design running time (see 5.4.1), in h.<br />

<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

The electrical rated power consumption <strong>of</strong> an additional pump can only be used in <strong>the</strong> calculations if <strong>the</strong><br />

hydraulic circuit <strong>of</strong> <strong>the</strong> heating coil requires an additional pump (e.g. an injection circuit), which is not already<br />

taken into account in <strong>the</strong> heat distribution.<br />

The operating time <strong>of</strong> <strong>the</strong> fan and/or pump is assumed to be equal to <strong>the</strong> operating time <strong>of</strong> <strong>the</strong> heating system.<br />

Control with auxiliary<br />

energy P C<br />

Table 12 <strong>—</strong> Default values for auxiliary energy for <strong>the</strong> control system<br />

Parameters<br />

Power<br />

W<br />

Electrical control with electromotoric actuation 0,1 (per drive)<br />

Electrical control with electro<strong>the</strong>rmal actuation 1,0 (per drive)<br />

Electrical control with electromagnetic actuation 1,0 (per drive)<br />

Table 13 <strong>—</strong> Default values for <strong>the</strong> auxiliary energy <strong>of</strong> fans for air supply in rooms where h ≤ 4 m<br />

Fan P V<br />

Parameters<br />

Power<br />

W<br />

Fan convector 10<br />

Fan convector for direct electric heating 10<br />

Storage heating with dynamic discharge 12<br />

Storage heating with continuous dynamic discharge 12<br />

Auxiliary energy in large indoor spaces (h > 4 m) – systems with direct heating<br />

Most notably in large indoor spaces, heaters are used whose functions cannot be easily divided into <strong>the</strong><br />

subsystems heat generation and heat control and emission, and which are installed in <strong>the</strong> space in which <strong>the</strong>y<br />

are used. Examples <strong>of</strong> such heaters are gas and infrared radiators. The total auxiliary energy <strong>of</strong> <strong>the</strong>se<br />

systems is credited to <strong>the</strong> heat requirement <strong>of</strong> <strong>the</strong> space in which <strong>the</strong> heaters are installed (see top <strong>of</strong><br />

Table 14).<br />

Q<br />

h, ce, aux<br />

Ph,<br />

aux ⋅ th,<br />

rL<br />

= (36)<br />

1 000<br />

Auxiliary energy in large indoor spaces (h > 4 m) – systems without direct heating<br />

Where heating systems used in large indoor spaces have a central heat generator and a separate unit for<br />

emission <strong>of</strong> heat into <strong>the</strong> space in which it is required, only <strong>the</strong> auxiliary energy for <strong>the</strong> heat emission <strong>of</strong> <strong>the</strong>se<br />

systems is credited to <strong>the</strong> heat requirement <strong>of</strong> <strong>the</strong> space (see bottom <strong>of</strong> Table 14).<br />

Q<br />

h, ce, aux<br />

Ph,<br />

ce, aux ⋅ th,<br />

rL<br />

= (37)<br />

1 000<br />

41


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

In equations (36) and (37)<br />

42<br />

Q h,ce,aux is <strong>the</strong> monthly auxiliary energy (heat emission and, if necessary, heat generation according to<br />

equation (36)), in kWh;<br />

P h,aux<br />

is <strong>the</strong> rated power consumption <strong>of</strong> <strong>the</strong> equipment from Table 14 or manufacturer’s data (heat<br />

generation and heat emission), in W;<br />

P h,ce,aux is <strong>the</strong> rated power consumption <strong>of</strong> <strong>the</strong> equipment from Table 14 or manufacturer’s data (heat<br />

emission), in W;<br />

t h,rL<br />

is <strong>the</strong> monthly design running time (see 5.4.1), in h.<br />

The operating time <strong>of</strong> <strong>the</strong> fan including <strong>the</strong> control system is assumed to be equal to <strong>the</strong> operating time <strong>of</strong> <strong>the</strong><br />

heating system.<br />

Table 14 specifies <strong>the</strong> default values for <strong>the</strong> auxiliary energy <strong>of</strong> fans and for <strong>the</strong> control system in rooms where<br />

h > 4 m (large indoor spaces).<br />

Table 14 <strong>—</strong> Default values for <strong>the</strong> auxiliary energy <strong>of</strong> fans and for <strong>the</strong> control system in rooms h > 4 m<br />

in height (large indoor spaces)<br />

Ph,aux Direct fired heat generators<br />

(installed in <strong>the</strong> space <strong>the</strong>y heat)<br />

Ph,ce,aux Heat control and<br />

emission system:<br />

air heating<br />

Luminous radiant heaters<br />

(control and regulation)<br />

Parameters<br />

Radiant tube heaters up to 50 kW<br />

(control, regulation and fan for combustion air distribution)<br />

Radiant tube heaters above 50 kW<br />

(control, regulation and fan for combustion air distribution)<br />

Warm air generator with atmospheric burner and recirculation air axial fan<br />

(control, regulation and fan for combustion air distribution)<br />

Warm air generator with fan-assisted burner and recirculation air radial fan<br />

(control, regulation and fan for combustion air distribution, fan for warm air<br />

distribution)<br />

Heating coil installed in room it heats (room height < 8 m)<br />

(central heat generator with indirect-fired heating coil)<br />

Heating coil installed in room it heats (room height > 8 m)<br />

(central heat generator with indirect-fired heating coil)<br />

Vertical recirculation fan (room height < 8 m)<br />

Vertical recirculation fan (room height > 8 m)<br />

Power<br />

W<br />

25 (per unit)<br />

80 (per unit)<br />

100 (per unit)<br />

0,014 · Q h,b<br />

0,022 · Q h,b<br />

0,012 · Q h,b<br />

0,016 · Q h,b<br />

0,002 · Q h,b<br />

0,013 · Q h,b<br />

NOTE The power requirements specified in Table 14 are mean values. Characteristic values for auxiliary energy heat<br />

generators are only introduced if not taken into account in 6.4.3.4.<br />

Q h,b shall be determined as specified in 4.1.<br />

The annual expenditure is determined according to equation (29).


6.2 Heat distribution Q h,d – central hot water heating pipe system<br />

Heat loss from central hot water heating piping<br />

The following general equation applies for losses from piping:<br />

where<br />

( HK, m − ϑi<br />

) ⋅ Li<br />

th,<br />

rL, i<br />

Qh, d = ∑ U i ⋅<br />

⋅<br />

U i<br />

ϑ HK,m<br />

ϑ i<br />

<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

ϑ (38)<br />

is <strong>the</strong> linear heat transfer coefficient, in W/m · K;<br />

is <strong>the</strong> mean heating medium temperature from 5.4, in °C;<br />

is <strong>the</strong> ambient temperature (see 4.1 or Table 15), in °C;<br />

L is <strong>the</strong> length <strong>of</strong> <strong>the</strong> piping, in m;<br />

t h,rL<br />

is <strong>the</strong> monthly design running time (see 5.4.1), in h.<br />

If, for a HVAC system, a heating coil is provided with heat by <strong>the</strong> heating system, <strong>the</strong> mean heating medium<br />

temperature ϑ h* and <strong>the</strong> operating time th*,op for <strong>the</strong> distribution system shall be taken from 4.1.<br />

If an absorption chiller is provided with heat by <strong>the</strong> heating system, <strong>the</strong> mean heating medium temperature<br />

ϑ r, Nutz and <strong>the</strong> operating time tc,op for <strong>the</strong> distribution system shall be taken from 4.1.<br />

In <strong>the</strong> zones through which <strong>the</strong> pipes pass, <strong>the</strong> loss corresponds to <strong>the</strong> uncontrolled heat gains:<br />

where<br />

i i Q QI, h,<br />

d, = h, d,<br />

(39)<br />

Q I,h,d<br />

Q h,d<br />

are <strong>the</strong> uncontrolled losses to <strong>the</strong> zone via <strong>the</strong> heating distribution system (in <strong>the</strong> respective<br />

month), in kWh<br />

is <strong>the</strong> heat output from distribution piping (in <strong>the</strong> respective month), in kWh.<br />

The value shall be summated with <strong>the</strong> values for <strong>the</strong> o<strong>the</strong>r zones and used in <strong>the</strong> ensuing calculations<br />

according to <strong>DIN</strong> V <strong>18599</strong>-2.<br />

Boundary conditions for default values<br />

If no detailed heating piping layout plan is available, <strong>the</strong> <strong>the</strong>rmal losses can be approximated using <strong>the</strong> values<br />

in Table 15. It is assumed that average piping comprises three different zones: V, S and A: Zone V is <strong>the</strong><br />

horizontal distribution <strong>of</strong> heat from <strong>the</strong> generator to <strong>the</strong> main supply pipes, zone S comprises <strong>the</strong> vertical main<br />

supply pipes (if necessary up to <strong>the</strong> local distribution system for each dwelling) and zone A comprises <strong>the</strong><br />

branching pipes (that can be sealed <strong>of</strong>f) to <strong>the</strong> radiators within <strong>the</strong> dwelling.<br />

Length <strong>of</strong> piping for hot water heating pipe systems (see Figure 4)<br />

L V Pipe section between heat generator and main supply pipes. This (horizontal) pipework can be located in<br />

<strong>the</strong> unheated area (such as a basement or attic) or in <strong>the</strong> heated area (such as in <strong>the</strong> screed);<br />

43


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

L S main supply pipes (vertical and, in some cases, horizontal). These pipes are located in <strong>the</strong> heated area,<br />

ei<strong>the</strong>r in <strong>the</strong> external walls (external distribution) or mainly in <strong>the</strong> interior <strong>of</strong> <strong>the</strong> building (internal<br />

distribution). Continuous circulation <strong>of</strong> <strong>the</strong> heating medium;<br />

L A branching pipes: pipes that can be sealed <strong>of</strong>f in <strong>the</strong> heated area. Connection between <strong>the</strong> circulating pipe<br />

sections and <strong>the</strong> radiators.<br />

44<br />

Figure 4 <strong>—</strong> Designation <strong>of</strong> pipes in hot water heating pipe systems<br />

Table 15 <strong>—</strong> Default values<br />

Parameter Symbol Unit Zone V Zone S Zone A<br />

Ambient temperature ϑ i °C from <strong>DIN</strong> V <strong>18599</strong>-2<br />

Ambient temperature<br />

outside <strong>the</strong> heating<br />

season (if no values are<br />

calculated from<br />

<strong>DIN</strong> V <strong>18599</strong>-2)<br />

Ambient temperature in<br />

<strong>the</strong> heating season (if<br />

no values are<br />

calculated from<br />

<strong>DIN</strong> V <strong>18599</strong>-2)<br />

Length <strong>of</strong> external main<br />

supply pipe sections<br />

Length <strong>of</strong> internal main<br />

supply pipe sections<br />

Length <strong>of</strong> internal main<br />

supply pipe sections<br />

Building/zone data are taken from <strong>DIN</strong> V <strong>18599</strong>-2.<br />

In <strong>the</strong> above table<br />

ϑ i °C 22 °C<br />

ϑ i<br />

°C<br />

13 °C in <strong>the</strong> unheated zone<br />

and 20 °C in <strong>the</strong> heated<br />

zone<br />

Two-pipe heating<br />

20 °C in <strong>the</strong> heated zone<br />

L m 2 · LG + 0,016 25 · LG · B2 G 0,025 · LG · BG · hG · nG 0,55 · LG · BG · nG L m 2 · LG + 0,032 5 · LG · BG + 6 0,025 · LG · BG · hG · nG 0,55 · LG · BG · nG One-pipe heating<br />

L m 2 · L G + 0,032 5 · L G · B G + 6 0,025 · L G · B G · h G · n G +<br />

2 · (L G + B G ) · n G<br />

L G is <strong>the</strong> largest extended length <strong>of</strong> <strong>the</strong> building (see 4.1), in m;<br />

B G is <strong>the</strong> largest extended width <strong>of</strong> <strong>the</strong> building (see 4.1), in m;<br />

0,1 · L G · B G · n G


n G is <strong>the</strong> number <strong>of</strong> heated storeys (see 4.1);<br />

h G is <strong>the</strong> height <strong>of</strong> <strong>the</strong> storeys, in m (see 4.1).<br />

<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

If a building is not rectangular in shape, <strong>the</strong> pipe lengths to be used in <strong>the</strong> calculations shall be determined by<br />

dividing <strong>the</strong> building into rectangles, adding toge<strong>the</strong>r <strong>the</strong> lengths <strong>of</strong> <strong>the</strong> individual rectangles and taking <strong>the</strong>ir<br />

mean width. The values thus calculated shall be inserted in <strong>the</strong> formulae in Table 15.<br />

Heat supply piping for air handling units<br />

Lengths <strong>of</strong> pipework used for <strong>the</strong> heating <strong>of</strong> decentralized air handling units shall be calculated in <strong>the</strong> same<br />

way as for hot water heating systems. For central air handling units, <strong>the</strong> length <strong>of</strong> piping shall be specified to<br />

suit <strong>the</strong> location.<br />

Determining <strong>the</strong> length <strong>of</strong> piping in <strong>buildings</strong> extending over more than one zone<br />

If a building comprises a number <strong>of</strong> zones (see <strong>DIN</strong> V <strong>18599</strong>-2), <strong>the</strong>n for simplification <strong>the</strong> length <strong>of</strong> <strong>the</strong><br />

branching and main supply pipes is determined from <strong>the</strong> geometrical dimensions <strong>of</strong> each zone. The lengths <strong>of</strong><br />

<strong>the</strong> distribution pipes are determined from <strong>the</strong> geometrical dimensions <strong>of</strong> <strong>the</strong> building as a whole.<br />

Alternatively, <strong>the</strong> distribution system can be calculated for <strong>the</strong> whole building and <strong>the</strong> <strong>the</strong>rmal losses assigned<br />

to <strong>the</strong> zones proportionately to <strong>the</strong>ir areas.<br />

Age class <strong>of</strong> building<br />

Table 16 <strong>—</strong> Assumptions for heat transfer coefficients U i in W/(m · K)<br />

Distribution External main supply pipes Internal main supply pipes<br />

V S A S A<br />

From 1995 0,200 0,255 0,255 0,255 0,255<br />

1980 to 1995 0,200 0,400 0,400 0,300 0,400<br />

Up to 1980 0,400 0,400 0,400 0,400 0,400<br />

Non-insulated piping<br />

A NGF ≤ 200 m 2 1,000 1,000 1,000 1,000 1,000<br />

200 < A NGF ≤ 500 m 2 2,000 2,000 2,000 2,000 2,000<br />

A NGF > 500 m 2 3,000 3,000 3,000 3,000 3,000<br />

Located in external wall<br />

(EW)<br />

total/usable a<br />

EW, non-insulated 1,35/0,80<br />

EW, externally insulated 1,00/0,90<br />

EW (U = 0,4 W/(m 2 · K)) 0,75/0,55<br />

a Total = total heat output; usable = output <strong>of</strong> heat that is usable in <strong>the</strong> space.<br />

6.2.1 Auxiliary energy for central hot water heating pipe system<br />

Auxiliary energy expenditure for circulation<br />

The auxiliary energy expenditure required to operate heating circulation pumps is calculated on <strong>the</strong> basis <strong>of</strong><br />

<strong>the</strong> hydraulic requirement <strong>of</strong> <strong>the</strong> distribution system and an expenditure factor describing <strong>the</strong> operation <strong>of</strong> <strong>the</strong><br />

pump.<br />

45


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

where<br />

46<br />

Qh, d, aux Wh,<br />

d, hydr ⋅ eh,<br />

d, aux<br />

Q h,d,aux<br />

W h,d,hydr<br />

e h,d,aux<br />

= (40)<br />

is <strong>the</strong> auxiliary energy expenditure (in <strong>the</strong> respective month), in kWh;<br />

is <strong>the</strong> hydraulic energy requirement (in <strong>the</strong> respective month), in kWh;<br />

is <strong>the</strong> expenditure factor for operation <strong>of</strong> <strong>the</strong> heat pump.<br />

For intermittent operation <strong>the</strong> auxiliary energy shall be obtained from equation (47).<br />

Hydraulic energy requirement<br />

The hydraulic energy requirement <strong>of</strong> heating distribution is obtained from <strong>the</strong> hydraulic power at <strong>the</strong> design<br />

point (P hydr ) toge<strong>the</strong>r with <strong>the</strong> mean distribution part load (β h,d and t h ). The correction factors f Sch and f Abgl<br />

take into account <strong>the</strong> principal parameters governing <strong>the</strong> system design.<br />

Integrated pump management reduces <strong>the</strong> running time <strong>of</strong> <strong>the</strong> heat circulation pump. This is taken into<br />

account by introducing <strong>the</strong> factor f d,PM in equation (41).<br />

where<br />

Phydr<br />

Wh, d, hydr = ⋅ β h, d ⋅ ( th<br />

⋅ fd,<br />

PM)<br />

⋅ fSch<br />

⋅ fAbgl<br />

(41)<br />

1 000<br />

P hydr<br />

β h,d<br />

t h<br />

f Sch<br />

f Abgl<br />

f d,PM<br />

is <strong>the</strong> hydraulic power <strong>of</strong> <strong>the</strong> pump at <strong>the</strong> design point, in W;<br />

is <strong>the</strong> mean distribution part load;<br />

is <strong>the</strong> number <strong>of</strong> heating hours in <strong>the</strong> respective month (see 4.1), in h;<br />

is <strong>the</strong> correction factor to account for <strong>the</strong> hydraulic circuit;<br />

is <strong>the</strong> correction factor to account for <strong>the</strong> hydraulic balance;<br />

is <strong>the</strong> correction factor for heat generators with integrated pump management.<br />

⎯ For heat generators without integrated pump management, <strong>the</strong> factor f d,PM = 1.<br />

⎯ For heat generators with integrated pump management and boiler temperature control with external<br />

sensors, <strong>the</strong> factor f d,PM = 0,75.<br />

⎯ For heat generators with integrated pump management and boiler temperature control with internal<br />

sensors, <strong>the</strong> factor f d,PM = 0,45.<br />

Hydraulic power <strong>of</strong> <strong>the</strong> pump at <strong>the</strong> design point<br />

The hydraulic power <strong>of</strong> <strong>the</strong> pump at <strong>the</strong> design point is given by<br />

P = 0,<br />

2778<br />

⋅ ∆ p ⋅V&<br />

hydr (42)


where<br />

V & is <strong>the</strong> volume flow at <strong>the</strong> design point, in m 3 /h;<br />

∆p is <strong>the</strong> pressure drop at <strong>the</strong> design point, in kPa.<br />

<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

The volume flow at <strong>the</strong> design point is obtained from <strong>the</strong> design heat load Q max<br />

& (see 4.1) and <strong>the</strong> design<br />

temperature difference ∆ϑ HK in <strong>the</strong> heating circuit.<br />

where<br />

h,<br />

max<br />

=<br />

1, 15 ⋅ ∆ϑHK<br />

Q&<br />

V<br />

& (43)<br />

∆ϑ HK<br />

is <strong>the</strong> temperature difference at <strong>the</strong> design point (see 5.2), in K.<br />

The pressure drop at <strong>the</strong> design point is given by <strong>the</strong> resistance <strong>of</strong> <strong>the</strong> piping (with individual resistances) and<br />

<strong>the</strong> components providing additional resistances.<br />

where<br />

∆ (44)<br />

p = 0, 13 ⋅ Lmax<br />

+ 2 + ∆pFBH<br />

+ ∆pWE<br />

L max<br />

∆p FBH<br />

∆p WE<br />

is <strong>the</strong> maximum length <strong>of</strong> <strong>the</strong> piping, in m;<br />

is <strong>the</strong> pressure drop <strong>of</strong> <strong>the</strong> underfloor heating = 25 kPa (if present);<br />

is <strong>the</strong> pressure drop <strong>of</strong> <strong>the</strong> heat generator, in kPa.<br />

If no product data are available, <strong>the</strong>n for heat generators with a water content <strong>of</strong> < 0,15 l/kW at<br />

Qh, max<br />

& < 35 kW ∆pWE = 20 ⋅ ,<br />

2<br />

V& in kPa and at Qh, max<br />

& ≥ 35 kW ∆pWE = 80 kPa, while for heat generators with<br />

a water content <strong>of</strong> > 0,15 l/kW ∆p WE = 1 kPa shall be used.<br />

The maximum pipe length for a rectangular building can be estimated from <strong>the</strong> external dimensions <strong>of</strong> <strong>the</strong><br />

building or zone according to <strong>DIN</strong> V <strong>18599</strong>-2.<br />

where<br />

⎛ BG<br />

⎞<br />

L max = 2 ⋅ ⎜ LG<br />

+ + nG<br />

⋅ hG<br />

+ ld<br />

⎟<br />

(45)<br />

⎝ 2<br />

⎠<br />

L G is <strong>the</strong> largest extended length <strong>of</strong> <strong>the</strong> building (see 4.1), in m;<br />

B G is <strong>the</strong> largest extended width <strong>of</strong> <strong>the</strong> building (see 4.1), in m;<br />

n G is <strong>the</strong> number <strong>of</strong> heated storeys (see 4.1);<br />

h G is <strong>the</strong> average height <strong>of</strong> a storey (see 4.1), in m;<br />

l d = 10 (an allowance for connections in <strong>the</strong> case <strong>of</strong> two-pipe heating systems), in m;<br />

h,<br />

47


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

48<br />

l d<br />

= L + B (an allowance for connections in <strong>the</strong> case <strong>of</strong> one-pipe heating systems), in m.<br />

The boundary conditions specified in 6.2 shall apply when calculating <strong>the</strong> piping section lengths to be<br />

assumed.<br />

Correction factors for:<br />

Type <strong>of</strong> system (hydraulic circuit) f Sch<br />

⎯ two pipe systems: f Sch = 1;<br />

⎯ one-pipe systems: f Sch = 8,6 ⋅ m + 0,7<br />

where<br />

m is <strong>the</strong> proportional radiator mass flow, in %.<br />

Hydraulic balance f Abgl<br />

⎯ For hydraulically balanced heating distribution: f Abgl = 1.<br />

⎯ For heating distribution that is not hydraulically balanced: f Abgl = 1,1.<br />

Expenditure factor<br />

To assess <strong>the</strong> performance <strong>of</strong> <strong>the</strong> heat pump, an expenditure factor e h,d,aux is calculated using equation (46).<br />

The expenditure factor takes account <strong>of</strong> <strong>the</strong> principal parameters governing <strong>the</strong> annual electrical expenditure<br />

<strong>of</strong> <strong>the</strong> pump, which can be derived from <strong>the</strong> size and <strong>efficiency</strong> <strong>of</strong> <strong>the</strong> pump as well as its part load and control<br />

performance. When calculating on a monthly basis, it is assumed for simplification that a monthly value for<br />

e h,d,aux can be calculated using <strong>the</strong> monthly value β h,d .<br />

where<br />

−1<br />

( CP1<br />

+ CP2<br />

⋅ h, d )<br />

e (46)<br />

h, d, aux = fe<br />

⋅<br />

β<br />

C P1 , C P2 are constants from Table 17;<br />

f e<br />

where<br />

is <strong>the</strong> <strong>efficiency</strong> factor, calculated as follows:<br />

⎛<br />

0,<br />

5 ⎞<br />

⎜ ⎛ ⎞ ⎟<br />

f ⎜ 200 ⎟<br />

e = ⎜1<br />

, 25 +<br />

⋅ b<br />

P<br />

⎟<br />

⎜<br />

⎜ ⎟<br />

⎟<br />

⎝<br />

⎝ hydr ⎠<br />

⎠<br />

for an unidentified pump<br />

PPumpe<br />

f e =<br />

Phydr<br />

for an identified pump<br />

b is <strong>the</strong> over-dimensioning factor, determined as follows:<br />

⎯ for pumps designed to meet <strong>the</strong> demand, b = 1;<br />

⎯ for pumps which are not designed to meet <strong>the</strong> demand, b = 2.


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

For existing pumps, <strong>the</strong> power stated on <strong>the</strong> rating plate can be taken as an approximate value for P Pumpe .<br />

Table 17 <strong>—</strong> Constants C P1 ,and C P2 for calculation <strong>of</strong> <strong>the</strong> expenditure factor <strong>of</strong> heat pumps<br />

Pump control C P1 C P2<br />

Uncontrolled 0,25 0,75<br />

∆pconst 0,75 0,25<br />

∆p variable 0,90 0,10<br />

Intermittent operation<br />

The pump operates in <strong>the</strong> intermittent mode if it is operated outside <strong>the</strong> usage time at limited power or is<br />

switched <strong>of</strong>f. In <strong>the</strong>se cases <strong>the</strong> electrical energy expenditure <strong>of</strong> <strong>the</strong> heating circulation pumps is determined<br />

as follows:<br />

Q<br />

where<br />

h, d, aux<br />

Q h,d,aux<br />

W h,d,hydr<br />

e h,d,aux<br />

t h,rL<br />

f P,A<br />

t h<br />

h<br />

( t − t )<br />

1,<br />

03 ⋅ th,<br />

rL + fP,<br />

A ⋅ h h, rL<br />

= Wh,<br />

d, hydr ⋅ eh,<br />

d, aux ⋅<br />

(47)<br />

t<br />

is <strong>the</strong> electrical energy use (in <strong>the</strong> respective month), in kWh;<br />

is <strong>the</strong> hydraulic energy requirement (in <strong>the</strong> respective month), in kWh;<br />

is <strong>the</strong> expenditure factor for heat pump operation;<br />

is <strong>the</strong> monthly design running time (see 5.4.1), in h;<br />

is <strong>the</strong> correction factor to account for pump set-back/switch-<strong>of</strong>f;<br />

is <strong>the</strong> number <strong>of</strong> heating hours in <strong>the</strong> respective month (see 4.1), in h.<br />

The correction factor to account for set-back or switch-<strong>of</strong>f <strong>of</strong> <strong>the</strong> pump is given by <strong>the</strong> following:<br />

⎯ for set-back operation:<br />

0 ≤ f P,A ≤ 1; default value 0,6;<br />

⎯ for switch-<strong>of</strong>f:<br />

f P,A = 0.<br />

Deviations in <strong>the</strong> calculation procedure<br />

In certain applications, deviations in <strong>the</strong> calculation procedure shall be taken into account.<br />

⎯ One-pipe heating<br />

The total mass flow and accordingly <strong>the</strong> throughflow at <strong>the</strong> pump are approximately constant. The pump<br />

operates at <strong>the</strong> design point throughout <strong>the</strong> year. For <strong>the</strong> mean hydraulic part load β h,d = 1 applies.<br />

49


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

⎯ Overflow valves<br />

Overflow valves are used to ensure minimum water circulation flow at <strong>the</strong> heat generator or to limit <strong>the</strong><br />

pressure drop at <strong>the</strong> connected load. The function <strong>of</strong> <strong>the</strong> overflow valve results from <strong>the</strong> interaction <strong>of</strong> <strong>the</strong><br />

system pressure loss, pump performance curve and response pressure <strong>of</strong> <strong>the</strong> valve. The effects on <strong>the</strong><br />

mean hydraulic requirement can be estimated with <strong>the</strong> aid <strong>of</strong> equation (48).<br />

where<br />

50<br />

(β' h,d from <strong>the</strong> definition <strong>of</strong> <strong>the</strong> mean part load)<br />

& min<br />

V ( − h, ′ d)<br />

V&<br />

h, d = βh,<br />

′ d + 1 β ⋅<br />

β (48)<br />

V & is <strong>the</strong> design volume flow, in m 3 /h;<br />

Vmin & is <strong>the</strong> minimum volume flow, in m3 /h.<br />

The minimum volume flow shall depend on <strong>the</strong> requirements <strong>of</strong> <strong>the</strong> heat generator or on <strong>the</strong> load circuit<br />

overpressure safeguard.<br />

6.3 Storage<br />

Heat loss<br />

If <strong>the</strong> heating circuit is provided with a storage tank (to minimize <strong>the</strong> cyclical behaviour <strong>of</strong> <strong>the</strong> heat generator or<br />

to store solar energy, for instance) <strong>the</strong> storage losses shall be calculated according to equation (49).<br />

where<br />

( ϑh,<br />

s − ϑi<br />

)<br />

Qh, s = f Verbindung ⋅ ⋅ dh,<br />

mth ⋅ qB,<br />

S<br />

45<br />

Q h,s<br />

ϑ h,s<br />

ϑ i<br />

d h,mth<br />

q B,S<br />

is <strong>the</strong> heat loss <strong>of</strong> <strong>the</strong> storage tank (in <strong>the</strong> respective month) (see 4.2), in kWh;<br />

is <strong>the</strong> mean temperature <strong>of</strong> <strong>the</strong> storage tank (see clause 5), in °C;<br />

is <strong>the</strong> average ambient temperature (see 4.1 or Table 15), in °C;<br />

is <strong>the</strong> number <strong>of</strong> heating days (in <strong>the</strong> respective month) (see 4.1);<br />

is <strong>the</strong> stand-by heat loss, in kWh/d.<br />

As long as <strong>the</strong> storage tank is located in <strong>the</strong> same space as <strong>the</strong> heat generator, <strong>the</strong> heat loss from <strong>the</strong> pipe<br />

between heat generator and storage tank shall be taken to be f Verbindung = 1,2. For ano<strong>the</strong>r configuration (e.g.<br />

if <strong>the</strong>y are located in separate rooms) <strong>the</strong> pipe losses shall be calculated according to 6.2.<br />

The factor 1,2 takes blanket account <strong>of</strong> <strong>the</strong> additional <strong>the</strong>rmal losses that occur through <strong>the</strong> piping extending<br />

from <strong>the</strong> heat generator to <strong>the</strong> storage tank. The stand-by heat loss q B,S <strong>of</strong> <strong>the</strong> buffer storage tank shall be<br />

measured according to <strong>DIN</strong> V 4753-8 (with a mean temperature difference between <strong>the</strong> storage water and <strong>the</strong><br />

installation space <strong>of</strong> 45 K). The monthly heat loss Q h,s from <strong>the</strong> buffer storage tank can <strong>the</strong>n be determined on<br />

<strong>the</strong> basis <strong>of</strong> <strong>the</strong> stand-by heat loss thus measured, <strong>the</strong> location <strong>of</strong> <strong>the</strong> storage tank, and <strong>the</strong> mean heating<br />

circuit temperature.<br />

(49)


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

Electric central storage heaters shall be calculated in <strong>the</strong> same way as buffer storage tanks. The stand-by<br />

losses from one or more storage heaters shall be determined on <strong>the</strong> basis <strong>of</strong> those actually in use. No default<br />

values are specified for <strong>the</strong> storage losses. The distribution and control and emission losses are calculated as<br />

for central water heating systems.<br />

If <strong>the</strong> storage tank is located in a zone, <strong>the</strong> loss corresponds to <strong>the</strong> uncontrolled heat gain:<br />

where<br />

Q I,h,s = Q h,s<br />

Q I,h,s<br />

Q h,s<br />

is <strong>the</strong> uncontrolled loss to <strong>the</strong> zone from <strong>the</strong> storage tank (in <strong>the</strong> respective month), in kWh;<br />

is <strong>the</strong> loss from <strong>the</strong> storage tank (in <strong>the</strong> respective month), in kWh.<br />

Boundary conditions for <strong>the</strong> default values<br />

If <strong>the</strong> stand-by heat loss q B,S <strong>of</strong> <strong>the</strong> storage tank is not known (i.e. it has not been measured as specified in<br />

<strong>DIN</strong> V 4753-8), it can, for simplification, be determined using equation (51) for calculation <strong>of</strong> <strong>the</strong> <strong>the</strong>rmal<br />

losses due to storage.<br />

where<br />

q B,S = 0,4 + 0,14 · V 0,5<br />

q B,S is <strong>the</strong> stand-by heat loss, in kWh/d;<br />

V is <strong>the</strong> nominal capacity <strong>of</strong> <strong>the</strong> storage tank, in l.<br />

For operation in combination with a heat pump, <strong>the</strong> nominal capacity <strong>of</strong> <strong>the</strong> storage tank required for<br />

determining <strong>the</strong> stand-by heat loss qB,S can be estimated as V = 9,5 · QN & . The volume <strong>of</strong> a storage tank that<br />

is operated in combination with a biomass combustion system can be taken to be V = 50 · QN & , with a mean<br />

temperature ϑh,s <strong>of</strong> 85 °C.<br />

If <strong>the</strong> volume <strong>of</strong> <strong>the</strong> buffer storage tank exceeds 1 500 l, <strong>the</strong>n <strong>the</strong> storage function shall comprise a number <strong>of</strong><br />

individual storage tanks. In this case it shall be assumed that <strong>the</strong>re is at least one storage tank with a capacity<br />

<strong>of</strong> 1 500 l and that <strong>the</strong>re is just one o<strong>the</strong>r storage tank that provides <strong>the</strong> remaining volume. In this case, <strong>the</strong><br />

storage losses shall be added toge<strong>the</strong>r.<br />

Auxiliary energy for charging a buffer storage tank<br />

If a separate circulation pump is required for operation <strong>of</strong> <strong>the</strong> buffer storage tank, <strong>the</strong>n <strong>the</strong> auxiliary energy<br />

shall be determined using equation (52).<br />

where<br />

Qh,<br />

s, aux<br />

PPumpe<br />

⋅ tP<br />

= (52)<br />

1 000<br />

Q h,s,aux is <strong>the</strong> auxiliary energy <strong>of</strong> <strong>the</strong> pump (in <strong>the</strong> respective month) (see 4.2.4), in kWh;<br />

P Pumpe is <strong>the</strong> rated power consumption <strong>of</strong> <strong>the</strong> pump (from design data or equation (53)), in W;<br />

t P<br />

is <strong>the</strong> operating period <strong>of</strong> <strong>the</strong> pump (in <strong>the</strong> respective month), in h.<br />

(50)<br />

(51)<br />

51


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

The auxiliary energy for operation <strong>of</strong> a buffer storage tank can be calculated if <strong>the</strong> pump power is known. This<br />

value can be specified, for example on <strong>the</strong> basis <strong>of</strong> a particular pump selected. The operating period <strong>of</strong> <strong>the</strong><br />

buffer storage tank pump is given by t P = β h,s · 24 · d h,mth , if it is operated at <strong>the</strong> same time as <strong>the</strong> heat<br />

generator.<br />

Boundary conditions for <strong>the</strong> default values<br />

If <strong>the</strong> pump power is not known it can be roughly calculated using equation (53). It shall also be assumed that<br />

<strong>the</strong> pump is in operation at <strong>the</strong> same time as <strong>the</strong> heat generator.<br />

where<br />

52<br />

P Pumpe = 40 + 0,03 ⋅ L G ⋅ B G ⋅ n G<br />

P Pumpe is <strong>the</strong> rated power consumption <strong>of</strong> <strong>the</strong> pump, in W;<br />

L G<br />

B G<br />

n G<br />

6.4 Heat generator<br />

is <strong>the</strong> largest extended length <strong>of</strong> <strong>the</strong> building (see 4.1), in m;<br />

is <strong>the</strong> largest extended width <strong>of</strong> <strong>the</strong> building (see 4.1), in m;<br />

is <strong>the</strong> number <strong>of</strong> heated storeys (see 4.1).<br />

If <strong>the</strong>re is additional requirement for heat generation alone from ano<strong>the</strong>r part <strong>of</strong> <strong>the</strong> <strong>DIN</strong> V <strong>18599</strong> series <strong>of</strong><br />

prestandards (e.g. for HVAC systems according to <strong>DIN</strong> V <strong>18599</strong>-7) this is also to be taken into account. If <strong>the</strong><br />

desired temperature is higher than that <strong>of</strong> conventional heating systems, this is also to be taken into account.<br />

If, on <strong>the</strong> o<strong>the</strong>r hand, heat is supplied to <strong>the</strong> heating system from o<strong>the</strong>r parts <strong>of</strong> <strong>the</strong> <strong>DIN</strong> V <strong>18599</strong> series (e.g.<br />

from an extract air heat pump, see <strong>DIN</strong> V <strong>18599</strong>-6 or <strong>DIN</strong> V <strong>18599</strong>-7), <strong>the</strong>n this is also to be taken into<br />

account when calculating <strong>the</strong> heat generation requirement (see also <strong>DIN</strong> V <strong>18599</strong>-1).<br />

The remaining energy need met by <strong>the</strong> additional heat generator (e.g. a boiler), is given by:<br />

where<br />

Q * h,outg = Q h,outg – Q h,sol – Q rv,h,outg<br />

Q * h,outg<br />

Q h,outg<br />

is <strong>the</strong> remaining generator heat output (in <strong>the</strong> respective month), in kWh;<br />

is <strong>the</strong> generator heat output to <strong>the</strong> heating distribution (in <strong>the</strong> respective month) (see 4.2), in<br />

kWh;<br />

Q rv,h,outg is <strong>the</strong> generator heat output <strong>of</strong> <strong>the</strong> residential ventilation system for space heating (in <strong>the</strong><br />

respective month) (see 4.1), in kWh;<br />

Q h,sol<br />

is <strong>the</strong> energy contribution <strong>of</strong> <strong>the</strong> solar system for space heating (in <strong>the</strong> respective month), in<br />

kWh.<br />

In <strong>the</strong> ensuing calculations Q * h,outg shall be used instead <strong>of</strong> Q h,outg .<br />

If several heat generators are used, <strong>the</strong>y shall be calculated in <strong>the</strong> sequence in which <strong>the</strong>y are used for<br />

energy generation.<br />

(53)<br />

(54)


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

If <strong>the</strong> same heat generator is used for space heating and domestic hot water, <strong>the</strong>n in <strong>the</strong> ensuing calculations<br />

<strong>the</strong> time <strong>the</strong> generator is being operated for domestic hot water heating purposes according to <strong>DIN</strong> V <strong>18599</strong>-8<br />

shall be deducted from <strong>the</strong> heating time.<br />

The maximum required heat generator output <strong>of</strong> a building or building zone for space heating, domestic hot<br />

water heating, residential ventilation and HVAC is <strong>the</strong> sum <strong>of</strong> all loads that are required in parallel or <strong>of</strong> <strong>the</strong><br />

largest load in prioritized operation:<br />

Q&<br />

= ⎜<br />

⎛<br />

⎟<br />

⎞<br />

N , max max<br />

⎝∑Q&<br />

N,<br />

gl,<br />

Q&<br />

Vorrang<br />

(55)<br />

⎠<br />

The following clauses deal with <strong>the</strong> space heating system. Unless o<strong>the</strong>rwise described, calculations for <strong>the</strong><br />

o<strong>the</strong>r subsystems shall be by analogy.<br />

6.4.1 Solar systems supporting domestic hot water heating and space heating systems (combination<br />

systems)<br />

<strong>Calculation</strong> <strong>of</strong> <strong>the</strong> contribution <strong>of</strong> solar systems in meeting <strong>the</strong> energy need (combination systems) shall be<br />

according to recognized technical rules or shall make use <strong>of</strong> documented results from recognized simulation<br />

programmes.<br />

If <strong>the</strong> solar system is combined with a bivalent space heating system (e.g. using a heat pump with an electric<br />

heating rod), this shall be taken into account when considering <strong>the</strong> heat pump or heating rod (<strong>the</strong> proportion <strong>of</strong><br />

<strong>the</strong> space heating supplied by <strong>the</strong> base load heat generator <strong>the</strong>n refers to <strong>the</strong> energy need for heating less <strong>the</strong><br />

heat provided by solar energy).<br />

6.4.1.1 Satisfaction <strong>of</strong> energy need by solar combination systems<br />

The total solar energy contribution <strong>of</strong> <strong>the</strong> combination system is calculated as follows:<br />

where<br />

Q K,sol = Q w,sol + Q h,sol<br />

Q w,sol<br />

Q h,sol<br />

is <strong>the</strong> energy contribution <strong>of</strong> <strong>the</strong> solar system for domestic water heating (in <strong>the</strong> respective<br />

month), in kWh;<br />

is <strong>the</strong> energy contribution <strong>of</strong> <strong>the</strong> solar system for space heating (in <strong>the</strong> respective month), in<br />

kWh.<br />

The energy contribution <strong>of</strong> <strong>the</strong> combination system for domestic water heating is calculated as specified in<br />

<strong>DIN</strong> V <strong>18599</strong>-8 as follows:<br />

where<br />

Q w,sol = Q K,sol · f K,w<br />

f K,w<br />

is <strong>the</strong> fraction <strong>of</strong> energy provided by <strong>the</strong> combination system for domestic water heating (see<br />

equation (64)).<br />

The energy contribution <strong>of</strong> <strong>the</strong> combination system for space heating is given by<br />

Q h,sol = Q K,sol · (1,0 – f K,w ) (58)<br />

(56)<br />

(57)<br />

53


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

6.4.1.2 <strong>Energy</strong> contribution <strong>of</strong> solar combination systems<br />

Combination systems dealt with in this document consist <strong>of</strong> a combination storage tank or a solar buffer<br />

storage tank and a domestic hot water storage tank (dual storage system). The hot water storage tank uses<br />

<strong>the</strong> same configuration as for small solar systems used for hot water heating. When a combination storage<br />

tank is used, domestic hot water heating is ei<strong>the</strong>r according to <strong>the</strong> instantaneous principle or by means <strong>of</strong> a<br />

small tank that is located within <strong>the</strong> combination storage tank (“tank in tank” principle). The solar buffer<br />

storage tank or <strong>the</strong> solar part <strong>of</strong> <strong>the</strong> combination storage tank is used for storage <strong>of</strong> <strong>the</strong> energy supplied by <strong>the</strong><br />

solar system.<br />

The procedure outlined is only suitable for calculating combination systems that do not have significant annual<br />

variations in heat storage.<br />

Required parameters<br />

To determine <strong>the</strong> energy contribution <strong>of</strong> <strong>the</strong> combination system <strong>the</strong> following parameters need to be known:<br />

⎯ total annual heat required for domestic hot water Q w,outg,a , obtained from <strong>the</strong> sum <strong>of</strong> <strong>the</strong> monthly values<br />

(see 4.2), in kWh;<br />

⎯ collector (product data determined according to <strong>DIN</strong> EN 12975-2; see <strong>DIN</strong> V <strong>18599</strong>-8 for default values<br />

(including those for old systems)):<br />

54<br />

⎯ Ac <strong>the</strong> aperture area <strong>of</strong> <strong>the</strong> collector, in m 2 ;<br />

⎯ η 0<br />

⎯ k 1<br />

⎯ k 2<br />

<strong>the</strong> conversion factor;<br />

is a heat loss coefficient, in W/(m 2 · K);<br />

is a heat loss coefficient, in W/(m 2 · K 2 );<br />

⎯ IAM (50°) is <strong>the</strong> incidence angle modifier to account for Θ = 50° incident radiation;<br />

⎯ c is <strong>the</strong> effective heat capacity, in kJ/(m 2 · K).<br />

⎯ inclination and alignment <strong>of</strong> <strong>the</strong> collector field (see <strong>DIN</strong> V <strong>18599</strong>-8 for default values, including those for<br />

old systems):<br />

⎯ inclination angle β (β = 0° horizontal);<br />

⎯ angle <strong>of</strong> deviation from <strong>the</strong> sou<strong>the</strong>rly alignment γ (γ = –90° east).<br />

For residential <strong>buildings</strong> <strong>the</strong> default value for <strong>the</strong> collector area for combination systems is twice <strong>the</strong> surface<br />

area for hot water systems (see <strong>DIN</strong> V <strong>18599</strong>-8). Default values for <strong>the</strong> aperture area <strong>of</strong> collectors on nonresidential<br />

<strong>buildings</strong> are not specified for combination systems; in this case, project values shall be used.<br />

⎯ storage tank (product data, determined according to <strong>DIN</strong> V 4753-8 or <strong>DIN</strong> V ENV 12977-3; see 6.3 for<br />

default values, including those for old systems):<br />

⎯ V sto<br />

⎯ (UA) s<br />

⎯ (UA) * s<br />

is <strong>the</strong> total storage volume, in l;<br />

is <strong>the</strong> heat loss rate <strong>of</strong> <strong>the</strong> storage tank, in W/K;<br />

is <strong>the</strong> specific heat loss rate, in W/(K · l).<br />

⎯ total annual heat required for space heating Q h,outg,a obtained from <strong>the</strong> sum <strong>of</strong> <strong>the</strong> monthly values (see<br />

4.2.1), in kWh; total heat load for domestic hot water and space heating: Q W,ges = Q w,outg + Q h,outg;


⎯ solar load ratio, in m 2 /kWh:<br />

<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

Ac<br />

slr = (59)<br />

QW,<br />

ges<br />

⎯ temperature level in <strong>the</strong> space heating circuit ϑ h (see 5.2), in °C;<br />

⎯ storage tank (product data, determined according to <strong>DIN</strong> V 4753-8 or <strong>DIN</strong> V ENV 12977-3; see<br />

<strong>DIN</strong> V <strong>18599</strong>-8 for default values, including those for old systems).<br />

For conversion <strong>of</strong> <strong>the</strong> values <strong>of</strong> <strong>the</strong>rmal loss, <strong>the</strong> following equation can be used:<br />

where<br />

1 000 ⋅ 24 h<br />

( UA ) s = qB,<br />

S ⋅<br />

(60)<br />

45 K<br />

(UA) s<br />

q B,S<br />

is <strong>the</strong> heat loss rate <strong>of</strong> <strong>the</strong> storage tank, in W/K;<br />

is <strong>the</strong> stand-by heat loss, in kWh/d.<br />

If <strong>the</strong> combination system consists <strong>of</strong> a domestic hot water storage tank and a solar buffer storage tank, <strong>the</strong>n<br />

<strong>the</strong> total specific heat loss rate <strong>of</strong> <strong>the</strong> storage tanks is given by<br />

where<br />

*<br />

( UA)<br />

s<br />

(UA) * s<br />

(UA) s,dhw<br />

(UA) s,sol<br />

V dhw,sto<br />

V sto<br />

( UA)<br />

s, dhw + ( UA)<br />

s,<br />

sol<br />

Vdhw,<br />

sto + Vsto<br />

= (61)<br />

is <strong>the</strong> total specific heat loss rate, in W/(K ⋅ l);<br />

is <strong>the</strong> heat loss rate <strong>of</strong> <strong>the</strong> domestic hot water storage tank, in W/K;<br />

is <strong>the</strong> heat loss rate <strong>of</strong> <strong>the</strong> solar buffer storage tank or <strong>the</strong> combination storage tank, in W/K;<br />

is <strong>the</strong> total volume <strong>of</strong> <strong>the</strong> domestic hot water storage, in l;<br />

is <strong>the</strong> total storage volume, in l.<br />

If <strong>the</strong> combination system consists <strong>of</strong> a combination storage tank, <strong>the</strong> total specific heat loss rate <strong>of</strong> <strong>the</strong><br />

combination storage tank is given by<br />

* ( UA)<br />

s<br />

( UA ) s = (62)<br />

Vsto<br />

⎯ volume <strong>of</strong> <strong>the</strong> solar buffer storage tank <strong>of</strong> <strong>the</strong> reference system:<br />

where<br />

V sol,ref = Ac ⋅ 70 l/m 2 (63)<br />

V sol,ref<br />

is <strong>the</strong> volume <strong>of</strong> <strong>the</strong> solar buffer storage tank <strong>of</strong> <strong>the</strong> reference system, in l;<br />

55


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

56<br />

Ac is <strong>the</strong> aperture area <strong>of</strong> <strong>the</strong> collector, in m 2 ;<br />

70 is a factor, in l/m 2 .<br />

⎯ ratio f K,w <strong>of</strong> <strong>the</strong> domestic water <strong>the</strong>rmal load to <strong>the</strong> total <strong>the</strong>rmal load:<br />

f<br />

K,w<br />

Qw,<br />

outg Qw,<br />

outg<br />

= =<br />

(64)<br />

Q Q + Q<br />

W, ges<br />

h, outg<br />

w, outg<br />

6.4.1.3 <strong>Calculation</strong> procedure for combination systems<br />

The monthly energy contribution <strong>of</strong> <strong>the</strong> solar system is calculated using equation (65) by distributing <strong>the</strong><br />

annual input over <strong>the</strong> individual months:<br />

where<br />

QK, sol = fM<br />

⋅ QK,<br />

sol, a<br />

(65)<br />

Q K,sol,a is <strong>the</strong> annual energy contribution <strong>of</strong> <strong>the</strong> solar system, in kWh;<br />

Q K,sol<br />

f M<br />

is <strong>the</strong> energy contribution <strong>of</strong> <strong>the</strong> solar system in <strong>the</strong> respective month, in kWh;<br />

is <strong>the</strong> factor accounting for <strong>the</strong> contribution made in <strong>the</strong> respective month in relation to <strong>the</strong><br />

annual contribution from Table 18.<br />

Table 18 <strong>—</strong> Distribution <strong>of</strong> annual solar contribution over months<br />

Month<br />

January 0,057<br />

February 0,055<br />

March 0,117<br />

April 0,134<br />

May 0,109<br />

June 0,081<br />

July 0,087<br />

August 0,073<br />

September 0,098<br />

October 0,097<br />

November 0,069<br />

December 0,023<br />

The annual energy contribution <strong>of</strong> <strong>the</strong> combination system is calculated using <strong>the</strong> following equation:<br />

where<br />

Q K,sol,a = Q sys ⋅ f NA ⋅ f slr ⋅ f s,loss ⋅ f h,T<br />

f M<br />

(66)


Q K,sol,a is <strong>the</strong> annual energy contribution <strong>of</strong> <strong>the</strong> combination system, in kWh;<br />

Q sys<br />

f NA<br />

f slr<br />

f s,loss<br />

f h,T<br />

<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

is <strong>the</strong> annual energy contribution <strong>of</strong> <strong>the</strong> combination system for reference conditions, in kWh;<br />

is <strong>the</strong> correction factor to account for inclination and alignment (horizontal and azimuthal<br />

angles);<br />

is <strong>the</strong> correction factor to account for <strong>the</strong> solar load ratio;<br />

is <strong>the</strong> correction factor to account for <strong>the</strong> heat loss rate <strong>of</strong> <strong>the</strong> storage tank or tanks;<br />

is <strong>the</strong> correction factor to account for <strong>the</strong> temperature level <strong>of</strong> <strong>the</strong> space heating.<br />

6.4.1.3.1 Determination <strong>of</strong> <strong>the</strong> annual energy contribution <strong>of</strong> <strong>the</strong> combination system, in relation to a<br />

reference system (Q sys )<br />

Q sys , in kWh per year, is calculated using <strong>the</strong> following equation:<br />

( ⋅ η − 16,<br />

3 ⋅ k − 504 ⋅ k + 133 ⋅IAM<br />

(50°<br />

) − 0,<br />

590 ⋅ c − 23,<br />

) Ac<br />

Qsys = 199 0 1 2<br />

5 ⋅<br />

(67)<br />

The collector parameters shall be used in <strong>the</strong> units <strong>of</strong> measurement specified in 6.4.1.2.<br />

6.4.1.3.2 Determination <strong>of</strong> <strong>the</strong> correction factor to take into account inclination and alignment (f NA )<br />

The correction factor to account for inclination and alignment <strong>of</strong> <strong>the</strong> collector field f NA can be taken from<br />

Table 19.<br />

Inclination<br />

Table 19 <strong>—</strong> Correction factor for inclination and alignment<br />

Angle <strong>of</strong> deviation from a sou<strong>the</strong>rly alignment<br />

East: γ = –90° West: γ = +90°<br />

–90° –60° –40° –20° 0° 20° 40° 60° 90°<br />

0° 0,66 0,66 0,66 0,66 0,66 0,66 0,66 0,66 0,66<br />

15° 0,66 0,73 0,76 0,79 0,81 0,80 0,78 0,75 0,68<br />

30° 0,65 0,78 0,85 0,90 0,93 0,92 0,88 0,82 0,70<br />

45° 0,64 0,81 0,90 0,97 1,00 0,98 0,94 0,86 0,70<br />

60° 0,62 0,80 0,91 0,99 1,02 1,01 0,95 0,86 0,68<br />

75° 0,56 0,76 0,87 0,95 0,99 0,98 0,92 0,82 0,64<br />

90° 0,49 0,67 0,76 0,83 0,86 0,86 0,82 0,75 0,57<br />

6.4.1.3.3 Determination <strong>of</strong> <strong>the</strong> correction factor to take into account <strong>the</strong> solar load ratio (f slr )<br />

The correction factor to account for <strong>the</strong> solar load ratio f slr can be taken as a function <strong>of</strong> f K,w and slr from<br />

Table 20.<br />

slr shall be obtained by means <strong>of</strong> equation (59) and f K,w by means <strong>of</strong> equation (64).<br />

57


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

58<br />

slr<br />

m 2 /kWh<br />

Table 20 <strong>—</strong> Correction factor for <strong>the</strong> solar load ratio (f slr )<br />

f K,w = 0,1 f K,w = 0,2 f K,w = 0,3 f K,w = 0,5<br />

0,000 25 1,569 1,751 1,957 2,213<br />

0,000 5 1,312 1,466 1,634 1,852<br />

0,000 75 1,162 1,300 1,446 1,642<br />

0,001 1,056 1,182 1,312 1,492<br />

0,001 25 0,973 1,091 1,208 1,376<br />

0,001 5 0,906 1,016 1,124 1,281<br />

0,001 75 0,849 0,953 1,052 1,021<br />

0,002 0,799 0,898 0,990 1,132<br />

0,002 5 0,717 0,807 0,886 1,016<br />

0,003 0,649 0,732 0,801 0,921<br />

0,003 5 0,592 0,669 0,730 0,841<br />

0,004 0,543 0,614 0,667 0,771<br />

0,004 5 0,499 0,566 0,613 0,710<br />

0,005 0,460 0,522 0,564 0,655<br />

6.4.1.3.4 Determination <strong>of</strong> <strong>the</strong> correction factor to take into account <strong>the</strong> magnitude <strong>of</strong> <strong>the</strong> heat loss<br />

rate <strong>of</strong> <strong>the</strong> storage tank or tanks (f s,loss )<br />

The specific heat loss rate <strong>of</strong> <strong>the</strong> actual system in its entirety shall be related to <strong>the</strong> specific heat loss rate <strong>of</strong><br />

<strong>the</strong> reference system:<br />

R<br />

where<br />

s, loss<br />

(UA) * s<br />

w, out<br />

0,<br />

101 87 ⋅ Q<br />

*<br />

s<br />

( UA)<br />

= (68)<br />

0,<br />

044 7 ⋅ Q + 0,14 V<br />

w, out<br />

+ V<br />

sol, ref<br />

sol, ref<br />

is <strong>the</strong> total specific heat loss rate, in W/( K· l);<br />

V sol,ref is <strong>the</strong> volume <strong>of</strong> <strong>the</strong> solar buffer storage tank <strong>of</strong> <strong>the</strong> reference system (see equation (63)), in l;<br />

Q w,outg is <strong>the</strong> total annual heat demand for domestic hot water, in kWh.<br />

The correction factor to account for <strong>the</strong> heat loss rate <strong>of</strong> <strong>the</strong> storage tank or tanks (f s,loss ) can be determined<br />

as a function <strong>of</strong> R s,loss from Table 21.<br />

Table 21 <strong>—</strong> Correction factor for <strong>the</strong> heat loss rate <strong>of</strong> <strong>the</strong> storage tank or tanks (f s,loss )<br />

R s,loss 0,25 0,50 0,75 1,00 1,50 2,0 2,5 3,0 3,5 4,0<br />

f s,loss 1,053 1,035 1,018 1,000 0,965 0,930 0,895 0,860 0,825 0,790


Regression equation:<br />

<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

f s,loss = 1,07 – 0,07 · R s,loss (69)<br />

6.4.1.3.5 Determination <strong>of</strong> <strong>the</strong> correction factor to take into account <strong>the</strong> temperature level (at <strong>the</strong><br />

design point) <strong>of</strong> <strong>the</strong> space heating (f h,T )<br />

The correction factor to account for <strong>the</strong> temperature level <strong>of</strong> <strong>the</strong> space heating (f h,T ) can be taken as a<br />

function <strong>of</strong> slr and ϑ h from Table 22.<br />

NOTE See equation (59) for calculation <strong>of</strong> slr.<br />

ϑ h<br />

°C<br />

Table 22 <strong>—</strong> Correction factor for <strong>the</strong> temperature level <strong>of</strong> <strong>the</strong> space heating f h,T<br />

slr<br />

m 2 /kWh<br />

0,000 35 0,000 6 0,001 0,004 0,006<br />

20 1,034 1,050 1,076 1,090 1,104<br />

30 1,017 1,025 1,038 1,045 1,052<br />

40 1,000 1,000 1,000 1,000 1,000<br />

50 0,983 0,975 0,962 0,955 0,948<br />

60 0,966 0,950 0,924 0,910 0,896<br />

70 0,949 0,925 0,886 0,865 0,844<br />

80 0,932 0,900 0,848 0,820 0,792<br />

6.4.1.3.6 <strong>Energy</strong> fraction from <strong>the</strong> combination system used for domestic water heating (f K,w )<br />

The energy fraction from <strong>the</strong> combination system that is used for domestic water heating can be taken as a<br />

function <strong>of</strong> f K,w and slr from Table 23.<br />

NOTE See equation (59) for calculation <strong>of</strong> slr and equation (64) for calculation <strong>of</strong> f K,w .<br />

59


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

60<br />

Table 23 <strong>—</strong> <strong>Energy</strong> fraction from <strong>the</strong> combination system for domestic water heating<br />

slr<br />

m 2 /kWh<br />

f K,w = 0,1 f K,w = 0,2 f K,w = 0,3 f K,w = 0,5<br />

0,000 25 0,539 0,781 0,908 0,953<br />

0,000 5 0,390 0,602 0,732 0,859<br />

0,000 75 0,323 0,518 0,645 0,803<br />

0,001 0,283 0,465 0,589 0,764<br />

0,001 25 0,255 0,428 0,550 0,734<br />

0,001 5 0,234 0,399 0,519 0,709<br />

0,001 75 0,218 0,377 0,495 0,688<br />

0,002 0,205 0,359 0,475 0,670<br />

0,002 5 0,184 0,330 0,443 0,640<br />

0,003 0,169 0,308 0,418 0,615<br />

0,003 5 0,158 0,291 0,399 0,594<br />

0,004 0,148 0,277 0,382 0,576<br />

0,004 5 0,140 0,265 0,369 0,560<br />

0,005 0,133 0,255 0,357 0,545<br />

6.4.1.4 <strong>Calculation</strong> procedure for large combination systems<br />

The energy contribution from large combination systems is dependent on a large number <strong>of</strong> operating<br />

parameters. This is particularly <strong>the</strong> case if long-term heat storage is integrated into <strong>the</strong>se systems. <strong>Calculation</strong><br />

<strong>of</strong> <strong>the</strong> energy contribution <strong>of</strong> large combination systems with long-term heat storage is not possible with <strong>the</strong><br />

calculation method specified in this document.<br />

The energy contribution <strong>of</strong> large combination systems that make only a relatively small contribution to meeting<br />

<strong>the</strong> space heating load (i.e. fK,w > 0,75), and which are operated at low solar load ratios (i.e.<br />

slr < 0,001 5 m2 /kWh), can be approximated using <strong>the</strong> method described in this document for large solar<br />

systems used for domestic water heating.<br />

For solar systems for which no calculation procedure is described in this document, <strong>the</strong> energy contribution<br />

can be determined with <strong>the</strong> aid <strong>of</strong> simulation programmes used in planning design.<br />

6.4.1.5 Auxiliary energy for operation <strong>of</strong> <strong>the</strong> solar pump<br />

After determining <strong>the</strong> solar system parameters, <strong>the</strong> surface area-related auxiliary energy <strong>of</strong> <strong>the</strong> solar pump<br />

shall be calculated using equation (70).<br />

Q<br />

where<br />

h, g, aux<br />

PP,<br />

sol ⋅ tP,<br />

sol<br />

= (70)<br />

1 000<br />

Q h,g,aux is <strong>the</strong> surface area-related auxiliary energy <strong>of</strong> <strong>the</strong> solar pump (in <strong>the</strong> respective month), in kWh;


P P,sol<br />

t P,sol<br />

is <strong>the</strong> rated power consumption <strong>of</strong> <strong>the</strong> solar pump, in W;<br />

is <strong>the</strong> operating period <strong>of</strong> <strong>the</strong> solar pump for heating (in <strong>the</strong> respective month), in h.<br />

Boundary conditions for <strong>the</strong> default values<br />

<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

If <strong>the</strong> above parameters are not known due to <strong>the</strong> absence <strong>of</strong> design calculations, <strong>the</strong> auxiliary energy <strong>of</strong> <strong>the</strong><br />

solar pump can be approximated using <strong>the</strong> following boundary conditions:<br />

Auxiliary energy <strong>of</strong> <strong>the</strong> solar pump: Q h,g,aux = 0,05 · Q h,sol , in kWh per month.<br />

6.4.2 Heat pump<br />

In <strong>the</strong> calculation procedure described below <strong>the</strong> following physical factors which have an effect on <strong>the</strong> annual<br />

performance factor and <strong>the</strong> energy consumption <strong>of</strong> <strong>the</strong> heat pump are taken into account:<br />

⎯ type <strong>of</strong> heat pump (air-to-water, brine-to-water, water-to-water, air to air);<br />

⎯ system configuration (domestic water heating and operating mode);<br />

⎯ generator heat output to <strong>the</strong> heating system and domestic hot water system;<br />

⎯ effects <strong>of</strong> fluctuations <strong>of</strong> <strong>the</strong> source and sink temperatures on <strong>the</strong> power and coefficient <strong>of</strong> performance<br />

(COP) <strong>of</strong> <strong>the</strong> heat pump;<br />

⎯ effects <strong>of</strong> part load operation (cycle losses);<br />

⎯ auxiliary energy required for operation <strong>of</strong> <strong>the</strong> heat pump, that is not taken into account under test rig<br />

conditions;<br />

⎯ system losses due to installed storage tanks.<br />

On <strong>the</strong> basis <strong>of</strong> <strong>the</strong>se input data <strong>the</strong> following output data are calculated:<br />

⎯ energy in <strong>the</strong> form <strong>of</strong> electric power or fuel Q h,f , required to provide <strong>the</strong> generator heat output;<br />

⎯ total <strong>the</strong>rmal losses <strong>of</strong> <strong>the</strong> heat pump Q h,g ;<br />

⎯ auxiliary energy Q h,g,aux required for operation <strong>of</strong> <strong>the</strong> heat pump;<br />

⎯ total recoverable <strong>the</strong>rmal losses <strong>of</strong> <strong>the</strong> heat pump k rd,g · Q h,g,aux .<br />

The output data (along with <strong>the</strong> data <strong>of</strong> all o<strong>the</strong>r heat generators) are <strong>the</strong>n used in <strong>the</strong> energy balance<br />

described in <strong>DIN</strong> V <strong>18599</strong>-1. For greater clarity, <strong>the</strong> balances for electrically driven and combustion enginedriven<br />

heat pumps are presented in Annex A.<br />

Heat pumps with combustion drive can recover part <strong>of</strong> <strong>the</strong> drive losses by means <strong>of</strong> a downstream heat<br />

exchanger. Q rd,mot,g is a characteristic <strong>of</strong> <strong>the</strong> heat pump that depends on <strong>the</strong> <strong>efficiency</strong> and design <strong>of</strong> <strong>the</strong><br />

system for <strong>the</strong> recovery <strong>of</strong> heat from <strong>the</strong> cooling system and exhaust gas.<br />

If no product data are available, p rd,mot = 0,4 can be taken as a default value for heat pumps driven by a gas<br />

engine with appropriate cooling <strong>of</strong> <strong>the</strong> engine. For all o<strong>the</strong>r heat pumps p rd,mot = 0 in <strong>the</strong> absence <strong>of</strong> product<br />

data.<br />

61


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

where<br />

62<br />

Qrd,<br />

mot, g<br />

p rd, mot = (71)<br />

Q<br />

p rd,mot<br />

h, f<br />

is <strong>the</strong> fraction <strong>of</strong> recovered fuel input given to <strong>the</strong> generator;<br />

Q rd,mot,g is <strong>the</strong> recovered energy from <strong>the</strong> engine (in <strong>the</strong> respective month), in kWh;<br />

Q h,f<br />

is <strong>the</strong> energy use for <strong>the</strong> generator (in <strong>the</strong> respective month) (see 4.2 and Annex A), in kWh.<br />

6.4.2.1 Principles <strong>of</strong> <strong>the</strong> calculation<br />

The calculation can be carried out using <strong>the</strong> following monthly procedure or using a recognized calculation<br />

programme. If no calculation procedure is described in this document, <strong>the</strong> energy contribution can be<br />

determined with <strong>the</strong> aid <strong>of</strong> simulation programmes used in planning design.<br />

The energy performance <strong>of</strong> a heat pump largely depends on <strong>the</strong> conditions under which it is used, in particular<br />

on <strong>the</strong> temperature <strong>of</strong> <strong>the</strong> heat source and heat sink. The temperature <strong>of</strong> <strong>the</strong> heat source (e.g. outdoor air) can<br />

vary greatly within any single month. The assessment <strong>of</strong> <strong>the</strong> energy <strong>efficiency</strong> <strong>of</strong> <strong>the</strong> heat pumps is <strong>the</strong>refore<br />

not performed in a single step for each month but takes into account <strong>the</strong> frequency distribution <strong>of</strong> <strong>the</strong><br />

temperature <strong>of</strong> <strong>the</strong> heat source for <strong>the</strong> respective month.<br />

For heat pumps with outdoor air as <strong>the</strong>ir heat source <strong>the</strong> calculation procedure is <strong>the</strong>refore based on an<br />

assessment <strong>of</strong> <strong>the</strong> distribution <strong>of</strong> <strong>the</strong> outdoor air temperature. The frequency with which a particular outdoor<br />

air temperature occurs in a month is given in intervals <strong>of</strong> 1 K.<br />

As measurements <strong>of</strong> <strong>the</strong> heat output and <strong>the</strong> coefficient <strong>of</strong> performance <strong>of</strong> a heat pump are generally only<br />

available for certain temperature combinations, <strong>the</strong> frequency distribution <strong>of</strong> <strong>the</strong> outdoor air temperature is<br />

divided into temperature classes (bins). Each bin is limited by an upper temperature ϑupper and a lower<br />

temperatureϑlower . The design operating conditions <strong>of</strong> <strong>the</strong> heat pump in each bin are characterized by <strong>the</strong><br />

operating points at <strong>the</strong> midpoint <strong>of</strong> each bin.<br />

The operating points are selected such as to reproduce <strong>the</strong> test conditions specified in <strong>DIN</strong> EN 14511 (all<br />

parts). The temperature limits between two bins are selected to be approximately at <strong>the</strong> midpoint between two<br />

operating points, and are to be rounded to whole numbers.<br />

For each bin <strong>the</strong> heat output <strong>of</strong> <strong>the</strong> pump and <strong>the</strong> coefficient <strong>of</strong> performance are assessed on <strong>the</strong> basis <strong>of</strong> <strong>the</strong><br />

test rig measurements according to <strong>DIN</strong> EN 14511 (all parts). The coefficient <strong>of</strong> performance and <strong>the</strong> heat<br />

output <strong>of</strong> <strong>the</strong> pump at each testing point are adjusted to take account <strong>of</strong><br />

⎯ <strong>the</strong> source temperature;<br />

⎯ <strong>the</strong> temperatures in <strong>the</strong> distribution piping;<br />

⎯ <strong>the</strong> heat pump load.<br />

The difference between <strong>the</strong> required generator heat output and <strong>the</strong> heat supplied by <strong>the</strong> heat pump may need<br />

to be provided by a second generator. The losses associated with heat pump operation are calculated for<br />

each bin.<br />

The overall results for a calculation period (month) are obtained from <strong>the</strong> results for each bin, <strong>the</strong> individual<br />

bins being weighted.


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

Figure 5 <strong>—</strong> Distribution <strong>of</strong> cumulated bin hours for <strong>the</strong> outdoor air temperature<br />

Generator heat output in <strong>the</strong> bins<br />

The generator heat output in a month is distributed over <strong>the</strong> individual bins, i, using a weighting factor, w i ,<br />

obtained from equation (72).<br />

Qh, outg, i Qh,<br />

outg ⋅ wi<br />

= (72)<br />

The weighting factors are calculated by means <strong>of</strong> equation (73).<br />

where<br />

HDHϑ<br />

− HDH<br />

upper ϑlower<br />

wi<br />

= (73)<br />

HDH<br />

w i<br />

HDH t<br />

HDH ϑupper<br />

HDH ϑlower<br />

t<br />

is <strong>the</strong> weighting factor <strong>of</strong> bin i;<br />

is <strong>the</strong> total number <strong>of</strong> heating degree hours up to <strong>the</strong> upper ambient temperature limit for<br />

space heating, in Kh;<br />

are <strong>the</strong> heating degree hours up to <strong>the</strong> temperature at <strong>the</strong> upper limit <strong>of</strong> bin i, in Kh;<br />

are <strong>the</strong> heating degree hours up to <strong>the</strong> temperature at <strong>the</strong> lower limit <strong>of</strong> bin i, in Kh.<br />

63


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

The default values given below can be used if <strong>the</strong> upper ambient temperature limit for space heating is not<br />

known:<br />

⎯ 10 °C for passive energy houses;<br />

⎯ 12 °C for <strong>buildings</strong> meeting <strong>the</strong> requirements <strong>of</strong> EnEV 2002/2004 for <strong>buildings</strong> with normal indoor<br />

temperatures;<br />

⎯ 15 °C for all o<strong>the</strong>r <strong>buildings</strong>.<br />

The heating degree hours up to a temperature ϑ x are determined by means <strong>of</strong> equation (74):<br />

where<br />

64<br />

ϑx<br />

∑ ϑ<br />

ϑ = ϑmin<br />

( ) = n ⋅ ( ϑ − ϑ)<br />

HDH ϑ i<br />

(74)<br />

ϑ min<br />

ϑ x<br />

n ϑ<br />

ϑ i<br />

x<br />

is <strong>the</strong> minimum outdoor temperature from <strong>the</strong> relevant set <strong>of</strong> climatic data, in °C;<br />

is <strong>the</strong> heating degree hours temperature limit (this shall not be higher than <strong>the</strong> upper ambient<br />

temperature limit for space heating), in °C;<br />

is <strong>the</strong> hours frequency <strong>of</strong> <strong>the</strong> temperature ϑ x , in h;<br />

is <strong>the</strong> indoor set-point temperature, in °C.<br />

For simplification, i shall be taken to be 20 °C.<br />

The hours frequency <strong>of</strong> <strong>the</strong> outdoor temperature for <strong>the</strong> location <strong>of</strong> Würzburg is given in Table 24. For o<strong>the</strong>r<br />

locations, <strong>the</strong> corresponding test reference years can be used.<br />

The following procedure shall be used for heat pumps with o<strong>the</strong>r heat sources:<br />

For constant source temperatures:<br />

⎯ Ground as source: The 0 °C bin has a weighting <strong>of</strong> 1.<br />

⎯ Groundwater as source: The 10 °C bin has a weighting <strong>of</strong> 1.<br />

⎯ Extract air as source: The 20 °C bin has a weighting <strong>of</strong> 1.<br />

NOTE Extract air heat pumps for residential <strong>buildings</strong> are dealt with in <strong>DIN</strong> V <strong>18599</strong>-6. In that standard, <strong>the</strong> generator<br />

heat output, Q rv,h,outg , is calculated for <strong>the</strong> ensuing calculations in <strong>DIN</strong> V <strong>18599</strong>-5 without an additional calculation for <strong>the</strong><br />

heat pump being required.<br />

Extract air with heat recovery as source: The drop in temperature due to heat recovery is taken into account.<br />

For units in which <strong>the</strong> heat recovery is positioned upstream <strong>of</strong> <strong>the</strong> exhaust air heat pump, <strong>the</strong> exhaust air<br />

temperature is calculated for each month for <strong>the</strong> bin in question from <strong>the</strong> heat recovery <strong>efficiency</strong> and <strong>the</strong><br />

design temperature <strong>of</strong> <strong>the</strong> room (exhaust air <strong>efficiency</strong> from <strong>DIN</strong> EN 308 without deductions or heat recovery<br />

according to Deutsches Institut für Bautechnik (DIBt) less 12 %).<br />

The heat exchanger <strong>efficiency</strong> determined according to recognized technical rules characterizes <strong>the</strong><br />

temperature increase <strong>of</strong> <strong>the</strong> supply air in relation to <strong>the</strong> maximum possible temperature increase. Besides <strong>the</strong><br />

operating characteristics <strong>of</strong> <strong>the</strong> heat exchanger (WÜT), <strong>the</strong> heat dissipated by electrical components (e.g.<br />

fans, controls) also affects <strong>the</strong> heat exchanger <strong>efficiency</strong>. Leakage losses shall be within <strong>the</strong> maximum


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

permissible limits and <strong>the</strong> <strong>the</strong>rmal losses via <strong>the</strong> surface <strong>of</strong> equipment are also to be taken into account. In<br />

addition, <strong>the</strong> performance <strong>of</strong> ventilation units operating during periods <strong>of</strong> frost shall be considered unless <strong>the</strong><br />

ventilation system is fitted with a ground heat exchanger for preheating <strong>the</strong> air, which according to recognized<br />

technical rules ensures a frost-free (and hygienic) supply air flow. If <strong>the</strong> heat exchanger <strong>efficiency</strong> does not<br />

take <strong>the</strong> above into account, and if <strong>the</strong> supply and extract air volume flows cannot be adjusted with suitable<br />

components so as to ensure a permanent volume flow balance, <strong>the</strong> heat exchanger <strong>efficiency</strong> shall be<br />

reduced by 9 %.<br />

Exhaust air <strong>efficiency</strong> measurements from <strong>DIN</strong> EN 308 are used without deductions.<br />

where<br />

Fortluft, mth<br />

ex −<br />

( ϑex<br />

− ϑe<br />

) η WÜT, mth<br />

ϑ = ϑ<br />

⋅<br />

(75)<br />

ϑ Fortuft<br />

ϑ ex<br />

ϑ e<br />

η WÜT,mth<br />

Default values:<br />

is <strong>the</strong> temperature <strong>of</strong> <strong>the</strong> exhaust air, in °C;<br />

is <strong>the</strong> temperature <strong>of</strong> <strong>the</strong> air extracted from <strong>the</strong> space (see 4.1 and Table 15), in °C;<br />

is <strong>the</strong> outdoor air temperature (see 4.1), in °C;<br />

is <strong>the</strong> heat exchanger <strong>efficiency</strong> with regard to heat recovery (in <strong>the</strong> respective month),<br />

in °C.<br />

Heat exchanger <strong>efficiency</strong> without a ground-supply air heat exchanger: η WÜT,mth = 0,60<br />

Heat supply <strong>efficiency</strong> with a ground-supply air heat exchanger: η WÜT,mth = 0,67<br />

The weighting factors for <strong>the</strong> bins are calculated using equation (73).<br />

NOTE Extract air heat pumps for residential <strong>buildings</strong> are dealt with in <strong>DIN</strong> V <strong>18599</strong>-6. In that standard, <strong>the</strong> generator<br />

heat output, Qrv,h,outg , is determined for <strong>the</strong> ensuing calculations in <strong>DIN</strong> V <strong>18599</strong>-5 without an additional calculation for <strong>the</strong><br />

heat pump being required.<br />

6.4.2.2 Outdoor air as heat source; average climatic data for Germany<br />

The hours frequency <strong>of</strong> <strong>the</strong> outdoor temperatures for average climatic conditions in Germany is given in<br />

Table 24, taking <strong>the</strong> town <strong>of</strong> Würzburg as an example. For o<strong>the</strong>r locations <strong>the</strong> corresponding test reference<br />

years can be used.<br />

The sum <strong>of</strong> hours in <strong>the</strong> individual bins, distributed according to <strong>the</strong> testing points from <strong>DIN</strong> EN 14511 (all<br />

parts) are given in Table 25.<br />

65


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

66<br />

Outdoor<br />

temp.<br />

°C<br />

January<br />

hours<br />

February<br />

hours<br />

Table 24 <strong>—</strong> Hours frequency <strong>of</strong> outdoor temperature (reference location: Würzburg)<br />

March<br />

hours<br />

April<br />

hours<br />

May<br />

hours<br />

June<br />

hours<br />

July<br />

hours<br />

August<br />

hours<br />

September<br />

hours<br />

October<br />

hours<br />

November<br />

hours<br />

December<br />

hours<br />

–15 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

–14 0 1 0 0 0 0 0 0 0 0 0 0 1<br />

–13 2 3 0 0 0 0 0 0 0 0 0 0 5<br />

–12 2 6 0 0 0 0 0 0 0 0 0 0 8<br />

–11 6 1 0 0 0 0 0 0 0 0 0 3 10<br />

–10 2 5 0 0 0 0 0 0 0 0 0 5 12<br />

–9 14 7 0 0 0 0 0 0 0 0 0 5 26<br />

–8 11 7 1 0 0 0 0 0 0 0 1 4 24<br />

–7 11 4 2 0 0 0 0 0 0 0 9 14 40<br />

–6 4 5 4 0 0 0 0 0 0 0 5 15 33<br />

–5 3 13 1 0 0 0 0 0 0 0 13 8 38<br />

–4 3 8 4 0 0 0 0 0 0 0 8 12 35<br />

–3 14 10 3 0 0 0 0 0 0 0 6 8 41<br />

–2 31 25 8 0 0 0 0 0 0 0 6 30 100<br />

–1 46 51 6 0 0 0 0 0 0 0 13 54 170<br />

0 101 98 16 0 0 0 0 0 0 6 52 68 341<br />

1 164 87 32 13 2 0 0 0 0 6 57 99 460<br />

2 112 89 61 12 10 0 0 0 0 2 40 100 426<br />

3 80 69 78 30 14 0 0 0 0 14 35 103 423<br />

4 37 54 66 47 11 0 0 0 0 35 75 37 362<br />

5 46 36 70 59 18 0 0 0 4 58 54 30 375<br />

Annual<br />

hours


Outdoor<br />

temp.<br />

°C<br />

January<br />

hours<br />

February<br />

hours<br />

March<br />

hours<br />

April<br />

hours<br />

May<br />

hours<br />

Table 24 (continued)<br />

June<br />

hours<br />

July<br />

hours<br />

August<br />

hours<br />

September<br />

hours<br />

October<br />

hours<br />

November<br />

hours<br />

<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

December<br />

hours<br />

6 23 27 71 79 31 0 0 0 3 57 44 38 373<br />

7 7 17 75 64 41 2 0 0 2 47 90 37 382<br />

8 12 19 57 65 26 2 1 0 6 44 79 10 321<br />

9 4 8 49 66 36 6 3 2 8 55 49 9 295<br />

10 1 7 42 49 29 7 1 4 17 71 30 19 277<br />

11 4 4 25 52 31 37 4 8 41 86 21 12 325<br />

12 3 4 23 45 48 36 14 18 55 79 20 16 361<br />

13 1 1 11 43 50 51 33 29 100 57 5 5 386<br />

14 0 3 8 37 49 73 35 47 92 49 2 3 398<br />

15 0 3 8 27 65 86 69 54 75 31 2 0 420<br />

16 0 0 5 14 55 64 79 64 52 19 2 0 354<br />

17 0 0 12 6 51 59 83 72 64 9 2 0 358<br />

18 0 0 2 4 30 54 81 80 62 4 0 0 317<br />

19 0 0 1 2 27 47 71 71 45 7 0 0 271<br />

20 0 0 3 1 25 27 61 64 25 3 0 0 209<br />

21 0 0 0 1 19 34 41 42 21 2 0 0 160<br />

22 0 0 0 4 21 35 34 52 15 2 0 0 163<br />

23 0 0 0 0 13 39 31 43 13 1 0 0 140<br />

24 0 0 0 0 15 19 22 25 7 0 0 0 88<br />

25 0 0 0 0 11 14 21 27 4 0 0 0 77<br />

26 0 0 0 0 5 11 16 22 3 0 0 0 57<br />

Annual<br />

hours<br />

67


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

68<br />

Outdoor<br />

temp.<br />

°C<br />

January<br />

hours<br />

February<br />

hours<br />

March<br />

hours<br />

April<br />

hours<br />

May<br />

hours<br />

Table 24 (continued)<br />

June<br />

hours<br />

July<br />

hours<br />

August<br />

hours<br />

September<br />

hours<br />

October<br />

hours<br />

November<br />

hours<br />

December<br />

hours<br />

27 0 0 0 0 11 7 16 11 3 0 0 0 48<br />

28 0 0 0 0 0 5 12 2 3 0 0 0 22<br />

29 0 0 0 0 0 1 8 2 0 0 0 0 11<br />

30 0 0 0 0 0 4 7 1 0 0 0 0 12<br />

31 0 0 0 0 0 0 1 3 0 0 0 0 4<br />

32 0 0 0 0 0 0 0 1 0 0 0 0 1<br />

33 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Annual<br />

hours


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

Table 25 <strong>—</strong> Monthly hours sum in <strong>the</strong> individual bins, distributed according to <strong>the</strong> testing points from<br />

<strong>DIN</strong> EN 14511 (all parts)<br />

Bin w-7 w2 w7 w10 w20<br />

Testing point –7 2 7 10 20<br />

Temperature<br />

limits<br />

°C<br />

–15 to –2 –2 to 4 4 to 8 8 to 15 15 to 32<br />

Monthly<br />

sum<br />

January hours 103 540 88 13 0 744<br />

February hours 95 448 99 30 0 672<br />

March hours 23 259 273 166 23 744<br />

April hours 0 102 267 319 32 720<br />

May hours 0 37 116 308 283 744<br />

June hours 0 0 4 296 420 720<br />

July hours 0 0 1 159 584 744<br />

August hours 0 0 0 162 582 744<br />

September hours 0 0 15 388 317 720<br />

October hours 0 63 206 428 47 744<br />

November hours 48 272 267 129 4 720<br />

December hours 104 461 115 64 0 744<br />

Year hours 373 2182 1451 2462 2292 8760<br />

6.4.2.3 <strong>Energy</strong> need for domestic hot water<br />

Domestic hot water is calculated in <strong>DIN</strong> V <strong>18599</strong>-8.<br />

Heat pumps with simultaneous space heating and domestic hot water heating operation shall have<br />

coefficients <strong>of</strong> performance for domestic water heating, space heating and combined operation. The energy<br />

need for space heating and domestic hot water shall be distributed over <strong>the</strong> bins according to running times.<br />

The limit <strong>of</strong> <strong>the</strong> running time in combined operation is defined by <strong>the</strong> minimum running time for hot water and<br />

space heating. The residual energy for space heating or hot water shall be calculated using <strong>the</strong> coefficient <strong>of</strong><br />

performance <strong>of</strong> <strong>the</strong> relevant operating mode.<br />

6.4.2.4 <strong>Calculation</strong> <strong>of</strong> <strong>the</strong> fraction <strong>of</strong> heating energy to be provided by <strong>the</strong> second generator (backup<br />

heating)<br />

Operation <strong>of</strong> <strong>the</strong> second generator (back-up heating) is dependent on <strong>the</strong> system design criteria and can be<br />

characterized in terms <strong>of</strong> <strong>the</strong> operating mode (alternate, parallel, or partly parallel operation) and <strong>the</strong><br />

respective temperatures, <strong>the</strong> switch-<strong>of</strong>f temperature for <strong>the</strong> heat pump and switch-on temperature for <strong>the</strong><br />

second generator at <strong>the</strong> balance point. Using <strong>the</strong>se temperatures <strong>the</strong> energy requirement <strong>of</strong> <strong>the</strong> heat pump<br />

and back-up heating operation can be calculated.<br />

6.4.2.4.1 Alternate operation<br />

In alternate operation <strong>the</strong> heat pump supplies <strong>the</strong> entire heat down to a specified outdoor temperature (cut-out<br />

limit). If <strong>the</strong> temperature falls below <strong>the</strong> cut-out limit <strong>the</strong> heat pump switches <strong>of</strong>f and <strong>the</strong> second generator<br />

69


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

satisfies <strong>the</strong> full heating energy requirement. The weighting factor <strong>of</strong> <strong>the</strong> bin in which <strong>the</strong> cut-out limit falls shall<br />

be recalculated with HDH(ϑ ltc ) = HDH(ϑ lower ).<br />

Figure 6 shows <strong>the</strong> cumulative frequency <strong>of</strong> <strong>the</strong> outdoor air temperature in bins with <strong>the</strong> ranges covered by <strong>the</strong><br />

heat pump (areas A 11 and A 12 ) and second generator (area A 2 ).<br />

where<br />

70<br />

Figure 6 <strong>—</strong> Bin hours and energy fractions <strong>of</strong> <strong>the</strong> heat pump and <strong>the</strong> second generator (back-up<br />

heating) in alternate operation<br />

pbu,<br />

h<br />

P bu,h<br />

( ϑ )<br />

= (76)<br />

HDH ltc<br />

HDH t<br />

is <strong>the</strong> energy fraction <strong>of</strong> <strong>the</strong> second generator (back-up heating);<br />

HDH(ϑltc ) are <strong>the</strong> cumulated heating degree hours <strong>of</strong> <strong>the</strong> second generator (back-up heating) up to<br />

<strong>the</strong> low temperature cut-out limit ϑltc , in Kh;<br />

HDH t<br />

ϑ bp<br />

is <strong>the</strong> total number <strong>of</strong> heating degree hours, in Kh;<br />

is <strong>the</strong> balance point temperature, in °C.


6.4.2.4.2 Parallel operation<br />

<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

In parallel operation, <strong>the</strong> heat pump alone supplies <strong>the</strong> necessary heat down to a specified outdoor<br />

temperature (balance point temperature). At temperatures below <strong>the</strong> balance point temperature <strong>the</strong> second<br />

generator switches on. Both heat generators work in parallel. The second generator supplies only <strong>the</strong> part that<br />

<strong>the</strong> heat pump cannot supply because <strong>of</strong> its heat output limitation.<br />

Figure 7 shows <strong>the</strong> cumulative frequency <strong>of</strong> <strong>the</strong> outdoor air temperature in bins with <strong>the</strong> ranges covered by <strong>the</strong><br />

heat pump (areas A 11 , A 12 and A 13 ) and second generator (area A 2 ).<br />

where<br />

Figure 7 <strong>—</strong> Bin hours and energy fractions <strong>of</strong> <strong>the</strong> heat pump and <strong>the</strong> second generator (back-up<br />

heating) in parallel operation<br />

pbu,<br />

h<br />

p bu,h<br />

ϑ bp<br />

ϑ i<br />

n hours<br />

HDH(<br />

ϑbp ) − ( ϑ ) ⋅ nhours<br />

( ϑbp<br />

)<br />

= (77)<br />

i − ϑbp<br />

HDH t<br />

is <strong>the</strong> energy fraction <strong>of</strong> <strong>the</strong> second generator (back-up heating);<br />

is <strong>the</strong> balance point temperature, in °C;<br />

is <strong>the</strong> ambient temperature (see 4.1 or Table 15), in °C;<br />

are <strong>the</strong> cumulated hours to <strong>the</strong> balance point <strong>of</strong> <strong>the</strong> second generator (back-up heating), in<br />

h;<br />

HDH(ϑbp ) are <strong>the</strong> cumulated heating degree hours <strong>of</strong> <strong>the</strong> second generator (back-up heating) up to<br />

<strong>the</strong> balance point temperature ϑbp , in Kh;<br />

71


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

72<br />

HDH t<br />

is <strong>the</strong> total number <strong>of</strong> heating degree hours, in Kh.<br />

6.4.2.4.3 Partly parallel operation<br />

In partly parallel operation <strong>the</strong> heat pump alone supplies <strong>the</strong> necessary heat down to a specified outdoor<br />

temperature (balance point temperature). At temperatures below <strong>the</strong> balance point temperature <strong>the</strong> second<br />

generator switches on. Both heat generators work in parallel. The second generator supplies only <strong>the</strong> heat<br />

that <strong>the</strong> heat pump cannot supply because <strong>of</strong> its heat output limitation. When <strong>the</strong> lower cut-out limit <strong>of</strong> <strong>the</strong> heat<br />

pump is reached, <strong>the</strong> heat pump switches <strong>of</strong>f and <strong>the</strong> second generator alone supplies <strong>the</strong> heat required. The<br />

weighting factor <strong>of</strong> <strong>the</strong> bin in which <strong>the</strong> cut-out limit falls shall be recalculated with HDH(ϑ ltc ) = HDH(ϑ lower ).<br />

Figure 8 shows <strong>the</strong> cumulative frequency <strong>of</strong> <strong>the</strong> outdoor air temperature in bins with <strong>the</strong> ranges covered by <strong>the</strong><br />

heat pump (areas A 11 and A 12 ) and second generator (area A 2 ).<br />

where<br />

Figure 8 <strong>—</strong> Bin hours and energy fractions <strong>of</strong> <strong>the</strong> heat pump and <strong>the</strong> second generator<br />

(back-up heating) in partly parallel operation<br />

A HDH ( ϑbp ) − (( ϑ<br />

1<br />

i − ϑbp<br />

) ⋅ ( nhours<br />

( ϑbp<br />

) − nhours<br />

( ϑltc<br />

))<br />

pbu,<br />

h = =<br />

A2<br />

HDH t<br />

p bu,h<br />

ϑ bp<br />

ϑ i<br />

is <strong>the</strong> energy fraction <strong>of</strong> <strong>the</strong> second generator (back-up heating);<br />

is <strong>the</strong> balance point temperature, in °C;<br />

is <strong>the</strong> ambient temperature (see 4.1 or Table 15), in °C;<br />

(78)


ϑ ltc<br />

n hours<br />

is <strong>the</strong> cut-out limit (switch-<strong>of</strong>f temperature) for <strong>the</strong> heat pump, in °C;<br />

<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

are <strong>the</strong> cumulated hours to <strong>the</strong> balance point <strong>of</strong> <strong>the</strong> second generator (back-up heating), in<br />

h;<br />

HDH(ϑbp ) are <strong>the</strong> cumulated heating degree hours <strong>of</strong> <strong>the</strong> second generator (back-up heating) up to<br />

<strong>the</strong> balance point temperature ϑ bp , in Kh;<br />

HDH t<br />

is <strong>the</strong> total number <strong>of</strong> heating degree hours, in Kh.<br />

The energy supplied by <strong>the</strong> heat pump and <strong>the</strong> second generator in bivalent partly parallel operation shall be<br />

determined using equation (78).<br />

6.4.2.5 Heat output and coefficient <strong>of</strong> performance <strong>of</strong> <strong>the</strong> heat pump at full load (steady-state<br />

operation)<br />

6.4.2.5.1 Electrically driven heat pumps<br />

6.4.2.5.1.1 Correction for source temperature<br />

The heat output and <strong>the</strong> coefficient <strong>of</strong> performance <strong>of</strong> heat pumps shall be taken from <strong>the</strong> test rig<br />

measurements according to <strong>DIN</strong> EN 14511 (all parts) for <strong>the</strong> respective bin. All testing points shall be taken<br />

into account.<br />

Data not supplied by testing laboratories can be supplemented by product data from <strong>DIN</strong> EN 14511 (all parts).<br />

Default values are given in Annex A and can be used if no o<strong>the</strong>r data are available. These however only<br />

reproduce <strong>the</strong> performance <strong>of</strong> a typical commercial heat pump and <strong>the</strong>re is no longer a reference to a specific<br />

unit. For monovalent heat pump operation it shall be assumed that <strong>the</strong> power <strong>of</strong> <strong>the</strong> heat pump under design<br />

conditions for <strong>the</strong> space heating mode is equal to <strong>the</strong> maximum heat load according to Annex B <strong>of</strong><br />

<strong>DIN</strong> V <strong>18599</strong>-2.<br />

If <strong>the</strong> source temperature in a particular bin does not correspond to <strong>the</strong> testing point used it shall be corrected<br />

by interpolation or extrapolation as specified below. If interpolation is not possible owing to a lack <strong>of</strong> data, <strong>the</strong><br />

correction for <strong>the</strong> source and sink temperatures is carried out applying <strong>the</strong> exergetic <strong>efficiency</strong> approach<br />

described in Annex A.<br />

Outdoor air as source<br />

Correction is not usually required as <strong>the</strong> bin distribution corresponds to <strong>the</strong> testing points. However, if a<br />

correction is necessary, intermediate values shall be determined by linear interpolation or extrapolation<br />

between <strong>the</strong> testing points.<br />

Exhaust air as source<br />

The coefficient <strong>of</strong> performance is corrected as specified in Annex A (exergetic <strong>efficiency</strong>) in order to align it<br />

with <strong>the</strong> indoor temperature <strong>of</strong> <strong>the</strong> building, if no fur<strong>the</strong>r testing points are available for interpolation.<br />

Ground and groundwater as source<br />

The mean source temperature is determined from <strong>the</strong> average monthly outdoor temperature.<br />

The general correlation is shown in Table 26. The values for average climatic conditions in Germany are given<br />

in Table 27. The data for <strong>the</strong> source temperatures are ei<strong>the</strong>r obtained from test records or use default values.<br />

Intermediate values are determined by linear interpolation or extrapolation between testing points.<br />

73


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

74<br />

Table 26 <strong>—</strong> Mean source temperature for ground and groundwater as a function <strong>of</strong> <strong>the</strong> average<br />

outdoor temperature<br />

Average outdoor temperature<br />

°C<br />

Mean brine temperature<br />

°C<br />

Mean groundwater temperature<br />

°C<br />

20 4,5 12,0<br />

10 3,0 10,7<br />

7 2,6 10,2<br />

5 2,3 10,0<br />

2 1,8 9,6<br />

0 1,5 9,3<br />

–2 1,2 9,0<br />

–5 0,8 8,6<br />

–7 0,5 8,4<br />

–10 0 8,0<br />

Table 27 <strong>—</strong> Mean source temperature for ground and groundwater as a function <strong>of</strong> <strong>the</strong> average<br />

monthly outdoor temperature<br />

Average outdoor<br />

temperature<br />

°C<br />

Mean brine temperature<br />

°C<br />

Mean groundwater<br />

temperature<br />

°C<br />

January –1,3 1,3 9,1<br />

February 0,6 1,6 9,4<br />

March 4,1 2,1 9,9<br />

April 9,5 2,9 10,6<br />

May 12,9 3,4 11,0<br />

June 15,7 3,9 11,4<br />

July 18 4,2 11,7<br />

August 18,3 4,2 11,8<br />

September 14,4 3,7 11,2<br />

October 9,1 2,9 10,5<br />

November 4,7 2,2 9,9<br />

December 1,3 1,7 9,5<br />

6.4.2.5.1.2 Correction for <strong>the</strong> distribution temperature<br />

Water based heating distribution<br />

Two corrections are to be made as a function <strong>of</strong> <strong>the</strong> temperature <strong>of</strong> <strong>the</strong> distribution.


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

The coefficient <strong>of</strong> performance <strong>of</strong> <strong>the</strong> heat pump is first corrected as a function <strong>of</strong> <strong>the</strong> mean monthly supply<br />

temperature (see 5.2, equation (13)). The testing points are <strong>the</strong>n linearly interpolated or extrapolated to <strong>the</strong><br />

mean supply temperature <strong>of</strong> <strong>the</strong> distribution for each bin.<br />

In addition, a second correction is necessary if <strong>the</strong> heat pump is operated with a temperature difference<br />

between <strong>the</strong> heating circuit flow and return temperatures that deviates from <strong>the</strong> temperature difference in <strong>the</strong><br />

test rig measurements according to <strong>DIN</strong> EN 14511 (all parts). This effect is accounted for by <strong>the</strong> correction<br />

factor from Table 28.<br />

COP T = COP · f ∆ϑ<br />

where<br />

COP T<br />

is <strong>the</strong> corrected coefficient <strong>of</strong> performance <strong>of</strong> <strong>the</strong> heat pump;<br />

COP is <strong>the</strong> coefficient <strong>of</strong> performance from test rig measurements according to <strong>DIN</strong> EN 14511 (all<br />

parts); <strong>the</strong> default values given in Annex A are used if no product data are available;<br />

f ∆ϑ<br />

∆ϑ M<br />

∆ϑ B<br />

is <strong>the</strong> correction factor from Table 28;<br />

is <strong>the</strong> temperature difference from test rig measurements according to <strong>DIN</strong> EN 14511 (all parts),<br />

in K; <strong>the</strong> default value is 10 K if no boundary conditions for <strong>the</strong> test are known;<br />

is <strong>the</strong> temperature difference when <strong>the</strong> heat pump is in operation, in K.<br />

In space heating mode, ∆ϑ B = ∆ϑ HK (from equation (12)).<br />

Table 28 <strong>—</strong> Correction factors f ∆ϑ to account for deviations in temperature differences in heat pump<br />

measurement and operation<br />

T. d. in<br />

operation<br />

∆ϑ B<br />

Temperature difference in <strong>the</strong> test rig measurements<br />

∆ϑ M<br />

K<br />

3 4 5 6 7 8 9 10 11 12 13 14 15<br />

3 1,000 0,990 0,980 0,969 0,959 0,949 0,939 0,928 0,918 0,908 0,898 0,887 0,877<br />

4 1,010 1,000 0,990 0,980 0,969 0,959 0,949 0,939 0,928 0,918 0,908 0,898 0,887<br />

5 1,020 1,010 1,000 0,990 0,980 0,969 0,959 0,949 0,939 0,928 0,918 0,908 0,898<br />

6 1,031 1,020 1,010 1,000 0,990 0,980 0,969 0,959 0,949 0,939 0,928 0,918 0,908<br />

7 1,041 1,031 1,020 1,010 1,000 0,990 0,980 0,969 0,959 0,949 0,939 0,928 0,918<br />

8 1,051 1,041 1,031 1,020 1,010 1,000 0,990 0,980 0,969 0,959 0,949 0,939 0,928<br />

9 1,061 1,051 1,041 1,031 1,020 1,010 1,000 0,990 0,980 0,969 0,959 0,949 0,939<br />

10 1,072 1,061 1,051 1,041 1,031 1,020 1,010 1,000 0,990 0,980 0,969 0,959 0,949<br />

(79)<br />

75


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

Direct output to room air<br />

If <strong>the</strong> heat output is directly to <strong>the</strong> room air (e.g. via condensation <strong>of</strong> <strong>the</strong> refrigerant in an air heat exchanger),<br />

<strong>the</strong>n <strong>the</strong> indoor set-point temperature shall be used as <strong>the</strong> distribution temperature. If <strong>the</strong> temperature does<br />

not correspond to test rig measurements, <strong>the</strong> value shall be extrapolated where <strong>the</strong>re are a number <strong>of</strong> testing<br />

points, but if <strong>the</strong>re is only one testing point, <strong>the</strong> result shall be corrected applying <strong>the</strong> exergetic <strong>efficiency</strong><br />

approach (see Annex A).<br />

6.4.2.5.2 Non-electrically driven heat pumps with combustion drive<br />

Heat pumps with combustion drive include engine-driven heat pumps and sorption heat pumps.<br />

The calculation shall be carried out on <strong>the</strong> basis <strong>of</strong> test measurements from a recognized testing laboratory.<br />

If no product data are available, <strong>the</strong> values specified in Annex A shall be used in <strong>the</strong> calculations.<br />

6.4.2.6 Coefficient <strong>of</strong> performance in part load operation<br />

6.4.2.6.1 Principle<br />

Since heat pumps provided with fixed-speed compressors operate at part load operation by cycling between<br />

on and <strong>of</strong>f status, losses due to cycling <strong>of</strong> <strong>the</strong> compressor occur which reduce <strong>the</strong> coefficient <strong>of</strong> performance<br />

<strong>of</strong> <strong>the</strong> heat pump.<br />

Variable capacity units controlled stepwise (i.e. cascading) or continuously, are more efficient at part load<br />

operation.<br />

For <strong>the</strong> calculation, <strong>the</strong> coefficients <strong>of</strong> performance and heat outputs at part load operation are required for <strong>the</strong><br />

operating point <strong>of</strong> each bin. At least one coefficient <strong>of</strong> performance at 50 % load measured as described in<br />

<strong>DIN</strong> CEN/TS 14825 is required.<br />

The coefficient <strong>of</strong> performance at part load operation is given by <strong>the</strong> following relationship:<br />

where<br />

76<br />

COPpl COPfl<br />

⋅ fpl<br />

COP pl<br />

COP fl<br />

f pl<br />

= (80)<br />

is <strong>the</strong> coefficient <strong>of</strong> performance at part load operation;<br />

is <strong>the</strong> coefficient <strong>of</strong> performance at full load operation;<br />

is <strong>the</strong> correction factor to account for part load operation.<br />

The correction factor f pl takes account <strong>of</strong> <strong>the</strong> <strong>the</strong>rmal inertia <strong>of</strong> <strong>the</strong> distribution system and heat pump as well<br />

as <strong>the</strong> running time <strong>of</strong> <strong>the</strong> heat pump. The running time <strong>of</strong> <strong>the</strong> heat pump is accounted for by <strong>the</strong> load factor<br />

FC.<br />

The load factor can be calculated using <strong>the</strong> following equation<br />

tON,<br />

g, i<br />

FC = (81)<br />

ti


where<br />

FC is <strong>the</strong> load factor;<br />

t on,g,i<br />

t i<br />

is <strong>the</strong> running time <strong>of</strong> <strong>the</strong> heat pump in bin i (in <strong>the</strong> respective month), in h;<br />

<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

is <strong>the</strong> total time in bin i (in <strong>the</strong> respective month), in h (if outdoor air is <strong>the</strong> heat source, see<br />

Table 25).<br />

For electrically operated heat pumps f pl is given in Annex A for radiators, convectors, and surface heating.<br />

For absorption heat pumps f pl is given (as c dt ) in Annex A.<br />

6.4.2.6.2 Running time <strong>of</strong> <strong>the</strong> heat pump<br />

The running time <strong>of</strong> <strong>the</strong> heat pump depends on <strong>the</strong> heat output <strong>of</strong> <strong>the</strong> pump under <strong>the</strong> operating conditions<br />

(heat source temperature and heating water supply and return temperatures) and <strong>the</strong> required generator heat<br />

output. The running time in each bin is calculated as follows:<br />

where<br />

h, outg,<br />

i<br />

ON, g, i =<br />

0, 001⋅<br />

Φg,<br />

i<br />

Q<br />

t (82)<br />

t ON,g,i<br />

is <strong>the</strong> running time <strong>of</strong> <strong>the</strong> heat pump in bin i (in <strong>the</strong> respective month), in h;<br />

Q h,outg,i is <strong>the</strong> generator heat output in bin i (in <strong>the</strong> respective month) (see equation 72), in kWh;<br />

Φ g,i<br />

is <strong>the</strong> heat output <strong>of</strong> <strong>the</strong> heat pump in bin i, in W.<br />

The heat output <strong>of</strong> <strong>the</strong> heat pump shall be taken from <strong>the</strong> test records. If no product data are available, it shall<br />

be assumed in <strong>the</strong> case <strong>of</strong> monovalent operation that <strong>the</strong> heat output <strong>of</strong> <strong>the</strong> heat pump under design<br />

conditions is equal to <strong>the</strong> maximum heat load required by <strong>the</strong> zone being served according to Annex B <strong>of</strong><br />

<strong>DIN</strong> V <strong>18599</strong>-2. For bivalent operation, <strong>the</strong> maximum heat output <strong>of</strong> <strong>the</strong> heat pump is to be taken from <strong>the</strong><br />

project documents. The heat output in each bin shall be determined using <strong>the</strong> relative heat output given in A.3.<br />

The following boundary condition applies:<br />

where<br />

∑<br />

T−<br />

≥ t M, ON tON,<br />

g, i<br />

(83)<br />

bins<br />

t ON,g,i<br />

is <strong>the</strong> maximum possible running time <strong>of</strong> <strong>the</strong> heat pump (in <strong>the</strong> respective month), in h.<br />

The maximum possible running time <strong>of</strong> <strong>the</strong> heat pump is given in Table 25. Equation (83) limits <strong>the</strong> running<br />

time proportionately in <strong>the</strong> respective bins.<br />

Since <strong>the</strong> running time <strong>of</strong> <strong>the</strong> heat pump depends on <strong>the</strong> heat demand, <strong>the</strong> operating mode <strong>of</strong> <strong>the</strong> heat pump<br />

is to be taken into account.<br />

If <strong>the</strong> mean monthly supply temperature <strong>of</strong> <strong>the</strong> distribution is higher than <strong>the</strong> maximum supply temperature <strong>of</strong><br />

<strong>the</strong> heat pump, <strong>the</strong>n <strong>the</strong> supply temperature <strong>of</strong> this bin shall be determined and <strong>the</strong> running time <strong>of</strong> <strong>the</strong> heat<br />

pump for this bin shall be limited.<br />

77


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

Where heat pumps are used for both space heating and domestic hot water heating, <strong>the</strong> maximum possible<br />

running time for space heating can also be limited by <strong>the</strong> sum <strong>of</strong> <strong>the</strong> running times. The running time for<br />

domestic hot water heating shall be determined as specified in <strong>DIN</strong> V <strong>18599</strong>-8.<br />

If <strong>the</strong> running time is greater than <strong>the</strong> maximum possible running time obtained from equation (83), <strong>the</strong><br />

running times for space heating and domestic hot water heating are reduced by <strong>the</strong> same number <strong>of</strong> hours<br />

unless <strong>the</strong> heat pump control system foresees o<strong>the</strong>r provisions.<br />

The heat output <strong>of</strong> <strong>the</strong> heat pump is limited to <strong>the</strong> actual running time.<br />

where<br />

78<br />

Q 0, 001<br />

Φ<br />

(84)<br />

h, outg, i,WP = ⋅ tON,<br />

g, i,WP ⋅<br />

g, i<br />

Q h,outg,i,WP is <strong>the</strong> generator heat output <strong>of</strong> <strong>the</strong> heat pump in bin i (in <strong>the</strong> respective month), in kWh;<br />

t ON,g,i,WP<br />

Φ g,i<br />

is <strong>the</strong> actual running time <strong>of</strong> <strong>the</strong> heat pump in bin i (in <strong>the</strong> respective month), in h;<br />

is <strong>the</strong> heat output <strong>of</strong> <strong>the</strong> heat pump in bin i, in W.<br />

6.4.2.7 Generator <strong>the</strong>rmal losses<br />

Hot water buffer storage tank<br />

Any external buffer storage tank that may be installed is dealt with in 6.3.<br />

If <strong>the</strong> buffer storage tank is part <strong>of</strong> <strong>the</strong> heat pump, <strong>the</strong> losses are calculated using equation (49) and are<br />

distributed over individual bins as follows:<br />

where<br />

t<br />

Q i<br />

h, g, s, i Qh,<br />

s ⋅<br />

th<br />

= (85)<br />

Q h,g,s,i is <strong>the</strong> heat loss <strong>of</strong> <strong>the</strong> storage tank to <strong>the</strong> surrounding environment in bin i (in <strong>the</strong> respective<br />

month), in kWh;<br />

Q h,s<br />

t i<br />

t h<br />

is <strong>the</strong> heat loss <strong>of</strong> <strong>the</strong> buffer storage tank (in <strong>the</strong> respective month), in kWh; <strong>the</strong> default value<br />

given in 6.3 shall be used if no product data are available;<br />

is <strong>the</strong> time in bin i (in <strong>the</strong> respective month), in h;<br />

is <strong>the</strong> number <strong>of</strong> heating hours in <strong>the</strong> respective month (see 4.1), in h.<br />

Fur<strong>the</strong>r generator <strong>the</strong>rmal losses<br />

For electrically driven heat pumps no fur<strong>the</strong>r losses are considered, i.e. Q h,g,WP = 0. For heat pumps with<br />

combustion drive <strong>the</strong> data shall be used from test rig results or manufacturers’ data.<br />

where<br />

Q h, g, i Qh,<br />

g, s, i + Qh,<br />

g, WP, i<br />

Q h,g,i<br />

= (86)<br />

is <strong>the</strong> generator heat loss in bin i (in <strong>the</strong> respective month), in kWh.


6.4.2.8 <strong>Calculation</strong> <strong>of</strong> total energy consumption<br />

6.4.2.8.1 Electrically driven heat pumps<br />

Auxiliary energy consumption <strong>of</strong> <strong>the</strong> heat pump in <strong>the</strong> space heating mode<br />

<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

The electrical energy consumption is calculated by adding toge<strong>the</strong>r <strong>the</strong> electrical energy consumption in <strong>the</strong><br />

individual bins as follows:<br />

Q<br />

+<br />

where<br />

h, f,<br />

1<br />

nbin<br />

∑<br />

i = 1<br />

Q h,f,1<br />

=<br />

Q<br />

nbin<br />

∑<br />

i = 1<br />

Q<br />

h, outg, WP, i<br />

h, outg, combi,<br />

i<br />

+ Q<br />

+ Q<br />

h, g, i<br />

h, g,<br />

i<br />

− p<br />

COP<br />

− ( 1−<br />

p<br />

h, combi<br />

combi,<br />

i<br />

COP<br />

h, combi<br />

sin,<br />

i<br />

⋅ k<br />

rd, g<br />

) ⋅ k<br />

⋅Q<br />

rd, g<br />

⋅Q<br />

h, g, aux, i<br />

h, g, aux,<br />

i<br />

is <strong>the</strong> delivered energy required for operation <strong>of</strong> <strong>the</strong> heat pump in <strong>the</strong> space heating mode<br />

(in <strong>the</strong> respective month), in kWh;<br />

Q h,outg,WP,i is <strong>the</strong> generator heat output in bin i (in <strong>the</strong> respective month) which is met by <strong>the</strong> heat pump<br />

in single (space heating) mode (see 6.4), in kWh;<br />

Q h,outg,combi,i is <strong>the</strong> generator heat output in bin i (in <strong>the</strong> respective month) which is met by <strong>the</strong> heat pump<br />

in combined space heating and domestic hot water heating mode (see 6.4), in kWh;<br />

Q h,g,i<br />

k rd,g<br />

Q h,g,aux,i<br />

COP sin,i<br />

is <strong>the</strong> generator heat loss in bin i (in <strong>the</strong> respective month), in kWh;<br />

is <strong>the</strong> fraction <strong>of</strong> auxiliary energy recovered as <strong>the</strong>rmal energy (k rd,g = 0);<br />

is <strong>the</strong> auxiliary energy for operation <strong>of</strong> <strong>the</strong> heat pump in <strong>the</strong> space heating mode in bin i (in<br />

<strong>the</strong> respective month), in kWh;<br />

is <strong>the</strong> coefficient <strong>of</strong> performance <strong>of</strong> <strong>the</strong> heat pump in single (space heating) mode in bin i;<br />

NOTE This corresponds to <strong>the</strong> coefficient <strong>of</strong> performance under average operating conditions.<br />

COP combi,i<br />

is <strong>the</strong> coefficient <strong>of</strong> performance <strong>of</strong> <strong>the</strong> heat pump in combined space heating and domestic<br />

hot water heating mode in bin i;<br />

NOTE This corresponds to <strong>the</strong> coefficient <strong>of</strong> performance under average operating conditions.<br />

p h,combi<br />

n bin<br />

is <strong>the</strong> fraction <strong>of</strong> combined space heating and domestic water heating (simultaneous<br />

operation);<br />

is <strong>the</strong> number <strong>of</strong> bins.<br />

6.4.2.8.2 Heat pumps with combustion drive<br />

The fuel input energy <strong>of</strong> <strong>the</strong> heat pump is calculated by adding <strong>the</strong> values in <strong>the</strong> individual bins by means <strong>of</strong><br />

equation (88).<br />

(87)<br />

79


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

80<br />

nbin<br />

h, f,<br />

1 = ∑<br />

i = 1<br />

Q<br />

where<br />

Q h,f,1<br />

Q h,outg,i<br />

k rd,g<br />

Q h,g,aux,i<br />

COP i<br />

Q<br />

h, outg,<br />

i<br />

− k<br />

rd, g<br />

COP<br />

i<br />

⋅Q<br />

h, g, aux, i<br />

⋅ f<br />

Hs/Hi<br />

is <strong>the</strong> delivered energy (gas) <strong>of</strong> <strong>the</strong> heat pump (in <strong>the</strong> respective month), in kWh;<br />

is <strong>the</strong> generator heat output for <strong>the</strong> heating system in bin i, in kWh;<br />

is <strong>the</strong> fraction <strong>of</strong> auxiliary energy recovered as <strong>the</strong>rmal energy (k rd,g = 0);<br />

is <strong>the</strong> auxiliary energy <strong>of</strong> <strong>the</strong> heat pump in <strong>the</strong> space heating mode in bin i (in <strong>the</strong> respective<br />

month), in kWh;<br />

is <strong>the</strong> coefficient <strong>of</strong> performance <strong>of</strong> <strong>the</strong> heat pump in <strong>the</strong> space heating mode in bin i;<br />

NOTE This corresponds to <strong>the</strong> coefficient <strong>of</strong> performance under average operating conditions.<br />

f Hs/Hi<br />

n bin<br />

6.4.2.9 Auxiliary energy<br />

where<br />

w, g, aux<br />

is <strong>the</strong> ratio <strong>of</strong> gross calorific value to net calorific value ratio <strong>of</strong> <strong>the</strong> fuel used;<br />

is <strong>the</strong> number <strong>of</strong> bins.<br />

( prim, aux + sek, aux ) ⋅ 0, 001 tON,<br />

g, aux<br />

Q = Φ Φ<br />

⋅<br />

(89)<br />

Q h,g,aux<br />

Φ prim,aux<br />

Φ sek,aux<br />

t ON,g,aux<br />

is <strong>the</strong> total auxiliary energy use (in <strong>the</strong> respective month), in kWh;<br />

is <strong>the</strong> power requirement <strong>of</strong> <strong>the</strong> primary circuit, in W;<br />

is <strong>the</strong> power requirement <strong>of</strong> <strong>the</strong> secondary circuit, in W;<br />

is <strong>the</strong> running time <strong>of</strong> <strong>the</strong> auxiliary component (in <strong>the</strong> respective month), in h.<br />

If <strong>the</strong> power consumption <strong>of</strong> <strong>the</strong> auxiliary component is not known, it is calculated according to equation (90).<br />

Φ<br />

where<br />

prim/sek, aux<br />

Φ prim,aux<br />

Φ sek,aux<br />

∆p<br />

⋅ V<br />

=<br />

η ⋅ 3 600<br />

&<br />

aux<br />

is <strong>the</strong> power requirement <strong>of</strong> <strong>the</strong> primary circuit, in W;<br />

is <strong>the</strong> power requirement <strong>of</strong> <strong>the</strong> secondary circuit, in W;<br />

∆p is <strong>the</strong> pressure drop in <strong>the</strong> primary or secondary circuit respectively, in Pa;<br />

V & is <strong>the</strong> volume flow, in m 3 /h;<br />

(88)<br />

(90)


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

NOTE This value can be taken from test rig measurements as specified in <strong>DIN</strong> EN 14511 (all parts) or from<br />

product data.<br />

η aux<br />

is <strong>the</strong> <strong>efficiency</strong> <strong>of</strong> <strong>the</strong> circulation pump.<br />

NOTE The <strong>efficiency</strong> <strong>of</strong> <strong>the</strong> circulation pumps is specified in <strong>DIN</strong> EN 14511 (all parts) as η aux = 0,3.<br />

6.4.2.9.1 Primary circuit (heat source)<br />

For <strong>the</strong> heat pump <strong>the</strong> drive energy <strong>of</strong> <strong>the</strong> source pump is taken into account in <strong>the</strong> generator subsystem.<br />

The sum <strong>of</strong> <strong>the</strong> running times <strong>of</strong> <strong>the</strong> heat pump over all bins t on,g,i is to be assumed for <strong>the</strong> running time <strong>of</strong><br />

auxiliary components t ON,aux .<br />

Air-to-water heat pump<br />

As air-to-water heat pumps are tested as a unit, <strong>the</strong> auxiliary energy for <strong>the</strong> fan in <strong>the</strong> source circuit is already<br />

taken into account when measuring according to <strong>DIN</strong> EN 14511 (all parts).<br />

Brine-to-water and water-to-water heat pump<br />

In <strong>the</strong> case <strong>of</strong> brine-to-water and water-to-water heat pumps, <strong>the</strong> auxiliary energy to compensate for <strong>the</strong><br />

internal pressure drop in <strong>the</strong> evaporator is taken into account in <strong>the</strong> coefficient <strong>of</strong> performance in <strong>the</strong> test rig<br />

measurement according to <strong>DIN</strong> EN 14511 (all parts). The missing source pump auxiliary energy required to<br />

compensate for <strong>the</strong> pressure drop in <strong>the</strong> heat source system is to be taken into account using equation (90). If<br />

no values are available, a pressure loss <strong>of</strong> 40 kPa is used and <strong>the</strong> volume flow is determined using <strong>the</strong><br />

nominal power <strong>of</strong> <strong>the</strong> heat pump at a temperature difference <strong>of</strong> 3 K.<br />

6.4.2.9.2 Secondary circuit<br />

The secondary auxiliary energy shall only be taken into account in <strong>the</strong> case <strong>of</strong> heat pumps with integrated<br />

buffer storage tanks or a hydraulic diverter. The secondary pressure loss <strong>of</strong> <strong>the</strong> heat pump has already been<br />

included in <strong>the</strong> determination <strong>of</strong> <strong>the</strong> coefficient <strong>of</strong> performance according to <strong>DIN</strong> EN 14511 (all parts). ∆p we<br />

shall thus be set at zero in equation (44).<br />

If <strong>the</strong>re is a hydraulic decoupling between <strong>the</strong> heat pump and <strong>the</strong> distribution system (e.g. by means <strong>of</strong> a<br />

parallel buffer storage tank), <strong>the</strong> additional storage tank charge pump is also assigned to <strong>the</strong> generator<br />

subsystem (heat pump). In this case <strong>the</strong> energy to compensate for <strong>the</strong> external pressure drop is to be taken<br />

into account. If no values are available a pressure loss <strong>of</strong> 10 kPa is used.<br />

The sum <strong>of</strong> <strong>the</strong> running times <strong>of</strong> <strong>the</strong> heat pump in all bins t on,g,i shall be assumed as <strong>the</strong> running time <strong>of</strong><br />

auxiliary components t ON,aux .<br />

6.4.2.10 <strong>Energy</strong> consumption <strong>of</strong> <strong>the</strong> second generator (back-up heating system)<br />

Q<br />

where<br />

⎛<br />

max ⎜ Q −<br />

⋅<br />

⎜ h, outg,i Qh,<br />

outg,i, WP;<br />

pbu,h<br />

Q<br />

⎝ i<br />

h, outg,bu = ∑ h, outg,i<br />

Q h,outg,bu<br />

⎞<br />

⎟<br />

⎟<br />

⎠<br />

is <strong>the</strong> generator heat output in bin i (in <strong>the</strong> respective month), provided by <strong>the</strong> second<br />

generator (back-up heating) (see 6.4), in kWh;<br />

Q h,outg,i,WP is <strong>the</strong> generator heat output <strong>of</strong> <strong>the</strong> heat pump in bin i (in <strong>the</strong> respective month), in kWh;<br />

(91)<br />

81


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

82<br />

Q h,outg,i<br />

P bu,h<br />

is <strong>the</strong> energy need <strong>of</strong> <strong>the</strong> distribution system in bin i (in <strong>the</strong> respective month), in kWh;<br />

is <strong>the</strong> energy fraction <strong>of</strong> <strong>the</strong> second generator (back-up heating).<br />

6.4.2.11 Total energy consumption<br />

The total electrical energy consumption (electrical or fuel input energy) is <strong>the</strong> sum <strong>of</strong> <strong>the</strong> input energy <strong>of</strong> <strong>the</strong><br />

heat pump and <strong>the</strong> second generator:<br />

where<br />

Q h, f Qh,<br />

f,1 + Qh,<br />

f, bu<br />

Q h,f<br />

Q h,f,1<br />

Q h,f,bu<br />

= (92)<br />

is <strong>the</strong> total energy use (electric power or gas) for space heating (heat pump and back-up heating<br />

in <strong>the</strong> case <strong>of</strong> electric power) (in <strong>the</strong> respective month), in kWh;<br />

is <strong>the</strong> energy use <strong>of</strong> <strong>the</strong> heat pump in <strong>the</strong> space heating mode (in <strong>the</strong> respective month), in kWh;<br />

is <strong>the</strong> energy use <strong>of</strong> <strong>the</strong> second generator (back-up heating) in <strong>the</strong> space heating mode (in <strong>the</strong><br />

respective month), in kWh.<br />

6.4.2.12 Regenerative energy contribution<br />

The regenerative energy used for <strong>the</strong> heat supply can be calculated as<br />

where<br />

Q h, in Qh,<br />

outg − Qh,<br />

f + Qh,<br />

g<br />

Q h,in<br />

= (93)<br />

is <strong>the</strong> ambient heat for <strong>the</strong> heating system (in <strong>the</strong> respective month), in kWh;<br />

Q h,outg is <strong>the</strong> generator heat output to <strong>the</strong> heating system (in <strong>the</strong> respective month), in kWh (see 6.4);<br />

Q h,f<br />

Q h,g<br />

is <strong>the</strong> energy use <strong>of</strong> <strong>the</strong> heat pump in <strong>the</strong> space heating mode (in <strong>the</strong> respective month) (see<br />

6.4.2), in kWh;<br />

are <strong>the</strong> generation <strong>the</strong>rmal losses <strong>of</strong> <strong>the</strong> heating system to <strong>the</strong> installation space (in <strong>the</strong><br />

respective month) (see 6.4.2), in kWh.<br />

6.4.2.13 Performance factor to account for <strong>the</strong> generator subsystem<br />

For information purposes, <strong>the</strong> annual performance factor can be calculated on <strong>the</strong> basis <strong>of</strong> <strong>the</strong> sum <strong>of</strong> <strong>the</strong><br />

monthly energy need for heating and <strong>the</strong> energy expenditure:<br />

∑<br />

∑Qh,<br />

f<br />

h, outg<br />

Monate<br />

SPF g, t, a =<br />

(94)<br />

+ Q<br />

Monate<br />

Q<br />

h, aux, g<br />

The monthly performance factor can be calculated (also for information purposes) as:<br />

SPF<br />

g, t<br />

Qh,<br />

outg<br />

= (95)<br />

Q + Q<br />

h, f<br />

h, aux, g


where<br />

SPF g,t,a<br />

SPF g,t<br />

Q h,outg<br />

Q h,f<br />

is <strong>the</strong> annual performance factor <strong>of</strong> <strong>the</strong> heat pump;<br />

is <strong>the</strong> monthly performance factor <strong>of</strong> <strong>the</strong> heat pump;<br />

<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

is <strong>the</strong> generator heat output for <strong>the</strong> heating system (in <strong>the</strong> respective month), in kWh (see 6.4);<br />

is <strong>the</strong> energy use for <strong>the</strong> heating system (in <strong>the</strong> respective month), in kWh.<br />

6.4.3 Conventional boilers<br />

Determination <strong>of</strong> heat generation losses: heating Q h,g<br />

The boiler output shall be designed to give <strong>the</strong> following part load levels: β h,i ≤ 1.<br />

If <strong>the</strong>re is only one boiler, <strong>the</strong> value <strong>of</strong> β is calculated as follows:<br />

where<br />

β = Q&<br />

/ Q&<br />

(96)<br />

β h<br />

h<br />

d, in<br />

N<br />

is <strong>the</strong> part load level;<br />

Qd, in<br />

& is <strong>the</strong> mean heat output to <strong>the</strong> heat distribution, in kW;<br />

QN & is <strong>the</strong> boiler rated output, in kW.<br />

6.4.3.1 Multiple boiler systems<br />

A differentiation shall be made between <strong>the</strong> two following modes <strong>of</strong> operation <strong>of</strong> multiple boiler systems.<br />

Parallel operation (without priority switching)<br />

All boilers are in operation at <strong>the</strong> same time to meet <strong>the</strong> heat demand. The part load level <strong>of</strong> <strong>the</strong> individual<br />

boiler <strong>the</strong>n corresponds to <strong>the</strong> ratio <strong>of</strong> <strong>the</strong> total mean heat output to <strong>the</strong> total rated output <strong>of</strong> <strong>the</strong> boilers.<br />

where<br />

( & ∑ N, )<br />

β h, i = Q&<br />

d, in / Q j<br />

(97)<br />

β h,i<br />

is <strong>the</strong> part load level;<br />

Qd, in<br />

& is <strong>the</strong> mean heat output, in kW;<br />

QN, j<br />

& is <strong>the</strong> total rated output <strong>of</strong> <strong>the</strong> boilers, in kW.<br />

83


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

Series operation (with priority switching)<br />

The boiler rated outputs are added step-by-step in <strong>the</strong> sequence each individual boiler i switches on in<br />

accordance with <strong>the</strong> controller setting. The boiler is at full load (100 %) as long as after each step <strong>the</strong> sum <strong>of</strong><br />

<strong>the</strong>se boiler outputs remains less than <strong>the</strong> energy requirement.<br />

Only when <strong>the</strong> sum <strong>of</strong> <strong>the</strong>se boiler outputs, added step-by-step, exceeds <strong>the</strong> requirement does <strong>the</strong> boiler<br />

whose rated output was <strong>the</strong> last to be added operate in <strong>the</strong> part load regime. The part load β h,n for this nth<br />

boiler is calculated as follows:<br />

If ∑ < Q&<br />

d, in Q&<br />

N, n :<br />

where<br />

84<br />

h, n<br />

( Qd,<br />

in − Q&<br />

) / Q&<br />

N, n<br />

& ∑ N, n−1<br />

β =<br />

(98)<br />

β h,n<br />

is <strong>the</strong> part load level <strong>of</strong> <strong>the</strong> boiler;<br />

Qd, in<br />

& is <strong>the</strong> mean heat output to <strong>the</strong> heat distribution, in kW;<br />

QN, n<br />

&<br />

is <strong>the</strong> rated output <strong>of</strong> <strong>the</strong> boiler, in kW.<br />

The stand-by period for heat generation d H,g,i for a single boiler system, for all boilers in <strong>the</strong> case <strong>of</strong> parallel<br />

operation, or for <strong>the</strong> lead boiler in <strong>the</strong> case <strong>of</strong> sequenced control corresponds to d h,mth (<strong>the</strong> number <strong>of</strong> heating<br />

days in <strong>the</strong> respective month, in d (see 5.4.1)); that <strong>of</strong> <strong>the</strong> following boilers (only if <strong>the</strong>re is water-side<br />

separation from <strong>the</strong> boiler circuit when inoperative) is d h,mth · β h,n . This procedure shall be used by analogy for<br />

hot water production according to <strong>DIN</strong> V <strong>18599</strong>-8 if a multiple boiler system is used.<br />

6.4.3.2 Fuel-fired systems (boilers)<br />

In this clause <strong>the</strong> subscript i is used for calculations with more than one boiler.<br />

The heat loss Q h,g and auxiliary energy Q h,g,aux <strong>of</strong> a boiler are calculated on <strong>the</strong> basis <strong>of</strong> <strong>the</strong> rated heat output<br />

QN & , <strong>the</strong> efficiencies ηK100% , ηK pl% (ηK30% ) according to Directive 92/42/EEC (Boiler Efficiency Directive), <strong>the</strong><br />

stand-by <strong>the</strong>rmal loss qB,70 and <strong>the</strong> electric power Paux <strong>of</strong> <strong>the</strong> auxiliary units <strong>of</strong> a boiler. These values shall<br />

ei<strong>the</strong>r be determined from measurements as product data from <strong>DIN</strong> EN 304, <strong>DIN</strong> EN 303-5, <strong>DIN</strong> EN 297 or<br />

<strong>DIN</strong> EN 656, or else default values can be used if no measured values are available. In addition <strong>the</strong><br />

efficiencies are adjusted to <strong>the</strong> boiler temperature at <strong>the</strong> operating point.<br />

If additional heat is provided by a solar system from 6.4.1 or from o<strong>the</strong>r sources from <strong>DIN</strong> V <strong>18599</strong>-6 or<br />

<strong>DIN</strong> V <strong>18599</strong>-7, <strong>the</strong>n Qh,outg shall be replaced by Q *<br />

h,outg from equation (54). In each case <strong>the</strong> maximum<br />

required operating temperature shall be used as <strong>the</strong> basis during <strong>the</strong> operating time:<br />

HK, m<br />

( ϑ , ϑ , )<br />

ϑ = max ϑ<br />

(99)<br />

HK, m<br />

h*<br />

r, Nutz<br />

When determining <strong>the</strong> operating time it is important whe<strong>the</strong>r <strong>the</strong> running times <strong>of</strong> <strong>the</strong> different processes occur<br />

in <strong>the</strong> same period or in different periods. In <strong>the</strong> following equations <strong>the</strong> times shall be combined with <strong>the</strong><br />

associated temperatures. For simplicity, only normal heating operation is dealt with.<br />

The total generation loss <strong>of</strong> <strong>the</strong> heating system Q h,g , referred to <strong>the</strong> gross calorific value (Hs) is calculated as<br />

Q h,g = Σ(Q h,g,v,i · d h,rB ) (100)


where<br />

Q h,g<br />

<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

is <strong>the</strong> total generation loss <strong>of</strong> <strong>the</strong> heating system (in <strong>the</strong> respective month) (see 4.2.2), in kWh;<br />

Q h,g,v,i is <strong>the</strong> boiler heat loss, in kWh/d;<br />

d h,rB<br />

is <strong>the</strong> design number <strong>of</strong> operating days (in <strong>the</strong> respective month), in d (see 5.4.1).<br />

The daily generation losses <strong>of</strong> <strong>the</strong> boiler Q h,g,v, are determined as a function <strong>of</strong> <strong>the</strong> mean boiler part load β h<br />

and <strong>the</strong> load regimes on which testing <strong>of</strong> <strong>the</strong> generator is based, with part loads β K,pl (equal to 0,3 in <strong>the</strong> case<br />

<strong>of</strong> oil and gas boilers, and between 0,3 and 0,5 in <strong>the</strong> case <strong>of</strong> automatic feed biomass combustion systems)<br />

and β K,100% (equal to 1,0):<br />

If 0 < β h,i ≤ β K,pl , <strong>the</strong>n<br />

where<br />

Qh,g,v,i = ((βh,i /βK,pl ) · ( Q& V,g,pl – Q& B,h ) + Q& B,h ) · (th,rL,T – tw,100% ) (101)<br />

β h,i<br />

is <strong>the</strong> part load level <strong>of</strong> <strong>the</strong> boiler;<br />

Q & V,g,pl is <strong>the</strong> <strong>the</strong>rmal power loss <strong>of</strong> <strong>the</strong> boiler at part load, in kW;<br />

Q & B,h<br />

t h,rL,T<br />

is <strong>the</strong> <strong>the</strong>rmal power loss <strong>of</strong> <strong>the</strong> boiler in stand-by mode, in kW;<br />

is <strong>the</strong> daily design running time (see 5.4.1), in h;<br />

t w,100% is <strong>the</strong> daily running time <strong>of</strong> <strong>the</strong> boiler for domestic water heating (see 4.1), in h.<br />

If β K,pl < β h < 1,0, <strong>the</strong>n<br />

where<br />

Qh,g,v,i = ((βh,i – βK,pl )/(1 – βK,pl ) · ( Q& V,g,100% – Q& V,g,pl ) + ( Q& V,g,pl ) · (th,RL,T – tw,100% ) (102)<br />

Q & V,g,100%<br />

is <strong>the</strong> <strong>the</strong>rmal power loss <strong>of</strong> <strong>the</strong> boiler at rated output, in kW.<br />

Mean heat output <strong>of</strong> <strong>the</strong> generation process<br />

If <strong>the</strong> generator only has to meet <strong>the</strong> heat requirements <strong>of</strong> <strong>the</strong> space heating system or <strong>the</strong> heat requirements<br />

<strong>of</strong> <strong>the</strong> space heating system combined with domestic hot water heating, <strong>the</strong>n <strong>the</strong> mean heat output is<br />

calculated according to equation (103).<br />

Q& d,in = Qh,outg /(dh,rB · (th,rL,T – tw,100% )) (103)<br />

As soon as <strong>the</strong>re is no heating requirement in <strong>the</strong> particular month and thus d h,rB = 0, <strong>the</strong>n Q & d,in also<br />

becomes zero.<br />

If <strong>the</strong> generator has to meet fur<strong>the</strong>r heating requirements (e.g. for air conditioning) in addition to space heating<br />

and domestic hot water heating, <strong>the</strong>n <strong>the</strong> mean heat output is calculated according to equation (104).<br />

85


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

where<br />

86<br />

Q & d,in = ΣQ h,outg /(t Betrieb,K – t w,100% ) · d Nutz,mth<br />

ΣQ h,outg<br />

t Betrieb,K<br />

is <strong>the</strong> total heat output from 4.2.1, taking account <strong>of</strong> 6.4;<br />

(104)<br />

is <strong>the</strong> monthly operating time <strong>of</strong> <strong>the</strong> generator, taking account <strong>of</strong> all heat loads to be<br />

supplied from 4.2.1.<br />

<strong>Calculation</strong> <strong>of</strong> <strong>the</strong> daily power loss Q & V,g,100% , Q& V,g,pl% , Q& B,h :<br />

Thermal power loss <strong>of</strong> <strong>the</strong> boiler at stand-by Q & B,h :<br />

where<br />

Q & B,h = q B,ϑ · ( Q& N /η k,100% ) · f Hs/Hi<br />

q B,ϑ<br />

Q & N<br />

is <strong>the</strong> stand-by loss at <strong>the</strong> mean boiler temperature;<br />

is <strong>the</strong> boiler rated output, in kW;<br />

η k,100% is <strong>the</strong> boiler <strong>efficiency</strong> at full load;<br />

f Hs/Hi<br />

is <strong>the</strong> ratio <strong>of</strong> gross calorific value to net calorific value <strong>of</strong> <strong>the</strong> fuel used (see 4.1).<br />

The stand-by loss q B,ϑ <strong>of</strong> <strong>the</strong> boiler at <strong>the</strong> mean boiler temperature is calculated as follows:<br />

where<br />

(105)<br />

q B,ϑ = q B,70 · (ϑ HK,m – ϑ i )/(70 – 20) (106)<br />

q B,70<br />

ϑ HK,m<br />

ϑ i<br />

is <strong>the</strong> stand-by loss;<br />

is <strong>the</strong> mean boiler temperature (see 5.4), in °C;<br />

is <strong>the</strong> ambient temperature (see 4.1 or Table 15), in °C.<br />

If <strong>the</strong> mean operating temperatures ϑHK,m <strong>of</strong> boilers (or, in <strong>the</strong> case <strong>of</strong> condensing units, <strong>the</strong> mean return<br />

temperatures ϑRL,m ) deviate from <strong>the</strong> test temperatures given in Table 29, <strong>the</strong> efficiencies shall be adjusted to<br />

take <strong>the</strong> change in temperature conditions into account. The test temperatures ϑg,test are given in Table 29.


Boiler type<br />

Table 29 <strong>—</strong> Boiler temperatures<br />

ϑ g,test 100 (full load)<br />

°C<br />

Gas/oil<br />

<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

ϑ g,test,pl (part load)<br />

°C<br />

Standard 70 50<br />

Low temperature 70 40<br />

Condensing 70 30 a<br />

Biomass<br />

Standard 70 70<br />

a Directive 92/42/EEC specifies a return temperature <strong>of</strong> 30 °C when testing condensing boilers.<br />

The boiler efficiencies determined under test conditions (ϑg,test100 ; ϑg,test,pl ) shall be corrected to take into<br />

account <strong>the</strong> actual operating temperature (ϑ HK,m or ϑRL,m ) as follows:<br />

η k,100%,Betrieb = η k,100% + G · (ϑ g,Test 100 – ϑ HK,m ) (107)<br />

η k,pl,Betrieb = η k,pl + H · (ϑ g , Test,pl – ϑ HK,m ) (108)<br />

If a number <strong>of</strong> heating circuits with differing temperatures are connected, <strong>the</strong>n <strong>the</strong> highest value shall be used<br />

for ϑ HK,m or ϑ RL,m , as appropriate (see clause 5).<br />

For condensing boilers operated at part load, <strong>the</strong> mean return temperature ϑRL,m is substituted for <strong>the</strong> mean<br />

boiler temperature ϑHK,m in equation (108).<br />

Table 30 <strong>—</strong> Temperature correction factors<br />

Boiler type Factor G Factor H<br />

Standard boiler 0 0,000 4<br />

Low temperature boiler 0,000 4 0,000 4<br />

Condensing boiler, gaseous fuels 0,002 0,002<br />

Condensing boiler, liquid fuels 0,000 4 0,001<br />

Standard biomass boiler 0 0,000 4<br />

Thermal power loss at part load:<br />

Q & V,g,pl = (f Hs/Hi – η k,pl,Betrieb )/η k,pl,Betrieb · β K,pl · Q& N<br />

Thermal power loss at full load:<br />

Q & V,g,100% = (f Hs/Hi – η k,100%,Betrieb )/η k,100%,Betrieb · Q& N<br />

(109)<br />

(110)<br />

87


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

<strong>Calculation</strong> <strong>of</strong> <strong>the</strong> recoverable <strong>the</strong>rmal losses<br />

Uncontrolled heat gains from generators installed within <strong>the</strong> heated zone caused by losses via <strong>the</strong> envelope<br />

(q s,ϑ ) <strong>of</strong> <strong>the</strong> generator can be taken into account as follows:<br />

atmospheric gas boiler:<br />

88<br />

q s,ϑ = 0,5 · q B,ϑ<br />

all o<strong>the</strong>r boilers:<br />

q s,ϑ = 0,75 · q B,ϑ<br />

Thus <strong>the</strong> total radiation losses Q I,h,g in <strong>the</strong> calculation period are calculated as follows:<br />

Q I,h,g = q s,ϑ � · Q & N /η k,100% · (t h,rL,T – t w , 100% ) · d h,rB<br />

Auxiliary energy Q h,g,aux<br />

The auxiliary energy for space heat generation Q h,g,aux is calculated using <strong>the</strong> auxiliary power P aux <strong>of</strong> <strong>the</strong><br />

boiler (measured at full load, at part load and in stand-by mode) on <strong>the</strong> basis <strong>of</strong> a volume flow at a difference<br />

<strong>of</strong> 20 K between <strong>the</strong> supply and return temperatures, and <strong>the</strong> mean boiler part load β h,i . In set-back mode, <strong>the</strong><br />

heat generator runs at a reduced temperature and with a reduced running time. These effects are taken into<br />

account via <strong>the</strong> design running time, as is any possible period <strong>of</strong> operational shut down.<br />

where<br />

(111)<br />

(112)<br />

(113)<br />

Q h,g,aux = Σ(P h,g,aux,i · (t h,rL -t w , 100% · d mth · d Nutz,a /365) + P aux,SB · (24 · d mth – t h,rL ) (114)<br />

Q h,g,aux<br />

P aux,SB<br />

th,rL<br />

d mth<br />

If 0 < β h,i ≤ β K,pl ,<br />

where<br />

is <strong>the</strong> auxiliary energy for space heat generation (see 4.2.3), in kWh;<br />

is <strong>the</strong> auxiliary power consumption <strong>of</strong> <strong>the</strong> boiler at stand-by, in kW;<br />

is <strong>the</strong> monthly design running time (see 5.4.1), in h;<br />

is <strong>the</strong> number <strong>of</strong> days (in <strong>the</strong> respective month) (see 4.1).<br />

P h,g,aux,i = (β h,i /β K,pl ) · (P aux,pl,i – P aux,SB ) + P aux,SB<br />

P h,g,aux,i<br />

P aux,pl<br />

If βK,pl�� < βh,i < 1,0:<br />

is <strong>the</strong> auxiliary power consumption <strong>of</strong> <strong>the</strong> boiler when in operation, in kW;<br />

is <strong>the</strong> auxiliary power consumption <strong>of</strong> <strong>the</strong> boiler at part load, in kW.<br />

P h,g,aux,i = (β h,i – β K,pl )/(1 – β K,pl ) · (P aux,100 – P aux,pl ) + P aux,pl<br />

(115)<br />

(116)


where<br />

P aux,100 is <strong>the</strong> auxiliary power consumption <strong>of</strong> <strong>the</strong> boiler at full load, in kW.<br />

<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

When determining <strong>the</strong> auxiliary power consumption for automatic feed biomass central boilers a distinction is<br />

to be made between systems with and without a buffer storage tank. For systems with buffer storage tanks,<br />

correction <strong>of</strong> <strong>the</strong> value P aux,pl is not required.<br />

For systems without buffer storage tanks, P aux,pl shall be adjusted to P aux,pl,bio,korr to take into account <strong>the</strong><br />

higher ignition power requirement as a function <strong>of</strong> <strong>the</strong> relationship between <strong>the</strong> boiler part load βK,pl forming<br />

<strong>the</strong> basis <strong>of</strong> <strong>the</strong> part load measurement, and <strong>the</strong> mean boiler load βh,i in <strong>the</strong> calculation period.<br />

f β,Bio = β K,pl /β h,i<br />

For 1 < f β,Bio < 3 <strong>the</strong> following applies:<br />

P aux,pl,bio,korr. = P aux,pl · f β,Bio<br />

If f β,Bio ≥ 3 <strong>the</strong> following applies:<br />

(117)<br />

(118)<br />

P aux,pl,bio,korr. = P aux,pl · 3 (119)<br />

This corrected value P aux,pl,bio,korr. is introduced into equations (115) and (116) instead <strong>of</strong> P aux,pl .<br />

Boundary conditions in <strong>the</strong> absence <strong>of</strong> data<br />

If no product data are available, <strong>the</strong> following values can be used in <strong>the</strong> ensuing calculations:<br />

boiler efficiencies at full load and where βK,pl = 0,3 (up to a boiler output <strong>of</strong> 400 kW, however if this is higher,<br />

<strong>the</strong> <strong>efficiency</strong> at a rated output Q& N <strong>of</strong> 400 kW shall be used):<br />

ηk,100% = (A + B · log ( Q& N ))/100 (120)<br />

ηk,pl = (C + D · log ( Q& N ))/100 (121)<br />

89


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

Change-fuel boilers<br />

90<br />

Boiler type<br />

Solid fuel boilers (fossil fuel)<br />

Atmospheric gas boiler<br />

Heating boiler with forced draught burner<br />

Burner replacement (only heating boiler<br />

with forced draught burner)<br />

Biomass boiler<br />

Table 31 <strong>—</strong> Efficiency factors<br />

Year <strong>of</strong><br />

construction<br />

Factor A Factor B Factor C Factor D<br />

before 1978 77,0 2,0 70,0 3,0<br />

1978 to 1987 79,0 2,0 74,0 3,0<br />

before 1978 78,0 2,0 72,0 3,0<br />

1978 to 1994 80,0 2,0 75,0 3,0<br />

after 1994 81,0 2,0 77,0 3,0<br />

Standard boilers:<br />

before 1978 79,5 2,0 76,0 3,0<br />

1978 to 1994 82,5 2,0 78,0 3,0<br />

after 1994 85,0 2,0 81,5 3,0<br />

before 1978 80,0 2,0 75,0 3,0<br />

1978 to 1986 82,0 2,0 77,5 3,0<br />

1987 to 1994 84,0 2,0 80,0 3,0<br />

after 1994 85,0 2,0 81,5 3,0<br />

before 1978 82,5 2,0 78,0 3,0<br />

1978 to 1994 84,0 2,0 80,0 3,0<br />

Class 3 from 1994 67 6 68 7<br />

Class 2 from 1994 57 6 58 7<br />

Class 1 from 1994 47 6 48 7<br />

Atmospheric gas boiler<br />

Gas-fired central heating boilers<br />

(11 kW, 18 kW and 24 kW)<br />

Heating boiler with forced draught burner<br />

Low temperature boilers:<br />

1978 to 1994 85,5 1,5 86,0 1,5<br />

after 1994 88,5 1,5 89,0 1,5<br />

before 1987 η 100% = 86 % η pl = 84 %<br />

1987 to 1992 η 100% = 88 % η pl = 84 %<br />

before 1987 84,0 1,5 82,0 1,5<br />

1987 to 1994 86,0 1,5 86,0 1,5<br />

after 1994 88,5 1,5 89,0 1,5<br />

Burner replacement (only heating boiler before 1987 86,0 1,5 85,0 1,5<br />

with forced draught burner) 1987 to 1994 86,0 1,5 86,0 1,5<br />

Condensing boilers<br />

before 1987 89,0 1,0 95,0 1,0<br />

1987 to 1994 91,0 1,0 97,5 1,0<br />

after 1994 92,0 1,0 98,0 1,0<br />

Condensing boiler, improved a from 1999 94,0 1,0 103 1,0<br />

a If default values for “improved” condensing boilers are used in <strong>the</strong> calculation, <strong>the</strong> <strong>efficiency</strong> given in <strong>the</strong> product data <strong>of</strong> <strong>the</strong><br />

installed boiler shall be at least <strong>the</strong> <strong>efficiency</strong> specified above.


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

If <strong>the</strong> flue gas loss <strong>of</strong> existing boilers is known, <strong>the</strong>n while retaining <strong>the</strong> boundary conditions <strong>the</strong> boiler<br />

<strong>efficiency</strong> can also be approximated to η K = 100 – q A – q St , with η K,100% = η K .<br />

The radiation loss q St <strong>of</strong> <strong>the</strong> boiler as a function <strong>of</strong> its rated heat output Q & N<br />

in kW is given by:<br />

qSt = (K · ( QN & ) L )/100 (122)<br />

Change-fuel boilers<br />

Solid fuel boilers<br />

Atmospheric gas boiler<br />

Boiler type<br />

Table 32 <strong>—</strong> Radiation loss factors<br />

Year <strong>of</strong><br />

construction<br />

(where<br />

differentiation is<br />

required)<br />

Factor K Factor L<br />

before 1978 13,5 –0,3<br />

1978 to 1987 11,5 –0,3<br />

before 1978 13,0 –0,3<br />

from 1978 11,0 –0,3<br />

Standard boilers:<br />

before 1978 12,0 –0,35<br />

from 1978 9,0 –0,45<br />

Heating boiler with forced draught burner before 1978 12,0 –0,4<br />

(oil/gas) from 1978 9,0 –0,37<br />

Low temperature boilers:<br />

Atmospheric gas boiler – 9,0 –0,45<br />

Gas-fired central heating boilers<br />

(11 kW, 18 kW and 24 kW combination boilers)<br />

Heating boiler with forced draught burner<br />

(oil/gas)<br />

– 9,0 –0,6<br />

– 7,0 –0,4<br />

Condensing boilers (oil/gas) – 5,5 –0,4<br />

The stand-by <strong>the</strong>rmal loss q B,70 <strong>of</strong> <strong>the</strong> boiler as a function <strong>of</strong> its rated heat output Q & N<br />

in kW is given by:<br />

q B,70 = (E ⋅ ( Q & N )F )/100 (123)<br />

91


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

92<br />

Table 33 <strong>—</strong> Stand-by heat factors<br />

Boiler type Year <strong>of</strong> construction Factor E Factor F<br />

Change-fuel boilers before 1987 12,5 –0,28<br />

Solid fuel boiler<br />

Atmospheric gas boiler<br />

Heating boiler with forced draught burner<br />

(oil/gas)<br />

before 1978 12,5 –0,28<br />

1978 to 1994 10,5 –0,28<br />

after 1994 8,0 –0,28<br />

Standard boilers:<br />

before 1978 8,0 –0,27<br />

1978 to 1994 7,0 –0,3<br />

after 1994 8,5 –0,4<br />

before 1978 9,0 –0,28<br />

1978 to 1994 7,5 –0,31<br />

after 1994 8,5 –0,4<br />

Biomass boiler after 1994 14 –0,28<br />

Atmospheric gas boiler<br />

Gas-fired central heating boiler<br />

(11 kW, 18 kW and 24 kW combination<br />

boiler)<br />

Low temperature boilers:<br />

up to 1994 6,0 –0,32<br />

after 1994 4,5 –0,4<br />

up to 1994<br />

q B,70°C = 0,022<br />

Combination boiler KSp b after 1994 q B,70°C = 0,022<br />

Combination boiler DL a after 1994 q B,70°C = 0,012<br />

Heating boiler with forced draught burner<br />

up to 1994 7,0 –0,37<br />

(oil/gas) after 1994 4,25 –0,4<br />

Condensing boilers (oil/gas)<br />

Combination boiler KSp b (11 kW, 18 kW and<br />

24 kW)<br />

Combination boiler DL a (11 kW, 18 kW and<br />

24 kW)<br />

up to 1994 7,0 –0,37<br />

after 1994 4,0 –0,4<br />

after 1994<br />

after 1994<br />

q B,70°C = 0,022<br />

q B,70°C = 0,012<br />

a DL: Boiler with integrated domestic hot water heating working on <strong>the</strong> instantaneous principle with a heat exchanger (V < 2 l).<br />

b KSp: Boiler with integrated domestic hot water heating working on <strong>the</strong> instantaneous principle with only a small hot water storage<br />

tank (2 < V < 10 l).<br />

The auxiliary power consumption Paux <strong>of</strong> <strong>the</strong> boiler as a function <strong>of</strong> <strong>the</strong> rated heat output Q& N in kW is as<br />

follows:<br />

P aux,x = (G + H · ( Q & N )n )/1 000 (124)


Boiler type<br />

Table 34 <strong>—</strong> Auxiliary energy factors<br />

Auxiliary power<br />

consumption<br />

<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

Factor<br />

G<br />

Factor<br />

H<br />

Factor<br />

n<br />

From 1994<br />

Boiler with forced draught burner P aux,100 0 45 0,48<br />

Boiler with atmospheric burner up to 250 kW<br />

Boiler with atmospheric burner from 250 kW<br />

Auto feed pellet central boiler a , with buffer storage tank<br />

Auto feed wood chip central boiler a , with buffer storage<br />

tank<br />

All o<strong>the</strong>r boilers<br />

P aux,pl 0 15 0,48<br />

P aux,SB 15 0 0<br />

P aux,100 40 0,35 1<br />

P aux,pl 20 0,1 1<br />

P aux,SB 15 0 0<br />

P aux,100 80 0,7 1<br />

P aux,pl 40 0,2 1<br />

P aux,SB 15 0 0<br />

P aux,100 40 2 1<br />

P aux,pl 40 1,8 1<br />

P aux,SB 15 0 0<br />

P aux,100 60 2,6 1<br />

P aux,pl 70 2,2 1<br />

P aux,SB 15 0 0<br />

P aux,100 0 45 0,48<br />

P aux,pl 0 15 0,48<br />

Change-fuel boilers P aux,SB 20 b 0 0<br />

Solid fuel boilers<br />

Standard boilers<br />

Atmospheric gas boiler<br />

Heating boiler with forced draught burner (oil/gas)<br />

P aux,100 0 0 0<br />

P aux,pl 0 0 0<br />

P aux,SB 15 b 0 0<br />

P aux,100 40 0,148 1<br />

P aux,pl 40 0,148 1<br />

P aux,SB 15 b 0 0<br />

P aux,100 0 45 0,48<br />

P aux,pl 0 15 0,48<br />

P aux,SB 15 b 0 0<br />

93


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

Low temperature boilers<br />

Atmospheric gas boiler<br />

94<br />

Boiler type<br />

Gas fired central heating boiler<br />

Heating boiler with forced draught burner (oil/gas)<br />

Condensing boilers (oil/gas)<br />

Table 34 (continued)<br />

Auxiliary power<br />

consumption<br />

a Paux,100 and P aux,pl are 40 % higher if combined with a forced draught burner.<br />

b If electrically-operated boiler control is used, o<strong>the</strong>rwise Paux,SB = 0.<br />

6.4.3.3 Hand stocked biomass combustion systems<br />

Factor<br />

G<br />

Factor<br />

H<br />

P aux,100 40 0,148 1<br />

P aux,pl 40 0,148 1<br />

P aux,SB 15 b 0 0<br />

Factor<br />

n<br />

P aux,100 0 45 0,48<br />

P aux,pl 0 15 0,48<br />

P aux,SB 15 b 0 0<br />

P aux,100 0 45 0,48<br />

P aux,pl 0 15 0,48<br />

P aux,SB 15 b 0 0<br />

P aux,100 0 45 0,48<br />

P aux,pl 0 15 0,48<br />

P aux,SB 15 b 0 0<br />

The following assumptions apply to a hand stocked biomass combustion system if this is <strong>the</strong> only base load<br />

heat generator used for heating (i.e. without ano<strong>the</strong>r base load heat generator, such as a gas or oil boiler or a<br />

heat pump). Fur<strong>the</strong>rmore, if heat generators are located within <strong>the</strong> heated zone, input <strong>of</strong> combustion air shall<br />

be directly from outdoors (operation independent <strong>of</strong> room air; this also includes ingress <strong>of</strong> outdoor air for any<br />

draught regulator that may be present).<br />

Fur<strong>the</strong>rmore, <strong>the</strong> assumptions apply to operation <strong>of</strong> combustion systems located inside <strong>the</strong> apartment or<br />

building <strong>the</strong>y heat, i.e. such that <strong>the</strong> biomass heat generator loss (indirect loss) is principally to a heat carrier<br />

circuit (e.g. a pump hot water heating circuit or <strong>the</strong> supply air ductwork <strong>of</strong> a residential ventilation system) by<br />

means <strong>of</strong> which <strong>the</strong> heat is transported to spaces located a greater distance away. Heat generators whose<br />

minimum heat output to <strong>the</strong> heat carrier circuit is greater than 20 % <strong>of</strong> <strong>the</strong> nominal heat load required by <strong>the</strong><br />

building shall be operated toge<strong>the</strong>r with a buffer storage tank.<br />

The generation heat losses Q h,g and <strong>the</strong> auxiliary energy <strong>of</strong> a biomass combustion system are calculated by<br />

means <strong>of</strong> equations (125) to (129). The parameters required for <strong>the</strong> calculations shall be determined ei<strong>the</strong>r as<br />

specified in <strong>DIN</strong> EN 13240, <strong>DIN</strong> 18892, <strong>DIN</strong> EN 13229 and <strong>DIN</strong> EN 303-5, or using o<strong>the</strong>r recognized test<br />

methods appropriate to <strong>the</strong> generator; if values are not available from measurements, <strong>the</strong> values in Table 34<br />

shall be used. For biomass combustion systems that are designed to give <strong>of</strong>f heat to <strong>the</strong> space in which <strong>the</strong>y<br />

are installed (direct heat output to spaces within <strong>the</strong> heated zone) and that are operated with <strong>the</strong> purpose <strong>of</strong><br />

heating <strong>the</strong>se spaces, this direct loss is also taken into account in <strong>the</strong> following calculation.


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

The generation losses Q h,g <strong>of</strong> a hand stocked biomass combustion system are calculated according to<br />

equation (125) as a function <strong>of</strong> <strong>the</strong> <strong>efficiency</strong> in steady-state operation (η Betrieb ) and <strong>the</strong> <strong>efficiency</strong> during a<br />

base cycle (η GZ ), weighted by <strong>the</strong> quantities <strong>of</strong> heat that are supplied in <strong>the</strong> two phases <strong>of</strong> operation (f Q,GZ ).<br />

Fur<strong>the</strong>rmore <strong>the</strong> effect <strong>of</strong> over-heating <strong>the</strong> installation space if generators are located inside <strong>the</strong> heated zone<br />

is taken into account, in <strong>the</strong> event that <strong>the</strong> quantity <strong>of</strong> heat <strong>the</strong>se give <strong>of</strong>f directly into <strong>the</strong> space is excessive in<br />

proportion to <strong>the</strong> size <strong>of</strong> <strong>the</strong> space (f ce ).<br />

where<br />

Q h,g = ((f Q,GZ · f Hs/Hi /η GZ + (1 – f Q,GZ + f ce ) · f Hs/Hi /η Betrieb ) – 1) · Q h,outg<br />

Q h,outg is <strong>the</strong> heat to be provided by <strong>the</strong> generator (in <strong>the</strong> respective month)) (see 6.4), in kWh;<br />

f Q,GZ<br />

η GZ<br />

f ce<br />

f Hs/Hi<br />

is <strong>the</strong> heat fraction <strong>of</strong> a base cycle according to equation (126);<br />

(125)<br />

is <strong>the</strong> <strong>efficiency</strong> <strong>of</strong> <strong>the</strong> biomass combustion system in a base cycle according to product data or<br />

Table 35;<br />

is <strong>the</strong> over-heating factor from equation (129);<br />

is <strong>the</strong> ratio <strong>of</strong> gross calorific value to net calorific value according to 4.1;<br />

η Betrieb is <strong>the</strong> <strong>efficiency</strong> <strong>of</strong> <strong>the</strong> biomass combustion system in steady-state operation according to<br />

product data or Table 35.<br />

In <strong>the</strong> above, <strong>the</strong> base cycle is <strong>the</strong> phase <strong>of</strong> operation <strong>of</strong> a biomass combustion system, beginning with <strong>the</strong><br />

start-up <strong>of</strong> combustion at room temperature, firing until steady-state operation is attained, and <strong>the</strong> subsequent<br />

cooling <strong>of</strong> <strong>the</strong> boiler down to room temperature.<br />

The heat fraction <strong>of</strong> <strong>the</strong> base cycle is calculated using equation (126). If <strong>the</strong> generator does not heat domestic<br />

hot water while in <strong>the</strong> space heating mode, <strong>the</strong>n Q w,outg shall be set at 0.<br />

where<br />

fQ,<br />

GZ<br />

f Q,GZ<br />

x Z<br />

Q N,GZ<br />

xZ<br />

⋅ QN,<br />

GZ<br />

Qh,<br />

outg + Qw,<br />

outg<br />

dh,<br />

rB<br />

= (126)<br />

is <strong>the</strong> heat fraction <strong>of</strong> <strong>the</strong> base cycle with f Q,GZ ≤ 1;<br />

is <strong>the</strong> number <strong>of</strong> cycles per day from equation (127), in d –1 ;<br />

is <strong>the</strong> total heat supplied by <strong>the</strong> heat generator during a base cycle according to product data or<br />

Table 35, in kWh;<br />

Q h,outg is <strong>the</strong> monthly heat to be supplied by <strong>the</strong> heat generator for space heating, in kWh (see 6.4);<br />

d h,rB<br />

is <strong>the</strong> monthly design number <strong>of</strong> operating days (see 5.4.1);<br />

Q w,outg is <strong>the</strong> monthly heat to be supplied by <strong>the</strong> heat generator for domestic hot water, in kWh.<br />

95


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

When calculating <strong>the</strong> number <strong>of</strong> cycles it is assumed that <strong>the</strong>se are essentially defined by <strong>the</strong> properties <strong>of</strong> <strong>the</strong><br />

heating circuit. (Any direct loss to <strong>the</strong> installation space is not taken into account when determining <strong>the</strong><br />

number <strong>of</strong> cycles.) Fur<strong>the</strong>rmore it is assumed that modulating generators are operated such that <strong>the</strong>ir heat<br />

output is adjusted to suit demand (provided <strong>the</strong> demand is greater than <strong>the</strong> minimum heat output; in equation<br />

(127) it is assumed that <strong>the</strong> mean output is equal to 1,2 times <strong>the</strong> minimum output). The number <strong>of</strong> cycles per<br />

day is obtained by means <strong>of</strong> equations (127) and (128) as follows:<br />

96<br />

x<br />

where<br />

x Z<br />

Z<br />

z HK,m<br />

1,<br />

2 ⋅ 20 971⋅<br />

z<br />

=<br />

( V + V<br />

S, HK<br />

HK, m<br />

HK<br />

⋅Q&<br />

N, min<br />

⋅(<br />

1−<br />

f<br />

) ⋅(<br />

ϑ −ϑ<br />

h, S, max<br />

Q&<br />

) ⋅ f<br />

)<br />

HK, m<br />

is <strong>the</strong> number <strong>of</strong> cycles per day, in 1/d with: x Z ≥ 1;<br />

Q&<br />

(127)<br />

is <strong>the</strong> mean proportion <strong>of</strong> <strong>the</strong> heat output emitted to <strong>the</strong> heating circuit, according to product<br />

data or Table 35;<br />

QN, min<br />

& is <strong>the</strong> minimum output <strong>of</strong> <strong>the</strong> heat generator according to product data or Table 35, in kW;<br />

Q& f is <strong>the</strong> performance factor from equation (128);<br />

V S,HK<br />

V HK<br />

ϑ h,s,n,max<br />

ϑ HK,m<br />

is <strong>the</strong> volume <strong>of</strong> heating circuit water in <strong>the</strong> storage tank according to product data or in<br />

addition to 6.3, in l;<br />

is <strong>the</strong> volume <strong>of</strong> <strong>the</strong> water in <strong>the</strong> distribution from project data or Table 35, in l;<br />

is <strong>the</strong> maximum operating temperature <strong>of</strong> <strong>the</strong> buffer storage tank according to product data<br />

or Table 35, in °C;<br />

is <strong>the</strong> mean heating circuit temperature, in °C.<br />

In <strong>the</strong> case <strong>of</strong> buffer storage tanks in which a separate domestic water storage tank is integrated (combination<br />

storage tank) and which can exchange heat readily with <strong>the</strong> heating circuit water, <strong>the</strong> effective volume <strong>of</strong> <strong>the</strong><br />

heating circuit water in <strong>the</strong> storage tank can be increased by half <strong>the</strong> volume <strong>of</strong> domestic hot water. O<strong>the</strong>rwise<br />

calculations shall only use <strong>the</strong> water that is actually transported by <strong>the</strong> heating circuit (in a storage tank this is<br />

<strong>the</strong> volume <strong>of</strong> <strong>the</strong> zone through which <strong>the</strong> water flows).<br />

In equation (128) a performance factor is introduced to describe <strong>the</strong> ratio <strong>of</strong> <strong>the</strong> maximum required heat output<br />

on an average day (for space heating and for domestic hot water heating) to <strong>the</strong> heat output <strong>of</strong> <strong>the</strong> biomass<br />

boiler delivered to <strong>the</strong> heating circuit.<br />

f<br />

where<br />

Q&<br />

Qw,<br />

outg<br />

Q&<br />

d, in +<br />

24 ⋅ dh,<br />

rB ⋅ zHK,<br />

m<br />

= (128)<br />

Q&<br />

N, min<br />

Q& f is <strong>the</strong> performance factor with fQ < 1;<br />

z HK,m<br />

is <strong>the</strong> mean proportion <strong>of</strong> heat output delivered to <strong>the</strong> heat distribution, according to product data<br />

or Table 35;


Qd, in<br />

& is <strong>the</strong> mean heat loss to <strong>the</strong> heat distribution <strong>of</strong> <strong>the</strong> building, in kW;<br />

Q w,outg is <strong>the</strong> monthly heat supplied by <strong>the</strong> generator for domestic hot water, in kWh;<br />

d h,rB<br />

is <strong>the</strong> monthly design number <strong>of</strong> operating days (see 5.4.1);<br />

<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

QN, min<br />

& is <strong>the</strong> minimum long-term power output capacity <strong>of</strong> <strong>the</strong> generator according to product data or<br />

Table 35, in kW.<br />

If a central biomass combustion system is located inside <strong>the</strong> heated zone and its design is such that it delivers<br />

more heat directly to <strong>the</strong> installation space than <strong>the</strong> latter needs for heating purposes, <strong>the</strong>n for simplification<br />

25 % <strong>of</strong> this heat is taken to be a <strong>the</strong>rmal loss. This <strong>the</strong>rmal loss is taken into account by <strong>the</strong> over-heating<br />

factor f CE :<br />

f<br />

where<br />

CE<br />

f CE<br />

Q CE<br />

0,<br />

25 ⋅ Q<br />

=<br />

Q + Q<br />

h, outg<br />

CE<br />

w, outg<br />

=<br />

Q<br />

0,<br />

25 ⋅ Q<br />

+ Q<br />

h, outg<br />

h<br />

w, outg<br />

⎛ Q&<br />

⋅ ⎜<br />

⎝<br />

is <strong>the</strong> over-heating factor, with f CE ≥ 0;<br />

N, max<br />

⋅(<br />

1−<br />

z<br />

Q&<br />

h, max<br />

HK, m<br />

is <strong>the</strong> non-usable, direct heat loss from <strong>the</strong> generator;<br />

)<br />

−<br />

L<br />

Q h,outg is <strong>the</strong> monthly heat supplied by <strong>the</strong> generator for space heating, in kWh (see 6.4);<br />

Q w,outg is <strong>the</strong> monthly heat supplied by <strong>the</strong> generator for domestic hot water, in kWh;<br />

Q h,b<br />

is <strong>the</strong> annual energy need for heating <strong>the</strong> building, in kWh (see 4.1);<br />

QN, max<br />

& is <strong>the</strong> maximum output capacity <strong>of</strong> <strong>the</strong> generator according to product data or Table 35, in kW;<br />

z HK,m<br />

G<br />

A<br />

⋅ B<br />

Auf<br />

G<br />

⋅ n<br />

G<br />

⎞<br />

⎟<br />

⎠<br />

(129)<br />

is <strong>the</strong> mean proportion <strong>of</strong> heat output delivered to <strong>the</strong> heat distribution, according to product data<br />

or Table 35;<br />

Qh, max<br />

& is <strong>the</strong> maximum heat load required by <strong>the</strong> building (see 4.1), in kW;<br />

A Auf<br />

L G<br />

B G<br />

n G<br />

is <strong>the</strong> floor area <strong>of</strong> <strong>the</strong> installation space in which <strong>the</strong> biomass boiler is located, in m 2 ;<br />

is <strong>the</strong> largest extended length <strong>of</strong> <strong>the</strong> building (see 4.1), in m;<br />

is <strong>the</strong> largest extended width <strong>of</strong> <strong>the</strong> building (see 4.1), in m;<br />

is <strong>the</strong> number <strong>of</strong> heated storeys (see 4.1).<br />

The area <strong>of</strong> <strong>the</strong> installation space can also comprise <strong>the</strong> area taken up by adjacent spaces if <strong>the</strong>se can be<br />

heated regularly thanks to <strong>the</strong> ingress <strong>of</strong> warm air from <strong>the</strong> installation space or adjacent spaces, provided this<br />

air has been directly heated in <strong>the</strong> biomass boiler and its ingress can be controlled.<br />

97


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

The auxiliary energy <strong>of</strong> a biomass boiler that is fitted with electrically operated components such as a<br />

controller, combustion air fan, integrated storage charging pump, or heating rod for automatic ignition, is given<br />

by equation (130). If <strong>the</strong> biomass combustion system has a permanently fitted circulation pump, this shall be<br />

operated during testing such that <strong>the</strong>re is an external pressure drop in <strong>the</strong> water-side section <strong>of</strong> 10 kPa, and<br />

<strong>the</strong> temperature difference between <strong>the</strong> supply and return temperatures at <strong>the</strong> maximum heat output <strong>of</strong> <strong>the</strong><br />

boiler is less than 15 K.<br />

where<br />

98<br />

Q = x ⋅ Q ⋅ d + ( Q + Q − x ⋅ Q ⋅ d ) ⋅ f<br />

(130)<br />

h, g, aux<br />

Z<br />

aux, GZ<br />

h, rB<br />

h, outg<br />

w, outg<br />

Z<br />

N, GZ<br />

h, mth<br />

el, Betrieb<br />

Q h,g,aux is <strong>the</strong> monthly auxiliary energy <strong>of</strong> <strong>the</strong> biomass boiler in <strong>the</strong> heating season, in kWh;<br />

x Z<br />

is <strong>the</strong> number <strong>of</strong> cycles per day;<br />

Q aux,GZ is <strong>the</strong> auxiliary energy required during a base cycle according to product data or Table 35, in<br />

kWh;<br />

Q h,outg is <strong>the</strong> monthly heat to be supplied by <strong>the</strong> boiler for space heating (see 6.4), in kWh;<br />

Q w,outg is <strong>the</strong> monthly heat to be supplied by <strong>the</strong> heat generator for domestic hot water, in kWh;<br />

f el,Betrieb is <strong>the</strong> relative power consumption in steady-state operation;<br />

Q N,GZ<br />

d h,rB<br />

is <strong>the</strong> usable heat supplied by <strong>the</strong> heat generator during a base cycle according to product data<br />

or Table 35, in kWh;<br />

is <strong>the</strong> monthly design number <strong>of</strong> operating days (see 5.4.1).<br />

Boundary conditions in <strong>the</strong> absence <strong>of</strong> product data<br />

If <strong>the</strong> product data are not known (in full or in part), <strong>the</strong>n for simplification <strong>the</strong> generator expenditure factor and<br />

<strong>the</strong> auxiliary energy <strong>of</strong> a biomass boiler can be calculated using <strong>the</strong> default values given in Table 35. The<br />

rated output <strong>of</strong> <strong>the</strong> boiler ( Q & N,max ) that is required for this purpose can be estimated from 5.3 if no data are<br />

available from <strong>the</strong> manufacturer.


Table 35 <strong>—</strong> Default values<br />

Parameter Meaning Unit<br />

<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

Log wood firing<br />

Direct and indirect loss<br />

η Betrieb Efficiency in steady-state operation – 0,70<br />

η GZ Efficiency in <strong>the</strong> base cycle – 0,85 · η Betrieb<br />

QN,GZ Heat delivered by <strong>the</strong> boiler during a base cycle kWh N, max ⋅1,5<br />

h<br />

z HK,m Fraction <strong>of</strong> heat output to <strong>the</strong> heat distribution – 0,4<br />

QN, max<br />

&<br />

Maximum power output capacity in operation<br />

according to <strong>DIN</strong> V <strong>18599</strong>-2<br />

Q &<br />

1,3 Q& ⋅<br />

kW h, max<br />

QN, min<br />

& Minimum power output capacity in operation kW , 9 ⋅ N, max<br />

0 Q &<br />

QN, m<br />

& Mean power output capacity in operation kW N, max<br />

ϑ h,s,max Maximum storage charging temperature K 85<br />

V HK Water volume <strong>of</strong> <strong>the</strong> heating circuit l 0,8 (l/m 2 ) · L G · B G · n G<br />

Qaux,GZ Auxiliary energy for <strong>the</strong> base cycle kWh 0,05a or , 02 + 0,<br />

02 ⋅ b<br />

N, max<br />

f el,Betrieb<br />

Relative auxiliary power consumption in steady-state<br />

operation<br />

a Equipment with controller only.<br />

b Equipment with fan/ignition source.<br />

Q &<br />

0 Q &<br />

W 0,001a or 0, 011 QN, max<br />

& ⋅<br />

The values for <strong>the</strong> auxiliary energy do not include <strong>the</strong> auxiliary energy <strong>of</strong> any storage charging pump that may<br />

be present. This shall be taken into account separately when dealing with <strong>the</strong> storage system.<br />

If for determination <strong>of</strong> <strong>the</strong> over-heating factor f CE <strong>the</strong> ratio <strong>of</strong> <strong>the</strong> area <strong>of</strong> <strong>the</strong> installation space to <strong>the</strong> net floor<br />

area <strong>of</strong> <strong>the</strong> storey is not known, this can be assumed to be 0,2.<br />

6.4.3.4 Decentralized fuel-fired systems<br />

In <strong>the</strong> case <strong>of</strong> decentralized fuel fired systems <strong>the</strong> energy for net (usable) heat, control and emission,<br />

distribution and generation is brought toge<strong>the</strong>r into one quantity which is <strong>the</strong>n used in <strong>the</strong> subsequent balance<br />

calculation as described in 4.2. It thus corresponds directly to <strong>the</strong> energy use <strong>of</strong> <strong>the</strong> heat generator.<br />

6.4.3.4.1 Gas space heaters<br />

Chimney-dependent units<br />

up to 1985 Q h,f = 1,40 · Q h,b in kWh in <strong>the</strong> respective month<br />

after 1985 Q h,f = 1,34 · Q h,b in kWh in <strong>the</strong> respective month<br />

Outside wall units<br />

up to 1985 Q h,f = 1,47 · Q h,b in kWh in <strong>the</strong> respective month<br />

b<br />

99


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

after 1985 Q h,f = 1,40 · Q h,b in kWh in <strong>the</strong> respective month<br />

6.4.3.4.2 Oil-fired stand-alone stoves with vaporization burner<br />

up to 1985 Q h,f = 1,40 · Q h,b in kWh in <strong>the</strong> respective month<br />

after 1985 Q h,f = 1,34 · Q h,b in kWh in <strong>the</strong> respective month<br />

6.4.3.4.3 Tiled stove (“Kachel<strong>of</strong>en”)<br />

100<br />

Q h,f = 1,55 · Q h,b<br />

6.4.3.4.4 Coal-fired iron stove<br />

Q h,f = 1,60 · Q h,b<br />

6.4.3.4.5 Heating <strong>of</strong> large indoor spaces<br />

in kWh in <strong>the</strong> respective month<br />

in kWh in <strong>the</strong> respective month<br />

Radiant tube heater (Type C), decentralized convection air heaters (Type C)<br />

The heat generation loss for radiant tube heaters and decentralized convection air heaters is given by:<br />

Q h,g = f · Q h,outg in kWh in <strong>the</strong> respective month (131)<br />

In <strong>the</strong> above, <strong>the</strong> following <strong>efficiency</strong> factors shall be applied (see Table 36).<br />

Nominal heat output<br />

kW<br />

Table 36 <strong>—</strong> Efficiency factor<br />

Factor f<br />

> 4 to 25 0,111<br />

> 25 to 50 0,099<br />

> 50 0,087<br />

It shall be assumed that <strong>the</strong>se heaters are installed in <strong>the</strong> space <strong>the</strong>y are intended to heat and are<br />

independent <strong>of</strong> room air, and that <strong>the</strong>y are connected to concentric air piping / a flue.<br />

Luminous radiant heaters (Type A)<br />

The heating system generally comprises a number <strong>of</strong> luminous radiant heaters. The heat generation loss for<br />

luminous radiant heater systems is given by:<br />

where<br />

Q h,g = V Abluft,spez · c p,Abluft · (ϑ Abluft – ϑ Außen ) · t h,rL<br />

V Abluft,spez is <strong>the</strong> specific combustion air demand = 10 m 3 /(h · kW heat load);<br />

c p,Abluft is <strong>the</strong> specific heat capacity = 0,361 Wh/(m 3 · K);<br />

ϑ Abluft is <strong>the</strong> extract air temperature = 18 °C;<br />

(132)


ϑ e<br />

t h,rL<br />

is <strong>the</strong> average monthly outdoor air temperature (see 4.1), in °C;<br />

is <strong>the</strong> monthly design running time (see 5.4.1), in h.<br />

<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

It is assumed that <strong>the</strong>se heat generators are installed in <strong>the</strong> space <strong>the</strong>y are intended to heat and that <strong>the</strong>y are<br />

fitted with an indirect flue system conforming to <strong>DIN</strong> EN 13410.<br />

Auxiliary energy for luminous radiant heaters<br />

The auxiliary energy for wall or ceiling fans in relation to <strong>the</strong> energy need for heating <strong>the</strong> large indoor space,<br />

heated by a luminous radiant heater, is as follows:<br />

Q h,g,aux = 0,000 6 · Q h,b in kWh in <strong>the</strong> respective month (133)<br />

6.4.4 Electric heaters<br />

6.4.4.1 Decentralized electric heaters<br />

Decentralized electrical systems are taken into account in <strong>the</strong> emission subsystem.<br />

6.4.4.2 Central electric heaters<br />

In <strong>the</strong> case <strong>of</strong> central electric heating, <strong>the</strong> following loss shall be assumed:<br />

⎯ storage with separate generation Q h,s + Q h,g = 0,11 · Q h,outg in kWh in <strong>the</strong> respective month;<br />

⎯ storage with integrated generation Q h,s + Q h,g = 0,09 · Q h,outg in kWh in <strong>the</strong> respective month<br />

where<br />

Q h,outg is <strong>the</strong> generator heat output (in <strong>the</strong> respective month) (see 6.4.1), in kWh.<br />

6.4.5 District heating and local heating<br />

The heat loss Q h,g <strong>of</strong> <strong>the</strong> dwelling substations is given by:<br />

with<br />

and<br />

Q h,g = H DS ⋅ (ϑ DS – ϑ i ) (134)<br />

H DS = B DS ⋅ Φ DS 1/3 ΦDS in kW, H DS in kWh/K · a (135)<br />

ϑ DS = D DS ⋅ ϑ prim,DS + (1 – D DS ) ⋅ϑ sek,DS<br />

For ϑprim,DS and ϑsek,DS <strong>the</strong> mean temperatures on <strong>the</strong> primary and secondary sides <strong>of</strong> <strong>the</strong> dwelling<br />

substation shall be used respectively, ϑsek,DS being equal to ϑHK,m .<br />

The equations are numerical value equations. The rated output Φ DS (equal to N<br />

Q & ) <strong>of</strong> <strong>the</strong> dwelling substation<br />

in kW and <strong>the</strong> numerical values from Tables 37 and 38 are used, thus giving <strong>the</strong> <strong>the</strong>rmal losses Q h,g,DS in<br />

kWh per year.<br />

(136)<br />

101


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

102<br />

Table 37 <strong>—</strong> D DS as a function <strong>of</strong> <strong>the</strong> primary temperature and type <strong>of</strong> dwelling substation<br />

Type <strong>of</strong> dwelling substation<br />

(Design) primary temperature)<br />

ϑ prim,DS<br />

°C<br />

Hot water, low temperature 105 0,6<br />

Hot water, high temperature 150 0,4<br />

Low pressure steam 110 0,5<br />

High pressure steam 180 0,4<br />

Table 38 <strong>—</strong> Coefficient B DS as a function <strong>of</strong> <strong>the</strong> class <strong>of</strong> insulation and type <strong>of</strong> dwelling substation<br />

Type <strong>of</strong><br />

station<br />

D DS<br />

Class <strong>of</strong> insulation <strong>of</strong> components <strong>of</strong> <strong>the</strong> dwelling<br />

substation according to <strong>DIN</strong> EN 12828<br />

Insulation <strong>of</strong> <strong>the</strong> secondary side 4 3 2 1<br />

Insulation <strong>of</strong> <strong>the</strong> primary side 5 4 3 2<br />

Hot water, low temperature 3,5 4,0 4,4 4,9<br />

Hot water, high temperature 3,1 3,5 3,9 4,3<br />

Low pressure steam 2,8 3,2 3,5 3,9<br />

High pressure steam 2,6 3,0 3,3 3,7<br />

In principle it is possible to consider <strong>the</strong> system on a monthly basis. As this is generally too complex, it is<br />

recommended that a year be selected as <strong>the</strong> calculation period, and that in <strong>the</strong> ensuing calculations <strong>the</strong><br />

unmodified <strong>the</strong>rmal losses in <strong>the</strong> course <strong>of</strong> <strong>the</strong> year should be taken into account. In some cases it may be<br />

useful to calculate separate values for summer and winter.<br />

The auxiliary energy <strong>of</strong> <strong>the</strong> dwelling substation is neglected. If <strong>the</strong> supply temperature for <strong>the</strong> heating system<br />

<strong>of</strong> <strong>the</strong> building is controlled by a central control system, a value <strong>of</strong> Q h,g,aux = 10 kWh in <strong>the</strong> respective month is<br />

assumed.<br />

6.4.6 Decentralized CHP<br />

Decentralized heat and power generation is dealt with in <strong>DIN</strong> V <strong>18599</strong>-9.


A.1 Electrically driven heat pumps<br />

Annex A<br />

(normative)<br />

<strong>Energy</strong> use to meet <strong>the</strong> heating need<br />

<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

Figure A.1 <strong>—</strong> <strong>Energy</strong> balance <strong>of</strong> <strong>the</strong> generator subsystem (electrically driven heat pump)<br />

The energy balance for <strong>the</strong> generator subsystem in respect <strong>of</strong> <strong>the</strong>rmal losses is as follows:<br />

where<br />

Q = Q + Q − k ⋅ Q − Q<br />

(A.1)<br />

h, f<br />

Q h,f<br />

h, outg<br />

h, g<br />

rd, g<br />

h, g, aux<br />

h, in<br />

is <strong>the</strong> delivered energy for <strong>the</strong> heat generator (heat pump) (in <strong>the</strong> respective month), in kWh;<br />

Q h,outg is <strong>the</strong> generator heat output to <strong>the</strong> heat distribution system (in <strong>the</strong> respective month) (see 6.4.1),<br />

in kWh;<br />

Q h,g<br />

k rd,g<br />

are <strong>the</strong> losses <strong>of</strong> <strong>the</strong> generator subsystem (in <strong>the</strong> respective month), in kWh;<br />

is <strong>the</strong> recovered energy fraction <strong>of</strong> <strong>the</strong> auxiliary systems;<br />

Q h,g,aux is <strong>the</strong> auxiliary input energy for operation <strong>of</strong> <strong>the</strong> generator (in <strong>the</strong> respective month), in kWh;<br />

Q h,in<br />

is <strong>the</strong> ambient heat (in <strong>the</strong> respective month), in kWh;<br />

103


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

The fractions <strong>of</strong> recovered energy <strong>of</strong> <strong>the</strong> auxiliary system are not taken into account, hence k rd,g = 0.<br />

The energy for operation <strong>of</strong> <strong>the</strong> heat pump Q h,f shall be taken from <strong>the</strong> test rig measurements according to<br />

<strong>DIN</strong> EN 14511 (all parts). Taken into account are <strong>the</strong> auxiliary energy for source and sink pumps (primary and<br />

secondary sides), to compensate for <strong>the</strong> internal pressure drop in <strong>the</strong> heat pump evaporator (heat source) and<br />

condenser (heating) as well as <strong>the</strong> auxiliary energy for control, for defrosting, and any back-up heating<br />

equipment that may be installed (e.g. oil sump heating).<br />

A.2 Heat pumps with combustion drive<br />

104<br />

Figure A.2 <strong>—</strong> <strong>Energy</strong> balance <strong>of</strong> <strong>the</strong> generator subsystem (heat pump with combustion drive)<br />

For heat pumps with combustion drive, <strong>the</strong> energy balance for <strong>the</strong> generator subsystem in respect <strong>of</strong> <strong>the</strong>rmal<br />

losses is as follows:<br />

Q<br />

where<br />

h, f<br />

Q h,f<br />

Qh,<br />

out, g + Qh,<br />

g − krd,<br />

g ⋅ Qh,<br />

g, aux − Qh,<br />

in<br />

= (A.2)<br />

1+ p<br />

rd, mot<br />

is <strong>the</strong> delivered energy for <strong>the</strong> heat generator (heat pump) (in <strong>the</strong> respective month), in kWh;<br />

Q h,outg is <strong>the</strong> generator heat output to <strong>the</strong> heat distribution system (in <strong>the</strong> respective month) (see 6.4), in<br />

kWh;<br />

Q h,g<br />

k rd,g<br />

are <strong>the</strong> losses <strong>of</strong> <strong>the</strong> generator subsystem (in <strong>the</strong> respective month), in kWh;<br />

is <strong>the</strong> fraction <strong>of</strong> recovered heating energy <strong>of</strong> <strong>the</strong> auxiliary systems;


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

Q h,g,aux is <strong>the</strong> auxiliary input energy for operation <strong>of</strong> <strong>the</strong> generator (in <strong>the</strong> respective month), in kWh;<br />

Q h,in<br />

p rd,mot<br />

is <strong>the</strong> ambient heat (in <strong>the</strong> respective month), in kWh;<br />

is <strong>the</strong> recovered input fuel supplied to <strong>the</strong> generator.<br />

Auxiliary energy recovered as <strong>the</strong>rmal energy is not taken into account (k rd,g = 0).<br />

A.3 Default values for heat pump calculations<br />

A.3.1 Default power values and coefficients <strong>of</strong> performance for electrically driven heat<br />

pumps<br />

Table A.1 <strong>—</strong> Air-to-water heat pumps with a supply temperature <strong>of</strong> 35 °C<br />

Supply temperature 35 °C<br />

Outdoor temperature –7 °C 2 °C 7 °C 15 °C 20 °C<br />

Relative heat output 0,72 0,88 1,04 1,25 1,36<br />

Coefficient <strong>of</strong> performance (COP) today 2,7 3,1 3,7 4,3 4,9<br />

Coefficient <strong>of</strong> performance (COP) from 1979 2,4 2,8 3,3 3,6 4,4<br />

to 1994<br />

Coefficient <strong>of</strong> performance (COP) before<br />

1979<br />

2,2 2,5 3,0 3,2 4,0<br />

Table A.2 <strong>—</strong> Air-to-water heat pumps with a supply temperature <strong>of</strong> 50 °C<br />

Supply temperature 50 °C<br />

Outdoor temperature –7 °C 2 °C 7 °C 15 °C 20 °C<br />

Relative heat output 0,68 0,84 1,00 1,24 1,29<br />

Coefficient <strong>of</strong> performance (COP) today 2,0 2,3 2,8 3,3 3,5<br />

Coefficient <strong>of</strong> performance (COP) from 1979 1,8 2,1 2,5 3,0 3,2<br />

to 1994<br />

Coefficient <strong>of</strong> performance (COP) before<br />

1979<br />

1,6 1,9 2,3 2,7 2,8<br />

Table A.3 <strong>—</strong> Brine-to-water heat pumps with supply temperatures <strong>of</strong> 35 °C and 50 °C<br />

Supply temperature 35 °C 50 °C<br />

Primary temperature –5 °C 0 °C 5 °C –5 °C 0 °C 5 °C<br />

Relative heat output 0,88 1,00 1,12 0,85 0,98 1,09<br />

Coefficient <strong>of</strong> performance (COP) today 3,7 4,3 4,9 2,6 3,0 3,4<br />

Coefficient <strong>of</strong> performance (COP) from 1979 to<br />

1994<br />

3,0 3,5 4,0 2,1 2,4 2,8<br />

Coefficient <strong>of</strong> performance (COP) before 1979 2,7 3,1 3,5 1,9 2,2 2,5<br />

105


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

106<br />

Table A.4 <strong>—</strong> Water-to-water heat pumps with supply temperatures <strong>of</strong> 35°C and 50 °C<br />

Supply temperature 35 °C 50 °C<br />

Primary temperature 10 °C 15 °C 10 °C 15 °C<br />

Relative heat output 1,07 1,20 1,00 1,13<br />

Coefficient <strong>of</strong> performance (COP) today 5,5 6,0 3,8 4,1<br />

Coefficient <strong>of</strong> performance (COP) from 1979 to<br />

1994<br />

4,6 5,0 3,2 3,4<br />

Coefficient <strong>of</strong> performance (COP) before 1979 3,9 4,3 2,7 2,9<br />

A.4 Default power values and coefficients <strong>of</strong> performance for combustion enginedriven<br />

heat pumps<br />

A.4.1 Air-to-water heat pumps<br />

Combustion engine-driven air-to-water heat pumps<br />

Figure A.3 <strong>—</strong> Heat output <strong>of</strong> combustion engine-driven air-to-water heat pumps at various source and<br />

sink temperatures


A.4.2 Combustion engine-driven air-to-water heat pumps<br />

<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

Figure A.4 <strong>—</strong> Standard coefficients <strong>of</strong> performance for combustion engine-driven air-to-water heat<br />

pumps at various source and sink temperatures<br />

A.4.3 Air-to-air heat pumps<br />

Combustion engine-driven air-gas heat pumps<br />

Figure A.5 <strong>—</strong> Heat output <strong>of</strong> combustion engine-driven air-to-air heat pumps<br />

107


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

Combustion engine-driven air-to-air heat pumps<br />

Figure A.6 <strong>—</strong> Standard coefficient <strong>of</strong> performance <strong>of</strong> combustion engine-driven air-to-air heat pumps<br />

A.4.4 Absorption heat pumps<br />

A.4.4.1 Heat output<br />

Default power values and coefficients <strong>of</strong> performance for NH 3 /H 2 O heat pumps<br />

Water-to-water direct-fired NH 3 /H 2 O absorption heat pumps<br />

108<br />

Figure A.7 <strong>—</strong> Heat output <strong>of</strong> water-to-water NH 3 /H 2 O absorption heat pumps at various source and<br />

sink temperatures


A.4.4.2 Default power values and coefficients <strong>of</strong> performance for H 2 O/LiBr heat pumps<br />

Water-to-water direct-fired H 2 O/LiBr absorption heat pumps<br />

<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

Figure A.8 <strong>—</strong> Heat output <strong>of</strong> water-to-water H 2 O/LiBr absorption heat pumps at various source and<br />

sink temperatures<br />

109


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

A.5 Correction factor for part load operation<br />

A.5.1 Electrically driven heat pumps<br />

Performance factors <strong>of</strong> electrically driven heat pumps are greatly dependent on <strong>the</strong> part load behaviour. The<br />

part load behaviour is affected by <strong>the</strong> equivalent performance <strong>of</strong> <strong>the</strong> heat distribution system and <strong>the</strong> volume<br />

<strong>of</strong> hot water per kW heat output. Buffer storage tanks are counted as part <strong>of</strong> <strong>the</strong> volume <strong>of</strong> hot water <strong>of</strong> <strong>the</strong><br />

heat distribution system.<br />

The load factor is determined according to equation (81).<br />

Table A.5 <strong>—</strong> Correction factor for part load operation <strong>of</strong> electrically driven heat pumps with radiators<br />

Type <strong>of</strong> heat<br />

distribution<br />

system<br />

Convectors/<br />

radiators<br />

110<br />

Equivalent<br />

water<br />

content<br />

Load factor<br />

%<br />

l/kW 10 20 30 40 50 60 70 80 90 99<br />

5 58,8 58,8 58,8 58,8 58,8 71,4 80,0 85,7 92,3 99,5<br />

10 80,1 80,1 80,1 80,1 80,1 84,8 89,1 92,2 95,5 99,6<br />

15 85,9 85,9 85,9 85,9 85,9 91,7 94,4 96,0 97,5 99,7<br />

20 89,1 89,1 89,1 89,1 89,1 93,8 95,8 97,1 98,3 99,8<br />

Table A.6 <strong>—</strong> Correction factor for part load operation <strong>of</strong> electrically driven heat pumps with surface<br />

heating systems<br />

Type <strong>of</strong> heat<br />

distribution<br />

system<br />

Surface<br />

heating<br />

Property<br />

light<br />

heavy<br />

Spacing<br />

<strong>of</strong> <strong>the</strong><br />

pipes<br />

Intermediate values are to be interpolated.<br />

Load factor<br />

%<br />

cm 10 20 30 40 50 60 70 80 90 99<br />

30 95,3 95,4 95,5 95,7 95,9 96,1 96,2 96,9 98,1 99,9<br />

20 97,1 97,2 97,2 97,3 97,4 97,4 97,6 97,9 98,4 99,9<br />

10 98,6 98,6 98,6 98,6 98,6 96,6 98,7 98,9 99,1 99,9<br />

30 96,1 96,1 96,1 96,3 96,4 96,5 96,8 97,3 98,2 99,9<br />

20 97,8 97,8 97,9 98,0 98,1 98,1 98,2 98,4 98,8 99,9<br />

10 99,1 99,1 99,1 99,1 99,1 99,1 99,2 99,2 99,4 99,9


A.5.2 Absorption heat pumps with modulation burner<br />

<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

Table A.7 <strong>—</strong> Correction factor for part load operation <strong>of</strong> absorption heat pumps<br />

Load factor<br />

%<br />

10 20 30 40 50 60 70 80 90 100<br />

C dt 71,5 81,4 88,3 93,3 96,8 99,2 99,9 99,9 99,9 99,9<br />

A.6 <strong>Calculation</strong> procedure for source and sink temperature corrections with a set<br />

exergetic <strong>efficiency</strong><br />

This procedure is based on <strong>the</strong> principle that <strong>the</strong> <strong>the</strong>rmodynamic quality <strong>of</strong> <strong>the</strong> process remains constant over<br />

<strong>the</strong> whole <strong>of</strong> <strong>the</strong> operating range. The <strong>the</strong>rmodynamic quality <strong>of</strong> a process can be expressed in terms <strong>of</strong> <strong>the</strong><br />

exergetic or Carnot <strong>efficiency</strong> as <strong>the</strong> ratio between <strong>the</strong> real coefficient <strong>of</strong> performance <strong>of</strong> <strong>the</strong> process and <strong>the</strong><br />

ideal Carnot coefficient <strong>of</strong> performance. The exergetic <strong>efficiency</strong> can thus be calculated by means <strong>of</strong> <strong>the</strong><br />

following equation:<br />

where<br />

COP<br />

η =<br />

(A.3)<br />

ex<br />

COPc<br />

η ex<br />

is <strong>the</strong> exergetic or Carnot <strong>efficiency</strong>;<br />

COP is <strong>the</strong> coefficient <strong>of</strong> performance;<br />

COP c<br />

is <strong>the</strong> Carnot coefficient <strong>of</strong> performance.<br />

The Carnot coefficient <strong>of</strong> performance (COP c ) is determined using equation (A.4).<br />

where<br />

T Θsi<br />

+ 273,<br />

15<br />

COP c =<br />

=<br />

(A.4)<br />

T<br />

Θ −Θ<br />

COP c<br />

T hot<br />

T cold<br />

Θ si<br />

Θ so<br />

hot<br />

hot − Tcold<br />

si<br />

is <strong>the</strong> Carnot coefficient <strong>of</strong> performance;<br />

so<br />

is <strong>the</strong> temperature on <strong>the</strong> hot side <strong>of</strong> <strong>the</strong> process, in K;<br />

is <strong>the</strong> temperature on <strong>the</strong> cold side <strong>of</strong> <strong>the</strong> process, in K;<br />

is <strong>the</strong> sink temperature, in °C;<br />

is <strong>the</strong> source temperature, in °C.<br />

Both <strong>the</strong> source and sink temperatures can be taken into account by this relationship.<br />

The effective coefficient <strong>of</strong> performance (COP eff ) at varying source temperatures is calculated using equation<br />

(A.5).<br />

111


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

where<br />

112<br />

COPc,<br />

eff<br />

COPeff = COPstandard<br />

⋅<br />

(A.5)<br />

COP<br />

COP eff<br />

COP standard<br />

COP c,eff<br />

COP c,standard<br />

c,<br />

standard<br />

is <strong>the</strong> coefficient <strong>of</strong> performance at effective source temperatures;<br />

is <strong>the</strong> coefficient <strong>of</strong> performance under standard conditions;<br />

is <strong>the</strong> Carnot coefficient <strong>of</strong> performance at effective source temperatures;<br />

is <strong>the</strong> Carnot coefficient <strong>of</strong> performance under standard conditions.<br />

A correction factor to account for <strong>the</strong> effect <strong>of</strong> <strong>the</strong> temperature on <strong>the</strong> coefficient <strong>of</strong> performance or <strong>the</strong><br />

auxiliary energy consumption to compensate for storage losses can be calculated as follows:<br />

where<br />

COPc,<br />

eff Tsi,<br />

out, eff ⋅ ( Θ si, out, standard − Θ so, in, standard )<br />

f T =<br />

=<br />

(A.6)<br />

COP<br />

T<br />

⋅ ( Θ − Θ )<br />

f T<br />

COP eff<br />

COP standard<br />

T si,out,eff<br />

T si,out,standard<br />

Θ so,in,eff<br />

Θ so,in,standard<br />

c,<br />

standard<br />

si, out, standard<br />

si, out, eff<br />

so, in, eff<br />

is <strong>the</strong> correction factor to account for <strong>the</strong> deviation <strong>of</strong> <strong>the</strong> temperature from <strong>the</strong> default<br />

value;<br />

is <strong>the</strong> coefficient <strong>of</strong> performance at effective source temperatures;<br />

is <strong>the</strong> coefficient <strong>of</strong> performance under standard conditions;<br />

is <strong>the</strong> effective outlet temperature on <strong>the</strong> sink side, in K;<br />

is <strong>the</strong> outlet temperature on <strong>the</strong> sink side under standard conditions, in K;<br />

is <strong>the</strong> effective outlet temperature on <strong>the</strong> source side, in °C;<br />

is <strong>the</strong> inlet temperature on <strong>the</strong> source side under standard conditions, in °C.<br />

The coefficient <strong>of</strong> performance under <strong>the</strong> effective temperature conditions and <strong>the</strong> losses P es can be corrected<br />

by <strong>the</strong> coefficient <strong>of</strong> performance under standard conditions COP w,t using <strong>the</strong> temperature correction factor f t .<br />

The sink temperature (and with it <strong>the</strong> coefficient <strong>of</strong> performance) varies during <strong>the</strong> operating period. The<br />

coefficient <strong>of</strong> performance is corrected according to equation (A.7).<br />

where<br />

Θhw<br />

Θ si + 273,<br />

15<br />

∫<br />

dΘ<br />

si<br />

( Θ si − Θ so )<br />

Θcw<br />

COP c =<br />

(A.7)<br />

( Θhw<br />

− Θcw<br />

)<br />

COP c<br />

Θ cw<br />

Θ hw<br />

Θ si<br />

Θ so<br />

is <strong>the</strong> Carnot coefficient <strong>of</strong> performance;<br />

is <strong>the</strong> cold water inlet temperature, in °C;<br />

is <strong>the</strong> domestic hot water temperature used, in °C;<br />

is <strong>the</strong> sink temperature <strong>of</strong> <strong>the</strong> heat pump, in °C;<br />

is <strong>the</strong> source temperature <strong>of</strong> <strong>the</strong> heat pump, in °C.


The integral can be solved analytically, hence equation (A.8):.<br />

where<br />

<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

( Θso<br />

+ 273,<br />

15)<br />

⎛Θ<br />

− ⎞<br />

= +<br />

⋅ ⎜ hw Θ so<br />

COP c 1<br />

ln<br />

⎟<br />

( − ⎜<br />

⎟<br />

(A.8)<br />

Θhw<br />

Θcw<br />

) ⎝ Θcw<br />

− Θ so ⎠<br />

COP c<br />

Θ cw<br />

Θ hw<br />

Θ si<br />

Θ so<br />

is <strong>the</strong> Carnot coefficient <strong>of</strong> performance;<br />

is <strong>the</strong> cold water inlet temperature, in °C;<br />

is <strong>the</strong> domestic hot water temperature used, in °C;<br />

is <strong>the</strong> sink temperature <strong>of</strong> <strong>the</strong> heat pump, in °C;<br />

is <strong>the</strong> source temperature <strong>of</strong> <strong>the</strong> heat pump, in °C;<br />

A.7 VRF systems: relative heat output performance<br />

Table A.8 <strong>—</strong> Relative heat output performance<br />

Outdoor temperature °C –7 2 7 10<br />

COP a 2,79 3,09 3,65 3,85<br />

Relative heat output at<br />

Load ratio 100 % 0,81 0,96 1,00 1,00<br />

Load ratio 90 % 0,89 1,00 1,00 1,00<br />

Load ratio 80 % 0,97 1,00 1,00 1,00<br />

Load ratio less than 75 % 1,00 1,00 1,00 1,00<br />

a COP for a room temperature <strong>of</strong> 20 °C and load ratios between 10 % and 100 % (without defrosting).<br />

113


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

114<br />

Figure A.9 <strong>—</strong> VRF systems: COP heating for load ratios between 10 % and 100 %<br />

Figure A.10 <strong>—</strong> VRF systems: relative heat output performance


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

Figure A.11 <strong>—</strong> VRF systems: relative COP heating for load ratios between 10 % and 100 %<br />

115


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

B.1 General information<br />

116<br />

Annex B<br />

(informative)<br />

Dimensioning <strong>of</strong> <strong>buildings</strong><br />

The dimensioning <strong>of</strong> <strong>buildings</strong> is described in terms <strong>of</strong> <strong>the</strong> length, <strong>the</strong> width, and also <strong>the</strong> number and height <strong>of</strong><br />

<strong>the</strong> storeys. Where <strong>buildings</strong> are not rectangular in shape, an arrangement <strong>of</strong> dimensioning parameters is<br />

shown here as an example.<br />

The individual dimensions summate to give <strong>the</strong> total building length L G and building width B G .<br />

∑<br />

LG = Li<br />

and<br />

i<br />

Figure B.1 shows four examples <strong>of</strong> building geometry.<br />

∑ Li<br />

Bi<br />

BG<br />

i<br />

LG<br />

⋅<br />

= (B.1)<br />

a) EXAMPLE 1<br />

Figure B.1 <strong>—</strong> Building geometry


) EXAMPLE 2<br />

c) EXAMPLE 3<br />

Figure B.1 (continued)<br />

<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

117


<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

118<br />

Alternatively, mean values can be used, as in d):<br />

d) EXAMPLE 4<br />

Figure B.1 (concluded)<br />

B<br />

G<br />

=<br />

∑<br />

i<br />

i<br />

B<br />

i


Bibliography<br />

<strong>DIN</strong> V <strong>18599</strong>-5:2007-02<br />

[1] <strong>DIN</strong> 4753-4, Water heaters and water heating installations for drinking water and service water <strong>—</strong><br />

Part 4: Corrosion protection on <strong>the</strong> water side by means <strong>of</strong> hot-setting, duroplastic coating materials <strong>—</strong><br />

Requirements and testing<br />

[2] <strong>DIN</strong> EN 215, Thermostatic heat radiator valves <strong>—</strong> Requirements and test methods<br />

[3] <strong>DIN</strong> EN 832, Thermal performance <strong>of</strong> <strong>buildings</strong> <strong>—</strong> <strong>Calculation</strong> <strong>of</strong> energy use for heating - Residential<br />

<strong>buildings</strong><br />

[4] <strong>DIN</strong> EN 12831, Heating systems in <strong>buildings</strong> <strong>—</strong> Method for calculation <strong>of</strong> <strong>the</strong> design heat load<br />

[5] E <strong>DIN</strong> EN ISO 13789, Thermal performance <strong>of</strong> <strong>buildings</strong> <strong>—</strong> Transmission heat loss coefficient <strong>—</strong><br />

<strong>Calculation</strong> method<br />

[6] VDI 2067, Economic <strong>efficiency</strong> <strong>of</strong> building installations<br />

119

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!